WO2013031223A1 - Substrate treatment device, substrate treatment method, light exposure method, light exposure device, method for manufacturing device, and method for manufacturing flat panel display - Google Patents

Substrate treatment device, substrate treatment method, light exposure method, light exposure device, method for manufacturing device, and method for manufacturing flat panel display Download PDF

Info

Publication number
WO2013031223A1
WO2013031223A1 PCT/JP2012/005466 JP2012005466W WO2013031223A1 WO 2013031223 A1 WO2013031223 A1 WO 2013031223A1 JP 2012005466 W JP2012005466 W JP 2012005466W WO 2013031223 A1 WO2013031223 A1 WO 2013031223A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
moving body
exposure
processing
holding
Prior art date
Application number
PCT/JP2012/005466
Other languages
French (fr)
Japanese (ja)
Inventor
青木 保夫
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to KR1020147008312A priority Critical patent/KR102105809B1/en
Priority to CN201280042608.XA priority patent/CN103782239B/en
Priority to JP2013531102A priority patent/JP6071068B2/en
Priority to KR1020207011723A priority patent/KR102226989B1/en
Publication of WO2013031223A1 publication Critical patent/WO2013031223A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70758Drive means, e.g. actuators, motors for long- or short-stroke modules or fine or coarse driving
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70716Stages

Definitions

  • the present invention relates to a substrate processing apparatus, a substrate processing method, an exposure method, an exposure apparatus, a device manufacturing method, and a flat panel display manufacturing method, and in particular, a plurality of substrates on a substrate by sequentially moving the substrate with respect to a processing position.
  • Substrate processing apparatus and substrate processing method for performing predetermined processing on region, exposure method and exposure apparatus for exposing a plurality of regions on substrate by sequentially moving substrate relative to exposure position (processing position), and said substrate The present invention relates to a device manufacturing method and a flat panel display manufacturing method using the processing apparatus, the substrate processing method, the exposure method or the exposure apparatus.
  • a step-and-repeat type projection exposure apparatus such as liquid crystal display elements, semiconductor elements (integrated circuits, etc.
  • stepper step-and-repeat type projection exposure apparatus
  • scanning stepper also called a scanner
  • a glass plate or a wafer (hereinafter collectively referred to as a substrate) whose surface is coated with a sensitive agent is placed on a substrate stage apparatus. Then, the circuit pattern formed on the mask (or reticle) is transferred to the substrate by exposure light exposure through an optical system such as a projection lens.
  • a substrate stage can be formed in order to achieve the purpose of positioning the substrate at high speed and with high accuracy.
  • the goal was to reduce the weight as much as possible and eliminate disturbance (vibration).
  • a VCM (voice coil motor) and other components that are necessary for high-precision positioning control are placed on the fine movement stage, and other components (such as electrical boards and supply cables) are mounted on the coarse movement stage.
  • VCM voice coil motor
  • glass substrates for liquid crystals tend to be larger in the latest 10th generation, such as a side of 3 meters or more, and a fine movement stage on which a substrate holder that holds and holds the entire large substrate is mounted.
  • the size is increased and the weight is increased.
  • the enlargement of the substrate holder and the substrate table that supports the substrate holder has caused various disadvantages.
  • the exposure apparatus has become large, the manufacturing cost has increased, and it has taken time to manufacture and transport the apparatus.
  • it takes time to move the substrate and the tact time is long. For this reason, there has been a demand for the development of a stage apparatus that can guide the exposure object (substrate) with high accuracy and that can be further reduced in size and weight.
  • the substrate exchange on the substrate stage is performed by unloading (withdrawing) the substrate from the substrate holder that holds the substrate by suction and then loading (injecting) the new substrate onto the substrate holder.
  • a substrate holder having a holding surface of the same size as the substrate has been used. For this reason, in the conventional exposure apparatus, the substrate cannot be carried out from the substrate holder unless the substrate is transported by the same distance as the size, and the substrate cannot be carried into the substrate holder. .
  • glass substrates for liquid crystals tend to become larger, so it takes some time to replace the substrate, and development of a new device that can further shorten the substrate replacement time. was desired.
  • the inventor once again observed the stage device in order to realize a stage device that can guide the object (substrate) at high speed and with high accuracy and that can be further reduced in size and weight.
  • the weight of the substrate having an area of 3 square meters and a thickness of about 0.7 mm is less than 20 kg, while the weight of the substrate holder supporting the substrate is about 1 ton.
  • the table that supports the substrate holder also becomes heavy. If the weight of the substrate holder located at the tip can be reduced, it will be recognized again that all the components connected to the bottom of the holder, that is, the table, weight canceling device (core column), guide, etc., can be reduced in weight. did.
  • the main role of the substrate holder is to flatten a thin substrate that is prone to warping and / or bending. For this reason, the conventional substrate holder has almost the same area as the substrate, and the substrate is made to follow the surface (upper surface) of the substrate holder by, for example, vacuum suction. For this reason, it is necessary to finish the surface of the substrate holder as a plane reference with extremely high flatness, and the thickness is increased and the weight is increased to ensure rigidity.
  • the batch exposure area that can be exposed at one time (also referred to as a shot area) is set to be smaller than the area of the entire substrate.
  • the entire surface of the substrate cannot be exposed. Therefore, the entire surface of the substrate is exposed while repeating scan exposure and step movement without exposure.
  • the substrate needs to be flat only within the scan range (shot region) of the collective exposure, and more strictly, only the fixed irradiation range by the projection optical system. There is no need to pay particular attention to the flatness of the substrate during other steps and step movement without exposure.
  • the inventor sets the substrate holder for correcting the substrate flatly to a width in the cross scan direction substantially equal to that of the exposure field (a little wider than the exposure field), and even if the length in the scan direction is small.
  • the scan exposure area (shot area) on the substrate to be exposed next is moved relative to the substrate holder, and the plane correction and the substrate alignment are performed each time to perform the scan exposure. I thought that I should do it.
  • the area of the substrate holder is reduced, and the table supporting the substrate holder is also reduced, so that the entire fine movement stage is reduced in size and weight.
  • the present invention has been made based on the idea of the inventor, and adopts the following configuration.
  • a substrate processing apparatus for processing a substrate, having a holding unit that holds a part of the substrate in a state in which flatness is ensured, A first moving body that moves in at least a first direction within a predetermined plane parallel to the surface of the substrate; a step driving device that drives the substrate in a second direction orthogonal to the first direction within the predetermined plane; A first substrate processing apparatus is provided.
  • the movement in the first direction with respect to the substrate processing position of the first moving body that holds the part of the substrate in a state in which the flatness is ensured by the holding unit is the second direction of the substrate by the step driving device.
  • the plurality of regions to be processed on the substrate are processed.
  • substrate can be made small, and the moving body which has the holding
  • a substrate processing apparatus for processing a substrate
  • the substrate processing apparatus includes a holding unit that holds a part of a surface opposite to the processing surface of the substrate arranged in parallel to a horizontal plane.
  • a first moving body that moves in at least a first direction within a predetermined plane parallel to the surface of the substrate with respect to the substrate processing position; and the first direction within the predetermined plane across the first moving body.
  • a pair of first surfaces each having a support surface that is disposed on both sides in a second direction orthogonal to the substrate and supports at least a portion of the substrate from below and having a size equal to or greater than that of the substrate in the first direction and the second direction.
  • a first transport device that transports the substrate in the predetermined plane so that the substrate is displaced in the second direction when the substrate is unloaded from the first moving body.
  • the holding part of the first moving body holds a part of the surface of the substrate opposite to the surface to be processed. That is, the substrate holding surface of the holding unit is set smaller than the substrate. For this reason, when the first transport device carries the substrate from the first moving body, the substrate is transported within a predetermined plane so as to be displaced in the second direction. By simply displacing the substrate in the second direction by a distance smaller than the size in the second direction, the unloading of the substrate is completed. Therefore, it is possible to shorten the substrate replacement time by shortening the carry-out distance as compared with the prior art.
  • any one of the substrate processing apparatuses according to the first and second aspects is disposed at a substrate processing position, and the processing region is irradiated with an energy beam.
  • a device manufacturing method including exposing the substrate using the substrate processing apparatus and developing the exposed substrate is provided.
  • any one of the substrate processing apparatuses according to the first and second aspects is disposed at a substrate processing position, and the set processing region is irradiated with an energy beam to thereby form the processing region. Exposing the substrate used for a flat panel display as a substrate using the substrate processing apparatus, and developing the exposed substrate. A method of manufacturing a flat panel display is provided.
  • a substrate processing method for processing a substrate wherein a part of the substrate is held by a moving body while ensuring flatness, and the moving body is placed at a substrate processing position.
  • driving in a first direction within a predetermined plane parallel to the surface of the substrate to perform a predetermined process on the region in the part of the substrate, and moving the unprocessed region on the substrate to the movable body First substrate processing method including: driving the substrate to the movable body by a predetermined amount in a second direction orthogonal to the first direction within the predetermined plane with respect to the moving body.
  • a plurality of regions to be processed on the substrate are processed by performing the predetermined processing before and after performing the step drive.
  • substrate can be reduced in size and weight. Thereby, it becomes possible to improve the position controllability of the moving body and to reduce the production cost of the substrate processing apparatus.
  • a substrate processing method for processing a substrate wherein a part of a surface opposite to the processing surface of the substrate arranged in parallel to a horizontal plane is ensured in flatness.
  • the movable body is held by the movable body, and the movable body is driven in a first direction within a predetermined plane parallel to the surface of the substrate with respect to the substrate processing position to perform predetermined processing on the region within the part of the substrate.
  • a second substrate processing method including unloading the substrate from the movable body.
  • a substrate that has been subjected to a predetermined process is transported in a second direction perpendicular to the first direction within a predetermined plane by a distance shorter than the size of the substrate in the second direction. Is removed from the moving object. Therefore, it is possible to shorten the substrate replacement time by shortening the carry-out distance as compared with the prior art.
  • a processing method for processing a substrate wherein a surface opposite to the processing surface of the substrate arranged in parallel to a horizontal plane is held in a state in which flatness is ensured.
  • the substrate is transported in a direction determined according to the arrangement and the order at a position in the first direction determined according to the arrangement of the region to be processed on the substrate and the order of processing.
  • a third substrate processing method including unloading from the moving body.
  • the substrate is determined according to the arrangement and the order at the position in the first direction within the predetermined plane determined according to the arrangement of the processing target area on the substrate and the order of processing. Transport in the direction and unload from the moving body. For this reason, it becomes possible to carry out a board
  • any of the substrate processing methods according to the fifth to seventh aspects is a method of exposing a substrate
  • the substrate is exposed using the substrate processing method. And developing the exposed substrate.
  • a device manufacturing method is provided.
  • any one of the substrate processing methods according to the fifth to seventh aspects is a method for exposing a substrate
  • the substrate processing method is used as a flat panel display as a substrate.
  • a method of manufacturing a flat panel display which includes exposing a substrate used in the above and developing the exposed substrate.
  • an exposure method for exposing a plurality of substrates wherein the two substrates are mounted on a substrate holding apparatus having first and second holding regions capable of holding two substrates individually.
  • a device manufacturing method including exposing the substrate by the exposure method according to the tenth aspect and developing the exposed substrate.
  • a flat comprising: exposing a substrate used for a flat panel display as the substrate by the exposure method according to the tenth aspect; and developing the exposed substrate.
  • a method for manufacturing a panel display is provided.
  • an exposure apparatus that exposes a plurality of areas on a substrate, the substrate holding apparatus having first and second holding areas each capable of holding a part of two substrates. And the substrate holding device is provided in a part thereof, and a movable body that moves in the first direction, and moves in the first direction integrally with the movable body, and one of the two substrates is
  • An exposure apparatus is provided that includes a first substrate feeder that moves in a second direction that intersects the first direction.
  • a moving body in which a part of each of the two substrates is placed on the first holding region and the second holding region of the substrate holding device, respectively, and the substrate holding device is provided in a part thereof.
  • the other substrate In parallel with the movement of the first direction to scan and expose a part of the processing area of one substrate, the other substrate is moved in the second direction with respect to the substrate holding device by the first substrate feeding device. It becomes possible. Thereby, after the exposure of one processing area (unexposed area) is completed for the first substrate, the substrate is stepped to expose the next processing area (unexposed area). Exposure and step movement Are alternately repeated to expose the substrate, and the time required for the exposure processing of the two substrates can be shortened as compared with the case where the second substrate is exposed in the same procedure. .
  • a fourteenth aspect of the present invention there is provided a device manufacturing method comprising: exposing a substrate using the exposure apparatus according to the thirteenth aspect; and developing the exposed substrate. .
  • exposing a substrate used for a flat panel display as the substrate using the exposure apparatus according to the thirteenth aspect, exposing a substrate used for a flat panel display as the substrate, and developing the exposed substrate.
  • a method of manufacturing a flat panel display is provided.
  • FIG. 1 is a partially omitted plan view showing an exposure apparatus according to a first embodiment.
  • FIG. 2 is a schematic side view showing the exposure apparatus according to the first embodiment with a part thereof omitted when viewed from the + X direction in FIG. 1.
  • FIG. 2 is a block diagram showing an input / output relationship of a main controller that mainly constitutes a control system of the exposure apparatus according to the first embodiment.
  • FIG. (1) for demonstrating a series of operation
  • FIG. (2) for demonstrating a series of operation
  • FIG. (3) for demonstrating a series of operation
  • FIG. (4) for demonstrating a series of operation
  • FIG. (5) for demonstrating a series of operation
  • FIG. (6) for demonstrating a series of operation
  • FIG. (8) for demonstrating a series of operation
  • FIG. (9) for demonstrating a series of operation
  • FIG. (9) for demonstrating a series of operation
  • FIG. which shows schematically the structure of the exposure apparatus which concerns on 2nd Embodiment. It is the top view which abbreviate
  • FIG. 1 It is a schematic side view which abbreviate
  • FIG. 21 is a schematic side view showing the exposure apparatus according to the fourth embodiment with a part thereof omitted when viewed from the + X direction of FIG. 20. It is a figure which shows schematically the structure of the exposure apparatus which concerns on 5th Embodiment.
  • FIG. 10 is a partially omitted plan view showing an exposure apparatus according to a fifth embodiment. It is a schematic side view which abbreviate
  • FIG. 10 is a partially omitted plan view showing an exposure apparatus according to a sixth embodiment.
  • FIG. (2) for demonstrating a series of operation
  • FIG. (3) for demonstrating a series of operation
  • FIG. (4) for demonstrating a series of operation
  • FIG. 10 is a partially omitted plan view showing an exposure apparatus according to a seventh embodiment.
  • FIG. 31 is a side view of the exposure apparatus according to the seventh embodiment when viewed from the + X direction in FIG. 30 (partially omitted, partially shown in section).
  • FIG. (1) for demonstrating a series of operation
  • FIG. (2) for demonstrating a series of operation
  • FIG. (3) for demonstrating a series of operation
  • FIG. (4) for demonstrating a series of operation
  • FIG. (5) for demonstrating a series of operation
  • FIG. (6) for demonstrating a series of operation
  • FIG. (8) for demonstrating a series of operation
  • FIG. (9) for demonstrating a series of operation
  • FIG. (10) for demonstrating a series of operation
  • FIG. (11) for demonstrating a series of operation
  • FIG. (12) for demonstrating a series of operation
  • FIG. 10 is a partially omitted plan view showing an exposure apparatus according to an eighth embodiment.
  • FIG. (1) for demonstrating a series of operation
  • FIG. (2) for demonstrating a series of operation
  • FIG. (3) for demonstrating a series of operation
  • FIG. (4) for demonstrating a series of operation
  • FIG. (5) for demonstrating a series of operation
  • FIG. (6) for demonstrating a series of operation
  • FIG. (7) for demonstrating a series of operation
  • FIG. (8) for demonstrating a series of operation
  • FIG. (9) for demonstrating a series of operation
  • FIG. (11) for demonstrating a series of operation
  • FIG. (12) for demonstrating a series of operation
  • FIG. (13) for demonstrating a series of operation
  • FIG. (14) for demonstrating a series of operation
  • FIG. 10 is a partially omitted plan view showing an exposure apparatus according to a ninth embodiment.
  • FIG. 68 is a schematic side view showing the exposure apparatus according to the ninth embodiment with a part thereof omitted when viewed from the + X direction of FIG. 67.
  • FIG. 69 is an enlarged view of a part of the plan view of FIG. 68 taken out.
  • It is a block diagram which shows the input / output relationship of the main controller which mainly comprises the control system of the exposure apparatus which concerns on 9th Embodiment.
  • 75A to 75D are diagrams for explaining parallel processing of exposure of the shot area SA1 of the substrate P2 and Y-step operation of the substrate P1. It is exposure procedure explanatory drawing (the 4) performed with the exposure apparatus which concerns on 9th Embodiment. It is exposure procedure explanatory drawing (the 5) performed with the exposure apparatus which concerns on 9th Embodiment.
  • FIG. 116 is a schematic side view showing the exposure apparatus according to the tenth embodiment with a portion omitted as viewed from the + X direction in FIG. 115.
  • FIG. 1 schematically shows a configuration of an exposure apparatus 100 according to the first embodiment
  • FIG. 2 shows a plan view in which the exposure apparatus 100 is partially omitted. 2 corresponds to a plan view of a portion below the projection optical system PL in FIG. 1 (a portion below a lens barrel surface plate described later).
  • the exposure apparatus 100 is used for manufacturing, for example, a flat panel display, a liquid crystal display device (liquid crystal panel), and the like.
  • the exposure apparatus 100 is a projection exposure apparatus that uses a rectangular (square) glass substrate P (hereinafter simply referred to as a substrate P) used for a display panel of a liquid crystal display device as an exposure object.
  • the exposure apparatus 100 includes an illumination system IOP, a mask stage MST that holds a mask M, a projection optical system PL, a mask stage MST, a projection optical system PL, and the like mounted on a body BD (only a part thereof is shown in FIG. 1 and the like).
  • a substrate stage apparatus PST including a fine movement stage 26 (substrate table) for holding the substrate P, and a control system thereof.
  • the direction in which the mask M and the substrate P are relatively scanned with respect to the projection optical system PL at the time of exposure is defined as the X-axis direction (X direction), and the direction orthogonal to this in the horizontal plane is the Y-axis direction (Y Direction), the direction orthogonal to the X axis and Y axis is the Z axis direction (Z direction), and the rotation (tilt) directions around the X axis, Y axis, and Z axis are the ⁇ x, ⁇ y, and ⁇ z directions, respectively.
  • the illumination system IOP is configured similarly to the illumination system disclosed in, for example, US Pat. No. 6,552,775. That is, the illumination system IOP emits light emitted from a light source (not shown) (for example, a mercury lamp) through exposure reflectors (not shown), dichroic mirrors, shutters, wavelength selection filters, various lenses, and the like. Irradiation light) is applied to the mask M as IL.
  • a light source for example, a mercury lamp
  • exposure reflectors not shown
  • dichroic mirrors for example, a mercury lamp
  • shutters for example, a light source
  • wavelength selection filters for example, a light that is applied to the mask M as IL.
  • Irradiation light is applied to the mask M as IL.
  • the illumination light IL for example, light such as i-line (wavelength 365 nm), g-line (wavelength 436 nm), h-line (wavelength 405 nm), or the combined light of the i-line,
  • a mask M having a circuit pattern or the like formed on its pattern surface (the lower surface in FIG. 1) is fixed to the mask stage MST, for example, by vacuum suction (or electrostatic suction).
  • Mask stage MST is supported in a non-contact state on a mask surface plate (not shown) constituting a part of body BD, for example, via an air bearing (not shown) fixed to the bottom surface thereof.
  • the mask stage MST is driven with a predetermined stroke in the scanning direction (X-axis direction) by a mask stage drive system 12 (not shown in FIG. 1, see FIG. 4) including a linear motor, for example, And are slightly driven appropriately in the ⁇ z direction.
  • Position information (including rotation information in the ⁇ z direction) of the mask stage MST in the XY plane includes a plurality of laser interferometers that irradiate a measuring beam onto a reflective surface provided (or formed) on the mask stage MST. It is measured by a mask laser interferometer system (hereinafter referred to as “mask interferometer system”) 14.
  • mask interferometer system a mask laser interferometer system
  • the projection optical system PL is supported by the lens barrel surface plate 16 which is a part of the body BD below the mask stage MST in FIG.
  • the projection optical system PL is configured similarly to the projection optical system disclosed in, for example, US Pat. No. 6,552,775. That is, the projection optical system PL includes a plurality of projection optical systems (multi-lens projection optical systems) in which the projection areas of the pattern image of the mask M are arranged in, for example, a staggered pattern, and a single direction whose longitudinal direction is the Y-axis direction. It functions in the same way as a projection optical system having a rectangular (band-like) image field.
  • each of the plurality of projection optical systems for example, a bilateral telecentric equal magnification system that forms an erect image is used.
  • a plurality of projection areas arranged in a staggered pattern in the projection optical system PL are collectively referred to as an exposure area IA.
  • the illumination light IL that has passed through the mask M causes the circuit of the mask M in the illumination area to pass through the projection optical system PL.
  • An area (exposure area) IA is formed.
  • the mask M is relatively moved in the scanning direction (X-axis direction) with respect to the illumination area (illumination light IL) by synchronous driving of the mask stage MST and a substrate holder PH (fine movement stage 26) described later that holds the substrate P.
  • scanning exposure of one shot area (partition area) on the substrate P is performed by moving the substrate P relative to the exposure area IA (illumination light IL) in the scanning direction (X-axis direction).
  • the pattern of the mask M is transferred to the shot area. That is, in the exposure apparatus 100, the pattern of the mask M is generated on the substrate P by the illumination system IOP and the projection optical system PL, and the sensitive layer (resist layer) on the substrate P is exposed on the substrate P by the illumination light IL. A pattern is formed.
  • the body BD is separated from each other by a predetermined distance in the X-axis direction on the floor F as shown in FIG. 2 and FIG. 3 in which the schematic side view of the exposure apparatus 100 viewed from the + X direction is partially omitted.
  • a pair of (two) substrate stage mounts (hereinafter abbreviated as mounts) 18 composed of rectangular parallelepiped members arranged in parallel and with the longitudinal direction as the Y-axis direction, and a pair of side frames 20 on the pair of mounts 18.
  • mounts 18 composed of rectangular parallelepiped members arranged in parallel and with the longitudinal direction as the Y-axis direction, and a pair of side frames 20 on the pair of mounts 18.
  • a lens barrel surface plate 16 supported horizontally and a mask surface plate (not shown).
  • the number of the gantry 18 is not limited to two, but may be one or three or more.
  • Each base 18 is installed on the floor F via a plurality of vibration isolators 22 (see FIGS. 1 and 3).
  • the pair of side frames 20 has lower ends connected to one end and the other end in the Y-axis direction on the upper surface of the pair of mounts 18.
  • the lens barrel surface plate 16 is formed of a rectangular parallelepiped member that is arranged in parallel to the XY plane and whose longitudinal direction is the Y-axis direction, and both ends in the Y-axis direction are downward on the pair of mounts 18 by the pair of side frames 20. It is supported from.
  • the substrate stage apparatus PST includes a coarse movement stage unit 24, a fine movement stage 26, a weight cancellation apparatus 28, and the like, as shown in FIG.
  • the weight cancellation device 28 is disposed on the upper surface parallel to the XY plane of the X guide 82 disposed on the pair of mounts 18.
  • the coarse movement stage unit 24 includes two (a pair) X beams 30A and 30B, two (a pair) coarse movement tables 32A and 32B, and two X beams 30A and 30B. And a plurality of legs 34 that support each of the two on the floor surface F.
  • Each of the X beams 30A and 30B is formed of a hollow member having a rectangular frame shape with a YZ cross section extending in the X-axis direction and having a rib inside, and is arranged in parallel to each other at a predetermined interval in the Y-axis direction (FIGS. 1 to 5). 3).
  • each of the X beams 30A and 30B has three legs 34 in the vicinity of both ends in the longitudinal direction (X-axis direction) and the central portion. On the surface F, it is supported without contact with the pair of mounts 18. As a result, the coarse movement stage portion 24 is vibrationally separated from the pair of mounts 18.
  • positioning and the number of the leg parts 34 may be arbitrary.
  • the X beams 30A and 30B are not limited to hollow members, but may be solid members, or may be rod-shaped members having an I-shaped YZ cross section.
  • a plurality of X linear guides 36 extending in the X axis direction (for example, two (a pair)) are fixed in parallel to each other at predetermined intervals in the Y axis direction on the upper surfaces of the X beams 30A and 30B.
  • X stators 38A and 38B extending in the X-axis direction are fixed to the upper surfaces of the X beams 30A and 30B, respectively, between the pair of X linear guides 36.
  • Each of the X stators 38A and 38B has a magnet unit including a plurality of permanent magnets arranged at a predetermined interval in the X-axis direction, for example. In this embodiment, as shown in FIGS.
  • the cross-sectional shapes of the X beams 30A and 30B are such that the + Y side X beam 30A is wider than the ⁇ Y side X beam 30B, that is, in the Y-axis direction.
  • the same shape may be used.
  • the coarse movement tables 32A and 32B are individually arranged above the X beams 30A and 30B as shown in FIG.
  • the coarse motion table 32B located on the ⁇ Y side is made of a plate-like member having a rectangular shape in plan view
  • the coarse motion table 32A located on the + Y side is a U-shaped plate in plan view having a recess at the end portion on the ⁇ Y side. It consists of a member.
  • the coarse motion table 32 ⁇ / b> A is partially shown in a sectional view together with a weight cancellation device 28 described later. As shown in FIG.
  • a predetermined gap (gap and clearance) is provided between the X stators 38A and 38B fixed to the X beams 30A and 30B, respectively.
  • Opposing X movers 40A and 40B are fixed.
  • Each of the X movers 40A and 40B includes, for example, a coil unit (not shown), and together with the X stators 38A and 38B, the X linear motors 42A and D drive the coarse motion tables 32A and 32B with a predetermined stroke in the X axis direction. 42B is configured.
  • the lower surfaces of the coarse movement tables 32A and 32B include rolling elements (not shown) (for example, a plurality of balls, etc.), and are slidable with respect to the respective X linear guides 36.
  • a plurality of sliders 44 to be engaged are fixed.
  • four sliders 44 are provided at predetermined intervals in the X-axis direction with respect to each X linear guide 36 (see FIG. 1), and a total of 8 sliders 44 are provided on the lower surfaces of the coarse motion tables 32A and 32B, for example.
  • the sliders 44 are fixed.
  • Each of the coarse motion tables 32 ⁇ / b> A and 32 ⁇ / b> B is linearly guided in the X-axis direction by a plurality of X linear guide devices including an X linear guide 36 and a slider 44.
  • an X scale having the X axis direction as a periodic direction is fixed to each of the X beams 30A and 30B, and each of the coarse motion tables 32A and 32B has an X scale.
  • Encoder heads constituting X linear encoder systems 46A and 46B for obtaining position information in the X-axis direction of coarse motion tables 32A and 32B using a scale are fixed.
  • the positions of the coarse motion tables 32A and 32B in the X-axis direction are controlled by the main controller 50 (see FIG. 4) based on the output of the encoder head.
  • the coarse movement tables 32A and 32B have relative movement amounts (relative to the coarse movement tables 32A and 32B in the X-axis and Y-axis directions relative to the coarse movement tables 32A and 32B).
  • Gap sensors 48A and 48B (see FIG. 4) for measuring the (displacement amount) are attached.
  • Main controller 50 immediately stops fine movement stage 26 and coarse movement tables 32A and 32B when the relative movement amounts measured by gap sensors 48A and 48B reach a predetermined limit value.
  • a mechanical stopper member that mechanically limits the movable amount of the fine movement stage 26 with respect to the coarse movement tables 32A and 32B may be provided.
  • fine movement stage 26 is made of a plate-shaped (or box-shaped) member having a rectangular shape in plan view, and substrate holder PH is mounted on the upper surface thereof.
  • the substrate holder PH has a length in the X-axis direction equivalent to that of the substrate P, and a width (length) in the Y-axis direction is about 1 ⁇ 2 of the substrate P (see FIG. 2).
  • the substrate holder PH adsorbs and holds a part of the substrate P (here, about a half of the substrate P with respect to the Y-axis direction) by, for example, vacuum adsorption (or electrostatic adsorption) and a pressurized gas (for example, High pressure air) is ejected upward, and a part of the substrate P (about 1 ⁇ 2 of the substrate P) can be supported in a non-contact (floating) direction from below by the ejection pressure.
  • the switching between high-pressure air ejection and vacuum suction to the substrate P by the substrate holder PH is performed via a holder intake / exhaust switching device 51 (see FIG. 4) that switches and connects the substrate holder PH to a vacuum pump and a high-pressure air source (not shown). This is performed by the main controller 50.
  • the fine movement stage 26 is moved in a direction of six degrees of freedom (X axis, Y axis, Z axis, ⁇ x) on the coarse movement table 32A by a fine movement stage drive system 52 (see FIG. 4) including a plurality of voice coil motors (or linear motors). , ⁇ y, and ⁇ z).
  • a stator 56 is provided on the upper surface of the + X side end of the coarse movement table 32 ⁇ / b> A via a support member 33.
  • a mover 58 that constitutes the X voice coil motor 54X together with the stator 56 is fixed to the side surface on the + X side.
  • a pair of X voice coil motors 54X having the same configuration is provided at a predetermined distance in the Y-axis direction.
  • a stator 60 is provided via a support member 35 at a substantially central position in the Y-axis direction on the upper surface of the coarse movement table 32A.
  • a movable element 62 constituting the Y voice coil motor 54Y is fixed together with the stator 60 on the side surface on the + Y side.
  • a pair of Y voice coil motors 54Y having the same configuration is provided at a predetermined distance in the X-axis direction.
  • the fine movement stage 26 is supported by a weight cancellation device 28, which will be described later, by a main controller 50 using a pair of X voice coil motors 54X, and is driven synchronously with a coarse movement table 32A (at the same speed in the same direction as the coarse movement table 32A). Driven) with a predetermined stroke in the X-axis direction together with the coarse motion table 32A, and driven in the Y-axis direction with respect to the coarse motion table 32A by being driven using a pair of Y voice coil motors 54Y. Also moves with a slight stroke.
  • the fine movement stage 26 causes the coarse movement by causing the main controller 50 to generate driving forces in opposite directions to each of the pair of X voice coil motors 54X or each of the pair of Y voice coil motors 54Y. It moves in the ⁇ z direction with respect to the table 32A.
  • the fine movement stage 26 includes the above-described X linear motors 42A and 42B and the pair of the X voice coil motor 54X and the Y voice coil motor 54Y of the fine movement stage drive system 52. 1), it can be moved (coarse movement) with a long stroke in the X-axis direction, and can be slightly moved (fine movement) in three degrees of freedom in the X-axis, Y-axis, and ⁇ z directions.
  • the fine movement stage drive system 52 has a plurality of, for example, four, fine movement stages 26 for finely driving the fine movement stage 26 in the remaining three degrees of freedom (each direction of ⁇ x, ⁇ y, and Z axis).
  • a Z voice coil motor 54Z is provided.
  • Each of the plurality of Z voice coil motors 54Z includes a stator 59 fixed to the upper surface of the coarse movement table 32A and a mover 57 fixed to the lower surface of the fine movement stage 26, and is formed at four corners of the lower surface of the fine movement stage 26. (In FIG. 1, only two of the four Z voice coil motors 54Z are shown, and the other two are not shown. In FIG.
  • each voice coil motor 54X, 54Y, 54Z may be either a moving magnet type or a moving coil type. A position measurement system for measuring the position of fine movement stage 26 will be described later.
  • four air levitation units 84 having a rectangular support surface (upper surface) are arranged above the coarse movement tables 32A and 32B. And fixed to the upper surfaces of the coarse motion tables 32A and 32B.
  • each air levitation unit 84 has a thrust type air bearing structure having a porous body and mechanically a plurality of minute holes.
  • Each air levitation unit 84 can float and support a part of the substrate P by supplying pressurized gas (for example, high-pressure air) from a gas supply device 85 (see FIG. 4).
  • pressurized gas for example, high-pressure air
  • On / off of the supply of high-pressure air to each air levitation unit 84 is controlled by the main controller 50 shown in FIG.
  • a single gas supply device 85 is illustrated.
  • the present invention is not limited to this, and the air levitation unit 84 that supplies high-pressure air individually to each air levitation unit 84
  • the same number of gas supply devices may be used, or two or more gas supply devices respectively connected to the plurality of air levitation units 84 may be used.
  • the single gas supply apparatus 85 is shown on behalf of all of these. In any case, on / off of the supply of high-pressure air from the gas supply device 85 to each air levitation unit 84 is individually controlled by the main controller 50.
  • Each of the four air levitation units 84 attached to each of the coarse motion tables 32A and 32B is disposed on both sides of the substrate holder PH in the Y-axis direction.
  • the upper surface of each air levitation unit 84 is set to be equal to or somewhat lower than the upper surface of the substrate holder PH.
  • each of the four air levitation units 84 arranged on one side and the other side of the substrate holder PH in the Y-axis direction has almost the same area as the substrate holder PH (that is, about the size of the substrate P). In a rectangular area of 1/2), they are arranged in 2 rows and 2 columns with a predetermined gap in the X-axis direction and a slight gap in the Y-axis direction. In this case, each of the four air levitation units 84 can levitate and support about 1 ⁇ 2 of the substrate P.
  • the entire substrate P is supported by the substrate holder PH and the two air levitation units 84 adjacent to both sides ( ⁇ Y side) of the substrate holder PH. it can. Further, the entire substrate P can be levitated and supported by the substrate holder PH and the four air levitation units 84 on one side (+ Y side or ⁇ Y side) of the substrate holder PH.
  • Each of the four air levitation units 84 on both sides ( ⁇ Y side) of the substrate holder PH described above may be replaced with one large air levitation unit having substantially the same area as the substrate holder PH in plan view.
  • Each of the two air levitation units 84 arranged in a row may be replaced with one air levitation unit having substantially the same area.
  • the air floating unit on the + Y side of the substrate holder PH as a whole has the same length in the Y-axis direction as the substrate holder PH. It is desirable to have a rectangular support surface that is somewhat shorter in the X-axis direction and to be divided into two at least in the X-axis direction.
  • the substrate Y step feeding device 88 is a device for holding the substrate P and moving it in the Y-axis direction. Of the four air floating units 84 on the + Y side of the substrate holder PH, each of the + X side and the ⁇ X side It is disposed between the two air levitation units 84.
  • the substrate Y step feeding device 88 is fixed to the coarse motion table 32A via a support member 89 (see FIG. 3).
  • the substrate Y step feeding device 88 includes a movable portion 88a that attracts the back surface of the substrate P and moves in the Y-axis direction, and a fixed portion 88b that is fixed to the coarse motion table 32A.
  • the movable portion 88a is driven by a driving device 90 (not shown in FIG. 3, refer to FIG. 4) including a linear motor including a mover provided on the movable portion 88a and a stator provided on the fixed portion 88b.
  • the Y-axis direction is driven with respect to the coarse movement table 32A.
  • the substrate Y step feeding device 88 is provided with a position reading device 92 (not shown in FIG. 3, see FIG.
  • the drive device 90 is not limited to a linear motor, and may be configured by a drive mechanism that uses a rotary motor using a ball screw or a belt as a drive source.
  • the movement stroke of the movable portion 88a of the substrate Y step feeding device 88 in the Y-axis direction is about 1 ⁇ 2 of the length of the substrate P in the Y-axis direction. Can be located on the substrate holder PH. Therefore, each time step feed of the substrate P in the Y-axis direction is performed, the substrate P held by the substrate holder PH is scanned in the X-axis direction with respect to the exposure area IA of the projection optical system PL. It becomes possible to expose the entire area to be exposed.
  • the drive device 90 performs the Z-axis operation. It is configured to be able to be driven minutely in the direction.
  • the substrate Y step feeding device 88 is attached to the coarse movement table 32A, but is not limited thereto, and may be attached to the fine movement stage 26.
  • the movable portion 88a of the substrate Y step feeding device 88 needs to be separated from and contacted with the substrate P, the movable portion 88a is also movable in the Z-axis direction.
  • the fine movement stage 26 may move in the Z-axis direction for the adsorption of the substrate P by the movable portion 88a (substrate adsorption surface) and the separation from the substrate P.
  • the weight canceling device 28 is composed of a columnar member extending in the Z-axis direction, and is also referred to as a core column.
  • the weight canceling device 28 supports the fine movement stage 26 from below via a device called a leveling device described later.
  • the weight cancellation device 28 is disposed in the recess of the coarse motion table 32A, and its upper half is exposed above the coarse motion table 32A (and 32B), and its lower half is the coarse motion table 32A (and 32B). ) Exposed below.
  • the weight cancellation device 28 includes a housing 64, an air spring 66, a Z slider 68, and the like, as shown in FIG.
  • the housing 64 is formed of a bottomed cylindrical member that is open on the + Z side.
  • the air spring 66 is housed inside the housing 64. Pressurized gas (for example, high-pressure air) is supplied to the air spring 66 from the outside.
  • the Z slider 68 is made of, for example, a low-profile columnar member extending in the Z-axis direction, is inserted into the housing 64, and is placed on the air spring 66.
  • the Z slider 68 is provided with a guide (not shown) for restricting movement in directions other than the Z-axis direction.
  • a guide for example, an air bearing or a parallel leaf spring is used as the guide.
  • the parallel leaf spring is configured by using, for example, six leaf springs made of, for example, a thin spring steel plate having a thickness parallel to the XY plane. Of the six leaf springs, three leaf springs are radially arranged around the upper end of the Z slider 68, and the remaining three leaf springs are placed at the three places around the lower end of the Z slider 68. It arrange
  • each leaf spring is attached to the outer peripheral surface of the Z slider 68 and the other end portion is attached to the housing 64. Since the stroke is determined by the amount of bending of the leaf spring by using the parallel leaf spring, the Z slider 68 can be structured to be short in the Z-axis direction, that is, to have a low back (height). However, the Z slider 68 cannot cope with a long stroke as in the case where the guide is constituted by an air bearing.
  • An air bearing (not shown) (referred to as a sealing pad) whose bearing surface faces the + Z side is attached to the upper portion (the end portion on the + Z side) of the Z slider 68. Further, as shown in FIGS.
  • a plurality of arms (referred to as “feelers”) 71 are radially arranged and fixed around the housing 64.
  • a target plate 72 used in each of a plurality of reflective optical sensors (also referred to as leveling sensors) 74 attached to the lower surface of the fine movement stage 26 is installed on the upper surface of the tip of each feeler 71.
  • the reflective optical sensors 74 are actually arranged at three or more places that are not on a straight line.
  • a plurality of these reflective optical sensors 74 constitute a Z tilt measurement system 76 (see FIG. 4) that measures the position of the fine movement stage 26 in the Z-axis direction and the tilt amount (rotation amount in the ⁇ x and ⁇ y directions). Yes.
  • FIG. 3 only one reflective photosensor 74 is shown in order to avoid complication of the drawing.
  • the leveling device 78 is a device that supports the fine movement stage 26 so as to be tiltable (swingable in the ⁇ x and ⁇ y directions with respect to the XY plane).
  • the leveling device 78 includes a spherical bearing having a fixed portion 78a (schematically shown by a rectangular parallelepiped member in FIG. 3) and a movable portion 78b (schematically shown by a spherical member in FIG. 3).
  • the fixed part 78a can incline the movable part 78b around the axis (for example, X axis and Y axis) in a horizontal plane with a small stroke while supporting the movable part 78b from below. It has become.
  • a concave portion that allows inclination of the movable portion 78b in the ⁇ x direction and the ⁇ y direction may be formed on the upper surface of the fixed portion 78a.
  • the upper surface (the upper half of the spherical surface) of the movable part 78b is fixed to the fine movement stage 26, and the fine movement stage 26 can be tilted with respect to the fixed part 78a.
  • the lower surface of the fixing portion 78a is finished in a horizontal plane, and has a slightly larger area as the guide surface of the above-described sealing pad of the weight cancellation device 28 than the bearing surface of the entire sealing pad.
  • the fixed portion 78a is supported in a non-contact manner from below by a sealing pad attached to the Z slider 68 of the weight cancellation device 28.
  • the weight canceling device 28 cancels (cancels) the weight of the system including the fine movement stage 26 (downward force in the gravity direction) via the Z slider 68 and the leveling device 78 by the upward force in the gravity direction generated by the air spring 66. This reduces the load on the plurality of Z voice coil motors 54Z described above.
  • the weight canceling device 28 is connected to the coarse motion table 32A via a pair of connecting devices 80 (see FIG. 1).
  • the Z position of the pair of coupling devices 80 substantially coincides with the position of the center of gravity of the weight cancellation device 28 in the Z-axis direction.
  • Each coupling device 80 includes a thin steel plate having a thickness parallel to the XY plane, and is also referred to as a flexure device.
  • Each of the pair of connecting devices 80 is disposed opposite to the + X side and the ⁇ X side of the weight canceling device 28.
  • Each connecting device 80 is arranged in parallel to the X axis between the casing 64 of the weight canceling device 28 and the coarse motion table 32A, and connects the two.
  • the weight canceling device 28 moves in the X-axis direction integrally with the coarse motion table 32A by being pulled by the coarse motion table 32A via one of the pair of connecting devices 80. Further, the upper components (fine movement stage 26, substrate holder PH, etc.) supported by the weight cancellation device 28 through the leveling device 78 in a non-contact manner are connected to the coarse movement table 32A by driving the pair of X voice coil motors 54X. Moves integrally in the X-axis direction. At this time, since the traction force acts on the weight cancellation device 28 in a plane parallel to the XY plane including the center of gravity position in the Z-axis direction, the moment around the axis (Y-axis) orthogonal to the moving direction (X-axis). (Pitching moment) does not work.
  • the coarse movement tables 32A and 32B, the weight cancellation device 28, the fine movement stage 26, the substrate holder PH, and the like are integrated with the substrate P (holding a part of the substrate P).
  • a moving body that moves in the X-axis direction (hereinafter, referred to as a substrate stage (26, 28, 32A, 32B, PH) as appropriate) is configured.
  • the detailed configuration of the weight cancellation device 28 of the present embodiment including the leveling device 78 and the coupling device 80 is disclosed in, for example, US Patent Application Publication No. 2010/0018950 (however, the present embodiment). Then, since the weight cancellation device 28 does not move in the Y-axis direction, a connecting device in the Y-axis direction is unnecessary). Although not shown, the weight canceling device 28 may be restricted by a connecting device in the Y-axis direction so as not to move alone in the Y-axis direction.
  • the X guide 82 has a rectangular parallelepiped shape with the X-axis direction as the longitudinal direction, as shown in FIGS. 1 and 2.
  • the X guide 82 is disposed and fixed on the upper surfaces (+ Z side surfaces) of the pair of mounts 18 described above so as to cross the pair of mounts 18.
  • the length in the longitudinal direction (X-axis direction) of the X guide 82 is the X-axis direction dimension of each of the pair of mounts 18 arranged at predetermined intervals in the X-axis direction and the X-axis direction dimension of the gap between the pair of mounts 18. It is set somewhat longer (almost equal) than the sum of
  • the upper surface (+ Z side surface) of the X guide 82 is parallel to the XY plane and finished with a very high flatness.
  • the weight canceling device 28 is mounted on the X guide 82 and supported to float (supported in a non-contact state) via the base pad 70.
  • the upper surface of the X guide 82 is adjusted to be substantially parallel to the horizontal plane (XY plane), and functions as a guide surface when the weight cancellation device 28 moves.
  • the longitudinal dimension of the X guide 82 is set to be somewhat longer than the movable amount of the weight canceling device 28 (that is, the coarse motion table 32A) in the X axis direction.
  • the width direction dimension (Y-axis direction dimension) of the upper surface of the X guide 82 is set to a dimension that can face all the bearing surfaces of the plurality of base pads 70 (see FIG. 3).
  • the material and manufacturing method of the X guide 82 are not particularly limited. For example, when formed by casting such as cast iron, when formed by stone (for example, gabbro), ceramics, or CFRP (Carbon Fiber Reinforced Plastics) ) It may be formed of materials.
  • the X guide 82 is a solid member or a hollow member having a rib inside, and the shape thereof is formed by a rectangular parallelepiped member.
  • the X guide 82 is not limited to a rectangular parallelepiped member, but may be a rod-shaped member having an I-shaped YZ cross section.
  • a flat mirror (or a corner cube) having a reflective surface orthogonal to the X axis is provided on the side surface of the substrate holder PH on the ⁇ X side via a mirror holding component (not shown).
  • a pair of X movable mirrors 94X 1 and 94X 2 is fixed.
  • the pair of X movable mirrors 94X 1 and 94X 2 may be fixed to the fine movement stage 26 via a bracket.
  • a Y moving mirror 94Y composed of a long plane mirror having a reflecting surface orthogonal to the Y axis is fixed to the side surface on the ⁇ Y side of fine movement stage 26, as shown in FIG. Has been.
  • the position information of fine movement stage 26 (substrate holder PH) in the XY plane is a laser interferometer system using a pair of X moving mirrors 94X 1 , 94X 2 and Y moving mirror 94Y (hereinafter referred to as a substrate stage interferometer system). 98 (see FIG. 4), for example, it is always detected with a resolution of about 0.5 to 1 nm.
  • the substrate stage interferometer system 98 includes an X laser interferometer (hereinafter abbreviated as an X interferometer) corresponding to a pair of X movable mirrors 94X 1 and 94X 2.
  • X interferometer X laser interferometer
  • Y interferometer 98Y corresponding to 98X and Y movable mirror 94Y.
  • the measurement results of the X interferometer 98X and the Y interferometer 98Y are supplied to the main controller 50 (see FIG. 4).
  • the X interferometer 98X has a pair of X movable mirrors 94X at the upper end of an L-shaped interferometer column 102 whose one end is fixed to the X guide 82 (or the ⁇ X side frame 18). 1, is mounted at a height facing the 94X 2.
  • a pair of interferometers that individually irradiate an interferometer beam (measurement beam) to each of the pair of X movable mirrors 94X 1 and 94X 2 can be used, or the pair of X movable mirrors 94X 1 , 94X 2 can also be used a multi-axis interferometer that emits two measurement beams (measurement beams) irradiated.
  • the X interferometer 98X is configured by a multi-axis interferometer.
  • the Y interferometer 98Y is disposed between the two coarse motion tables 32A and 32B, and faces the Y moving mirror 94Y on the upper surface of the support member 104 whose lower end is fixed to the gantry 18. It is fixed.
  • a pair of interferometers that respectively irradiate the Y moving mirror 94Y with an interferometer beam (measurement beam) can be used, or multi-axis interference that irradiates the Y moving mirror 94Y with two measurement beams.
  • a meter can also be used.
  • the Y interferometer 98Y is configured by a multi-axis interferometer.
  • the Y interferometer 98Y has the surface of the substrate P in the Z-axis direction (focusing and leveling control of the substrate P is performed so that this surface coincides with the image plane of the projection optical system PL during exposure). Therefore, the measurement result of the Y position includes an Abbe error due to the attitude change (rolling) of the fine movement stage 26 when moving in the X-axis direction.
  • Y interferometer 98Y in addition to the two measurement beams separated in the X-axis direction, at least one measurement beam separated in the Z-axis direction with respect to the two measurement beams
  • a multi-axis interferometer that irradiates the Y moving mirror 94Y with at least three interferometer beams (measurement beams) may be used.
  • Main controller 50 detects the amount of rolling of fine movement stage 26 by the multi-axis interferometer, and corrects the Abbe error included in the measurement result of the Y position by Y interferometer 98Y based on the detection result.
  • the positional information regarding the ⁇ x, ⁇ y, and the Z-axis direction of the fine movement stage 26 is the Z tilt measurement system 76 described above (three or more reflective optical sensors 74 not on a straight line fixed to the lower surface of the fine movement stage 26). Thus, it is obtained using the target plate 72 at the tip of the feeler 71 described above.
  • the configuration of the position measurement system of the fine movement stage 26 including the Z tilt measurement system 76 is disclosed in, for example, US Patent Application Publication No. 2010/0018950.
  • the main controller 50 when using an interferometer that does not detect the amount of rolling of the fine movement stage 26 as the Y interferometer 98Y, the main controller 50 relates to the ⁇ y direction of the fine movement stage 26, which is obtained by the Z tilt measurement system 76. Based on the position information (rolling amount), the Abbe error included in the measurement result of the Y position by the Y interferometer 98Y may be corrected.
  • the position information regarding the ⁇ x, ⁇ y, and Z-axis directions of the fine movement stage 26 alone is not measured, and a member above the fine movement stage 26 that can be regarded as being integrated with the projection optical system PL (a part of the body BD, for example, a lens barrel surface plate)
  • the position information regarding the ⁇ x, ⁇ y, and the Z-axis direction of the substrate P may be directly measured from above by an oblique incidence type multi-point focal position detection system (focus sensor) (not shown) fixed to 16).
  • focus sensor oblique incidence type multi-point focal position detection system
  • position information regarding ⁇ x, ⁇ y, and the Z-axis direction between the substrate P and the fine movement stage 26 may be measured.
  • a plurality of alignment detection systems are provided at the lower end portion of the lens barrel surface plate 16 located above the substrate holder PH.
  • a plurality of alignment detection systems are arranged at predetermined intervals in the X-axis and Y-axis directions.
  • the substrate holder PH can pass under a plurality of alignment detection systems by the movement of the fine movement stage 26 in the X-axis direction.
  • At least some of the alignment detection systems may be configured to change the positions in the XY directions according to the arrangement (number of shots, number of chamfers) of the pattern area on the substrate P.
  • Each alignment detection system has, for example, a microscope equipped with a CCD camera.
  • a microscope equipped with a CCD camera When an alignment mark previously provided at a predetermined position on the substrate P enters the field of view of the microscope, alignment measurement is performed by image processing, and alignment is performed.
  • the mark position information (position shift information) is sent to the main controller 50 that controls the position of the movable portion of the substrate stage apparatus PST.
  • FIG. 4 is a block diagram showing the input / output relationship of the main controller 50 that centrally configures the control system of the exposure apparatus 100 and performs overall control of each component.
  • the main controller 50 includes a workstation (or a microcomputer) and the like, and comprehensively controls each part of the exposure apparatus 100.
  • the exposure area IA shown in FIGS. 5 to 13 is an illumination area where the illumination light IL is irradiated through the projection optical system PL during exposure, and is not actually formed except during exposure. Is always shown in order to clarify the positional relationship between the substrate P and the projection optical system PL.
  • the mask M is loaded onto the mask stage MST by a mask transfer device (mask loader) (not shown), and the substrate stage device PST is loaded by a substrate carry-in device (not shown).
  • the substrate P is loaded (introduced) upward.
  • the substrate P is exposed to a plurality of alignment marks (for example, four shot areas SA1 to SA4 and a plurality of alignment marks (transferred simultaneously with the pattern of each shot area). (Not shown) is provided for each shot area.
  • the substrate P When the substrate P is loaded onto the substrate stage apparatus PST, the substrate P is placed across the substrate holder PH and the four air levitation units 84 on the + Y side of the substrate holder PH, as shown in FIG. Adsorbs and fixes a part of the substrate P (about 1 ⁇ 2 of the whole substrate P), and the four air levitation units 84 levitate and support a part of the substrate P (about the remaining half of the whole substrate P).
  • the substrate P is + Y of the substrate holder PH and the substrate holder PH so that at least two alignment marks on the substrate P are in the field of view of one of the alignment detection systems and on the substrate holder PH. It is placed across the four air levitation units 84 on the side.
  • the main controller 50 determines the position of the fine movement stage 26 with respect to the projection optical system PL and the approximate position of the substrate P with respect to the fine movement stage 26 by the same alignment measurement method as before. Note that the alignment measurement of the substrate P with respect to the fine movement stage 26 may be omitted.
  • main controller 50 drives fine movement stage 26 via coarse movement table 32A on the basis of the above measurement result to place at least two alignment marks on substrate P within the field of view of any alignment detection system.
  • the alignment measurement of the substrate P with respect to the projection optical system PL is performed, and the scan start position for exposure of the shot area SA1 on the substrate P is obtained based on the result.
  • the scan start position is strictly an acceleration start position.
  • main controller 50 drives coarse movement tables 32A and 32B and fine movement stage 26 to position substrate P at its scan start position (acceleration start position). At this time, as indicated by a cross arrow in FIG.
  • the fine movement stage 26 (substrate holder PH) has a fine minuteness in the X-axis, Y-axis, and ⁇ z directions (or directions of 6 degrees of freedom) with respect to the coarse movement table 32A.
  • Positioning drive is performed.
  • FIG. 5 shows a state immediately after the substrate P is positioned at the scan start position (acceleration start position) for exposure of the shot area SA1 on the substrate P in this way. Thereafter, a step-and-scan exposure operation is performed.
  • the plurality of shot areas SA1 to SA4 on the substrate P are sequentially exposed.
  • the substrate P is accelerated in the X-axis direction for a predetermined acceleration time, and then driven at a constant speed for a predetermined time (exposure (scan exposure) is performed during this constant speed driving), and then the same time as the acceleration time.
  • exposure scan exposure
  • a series of operations of the substrate P is referred to as an X scan operation.
  • the substrate is appropriately driven in the X-axis or Y-axis direction during the step operation (moving between shot areas) (hereinafter referred to as X-step operation and Y-step operation, respectively).
  • the exposure operation is performed as follows.
  • the substrate stage (26, 28, 32A, 32B, PH) is driven in the ⁇ X direction as indicated by the white arrow in FIG. 5, and the X scan operation of the substrate P is performed.
  • the mask M mask stage MST
  • the shot area SA1 is a projection area of the pattern of the mask M by the projection optical system PL. Since it passes through the exposure area IA, scanning exposure for the shot area SA1 is performed at that time. The scanning exposure is performed by irradiating the substrate P with the illumination light IL through the mask M and the projection optical system PL while the fine movement stage 26 (substrate holder PH) is moving in the ⁇ X direction at a constant speed. .
  • main controller 50 suctions and fixes a part of substrate P (about 1/2 of the entire substrate P) to substrate holder PH mounted on fine movement stage 26 and places it on coarse movement table 32A.
  • the substrate stage (26, 28, 32A, 32B, PH) is driven in a state where a part of the substrate P (about 1 ⁇ 2 of the entire substrate P) is floated and supported on four air levitation units 84.
  • the main controller 50 drives the coarse motion tables 32A and 32B in the X-axis direction via the X linear motors 42A and 42B based on the measurement results of the X linear encoder systems 46A and 46B, and the substrate stage interference.
  • the fine movement stage drive system 52 (each voice coil motor 54X, 54Y, 54Z) is driven.
  • the substrate P is integrated with the fine movement stage 26 and is lifted and supported on the weight cancellation device 28, and is pulled by the coarse movement table 32A to move in the X-axis direction, and from the coarse movement table 32A.
  • the position is precisely controlled in each of the X-axis, Y-axis, Z-axis, ⁇ x, ⁇ y, and ⁇ z directions (6 degrees of freedom direction).
  • main controller 50 synchronizes with fine movement stage 26 (substrate holder PH), and sets mask stage MST for holding mask M on the X axis based on the measurement result of mask interferometer system 14. Scanning is performed in the direction, and minute driving is performed in the Y-axis direction and ⁇ z direction.
  • FIG. 6 shows a state in which the scanning exposure for the shot area SA1 is completed and the substrate stage (26, 28, 32A, 32B, PH) holding a part of the substrate P is stopped.
  • main controller 50 performs the X step operation of substrate P that slightly drives substrate P in the + X direction as shown by the white arrow in FIG. Do.
  • the main controller 50 drives the substrate stage (26, 28, 32A, 32B, PH) in the same state as the X scan operation (however, the positional deviation during movement is a scan operation). (Without as much regulation).
  • FIG. 7 shows a state where the substrate stage (26, 28, 32A, 32B, PH) has moved to the scan start position for exposure of the shot area SA2.
  • Main controller 50 returns mask stage MST to the acceleration start position in parallel with the X-step operation of substrate P.
  • main controller 50 determines -X between substrate P (substrate stage (26, 28, 32A, 32B, PH)) and mask M (mask stage MST).
  • Direction acceleration is started, and scan exposure is performed on the shot area SA2 in the same manner as described above.
  • FIG. 8 shows a state where the scanning exposure for the shot area SA2 is completed and the substrate stage (26, 28, 32A, 32B, PH) is stopped.
  • a Y-step operation for moving the unexposed area of the substrate P onto the substrate holder PH is performed.
  • the main controller 50 sucks and holds the back surface of the + Y side end of the substrate P in the state shown in FIG. 8 by the movable portion 88a of the substrate Y step feeding device 88.
  • the substrate Y step feeding device After releasing the adsorption of the substrate holder PH to the substrate P, the substrate Y step feeding device in a state where the substrate P is levitated by exhausting high-pressure air from the substrate holder PH and continuing high-pressure air exhaust by the air levitation unit 84.
  • the main controller 50 releases the adsorption of the substrate P by the substrate Y step feeding device 88.
  • new alignment measurement of the substrate P with respect to the projection optical system PL that is, measurement of the alignment mark for the next shot area provided in advance on the substrate P is performed.
  • the above-described X-step operation of the substrate P is performed as necessary so that the alignment mark to be measured is positioned within the detection visual field of the alignment detection system (see the white arrow in FIG. 9). .
  • the main controller 50 makes a coarse movement table of the fine movement stage 26 based on the result, as indicated by a cross arrow in FIG. Precise minute positioning drive in the X-axis, Y-axis, and ⁇ z directions (or 6-degree-of-freedom directions) with respect to 32A is performed.
  • FIG. 11 shows a state in which the scanning exposure for the shot area SA3 is completed and the substrate stage (26, 28, 32A, 32B, PH) is stopped.
  • FIG. 12 shows a state where the substrate stage (26, 28, 32A, 32B, PH) has moved to the scan start position for exposure of the shot area SA4.
  • FIG. 13 shows a state where the scanning exposure for the shot area SA4 is completed and the substrate stage (26, 28, 32A, 32B, PH) is stopped.
  • the exposure apparatus 100 repeats the scan exposure and the step operation, thereby exposing the entire substrate P (all the shot areas SA1 to SA4 on the substrate) (overlaying the pattern of the mask M). Alignment transfer) is performed.
  • the order of exposure and the direction of scanning for the shot areas SA1 to SA4 on the substrate P are not limited to the order and direction described above.
  • the irradiation of the illumination light IL onto the substrate P via the projection optical system PL is performed by masking (not shown) so that it is performed only when the mask stage MST and the fine movement stage 26 are moved at a constant speed in the X-axis direction.
  • the position of the blade or the opening and closing of the shutter is performed.
  • the opening width of the masking blade may be made variable so that the width of the exposure area IA can be changed.
  • the substrate P is placed and the substrate holding surface (substrate placing surface) of the substrate holder PH that holds the substrate P in a state where the flatness of the substrate P is secured. Is about half the area of the conventional substrate holder, the substrate holder PH can be reduced in size and weight. Further, the fine movement stage 26 that supports the reduced substrate holder PH is also reduced in size and weight, and the high speed, high acceleration / deceleration drive, and position controllability of the fine movement stage 26 by the voice coil motors 54X, 54Y, and 54Z are improved. It becomes possible.
  • the processing time for flatness of the substrate holding portion is shortened, and the processing accuracy is also improved.
  • the fine movement stage 26 does not perform step movement in the Y-axis direction, and the substrate Y step feed device 88 on the coarse movement table 32A moves only the substrate P in the Y-axis direction with rough accuracy. Therefore, the structure of the coarse motion table 32A is simple and can be reduced in size, weight, and cost.
  • the substrate stage apparatus PST provided in the exposure apparatus 100 according to the present embodiment is effective for a multi-chamfer layout in which a plurality of shot areas are arranged on the substrate P in the cross scan direction (Y-axis direction).
  • the area (total area) of the substrate support surfaces of the air levitation units respectively disposed on the + Y side and the ⁇ Y side of the substrate holder PH is not necessarily about 1 ⁇ 2 of the substrate P.
  • the dimension in the cross scan direction does not necessarily need to be about 1 ⁇ 2 the dimension of the substrate P. That is, the substrate P may be levitated by an air levitation unit having a substrate supporting surface with a smaller area and size.
  • an air bearing structure capable of increasing air rigidity can be used as the air levitation unit, an air bearing structure having low air rigidity is used, and an air current is generated by a fan having a large load capacity. You may make it surface.
  • FIG. 14 schematically shows a configuration of an exposure apparatus 200 according to the second embodiment
  • FIG. 15 shows a plan view in which the exposure apparatus 200 is partially omitted.
  • FIG. 16 a schematic side view of the exposure apparatus 200 viewed from the + X direction is partially omitted.
  • the coarse motion table 32A is shown in a cross-sectional view as in FIG.
  • the exposure apparatus 200 according to the second embodiment is different from the first embodiment described above in that a substrate stage apparatus PSTa is provided instead of the substrate stage apparatus PST described above.
  • the configuration and the like are the same as those in the first embodiment described above.
  • the substrate stage apparatus PSTa eliminates the ⁇ Y side coarse movement table 32B from the two coarse movement tables 32A and 32B provided in the substrate stage apparatus PST.
  • the point that the air floating unit on the ⁇ Y side of the substrate holder PH is not movable but a fixed type is different from the substrate stage apparatus PST described above.
  • the substrate stage apparatus PSTa according to the second embodiment will be described focusing on the differences.
  • an air levitation unit 84A and an air levitation unit 84B are arranged in a pair with a slight gap in the Y-axis direction.
  • the set is arranged in a predetermined order in the X-axis direction.
  • the air levitation unit 84A has a support surface having substantially the same shape and size as the air levitation unit 84 described above, and the air levitation unit 84B has the same length in the Y-axis direction as the air levitation unit 84A and is in the X-axis direction.
  • the support surface has a length of about 1/3.
  • the air levitation units 84A and 84B are both configured in the same manner as the air levitation unit 84.
  • four sets of air levitation units 84A and three sets of air levitation units 84B are used, for a total of seven sets.
  • a total of seven sets of air levitation units 84A and 84B have a width in the Y-axis direction that is about 1 ⁇ 2 of the width in the Y-axis direction of the substrate P, and a length in the X-axis direction that moves when the substrate holder PH is scanned. They are arranged at a predetermined interval in the X-axis direction within a rectangular region having a length substantially equal to the range.
  • a total of seven sets of air levitation units 84A and 84B are fixed on a frame 110 fixed to the floor F so as not to contact the gantry 18, as shown in FIG.
  • Air levitation unit 84B is disposed.
  • a pair of air levitation units 84B and a pair of air levitation units 84A adjacent to the one set of air levitation units 84B are spaced from each other in the X axis direction from the Y interferometer 98Y through a gap between the air levitation units 84A on both sides in the X axis direction.
  • a measurement beam is applied to the Y moving mirror 94Y.
  • the Y interferometer 98Y is fixed to the side frame 20 of the body BD located on the ⁇ Y side of the seven sets of air levitation units 84A and 84B.
  • a multi-axis interferometer capable of measuring the amount of rolling of the fine movement stage 26 is used (see FIG. 16).
  • the movable portion of the leveling device 78 can be tilted to the Z slider 68 of the weight cancellation device 28 with a slight stroke around an axis in the horizontal plane (for example, the X axis and the Y axis). Is attached.
  • the upper surface (the upper half of the spherical surface) is fixed to the fine movement stage 26, and the Z slider 68 has a concave portion that allows rotation (inclination) of the leveling device 78 in the ⁇ x and ⁇ y directions. It may be formed.
  • the leveling device 78 has a lower surface (lower half of the spherical surface) fixed to the Z slider 68, for example, and a recess that allows the fine movement stage 26 to tilt in the ⁇ x direction and the ⁇ y direction with respect to the leveling device 78 is finely moved. It may be formed on the stage 26.
  • the leveling device 78 is supported by the Z slider 68 from below and allows the fine movement stage 26 to tilt within a minute angle range around an axis (for example, the X axis and the Y axis) in the horizontal plane.
  • the Z slider 68 also serves as a fixing portion of the leveling apparatus 78, no sealing pad is provided, and the weight cancellation apparatus 28 is integrated with the fine movement stage 26. Further, since the weight canceling device 28 is integrated with the fine movement stage 26, there is no connecting device 80 (flexure device) or the like that restricts the single motion of the weight canceling device 28.
  • the configuration of the other parts of the substrate stage apparatus PSTa is the same as that of the substrate stage apparatus PST.
  • the same effects as those of the exposure apparatus 100 according to the first embodiment described above can be obtained, and the ⁇ Y side of the substrate holder PH can be obtained. Since the air levitation units 84A and 84B are not mounted on the coarse motion table 32B and are fixed to the separately placed frame 110, the air levitation units 84A and 84B do not block the measurement beam of the Y interferometer 98Y.
  • the Y moving mirror 94Y may be attached to the side surface of the substrate holder PH or the fine movement stage 26 via a bracket.
  • FIG. 17 shows a plan view of a substrate stage device PSTb included in the exposure apparatus according to the third embodiment together with a part of the body BD
  • FIG. 18 shows the exposure apparatus according to the third embodiment.
  • a schematic side view seen from the + X direction is partially omitted.
  • the coarse motion table 32 ⁇ / b> A (and 32 ⁇ / b> B) is shown in a cross-sectional view, as in FIG. 16 described above.
  • the substrate stage apparatus PSTb is provided with two coarse movement tables 32A and 32B as in the substrate stage apparatus PST according to the first embodiment described above.
  • the coarse table 32B is not equipped with an air levitation unit.
  • the air levitation unit on the ⁇ Y side of the substrate holder PH is a separate frame. 110 is attached to the entire range of movement of the substrate holder PH in the X direction (see FIG. 17). Also in this case, a total of seven sets of air levitation units 84A and 84B arranged in the same manner as in the second embodiment are used as the ⁇ Y side air levitation units.
  • a part of the pair of X voice coil motors 54X and the plurality of Z voice coil motors 54Z includes the coarse movement table 32B and the fine movement stage 26. Between.
  • the Y moving mirror 94Y is disposed on the ⁇ Y side side surface of the substrate holder PH at a position substantially the same as the X moving mirrors 94X 1 and 94X 2, and the ⁇ Y of the fine movement stage 26 is passed through the bracket 96A. It is fixed to the side surface. In this case, since an Abbe error does not occur, the Y interferometer 98Y may not necessarily be able to measure the rolling amount.
  • the weight canceling device 28 is integrated with the fine movement stage 26.
  • the configuration of other parts of the substrate stage apparatus PSTb and the configuration of each part other than the substrate stage apparatus PSTb are the same as those in the first embodiment or the second embodiment described above.
  • the same effects as those of the exposure apparatuses 100 and 200 according to the first and second embodiments described above can be obtained, and the fine movement stage 26 is provided.
  • the X voice coil motor 54X and the Z voice coil motor 54Z to be driven can be mounted in a balanced manner on both the coarse motion tables 32A and 32B, and a motor arrangement having higher rigidity than that of the second embodiment is possible. (See FIG. 18).
  • the present invention is not limited to this, and the coarse motion tables 32A and 32B are integrated as shown in FIG.
  • the coarse motion table 32 as described above may be provided, and the coarse motion table 32 may be slidably mounted on the two X beams 30A and 30B.
  • the air levitation unit on at least one side of the substrate holder PH in the Y-axis direction is mounted on the coarse motion table 32A or 32 and the X-axis direction.
  • the present invention is not limited to this, and another moving body that moves following the coarse movement table is provided, and an air levitation unit is mounted on the other moving body so as to be movable in the X-axis direction. It is good also as a structure.
  • another moving body that moves along the + Y side of the movement path of the coarse movement table 32A and / or the movement path on the ⁇ Y side of the movement path of the coarse movement table 32B is provided.
  • the air levitation unit may be mounted on the other moving body in the state of being close to the substrate holder PH in the Y-axis direction, for example, via an inverted L-shaped support member.
  • FIG. 20 shows a plan view of a substrate stage device PSTc included in the exposure apparatus according to the fourth embodiment together with a part of the body
  • FIG. 21 shows the exposure apparatus according to the fourth embodiment.
  • a schematic side view of 20 viewed from the + X direction is partially omitted.
  • the integrated coarse motion table 32 is slidably mounted on the two X beams 30A and 30B as in FIG. No air levitation unit is mounted on 32.
  • the coarse motion table 32 is shown in a sectional view.
  • the ⁇ Y side and + Y side air levitation units of the substrate holder PH are frames installed on the floor surface F so as not to contact the gantry 18 like the ⁇ Y side air levitation units of the second and third embodiments. It is fixed to each of 110A and 110B. Further, as shown in FIG.
  • each of the ⁇ Y side and + Y side air levitation units of the substrate holder PH has a width in the Y axis direction that is approximately 1 ⁇ 2 of the width in the Y axis direction of the substrate P, and the X axis.
  • the length in the direction is arranged within a rectangular region having a length substantially equal to the moving range when the substrate holder PH is scanned, with a predetermined gap in the X-axis direction and a slight gap in the Y-axis direction. ing.
  • a total of seven sets of air levitation units 84A and 84B arranged in the same manner as in the second and third embodiments are used as the ⁇ Y side air levitation units.
  • the + Y side air levitation unit as shown in FIG. 20, four sets (total of eight) air levitation units 84D arranged in the rectangular area with a predetermined gap in the X-axis direction. Is used.
  • the air levitation unit 84D is configured in the same manner as the air levitation unit 84 described above, and the width in the Y-axis direction is the same as that of the air levitation unit 84, but the length in the X-axis direction is somewhat longer than the air levitation unit 84.
  • a plurality of (three in FIG. 20) substrate Y step feeding devices 88 described above are provided in the X-axis direction on the frame 110A to which the four sets of air floating units 84D on the + Y side are fixed. .
  • a plurality of substrate Y step feeding devices 88 are provided. Each substrate Y step feeding device 88 is disposed in a gap between air levitation units 84D adjacent in the X-axis direction.
  • each substrate Y step feeding device 88 can adsorb the substrate P levitated on the air levitation unit 84D and move it in the Y-axis direction, and releases the adsorption and separates it from the substrate P. Can be done.
  • the configuration of other parts of the substrate stage apparatus PSTc and the configuration of each part other than the substrate stage apparatus PSTc are the same as those in the first, second, or third embodiment described above.
  • the same effect as the exposure apparatus according to each of the embodiments described above can be obtained, and not only the ⁇ Y side of the substrate holder PH but also + Y Since the air levitation unit 84D and the substrate Y step feeding device 88 located on the side are separated from the coarse motion table 32 and fixed on the frame 110A, the load applied to the coarse motion table 32 is reduced and the coarse motion is reduced. The thrust for driving the table 32 can be reduced.
  • FIG. 22 schematically shows a configuration of an exposure apparatus 500 according to the fifth embodiment
  • FIG. 23 shows a plan view in which the exposure apparatus 500 is partially omitted
  • 24 is a schematic side view of the exposure apparatus 500 viewed from the + X direction in FIG. In FIG. 24, the coarse motion table 32 is shown in a sectional view.
  • the exposure apparatus 500 according to the fifth embodiment is basically configured in the same manner as the exposure apparatus according to the fourth embodiment described above, but the substrate stage apparatus PSTd is the same as that of the fourth embodiment. This is partly different from the substrate stage apparatus PSTc. Specifically, the substrate stage apparatus PSTd differs from the substrate stage apparatus PSTc in the mounting position of the pair of X movable mirrors 94X 1 and 94X 2 on the fine movement stage 26, and the configuration of the X interferometer is corresponding to this. Etc. are different from the substrate stage apparatus PSTc.
  • the exposure apparatus 500 according to the fifth embodiment will be described below with a focus on the differences.
  • the pair of X moving mirrors 94X 1 and 94X 2 are respectively in the X axis direction on both side surfaces in the Y axis direction of the fine movement stage 26 via moving mirror support parts (not shown). It is attached near the center.
  • a pair of X interferometers 98X 1 and 98X 2 facing each of the pair of X movable mirrors 94X 1 and 94X 2 are provided corresponding to the pair of X movable mirrors 94X 1 and 94X 2 . As shown in FIG.
  • each of the pair of X interferometers 98X 1 and 98X 2 has an L-shaped frame (X interferometer) with one end portion (lower end portion) fixed to the ⁇ X side frame 18.
  • Frames) 102A and 102B are individually fixed to the other ends (upper ends).
  • L-shaped frames are used as the frames 102A and 102B in order to avoid interference with the above-described frames 110A and 110B and the coarse motion table 32 moving in the X-axis direction.
  • the pair of X movable mirrors 94X 1 and 94X 2 is located at a position lower than the upper surface (front surface) of the substrate P on the + X side than the ⁇ X side end surface of the substrate holder PH, specifically, slightly lower than the lower surface of the substrate holder PH. It is provided at a low position.
  • the pair of X interferometers 98X 1 and 98X 2 is located at a position lower than the upper surface of the substrate P, and the substrate holder PH and the air floating unit 84D or 84A in the Y-axis direction. It is arranged at a position that fits in the gap.
  • the pair of X interferometers 98X 1 and 98X 2 is, for example, an X interferometer (a pair of X interferometers) as can be seen by comparing FIG. 23 and FIG.
  • the interferometers 98X 1 and 98X 2 ) can be arranged closer to the ⁇ X side mount 18 than the X interferometer 98X according to the fourth embodiment (and the first to third embodiments). It becomes.
  • the substrate stage device Pstd as shown in FIG. 23, + a X movable mirror 94X 1 of Y side, the fine motion stage 26 so that the Y voice coil motors 54Y that finely drives the Y-axis direction, do not interfere
  • a pair of Y voice coil motors 54 ⁇ / b> Y are attached at positions close to the center (center) of fine movement stage 26 in the X-axis direction.
  • a pair of Y voice coil motors 54Y may be anywhere mounting.
  • both side surfaces of the fine movement stage 26 in the X-axis direction may be used.
  • the positions of the pair of Y voice coil motors 54Y are preferably arranged so that the resultant force of the driving force acts on the position of the center of gravity of the fine movement stage 26, that is, the center of gravity of the fine movement stage 26 can be driven. .
  • the same effects as those of the exposure apparatus according to the fourth embodiment described above can be obtained, and a pair of X interferometers 98X 1 and 98X. 2 can be disposed closer to the ⁇ X side frame 18 than the X interferometer 98X according to the fourth embodiment (and the first to third embodiments).
  • a pair of X interferometers 98X 1 and 98X. 2 can be disposed closer to the ⁇ X side frame 18 than the X interferometer 98X according to the fourth embodiment (and the first to third embodiments).
  • the total weight of 102B is lighter than the weight of the interferometer column 102, and the rigidity is increased.
  • FIG. 25 is a plan view in which a part of the exposure apparatus according to the sixth embodiment is omitted.
  • FIG. 26 is a partially omitted XZ sectional view of the exposure apparatus according to the sixth embodiment.
  • the exposure apparatus according to the sixth embodiment is basically configured in the same manner as the exposure apparatus according to the fifth embodiment described above, but the substrate stage apparatus PSTe is according to the fifth embodiment. This is partly different from the substrate stage device PSTd.
  • the substrate stage apparatus PSTe as shown in FIG. 25, as the substrate holder PH, not only the size in the Y axis direction but also the size in the X axis direction is larger than the size of the substrate P in the X axis direction. For example, about 1/2 of the substrate P is used.
  • a pair of air levitation units (moving air levitation units) 84C are disposed on both sides of the substrate holder PH in the X-axis direction. As shown in FIG. 26, each of the pair of air levitation units 84 ⁇ / b> C has the coarse motion table 32 through the support member 112 so that the upper surface thereof is almost the same height (slightly lower) as the substrate holder PH. It is fixed on the top surface.
  • Each of the pair of air levitation units 84C has, for example, a length in the Y-axis direction that is equivalent to (or slightly shorter than the substrate holder PH) the length in the X-axis direction and substantially the same as that in the substrate holder PH. Or rather short.
  • the pair of X movable mirrors 94X 1 and 94X 2 are supported by a movable mirror (not shown) near both ends in the Y-axis direction on the ⁇ X side surface of the substrate holder PH. It is fixed via a member.
  • the configuration of other parts of the substrate stage apparatus PSTe is the same as that of the substrate stage apparatus PSTd according to the fourth embodiment.
  • the pair of X interferometers 98X 1 and 98X 2 does not interfere with the fixed air levitation unit (84A, 84B) and the air levitation unit 84C on the coarse motion table 32, as in the fifth embodiment.
  • the arrangement is such that the pair of X movable mirrors 94X 1 and 94X 2 can be approached.
  • the pair of X interferometers 98X 1 and 98X 2 may be attached near the center in the X-axis direction on both side surfaces of the substrate holder PH, as in the fifth embodiment. In such a case, the X interferometers 98X 1 and 98X 2 can be further arranged on the + X side. Further, the pair of X movable mirrors 94X 1 and 94X 2 may be attached to the fine movement stage 26 instead of the substrate holder PH via the X movable mirror support frame.
  • the mask M is loaded onto the mask stage MST by a mask transfer device (mask loader) (not shown), and the substrate stage device PSTe is loaded by a substrate carry-in device (not shown).
  • the substrate P is carried in upward.
  • the substrate P is exposed to a plurality of shot areas SA1 to SA4, for example, two in the X-axis direction and two in the Y-axis direction.
  • a plurality of alignment marks (not shown) transferred simultaneously with the pattern of each shot area are provided for each shot area.
  • the substrate P is placed across the substrate holder PH, a part of the + Y side fixed air levitation units 84D, and the + X side air levitation unit 84C.
  • high-pressure air is ejected from the upper surfaces of the substrate holder PH, the air levitation unit 84D, and the air levitation unit 84C, and the substrate P is supported to be levitated.
  • the main controller 50 switches the substrate holder PH from exhaust to intake (suction).
  • a part of the substrate P (about 1 ⁇ 4 of the whole substrate P corresponding to the rectangular area including the shot area SA1) is sucked and fixed by the substrate holder PH, and a part of the plurality of air levitation units 84D and the air levitation unit A part of the substrate P (about 3/4 of the entire substrate P) is levitated and supported by 84C. Then, an alignment operation is performed by the same method as in the first embodiment described above (see FIG. 26).
  • FIG. 26 shows a state in which the substrate stage (26, 28, 32, PH) is stopped after the exposure of the shot area SA1 is completed.
  • the main controller 50 sucks the back surface of the substrate P by using the movable portion 88a (not shown in FIG. 27, see FIG. 25) of the substrate Y step feeding device 88 at the position facing the substrate P at that time. Then, after the adsorption of the substrate P by the substrate holder PH is released, the substrate P is floated by exhausting high-pressure air from the substrate holder PH and continuing high-pressure air exhausting by the + X side air levitation unit 84C. As a result, the substrate P is held only by the movable portion 88a of the substrate Y step feeding device 88.
  • main controller 50 maintains the substrate stage (26, 28, 32, PH) in FIG. 27 while maintaining the holding state of substrate P only by movable portion 88a of substrate Y step feeding device 88.
  • the X step of the substrate P which is driven in the + X direction, is started. Accordingly, the substrate holder PH moves in the + X direction with respect to the substrate P while the substrate P is stopped at the position before the start of the X step. Then, when the substrate holder PH reaches just below the next shot area SA2 of the substrate P, the main controller 50 stops the substrate stage (26, 28, 32, PH) (see FIG. 28).
  • the substrate P is placed across the substrate holder PH, a part of the + Y side fixed air levitation units 84D, and the ⁇ X side air levitation unit 84C.
  • High-pressure air is ejected from the substrate holder PH, a part of the plurality of air levitation units 84D, and the upper surface of the air levitation unit 84C, and the substrate P is levitated and supported.
  • the main controller 50 In parallel with the driving of the substrate stage (26, 28, 32, PH) for the X step of the substrate P, the main controller 50 returns the mask stage MST to a predetermined acceleration start position.
  • FIG. 29 shows a state where the substrate stage (26, 28, 32, PH) is stopped after the exposure of the shot area SA2.
  • the Y step operation of the substrate P is performed by the substrate Y step feeding device 88, the alignment by alignment is performed, and the scan exposure is repeatedly performed.
  • the exposure apparatus according to the sixth embodiment can obtain the same effects as those of the exposure apparatus 500 according to the fifth embodiment described above.
  • the size of the substrate holder PH is set to be equal to one shot area (collective exposure area), and the other areas are levitated and supported by the air levitation unit. Therefore, the substrate holder PH mounted on the fine movement stage 26 is smaller and lighter than the first to fifth embodiments.
  • the substrate stage (26, 28, 32, PH) only scans one shot area, the stroke of the substrate stage (26, 28, 32, PH) in the X-axis direction is the first to the fifth. It becomes shorter (about 1/2) than the embodiment. Accordingly, it is possible to further reduce the size and weight of the substrate stage apparatus, and thus the exposure apparatus including the substrate stage apparatus, and to reduce the cost.
  • the substrate P is left, and the substrate stage (26, 28, 32, PH) is moved in the + X direction for exposure of the next shot area. (See FIGS. 27 and 28), leaving the substrate stage (26, 28, 32, PH), the substrate X step feed device (not shown) moves only the substrate in the ⁇ X direction, and then the substrate stage ( (26, 28, 32, PH), exposure may be performed by scanning in the + X direction.
  • the substrate X step feeding device may also serve as a substrate P loading / unloading device.
  • the air levitation unit separated from the coarse movement stage is fixed to the floor surface through the frame. May be fixed to the gantry 18.
  • the substrate stage apparatus and exposure apparatus are summarized as follows.
  • the substrate holder that adsorbs the substrate and corrects the plane is not made the same size as the substrate as in the conventional device, but the same width (size in the Y-axis direction) as the exposure field by the projection optical system.
  • the length in the scanning direction (X-axis direction) is equal to the length of the substrate in the X-axis direction or the same as the scanning length of the collective exposure region exposed by a single scanning operation. Then, the portion of the substrate that protrudes from the substrate holder is levitated and supported by a moving or fixed air levitation unit.
  • the substrate holder is small, light and easy to achieve high precision (high flatness), and the controllability (position speed controllability, etc.) of the fine movement stage is improved, so that high precision and high speed can be achieved.
  • the coarse movement table is a table (stage) that moves only in one axial direction (X-axis direction) with respect to the exposure field (irradiation area (exposure position) of illumination light IL), the coarse movement stage portion is simple. This makes it possible to reduce the cost.
  • the step movement of the substrate in the Y direction is light because the substrate Y step feed device moves only the substrate in the Y direction. Further, since the Y step positioning of the substrate is performed with rough accuracy, the cost of the substrate Y step feeding device is also low. Since the coarse movement stage portion with a simple configuration is separated from the fine movement stage, rough accuracy is sufficient, and the components including the rough accuracy movable portion (such as the coarse movement stage portion and the substrate Y step feeding device) are not included. It can be made using general industrial materials without using a lightweight, high-rigidity ceramic member. Therefore, there is no need for a large firing furnace required to increase the size of a lightweight and highly rigid ceramic member, and a large grinding machine required to process the ceramic member with high accuracy.
  • the component including the movable portion with rough accuracy can be made using a rolling guide with a ball or a roller without using any of a highly accurate guide and a highly rigid static pressure gas bearing.
  • the components including the moving parts with rough accuracy can be used without using a coreless linear motor (voice coil motor) with high thrust and low ripple, which is required for high-precision positioning at high speed.
  • a linear motor, ball screw drive, belt drive, or the like that is relatively inexpensive and easy to increase in size can be used.
  • vibration transmission to the fine movement stage can be suppressed by arranging the fine movement stage and the coarse movement stage separately.
  • the positioning after the step movement in the X and Y directions is performed by detecting the alignment mark provided on the substrate in advance with the alignment detection system and moving the fine movement stage based on the detection result. Also, the positioning accuracy during exposure is high.
  • FIG. 30 schematically shows a configuration of an exposure apparatus 700 according to the seventh embodiment, omitting an air levitation unit group and the like which will be described later, and FIG. 31 partially omits the exposure apparatus 700.
  • a plan view is shown.
  • FIG. 31 corresponds to a plan view of a portion below the projection optical system PL in FIG. 30 (portion below the lens barrel surface plate).
  • FIG. 32 shows a side view of the exposure apparatus 700 as viewed from the + X direction in FIG. 30 (partially omitted, partially sectional view).
  • FIG. 33 is a block diagram showing the input / output relationship of the main controller 50 that centrally configures the control system of the exposure apparatus 700 and performs overall control of each component. In FIG. 33, each component related to the substrate stage system is shown.
  • the main controller 50 includes a workstation (or a microcomputer) and the like, and comprehensively controls each part of the exposure apparatus 700.
  • the exposure apparatus 700 according to the seventh embodiment is different from the first embodiment described above in that a substrate stage apparatus PSTf is provided instead of the substrate stage apparatus PST described above.
  • the configuration and the like are the same as those in the first embodiment described above.
  • the configuration of the substrate stage apparatus PSTf is the same as that of the substrate stage apparatus PSTd included in the exposure apparatus 500 according to the fifth embodiment described above, among the substrate stage apparatuses PST, PSTa, PSTb, PSTc, PSTd, and PSTe described so far. Closest to the configuration. Therefore, hereinafter, the substrate stage apparatus PSTf included in the exposure apparatus 700 according to the seventh embodiment will be described focusing on differences from the substrate stage apparatus PSTd.
  • the substrate stage apparatus PSTf includes the size of the substrate holder PH (fine movement stage 26), the arrangement of air levitation unit groups arranged on both sides of the substrate holder PH in the Y-axis direction, and It differs from the substrate stage apparatus PSTd in that the substrate X step feeding device 91 is arranged in the arrangement area of the air levitation unit group on both sides in the Y axis direction. 24 and 32, the width of the pair of X beams 30A and 30B in the substrate stage apparatus PSTf in the Y-axis direction is narrower than the width of the pair of X beams in the substrate stage apparatus PSTd. (Almost half).
  • the X linear guide 36 has a magnet unit including a plurality of permanent magnets arranged at predetermined intervals in the X-axis direction, and also serves as an X stator.
  • an X stator having a magnet unit may be provided.
  • a plurality of, for example, two X linear guides may be provided on the X beams 30A and 30B.
  • the coarse motion table 32 is disposed on the X beams 30A and 30B in the same manner as the substrate stage apparatus PSTd described above.
  • the coarse motion table 32 is made of a plate member having a rectangular shape in plan view and having an opening penetrating in the Z-axis direction at the center.
  • the coarse motion table 32 is partially shown in a sectional view together with the weight canceling device 28.
  • On the lower surface of the coarse motion table 32 as shown in FIG. 32, there are four sliders 44, for example, four (see FIG. 30) at predetermined intervals in the X-axis direction with respect to each X linear guide 36. It is fixed.
  • the coarse motion table 32 is guided linearly in the X-axis direction by a plurality of X linear guide devices including an X linear guide 36 and a slider 44.
  • each slider 44 includes a coil unit, and the coarse motion table 32 is driven with a predetermined stroke in the X-axis direction together with the above-described X stator by a total of eight coil units included in each slider 44.
  • An X linear motor 42 (see FIG. 33) is configured.
  • An X mover may be provided separately from the slider 44.
  • the slider 44 includes rolling elements (for example, a plurality of balls) and is slidable with respect to each X linear guide 36. You may engage.
  • an X scale having a periodic direction in the X axis direction is fixed to a predetermined one of the X beams 30A and 30B, for example, the X beam 30A
  • the encoder head constituting the X linear encoder system 46 for obtaining the position information in the X axis direction of the coarse motion table 32 using the X scale is fixed.
  • the position of the coarse movement table 32 in the X-axis direction is controlled by the main controller 50 (see FIG. 33) based on the output of the encoder head.
  • the substrate holder PH mounted on the upper surface of the fine movement stage 26 will be explained.
  • the substrate holder PH has the same length in the X-axis direction as that of the substrate P, and the width (length) in the Y-axis direction is about 1/3 of the substrate P.
  • the substrate holder PH adsorbs and holds a part of the substrate P (here, a portion of about 1/3 of the substrate P in the Y-axis direction) by, for example, vacuum adsorption (or electrostatic adsorption) and a pressurized gas (for example, High pressure air) is ejected upward, and a part of the substrate P (about 1/3 of the substrate P) can be supported non-contacting (floating) from below by the ejection pressure.
  • Switching between high-pressure air ejection and vacuum suction to the substrate P by the substrate holder PH is performed via a holder intake / exhaust switching device 51 (see FIG. 33) that switches and connects the substrate holder PH to a vacuum pump and a high-pressure air source (not shown). This is performed by the main controller 50.
  • fine movement stage 26 includes a plurality of voice coil motors (or linear motors), for example, a pair of X voice coil motors 54X, a pair of Y voice coil motors 54Y, and four Z voice coil motors 54Z.
  • the fine movement stage drive system 52 (see FIG. 33) configured in the same manner as in the first embodiment described above includes six degrees of freedom directions (X axis, Y axis, Z axis, ⁇ x, It is slightly driven in each direction of ⁇ y and ⁇ z.
  • the fine movement stage 26 is provided with the projection optical by the above-described X linear motor 42 and the pair of X voice coil motor 54X and Y voice coil motor 54Y of the fine movement stage drive system 52.
  • the system PL With respect to the system PL (see FIG. 30), it can be moved (coarse movement) with a long stroke in the X-axis direction, and can be slightly moved (fine movement) in the three-degree-of-freedom directions of the X-axis, Y-axis, and ⁇ z directions.
  • the width (length) in the Y-axis direction is larger on the + Y side of the X beam 30A and on the ⁇ Y side of the X beam 30B than in the frame of the fifth embodiment described above.
  • Each of the pair of frames 110 ⁇ / b> A and 110 ⁇ / b> B is installed on the floor surface F so as not to contact the gantry 18.
  • Air levitation unit groups 84E and 84F are installed on the upper surfaces of the pair of frames 110A and 110B, respectively.
  • the pair of frames 110 ⁇ / b> A and 110 ⁇ / b> B may be installed on the gantry 18.
  • the air levitation unit groups 84E and 84F are arranged on both sides of the substrate holder PH in the Y-axis direction, as shown in FIGS.
  • each of the air levitation unit groups 84E and 84F has a width in the Y-axis direction equal to the width in the Y-axis direction of the substrate P, and the length in the X-axis direction is scanned by the substrate holder PH.
  • It is composed of a plurality of air levitation units that are dispersedly arranged in a rectangular region having a length substantially equal to the moving range when moving, with a predetermined gap in the X-axis direction and a slight gap in the Y-axis direction. Yes.
  • the X positions of the center of the exposure area IA and the centers of the air levitation unit groups 84E and 84F substantially coincide.
  • the upper surface of each air levitation unit is set to be equal to or somewhat lower than the upper surface of the substrate holder PH.
  • the air levitation units constituting the air levitation unit groups 84E and 84F are different in size, but are configured in the same manner as the air levitation unit 84 according to the first embodiment described above. ON / OFF of the supply of high-pressure air to each air levitation unit is controlled by the main controller 50 shown in FIG.
  • the entire substrate P is levitated by the substrate holder PH and at least one of the air levitation unit groups 84E and 84F on both sides ( ⁇ Y side) of the substrate holder PH. Can be supported. Further, the entire substrate P can be levitated and supported by the air levitation unit group 84E or 84F on one side (+ Y side or ⁇ Y side) of the substrate holder PH.
  • Each of the air levitation unit groups 84E and 84F has the same width in the Y-axis direction as that of the substrate P in the Y-axis direction and the length in the X-axis direction when the substrate holder PH is scanned. If it has a total support area that is almost the same as a rectangular area that is almost the same length as the moving range, it may be replaced with a single large air levitation unit, and the size of each individual air levitation unit Different from the case of FIG. 31, it may be distributed in the rectangular area.
  • Three substrate Y step feeding devices 88 and one substrate X step feeding device 91 are arranged asymmetrically with respect to the X axis passing through the center of the exposure area IA (the center of the projection optical system PL).
  • Each of the substrate Y step feeding device 88 and the substrate X step feeding device 91 is arranged in the two rectangular regions without interfering with the air floating unit.
  • the number of substrate Y step feeding devices 88 may be two, or four or more.
  • the substrate Y step feeding device 88 is a device for holding (for example, adsorbing) the substrate P and moving it in the Y-axis direction.
  • the substrate Y step feeding device 88 is arranged in each of the air levitation unit groups 84E and 88F in the X-axis direction. Three are arranged at predetermined intervals.
  • Each substrate Y step feeding device 88 is fixed on a frame 110A or 110B via a support member 89 (see FIG. 32).
  • Each substrate Y step feeding device 88 includes a movable portion 88a that attracts the back surface of the substrate P and moves in the Y-axis direction, and a fixed portion 88b fixed to the frame 110A or 110B.
  • the movable portion 88a is driven by a driving device 90 (not shown in FIG. 32, see FIG. 33) configured by a linear motor including a mover provided in the movable portion 88a and a stator provided in the fixed portion 88b. , Driven in the Y-axis direction with respect to the frame 110A or 110B.
  • the substrate Y step feeding device 88 is provided with a position reading device 92 (not shown in FIG. 32, see FIG. 33) such as an encoder for measuring the position of the movable portion 88a.
  • the moving stroke of the movable portion 88a of each substrate Y step feeding device 88 in the Y-axis direction is about 2/3 (somewhat shorter) of the length of the substrate P in the Y-axis direction.
  • the movable portion 88a (substrate adsorption surface) of each substrate Y step feeding device 88 needs to adsorb the back surface of the substrate P or release the adsorption to separate it from the substrate P. Therefore, the driving device 90 is configured to be able to be driven minutely in the Z-axis direction.
  • the movable portion 88a adsorbs the substrate P and moves in the Y-axis direction.
  • the substrate Y step feeding device 88 and the movable portion 88a Are used without distinction.
  • the substrate X step feeding device 91 is a device for holding (for example, adsorbing) the substrate P and moving it in the X-axis direction.
  • One substrate X step feeding device 91 is disposed in each of the air levitation unit groups 84E and 84F in plan view. .
  • Each substrate X step feeding device 91 is fixed on a frame 110A or 110B via a support member 93 (see FIG. 32).
  • each substrate X step feeding device 91 includes a movable portion 91a that sucks the back surface of the substrate P and moves in the X-axis direction, and a fixed portion 91b fixed to the frame 110A or 110B. ing.
  • the movable portion 91a is driven in the X-axis direction with respect to the frame 110A or 110B by a driving device 95 (not shown in FIG. 32, see FIG. 33) configured by, for example, a linear motor.
  • the substrate X step feeding device 91 is provided with a position reading device 97 (not shown in FIG. 32, see FIG. 33) such as an encoder for measuring the position of the movable portion 91a.
  • the drive device 95 is not limited to a linear motor, and may be configured by a drive mechanism that uses a rotary motor using a ball screw or a belt as a drive source.
  • the movement stroke in the X-axis direction of the movable portion 91a of each substrate X step feeding device 91 is, for example, about twice the length of the substrate P in the X-axis direction.
  • the + X side end of each fixing portion 91b protrudes from the air levitation unit group 84E, 84F to the + X side by a predetermined length.
  • each substrate X step feeding device 91 needs to adsorb the back surface of the substrate P or release the adsorption to separate it from the substrate P, the drive device 95 performs Z It is configured so that it can be driven minutely in the axial direction. Actually, the movable portion 91a adsorbs the substrate P and moves in the X-axis direction. However, in the following, the substrate X step feeding device 91 and the movable portion 91a Are used without distinction.
  • the movable parts of the substrate Y step feeding device 88 and the substrate X step feeding device 91 need to be separated from and contacted with the substrate P, they can also move in the Z-axis direction.
  • the present invention is not limited to this, and the substrate holder PH (fine movement stage 26) that holds and holds a part of the back surface of the substrate P for the adsorption of the substrate P by the movable portion (substrate adsorption surface) and the separation from the substrate P. May move in the Z-axis direction.
  • the weight canceling device 28 supports the fine movement stage 26 from below via a leveling device 78.
  • the weight canceling device 28 is disposed in the opening of the coarse motion table 32, and its upper half is exposed above the coarse motion table 32 and its lower half is exposed below the coarse motion table 32. .
  • the weight canceling device 28 includes a housing 64, an air spring 66, a Z slider 68, and the like, and is configured in the same manner as the above-described second and subsequent embodiments, for example. . That is, in the substrate stage device PSTf according to the seventh embodiment, the Z slider 68 also serves as a fixing portion of the leveling device 78, no sealing pad is provided, and the weight cancellation device 28 is integrated with the fine movement stage 26. ing. Further, since the weight canceling device 28 is integrated with the fine movement stage 26, there is no connecting device 80 (flexure device) or the like that restricts the single motion of the weight canceling device 28.
  • Fine movement stage 26 can be tilted on Z slider 68 by a leveling device 78 having a spherical bearing or a pseudo spherical bearing structure schematically shown as a spherical member in FIG. 32 ( ⁇ x and ⁇ y with respect to the XY plane). It can be swung in the direction).
  • a leveling device 78 having a spherical bearing or a pseudo spherical bearing structure schematically shown as a spherical member in FIG. 32 ( ⁇ x and ⁇ y with respect to the XY plane). It can be swung in the direction).
  • the weight canceling device 28 and the upper constituent parts (the fine motion stage 26 and the substrate holder PH) supported by the weight canceling device 28 via the leveling device 78 are operated by the pair of X voice coil motors 54X to operate the coarse motion table 32. And move in the X-axis direction. That is, the upper components (fine movement stage 26, substrate holder PH, etc.) are supported by the weight canceling device 28 by the main controller 50 using a pair of X voice coil motors 54X and are synchronously driven (coarse) by the coarse movement table 32. And is driven at the same speed in the same direction as the moving table 32), and moves with the coarse moving table 32 in the X-axis direction with a predetermined stroke.
  • the upper components are controlled by main controller 50 via a pair of X voice coil motors 54X, a pair of Y voice coil motors 54Y, and four Z voice coil motors 54Z.
  • the coarse movement table 32 is slightly driven in the direction of six degrees of freedom.
  • a moving body (hereinafter referred to as a substrate as appropriate) including the coarse movement table 32, the weight cancellation device 28, the fine movement stage 26, the substrate holder PH, and the like, which moves integrally with the substrate P in the X-axis direction. Stages (denoted as 26, 28, 32, PH) are configured.
  • the fine movement stage 26 has reflection surfaces orthogonal to the X axis in the vicinity of the center in the X axis direction on both side surfaces in the Y axis direction via movable mirror support parts (not shown).
  • a pair of X movable mirrors 94X 1 , 94X 2 composed of plane mirrors (or corner cubes) are attached in the same manner as in the fifth embodiment.
  • Y movable mirror 94Y composed of a long plane mirror having a reflecting surface orthogonal to the Y axis via a mirror holding part (not shown). Is fixed.
  • the positional information of the fine movement stage 26 (substrate holder PH) in the XY plane is set to, for example, 0.5 by the substrate stage interferometer system 98 (see FIG. 33) as in the above-described embodiments. It is always detected with a resolution of about 1 nm.
  • the substrate stage interferometer system 98 includes a pair of X laser interferometers (hereinafter referred to as X interferometers) corresponding to the pair of X movable mirrors 94X 1 and 94X 2.
  • Y interferometers a pair of Y laser interferometers (hereinafter abbreviated as Y interferometers) 98Y 1 , 98Y 2 corresponding to the Y moving mirror 94Y.
  • the measurement results of the X interferometers 98X 1 and 98X 2 and the Y interferometers 98Y 1 and 98Y 2 are supplied to the main controller 50 (see FIG. 33).
  • each of the pair of X interferometers 98X 1 and 98X 2 has an L shape when viewed from the + X direction in which one end portion (lower end portion) is fixed to the ⁇ X side frame 18.
  • X interferometer frames are individually fixed to the other ends (upper ends) of frames (X interferometer frames) 102A and 102B.
  • L-shaped frames are used as the frames 102A and 102B, avoid interference between the frames 102A and 102B and the above-described frames 110A and 110B and the coarse motion table 32 moving in the X-axis direction. be able to.
  • the pair of X interferometers 98X 1 and 98X 2 are opposed to the pair of X movable mirrors 94X 1 and 94X 2 and at a position lower than the upper surface of the substrate P, the substrate holder PH and the air floating unit group in the Y-axis direction. It is arranged at a position that fits in a gap with 84E or 84F.
  • the pair of X interferometers 98X 1 and 98X 2 is on the ⁇ X side as compared with the case where the pair of X interferometers 98X 1 and 98X 2 are installed outside the X axis direction movement range of the substrate holder PH. It can be arranged at a position close to the gantry 18.
  • a predetermined one of the X interferometers 98X 1 and 98X 2 for example, the X interferometer 98X 2, as shown in FIG. 30, two interferometer beams (measurement beams) separated in the Z-axis direction.
  • multi-axis interferometer which irradiates the X movable mirror 94X 2 are used. The reason for this will be described later.
  • the X interferometer is not limited to the pair of X interferometers 98X 1 and 98X 2 that individually irradiate the pair of X movable mirrors 94X 1 and 94X 2 with the interferometer beam (measurement beam).
  • a multi-axis interferometer that emits a plurality of measurement beams including at least one measurement beam irradiated to each of the movable mirrors 94X 1 and 94X 2 can also be used.
  • the pair of Y interferometers 98Y 1 and 98Y 2 includes a first row of air levitation unit rows that are closest to the substrate holder PH that constitutes the air levitation unit group 84F, and a first row that is adjacent thereto. Arranged at a position facing two gaps between adjacent air levitation units located between the two air levitation unit rows and in the vicinity of the center in the X-axis direction constituting the first air levitation unit row Has been. These two gaps are symmetrical with respect to the Y axis passing through the center of the exposure area IA. As shown in FIG.
  • the pair of Y interferometers 98Y 1 and 98Y 2 are arranged so that the upper surface of the support member 104 ′ installed on the upper surface of the frame 110B is opposed to the Y moving mirror 94Y and is an air floating unit.
  • the air levitation units constituting the group 84F are separated (non-contact) and fixed.
  • the Y moving mirror 94Y is irradiated with the measurement beam (measurement beam) from the pair of Y interferometers 98Y 1 and 98Y 2 through the above-mentioned two gaps.
  • the frame 110B is integrated with the projection optical system PL so that the measurement standard of the Y interferometer is the projection optical system PL. It is preferable to install it on the gantry 18.
  • the support member 104 ′ that supports the Y interferometers 98Y 1 and 98Y 2 may be directly fixed to the gantry 18 instead of the frame 110B installed on the floor surface.
  • the Y interferometer is not limited to the pair of Y interferometers 98Y 1 and 98Y 2 that individually irradiate the Y moving mirror 94Y with the interferometer beam (measurement beam), and the Y moving mirror 94Y is irradiated with two measurement beams.
  • a multi-axis interferometer can also be used.
  • the X interferometers 98X 1 and 98X 2 are arranged such that the surface of the substrate P in the Z-axis direction (the surface of the substrate P is focused so that this surface coincides with the image plane of the projection optical system PL during exposure). Since the position is lower than the position where leveling control is performed), the X position measurement result includes an Abbe error due to the attitude change (pitching) of the fine movement stage 26 when moving in the X-axis direction.
  • the main controller 50 detects the pitching amount of the fine movement stage 26 by X interferometer 98x 2 consisting of multi-axis interferometer described above, based on the detection result, the measurement of the X-position by X interferometer 98x 1, 98x 2
  • the Abbe error included in the result is corrected. That is, since the correction of such Abbe errors, as the X interferometer 98x 2, irradiates two interferometer beams spaced in the Z-axis direction (measurement beam) to the X movable mirror 94X 2, i.e. the pitching amount of the fine movement stage 26 A detectable multi-axis interferometer is used.
  • the configuration of the other parts of the substrate stage apparatus PSTf is the same as that of the substrate stage apparatus PSTd.
  • the components other than the substrate stage apparatus are the same as those in the above-described embodiments (see FIGS. 30 to 33).
  • the exposure area IA shown in FIGS. 34 to 49 is an illumination area in which the illumination light IL is irradiated through the projection optical system PL during exposure, and is not actually formed except during exposure. Is always shown in order to clarify the positional relationship between the substrate P and the projection optical system PL.
  • the mask M is loaded onto the mask stage MST by a mask transfer device (mask loader) (not shown), and the substrate stage device PSTf is loaded by a substrate carry-in device (not shown).
  • the substrate P is loaded (introduced) upward.
  • main controller 50 levitates and supports substrate P carried above ⁇ Y side air levitation unit group 84F by the substrate carry-in device using air levitation unit group 84F.
  • the substrate is sucked and held by using the substrate Y step feeding device 91 on the ⁇ Y side, and is conveyed in the ⁇ X direction as indicated by the black arrow in FIG.
  • the main controller 50 sucks and holds the substrate P levitated and supported by the air levitation unit group 84F using the -Y side most + X side substrate Y step feeding device 88, and the substrate X with respect to the substrate P The suction by the step feeding device 91 is released. Then, main controller 50 transports substrate P in the + Y direction as shown by the dotted arrow in FIG. 34 using substrate Y step feeding device 88.
  • the substrate P is placed across the substrate holder PH and a part of the air floating unit group 84F on the ⁇ Y side of the substrate holder PH.
  • the substrate P is levitated and supported by the substrate holder PH and a part of the air levitation unit group 84F.
  • the main controller 50 switches the substrate holder PH from exhaust to suction.
  • a part of the substrate P (about 3 of the whole substrate P) is attracted and fixed by the substrate holder PH, and a part of the substrate P (about the remaining about 2 of the whole substrate P by the part of the air floating unit group 84F) / 3) is in a state of being supported by levitation.
  • the substrate P is placed on the substrate holder PH and the air levitation unit group 84F so that at least two alignment marks on the substrate P are in the field of view of any alignment detection system and on the substrate holder PH. It is placed across a part of.
  • the main controller 50 releases the adsorption of the substrate P by the substrate Y step feeding device 88, and the substrate Y step feeding device 88 (movable portion 88a) 36, it is returned to the standby position which is the movement limit position on the -Y side shown in FIG.
  • the substrate X step feeding device 91 (movable part 91a) is also returned to the standby position, which is the movement limit position on the ⁇ X side shown in FIG.
  • the main controller 50 obtains the position of the fine movement stage 26 (substrate holder PH) with respect to the projection optical system PL and the approximate position of the substrate P with respect to the fine movement stage 26 by the same alignment measurement method as before. Note that the alignment measurement of the substrate P with respect to the fine movement stage 26 may be omitted.
  • main controller 50 drives fine movement stage 26 via coarse movement table 32 based on the above measurement result to place at least two alignment marks on substrate P within the field of view of any alignment detection system.
  • the alignment measurement of the substrate P with respect to the projection optical system PL is performed, and the scan start position for exposure of the shot area SA1 on the substrate P is obtained based on the result.
  • the scan start position is strictly an acceleration start position.
  • main controller 50 drives coarse movement table 32 and finely moves fine movement stage 26 to position substrate P at its scan start position (acceleration start position).
  • FIG. 36 shows a state immediately after the substrate P is positioned at the scan start position (acceleration start position) for exposure of the shot area SA1 on the substrate P in this way. Thereafter, a step-and-scan exposure operation is performed.
  • the plurality of shot areas SA1 to SA6 on the substrate P are sequentially exposed.
  • the substrate P is accelerated in the X axis direction for a predetermined acceleration time, and then driven at a constant speed for a predetermined time (exposure (scan exposure) is performed during this constant speed drive), and thereafter It is decelerated by the same time as the acceleration time.
  • the substrate is appropriately driven in the X-axis or Y-axis direction during the step operation (moving between shot areas) (hereinafter referred to as X-step operation and Y-step operation, respectively).
  • the exposure operation is performed as follows.
  • the substrate stage (26, 28, 32, PH) is driven in the ⁇ X direction as shown by the white arrow in FIG. 36, and the X scan operation of the substrate P is performed.
  • the mask M mask stage MST
  • the shot area SA1 is a projection area of the pattern of the mask M by the projection optical system PL. Since it passes through the exposure area IA, scanning exposure for the shot area SA1 is performed at that time. The scanning exposure is performed by irradiating the substrate P with the illumination light IL through the mask M and the projection optical system PL while the fine movement stage 26 (substrate holder PH) is moving in the ⁇ X direction at a constant speed. .
  • main controller 50 adsorbs and fixes a part of substrate P (about 1/3 of the entire substrate P) to substrate holder PH mounted on fine movement stage 26, and moves on air floating unit group 84F.
  • the substrate stage (26, 28, 32, PH) is driven in a state in which a part of the substrate P (about 2/3 of the entire substrate P) is levitated and supported.
  • the main controller 50 drives the coarse movement table 32 in the X-axis direction via the X linear motor 42 based on the measurement result of the X linear encoder system 46, and the substrate stage interferometer system 98, Z tilt Based on the measurement result of measurement system 76, fine movement stage drive system 52 (each voice coil motor 54X, 54Y, 54Z) is driven.
  • the substrate P is moved together with the coarse movement table 32 in the X-axis direction by the action of the pair of X voice coil motors 54X while being supported by the weight cancellation device 28 together with the fine movement stage 26.
  • FIG. 37 shows a state in which the scanning exposure for the shot area SA1 is completed and the substrate stage (26, 28, 32, PH) holding a part of the substrate P is stopped.
  • main controller 50 performs the X step operation of substrate P that slightly drives substrate P in the + X direction as shown by the white arrow in FIG. Do.
  • the main controller 50 drives the substrate stage (26, 28, 32, PH) in the same state as the X scan operation (however, the positional deviation during movement is as strict as the scan operation). Do not regulate).
  • Main controller 50 returns mask stage MST to the acceleration start position in parallel with the X-step operation of substrate P.
  • FIG. 38 shows a state where the scanning exposure for the shot area SA2 is completed and the substrate stage (26, 28, 32, PH) is stopped.
  • a Y-step operation for moving the unexposed area of the substrate P onto the substrate holder PH is performed.
  • This Y step operation of the substrate P is performed by the main controller 50 using the substrate Y step feeding device 88 (movable portion 88a) closest to the ⁇ Y side and the ⁇ X side to move the back surface of the substrate P in the state shown in FIG. , And the substrate P is lifted by releasing the high-pressure air from the substrate holder PH and continuing the high-pressure air exhaust by the air levitation unit group 84F.
  • the substrate P is transferred by the substrate Y step feeding device 88 in the + Y direction.
  • the substrate P moves in the + Y direction with respect to the substrate holder PH.
  • the unexposed shot areas SA3 and SA4 face the substrate holder PH as shown in FIG. And part of the air levitation unit group 84E and part of the air levitation unit group 84F.
  • the substrate P is levitated and supported by the substrate holder PH, part of the air levitation unit group 84E, and part of the air levitation unit group 84F.
  • the main controller 50 switches the substrate holder PH from exhaust to intake (suction).
  • a part of the substrate P (about 1 / of the whole substrate P) is sucked and fixed by the substrate holder PH, and a part of the substrate P is formed by a part of the air levitation unit group 84E and a part of the air levitation unit group 84F.
  • the part (the remaining approximately 2/3 of the entire substrate P) is levitated and supported.
  • the main controller 50 releases the adsorption of the substrate P by the substrate Y step feeding device 88.
  • new alignment measurement of the substrate P with respect to the projection optical system PL that is, measurement of the alignment mark for the next shot area provided in advance on the substrate P is performed.
  • the X step operation of the substrate P described above is performed as necessary so that the alignment mark to be measured is positioned within the detection visual field of the alignment detection system (see the white arrow in FIG. 40).
  • the main controller 50 determines, based on the result, the X-axis, Y-axis, and ⁇ z directions (or the z-axis direction relative to the coarse movement table 32 of the fine movement stage 26) Precise fine positioning drive in the direction of 6 degrees of freedom is performed.
  • FIG. 41 shows a state in which the scanning exposure for the shot area SA3 is completed and the substrate stage (26, 28, 32, PH) is stopped.
  • the main controller 50 performs the X step operation of the substrate P for driving the substrate stage (26, 28, 32, PH) in the ⁇ X direction and the acceleration of the mask stage MST.
  • acceleration in the + X direction (see the white arrow in FIG. 42) of the substrate P and the mask M is started, and scan exposure is performed on the shot area SA4 in the same manner as described above.
  • FIG. 42 shows a state where the scanning exposure for the shot area SA4 is completed and the substrate stage (26, 28, 32, PH) is stopped.
  • a Y-step operation for moving the unexposed area of the substrate P onto the substrate holder PH is performed.
  • the main controller 50 adsorbs the back surface of the substrate P in the state shown in FIG. 42 by the substrate Y step feeding device 88 (movable part 88a) on the ⁇ Y side and the most + X side.
  • the substrate P is levitated by exhausting high-pressure air from the substrate holder PH and continuing high-pressure air exhausting by the air levitation unit groups 84E and 84F.
  • the substrate P is transported in the + Y direction by the substrate Y step feeding device 88, as indicated by the black arrow in FIG. Thereby, only the substrate P moves in the Y-axis direction with respect to the substrate holder PH (see FIG. 43).
  • the main controller 50 may take over the feeding of the substrate P using the substrate Y step feeding device 88 on the + Y side. Good (see FIG. 44). In preparation for this takeover, the main controller 50 may drive the + Y-side substrate Y step feeding device 88 (movable portion 88a) in advance in the ⁇ Y direction and wait in the vicinity of the substrate holder PH ( (See FIG. 43).
  • a part of the substrate P that is driven in the + Y direction by the substrate Y step feeding device 88 and has moved the unexposed shot areas SA5 and SA6 onto the substrate holder PH (about 1/3 of the entire substrate P) is the substrate holder. It is fixed to the substrate holder PH again by adsorption by PH, and a part (the remaining approximately 2/3 of the whole substrate P) is levitated and supported by a part of the air levitation unit group 84E. Immediately after the start of the adsorption operation of the substrate P by the substrate holder PH, the main controller 50 releases the adsorption of the substrate P by the substrate Y step feeding device 88.
  • new alignment measurement of the substrate P with respect to the projection optical system PL that is, measurement of an alignment mark for the next shot area provided in advance on the substrate P is performed.
  • the above-described X-step operation of the substrate P is performed as necessary so that the alignment mark to be measured is positioned within the detection visual field of the alignment detection system (see the white arrow in FIG. 45). .
  • a new substrate P is loaded into the ⁇ Y side air levitation unit group 84F by a substrate carry-in device (not shown) (see FIG. 45).
  • the movable portion 91a of the ⁇ Y side substrate X step feeding device 91 moves to a position near the + X side movement limit position, that is, a position below the newly loaded substrate P, and waits at that position. is doing.
  • the movable portion 88a of the substrate Y step feed device 88 closest to the -X side on the -Y side is moved by the main controller 50 to the movement limit position on the -Y side, as indicated by a solid arrow in FIG. Has been moved.
  • the main controller 50 determines based on the result. Then, precise fine positioning drive in the X-axis, Y-axis, and ⁇ z directions (or 6-degree-of-freedom directions) is performed on the coarse movement table 32 of the fine movement stage 26. Then, according to the same procedure as in the case of the first shot areas SA1 and SA2, the main controller 50 exposes the last two shot areas SA5 and SA6.
  • FIG. 46 shows a state immediately after the exposure for the last shot area SA6 is completed.
  • the newly loaded substrate P is sucked and held by the main controller 50 at the ⁇ Y side substrate X step feeding device 91 and is transported to the ⁇ X side. (See FIG. 46).
  • the substrate P that has been exposed to all the shot areas SA1 to SA6 is whitened with a dotted line in FIG. 47 by the main controller 50 using the substrate Y step feed device 88 on the + Y side and the most ⁇ X side.
  • the sheet is conveyed to the + Y side, completely retracted from the substrate holder PH, and conveyed onto the air floating unit group 84E.
  • the newly loaded substrate P is indicated by the black arrow in FIG. 47 by the main controller 50 using the substrate Y step feed device 88 on the ⁇ Y side and the most ⁇ X side.
  • the shot areas SA1 and SA2 are positioned on the substrate holder PH (see FIG. 47).
  • the exposed substrate P carried on the air levitation unit group 84E is subjected to + X by the main controller 50 using the + Y side substrate X step feed device 91, as indicated by the black arrow in FIG. And is carried out in the + X direction by a substrate carrying-out device (not shown) (see FIGS. 48 and 49).
  • the substrate P on the substrate holder PH is subjected to the same alignment operation as described above, and then the substrate P and the mask M are accelerated in the + X direction.
  • the first shot area SA2 is subjected to scan exposure (see FIGS. 48 and 49). Thereafter, in the same procedure as the exposure for the first substrate P described above, alignment (X step, Y step) for the remaining shot regions on the second substrate P, operations such as exposure, and the like Operations such as alignment (X step, Y step) and exposure with respect to the third and subsequent substrates are repeated.
  • the first (odd-numbered) substrates P and 2 are used.
  • the exposure order of the shot areas is different.
  • the exposure order is the shot areas SA1, SA2, SA3, SA4, SA5, and SA6, whereas in the second (even-numbered) substrate P, the exposure order.
  • the order of exposure is not limited to this.
  • the exposure apparatus 700 according to the seventh embodiment can obtain the same effects as those of the exposure apparatus 100 according to the first embodiment described above.
  • the substrate holder PH mounted on the fine movement stage 26 is a part of the surface opposite to the exposed surface (processed surface) of the substrate P. Hold. That is, the substrate holding surface of the substrate holder PH is smaller than the substrate P, specifically, is set to about 1/3. For this reason, when the substrate Y step feeding device 88 carries the substrate P out of the fine movement stage 26 (substrate holder PH) based on an instruction from the main control device 50, the substrate P is displaced in the Y-axis direction so as to be displaced in the XY plane.
  • the substrate Y step feeding device 88 is at a distance smaller than the size (width or length) of the substrate P in the Y-axis direction, that is, about 1 / the size of the substrate P in the Y-axis direction.
  • the substrate P is unloaded only by displacing the substrate P in the Y-axis direction by the same distance as the width in the Y-axis direction of the substrate holder PH 3 (see, for example, FIGS. 46 and 47).
  • substrate P is smaller than the size of a board
  • the fine movement stage 26 (substrate holder PH) is located at the position in the X-axis direction when the scan exposure for the final shot area on the substrate P is completed, and the Y-axis.
  • the exposed substrate P is slid to one side in the direction and taken out (retracted) from the substrate holder PH, and in parallel (substantially simultaneously), the unexposed substrate P is slid from the other side in the Y-axis direction. It becomes possible to carry (inject) the substrate onto the substrate holder PH (see FIGS. 46 and 47).
  • the substrate Y step feeding device 88 is based on an instruction from the main controller 50 so that the substrate P is displaced in the Y-axis direction.
  • the substrate Y step feeding device 88 has a distance smaller than the size (width or length) of the substrate P in the Y-axis direction, that is, the width of the substrate holder PH in the Y-axis direction.
  • the loading of the substrate P is completed simply by displacing the substrate P in the Y-axis direction by the same distance as (about 1/3 of the size of the substrate P in the Y-axis direction). Therefore, in addition to the substrate carry-out time, the substrate carry-in time can be shortened compared to the conventional case, and as a result, the substrate exchange time can be shortened.
  • the main controller 50 also slides the substrate P from the substrate holder PH to one side in the Y-axis direction at a position in the X-axis direction of the substrate holder PH according to the arrangement of the shot areas on the substrate P and the exposure order. Unloading and slide loading from the other side in the Y-axis direction onto the substrate holder PH of the substrate P are performed. Therefore, unlike the conventional substrate replacement, the substrate holder PH does not need to move to a predetermined substrate replacement position (for example, a position near the movement limit position in the + X direction). Thereby, the substrate replacement time can be further shortened.
  • a predetermined substrate replacement position for example, a position near the movement limit position in the + X direction
  • the carry-out direction of the exposed substrate P from the substrate holder PH is the + Y direction in any substrate, but the arrangement of shot areas on the substrate and the exposure Depending on the order, at least one of the even-numbered substrate and the odd-numbered substrate may naturally be unloaded from the substrate holder PH in the ⁇ Y direction. That is, in the present embodiment, the main controller 50 sets the substrate at the position in the X-axis direction of the substrate holder PH according to the arrangement of the shot areas on the substrate P and the exposure order so that the substrate replacement time is minimized.
  • the substrate P is unloaded in a direction (+ Y direction or -Y direction) according to the arrangement of the shot areas on P and the order of exposure. Therefore, regardless of the arrangement of shot areas (processed areas) on the substrate and the order of processing, the substrate replacement time can be shortened as compared with the case of always carrying out at the constant X position in the same direction.
  • the size of the support surfaces of the air levitation unit groups 84E and 84F on both sides of the substrate holder PH in the Y-axis direction is not limited to the size in the Y-axis direction of the substrate P, and may be larger. It may be slightly smaller.
  • the size of the substrate holding surface of the substrate holder PH in the Y-axis direction is not limited to 1/3 of the size of the substrate P in the Y-axis direction, and may be 1/2, 1/4, etc.
  • the size of the substrate holding surface of the substrate holder PH in the Y-axis direction may be smaller than the size of the substrate P in the Y-axis direction to some extent. Actually, it is set to be the same (slightly larger) as the size of the shot area formed on the substrate P.
  • FIG. 50 schematically shows the arrangement of an exposure apparatus 800 according to the eighth embodiment, omitting the air levitation unit groups 84E and 84F.
  • FIG. 51 shows a plan view in which a part of the exposure apparatus 800 is omitted. 51 corresponds to a plan view of a portion below the projection optical system PL in FIG. 50 (portion below the lens barrel surface plate 16).
  • the exposure apparatus 800 according to the eighth embodiment is basically configured in the same manner as the exposure apparatus 700 according to the seventh embodiment described above, but the substrate stage apparatus PSTg is the seventh embodiment. This is partly different from the substrate stage apparatus PSTf according to FIG.
  • the size in the Y axis direction is larger than the size in the X axis direction of the substrate P as the substrate holder PH.
  • a small size (for example, about 1/2 of the substrate P) is used.
  • the size of the substrate holder PH in the Y-axis direction is about 1 ⁇ 2 of the size of the substrate P in the Y-axis direction.
  • a pair of air levitation units (moving air levitation units) 84G independent of the substrate holder PH and the fine movement stage 26 are disposed on both sides of the substrate holder PH in the X-axis direction. As shown in FIG.
  • each of the pair of air levitation units 84G has the coarse motion table 32 through the support member 112 so that the upper surface thereof is almost the same height as the substrate holder PH (slightly lower). It is fixed on the top surface.
  • Each of the pair of air levitation units 84G has, for example, a length in the Y-axis direction that is equivalent to (or slightly shorter than the substrate holder PH) the length in the X-axis direction, for example, about 1 of the substrate holder PH. / 2.
  • a pair of moving substrate Y step feeding devices 120 is disposed between the substrate holder PH and each of the pair of air levitation units 84G.
  • Each of the pair of moving substrate Y step feeding devices 120 is configured in the same manner as the substrate Y step feeding device 88 described above, and is mounted on the coarse motion table 32 as shown in FIG.
  • the movable part 120 a of each movable substrate Y step feeding device 120 is relatively movable in the Y-axis direction with respect to the fixed part 120 b fixed on the coarse motion table 32. Accordingly, each moving substrate Y step feeding device 120 can move in the X-axis direction together with the coarse movement table 32 and can transport only the substrate P in the Y-axis direction.
  • three substrate Y step feeding devices 88 similar to those in the seventh embodiment are provided.
  • One substrate X step feeding device 91 is arranged.
  • three substrate Y step feeding devices 88 and one substrate X step feeding device 91 inside each of the arrangement regions of the air levitation unit groups 84E and 84F. are arranged symmetrically with respect to the X axis passing through the center of the exposure area IA. Further, from the relationship of adopting such a symmetrical arrangement, the arrangement positions of the pair of Y interferometers 98Y 1 and 98Y 2 are shifted to the + Y side as compared with the seventh embodiment.
  • X beams 30A and 30B those having a slightly wider width in the Y-axis direction than the X beams 30A and 30B of the seventh embodiment are used.
  • two X linear guides 36 are fixed to the upper surfaces of the X beams 30A and 30B, respectively, as in the above-described substrate stage apparatus PST, and an X stator 38 is interposed between the two X linear guides 36. It is fixed.
  • a plurality of sliders 44 that are engaged with each of the two X linear guides 36 are fixed to the lower surface of the coarse motion table 32.
  • An X mover (not shown) that constitutes an X linear motor together with the X stator 38 is fixed to the lower surface of the coarse motion table 32.
  • the configuration of other parts of the substrate stage apparatus PSTg is the same as that of the substrate stage apparatus PSTf according to the seventh embodiment.
  • the pair of X interferometers 98X 1 and 98X 2 does not interfere with any of the fixed air levitation unit groups 84E and 84F and the air levitation unit 84G on the coarse motion table 32, and the pair of X movable mirrors 94X. 1 and 94X 2 are accessible.
  • the substrate stage apparatus PSTg also includes a moving body that moves in the X-axis direction integrally with the substrate P, including the coarse movement table 32, the weight cancellation device 28, the fine movement stage 26, the substrate holder PH, and the like. . Also in the eighth embodiment, this moving body will be appropriately referred to as a substrate stage (26, 28, 32, PH) below.
  • the exposure area IA shown in FIGS. 52 to 65 is an illumination area where the illumination light IL is irradiated through the projection optical system PL during exposure, and is not actually formed except during exposure. Is always shown in order to clarify the positional relationship between the substrate P and the projection optical system PL.
  • the mask M is loaded onto the mask stage MST by a mask transfer device (mask loader) (not shown), and the substrate stage device PSTg is loaded by a substrate carry-in device (not shown).
  • the substrate P is carried in upward.
  • the substrate P is exposed to a plurality of shot areas SA1 to SA4, for example, two in the X-axis direction and two in the Y-axis direction.
  • a plurality of alignment marks (not shown) transferred simultaneously with the pattern of each shot area are provided for each shot area.
  • the substrate P is, as shown in FIG. 52, the substrate holder PH and the air floating unit group on the ⁇ Y side of the substrate holder PH. It is placed straddling part of 84F. At this time, the substrate P is levitated and supported by the substrate holder PH, a part of the air levitation unit group 84F, and the + X side air levitation unit 84G.
  • the main controller 50 switches the substrate holder PH from exhaust to intake (suction).
  • a part of the substrate P (about 1 ⁇ 4 of the whole substrate P corresponding to the rectangular area including the shot area SA1) is sucked and fixed by the substrate holder PH, and a part of the air levitation unit group 84F and the air levitation unit 84G are fixed.
  • a part of the substrate P (the remaining approximately 3/4 of the entire substrate P) is supported in a floating state.
  • the substrate P is in contact with the substrate holder PH and the air so that at least two alignment marks on the substrate P are in the field of view of any alignment detection system (not shown) and on the substrate holder PH. It is placed across a part of the levitation unit group 84F and the air levitation unit 84G.
  • the main controller 50 releases the adsorption of the substrate P by the substrate Y step feeding device 88.
  • the substrate Y step feeding device 88 (movable portion 88a) and the substrate X step feeding device 91 (movable portion 91a) are respectively set by the main controller 50 to a standby position that is a movement limit position on the ⁇ Y side, ⁇ X It is returned to the standby position which is the movement limit position on the side.
  • the main controller 50 determines the position of the fine movement stage 26 with respect to the projection optical system PL and the approximate position of the substrate P with respect to the fine movement stage 26 by the same alignment measurement method as before. Note that the alignment measurement of the substrate P with respect to the fine movement stage 26 may be omitted.
  • main controller 50 drives fine movement stage 26 via coarse movement table 32 based on the above measurement result to place at least two alignment marks on substrate P within the field of view of any alignment detection system.
  • the substrate P is moved, the alignment measurement of the substrate P with respect to the projection optical system PL is performed, and the scan start position (acceleration start position) for exposure of the shot area SA1 on the substrate P is obtained based on the result.
  • main controller 50 drives coarse movement table 32 and finely moves fine movement stage 26 to position substrate P at its scan start position (acceleration start position).
  • precise fine positioning drive in the X-axis, Y-axis, and ⁇ z directions (or 6-degree-of-freedom directions) is performed on the coarse movement table 32 of the fine movement stage 26.
  • FIG. 52 shows a state immediately after the substrate P is positioned at the scan start position (acceleration start position) for exposure of the shot area SA1 on the substrate P in this way. Thereafter, a step-and-scan exposure operation is performed.
  • the plurality of shot areas SA1 to SA4 on the substrate P are sequentially exposed.
  • the X scan operation of the substrate P is performed during the scan operation, and the X step operation or the Y step operation of the substrate P is performed during the step operation (when moving between shot areas). Is called.
  • the Y step operation of the substrate P is the same as that of the seventh embodiment, but the X step operation of the substrate P is different from that of the seventh embodiment as will be described later.
  • the exposure operation is performed as follows. From the state of FIG. 52, the substrate stage (26, 28, 32, PH) is driven in the ⁇ X direction as shown by the white arrow in FIG. 52, and the X scan operation of the substrate P is performed. At this time, the mask M (mask stage MST) is driven in the ⁇ X direction in synchronization with the substrate P (fine movement stage 26), and the shot area SA1 is an exposure area where the projection optical system PL projects the pattern of the mask M. Since it passes through the area IA, scanning exposure for the shot area SA1 is performed at that time. The scanning exposure is performed by irradiating the substrate P with the illumination light IL through the mask M and the projection optical system PL while the fine movement stage 26 (substrate holder PH) is moving in the ⁇ X direction at a constant speed. .
  • main controller 50 adsorbs and fixes a part of substrate P (about 1 ⁇ 4 of the entire substrate P) to substrate holder PH on fine movement stage 26, and a part of air levitation unit group 84F.
  • the substrate stage (26, 28, 32, PH) is driven in a state where a part of the substrate P (about 3/4 of the entire substrate P) is supported by the air floating unit 84G on the + X side.
  • main controller 50 drives coarse movement table 32 in the X-axis direction and fine movement stage drive system 52 in the same manner as described above.
  • the substrate P is moved together with the coarse movement table 32 in the X-axis direction by the action of the pair of X voice coil motors 54X while being supported by the weight cancellation device 28 together with the fine movement stage 26.
  • main controller 50 scans the mask stage MST holding the mask M in the X-axis direction (in the Y-axis direction and the ⁇ z direction) in synchronization with fine movement stage 26 (substrate holder PH) during the X-scan operation. (Small drive).
  • FIG. 53 shows a state in which the scanning exposure for the shot area SA1 is completed and the substrate stage (26, 28, 32, PH) is stopped.
  • an X-step operation for moving the next shot area SA2 of the substrate P onto the substrate holder PH is performed.
  • the main controller 50 sucks and holds the back surface of the substrate P in the state shown in FIG. 53 by the substrate X step feeding device 91 (movable portion 91a) on the ⁇ Y side,
  • the substrate P is floated by exhausting high-pressure air from the substrate holder PH and continuing high-pressure air exhausting by the air levitation unit group 84F and the + X side air levitation unit 84G.
  • substrate P will be in the state hold
  • the main controller 50 indicates the substrate stage (26, 28, 32, PH) with a white arrow in FIG. 53 while maintaining the holding state of the substrate P only by the substrate X step feeding device 91.
  • the X step of the substrate P which is driven in the + X direction, is started.
  • the substrate holder PH moves in the + X direction with respect to the substrate P while the substrate P is stopped at the position before the start of the X step.
  • the main controller 50 stops the substrate stage (26, 28, 32, PH) (see FIG. 54).
  • the substrate P is placed across the substrate holder PH, part of the air levitation unit group 84F, and the ⁇ X side air levitation unit 84G.
  • High pressure air is jetted from the upper surfaces of the substrate holder PH, the air levitation unit group 84F, and the air levitation unit 84G, and the substrate P is supported to be levitated.
  • the main controller 50 In parallel with the driving of the substrate stage (26, 28, 32, PH) for the X step of the substrate P, the main controller 50 returns the mask stage MST to a predetermined acceleration start position.
  • FIG. 56 shows a state in which the substrate stage (26, 28, 32, PH) is stopped after the exposure of the shot area SA2.
  • a Y-step operation for moving the next shot area SA3 of the substrate P onto the substrate holder PH is performed.
  • the Y step operation of the substrate P is performed as follows. That is, main controller 50 sucks and holds the back surface of substrate P in the state shown in FIG. 56 by moving substrate Y step feeding device 120 (movable part 120a) on the ⁇ X side, and sucks substrate holder PH to substrate P. Is released. Thereafter, the main controller 50 causes the substrate P to float in the state shown in FIG. 56 by exhausting high-pressure air from the substrate holder PH and continuing high-pressure air exhausting by the air levitation unit group 84F and the air levitation unit 84G.
  • the substrate P is transported in the + Y direction by the moving substrate Y step feeding device 120 on the ⁇ X side. Accordingly, only the substrate P moves in the + Y direction with respect to the substrate holder PH (see FIG. 57).
  • the main controller 50 uses the + Y side substrate Y step feeding device 88 located closest to the ⁇ X side to use the substrate P. (See black arrows in FIG. 58).
  • the substrate P is placed across the substrate holder PH, a part of the air levitation unit group 84E, and the air levitation unit 84G on the ⁇ X side.
  • High pressure air is jetted from the upper surfaces of the substrate holder PH, the air levitation unit group 84E, and the air levitation unit 84G, and the substrate P is supported to be levitated.
  • FIG. 60 shows a state in which the substrate stage (26, 28, 32, PH) is stopped after the exposure of the shot area SA3 is completed.
  • the X step operation of the substrate P is performed as follows.
  • the main controller 50 sucks and holds the back surface of the substrate P in the state shown in FIG. 60 by the + Y-side substrate X step feeding device 91 (movable part 91a) and releases the suction of the substrate holder PH
  • the substrate P is levitated by the high-pressure air exhaust from the substrate holder PH and the subsequent high-pressure air exhaust by the air levitation unit group 84E and the -X side air levitation unit 84G.
  • substrate P will be in the state hold
  • the main control device 50 indicates the substrate stage (26, 28, 32, PH) as indicated by the white arrow in FIG. 60 while maintaining the holding state of the substrate P only by the substrate X step feeding device 91. Then, the X step for driving in the ⁇ X direction is started. As a result, the substrate holder PH moves in the ⁇ X direction with respect to the substrate P while the substrate P is stopped at the position before the start of the X step of the substrate stage (26, 28, 32, PH). Then, when the substrate holder PH reaches just below the next shot area SA4 of the substrate P, the main controller 50 stops the substrate stage (26, 28, 32, PH) (see FIG. 61).
  • the substrate P is placed across the substrate holder PH, a part of the air levitation unit group 84E, and the + X side air levitation unit 84G.
  • High pressure air is jetted from the upper surfaces of the substrate holder PH, the air levitation unit group 84E, and the air levitation unit 84G, and the substrate P is supported to be levitated.
  • the main controller 50 In parallel with the step drive of the substrate stage (26, 28, 32, PH), the main controller 50 returns the mask stage MST to a predetermined acceleration start position.
  • FIG. 63 shows a state where the substrate stage (26, 28, 32, PH) is stopped after the exposure of the shot area SA4 is completed.
  • the main controller 50 causes the movable portion 91a of the ⁇ Y side substrate X step feeding device 91 to prepare for the next substrate loading. Is driven to a standby position in the vicinity of the movement limit position and is made to wait at that position (see the black arrow in FIG. 62).
  • the substrate P newly introduced onto the air levitation unit group 84F by the substrate carry-in device is -Y Is sucked and held by the side substrate X step feeding device 91 (movable portion 91a) and is transported to the ⁇ X side (see the white arrow in FIG. 63).
  • the substrate P that has been exposed to all the shot areas SA1 to SA4 is + Y as shown by the dotted arrow in FIG. 63 by the main controller 50 using the + X-side moving substrate Y step feed device 120. Then, it is completely retracted from above the substrate holder PH and carried onto the + Y side air floating unit group 84E. At this time, if the stroke of the + X side moving substrate Y step feeding device 120 is insufficient, the main controller 50 takes over the substrate feeding using the + Y side most substrate Y step feeding device 88 on the + Y side. You may make it (refer FIG. 64). At almost the same time, the newly introduced substrate P is indicated by the black arrow in FIG. 64 by the main controller 50 using the substrate Y step feed device 88 on the ⁇ Y side and the most + X side. Then, the shot area SA1 is positioned on the substrate holder (see FIG. 64).
  • the exposed substrate P carried on the air levitation unit group 84E is transported in the + X direction by the main controller 50 using the + Y-side substrate X step feeding device 91, and by a substrate unloading device (not shown). It is carried out in the + X direction (see FIGS. 64 and 65).
  • the substrate P partially held by the substrate holder PH is subjected to the same alignment operation as described above, and then the substrate P, the mask M, The acceleration in the + X direction is started, and scan exposure is performed on the first shot area SA1 in the same manner as described above (see FIG. 65). Thereafter, operations such as alignment (X step, Y step), exposure and the like for the remaining shot regions on the second and subsequent substrates P in the same procedure as the exposure for the first substrate P described above, In addition, operations such as alignment (X step, Y step) and exposure with respect to the third and subsequent substrates are repeated. In this case, both the odd-numbered substrates P and the even-numbered substrates P are exposed in the order of the shot areas SA1, SA2, SA3, and SA4.
  • the same effects as those of the exposure apparatus 700 according to the seventh embodiment described above can be obtained, and the substrate holder PH and the substrate holder PH are mounted.
  • the fine movement stage 26 and the weight canceling device 28 that supports the fine movement stage 26 can be made lighter and more compact than the first embodiment.
  • a frame-shaped substrate support member that can hold the substrate P integrally and can be floated integrally with the substrate P by an air floating unit may be used.
  • this substrate support member is applied to an exposure apparatus 800 according to the eighth embodiment will be described with reference to FIG.
  • the substrate support member 69 has a rectangular (substantially square) outline in plan view, and has a rectangular opening in plan view that penetrates in the Z-axis direction at the center. Consists of a small (thin) frame-shaped member.
  • the substrate support member 69 has a pair of X frame members 61x, which are flat members parallel to the XY plane with the X axis direction as the longitudinal direction, at a predetermined interval in the Y axis direction.
  • Each of the + X side and ⁇ X side ends is connected by a Y frame member 61y that is a flat plate member parallel to the XY plane whose longitudinal direction is the Y-axis direction.
  • Each of the pair of X frame members 61x and the pair of Y frame members 61y is made of, for example, a fiber reinforced synthetic resin material such as GFRP (Glass Fiber Reinforced Plastics), or ceramics to ensure rigidity and reduce weight. From the viewpoint of GFRP (Glass Fiber Reinforced Plastics), or ceramics to ensure rigidity and reduce weight. From the viewpoint of GFRP (Glass Fiber Reinforced Plastics), or ceramics to ensure rigidity and reduce weight. From the viewpoint of
  • a Y movable mirror 94Y having a reflecting surface on the -Y side surface is fixed on the upper surface of the -Y side X frame member 61x. Further, an X movable mirror 94X composed of a plane mirror having a reflecting surface on the ⁇ X side surface is fixed to the upper surface of the ⁇ X side Y frame member 61y. In this case, it is not necessary to provide the X moving mirror and the Y moving mirror in either the substrate holder PH or the fine movement stage 26.
  • Position information in the XY plane (including rotation information in the ⁇ z direction) of the substrate support member 69 (that is, the substrate P) is a pair of X interferometers 98X 1 and 98X that irradiate a length measurement beam onto the reflection surface of the X movable mirror 94X. 2 and the above-described substrate stage interferometer system 98 including a pair of Y interferometers 98Y 1 and 98Y 2 that irradiate a length measuring beam onto the reflecting surface of the Y moving mirror 94Y, and is always detected with a resolution of, for example, about 0.5 nm.
  • the above-described substrate stage interferometer system 98 including a pair of Y interferometers 98Y 1 and 98Y 2 that irradiate a length measuring beam onto the reflecting surface of the Y moving mirror 94Y, and is always detected with a resolution of, for example, about 0.5 nm.
  • the number of X interferometers and / or Y interferometers is such that at least one length measuring beam is irradiated to the corresponding movable mirror within the movable range of the substrate support member 69.
  • the number of optical axes or the interval is set. Therefore, the number of interferometers (number of optical axes) is not limited to two, and depending on the movement stroke of the substrate support member, for example, only one (one axis), or three (three axes) or more good.
  • the substrate support member 69 has a plurality of, for example, four holding units 65 that hold the end (outer peripheral edge) of the substrate P by vacuum suction from below.
  • the four holding units 65 are attached to the opposing surfaces of each of the pair of X frame members 61x so as to be separated from each other in the X axis direction. Note that the number and arrangement of the holding units are not limited to this, and may be appropriately added according to the size of the substrate, the ease of bending, and the like.
  • the holding unit may be attached to the Y frame member.
  • the holding unit 65 has, for example, an L-shaped substrate mounting member provided with a suction pad for vacuum suction of the substrate P on its upper surface, and a parallel connecting the substrate mounting member to the X frame member 61x.
  • a plate spring, the position of the substrate mounting member with respect to the X frame member 61x in the X-axis direction and the Y-axis direction is constrained by the rigidity of the parallel leaf springs, and the elasticity of the leaf springs It is configured to be displaced (moved up and down) in the Z-axis direction without rotating in the ⁇ x direction.
  • a substrate holding frame having the same configuration as the holding unit 65 and the substrate support member 69 provided with the holding unit 65 is disclosed in detail in, for example, US Patent Application Publication No. 2011/0042874.
  • the main controller 50 moves the movable part 91a or the substrate Y of the substrate X step feeding device 91 when the substrate P is moved in and out of the X step or the Y step, or when the substrate P is carried in and out of the substrate stage device PSTg.
  • Any X frame member 61x or any Y frame member 61y of the substrate support member 69 may be sucked and held, or the substrate P may be sucked and held by the movable portion 88a of the step feeding device 88.
  • the position of the substrate P can be measured by the substrate stage interferometer system 98 via the X moving mirror 94X and the Y moving mirror 94Y fixed to the substrate support member 69. Even when the exposure of the first layer on the substrate P is performed by using the exposure apparatus according to the example, the substrate according to the design value based on the position information of the substrate P measured by the substrate stage interferometer system 98 Positioning to the acceleration start position for exposure of each shot area of P can be performed with sufficient accuracy.
  • X movable mirror 94X is not necessarily required. It is not necessary to provide the Y moving mirror 94Y. In this case, the substrate support member 69 can be reduced in weight accordingly.
  • the substrate support member may be used only when the first layer is exposed to the substrate P, or may be used when the second and subsequent layers are exposed.
  • the substrate stage interferometer system 98 since the position of the fine movement stage 26 needs to be measured by the substrate stage interferometer system 98 during the exposure of the second and subsequent layers, for example, the pair of X movable mirrors 94X 1 and 94X composed of the above-described corner cubes. 2 and a Y movable mirror 94Y composed of a long mirror must be attached at the same positions as in the eighth embodiment.
  • the substrate stage interferometer system 98 is also used for measuring the positional information of the substrate support member 69 (substrate P) at the time of the first exposure and the fine movement stage 26 at the time of the second exposure.
  • the present invention is not limited to this, and a substrate interferometer system that measures the position of the substrate support member 69 (substrate P) may be provided separately from the substrate stage interferometer system 98.
  • the substrate support member is not limited to a frame-shaped member, and a substrate support member having a shape in which a part of the frame is cut off may be used.
  • a U-shaped substrate holding frame as disclosed in the eighth embodiment of the above-mentioned US Patent Application Publication No. 2011/0042874 may be used.
  • a drive mechanism that assists driving in the XY plane of the substrate support member 69, for example, long stroke driving in the X-axis direction, may be newly provided as long as the configuration does not adversely affect the operation during scanning exposure of the substrate. .
  • the eighth embodiment has been described as a representative.
  • the substrate support member is used for supporting the substrate P.
  • the air levitation unit is mounted on a frame arranged separately from the coarse movement table 32 and the fine movement stage 26 on one side and the other side of the substrate holder PH in the Y-axis direction.
  • the groups 84E and 84F are installed has been described, at least one of the air levitation unit groups 84E and 84F may be mounted on the coarse motion table 32 and configured to be movable in the X-axis direction.
  • another moving body that moves following the coarse movement table may be provided, and an air floating unit group may be mounted on the other moving body so as to be movable in the X-axis direction.
  • the above-described substrate Y step feeding device 88 disposed inside the air levitation unit group on the coarse movement table 32 on which the air levitation unit group is mounted or another moving body that moves following the coarse movement table. May be provided.
  • the air levitation unit groups 84E and 84F are installed on the floor via the frame, they may be installed on a gantry.
  • FIG. 67 schematically shows the arrangement of an exposure apparatus 900 according to the ninth embodiment, omitting the air levitation unit group and the like.
  • 68 shows a plan view in which a part of the exposure apparatus 900 is omitted, that is, a plan view of a portion below the projection optical system PL in FIG. 67 (portion below a lens barrel surface plate described later).
  • FIG. 69 is a schematic side view showing the exposure apparatus according to the ninth embodiment with a part omitted from the + X direction of FIG.
  • FIG. 70 a part of the plan view of FIG. 68 is taken out and enlarged.
  • the 71 is a block diagram showing the input / output relationship of the main control device 50 that centrally configures the control system of the exposure apparatus 900 and performs overall control of each component.
  • the main controller 50 includes a workstation (or a microcomputer) and the like, and comprehensively controls each part of the exposure apparatus 900.
  • the exposure apparatus 900 includes an illumination system IOP, a mask stage MST for holding a mask M, a projection optical system PL, a mask stage MST, a projection optical system PL, etc., and a body BD (FIG. 67 and the like show only a part thereof.
  • the substrate stage apparatus PSTh described above is capable of holding a part of each of two substrates (the substrate P1 and the substrate P2 are shown in FIG. 67). Different from PST to PSTg.
  • the substrate stage apparatus PSTh includes a coarse movement stage section 24, a fine movement stage 26, a weight cancellation apparatus 28, and the like, as shown in FIGS.
  • a substrate holder PH is mounted on the upper surface of the fine movement stage 26.
  • the substrate holder PH has the same length in the X-axis direction as that of the substrates (P1, P2), and the width (length) in the Y-axis direction is about 1 / of that of the substrates (P1, P2). 3.
  • a groove 150 parallel to the Y axis that divides the upper surface into two holding areas ADA1 and ADA2 is provided at the center of the upper surface of the substrate holder PH in the X-axis direction.
  • a part of the substrates P1 and P2 (here, about one third of the substrate P1 and P2 with respect to the Y-axis direction, 1/6 region of each substrate that is + X side or ⁇ X side half) is adsorbed and held by, for example, vacuum adsorption (or electrostatic adsorption), and pressurized gas (for example, high-pressure air) is blown upward.
  • a part of the substrates P1 and P2 (a region of about 1/6 of each substrate) can be supported in a non-contact (floating) from below by the ejection pressure.
  • Switching between high-pressure air ejection and vacuum suction to each substrate by the holding areas ADA1 and ADA2 of the substrate holder PH is performed by switching the holding areas ADA1 and ADA2 of the substrate holder PH individually to a vacuum pump and a high-pressure air source (not shown). This is performed by the main controller 50 via the holder intake / exhaust switching devices 51A and 51B (see FIG. 71).
  • the coarse movement stage unit 24 includes two (a pair) X beams 30A and 30B, two (a pair) coarse movement tables 32A and 32B, and two X beams 30A and 30B. And a plurality of legs 34 that support each of the two on the floor surface F.
  • the coarse movement tables 32A and 32B are configured in the same manner as the two coarse movement tables provided in the substrate stage apparatus PST described above, for example.
  • a plurality of, in this case, eight air levitation units 84H each having a rectangular support surface (upper surface) are disposed above the coarse movement tables 32A and 32B, It is being fixed to the upper surface of coarse movement table 32A, 32B via the supporting member 86, respectively.
  • Each of the eight air levitation units 84H has a substrate size of 2/3 of the size of the substrates P1 and P2 with respect to the Y axis direction on the + Y side and the ⁇ Y side of the exposure area IA (projection optical system PL), and the substrate with respect to the X axis direction Two-dimensionally arranged in an area having a size substantially equal to the total size of P1 and P2 in the X-axis direction.
  • the upper surface of each air levitation unit 84H is set to be equal to or somewhat lower than the upper surface of the substrate holder PH.
  • the eight air levitation units 84H are referred to as a + Y side air levitation unit group 84H and a -Y side air levitation unit group 84H, respectively.
  • each pair of air levitation units 84I is arranged on both sides of the substrate holder PH in the X-axis direction.
  • each pair of air levitation units 84I has a support member 112 whose XZ cross section is L-shaped so that the upper surface thereof is almost the same height (slightly lower) as the substrate holder PH. And fixed to the upper surface of the coarse motion table 32A.
  • each air levitation unit 84I has a length in the Y-axis direction somewhat shorter than 1 ⁇ 2 of the substrate holder PH, and a length in the X-axis direction is slightly shorter than 1 ⁇ 2 of the substrate holder PH.
  • each of the pair of frames 110A and 110B is installed on the floor surface F so as not to contact the gantry 18. ing.
  • a plurality of, for example, four air levitation units 84J, for example, are installed on the upper surfaces of the pair of frames 110A and 110B (see FIG. 68).
  • each of the four air levitation units 84J is arranged on the + Y side of the + Y side air levitation unit group 84H and the ⁇ Y side of the ⁇ Y side air levitation unit group 84H, respectively.
  • each of the four air levitation units 84J has a width in the Y-axis direction that is approximately 1/3 of the length in the Y-axis direction of the substrates P1 and P2, and a length in the X-axis direction. It is somewhat shorter than 1/2 of the length of the substrate holder PH in the X-axis direction.
  • each of the + Y side and ⁇ Y side air levitation unit groups 84J has a Y-axis size of approximately one third of the Y-axis length of the substrate P and an X-axis size of the substrates P1 and P2.
  • Y-axis size of approximately one third of the Y-axis length of the substrate P
  • X-axis size of the substrates P1 and P2. Are arranged in the X-axis direction in a region having a size substantially equal to the total size in the X-axis direction.
  • the X positions of the center of the exposure area IA and the centers of the + Y side and ⁇ Y side air levitation unit groups 84J substantially coincide.
  • the upper surface of each air levitation unit 84J is set to be equal to or somewhat lower than the upper surface of the substrate holder PH.
  • Each of the support surfaces (upper surfaces) of the air levitation units 84H, 84I, and 84J described above has a thrust type air bearing structure having a porous body or a plurality of mechanically minute holes.
  • Each of the air levitation units 84H, 84I, and 84J levitates and supports a part of the substrate (for example, P1 and P2) by supplying pressurized gas (for example, high-pressure air) from the gas supply device 85 (see FIG. 71). Can be done.
  • pressurized gas for example, high-pressure air
  • the whole of the two substrates can be levitated and supported by the + Y side or -Y side air levitation unit groups 84H and 84J. Further, the entire substrate can be levitated and supported by the holding area ADA1 of the substrate holder PH, the pair of air levitation units 84I on the + X side, and the four air levitation units 84H on the + Y side or the ⁇ Y side. Further, the entire substrate can be levitated and supported by the holding area ADA2 of the substrate holder PH, the pair of air levitation units 84I on the ⁇ X side, and the four air levitation units 84H on the + Y side or the ⁇ Y side. Further, the entire substrate can be supported by the substrate holder PH and the four air levitation units 84H on the + Y side or the ⁇ Y side of the substrate holder PH.
  • each of the air levitation unit groups 84H and 84J may be replaced with a single large air levitation unit, as long as each of the air levitation unit groups 84H and 84J has a total support area substantially equal to each rectangular area described above.
  • the size of the levitation unit may be distributed in the rectangular area, different from the case of FIG.
  • a single air levitation unit having a double support area may be used. Since the air levitation unit floats the substrate, it does not need to be spread over the entire surface, and may be arranged at predetermined positions at appropriate intervals according to the levitation capacity (load capacity) of the air levitation unit.
  • each of the pair of substrate Y step feeding devices 88 is disposed. .
  • Each substrate Y step feeding device 88 is a device for holding (for example, sucking) a substrate (for example, P1 or P2) and moving it in the Y-axis direction, and is fixed to the upper surface of the support member 112 (see FIG. 67). As shown in FIGS. 67 and 70, each substrate Y step feeding device 88 includes a fixing portion 88b fixed to the coarse motion table 32A via the support member 112 and extending in the Y-axis direction, and a substrate (for example, P1 or P2). ), And a movable portion 88a that moves along the fixed portion 88b in the Y-axis direction. In the present embodiment, the movement stroke in the Y-axis direction of the movable portion 88a of each substrate Y step feeding device 88 is equal to the width of the substrate holder PH in the Y-axis direction.
  • the movable portion 88a adsorbs the substrate P and moves in the Y-axis direction.
  • the substrate Y step feeding device 88 and the movable portion 88a Are used without distinction.
  • each of a pair of substrate X step feeding devices 91 is arranged between the + Y side and ⁇ Y side air levitation unit group 84H and the substrate holder PH.
  • the substrate X step feeding device 91 is a device for holding (for example, adsorbing) a substrate (for example, P1 or P2) and moving it in the X-axis direction.
  • the pair of air levitation units 84H disposed on the surface are fixed to the surfaces facing the substrate holders PH via support members (see FIG. 69).
  • each substrate X step feeding device 91 includes a fixed portion 91b extending in the X-axis direction fixed to the coarse movement table 32A or 32B together with the air floating unit 84H, and a substrate (for example, P1 or And a movable portion 91a that adsorbs the back surface of P2) and moves along the fixed portion 91b in the X-axis direction.
  • the movable portion 91a is driven in the X-axis direction with respect to the coarse motion table 32A or 32B by a drive device 95 (not shown in FIGS. 69 and 70, see FIG. 71) configured by, for example, a linear motor.
  • the substrate X step feeding device 91 is provided with a position reading device 97 (not shown in FIGS. 69 and 70, see FIG. 71) such as an encoder for measuring the position of the movable portion 91a.
  • the drive device 95 is not limited to a linear motor, and may be configured by a drive mechanism that uses a rotary motor using a ball screw or a belt as a drive source.
  • the movement stroke in the X-axis direction of the movable portion 91a of each substrate X step feeding device 91 is approximately 1 ⁇ 2 (somewhat longer) the length of the substrate holder in the X-axis direction.
  • the end portion on the ⁇ X side of each fixing portion 91b protrudes from the air levitation unit 84H to which the fixing portion 91b is fixed to the ⁇ X side by a predetermined length.
  • each substrate X step feeding device 91 needs to adsorb the back surface of the substrate P or release the adsorption to separate it from the substrate P, the drive device 95 performs Z It is configured so that it can be driven minutely in the axial direction. Actually, the movable portion 91a adsorbs the substrate P and moves in the X-axis direction. However, in the following, the substrate X step feeding device 91 and the movable portion 91a Are used without distinction.
  • the fine movement stage 26 is Z for the adsorption of the substrate P and the separation from the substrate by the respective movable parts (substrate adsorption surfaces) of the substrate Y step feeding device 88 and the substrate X step feeding device 91. It may move in the axial direction.
  • the weight canceling device 28 includes a housing 64, an air spring 66, a Z slider 68, and the like, and is configured in the same manner as the above-described second and subsequent embodiments, for example. . That is, in the substrate stage device PSTh according to the ninth embodiment, the Z slider 68 also serves as a fixing portion of the leveling device 78, no sealing pad is provided, and the weight cancellation device 28 is integrated with the fine movement stage 26. ing. Further, since the weight canceling device 28 is integrated with the fine movement stage 26, there is no connecting device 80 (flexure device) or the like that restricts the single motion of the weight canceling device 28.
  • the fine movement stage 26 is freely tiltable on the Z slider 68 by a leveling device 78 having a spherical bearing or a pseudo spherical bearing structure schematically shown as a spherical member in FIG. 69 ( ⁇ x and ⁇ y with respect to the XY plane). It can be swung in the direction).
  • the weight canceling device 28 and the upper components (the fine motion stage 26, the substrate holder PH, etc.) supported by the weight canceling device 28 through the leveling device 78 are operated by the coarse motion table 32A by the action of the pair of X voice coil motors 54X. And move in the X-axis direction. That is, the upper components (fine movement stage 26, substrate holder PH, etc.) are supported by the weight canceling device 28 by the main controller 50 using a pair of X voice coil motors 54X, and are synchronously driven (coarse) to the coarse movement table 32A. And is moved at a predetermined stroke in the X-axis direction together with the coarse motion table 32A.
  • the coarse movement table 32A is slightly driven in the direction of 6 degrees of freedom.
  • the coarse movement table 32A (and 32B), the weight cancellation device 28, the fine movement stage 26, the substrate holder PH, and the like are moved in the X-axis direction integrally with the substrates (P1, P2).
  • a movable body hereinafter referred to as a substrate stage (PH, 26, 28, 32A, 32B) as appropriate) is configured.
  • the positional information of the fine movement stage 26 (substrate holder PH) in the XY plane has a resolution of about 0.5 to 1 nm by the substrate stage interferometer system 98 (see FIG. 71).
  • the substrate stage interferometer system 98 according to the ninth embodiment can be understood by comparing FIGS. 67 to 69 with FIGS. 30 to 32, and the substrate stage interferometer system according to the seventh embodiment described above. It is comprised similarly to 98.
  • FIG. a substrate stage interferometer system 98 can be understood by comparing FIGS. 67 to 69 with FIGS. 30 to 32, and the substrate stage interferometer system according to the seventh embodiment described above. It is comprised similarly to 98.
  • FIG. 98 in the exposure apparatus 900 according to the ninth embodiment, as shown in FIG.
  • the Y interferometers 98Y 1 and 98Y 2 are positioned below the air floating unit 84H so as to face the Y moving mirror 94Y. They are arranged at predetermined intervals in the X-axis direction.
  • the Y interferometers 98Y 1 and 98Y 2 are fixed to the pair of mounts 18 via the support members 104, respectively.
  • the configuration of other parts of the substrate stage apparatus PSTh is the same as that of the substrate stage apparatuses PSTa, PSTf, etc., for example. Further, the components other than the substrate stage apparatus are the same as those in the above-described embodiments (see FIGS. 67 to 71).
  • FIG. 75 (D) showing the parallel operation of the exposure of the shot region of one substrate and the Y step operation of the other substrate. Description will be made with reference to FIG. 75 (D).
  • 72 to 99 show only the substrate holder PH and the substrate by further simplifying FIG. 70 for easy understanding.
  • each substrate 72 to 99 is an illumination area where the illumination light IL is irradiated through the projection optical system PL during exposure, and is not actually formed except during exposure. Is always shown in order to clarify the positional relationship between the substrate P and the projection optical system PL. Further, here, a case will be described in which each substrate is subjected to 6-chamfer exposure (6 scans in total) of 2 surfaces (2 scans) in the X-axis direction and 3 surfaces (3 scans) in the Y-axis direction.
  • the mask M is loaded onto the mask stage MST by a mask transport device (mask loader) (not shown), and the substrate stage device PSTh is loaded by a substrate carry-in device (not shown).
  • the two substrates P1 and P2 are carried in (introduced) upward.
  • Each of the substrates P1 and P2 has a total of six shot areas SA1, for example, two in the X-axis direction and three in the Y-axis direction, as shown in FIG.
  • a plurality of alignment marks PM (see FIG. 70) transferred simultaneously with the pattern of each shot area are provided for each shot area. In FIG. 70, illustration of each shot area is omitted.
  • the two substrates P2 and P1 are conveyed in the + Y direction and the ⁇ Y direction by the substrate carry-in device as shown by the black arrow and the white arrow in FIG. It is carried in to the position shown in FIG.
  • the substrate P2 is placed across the holding area ADA1 of the substrate holder PH, the pair of + X side air levitation units 84I, and a part of the ⁇ Y side air levitation unit group 84H.
  • the substrate holder PH is placed across the holding area ADA2, the pair of air levitation units 84I on the -X side, and a part of the air levitation unit group 84H on the + Y side.
  • the substrate P2 is levitated and supported by the holding area ADA1 of the substrate holder PH, a pair of + X side air levitation units 84I and a part of the ⁇ Y side air levitation unit group 84H, and the substrate P1 is supported by the substrate holder PH.
  • the holding area ADA2, the pair of air levitation units 84I on the -X side, and a part of the + Y side air levitation unit group 84H are supported by levitation.
  • Each substrate does not necessarily have to be loaded from the direction of each arrow in FIG. For example, it may be carried in from above (+ Z side) or outside in the X-axis direction.
  • the main controller 50 switches the holding areas ADA1 and ADA2 of the substrate holder PH from exhaust to suction. Thereby, a part (about 1/6 of the whole substrate) of the substrates P2 and P1 is sucked and fixed to the holding areas ADA1 and ADA2 of the substrate holder PH, and a pair of the air levitation unit 84I and a part of the air levitation unit group 84H As a result, a part of the substrates P2 and P1 (the remaining approximately 5/6 of the entire substrate) is levitated and supported.
  • the main controller 50 determines the position of the fine movement stage 26 (substrate holder PH) with respect to the projection optical system PL and the approximate positions of the substrates P1 and P2 with respect to the fine movement stage 26 by the same alignment measurement method as before. .
  • the alignment measurement of the substrates P1 and P2 with respect to the fine movement stage 26 may be omitted.
  • main controller 50 drives fine movement stage 26 via coarse movement table 32A on the basis of the above measurement result to drive at least two alignment marks PM (not shown in FIG. 72, see FIG. 70) on substrate P1.
  • the alignment measurement of the substrate P1 with respect to the projection optical system PL is performed, and based on the result, the scan start position for exposure of the shot area SA1 on the substrate P1 is determined.
  • the scan start position is strictly an acceleration start position.
  • main controller 50 drives coarse movement tables 32A and 32B and fine movement stage 26 to position substrate P1 at its scan start position (acceleration start position).
  • precise fine positioning drive in the X-axis, Y-axis, and ⁇ z directions (or 6-degree-of-freedom directions) is performed on the coarse movement table 32A of the fine movement stage 26 (substrate holder PH).
  • FIG. 73 shows a state immediately after the substrate P1 (and substrate holder PH) is positioned at the scan start position (acceleration start position) for exposure of the shot area SA1 on the substrate P1 in this way. Yes.
  • the substrate stage (PH, 26, 28, 32A, 32B) is driven in the ⁇ X direction as shown by the white arrow in FIG. 73, and the X scan operation of the substrate P1 is performed. Done.
  • the main controller 50 drives the mask stage MST holding the mask M in the ⁇ X direction in synchronization with the substrate holder PH (fine movement stage 26), and the shot area SA1 of the substrate P1 is projected optically. Since it passes through the exposure area IA that is the projection area of the pattern of the mask M by the system PL, at that time, the scanning exposure to the shot area SA1 is performed.
  • main controller 50 actually scans mask stage MST in the X-axis direction based on the measurement result of mask interferometer system 14 in synchronization with fine movement stage 26 (substrate holder PH). While being driven, it is finely driven in the Y-axis direction and ⁇ z direction.
  • the scanning exposure is performed by irradiating the substrate P1 with the illumination light IL through the mask M and the projection optical system PL while the fine movement stage 26 (substrate holder PH) is moving at a constant speed after being accelerated in the ⁇ X direction. .
  • main controller 50 adsorbs and fixes a part of substrate P1 (about 1/6 of the entire substrate P1) to holding area ADA2 of substrate holder PH, and sets + Y side air floating unit group 84H.
  • a part of the substrate P1 (about 5/6 of the whole substrate P1) is levitated and supported by a part and a pair of air floating units 84I on the ⁇ X side, and a part of the substrate P2 (substrate) is held in the holding area ADA1 of the substrate holder PH
  • About 1/6 of the entire P2 is adsorbed and fixed, and a part of the substrate P2 (about 5/6 of the entire substrate P2) is attached to a part of the ⁇ Y side air levitation unit group 84H and a pair of + X side air levitation units 84I
  • the substrate stage (PH, 26, 28, 32A, 32B) is driven in a state where the substrate stage is floated and supported.
  • main controller 50 drives coarse movement tables 32A and 32B in the X-axis direction via X linear motors 42A and 42B, respectively, based on the measurement results of X linear encoder systems 46A and 46B.
  • fine movement stage drive system 52 each voice coil motor 54X, 54Y, 54Z
  • the substrates P1 and P2 are integrated with the fine movement stage 26 and are moved integrally with the coarse movement table 32A by the X voice coil motor 54X.
  • the weight cancellation device 28 is also integrated with the fine movement stage 26 and is driven by the X voice coil motor 54X.
  • the substrates P1 and P2 are integrated with the fine movement stage 26, and relative to the X-axis, Y-axis, Z-axis, ⁇ x, ⁇ y, and ⁇ z directions (6 degrees of freedom direction) by relative driving from the coarse movement table 32A.
  • the position is precisely controlled.
  • FIG. 74 shows a state in which the scanning exposure for the shot area SA1 of the substrate P1 is completed and the substrate stage (PH, 26, 28, 32A, 32B) is stopped.
  • a new alignment measurement of the substrate P2 with respect to the projection optical system PL that is, the alignment mark for the next exposure target shot region (in this case, the shot region SA1 on the substrate P2) provided in advance on the substrate P2. Measurement is performed in the same manner as described above.
  • the main controller 50 prepares the substrate P2 (and the substrate holder PH) in preparation for acceleration for the next exposure based on the result.
  • the X step operation of the substrate P2 (and the substrate holder PH) that is slightly driven in the + X direction is performed as indicated by the white arrow in FIG.
  • the main controller 50 drives the substrate stage (PH, 26, 28, 32A, 32B) in the same state as the X scan operation (however, the positional deviation during movement is a scan operation). (Without as much regulation).
  • Main controller 50 returns mask stage MST to the acceleration start position in parallel with the X-step operation of substrate P2.
  • FIG. 76 shows a state immediately after the substrate P2 (and substrate holder PH) is positioned at the scan start position (acceleration start position) for exposure of the shot area SA1 on the substrate P2 in this way. Yes.
  • main controller 50 As shown by the white arrow in FIG. 76, substrate P2 (substrate stage (PH, 26, 28, 32A, 32B)) and mask M (mask stage MST). ) In the -X direction is started, and scan exposure is performed on the shot area SA1 in the same manner as described above. In parallel with this, the main controller 50 sends the substrate P1 in the ⁇ Y direction on the substrate holder PH to perform the Y-step operation of the substrate P1, as indicated by the solid arrows in FIG.
  • the main controller 50 switches the holding area ADA2 from suction to exhaust, releases the adsorption of the substrate P1, and uses the ⁇ X side substrate Y step feed device 88 to move the substrate P1. This is performed by transporting in the ⁇ Y direction by a Y step distance substantially equal to the width of the shot area in the Y axis direction.
  • the substrate Y step feeding device 88 holds the substrate P1 by suction when the holding area ADA2 is switched from suction to exhaust.
  • the exposure of the shot area SA1 of the substrate P2 and the Y step operation of the substrate P1 are performed in parallel with each substrate as time elapses. Changes in position etc. are shown.
  • the scanning exposure of one substrate (P2) and the Y step operation of the other substrate (P1) are performed in parallel. Can be done. This is because the substrate Y step feeding device 88 used for the Y step is fixed to the coarse motion table 32A and moves integrally with the coarse motion table 32A in synchronization with the substrate holder PH.
  • main controller 50 temporarily stops the Y step operation of the other substrate during the scanning exposure of one substrate, and the other during acceleration and deceleration before and after the scanning exposure of one substrate.
  • the Y step operation of the substrate may be performed.
  • the Y step operation of the other substrate adversely affects the scanning exposure of one substrate (for example, the fine movement is performed so that the reaction force of the driving force of the substrate Y step feeding device 88 does not cause the vibration of the fine movement stage 26).
  • the position control accuracy of the fine movement stage 26 during scanning exposure (and the synchronization accuracy between the mask M and the substrate P2) can be reliably prevented.
  • 75 (D) and 77 show a state where the scanning exposure for the shot area SA1 on the substrate P2 is completed and the substrate stage (PH, 26, 28, 32A, 32B) is stopped. At this time, the Y-step operation of the substrate P1 is completed, and the shot area SA2 on the substrate P1 is located on the holding area ADA2 of the substrate holder PH.
  • the main controller 50 switches the holding area ADA2 of the substrate holder PH from exhaust to suction, and the 1/6 portion including the shot area SA2 of the substrate P1 is adsorbed and fixed to the holding area ADA2.
  • the remaining portion (about 5/6) of the substrate P1 is a part of the + Y side air levitation unit group 84H, a part of the ⁇ Y side air levitation unit group 84H, and a pair of ⁇ X side air levitation unit groups. It is levitated and supported by an air levitating unit 84I.
  • new alignment measurement of the substrate P1 with respect to the projection optical system PL that is, measurement of the alignment mark for the next shot area SA2 provided in advance on the substrate P1 is performed.
  • the same X-step operation as described above is performed on the substrate P1 so that the alignment mark to be measured is positioned within the detection visual field of the alignment detection system (see the white arrow in FIG. 77).
  • the main controller 50 determines the substrate P1 (to the acceleration start position for exposure of the shot area SA2 on the substrate P1) based on the result. In addition, the positioning of the substrate holder PH) and the fine positioning driving in the X axis, Y axis and ⁇ z directions (or 6 degrees of freedom) with respect to the coarse movement table 32A of the fine movement stage 26 are performed.
  • FIG. 78 shows a state immediately after the positioning is completed. In the following description, the description of the precise fine positioning drive of the fine movement stage 26 with respect to the coarse movement table 32A is omitted.
  • the main controller 50 starts acceleration of the substrate P1 and the mask M in the + X direction (see a white arrow in FIG. 78), and scan exposure is performed on the shot area SA2 of the substrate P1 as described above.
  • the main controller 50 performs the same Y-step operation as described above for the substrate P2 that sends the substrate P2 in the + Y direction on the substrate holder PH, as indicated by a solid arrow in FIG. .
  • FIG. 79 shows a state in which the scanning exposure for the shot area SA2 on the substrate P1 is completed and the substrate stage (PH, 26, 28, 32A, 32B) is stopped. At this time, the substrate P2 has finished the Y step operation, and the shot area SA2 on the substrate P2 is located on the holding area ADA1 of the substrate holder PH.
  • the main controller 50 switches the holding area ADA1 of the substrate holder PH from exhaust to suction, and the 1/6 portion including the shot area SA2 of the substrate P2 is adsorbed and fixed to the holding area ADA1.
  • the remaining portion (about 5/6) of the substrate P2 is a part of the + Y side air levitation unit group 84H, a part of the ⁇ Y side air levitation unit group 84H, and a pair of + X side air levitation units. It is supported by the flying unit 84I.
  • new alignment measurement of the substrate P2 with respect to the projection optical system PL that is, measurement of the alignment mark for the next shot area SA2 provided in advance on the substrate P2 is performed.
  • the same X-step operation as described above is performed on the substrate P2 so that the alignment mark to be measured is positioned within the detection visual field of the alignment detection system (see the white arrow in FIG. 79). ).
  • the main controller 50 determines the substrate P2 (to the acceleration start position for exposure of the shot area SA2 on the substrate P2) based on the result. And the substrate holder PH) are positioned.
  • FIG. 80 shows a state immediately after the positioning is completed.
  • the main controller 50 starts acceleration of the substrate P2 and the mask M in the ⁇ X direction (see the white arrow in FIG. 80), and scan exposure is performed on the shot area SA2 of the substrate P2 as described above. .
  • the main controller 50 performs the same Y-step operation as described above for the substrate P1 that sends the substrate P1 in the ⁇ Y direction on the substrate holder PH, as indicated by the black arrow in FIG. Is called.
  • the 81 shows a state in which the scanning exposure for the shot area SA2 on the substrate P2 is completed and the substrate stage (PH, 26, 28, 32A, 32B) is stopped. At this time, the Y step operation of the substrate P1 is completed, and the shot area SA3 on the substrate P1 is located on the holding area ADA2 of the substrate holder PH.
  • the main controller 50 switches the holding area ADA2 of the substrate holder PH from exhaust to suction, and the 1/6 portion including the shot area SA3 of the substrate P1 is adsorbed and fixed to the holding area ADA2.
  • the remaining portion (about 5/6) of the substrate P1 is supported by levitation by a part of the ⁇ Y side air levitation unit group 84H and a pair of air levitation units 84I on the ⁇ X side.
  • new alignment measurement of the substrate P1 with respect to the projection optical system PL that is, measurement of the alignment mark for the next shot area SA3 provided in advance on the substrate P1 is performed.
  • the same X-step operation as described above is performed on the substrate P1 so that the alignment mark to be measured is positioned within the detection visual field of the alignment detection system (see the white arrow in FIG. 81).
  • the main controller 50 determines the substrate P1 (to the acceleration start position for exposure of the shot area SA3 on the substrate P1) based on the result. And the substrate holder PH) are positioned.
  • FIG. 82 shows a state immediately after the positioning is completed.
  • the main controller 50 starts acceleration in the + X direction between the substrate P1 and the mask M (see the white arrow in FIG. 82), and scan exposure similar to that described above is performed on the shot area SA3 of the substrate P1.
  • the main controller 50 performs the same Y-step operation as described above for the substrate P2 that sends the substrate P2 in the + Y direction on the substrate holder PH, as indicated by a solid arrow in FIG. .
  • the 83 shows a state in which the scanning exposure for the shot area SA3 on the substrate P1 is completed and the substrate stage (PH, 26, 28, 32A, 32B) is stopped. At this time, the substrate P2 has finished the Y step operation, and the shot area SA3 on the substrate P2 is located on the holding area ADA1 of the substrate holder PH.
  • the main controller 50 switches the holding area ADA1 of the substrate holder PH from exhaust to suction, and the 1/6 portion including the shot area SA3 of the substrate P2 is adsorbed and fixed to the holding area ADA1.
  • the remaining portion (about 5/6) of the substrate P2 is supported by levitation by a part of the + Y side air levitation unit group 84H and a pair of + X side air levitation units 84I.
  • new alignment measurement of the substrate P2 with respect to the projection optical system PL that is, measurement of the alignment mark for the next shot area SA3 provided in advance on the substrate P2 is performed.
  • the above-described X-step operation of the substrate P2 is performed so that the alignment mark to be measured is located within the detection visual field of the alignment detection system (see the white arrow in FIG. 83).
  • the main controller 50 determines the substrate P2 (to the acceleration start position for exposure of the shot area SA3 on the substrate P2) based on the result. And the substrate holder PH) are positioned.
  • FIG. 84 shows a state immediately after the positioning is completed.
  • the main controller 50 starts acceleration of the substrate P2 and the mask M in the ⁇ X direction (see the white arrow in FIG. 84), and scan exposure similar to that described above is performed on the shot area SA3 of the substrate P2. .
  • the main controller 50 performs the same Y-step operation as described above for the substrate P1 that sends the substrate P1 in the ⁇ Y direction on the substrate holder PH, as indicated by a solid arrow in FIG. Is called.
  • the substrate P1 is completely removed from the substrate holder PH, and is supported entirely by the ⁇ Y side air floating unit group 84H and the ⁇ Y side air floating unit group 84J. Will come to be.
  • FIG. 85 shows a state in which the scanning exposure for the shot area SA3 on the substrate P2 is completed and the substrate stage (PH, 26, 28, 32A, 32B) is stopped. At this time, the substrate P1 is retracted from the substrate holder PH.
  • main controller 50 switches holding area ADA1 of substrate holder PH from suction to exhaust, and sucks and holds substrate P2 by + Y-side substrate X step feed device 91 (see FIG. 70).
  • the X step distance (a distance approximately twice the length of the shot area in the X axis direction) is conveyed in the ⁇ X direction.
  • the main controller 50 sucks and holds the substrate P1 by the substrate Y step feeding device 91 (see FIG. 70) on the ⁇ Y side, and the + X direction as indicated by the black arrow in FIG. To the X step distance.
  • the transport of the substrate P1 in the + X direction and the transport of the substrate P2 in the ⁇ X direction are performed without causing the two to interfere with each other.
  • FIG. 86 shows the positional relationship between the substrates P1 and P2 with respect to the substrate holder PH when the conveyance of the X step distance between the substrate P1 and the substrate P2 is completed.
  • the main controller 50 holds the substrate P1 by suction using the + X side substrate Y step feeding device 88 and cancels the suction of the substrate P1 by the ⁇ Y side substrate X step feeding device 91. Is done. Then, as indicated by a black arrow in FIG. 86, the + Y side substrate Y step feeding device 88 performs step movement of the substrate P1 in the + Y direction. Accordingly, the positions of the substrate P1 and the substrate P2 are reversed on the substrate holder PH, but are in the same positional relationship as FIG. 72 on the substrate holder PH (see FIG. 87).
  • the main controller 50 switches the holding areas ADA1 and ADA2 of the substrate holder PH from exhaust to suction.
  • a part of the substrates P1 and P2 (about 1/6 of the entire substrate) is sucked and fixed to the holding areas ADA1 and ADA2 of the substrate holder PH, and a pair of the air levitation unit 84I and a part of the air levitation unit group 84H
  • a part of the substrates P1 and P2 (the remaining approximately 5/6 of the entire substrate) is levitated and supported.
  • a new alignment measurement of the substrate P1 with respect to the projection optical system PL that is, the alignment mark for the next exposure target shot region (in this case, the shot region SA4 on the substrate P1) provided in advance on the substrate P1. Measurement is performed in the same manner as described above.
  • the main controller 50 drives the coarse movement tables 32A and 32B and finely drives the fine movement stage 26 based on the result.
  • the substrate P1 (and the substrate holder PH) is positioned at the scan start position (acceleration start position).
  • FIG. 87 shows a state immediately after the substrate P1 (and substrate holder PH) is positioned at the scan start position (acceleration start position) for exposure of the shot area SA4 on the substrate P1 in this way. Yes.
  • main controller 50 as indicated by the white arrow in FIG. 87, + X direction between substrate P1 (substrate stage (PH, 26, 28, 32A, 32B)) and mask M (mask stage MST). Is started and scan exposure is performed on the shot area SA4 in the same manner as described above.
  • 88 shows a state in which the scanning exposure for the shot area SA4 of the substrate P1 is completed and the substrate stage (PH, 26, 28, 32A, 32B) is stopped.
  • a new alignment measurement of the substrate P2 with respect to the projection optical system PL that is, the alignment mark for the next shot area to be exposed (the shot area SA4 on the substrate P2 in this case) provided in advance on the substrate P2. Measurement is performed in the same manner as described above.
  • the main controller 50 prepares the substrate P2 (and the substrate holder PH) in preparation for acceleration for the next exposure based on the result.
  • the X step operation of the substrate P2 (and the substrate holder PH) that is slightly driven in the ⁇ X direction is performed in the same manner as described above, as indicated by the white arrow.
  • FIG. 89 shows a state immediately after the substrate P2 (and substrate holder PH) is positioned at the scan start position (acceleration start position) for exposure of the shot area SA4 on the substrate P2 in this way. Yes.
  • main controller 50 determines + X direction between substrate P2 (substrate stage (PH, 26, 28, 32A, 32B)) and mask M (mask stage MST). Is started and scan exposure is performed on the shot area SA4 in the same manner as described above. In parallel with this, the main controller 50 sends the substrate P1 in the + Y direction on the substrate holder PH and performs the same Y-step operation as described above for the substrate P1, as indicated by the solid arrows in FIG. .
  • FIG. 90 shows a state in which the scanning exposure for the shot area SA4 on the substrate P2 is completed and the substrate stage (PH, 26, 28, 32A, 32B) is stopped. At this time, the Y step operation of the substrate P1 is finished, and the shot area SA5 on the substrate P1 is located on the holding area ADA1 of the substrate holder PH.
  • the main controller 50 switches the holding area ADA1 of the substrate holder PH from exhaust to suction, and the 1/6 portion including the shot area SA5 of the substrate P1 is adsorbed and fixed to the holding area ADA1.
  • the remaining portion (about 5/6) of the substrate P1 is a part of the + Y side air levitation unit group 84H, a part of the ⁇ Y side air levitation unit group 84H, and a pair of + X side air levitation units. It is supported by the flying unit 84I.
  • new alignment measurement of the substrate P1 with respect to the projection optical system PL that is, measurement of the alignment mark for the next shot area SA5 provided in advance on the substrate P1 is performed.
  • the same X-step operation as described above is performed on the substrate P1 so that the alignment mark to be measured is positioned within the detection visual field of the alignment detection system (see the white arrow in FIG. 90).
  • the main controller 50 determines the substrate P1 (to the acceleration start position for exposure of the shot area SA5 on the substrate P1) based on the result. And the substrate holder PH) are positioned.
  • FIG. 91 shows a state immediately after the positioning is completed.
  • the main controller 50 starts acceleration of the substrate P1 and the mask M in the ⁇ X direction (see the white arrow in FIG. 91), and scan exposure is performed on the shot area SA5 of the substrate P1 as described above. .
  • the main controller 50 performs the same Y-step operation as described above for the substrate P2 that sends the substrate P2 in the -Y direction on the substrate holder PH, as indicated by the black arrow in FIG. Is called.
  • FIG. 92 shows a state in which the scanning exposure for the shot area SA5 on the substrate P1 is completed and the substrate stage (PH, 26, 28, 32A, 32B) is stopped. At this time, the substrate P2 has finished the Y step operation, and the shot area SA5 on the substrate P2 is located on the holding area ADA2 of the substrate holder PH.
  • the main controller 50 switches the holding area ADA2 of the substrate holder PH from exhaust to suction, and the 1/6 portion including the shot area SA5 of the substrate P2 is adsorbed and fixed to the holding area ADA2.
  • the remaining part (about 5/6) of the substrate P2 is a part of the + Y side air levitation unit group 84H, a part of the ⁇ Y side air levitation unit group 84H, and a pair of ⁇ X side air levitation unit groups. It is levitated and supported by an air levitating unit 84I.
  • new alignment measurement of the substrate P2 with respect to the projection optical system PL that is, measurement of the alignment mark for the next shot area SA5 provided in advance on the substrate P2 is performed.
  • the same X-step operation as described above is performed on the substrate P2 so that the alignment mark to be measured is positioned within the detection visual field of the alignment detection system (see the white arrow in FIG. 92).
  • the main controller 50 determines the substrate P2 (to the acceleration start position for exposure of the shot area SA5 on the substrate P2) based on the result. And the substrate holder PH) are positioned.
  • FIG. 93 shows a state immediately after the positioning is completed.
  • the main controller 50 starts acceleration in the + X direction between the substrate P2 and the mask M (see the white arrow in FIG. 93), and scan exposure is performed on the shot area SA5 of the substrate P2 as described above.
  • the main controller 50 performs the same Y-step operation as described above for the substrate P1 that sends the substrate P1 in the + Y direction on the substrate holder PH, as indicated by the black arrow in FIG. .
  • FIG. 94 shows a state in which the scanning exposure for the shot area SA5 on the substrate P2 is completed and the substrate stage (PH, 26, 28, 32A, 32B) is stopped. At this time, the substrate P1 has finished the Y step operation, and the shot area SA6 on the substrate P1 is located on the holding area ADA1 of the substrate holder PH.
  • the main controller 50 switches the holding area ADA1 of the substrate holder PH from exhaust to suction, and the 1/6 portion including the shot area SA6 of the substrate P1 is adsorbed and fixed to the holding area ADA1.
  • the remaining portion (about 5/6) of the substrate P1 is supported by levitation by a part of the + Y side air levitation unit group 84H and the pair of air levitation units 84I on the + X side.
  • new alignment measurement of the substrate P1 with respect to the projection optical system PL that is, measurement of the alignment mark for the next shot area SA6 provided in advance on the substrate P1 is performed.
  • the same X-step operation as described above is performed on the substrate P1 so that the alignment mark to be measured is positioned within the detection visual field of the alignment detection system (see the white arrow in FIG. 94).
  • the main controller 50 determines the substrate P1 (to the acceleration start position for exposure of the shot area SA6 on the substrate P1) based on the result. And the substrate holder PH) are positioned.
  • FIG. 95 shows a state immediately after the positioning is completed.
  • the main controller 50 starts acceleration in the ⁇ X direction between the substrate P1 and the mask M (see the white arrow in FIG. 95), and scan exposure similar to that described above is performed on the shot area SA6 of the substrate P1. .
  • the main controller 50 performs the same Y step operation as described above of the substrate P2 to send the substrate P2 in the ⁇ Y direction on the substrate holder PH as indicated by the black arrow in FIG. Done.
  • FIG. 96 shows a state in which the scanning exposure for the shot area SA6 on the substrate P1 is completed and the substrate stage (PH, 26, 28, 32A, 32B) is stopped. At this time, the substrate P2 has finished the Y step operation, and the shot area SA6 on the substrate P2 is located on the holding area ADA2 of the substrate holder PH.
  • the main controller 50 switches the holding area ADA2 of the substrate holder PH from exhaust to suction, and the 1/6 portion including the shot area SA6 of the substrate P2 is adsorbed and fixed to the holding area ADA2.
  • the remaining portion (about 5/6) of the substrate P2 is supported by levitation by a part of the ⁇ Y side air levitation unit group 84H and a pair of air levitation units 84I on the ⁇ X side.
  • new alignment measurement of the substrate P2 with respect to the projection optical system PL that is, measurement of the alignment mark for the next shot area SA6 provided in advance on the substrate P2 is performed.
  • the same X-step operation as described above is performed on the substrate P2 so that the alignment mark to be measured is positioned within the detection visual field of the alignment detection system (see the white arrow in FIG. 96).
  • the main controller 50 determines the substrate P2 (to the acceleration start position for exposure of the shot area SA6 on the substrate P2) based on the result. And the substrate holder PH) are positioned.
  • FIG. 97 shows a state immediately after the positioning is completed.
  • the main controller 50 starts acceleration in the + X direction between the substrate P2 and the mask M (see the white arrow in FIG. 97), and scan exposure similar to that described above is performed on the shot area SA6 of the substrate P2.
  • FIG. 98 shows a state in which the scanning exposure for the shot area SA6 on the substrate P2 is completed and the substrate stage (PH, 26, 28, 32A, 32B) is stopped.
  • the main controller 50 switches the holding areas ADA1 and ADA2 of the substrate holder PH from suction to exhaust, and sucks and holds the substrate P2 by the ⁇ X side substrate Y step feeding device 88 (see FIG. 70). As shown by a black arrow in 98, it is carried out (conveyed) in the -Y direction. In parallel with this, the main controller 50 sucks and holds the substrate P1 by the + Y-side substrate Y step feeding device 88 (see FIG. 70) and carries it out in the + Y direction as indicated by the white arrow in FIG. (Convey).
  • the exposed substrates P1 and P2 are unloaded, and new substrates P3 and P4 are loaded onto the substrate holder PH as in FIG.
  • the loading and unloading directions of the substrates do not necessarily have to be in the directions indicated by the arrows in FIG. For example, you may carry in and / or carry out from the upper direction or the X-axis direction.
  • the fine movement stage 26 on which the small (1/3 size of the substrate) substrate holder PH is mounted is moved in the direction of one axis (X axis). Since only the substrate is moved in the two-axis (X-axis and Y-axis) directions, the substrate stage device PSTh can be reduced in size and weight, and the substrate holder PH and the substrate stage device PSTh can be reduced in size as in the above embodiments. Various effects accompanying the conversion can be obtained. Further, in the exposure apparatus 900 according to the ninth embodiment, the main controller 50 places a part of each of the two substrates on the holding areas ADA1 and ADA2 of the substrate holder PH, and the substrate holder PH.
  • the other substrate In parallel with the substrate stage which constitutes a part thereof moving in the X-axis direction and a part of the shot area of one substrate is scanned and exposed, the other substrate is moved to the substrate holder by the substrate Y step feeding device 88. It is possible to move in the Y-axis direction with respect to PH. Thereby, after the exposure of one shot area (unexposed area) is completed for the first substrate, the substrate is stepped to expose the next shot area (unexposed area). Exposure and step movement Are alternately repeated to expose the substrate, and the time required for the exposure processing of the two substrates can be shortened as compared with the case where the second substrate is exposed in the same procedure. .
  • the exposure of two substrates is alternately performed, and the Y step time of one substrate can be completely overlapped with the X scan time of the other substrate.
  • (time required for scanning exposure of one shot area + alignment time) ⁇ number of scans (number of shot areas) + ⁇ specifically, conventional step-and-step in which the substrate is not changed over on the substrate holder.
  • the exposure process can be performed in approximately the same time as the exposure process using the scanning method.
  • two substrates are simultaneously loaded onto the substrate holder PH (substrate stage apparatus PST) and simultaneously unloaded from the substrate holder PH (substrate stage apparatus PSTh).
  • two substrates may be alternately carried into and out of the substrate holder PH (substrate stage apparatus PSTh) as in a modification described below.
  • FIG. 100 corresponds to FIG. 85, which is an explanatory view (No. 13) of the exposure procedure in the ninth embodiment described above, but in accordance with an instruction from the main controller 50, a carry-out device (not shown) At this point, the substrate P1 is carried out of the substrate stage apparatus PSTh (see the thick black arrow in FIG. 100). The ⁇ X side half of the substrate P1 may be left unexposed as shown in FIG. 100 or may be exposed in advance.
  • the main controller 50 suctions and holds the substrate P2 by the + Y side substrate X step feeding device 91 (see FIG. 70).
  • the X step distance (distance approximately twice the length of the shot area in the X axis direction) is conveyed in the ⁇ X direction.
  • FIG. 101 shows the positional relationship of the substrate P2 with respect to the substrate holder PH when the conveyance of the X step distance of the substrate P2 is completed. At this time, a new substrate P3 is carried onto the ⁇ Y side air levitation unit groups 84H and 84J.
  • the main controller 50 sucks and holds the substrate P3 using the + Y side substrate Y step feeding device 88, and the + P direction of the substrate P3 in the + Y direction is indicated by the black arrow in FIG. Step movement is performed.
  • the state shown in FIG. 102 is obtained, and the substrate P2 and the substrate P3 have the same positional relationship as the substrate P1 and the substrate P2 in FIG. 72 on the substrate holder PH.
  • the main controller 50 switches the holding areas ADA1 and ADA2 of the substrate holder PH from exhaust to suction. Accordingly, a part of the substrates P3 and P2 (about 1/6 of the entire substrate) is sucked and fixed to the holding areas ADA1 and ADA2 of the substrate holder PH, and a pair of the air levitation unit 84I and a part of the air levitation unit group 84H As a result, part of the substrates P3 and P2 (the remaining approximately 5/6 of the entire substrate) is levitated and supported.
  • the main controller 50 drives the coarse movement tables 32A and 32B and finely drives the fine movement stage 26 based on the result.
  • the substrate P3 (and the substrate holder PH) is positioned at the scan start position (acceleration start position).
  • FIG. 102 shows a state immediately after the substrate P3 (and the substrate holder PH) is positioned at the scan start position (acceleration start position) for exposure of the shot area SA1 on the substrate P3 in this way. Yes.
  • main controller 50 determines + X direction between substrate P3 (substrate stage (PH, 26, 28, 32A, 32B)) and mask M (mask stage MST). Is started and scan exposure is performed on the shot area SA1 in the same manner as described above.
  • FIG. 103 shows a state in which the scanning exposure for the shot area SA1 of the substrate P3 is completed and the substrate stage (PH, 26, 28, 32A, 32B) is stopped.
  • a new alignment measurement of the substrate P2 with respect to the projection optical system PL that is, the alignment mark for the next shot area to be exposed (the shot area SA4 on the substrate P2 in this case) provided in advance on the substrate P2. Measurement is performed in the same manner as described above.
  • the main controller 50 prepares the substrate P2 (and the substrate holder PH) in preparation for acceleration for the next exposure based on the result.
  • the X step operation of the substrate P2 (and substrate holder PH) that is slightly driven in the ⁇ X direction is performed in the same manner as described above.
  • FIG. 104 shows a state immediately after the substrate P2 (and substrate holder PH) is positioned at the scan start position (acceleration start position) for exposure of the shot area SA4 on the substrate P2 in this way. Yes.
  • main controller 50 as indicated by the white arrow in FIG. 104, + X direction between substrate P2 (substrate stage (PH, 26, 28, 32A, 32B)) and mask M (mask stage MST) Is started and scan exposure is performed on the shot area SA4 in the same manner as described above.
  • the main controller 50 sends the substrate P3 in the + Y direction on the substrate holder PH and performs the same Y-step operation as described above for the substrate P3, as indicated by the solid arrows in FIG. .
  • FIG. 105 shows a state in which the scanning exposure for the shot area SA4 on the substrate P2 is completed and the substrate stage (PH, 26, 28, 32A, 32B) is stopped. At this time, the substrate P3 has finished the Y step operation, and the shot area SA2 on the substrate P3 is located on the holding area ADA1 of the substrate holder PH.
  • the main controller 50 switches the holding area ADA1 of the substrate holder PH from exhaust to suction, and the 1/6 portion including the shot area SA2 of the substrate P3 is adsorbed and fixed to the holding area ADA1.
  • the remaining portion (about 5/6) of the substrate P3 is a part of the + Y side air floating unit group 84H, a part of the ⁇ Y side air floating unit group 84H, and a pair of + X side air floating units. It is supported by the flying unit 84I.
  • new alignment measurement of the substrate P3 with respect to the projection optical system PL that is, measurement of the alignment mark for the next shot area SA2 provided in advance on the substrate P3 is performed.
  • the above-described X-step operation of the substrate P3 is performed so that the alignment mark to be measured is positioned within the detection visual field of the alignment detection system (see the white arrow in FIG. 105).
  • the main controller 50 determines the substrate P3 (to the acceleration start position for exposure of the shot area SA2 on the substrate P3) based on the result. And the substrate holder PH) are positioned.
  • FIG. 106 shows a state immediately after the positioning is completed.
  • main controller 50 starts acceleration in the ⁇ X direction between substrate P3 and mask M (see the white arrow in FIG. 106), and scan exposure is performed on shot area SA2 of substrate P3 as described above. .
  • the main controller 50 performs the same Y step operation as described above for the substrate P2 that sends the substrate P2 in the ⁇ Y direction on the substrate holder PH, as indicated by the solid arrows in FIG. Is called.
  • FIG. 107 shows a state in which the scanning exposure for the shot area SA2 on the substrate P3 is completed and the substrate stage (PH, 26, 28, 32A, 32B) is stopped. At this time, the substrate P2 has finished the Y step operation, and the shot area SA5 on the substrate P2 is located on the holding area ADA2 of the substrate holder PH.
  • the main controller 50 switches the holding area ADA2 of the substrate holder PH from exhaust to suction, and the 1/6 portion including the shot area SA5 of the substrate P2 is adsorbed and fixed to the holding area ADA2.
  • the remaining part (about 5/6) of the substrate P2 is a part of the + Y side air levitation unit group 84H, a part of the ⁇ Y side air levitation unit group 84H, and a pair of ⁇ X side air levitation unit groups. It is levitated and supported by an air levitating unit 84I.
  • new alignment measurement of the substrate P2 with respect to the projection optical system PL that is, measurement of the alignment mark for the next shot area SA5 provided in advance on the substrate P2 is performed.
  • the above-described X-step operation of the substrate P2 is performed so that the alignment mark to be measured is positioned within the detection visual field of the alignment detection system (see the white arrow in FIG. 107).
  • the main controller 50 determines the substrate P2 (to the acceleration start position for exposure of the shot area SA5 on the substrate P2) based on the result. And the substrate holder PH) are positioned.
  • FIG. 108 shows a state immediately after the positioning is completed.
  • the main controller 50 starts acceleration in the + X direction between the substrate P2 and the mask M (see the white arrow in FIG. 108), and scan exposure is performed on the shot area SA5 of the substrate P2 as described above.
  • the main controller 50 performs the same Y-step operation as described above for the substrate P3 that sends the substrate P3 in the + Y direction on the substrate holder PH, as indicated by a solid arrow in FIG. .
  • FIG. 109 shows a state in which the scanning exposure for the shot area SA5 on the substrate P2 is completed and the substrate stage (PH, 26, 28, 32A, 32B) is stopped. At this time, the Y step operation of the substrate P3 is finished, and the shot area SA3 on the substrate P3 is located on the holding area ADA1 of the substrate holder PH.
  • the main controller 50 switches the holding area ADA1 of the substrate holder PH from exhaust to suction, and the 1/6 portion including the shot area SA3 of the substrate P3 is adsorbed and fixed to the holding area ADA1.
  • the remaining portion (about 5/6) of the substrate P3 is supported by levitation by a part of the + Y side air levitation unit group 84H and a pair of + X side air levitation units 84I.
  • new alignment measurement of the substrate P3 with respect to the projection optical system PL that is, measurement of the alignment mark for the next shot area SA3 provided in advance on the substrate P3 is performed.
  • the above-described X-step operation of the substrate P3 is performed so that the alignment mark to be measured is positioned within the detection visual field of the alignment detection system (see the white arrow in FIG. 109).
  • the main controller 50 determines the substrate P3 (to the acceleration start position for exposure of the shot area SA3 on the substrate P3 based on the result). And the substrate holder PH) are positioned.
  • FIG. 110 shows a state immediately after the positioning is completed.
  • the main controller 50 starts acceleration in the ⁇ X direction between the substrate P3 and the mask M (see the white arrow in FIG. 110), and scan exposure similar to that described above is performed on the shot area SA3 of the substrate P3. .
  • the main controller 50 performs the same Y-step operation as described above for the substrate P2 that sends the substrate P2 in the ⁇ Y direction on the substrate holder PH, as indicated by the black arrow in FIG. Is called.
  • FIG. 111 shows a state in which the scanning exposure for the shot area SA3 on the substrate P3 is completed and the substrate stage (PH, 26, 28, 32A, 32B) is stopped. At this time, the substrate P2 has finished the Y step operation, and the shot area SA6 on the substrate P2 is located on the holding area ADA2 of the substrate holder PH.
  • the main controller 50 switches the holding area ADA2 of the substrate holder PH from exhaust to suction, and the 1/6 portion including the shot area SA6 of the substrate P2 is adsorbed and fixed to the holding area ADA2.
  • the remaining portion (about 5/6) of the substrate P2 is supported by levitation by a part of the ⁇ Y side air levitation unit group 84H and a pair of air levitation units 84I on the ⁇ X side.
  • new alignment measurement of the substrate P2 with respect to the projection optical system PL that is, measurement of the alignment mark for the next shot area SA6 provided in advance on the substrate P2 is performed.
  • the above-described X-step operation of the substrate P2 is performed so that the alignment mark to be measured is positioned within the detection visual field of the alignment detection system (see the white arrow in FIG. 111).
  • the main controller 50 determines the substrate P2 (to the acceleration start position for exposure of the shot area SA6 on the substrate P2) based on the result. And the substrate holder PH) are positioned.
  • FIG. 112 shows a state immediately after the positioning is completed.
  • the main controller 50 starts acceleration of the substrate P2 and the mask M in the + X direction (see a white arrow in FIG. 112), and scan exposure similar to that described above is performed on the shot area SA6 of the substrate P2.
  • FIG. 113 shows a state where the substrate stage (PH, 26, 28, 32A, 32B) is stopped after the scan exposure for the shot area SA6 on the substrate P2 is completed.
  • the main controller 50 switches the holding areas ADA1 and ADA2 of the substrate holder PH from suction to exhaust, and sucks and holds the substrate P2 by the ⁇ X side substrate Y step feeding device 88 (see FIG. 70). As shown by a black arrow in 113, it is carried out (conveyed) in the -Y direction. In parallel with this, the main controller 50 sucks and holds the substrate P3 by the + Y side substrate X step feeding device 91 (see FIG. 70). When the substrate P2 is completely retracted from the substrate holder PH, the main controller 50 conveys the substrate P3 in the ⁇ X direction by an X step distance as indicated by a white arrow in FIG.
  • the substrate P2 that has been exposed on the entire surface of the substrate is unloaded, and a new substrate P4 is loaded onto the holding area ADA1 of the substrate holder PH.
  • the shot area to be exposed is changed and the efficiency of the substrate exchange operation is high.
  • the two-axis movement of the X axis and the Y axis as shown in the exposure procedure of the ninth embodiment, 13 and 14 (FIGS. 85 and 86), as performed on the substrate P1 is performed. Disappear.
  • the exchange operation can be performed in a short time even if one unillustrated loading device and unloading device are involved in loading and unloading the substrate.
  • the holding regions ADA1 and ADA2 of the substrate holder PH are approximately 1/6 of the area of the substrate, respectively, two surfaces in the X-axis direction (two scans) and three in the Y-axis direction.
  • the present invention is not limited to this, and each of the holding regions ADA1 and ADA2 of the substrate holder PH is set to an area of about 1/4 of the substrate. You may do it. In this case, it is possible to cope with four chamfering of two surfaces in the X-axis direction (two scans) and two surfaces in the Y-axis direction (two scans).
  • the arrangement relationship between the two substrates arranged on the substrate holder PH and the order of changing the exposure area are merely examples, and are not limited to this.
  • scanning exposure is alternately performed on one and the other of the two substrates (therefore, the Y step operation of the other substrate and the one substrate is performed in parallel with this.
  • two substrates are placed on the holding areas ADA1 and ADA2 on the substrate holder PH, and at least partly the scanning exposure of at least one shot area of one substrate and the Y step operation of the other substrate are at least partially parallel.
  • the present invention is not limited to this, and two independent substrate holders are used. It may be fixed side by side on the fine movement stage.
  • the substrate X step feeding device 91 and the substrate Y step feeding device 88 are arranged around the substrate holder PH. However, the two substrates are moved with respect to the substrate holder PH so as to have the same positional relationship as described above. If possible, the arrangement, number, etc. of the substrate X step feeding device 91 and the substrate Y step feeding device 88 may be arbitrary. However, since the substrate Y step feeding device 88 needs to perform the scanning exposure on the shot area on one substrate and the Y step feeding of the other substrate in parallel, the fine movement stage 26 on which the substrate holder PH is mounted or the substrate holder It is necessary to provide on the moving body which moves integrally with PH.
  • FIG. 115 shows a partially omitted plan view of the exposure apparatus 1000 according to the tenth embodiment.
  • FIG. 116 a schematic side view of the exposure apparatus 1000 viewed from the + X direction is partially omitted.
  • the coarse motion table 32 is partially shown in a sectional view together with the weight cancellation device 28, as in FIG.
  • the exposure apparatus 1000 according to the tenth embodiment differs from the above-described ninth embodiment in that a substrate stage apparatus PSTi is provided instead of the above-described substrate stage apparatus PSTh.
  • the configuration and the like are the same as those in the ninth embodiment described above.
  • the substrate stage apparatus PSTi includes a coarse movement stage portion 24 ′ instead of the coarse movement stage portion 24 described above, as shown in FIG. 116.
  • the coarse movement stage unit 24 ′ includes two (a pair) of X beams 30 A ′ and 30 B ′, a coarse movement table 32, and two X beams 30 A ′ and 30 B ′.
  • a plurality of legs 34 supported on the floor surface F.
  • the coarse motion table 32 is provided in place of the two coarse motion tables 32A and 32B provided in the substrate stage apparatus PSTh, for example, and as can be seen from FIGS. 115 and 116, the coarse motion tables 32A and 32B are integrated. And having a shape that is reduced in size in the Y-axis direction.
  • each part of the coarse movement stage unit 24 ′ is the same as that of the substrate stage apparatus PSTc included in the exposure apparatus according to the fourth embodiment described above, for example, detailed description thereof is omitted.
  • the air levitation units on both sides in the Y-axis direction of the substrate holder PH are separated from the coarse motion table 32 and installed on the floor surface F. Further, along with these, a pair of substrate Y step feeding devices 88 and a pair of substrate X step feeding devices 91 are attached to the fine movement stage 26.
  • each of the pair of frames 110A ′ and 110B ′ prevents the floor F from contacting the gantry 18. It is installed on the top.
  • a pair of air levitation unit groups 84 ⁇ / b> H ′ is installed on the upper surfaces of the pair of frames 110 ⁇ / b> A ′ and 110 ⁇ / b> B ′.
  • Each of the pair of air levitation unit groups 84H ′ is disposed on both sides of the substrate holder PH in the Y-axis direction, as shown in FIGS. 115 and 116. As shown in FIG. 115, each of the pair of air levitation unit groups 84H ′ has a width in the Y-axis direction that is somewhat shorter than the width in the Y-axis direction of the substrate (for example, P1 or P2), and the length in the X-axis direction.
  • a predetermined gap is provided in the X-axis direction and the Y-axis direction. It is composed of a plurality of air levitation units arranged.
  • the upper surface of each air levitation unit of the pair of air levitation unit groups 84H ' is set to be equal to or slightly lower than the upper surface of the substrate holder PH.
  • each of the pair of air levitation unit groups 84I ' includes a plurality of, for example, three air levitation units elongated in the Y axis direction, which are arranged at predetermined intervals in the X axis direction.
  • the length of each air levitation unit in the Y-axis direction is somewhat shorter than the distance between the pair of air levitation unit groups 84H ′.
  • Each of the pair of air levitation unit groups 84I ' is fixed to the upper surface of the coarse movement table 32 in the same manner as the air levitation unit 84I.
  • the support surfaces (upper surfaces) of the air levitation units constituting the pair of air levitation unit groups 84H ′ and the pair of air levitation unit groups 84I ′ are the same as the air levitation unit 84 described above.
  • it is a thrust type air bearing structure having a plurality of minute holes.
  • Each air levitation unit can float and support a part of the substrate by supplying pressurized gas (for example, high-pressure air) from the above-described gas supply device. On / off of the supply of high-pressure air to each air levitation unit is controlled by main controller 50.
  • the pair of air levitation unit groups 84H ′ and the pair of air levitation unit groups 84I ′ described above cause the substrate to move in the X-axis direction by the substrate stage (PH, 26, 28, 32), for example, Even when the full stroke is moved, the substrate can be prevented from sagging and can be supported in a floating manner.
  • each of the pair of air levitation unit groups 84H ′ may be replaced with a single large air levitation unit as long as it has a total support area substantially equal to that of the rectangular area.
  • the shape or size of the levitation unit may be different from the case of FIG. 115 and distributed in the rectangular area.
  • the shape or size of each air levitation unit may be different from that in FIG.
  • a pair of substrate X step feeding apparatuses 91 are arranged on both sides of the substrate holder PH in the Y-axis direction, and are fixed to the fine movement stage 26 via a support member.
  • a pair of substrate Y step feeding devices 88 are disposed on both sides of the substrate holder PH in the X-axis direction, and are fixed to the fine movement stage 26 via a support member (see FIG. 115).
  • the pair of Y interferometers 98Y 1 and 98Y 2 includes a plurality of air levitation units in the first row that are close to the substrate holder PH and constitute the air levitation unit group 84H ′ on the ⁇ Y side.
  • the two gaps are symmetrical with respect to the Y axis passing through the center of the exposure area IA.
  • the Y moving mirror 94Y is irradiated with the measurement beam (measurement beam) from the pair of Y interferometers 98Y 1 and 98Y 2 through the above-mentioned two gaps.
  • the configuration of the other parts of the substrate stage apparatus PSTi is the same as that of the substrate stage apparatus PSTh described above.
  • a substrate feeding device (not shown) different from the substrate X step feeding device 91 and the substrate Y step feeding device 88 described above is provided near the pair of air levitation unit groups 84H ′. It is good also as carrying out.
  • a series of operations such as substrate replacement, alignment, and exposure are performed in the same procedure as the exposure apparatus 900 according to the ninth embodiment described above.
  • the air levitation unit group 84H ′ on both sides in the Y-axis direction of the substrate holder PH is fixed, and is configured by a plurality of air levitation units arranged in a wide range with respect to the X-axis direction.
  • the substrate replacement shown in the exposure procedure explanatory diagram (No.
  • the air levitation unit group 84H ′ on both sides in the Y-axis direction of the substrate holder PH is separated from the substrate stage (coarse motion table 32).
  • the load on the table 32) is reduced, and the controllability of the substrate stage is improved.
  • each air levitation unit of the air levitation unit group 84H ′ does not move, there is no possibility that the measurement beams of the Y interferometers 98Y 1 and 98Y 2 that measure the Y-axis direction position of the fine movement stage 26 are blocked by the air levitation unit. . Therefore, the Y interferometers 98Y 1 and 98Y 2 can be installed on the side frame 20 of the apparatus main body outside ( ⁇ Y side) the air levitation unit group 84H ′ (see FIGS. 115 and 116). .
  • the movable air levitation unit, the substrate X step feeding device 91, and the substrate Y step feeding device 88 are mechanically different from the substrate holder PH (that is, the fine movement stage 26). It may be attached to the separated coarse motion table 32 or may be attached to the substrate holder PH or the fine motion stage 26 integrally.
  • a part of the plurality of air levitation units constituting the pair of air levitation unit groups 84H ′ is attached to the substrate stage (coarse movement table 32 or fine movement stage 26), and the first embodiment described above.
  • a movable air levitation unit may be used as in the embodiment.
  • the ⁇ Y side air floating unit group 84H ′ of the substrate holder PH is configured by a fixed air floating unit, and the + Y side air floating unit group of the substrate holder 84H may be mounted on the substrate stage (coarse movement table 32) to be movable.
  • the fixed air levitation unit group 84H ′ is mechanically and vibrationally separated from the body BD (exposure apparatus main body) on which the substrate stage is mounted and installed on the floor surface F. You may install on BD.
  • FIG. 120 schematically shows the arrangement of an exposure apparatus 1100 according to the eleventh embodiment.
  • a plurality of alignment detection systems AL for detecting alignment marks on the substrate are substrate holders on which substrates P1, P2, etc. are placed. PH is provided.
  • At least two alignment marks correspond to one of the plurality of alignment detection systems AL on the back surface (the surface on the ⁇ Z side). It is provided at a predetermined position.
  • Each alignment mark has, for example, a plurality of scale lines, and the alignment detection system AL can measure the position of the substrate with respect to the substrate holder PH (or the amount of displacement from the reference position).
  • the exposure apparatus 1100 includes the substrate stage apparatus PSTh, and are configured in the same manner as the exposure apparatus 900 according to the ninth embodiment described above. Therefore, the exposure apparatus 1100 according to the eleventh embodiment can obtain the same effects as those of the exposure apparatus 900 according to the ninth embodiment.
  • the exposure apparatus 1100 can measure the alignment of the substrate even when the substrate stage including the fine movement stage 26 is moving. Specifically, main controller 50 can perform alignment measurement on the substrate holder PH of the other substrate during the X scan for one of the two substrates, for example, substrates P1 and P2.
  • the main controller 50 moves the other substrate slightly along with the fine movement stage 26 (substrate holder PH) based on the result of the alignment measurement, The position of the other substrate can be corrected. For this reason, after the scanning exposure of one substrate is completed, the scanning exposure of the other substrate can be started immediately, and the throughput is improved.
  • the alignment detection system AL is not limited to the substrate holder PH, and may be provided on the fine movement stage 26 on which the substrate holder PH is mounted.
  • the air levitation unit, the substrate Y step feeding device, the substrate X step feeding device and the like mounted on the coarse motion table are mounted on the fine motion stage.
  • another moving body that moves following the coarse movement table may be provided, and an air floating unit may be mounted on the other moving body so as to be movable in the X-axis direction.
  • the substrate Y step feeding device 88 described above may be provided on another moving body that moves following the coarse movement table on which the air levitation unit is mounted.
  • the substrate X step feeding device 91 may be disposed outside the substrate stage.
  • the width of the substrate holder PH in the Y-axis direction is about 1/3 or 1/2 of the substrate.
  • the width of the substrate holder PH in the Y-axis direction is As long as it is clearly shorter than the width of the holder PH in the Y-axis direction, it is not limited to these.
  • the width of the substrate holder PH in the Y-axis direction may be equal to or greater than the exposure field width (Y direction) by the projection optical system. For example, if the exposure field width (Y direction) by the projection optical system is about 1 / n of the substrate (n is an integer of 2 or more), the width of the substrate holder PH is also about 1 / n of the Y direction dimension of the substrate.
  • the width in the Y-axis direction of the air levitation unit disposed on both sides of the substrate holder PH in the Y-axis direction is approximately (n ⁇ 1) / of the dimension in the Y-axis direction of the substrate in order to suppress the substrate from bending. n is good.
  • the substrate Y step feeding device it is desirable for the substrate Y step feeding device to have a Y stroke that can move the entire substrate to a region on the substrate holder.
  • the present invention is not limited thereto, and the substrate is provided with a contact-type rolling bearing using a roller or a ball.
  • the drooping prevention device may be replaced with at least a part of the air levitation unit of each of the above embodiments.
  • a substrate drooping prevention device including a bearing member other than the air floating unit and the rolling bearing may be used.
  • the weight canceling device (center column) may be separated from the fine movement stage (see FIGS. 1 and 3) as in the first embodiment, or the second to eleventh ones. It may be integrated with the fine movement stage as in the embodiment. Further, the feeler for the target of the leveling sensor may not be provided. Further, the leveling mechanism and the weight cancellation mechanism may be arranged upside down. Thus, the structure of the weight cancellation device is not limited to the above-described embodiments.
  • the present invention is not limited to this.
  • the holding portion having the same function as the substrate holder PH for holding the substrate may be formed integrally with the fine movement stage.
  • the substrate support apparatus such as an air levitation unit does not hang down due to the weight of the substrate.
  • a weight cancellation device is not essential.
  • a moving stage for moving the substrate holder is required, but the moving stage may be a so-called coarse / fine moving stage or a single 6DOF stage.
  • the moving stage only needs to be able to drive the substrate holder in the XY plane (at least in the X-axis direction), and it is more desirable if it can be driven in the direction of six degrees of freedom.
  • the components of the first to eleventh embodiments may be arbitrarily combined as long as the configurations do not contradict each other.
  • the exposure apparatus is a projection exposure apparatus that performs scanning exposure with a step-and-scan operation of the substrate P.
  • the present invention is not limited to this, and the step-and-stitch method is used.
  • the above-described embodiments can also be applied to a proximity exposure apparatus that does not use a projection optical system.
  • the illumination light is ultraviolet light such as ArF excimer laser light (wavelength 193 nm), KrF excimer laser light (wavelength 248 nm), or vacuum ultraviolet light such as F 2 laser light (wavelength 157 nm). It may be.
  • the illumination light for example, a single wavelength laser beam oscillated from a DFB semiconductor laser or a fiber laser is amplified by a fiber amplifier doped with, for example, erbium (or both erbium and ytterbium).
  • harmonics converted into ultraviolet light using a nonlinear optical crystal may be used.
  • a solid laser (wavelength: 355 nm, 266 nm) or the like may be used.
  • the projection optical system PL is a multi-lens projection optical system including a plurality of projection optical systems (projection optical units) has been described. Not limited to one or more.
  • the projection optical system is not limited to a multi-lens type projection optical system, and may be a projection optical system using an Offner type large mirror, for example.
  • the projection optical system PL has an equal magnification
  • the present invention is not limited to this, and the projection optical system may be either a reduction system or an enlargement system.
  • a light transmissive mask in which a predetermined light shielding pattern (or phase pattern / dimming pattern) is formed on a light transmissive mask substrate is used.
  • an electronic mask (variable molding mask) that forms a transmission pattern, a reflection pattern, or a light emission pattern based on electronic data of a pattern to be exposed, for example, Alternatively, a variable molding mask using DMD (Digital Micro-mirror Device) which is a kind of non-light emitting image display element (also referred to as a spatial light modulator) may be used.
  • DMD Digital Micro-mirror Device
  • the exposure apparatus is a substrate having a size (including at least one of an outer diameter, a diagonal line, and one side) of 500 mm or more, for example, a large substrate for a flat panel display (FPD) such as a liquid crystal display element. It is particularly effective to apply to an exposure apparatus that performs exposure. This is because the present invention has been made to cope with an increase in the size of the substrate.
  • FPD flat panel display
  • a liquid crystal display element as a micro device can be manufactured using the exposure apparatus according to each of the above embodiments.
  • a so-called photolithography process is performed in which a pattern image is formed on a photosensitive substrate (such as a glass substrate coated with a resist).
  • a predetermined pattern including a large number of electrodes and the like is formed on the photosensitive substrate.
  • the exposed substrate is subjected to various processes such as a developing process, an etching process, and a resist stripping process, whereby a predetermined pattern is formed on the substrate.
  • a liquid crystal display element as a micro device can be obtained through a color filter forming process, a cell assembling process, a module assembling process, and the like.
  • the exposure apparatus has been described as the substrate processing apparatus.
  • the present invention is not limited to this, and for example, a substrate other than an exposure apparatus such as an element manufacturing apparatus provided with an ink jet type functional liquid application apparatus or an inspection apparatus. At least some of the first to eleventh embodiments may be applied to the processing apparatus.
  • the substrate processing apparatus and the substrate processing method of the present invention are suitable for processing large substrates.
  • the exposure method and exposure apparatus of the present invention are suitable for exposure of a large substrate.
  • the device manufacturing method and the flat panel display manufacturing method of the present invention are suitable for manufacturing liquid crystal display elements and the like.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Liquid Crystal (AREA)

Abstract

A light exposure device for light exposure treatment of a substrate (P) is provided with: a fine stage that has a substrate holder (PH) for holding part of the substrate (P) in a state assuring flatness and moves relative to a light exposure position (light exposure region (IA)) in the direction of the X-axis; and a substrate Y step feed device (88) that drives the substrate (P) in the direction of the Y-axis in an XY plane. In this instance, X-axis direction movement relative to the light exposure region (IA) by the fine stage holding part of the substrate (P) with the substrate holder (PH) in a state that assures flatness is carried out before and after movement of the substrate (P) in the Y-axis direction by the substrate Y step feed device (88), whereby a plurality of regions on the substrate (P) are light exposure treated.

Description

基板処理装置及び基板処理方法、露光方法及び露光装置、並びにデバイス製造方法及びフラットパネルディスプレイの製造方法Substrate processing apparatus, substrate processing method, exposure method and exposure apparatus, device manufacturing method, and flat panel display manufacturing method
 本発明は、基板処理装置及び基板処理方法、露光方法及び露光装置、並びにデバイス製造方法及びフラットパネルディスプレイの製造方法に係り、特に、処理位置に対して基板を順次移動させて基板上の複数の領域に対して所定の処理を行う基板処理装置及び基板処理方法、露光位置(処理位置)に対して基板を順次移動させて基板上の複数の領域を露光する露光方法及び露光装置、並びに前記基板処理装置若しくは前記基板処理方法又は前記露光方法若しくは露光装置を用いる、デバイス製造方法及びフラットパネルディスプレイの製造方法に関する。 The present invention relates to a substrate processing apparatus, a substrate processing method, an exposure method, an exposure apparatus, a device manufacturing method, and a flat panel display manufacturing method, and in particular, a plurality of substrates on a substrate by sequentially moving the substrate with respect to a processing position. Substrate processing apparatus and substrate processing method for performing predetermined processing on region, exposure method and exposure apparatus for exposing a plurality of regions on substrate by sequentially moving substrate relative to exposure position (processing position), and said substrate The present invention relates to a device manufacturing method and a flat panel display manufacturing method using the processing apparatus, the substrate processing method, the exposure method or the exposure apparatus.
 従来、液晶表示素子、半導体素子(集積回路等)等の電子デバイス(マイクロデバイス)を製造するリソグラフィ工程では、主として、ステップ・アンド・リピート方式の投影露光装置(いわゆるステッパ)、あるいはステップ・アンド・スキャン方式の投影露光装置(いわゆるスキャニング・ステッパ(スキャナとも呼ばれる))などが用いられている。 Conventionally, in a lithography process for manufacturing electronic devices (microdevices) such as liquid crystal display elements, semiconductor elements (integrated circuits, etc.), a step-and-repeat type projection exposure apparatus (so-called stepper) or step-and- A scanning projection exposure apparatus (a so-called scanning stepper (also called a scanner)) or the like is used.
 この種の露光装置では、表面に感応剤が塗布されたガラスプレート、あるいはウエハなど(以下、基板と総称する)は、基板ステージ装置上に載置される。そして、マスク(あるいはレチクル)に形成された回路パターンが、投影レンズ等の光学系を介した露光光の照射により基板に転写される。 In this type of exposure apparatus, a glass plate or a wafer (hereinafter collectively referred to as a substrate) whose surface is coated with a sensitive agent is placed on a substrate stage apparatus. Then, the circuit pattern formed on the mask (or reticle) is transferred to the substrate by exposure light exposure through an optical system such as a projection lens.
 ここで、近年、露光装置の露光対象物である基板、特に液晶表示素子用の基板(矩形のガラス基板)は、そのサイズがより大型化される傾向にあり、これに伴い露光装置においても、基板を保持する基板テーブルが大型化し、これに伴う重量増により基板の位置制御が困難となってきている。このような問題を解決するものとして、発明者は、基板を保持する基板テーブルの自重を柱状の部材から成る心柱と呼ばれる重量キャンセル装置(自重キャンセラ)で支持する露光装置を先に提案した(例えば、特許文献1参照)。 Here, in recent years, substrates that are exposure objects of exposure apparatuses, particularly substrates for liquid crystal display elements (rectangular glass substrates) tend to be larger in size. The substrate table for holding the substrate is enlarged, and the accompanying weight increase makes it difficult to control the position of the substrate. In order to solve such a problem, the inventor previously proposed an exposure apparatus that supports the weight of the substrate table holding the substrate by a weight canceling device (self weight canceller) called a core column made of a columnar member ( For example, see Patent Document 1).
 上記特許文献1に記載の露光装置を含む従来の露光装置が備える基板ステージ装置の開発に際しての基本的な考え方は、基板を高速で高精度に位置決めするという目的を達成するため、基板ステージをできる限り軽量化し、かつ外乱(振動)を排除することを実現することにあった。従来においても、基板と、この基板を平らに平面矯正するための基板ホルダと、基板の位置を知るための干渉計用の移動鏡と、これらを一体的に支持するテーブルと、該テーブルを駆動するVCM(ボイスコイルモータ)などの、高精度位置決め制御を行なうために最低限必要な部品のみを微動ステージに載せ、その他の部品(電気基板や供給ケーブル類など)は粗動ステージに搭載する基板ステージ装置が、種々開発されている。 The basic idea in developing a substrate stage apparatus provided in a conventional exposure apparatus including the exposure apparatus described in Patent Document 1 described above is that a substrate stage can be formed in order to achieve the purpose of positioning the substrate at high speed and with high accuracy. The goal was to reduce the weight as much as possible and eliminate disturbance (vibration). Conventionally, a substrate, a substrate holder for flattening the substrate flat, a moving mirror for an interferometer for knowing the position of the substrate, a table integrally supporting them, and driving the table A VCM (voice coil motor) and other components that are necessary for high-precision positioning control are placed on the fine movement stage, and other components (such as electrical boards and supply cables) are mounted on the coarse movement stage. Various stage devices have been developed.
 しかるに、例えば液晶用のガラス基板は、最新の第10世代では一辺が3メートル以上になるなど一層大型化する傾向にあり、この大型基板の全体を吸着保持する基板ホルダが搭載される微動ステージは、大型化かつその重量も増大し、またしても軽量とは言えなくなっている。そして、基板ホルダ及びこれを支持する基板テーブル等の大型化が種々の不都合の要因となってきた。例えば、基板が大型化する程、基板を2次元移動させる基板ステージ装置の重量と移動量は増加した。このため、露光装置が大型になって、製造コストが増え、装置の製造及び運搬に時間が掛かってきた。また、基板の移動に時間が掛かって、タクトタイムが長くなっていた。このため、露光対象物(基板)を高精度で案内でき、さらに小型化、軽量化を図ることが可能なステージ装置の開発が望まれていた。 However, for example, glass substrates for liquid crystals tend to be larger in the latest 10th generation, such as a side of 3 meters or more, and a fine movement stage on which a substrate holder that holds and holds the entire large substrate is mounted. However, the size is increased and the weight is increased. And the enlargement of the substrate holder and the substrate table that supports the substrate holder has caused various disadvantages. For example, as the size of the substrate increases, the weight and amount of movement of the substrate stage device that moves the substrate two-dimensionally increases. For this reason, the exposure apparatus has become large, the manufacturing cost has increased, and it has taken time to manufacture and transport the apparatus. In addition, it takes time to move the substrate and the tact time is long. For this reason, there has been a demand for the development of a stage apparatus that can guide the exposure object (substrate) with high accuracy and that can be further reduced in size and weight.
 露光装置では、基板ステージでの基板交換は、基板を吸着保持する基板ホルダ上から基板を搬出(退避)させた後、新しい基板を基板ホルダ上に搬入(投入)させることによって成り立っている。しかるに、従来の露光装置では、基板と同じサイズの保持面を有する基板ホルダが用いられていた。このため、従来の露光装置では、基板をそのサイズと同じ距離だけ搬送しなければ、基板を基板ホルダ上から搬出することができず、また、基板を基板ホルダ上に搬入することもできなかった。 In the exposure apparatus, the substrate exchange on the substrate stage is performed by unloading (withdrawing) the substrate from the substrate holder that holds the substrate by suction and then loading (injecting) the new substrate onto the substrate holder. However, in a conventional exposure apparatus, a substrate holder having a holding surface of the same size as the substrate has been used. For this reason, in the conventional exposure apparatus, the substrate cannot be carried out from the substrate holder unless the substrate is transported by the same distance as the size, and the substrate cannot be carried into the substrate holder. .
 また、上述の如く、例えば液晶用のガラス基板は一層大型化する傾向にあるため、基板交換には、ある程度の時間が必要となり、更なる、基板交換時間の短縮を実現できる新たな装置の開発が望まれていた。 In addition, as described above, glass substrates for liquid crystals, for example, tend to become larger, so it takes some time to replace the substrate, and development of a new device that can further shorten the substrate replacement time. Was desired.
 基板交換時間の短縮は、露光装置に限らず、ガラス基板等の基板を処理対象とする基板処理装置に共通の課題であると思われる。 It is considered that shortening the substrate replacement time is a problem common not only to the exposure apparatus but also to a substrate processing apparatus for processing a substrate such as a glass substrate.
米国特許出願公開第2010/0018950号明細書US Patent Application Publication No. 2010/0018950
 発明者は、対象物(基板)を高速、且つ高精度で案内でき、さらに小型化、軽量化を図ることが可能なステージ装置を実現すべく、あらためてステージ装置を観察した。この結果、面積が3m角で厚さ0.7mm程度の基板の重量は20kg弱であるのに対し、基板を支持する基板ホルダの重量は約1トンにもなっている。このため、基板ホルダを支持するテーブルも重くなってしまう。先端部に位置する基板ホルダを軽量化できれば、ホルダの下に連なる各構成部分、すなわちテーブル、重量キャンセル装置(心柱)、及びガイド等のすべてを軽量化することができるということを、改めて認識した。 The inventor once again observed the stage device in order to realize a stage device that can guide the object (substrate) at high speed and with high accuracy and that can be further reduced in size and weight. As a result, the weight of the substrate having an area of 3 square meters and a thickness of about 0.7 mm is less than 20 kg, while the weight of the substrate holder supporting the substrate is about 1 ton. For this reason, the table that supports the substrate holder also becomes heavy. If the weight of the substrate holder located at the tip can be reduced, it will be recognized again that all the components connected to the bottom of the holder, that is, the table, weight canceling device (core column), guide, etc., can be reduced in weight. did.
 基板ホルダの主たる役割は、薄く、反り及び/又は撓みを生じやすい基板を平坦に矯正することである。このため、従来の基板ホルダは基板とほぼ同じ面積を有し、基板を基板ホルダ表面(上面)に例えば真空吸着によって倣わせていた。このため、平面基準となる基板ホルダの表面は極めて平面度を高く仕上げる必要があり、剛性確保のために厚みが増して重量増となっていた。 The main role of the substrate holder is to flatten a thin substrate that is prone to warping and / or bending. For this reason, the conventional substrate holder has almost the same area as the substrate, and the substrate is made to follow the surface (upper surface) of the substrate holder by, for example, vacuum suction. For this reason, it is necessary to finish the surface of the substrate holder as a plane reference with extremely high flatness, and the thickness is increased and the weight is increased to ensure rigidity.
 一方、ステップ・アンド・スキャン方式の大型の投影露光装置などでは、一度に露光できる一括露光領域(ショット領域ともいう)は基板全体の面積に比して小さく設定されており、一度のスキャン露光で基板全面を露光できるわけではない。そのため、スキャン露光と露光を伴わないステップ移動を繰り返しながら基板全面に露光を行なっている。しかるに、基板が平坦である必要があるのは一括露光のスキャン範囲内(ショット領域)だけであり、より厳密には常に投影光学系による固定された照射範囲だけである。それ以外の範囲及び露光を伴わないステップ移動中は基板の平坦性を特に気にする必要はない。 On the other hand, in a large step-and-scan projection exposure apparatus, the batch exposure area that can be exposed at one time (also referred to as a shot area) is set to be smaller than the area of the entire substrate. The entire surface of the substrate cannot be exposed. Therefore, the entire surface of the substrate is exposed while repeating scan exposure and step movement without exposure. However, the substrate needs to be flat only within the scan range (shot region) of the collective exposure, and more strictly, only the fixed irradiation range by the projection optical system. There is no need to pay particular attention to the flatness of the substrate during other steps and step movement without exposure.
 そこで、発明者は、基板を平坦に矯正するための基板ホルダは露光フィールドとほぼ同等のクロススキャン方向の幅(露光フィールドよりも少し広い程度)にして、スキャン方向の長さは少なくても一括で露光できるスキャン長以上にする。そしてスキャンによる一括露光が終了すると、次に露光する基板上のスキャン露光領域(ショット領域)を基板ホルダ上に相対移動させて、その都度平面矯正と基板のアライメントを行ない、スキャン露光を行なうようにすれば良いのではないかと考えた。これにより、基板ホルダの面積は小さくなり、それを支持するテーブルも小さくなって、微動ステージ全体が小型軽量になる。 Therefore, the inventor sets the substrate holder for correcting the substrate flatly to a width in the cross scan direction substantially equal to that of the exposure field (a little wider than the exposure field), and even if the length in the scan direction is small. Use a scan length that can be exposed with. When the batch exposure by scanning is completed, the scan exposure area (shot area) on the substrate to be exposed next is moved relative to the substrate holder, and the plane correction and the substrate alignment are performed each time to perform the scan exposure. I thought that I should do it. As a result, the area of the substrate holder is reduced, and the table supporting the substrate holder is also reduced, so that the entire fine movement stage is reduced in size and weight.
 本発明は、かかる発明者の考えに基づいてなされたもので、以下のような構成を採用する。 The present invention has been made based on the idea of the inventor, and adopts the following configuration.
 本発明の第1の態様によれば、基板を処理する基板処理装置であって、前記基板の一部を平坦度を確保した状態で保持する保持部を有し、基板処理位置に対して、前記基板の面に平行な所定面内の少なくとも第1方向に移動する第1移動体と、前記基板を前記所定面内で前記第1方向に直交する第2方向に駆動するステップ駆動装置と、を備える第1の基板処理装置が、提供される。 According to the first aspect of the present invention, there is provided a substrate processing apparatus for processing a substrate, having a holding unit that holds a part of the substrate in a state in which flatness is ensured, A first moving body that moves in at least a first direction within a predetermined plane parallel to the surface of the substrate; a step driving device that drives the substrate in a second direction orthogonal to the first direction within the predetermined plane; A first substrate processing apparatus is provided.
 これによれば、保持部により基板の一部を平坦度を確保した状態で保持した第1移動体の基板処理位置に対しての第1方向の移動が、ステップ駆動装置による基板の第2方向の移動の前後で行われることで、基板上の複数の被処理領域が処理される。このため、基板を保持する保持部を小さくすることができ、ひいては、その保持部を有する移動体を小型かつ軽量化することができる。これにより、移動体の位置制御性の向上と、基板処理装置の生産コストの低減が可能になる。 According to this, the movement in the first direction with respect to the substrate processing position of the first moving body that holds the part of the substrate in a state in which the flatness is ensured by the holding unit is the second direction of the substrate by the step driving device. As a result, the plurality of regions to be processed on the substrate are processed. For this reason, the holding | maintenance part holding a board | substrate can be made small, and the moving body which has the holding | maintenance part can be reduced in size and weight by extension. Thereby, it becomes possible to improve the position controllability of the moving body and to reduce the production cost of the substrate processing apparatus.
 本発明の第2の態様によれば、基板を処理する基板処理装置であって、水平面に平行に配置された前記基板の被処理面と反対側の面の一部を保持する保持部を有し、基板処理位置に対して、前記基板の面に平行な所定面内の少なくとも第1方向に移動する第1移動体と、前記第1移動体を挟んで前記所定面内で前記第1方向に直交する第2方向の両側にそれぞれ配置され、前記基板の少なくとも一部を下方から支持する、前記基板と前記第1方向及び第2方向のサイズが同等以上の支持面を有する一対の第1支持装置と、少なくとも前記基板を前記第1移動体から搬出する際に、前記基板が前記第2方向に変位するように前記基板を前記所定面内で搬送する第1搬送装置と、を備える第2の基板処理装置が、提供される。 According to the second aspect of the present invention, there is provided a substrate processing apparatus for processing a substrate, wherein the substrate processing apparatus includes a holding unit that holds a part of a surface opposite to the processing surface of the substrate arranged in parallel to a horizontal plane. A first moving body that moves in at least a first direction within a predetermined plane parallel to the surface of the substrate with respect to the substrate processing position; and the first direction within the predetermined plane across the first moving body. A pair of first surfaces each having a support surface that is disposed on both sides in a second direction orthogonal to the substrate and supports at least a portion of the substrate from below and having a size equal to or greater than that of the substrate in the first direction and the second direction. And a first transport device that transports the substrate in the predetermined plane so that the substrate is displaced in the second direction when the substrate is unloaded from the first moving body. Two substrate processing apparatuses are provided.
 これによれば、第1移動体の保持部が基板の被処理面と反対側の面の一部を保持する。すなわち、保持部の基板保持面は、基板よりも小さく設定されている。このため、第1搬送装置が、基板を第1移動体から搬出する際に、基板は第2方向に変位するように所定面内で搬送されるが、その際、第1搬送装置は、基板の第2方向のサイズよりも小さい距離だけ基板を第2方向に変位させるだけで、基板の搬出が終了する。従って、従来技術に比べて、搬出距離の短縮分、基板交換時間を短縮することが可能である。 According to this, the holding part of the first moving body holds a part of the surface of the substrate opposite to the surface to be processed. That is, the substrate holding surface of the holding unit is set smaller than the substrate. For this reason, when the first transport device carries the substrate from the first moving body, the substrate is transported within a predetermined plane so as to be displaced in the second direction. By simply displacing the substrate in the second direction by a distance smaller than the size in the second direction, the unloading of the substrate is completed. Therefore, it is possible to shorten the substrate replacement time by shortening the carry-out distance as compared with the prior art.
 本発明の第3の態様によれば、第1及び第2の態様に係る基板処理装置のいずれかが、基板処理位置に配置され、設定された処理領域にエネルギビームを照射して処理領域を通過する基板を露光する露光光学系を備えている場合に、その基板処理装置を用いて基板を露光することと、露光された前記基板を現像することと、を含むデバイス製造方法が、提供される。 According to the third aspect of the present invention, any one of the substrate processing apparatuses according to the first and second aspects is disposed at a substrate processing position, and the processing region is irradiated with an energy beam. When an exposure optical system for exposing a substrate passing therethrough is provided, a device manufacturing method including exposing the substrate using the substrate processing apparatus and developing the exposed substrate is provided. The
 本発明の第4の態様によれば、第1及び第2の態様に係る基板処理装置のいずれかが、基板処理位置に配置され、設定された処理領域にエネルギビームを照射して前記処理領域を通過する前記基板を露光する露光光学系を備えている場合に、その基板処理装置を用いて基板としてフラットパネルディスプレイに用いられる基板を露光することと、露光された前記基板を現像することと、を含むフラットパネルディスプレイの製造方法が、提供される。 According to the fourth aspect of the present invention, any one of the substrate processing apparatuses according to the first and second aspects is disposed at a substrate processing position, and the set processing region is irradiated with an energy beam to thereby form the processing region. Exposing the substrate used for a flat panel display as a substrate using the substrate processing apparatus, and developing the exposed substrate. A method of manufacturing a flat panel display is provided.
 本発明の第5の態様によれば、基板を処理する基板処理方法であって、前記基板の一部を平坦度を確保した状態で移動体に保持させ、該移動体を、基板処理位置に対して前記基板の面に平行な所定面内の第1方向に駆動して、前記基板の前記一部内の領域に対し所定の処理を行うことと、前記基板上の未処理領域を前記移動体に対向させるため、前記基板を前記移動体に対して前記所定面内で前記第1方向に直交する第2方向に所定量だけ駆動するステップ駆動を行うことと、を含む第1の基板処理方法が、提供される。 According to a fifth aspect of the present invention, there is provided a substrate processing method for processing a substrate, wherein a part of the substrate is held by a moving body while ensuring flatness, and the moving body is placed at a substrate processing position. On the other hand, driving in a first direction within a predetermined plane parallel to the surface of the substrate to perform a predetermined process on the region in the part of the substrate, and moving the unprocessed region on the substrate to the movable body First substrate processing method including: driving the substrate to the movable body by a predetermined amount in a second direction orthogonal to the first direction within the predetermined plane with respect to the moving body. Is provided.
 これによれば、所定の処理を行うことを、ステップ駆動を行うことの前後で行うことで、基板上の複数の被処理領域が処理される。このため、基板を保持する移動体を小型かつ軽量化することができる。これにより、移動体の位置制御性の向上と、基板処理装置の生産コストの低減が可能になる。 According to this, a plurality of regions to be processed on the substrate are processed by performing the predetermined processing before and after performing the step drive. For this reason, the movable body holding a board | substrate can be reduced in size and weight. Thereby, it becomes possible to improve the position controllability of the moving body and to reduce the production cost of the substrate processing apparatus.
 本発明の第6の態様によれば、基板を処理する基板処理方法であって、水平面に平行に配置された前記基板の被処理面と反対側の面の一部を平坦度を確保した状態で移動体に保持させ、該移動体を、基板処理位置に対して前記基板の面に平行な所定面内の第1方向に駆動して、前記基板の前記一部内の領域に対し所定の処理を行うことと、前記所定の処理が施された前記基板を前記所定面内で前記第1方向に直交する第2方向に前記基板の前記第2方向のサイズより短い距離だけ搬送して、前記基板を前記移動体から搬出することと、を含む第2の基板処理方法が提供される。 According to the sixth aspect of the present invention, there is provided a substrate processing method for processing a substrate, wherein a part of a surface opposite to the processing surface of the substrate arranged in parallel to a horizontal plane is ensured in flatness. The movable body is held by the movable body, and the movable body is driven in a first direction within a predetermined plane parallel to the surface of the substrate with respect to the substrate processing position to perform predetermined processing on the region within the part of the substrate. And carrying the substrate subjected to the predetermined process in a second direction perpendicular to the first direction within the predetermined plane by a distance shorter than the size of the substrate in the second direction, A second substrate processing method including unloading the substrate from the movable body.
 これによれば、所定の処理が施された基板(処理済みの基板)を所定面内で第1方向に直交する第2方向に基板の第2方向のサイズより短い距離だけ搬送して、基板を移動体から搬出する。従って、従来技術に比べて、搬出距離の短縮分、基板交換時間を短縮することが可能である。 According to this, a substrate that has been subjected to a predetermined process (processed substrate) is transported in a second direction perpendicular to the first direction within a predetermined plane by a distance shorter than the size of the substrate in the second direction. Is removed from the moving object. Therefore, it is possible to shorten the substrate replacement time by shortening the carry-out distance as compared with the prior art.
 本発明の第7の態様によれば、基板の処理を行う処理方法であって、水平面に平行に配置された前記基板の被処理面と反対側の面を平坦度を確保した状態で保持する移動体を、基板処理位置に対して前記基板の面に平行な所定面内の第1方向に駆動して、前記基板上の複数の被処理領域に順次所定の処理を行うことと、前記複数の被処理領域の前記基板上での配置と処理の順番とに応じて定められた前記第1方向の位置で、前記配置と前記順番とに応じて定められた方向へ、前記基板を搬送して前記移動体から搬出することと、を含む第3の基板処理方法が、提供される。 According to a seventh aspect of the present invention, there is provided a processing method for processing a substrate, wherein a surface opposite to the processing surface of the substrate arranged in parallel to a horizontal plane is held in a state in which flatness is ensured. Driving the movable body in a first direction within a predetermined plane parallel to the surface of the substrate with respect to the substrate processing position to sequentially perform predetermined processing on a plurality of processing regions on the substrate; The substrate is transported in a direction determined according to the arrangement and the order at a position in the first direction determined according to the arrangement of the region to be processed on the substrate and the order of processing. And a third substrate processing method including unloading from the moving body.
 これによれば、基板を、基板上の被処理領域の配置と処理の順番とに応じて定められた所定面内の第1方向の位置で、前記配置と前記順番とに応じて定められた方向に搬送して移動体から搬出する。このため、搬出経路が最短となる経路に沿って基板を移動体から搬出することが可能になる。従って、基板上の被処理領域の配置と処理の順番とに拘らず、常に一定の第1方向の位置で、同じ方向に搬出する場合に比べて、基板交換時間を短縮することが可能である。 According to this, the substrate is determined according to the arrangement and the order at the position in the first direction within the predetermined plane determined according to the arrangement of the processing target area on the substrate and the order of processing. Transport in the direction and unload from the moving body. For this reason, it becomes possible to carry out a board | substrate from a moving body along the path | route where the carrying-out path | route becomes the shortest. Therefore, the substrate replacement time can be shortened compared with the case where the substrate is always carried out at a constant position in the first direction regardless of the arrangement of the processing regions on the substrate and the order of processing. .
 本発明の第8の態様によれば、第5ないし第7の態様に係る基板処理方法のいずれかが、基板を露光する方法である場合に、その基板処理方法を用いて基板を露光することと、露光された前記基板を現像することと、を含むデバイス製造方法が、提供される。 According to the eighth aspect of the present invention, when any of the substrate processing methods according to the fifth to seventh aspects is a method of exposing a substrate, the substrate is exposed using the substrate processing method. And developing the exposed substrate. A device manufacturing method is provided.
 本発明の第9の態様によれば、第5ないし第7の態様に係る基板処理方法のいずれかが、基板を露光する方法である場合に、その基板処理方法を用いて基板としてフラットパネルディスプレイに用いられる基板を露光することと、露光された前記基板を現像することと、を含むフラットパネルディスプレイの製造方法が、提供される。 According to the ninth aspect of the present invention, when any one of the substrate processing methods according to the fifth to seventh aspects is a method for exposing a substrate, the substrate processing method is used as a flat panel display as a substrate. There is provided a method of manufacturing a flat panel display, which includes exposing a substrate used in the above and developing the exposed substrate.
 本発明の第10の態様によれば、複数枚の基板を露光する露光方法であって、2枚の基板を個別に保持可能な第1及び第2保持領域を有する基板保持装置に前記2枚の基板を載置して、前記2枚の基板のうち、一方の基板の露光が開始されてから終了するまでの間に、他方の基板の少なくとも1つの処理領域の露光を行う露光方法が、提供される。 According to a tenth aspect of the present invention, there is provided an exposure method for exposing a plurality of substrates, wherein the two substrates are mounted on a substrate holding apparatus having first and second holding regions capable of holding two substrates individually. An exposure method for exposing at least one processing region of the other substrate between the start and end of exposure of one of the two substrates. Provided.
 これによれば、2枚の基板のうち、一方の基板の露光が終了後に他方の基板の露光を開始する場合に比べて、より短時間で、2枚の基板に対する露光を終了することが可能になる。 According to this, it is possible to complete the exposure of the two substrates in a shorter time than the case of starting the exposure of the other substrate after the exposure of one of the two substrates is completed. become.
 本発明の第11の態様によれば、第10の態様に係る露光方法により前記基板を露光することと、露光された前記基板を現像することと、を含むデバイス製造方法が、提供される。 According to an eleventh aspect of the present invention, there is provided a device manufacturing method including exposing the substrate by the exposure method according to the tenth aspect and developing the exposed substrate.
 本発明の第12の態様によれば、第10の態様に係る露光方法により前記基板としてフラットパネルディスプレイに用いられる基板を露光することと、露光された前記基板を現像することと、を含むフラットパネルディスプレイの製造方法が、提供される。 According to a twelfth aspect of the present invention, a flat comprising: exposing a substrate used for a flat panel display as the substrate by the exposure method according to the tenth aspect; and developing the exposed substrate. A method for manufacturing a panel display is provided.
 本発明の第13の態様によれば、基板上の複数の領域を露光する露光装置であって、2枚の基板の一部をそれぞれ保持可能な第1及び第2保持領域を有する基板保持装置と、前記基板保持装置がその一部に設けられ、第1方向に移動する移動体と、前記移動体と一体的に前記第1方向に移動するとともに、前記2枚の基板の一方を、前記第1方向に交差する第2方向に移動させる第1の基板送り装置と、を備える露光装置が、提供される。 According to the thirteenth aspect of the present invention, there is provided an exposure apparatus that exposes a plurality of areas on a substrate, the substrate holding apparatus having first and second holding areas each capable of holding a part of two substrates. And the substrate holding device is provided in a part thereof, and a movable body that moves in the first direction, and moves in the first direction integrally with the movable body, and one of the two substrates is An exposure apparatus is provided that includes a first substrate feeder that moves in a second direction that intersects the first direction.
 これによれば、2枚の基板のそれぞれの一部を基板保持装置の第1保持領域、第2保持領域にそれぞれ載置して、前記基板保持装置がその一部に設けられた移動体が第1方向に移動して一方の基板の一部の処理領域が走査露光されるのと並行して、他方の基板を第1の基板送り装置により基板保持装置に対して第2方向に移動させることが可能になる。これにより、1枚目の基板について、1つの処理領域(未露光領域)の露光が終了した後に、その基板をステップ移動させて次の処理領域(未露光領域)を露光する、露光及びステップ移動を交互に繰り返して、その基板の露光を行い、2枚目の基板について、同様の手順で露光を行う場合に比べて、2枚の基板の露光処理に掛かる時間を短縮することが可能になる。 According to this, a moving body in which a part of each of the two substrates is placed on the first holding region and the second holding region of the substrate holding device, respectively, and the substrate holding device is provided in a part thereof. In parallel with the movement of the first direction to scan and expose a part of the processing area of one substrate, the other substrate is moved in the second direction with respect to the substrate holding device by the first substrate feeding device. It becomes possible. Thereby, after the exposure of one processing area (unexposed area) is completed for the first substrate, the substrate is stepped to expose the next processing area (unexposed area). Exposure and step movement Are alternately repeated to expose the substrate, and the time required for the exposure processing of the two substrates can be shortened as compared with the case where the second substrate is exposed in the same procedure. .
 本発明の第14の態様によれば、第13の態様に係る露光装置を用いて基板を露光することと、露光された前記基板を現像することと、を含むデバイス製造方法が、提供される。 According to a fourteenth aspect of the present invention, there is provided a device manufacturing method comprising: exposing a substrate using the exposure apparatus according to the thirteenth aspect; and developing the exposed substrate. .
 本発明の第15の態様によれば、第13の態様に係る露光装置を用いて前記基板としてフラットパネルディスプレイに用いられる基板を露光することと、露光された前記基板を現像することと、を含むフラットパネルディスプレイの製造方法が、提供される。 According to a fifteenth aspect of the present invention, using the exposure apparatus according to the thirteenth aspect, exposing a substrate used for a flat panel display as the substrate, and developing the exposed substrate. A method of manufacturing a flat panel display is provided.
第1の実施形態に係る露光装置の構成を概略的に示す図である。It is a figure which shows schematically the structure of the exposure apparatus which concerns on 1st Embodiment. 第1の実施形態に係る露光装置を示す一部省略した平面図である。1 is a partially omitted plan view showing an exposure apparatus according to a first embodiment. 第1の実施形態に係る露光装置を図1の+X方向から見て一部省略して示す概略側面図である。FIG. 2 is a schematic side view showing the exposure apparatus according to the first embodiment with a part thereof omitted when viewed from the + X direction in FIG. 1. 第1の実施形態に係る露光装置の制御系を中心的に構成する主制御装置の入出力関係を示すブロック図である。FIG. 2 is a block diagram showing an input / output relationship of a main controller that mainly constitutes a control system of the exposure apparatus according to the first embodiment. 第1の実施形態に係る露光装置で行われる基板処理のための一連の動作について説明するための図(その1)である。It is FIG. (1) for demonstrating a series of operation | movement for the board | substrate process performed with the exposure apparatus which concerns on 1st Embodiment. 第1の実施形態に係る露光装置で行われる基板処理のための一連の動作について説明するための図(その2)である。It is FIG. (2) for demonstrating a series of operation | movement for the board | substrate process performed with the exposure apparatus which concerns on 1st Embodiment. 第1の実施形態に係る露光装置で行われる基板処理のための一連の動作について説明するための図(その3)である。It is FIG. (3) for demonstrating a series of operation | movement for the board | substrate process performed with the exposure apparatus which concerns on 1st Embodiment. 第1の実施形態に係る露光装置で行われる基板処理のための一連の動作について説明するための図(その4)である。It is FIG. (4) for demonstrating a series of operation | movement for the board | substrate process performed with the exposure apparatus which concerns on 1st Embodiment. 第1の実施形態に係る露光装置で行われる基板処理のための一連の動作について説明するための図(その5)である。It is FIG. (5) for demonstrating a series of operation | movement for the board | substrate process performed with the exposure apparatus which concerns on 1st Embodiment. 第1の実施形態に係る露光装置で行われる基板処理のための一連の動作について説明するための図(その6)である。It is FIG. (6) for demonstrating a series of operation | movement for the board | substrate process performed with the exposure apparatus which concerns on 1st Embodiment. 第1の実施形態に係る露光装置で行われる基板処理のための一連の動作について説明するための図(その7)である。It is FIG. (7) for demonstrating a series of operation | movement for the board | substrate process performed with the exposure apparatus which concerns on 1st Embodiment. 第1の実施形態に係る露光装置で行われる基板処理のための一連の動作について説明するための図(その8)である。It is FIG. (8) for demonstrating a series of operation | movement for the board | substrate process performed with the exposure apparatus which concerns on 1st Embodiment. 第1の実施形態に係る露光装置で行われる基板処理のための一連の動作について説明するための図(その9)である。It is FIG. (9) for demonstrating a series of operation | movement for the board | substrate process performed with the exposure apparatus which concerns on 1st Embodiment. 第2の実施形態に係る露光装置の構成を概略的に示す図である。It is a figure which shows schematically the structure of the exposure apparatus which concerns on 2nd Embodiment. 第2の実施形態に係る露光装置の一部省略した平面図である。It is the top view which abbreviate | omitted one part of the exposure apparatus which concerns on 2nd Embodiment. 第2の実施形態に係る露光装置を図14の+X方向から見て一部省略して示す概略側面図である。It is a schematic side view which abbreviate | omits and shows the exposure apparatus which concerns on 2nd Embodiment seeing from the + X direction of FIG. 第3の実施形態に係る露光装置が備える基板ステージ装置を示す平面図である。It is a top view which shows the substrate stage apparatus with which the exposure apparatus which concerns on 3rd Embodiment is provided. 第3の実施形態に係る露光装置を図17の+X方向から見て一部省略して示す概略側面図である。It is a schematic side view which abbreviate | omits and shows the exposure apparatus which concerns on 3rd Embodiment seeing from the + X direction of FIG. 第3の実施形態の変形例を説明するための図である。It is a figure for demonstrating the modification of 3rd Embodiment. 第4の実施形態に係る露光装置が備える基板ステージ装置を示す平面図である。It is a top view which shows the substrate stage apparatus with which the exposure apparatus which concerns on 4th Embodiment is provided. 第4の実施形態に係る露光装置を図20の+X方向から見て一部省略して示す概略側面図である。FIG. 21 is a schematic side view showing the exposure apparatus according to the fourth embodiment with a part thereof omitted when viewed from the + X direction of FIG. 20. 第5の実施形態に係る露光装置の構成を概略的に示す図である。It is a figure which shows schematically the structure of the exposure apparatus which concerns on 5th Embodiment. 第5の実施形態に係る露光装置を示す一部省略した平面図である。FIG. 10 is a partially omitted plan view showing an exposure apparatus according to a fifth embodiment. 第5の実施形態に係る露光装置を図22の+X方向から見て一部省略して示す概略側面図である。It is a schematic side view which abbreviate | omits and shows the exposure apparatus which concerns on 5th Embodiment seeing from the + X direction of FIG. 第6の実施形態に係る露光装置を示す一部省略した平面図である。FIG. 10 is a partially omitted plan view showing an exposure apparatus according to a sixth embodiment. 第6の実施形態に係る露光装置のXZ断面図を一部省略して示す図、かつ該露光装置で基板の処理を行う際の一連の動作について説明するための図(その1)である。It is the figure which abbreviate | omits and shows XZ sectional drawing of the exposure apparatus which concerns on 6th Embodiment, and a figure for demonstrating a series of operation | movement at the time of processing a board | substrate with this exposure apparatus (the 1). 第6の実施形態に係る露光装置で基板の処理を行う際の一連の動作について説明するための図(その2)である。It is FIG. (2) for demonstrating a series of operation | movement at the time of processing a board | substrate with the exposure apparatus which concerns on 6th Embodiment. 第6の実施形態に係る露光装置で基板の処理を行う際の一連の動作について説明するための図(その3)である。It is FIG. (3) for demonstrating a series of operation | movement at the time of processing a board | substrate with the exposure apparatus which concerns on 6th Embodiment. 第6の実施形態に係る露光装置で基板の処理を行う際の一連の動作について説明するための図(その4)である。It is FIG. (4) for demonstrating a series of operation | movement at the time of processing a board | substrate with the exposure apparatus which concerns on 6th Embodiment. 第7の実施形態に係る露光装置の構成を概略的に示す図である。It is a figure which shows schematically the structure of the exposure apparatus which concerns on 7th Embodiment. 第7の実施形態に係る露光装置を示す一部省略した平面図である。FIG. 10 is a partially omitted plan view showing an exposure apparatus according to a seventh embodiment. 第7の実施形態に係る露光装置を図30の+X方向から見た側面図(一部省略、一部断面にて示す図)である。FIG. 31 is a side view of the exposure apparatus according to the seventh embodiment when viewed from the + X direction in FIG. 30 (partially omitted, partially shown in section). 第7の実施形態に係る露光装置の制御系を中心的に構成する主制御装置の入出力関係を示すブロック図である。It is a block diagram which shows the input / output relationship of the main controller which mainly comprises the control system of the exposure apparatus which concerns on 7th Embodiment. 第7の実施形態に係る露光装置で行われる基板処理のための一連の動作について説明するための図(その1)である。It is FIG. (1) for demonstrating a series of operation | movement for the board | substrate process performed with the exposure apparatus which concerns on 7th Embodiment. 第7の実施形態に係る露光装置で行われる基板処理のための一連の動作について説明するための図(その2)である。It is FIG. (2) for demonstrating a series of operation | movement for the board | substrate process performed with the exposure apparatus which concerns on 7th Embodiment. 第7の実施形態に係る露光装置で行われる基板処理のための一連の動作について説明するための図(その3)である。It is FIG. (3) for demonstrating a series of operation | movement for the board | substrate process performed with the exposure apparatus which concerns on 7th Embodiment. 第7の実施形態に係る露光装置で行われる基板処理のための一連の動作について説明するための図(その4)である。It is FIG. (4) for demonstrating a series of operation | movement for the board | substrate process performed with the exposure apparatus which concerns on 7th Embodiment. 第7の実施形態に係る露光装置で行われる基板処理のための一連の動作について説明するための図(その5)である。It is FIG. (5) for demonstrating a series of operation | movement for the board | substrate process performed with the exposure apparatus which concerns on 7th Embodiment. 第7の実施形態に係る露光装置で行われる基板処理のための一連の動作について説明するための図(その6)である。It is FIG. (6) for demonstrating a series of operation | movement for the board | substrate process performed with the exposure apparatus which concerns on 7th Embodiment. 第7の実施形態に係る露光装置で行われる基板処理のための一連の動作について説明するための図(その7)である。It is FIG. (7) for demonstrating a series of operation | movement for the board | substrate process performed with the exposure apparatus which concerns on 7th Embodiment. 第7の実施形態に係る露光装置で行われる基板処理のための一連の動作について説明するための図(その8)である。It is FIG. (8) for demonstrating a series of operation | movement for the board | substrate process performed with the exposure apparatus which concerns on 7th Embodiment. 第7の実施形態に係る露光装置で行われる基板処理のための一連の動作について説明するための図(その9)である。It is FIG. (9) for demonstrating a series of operation | movement for the board | substrate process performed with the exposure apparatus which concerns on 7th Embodiment. 第7の実施形態に係る露光装置で行われる基板処理のための一連の動作について説明するための図(その10)である。It is FIG. (10) for demonstrating a series of operation | movement for the board | substrate process performed with the exposure apparatus which concerns on 7th Embodiment. 第7の実施形態に係る露光装置で行われる基板処理のための一連の動作について説明するための図(その11)である。It is FIG. (11) for demonstrating a series of operation | movement for the board | substrate process performed with the exposure apparatus which concerns on 7th Embodiment. 第7の実施形態に係る露光装置で行われる基板処理のための一連の動作について説明するための図(その12)である。It is FIG. (12) for demonstrating a series of operation | movement for the board | substrate process performed with the exposure apparatus which concerns on 7th Embodiment. 第7の実施形態に係る露光装置で行われる基板処理のための一連の動作について説明するための図(その13)である。It is FIG. (13) for demonstrating a series of operation | movement for the board | substrate process performed with the exposure apparatus which concerns on 7th Embodiment. 第7の実施形態に係る露光装置で行われる基板処理のための一連の動作について説明するための図(その14)である。It is FIG. (14) for demonstrating a series of operation | movement for the board | substrate process performed with the exposure apparatus which concerns on 7th Embodiment. 第7の実施形態に係る露光装置で行われる基板処理のための一連の動作について説明するための図(その15)である。It is FIG. (15) for demonstrating a series of operation | movement for the board | substrate process performed with the exposure apparatus which concerns on 7th Embodiment. 第7の実施形態に係る露光装置で行われる基板処理のための一連の動作について説明するための図(その16)である。It is FIG. (16) for demonstrating a series of operation | movement for the board | substrate process performed with the exposure apparatus which concerns on 7th Embodiment. 第8の実施形態に係る露光装置の構成を概略的に示す図である。It is a figure which shows schematically the structure of the exposure apparatus which concerns on 8th Embodiment. 第8の実施形態に係る露光装置を示す一部省略した平面図である。FIG. 10 is a partially omitted plan view showing an exposure apparatus according to an eighth embodiment. 第8の実施形態に係る露光装置で行われる基板処理のための一連の動作について説明するための図(その1)である。It is FIG. (1) for demonstrating a series of operation | movement for the board | substrate process performed with the exposure apparatus which concerns on 8th Embodiment. 第8の実施形態に係る露光装置で行われる基板処理のための一連の動作について説明するための図(その2)である。It is FIG. (2) for demonstrating a series of operation | movement for the board | substrate process performed with the exposure apparatus which concerns on 8th Embodiment. 第8の実施形態に係る露光装置で行われる基板処理のための一連の動作について説明するための図(その3)である。It is FIG. (3) for demonstrating a series of operation | movement for the board | substrate process performed with the exposure apparatus which concerns on 8th Embodiment. 第8の実施形態に係る露光装置で行われる基板処理のための一連の動作について説明するための図(その4)である。It is FIG. (4) for demonstrating a series of operation | movement for the board | substrate process performed with the exposure apparatus which concerns on 8th Embodiment. 第8の実施形態に係る露光装置で行われる基板処理のための一連の動作について説明するための図(その5)である。It is FIG. (5) for demonstrating a series of operation | movement for the board | substrate process performed with the exposure apparatus which concerns on 8th Embodiment. 第8の実施形態に係る露光装置で行われる基板処理のための一連の動作について説明するための図(その6)である。It is FIG. (6) for demonstrating a series of operation | movement for the board | substrate process performed with the exposure apparatus which concerns on 8th Embodiment. 第8の実施形態に係る露光装置で行われる基板処理のための一連の動作について説明するための図(その7)である。It is FIG. (7) for demonstrating a series of operation | movement for the board | substrate process performed with the exposure apparatus which concerns on 8th Embodiment. 第8の実施形態に係る露光装置で行われる基板処理のための一連の動作について説明するための図(その8)である。It is FIG. (8) for demonstrating a series of operation | movement for the board | substrate process performed with the exposure apparatus which concerns on 8th Embodiment. 第8の実施形態に係る露光装置で行われる基板処理のための一連の動作について説明するための図(その9)である。It is FIG. (9) for demonstrating a series of operation | movement for the board | substrate process performed with the exposure apparatus which concerns on 8th Embodiment. 第8の実施形態に係る露光装置で行われる基板処理のための一連の動作について説明するための図(その10)である。It is FIG. (10) for demonstrating a series of operation | movement for the board | substrate process performed with the exposure apparatus which concerns on 8th Embodiment. 第8の実施形態に係る露光装置で行われる基板処理のための一連の動作について説明するための図(その11)である。It is FIG. (11) for demonstrating a series of operation | movement for the board | substrate process performed with the exposure apparatus which concerns on 8th Embodiment. 第8の実施形態に係る露光装置で行われる基板処理のための一連の動作について説明するための図(その12)である。It is FIG. (12) for demonstrating a series of operation | movement for the board | substrate process performed with the exposure apparatus which concerns on 8th Embodiment. 第8の実施形態に係る露光装置で行われる基板処理のための一連の動作について説明するための図(その13)である。It is FIG. (13) for demonstrating a series of operation | movement for the board | substrate process performed with the exposure apparatus which concerns on 8th Embodiment. 第8の実施形態に係る露光装置で行われる基板処理のための一連の動作について説明するための図(その14)である。It is FIG. (14) for demonstrating a series of operation | movement for the board | substrate process performed with the exposure apparatus which concerns on 8th Embodiment. 基板支持部材を用いる変形例について説明するための図である。It is a figure for demonstrating the modification using a board | substrate support member. 第9の実施形態に係る露光装置の構成を概略的に示す図である。It is a figure which shows schematically the structure of the exposure apparatus which concerns on 9th Embodiment. 第9の実施形態に係る露光装置を示す一部省略した平面図である。FIG. 10 is a partially omitted plan view showing an exposure apparatus according to a ninth embodiment. 第9の実施形態に係る露光装置を図67の+X方向から見て一部省略して示す概略側面図である。FIG. 68 is a schematic side view showing the exposure apparatus according to the ninth embodiment with a part thereof omitted when viewed from the + X direction of FIG. 67. 図68の平面図の一部を取り出して拡大して示す図である。FIG. 69 is an enlarged view of a part of the plan view of FIG. 68 taken out. 第9の実施形態に係る露光装置の制御系を中心的に構成する主制御装置の入出力関係を示すブロック図である。It is a block diagram which shows the input / output relationship of the main controller which mainly comprises the control system of the exposure apparatus which concerns on 9th Embodiment. 第9の実施形態に係る露光装置で行われる露光手順説明図(その1)である。It is exposure procedure explanatory drawing (the 1) performed with the exposure apparatus which concerns on 9th Embodiment. 第9の実施形態に係る露光装置で行われる露光手順説明図(その2)である。It is exposure procedure explanatory drawing (the 2) performed with the exposure apparatus which concerns on 9th Embodiment. 第9の実施形態に係る露光装置で行われる露光手順説明図(その3)である。It is exposure procedure explanatory drawing (the 3) performed with the exposure apparatus which concerns on 9th Embodiment. 図75(A)~図75(D)は、基板P2のショット領域SA1の露光と基板P1のYステップ動作との並行処理を説明するための図である。75A to 75D are diagrams for explaining parallel processing of exposure of the shot area SA1 of the substrate P2 and Y-step operation of the substrate P1. 第9の実施形態に係る露光装置で行われる露光手順説明図(その4)である。It is exposure procedure explanatory drawing (the 4) performed with the exposure apparatus which concerns on 9th Embodiment. 第9の実施形態に係る露光装置で行われる露光手順説明図(その5)である。It is exposure procedure explanatory drawing (the 5) performed with the exposure apparatus which concerns on 9th Embodiment. 第9の実施形態に係る露光装置で行われる露光手順説明図(その6)である。It is exposure procedure explanatory drawing (the 6) performed with the exposure apparatus which concerns on 9th Embodiment. 第9の実施形態に係る露光装置で行われる露光手順説明図(その7)である。It is exposure procedure explanatory drawing (the 7) performed with the exposure apparatus which concerns on 9th Embodiment. 第9の実施形態に係る露光装置で行われる露光手順説明図(その8)である。It is exposure procedure explanatory drawing (the 8) performed with the exposure apparatus which concerns on 9th Embodiment. 第9の実施形態に係る露光装置で行われる露光手順説明図(その9)である。It is exposure procedure explanatory drawing (the 9) performed with the exposure apparatus which concerns on 9th Embodiment. 第9の実施形態に係る露光装置で行われる露光手順説明図(その10)である。It is exposure procedure explanatory drawing (the 10) performed with the exposure apparatus which concerns on 9th Embodiment. 第9の実施形態に係る露光装置で行われる露光手順説明図(その11)である。It is exposure procedure explanatory drawing (the 11) performed with the exposure apparatus which concerns on 9th Embodiment. 第9の実施形態に係る露光装置で行われる露光手順説明図(その12)である。It is exposure procedure explanatory drawing (the 12) performed with the exposure apparatus which concerns on 9th Embodiment. 第9の実施形態に係る露光装置で行われる露光手順説明図(その13)である。It is exposure procedure explanatory drawing (the 13) performed with the exposure apparatus which concerns on 9th Embodiment. 第9の実施形態に係る露光装置で行われる露光手順説明図(その14)である。It is exposure procedure explanatory drawing (the 14) performed with the exposure apparatus which concerns on 9th Embodiment. 第9の実施形態に係る露光装置で行われる露光手順説明図(その15)である。It is exposure procedure explanatory drawing (the 15) performed with the exposure apparatus which concerns on 9th Embodiment. 第9の実施形態に係る露光装置で行われる露光手順説明図(その16)である。It is exposure procedure explanatory drawing (the 16) performed with the exposure apparatus which concerns on 9th Embodiment. 第9の実施形態に係る露光装置で行われる露光手順説明図(その17)である。It is exposure procedure explanatory drawing (the 17) performed with the exposure apparatus which concerns on 9th Embodiment. 第9の実施形態に係る露光装置で行われる露光手順説明図(その18)である。It is exposure procedure explanatory drawing (the 18) performed with the exposure apparatus which concerns on 9th Embodiment. 第9の実施形態に係る露光装置で行われる露光手順説明図(その19)である。It is exposure procedure explanatory drawing (the 19) performed with the exposure apparatus which concerns on 9th Embodiment. 第9の実施形態に係る露光装置で行われる露光手順説明図(その20)である。It is exposure procedure explanatory drawing (the 20) performed with the exposure apparatus which concerns on 9th Embodiment. 第9の実施形態に係る露光装置で行われる露光手順説明図(その21)である。It is exposure procedure explanatory drawing (the 21) performed with the exposure apparatus which concerns on 9th Embodiment. 第9の実施形態に係る露光装置で行われる露光手順説明図(その22)である。It is exposure procedure explanatory drawing (the 22) performed with the exposure apparatus which concerns on 9th Embodiment. 第9の実施形態に係る露光装置で行われる露光手順説明図(その23)である。It is exposure procedure explanatory drawing (the 23) performed with the exposure apparatus which concerns on 9th Embodiment. 第9の実施形態に係る露光装置で行われる露光手順説明図(その24)である。It is exposure procedure explanatory drawing (the 24) performed with the exposure apparatus which concerns on 9th Embodiment. 第9の実施形態に係る露光装置で行われる露光手順説明図(その25)である。It is exposure procedure explanatory drawing (the 25) performed with the exposure apparatus which concerns on 9th Embodiment. 第9の実施形態に係る露光装置で行われる露光手順説明図(その26)である。It is exposure procedure explanatory drawing (the 26) performed with the exposure apparatus which concerns on 9th Embodiment. 第9の実施形態に係る露光装置で行われる露光手順説明図(その27)である。It is exposure procedure explanatory drawing (the 27) performed with the exposure apparatus which concerns on 9th Embodiment. 第9の実施形態の変形例に係る露光装置で行われる露光手順説明図(その1)である。It is exposure procedure explanatory drawing (the 1) performed with the exposure apparatus which concerns on the modification of 9th Embodiment. 第9の実施形態の変形例に係る露光装置で行われる露光手順説明図(その2)である。It is exposure procedure explanatory drawing (the 2) performed with the exposure apparatus which concerns on the modification of 9th Embodiment. 第9の実施形態の変形例に係る露光装置で行われる露光手順説明図(その3)である。It is exposure procedure explanatory drawing (the 3) performed with the exposure apparatus which concerns on the modification of 9th Embodiment. 第9の実施形態の変形例に係る露光装置で行われる露光手順説明図(その4)である。It is exposure procedure explanatory drawing (the 4) performed with the exposure apparatus which concerns on the modification of 9th Embodiment. 第9の実施形態の変形例に係る露光装置で行われる露光手順説明図(その5)である。It is exposure procedure explanatory drawing (the 5) performed with the exposure apparatus which concerns on the modification of 9th Embodiment. 第9の実施形態の変形例に係る露光装置で行われる露光手順説明図(その6)である。It is exposure procedure explanatory drawing (the 6) performed with the exposure apparatus which concerns on the modification of 9th Embodiment. 第9の実施形態の変形例に係る露光装置で行われる露光手順説明図(その7)である。It is exposure procedure explanatory drawing (the 7) performed with the exposure apparatus which concerns on the modification of 9th Embodiment. 第9の実施形態の変形例に係る露光装置で行われる露光手順説明図(その8)である。It is exposure procedure explanatory drawing (the 8) performed with the exposure apparatus which concerns on the modification of 9th Embodiment. 第9の実施形態の変形例に係る露光装置で行われる露光手順説明図(その9)である。It is exposure procedure explanatory drawing (the 9) performed with the exposure apparatus which concerns on the modification of 9th Embodiment. 第9の実施形態の変形例に係る露光装置で行われる露光手順説明図(その10)である。It is exposure procedure explanatory drawing (the 10) performed with the exposure apparatus which concerns on the modification of 9th Embodiment. 第9の実施形態の変形例に係る露光装置で行われる露光手順説明図(その11)である。It is exposure procedure explanatory drawing (the 11) performed with the exposure apparatus which concerns on the modification of 9th Embodiment. 第9の実施形態の変形例に係る露光装置で行われる露光手順説明図(その12)である。It is exposure procedure explanatory drawing (the 12) performed with the exposure apparatus which concerns on the modification of 9th Embodiment. 第9の実施形態の変形例に係る露光装置で行われる露光手順説明図(その13)である。It is exposure procedure explanatory drawing (the 13) performed with the exposure apparatus which concerns on the modification of 9th Embodiment. 第9の実施形態の変形例に係る露光装置で行われる露光手順説明図(その14)である。It is exposure procedure explanatory drawing (the 14) performed with the exposure apparatus which concerns on the modification of 9th Embodiment. 第9の実施形態の変形例に係る露光装置で行われる露光手順説明図(その15)である。It is exposure procedure explanatory drawing (the 15) performed with the exposure apparatus which concerns on the modification of 9th Embodiment. 第10の実施形態に係る露光装置の一部省略した平面図である。It is the top view which abbreviate | omitted one part of the exposure apparatus concerning 10th Embodiment. 第10の実施形態に係る露光装置を図115の+X方向から見て一部省略して示す概略側面図である。FIG. 116 is a schematic side view showing the exposure apparatus according to the tenth embodiment with a portion omitted as viewed from the + X direction in FIG. 115. 第10の実施形態に係る露光装置の効果を説明するための図である。It is a figure for demonstrating the effect of the exposure apparatus which concerns on 10th Embodiment. 第10の実施形態の変形例に係る露光装置を示す概略側面図である。It is a schematic side view which shows the exposure apparatus which concerns on the modification of 10th Embodiment. 第10の実施形態の変形例に係る露光装置を示す一部省略した平面図である。It is the top view which abbreviate | omitted partially showing the exposure apparatus which concerns on the modification of 10th Embodiment. 第11の実施形態に係る露光装置の構成を概略的に示す図である。It is a figure which shows schematically the structure of the exposure apparatus which concerns on 11th Embodiment.
《第1の実施形態》
 以下、第1の実施形態について、図1~図13に基づいて説明する。
<< First Embodiment >>
Hereinafter, the first embodiment will be described with reference to FIGS.
 図1には、第1の実施形態に係る露光装置100の構成が概略的に示され、図2には、露光装置100の一部省略した平面図が示されている。図2は、図1の投影光学系PLより下方の部分(後述する鏡筒定盤より下方の部分)の平面図に相当する。露光装置100は、例えばフラットパネルディスプレイ、液晶表示装置(液晶パネル)などの製造に用いられる。露光装置100は、液晶表示装置の表示パネルなどに用いられる矩形(角型)のガラス基板P(以下、単に基板Pと称する)を露光対象物とする投影露光装置である。 FIG. 1 schematically shows a configuration of an exposure apparatus 100 according to the first embodiment, and FIG. 2 shows a plan view in which the exposure apparatus 100 is partially omitted. 2 corresponds to a plan view of a portion below the projection optical system PL in FIG. 1 (a portion below a lens barrel surface plate described later). The exposure apparatus 100 is used for manufacturing, for example, a flat panel display, a liquid crystal display device (liquid crystal panel), and the like. The exposure apparatus 100 is a projection exposure apparatus that uses a rectangular (square) glass substrate P (hereinafter simply referred to as a substrate P) used for a display panel of a liquid crystal display device as an exposure object.
 露光装置100は、照明系IOP、マスクMを保持するマスクステージMST、投影光学系PL、マスクステージMST及び投影光学系PLなどが搭載されたボディBD(図1等ではその一部のみが図示されている)、基板Pを保持する微動ステージ26(基板テーブル)を含む基板ステージ装置PST、及びこれらの制御系等を備えている。以下においては、露光時にマスクMと基板Pとが投影光学系PLに対してそれぞれ相対走査される方向をX軸方向(X方向)とし、水平面内でこれに直交する方向をY軸方向(Y方向)、X軸及びY軸に直交する方向をZ軸方向(Z方向)とし、X軸、Y軸、及びZ軸回りの回転(傾斜)方向をそれぞれθx、θy、及びθz方向として説明を行う。 The exposure apparatus 100 includes an illumination system IOP, a mask stage MST that holds a mask M, a projection optical system PL, a mask stage MST, a projection optical system PL, and the like mounted on a body BD (only a part thereof is shown in FIG. 1 and the like). A substrate stage apparatus PST including a fine movement stage 26 (substrate table) for holding the substrate P, and a control system thereof. In the following, the direction in which the mask M and the substrate P are relatively scanned with respect to the projection optical system PL at the time of exposure is defined as the X-axis direction (X direction), and the direction orthogonal to this in the horizontal plane is the Y-axis direction (Y Direction), the direction orthogonal to the X axis and Y axis is the Z axis direction (Z direction), and the rotation (tilt) directions around the X axis, Y axis, and Z axis are the θx, θy, and θz directions, respectively. Do.
 照明系IOPは、例えば米国特許第6,552,775号明細書などに開示される照明系と同様に構成されている。すなわち、照明系IOPは、図示しない光源(例えば、水銀ランプ)から射出された光を、それぞれ図示しない反射鏡、ダイクロイックミラー、シャッタ、波長選択フィルタ、各種レンズなどを介して、露光用照明光(照明光)ILとしてマスクMに照射する。照明光ILとしては、例えばi線(波長365nm)、g線(波長436nm)、h線(波長405nm)などの光(あるいは、上記i線、g線、h線の合成光)が用いられる。また、照明光ILの波長は、波長選択フィルタにより、例えば要求される解像度に応じて適宜切り替えることが可能になっている。 The illumination system IOP is configured similarly to the illumination system disclosed in, for example, US Pat. No. 6,552,775. That is, the illumination system IOP emits light emitted from a light source (not shown) (for example, a mercury lamp) through exposure reflectors (not shown), dichroic mirrors, shutters, wavelength selection filters, various lenses, and the like. Irradiation light) is applied to the mask M as IL. As the illumination light IL, for example, light such as i-line (wavelength 365 nm), g-line (wavelength 436 nm), h-line (wavelength 405 nm), or the combined light of the i-line, g-line, and h-line is used. Further, the wavelength of the illumination light IL can be appropriately switched by a wavelength selection filter, for example, according to the required resolution.
 マスクステージMSTには、回路パターンなどがそのパターン面(図1における下面)に形成されたマスクMが、例えば真空吸着(あるいは静電吸着)により固定されている。マスクステージMSTは、ボディBDの一部を構成する不図示のマスク定盤上に、例えばその底面に固定された不図示のエアベアリングを介して非接触状態で支持されている。マスクステージMSTは、例えばリニアモータを含むマスクステージ駆動系12(図1では図示せず、図4参照)により、走査方向(X軸方向)に所定のストロークで駆動されるとともに、Y軸方向、及びθz方向にそれぞれ適宜微少駆動される。マスクステージMSTのXY平面内の位置情報(θz方向の回転情報を含む)は、マスクステージMSTに設けられた(又は形成された)反射面に測長ビームを照射する複数のレーザ干渉計を含むマスクレーザ干渉計システム(以下、「マスク干渉計システム」という)14により計測される。 A mask M having a circuit pattern or the like formed on its pattern surface (the lower surface in FIG. 1) is fixed to the mask stage MST, for example, by vacuum suction (or electrostatic suction). Mask stage MST is supported in a non-contact state on a mask surface plate (not shown) constituting a part of body BD, for example, via an air bearing (not shown) fixed to the bottom surface thereof. The mask stage MST is driven with a predetermined stroke in the scanning direction (X-axis direction) by a mask stage drive system 12 (not shown in FIG. 1, see FIG. 4) including a linear motor, for example, And are slightly driven appropriately in the θz direction. Position information (including rotation information in the θz direction) of the mask stage MST in the XY plane includes a plurality of laser interferometers that irradiate a measuring beam onto a reflective surface provided (or formed) on the mask stage MST. It is measured by a mask laser interferometer system (hereinafter referred to as “mask interferometer system”) 14.
 投影光学系PLは、マスクステージMSTの図1における下方において、ボディBDの一部である鏡筒定盤16に支持されている。投影光学系PLは、例えば米国特許第6,552,775号明細書に開示されている投影光学系と同様に構成されている。すなわち、投影光学系PLは、マスクMのパターン像の投影領域が例えば千鳥状に配置された複数の投影光学系(マルチレンズ投影光学系)を含み、Y軸方向を長手方向とする単一の長方形状(帯状)のイメージフィールドを持つ投影光学系と同等に機能する。本実施形態では、複数の投影光学系のそれぞれとしては、例えば両側テレセントリックな等倍系で正立正像を形成するものが用いられている。また、以下では投影光学系PLの千鳥状に配置された複数の投影領域をまとめて露光領域IAと呼ぶ。 The projection optical system PL is supported by the lens barrel surface plate 16 which is a part of the body BD below the mask stage MST in FIG. The projection optical system PL is configured similarly to the projection optical system disclosed in, for example, US Pat. No. 6,552,775. That is, the projection optical system PL includes a plurality of projection optical systems (multi-lens projection optical systems) in which the projection areas of the pattern image of the mask M are arranged in, for example, a staggered pattern, and a single direction whose longitudinal direction is the Y-axis direction. It functions in the same way as a projection optical system having a rectangular (band-like) image field. In the present embodiment, as each of the plurality of projection optical systems, for example, a bilateral telecentric equal magnification system that forms an erect image is used. Hereinafter, a plurality of projection areas arranged in a staggered pattern in the projection optical system PL are collectively referred to as an exposure area IA.
 このため、照明系IOPからの照明光ILによってマスクM上の照明領域が照明されると、マスクMを通過した照明光ILにより、投影光学系PLを介してその照明領域内のマスクMの回路パターンの投影像(部分正立像)が、投影光学系PLの像面側に配置される、表面にレジスト(感応剤)が塗布された基板P上の前記照明領域に共役な照明光ILの照射領域(露光領域)IAに形成される。そして、マスクステージMSTと基板Pを保持する後述する基板ホルダPH(微動ステージ26)との同期駆動によって、照明領域(照明光IL)に対してマスクMを走査方向(X軸方向)に相対移動させるとともに、露光領域IA(照明光IL)に対して基板Pを走査方向(X軸方向)に相対移動させることで、基板P上の1つのショット領域(区画領域)の走査露光が行われ、そのショット領域にマスクMのパターンが転写される。すなわち、露光装置100では、照明系IOP及び投影光学系PLによって基板P上にマスクMのパターンが生成され、照明光ILによる基板P上の感応層(レジスト層)の露光によって基板P上にそのパターンが形成される。 For this reason, when the illumination area on the mask M is illuminated by the illumination light IL from the illumination system IOP, the illumination light IL that has passed through the mask M causes the circuit of the mask M in the illumination area to pass through the projection optical system PL. Irradiation of illumination light IL conjugate with the illumination area on the substrate P, on which a projection image (partially upright image) of the pattern is disposed on the image plane side of the projection optical system PL and the surface is coated with a resist (sensitive agent) An area (exposure area) IA is formed. Then, the mask M is relatively moved in the scanning direction (X-axis direction) with respect to the illumination area (illumination light IL) by synchronous driving of the mask stage MST and a substrate holder PH (fine movement stage 26) described later that holds the substrate P. In addition, scanning exposure of one shot area (partition area) on the substrate P is performed by moving the substrate P relative to the exposure area IA (illumination light IL) in the scanning direction (X-axis direction). The pattern of the mask M is transferred to the shot area. That is, in the exposure apparatus 100, the pattern of the mask M is generated on the substrate P by the illumination system IOP and the projection optical system PL, and the sensitive layer (resist layer) on the substrate P is exposed on the substrate P by the illumination light IL. A pattern is formed.
 ボディBDは、図2、及び露光装置100を+X方向から見た概略側面図を一部省略して示す図3に示されるように、床面F上にX軸方向に所定距離離間して互いに平行にかつ長手方向をY軸方向として配置された直方体部材から成る一対(2つ)の基板ステージ架台(以下、架台と略記する)18と、一対の架台18上に一対のサイドフレーム20を介して水平に支持された鏡筒定盤16と、不図示のマスク定盤とを備えている。なお、架台18は、2つに限らず、1つでも良いし、3つ以上でも良い。 The body BD is separated from each other by a predetermined distance in the X-axis direction on the floor F as shown in FIG. 2 and FIG. 3 in which the schematic side view of the exposure apparatus 100 viewed from the + X direction is partially omitted. A pair of (two) substrate stage mounts (hereinafter abbreviated as mounts) 18 composed of rectangular parallelepiped members arranged in parallel and with the longitudinal direction as the Y-axis direction, and a pair of side frames 20 on the pair of mounts 18. And a lens barrel surface plate 16 supported horizontally and a mask surface plate (not shown). The number of the gantry 18 is not limited to two, but may be one or three or more.
 各架台18は、複数の防振装置22を介して床面F上に設置されている(図1及び図3参照)。一対のサイドフレーム20は、図2及び図3に示されるように、それぞれの下端が一対の架台18上面のY軸方向の一端部と他端部に接続されている。鏡筒定盤16は、XY平面に平行に配置されたY軸方向を長手方向とする直方体状の部材から成り、一対のサイドフレーム20により一対の架台18上でY軸方向の両端部が下方から支持されている。 Each base 18 is installed on the floor F via a plurality of vibration isolators 22 (see FIGS. 1 and 3). As shown in FIGS. 2 and 3, the pair of side frames 20 has lower ends connected to one end and the other end in the Y-axis direction on the upper surface of the pair of mounts 18. The lens barrel surface plate 16 is formed of a rectangular parallelepiped member that is arranged in parallel to the XY plane and whose longitudinal direction is the Y-axis direction, and both ends in the Y-axis direction are downward on the pair of mounts 18 by the pair of side frames 20. It is supported from.
 基板ステージ装置PSTは、図1に示されるように、粗動ステージ部24、微動ステージ26、及び重量キャンセル装置28等を有している。重量キャンセル装置28は、図1及び図3に示されるように、一対の架台18の上に配置されたXガイド82のXY平面に平行な上面上に配置されている。 The substrate stage apparatus PST includes a coarse movement stage unit 24, a fine movement stage 26, a weight cancellation apparatus 28, and the like, as shown in FIG. As shown in FIGS. 1 and 3, the weight cancellation device 28 is disposed on the upper surface parallel to the XY plane of the X guide 82 disposed on the pair of mounts 18.
 粗動ステージ部24は、図3に示されるように、2本(一対)のXビーム30A,30Bと、2つ(一対)の粗動テーブル32A,32Bと、2本のXビーム30A,30Bのそれぞれを床面F上で支持する複数の脚部34と、を有している。 As shown in FIG. 3, the coarse movement stage unit 24 includes two (a pair) X beams 30A and 30B, two (a pair) coarse movement tables 32A and 32B, and two X beams 30A and 30B. And a plurality of legs 34 that support each of the two on the floor surface F.
 Xビーム30A,30Bのそれぞれは、X軸方向に延びるYZ断面が矩形枠状で内部にリブを持つ中空部材から成り、Y軸方向に所定間隔で互いに平行に配置されている(図1~図3参照)。Xビーム30A、30Bのそれぞれは、図1中でXビーム30Aについて示されるように、長手方向(X軸方向)両端部近傍と中央部との3箇所で、3つの脚部34によって下方から床面F上で、一対の架台18に対して非接触で支持されている。これにより、粗動ステージ部24は、一対の架台18に対して振動的に分離されている。なお、脚部34の配置、及び数は任意で良い。また、Xビーム30A,30Bは、中空部材に限らず中実部材であっても良いし、YZ断面がI型の棒状部材であっても良い。 Each of the X beams 30A and 30B is formed of a hollow member having a rectangular frame shape with a YZ cross section extending in the X-axis direction and having a rib inside, and is arranged in parallel to each other at a predetermined interval in the Y-axis direction (FIGS. 1 to 5). 3). As shown for the X beam 30A in FIG. 1, each of the X beams 30A and 30B has three legs 34 in the vicinity of both ends in the longitudinal direction (X-axis direction) and the central portion. On the surface F, it is supported without contact with the pair of mounts 18. As a result, the coarse movement stage portion 24 is vibrationally separated from the pair of mounts 18. In addition, arrangement | positioning and the number of the leg parts 34 may be arbitrary. Further, the X beams 30A and 30B are not limited to hollow members, but may be solid members, or may be rod-shaped members having an I-shaped YZ cross section.
 Xビーム30A,30Bのそれぞれの上面には、X軸方向に延びるXリニアガイド36が、Y軸方向に所定間隔で複数本(例えば2本(一対))、互いに平行に固定されている。また、Xビーム30A,30Bのそれぞれの上面であって、一対のXリニアガイド36間の領域には、X軸方向に延びるX固定子38A,38Bが固定されている。X固定子38A,38Bのそれぞれは、例えばX軸方向に所定間隔で配列された複数の永久磁石を含む磁石ユニットを有している。本実施形態では、図2及び図3に示されるように、Xビーム30A,30Bの断面形状は、+Y側のXビーム30Aの方が-Y側のXビーム30Bよりも幅広、すなわちY軸方向の長さが長くなっているが、同じ形状でも構わない。 A plurality of X linear guides 36 extending in the X axis direction (for example, two (a pair)) are fixed in parallel to each other at predetermined intervals in the Y axis direction on the upper surfaces of the X beams 30A and 30B. In addition, X stators 38A and 38B extending in the X-axis direction are fixed to the upper surfaces of the X beams 30A and 30B, respectively, between the pair of X linear guides 36. Each of the X stators 38A and 38B has a magnet unit including a plurality of permanent magnets arranged at a predetermined interval in the X-axis direction, for example. In this embodiment, as shown in FIGS. 2 and 3, the cross-sectional shapes of the X beams 30A and 30B are such that the + Y side X beam 30A is wider than the −Y side X beam 30B, that is, in the Y-axis direction. However, the same shape may be used.
 粗動テーブル32A,32Bは、図3に示されるように、Xビーム30A,30Bのそれぞれの上方に個別に配置されている。-Y側に位置する粗動テーブル32Bは、平面視矩形の板状部材から成り、+Y側に位置する粗動テーブル32Aは、-Y側の端部に凹部を有する平面視U字形状の板状部材から成る。図3では、粗動テーブル32Aは、後述する重量キャンセル装置28とともに、部分的に断面図にて示されている。粗動テーブル32A,32Bのそれぞれの下面には、図3に示されるように、Xビーム30A,30Bのそれぞれに固定されたX固定子38A,38Bに所定の隙間(ギャップ、クリアランス)を介して対向するX可動子40A,40Bが固定されている。X可動子40A,40Bのそれぞれは、例えば不図示のコイルユニットを含み、X固定子38A,38Bと共に、粗動テーブル32A,32Bを、X軸方向に所定のストロークで駆動するXリニアモータ42A,42Bを、それぞれ構成している。 The coarse movement tables 32A and 32B are individually arranged above the X beams 30A and 30B as shown in FIG. The coarse motion table 32B located on the −Y side is made of a plate-like member having a rectangular shape in plan view, and the coarse motion table 32A located on the + Y side is a U-shaped plate in plan view having a recess at the end portion on the −Y side. It consists of a member. In FIG. 3, the coarse motion table 32 </ b> A is partially shown in a sectional view together with a weight cancellation device 28 described later. As shown in FIG. 3, on the lower surfaces of the coarse motion tables 32A and 32B, a predetermined gap (gap and clearance) is provided between the X stators 38A and 38B fixed to the X beams 30A and 30B, respectively. Opposing X movers 40A and 40B are fixed. Each of the X movers 40A and 40B includes, for example, a coil unit (not shown), and together with the X stators 38A and 38B, the X linear motors 42A and D drive the coarse motion tables 32A and 32B with a predetermined stroke in the X axis direction. 42B is configured.
 また、粗動テーブル32A,32Bのそれぞれの下面には、図3に示されるように、不図示の転動体(例えば、複数のボールなど)を含み、各Xリニアガイド36に対してスライド可能に係合するスライダ44が複数固定されている。スライダ44は、各Xリニアガイド36に対して、X軸方向に所定間隔で、例えば4個設けられており(図1参照)、粗動テーブル32A,32Bのそれぞれの下面には、例えば合計8個のスライダ44が固定されている。粗動テーブル32A,32Bのそれぞれは、Xリニアガイド36とスライダ44とを含む複数のXリニアガイド装置により、X軸方向に直進案内される。 Further, as shown in FIG. 3, the lower surfaces of the coarse movement tables 32A and 32B include rolling elements (not shown) (for example, a plurality of balls, etc.), and are slidable with respect to the respective X linear guides 36. A plurality of sliders 44 to be engaged are fixed. For example, four sliders 44 are provided at predetermined intervals in the X-axis direction with respect to each X linear guide 36 (see FIG. 1), and a total of 8 sliders 44 are provided on the lower surfaces of the coarse motion tables 32A and 32B, for example. The sliders 44 are fixed. Each of the coarse motion tables 32 </ b> A and 32 </ b> B is linearly guided in the X-axis direction by a plurality of X linear guide devices including an X linear guide 36 and a slider 44.
 なお、図1~図3では不図示であるが、Xビーム30A,30Bのそれぞれには、X軸方向を周期方向とするXスケールが固定され、粗動テーブル32A,32Bのそれぞれには、Xスケールを用いて粗動テーブル32A,32BのX軸方向に関する位置情報を求めるXリニアエンコーダシステム46A,46B(図4参照)を構成するエンコーダヘッドが固定されている。 Although not shown in FIGS. 1 to 3, an X scale having the X axis direction as a periodic direction is fixed to each of the X beams 30A and 30B, and each of the coarse motion tables 32A and 32B has an X scale. Encoder heads constituting X linear encoder systems 46A and 46B (see FIG. 4) for obtaining position information in the X-axis direction of coarse motion tables 32A and 32B using a scale are fixed.
 粗動テーブル32A,32BのX軸方向に関する位置は、上記エンコーダヘッドの出力に基づいて主制御装置50(図4参照)により制御される。また、同様に図1ないし図3では不図示であるが、粗動テーブル32A,32Bのそれぞれには、粗動テーブル32A,32Bに対する微動ステージ26のX軸及びY軸方向に関する相対移動量(相対変位量)を計測するためのギャップセンサ48A,48B(図4参照)などが取り付けられている。主制御装置50は、ギャップセンサ48A,48Bによって計測される相対移動量が所定の制限値に達した場合に、微動ステージ26及び粗動テーブル32A,32Bを直ちに停止する。ギャップセンサ48A,48Bに代えて、あるいは加えて、微動ステージ26の粗動テーブル32A,32Bに対する移動可能量をメカ的に制限するメカストッパ部材を設けても良い。 The positions of the coarse motion tables 32A and 32B in the X-axis direction are controlled by the main controller 50 (see FIG. 4) based on the output of the encoder head. Similarly, although not shown in FIGS. 1 to 3, the coarse movement tables 32A and 32B have relative movement amounts (relative to the coarse movement tables 32A and 32B in the X-axis and Y-axis directions relative to the coarse movement tables 32A and 32B). Gap sensors 48A and 48B (see FIG. 4) for measuring the (displacement amount) are attached. Main controller 50 immediately stops fine movement stage 26 and coarse movement tables 32A and 32B when the relative movement amounts measured by gap sensors 48A and 48B reach a predetermined limit value. Instead of or in addition to the gap sensors 48A and 48B, a mechanical stopper member that mechanically limits the movable amount of the fine movement stage 26 with respect to the coarse movement tables 32A and 32B may be provided.
 ここで、説明は前後するが、微動ステージ26について説明する。微動ステージ26は、図1及び図3から分かるように、平面視矩形の板状(又は箱形)部材から成り、その上面に基板ホルダPHが搭載されている。基板ホルダPHは、X軸方向の長さが基板Pと同等であり、Y軸方向の幅(長さ)は基板Pの約1/2である(図2参照)。基板ホルダPHは、基板Pの一部(ここでは、基板PのY軸方向に関する約1/2の部分)を、例えば真空吸着(又は静電吸着)により吸着保持するとともに、加圧気体(例えば高圧空気)を上向きに噴き出してその噴き出し圧力によって基板Pの一部(基板Pの約1/2)を下方から非接触(浮上)支持することができる。基板ホルダPHによる基板Pに対する高圧空気の噴き出しと真空吸着との切り替えは、不図示の真空ポンプと高圧空気源とに基板ホルダPHを切り替え接続するホルダ吸排気切り替え装置51(図4参照)を介して、主制御装置50によって行われる。 Here, although the description is mixed, the fine movement stage 26 will be described. As can be seen from FIGS. 1 and 3, fine movement stage 26 is made of a plate-shaped (or box-shaped) member having a rectangular shape in plan view, and substrate holder PH is mounted on the upper surface thereof. The substrate holder PH has a length in the X-axis direction equivalent to that of the substrate P, and a width (length) in the Y-axis direction is about ½ of the substrate P (see FIG. 2). The substrate holder PH adsorbs and holds a part of the substrate P (here, about a half of the substrate P with respect to the Y-axis direction) by, for example, vacuum adsorption (or electrostatic adsorption) and a pressurized gas (for example, High pressure air) is ejected upward, and a part of the substrate P (about ½ of the substrate P) can be supported in a non-contact (floating) direction from below by the ejection pressure. The switching between high-pressure air ejection and vacuum suction to the substrate P by the substrate holder PH is performed via a holder intake / exhaust switching device 51 (see FIG. 4) that switches and connects the substrate holder PH to a vacuum pump and a high-pressure air source (not shown). This is performed by the main controller 50.
 微動ステージ26は、複数のボイスコイルモータ(あるいはリニアモータ)を含む微動ステージ駆動系52(図4参照)により、粗動テーブル32A上で6自由度方向(X軸、Y軸、Z軸、θx、θy及びθzの各方向)に微少駆動される。 The fine movement stage 26 is moved in a direction of six degrees of freedom (X axis, Y axis, Z axis, θx) on the coarse movement table 32A by a fine movement stage drive system 52 (see FIG. 4) including a plurality of voice coil motors (or linear motors). , Θy, and θz).
 詳述すると、図1に示されるように、粗動テーブル32Aの+X側の端部の上面には、支持部材33を介して固定子56が設けられ、これに対向して、微動ステージ26の+X側の側面には、固定子56とともにXボイスコイルモータ54Xを構成する可動子58が固定されている。ここで、実際には、同様の構成のXボイスコイルモータ54Xが、Y軸方向に所定距離離間して一対設けられている。 More specifically, as shown in FIG. 1, a stator 56 is provided on the upper surface of the + X side end of the coarse movement table 32 </ b> A via a support member 33. A mover 58 that constitutes the X voice coil motor 54X together with the stator 56 is fixed to the side surface on the + X side. Here, in practice, a pair of X voice coil motors 54X having the same configuration is provided at a predetermined distance in the Y-axis direction.
 また、図3に示されるように、粗動テーブル32Aの上面のY軸方向に関するほぼ中央の位置には、支持部材35を介して固定子60が設けられ、これに対向して、微動ステージ26の+Y側の側面には、固定子60とともに、Yボイスコイルモータ54Yを構成する可動子62が固定されている。ここで、実際には、同様の構成のYボイスコイルモータ54Yが、X軸方向に所定距離離間して一対設けられている。 Further, as shown in FIG. 3, a stator 60 is provided via a support member 35 at a substantially central position in the Y-axis direction on the upper surface of the coarse movement table 32A. A movable element 62 constituting the Y voice coil motor 54Y is fixed together with the stator 60 on the side surface on the + Y side. Here, actually, a pair of Y voice coil motors 54Y having the same configuration is provided at a predetermined distance in the X-axis direction.
 微動ステージ26は、主制御装置50によって、一対のXボイスコイルモータ54Xを用いて後述する重量キャンセル装置28に支持されて粗動テーブル32Aに同期駆動(粗動テーブル32Aと同方向に同速度で駆動)されることにより、粗動テーブル32Aと共にX軸方向に所定のストロークで移動し、一対のYボイスコイルモータ54Yを用いて、駆動されることにより、粗動テーブル32Aに対しY軸方向にも微少ストロークで移動する。 The fine movement stage 26 is supported by a weight cancellation device 28, which will be described later, by a main controller 50 using a pair of X voice coil motors 54X, and is driven synchronously with a coarse movement table 32A (at the same speed in the same direction as the coarse movement table 32A). Driven) with a predetermined stroke in the X-axis direction together with the coarse motion table 32A, and driven in the Y-axis direction with respect to the coarse motion table 32A by being driven using a pair of Y voice coil motors 54Y. Also moves with a slight stroke.
 また、微動ステージ26は、主制御装置50によって、一対のXボイスコイルモータ54Xのそれぞれ、又は一対のYボイスコイルモータ54Yのそれぞれに、互いに逆方向の駆動力が発生させられることにより、粗動テーブル32Aに対しθz方向に移動する。 Further, the fine movement stage 26 causes the coarse movement by causing the main controller 50 to generate driving forces in opposite directions to each of the pair of X voice coil motors 54X or each of the pair of Y voice coil motors 54Y. It moves in the θz direction with respect to the table 32A.
 本実施形態では、上述したXリニアモータ42A,42Bと、微動ステージ駆動系52の各一対のXボイスコイルモータ54X及びYボイスコイルモータ54Yと、によって、微動ステージ26は、投影光学系PL(図1参照)に対し、X軸方向に長ストロークで移動(粗動)可能、かつX軸,Y軸及びθz方向の3自由度方向に微少移動(微動)可能となっている。 In the present embodiment, the fine movement stage 26 includes the above-described X linear motors 42A and 42B and the pair of the X voice coil motor 54X and the Y voice coil motor 54Y of the fine movement stage drive system 52. 1), it can be moved (coarse movement) with a long stroke in the X-axis direction, and can be slightly moved (fine movement) in three degrees of freedom in the X-axis, Y-axis, and θz directions.
 また、微動ステージ駆動系52は、図1に示されるように、微動ステージ26を残りの3自由度方向(θx、θy、及びZ軸の各方向)に微少駆動するための複数、例えば4つのZボイスコイルモータ54Zを有している。複数のZボイスコイルモータ54Zのそれぞれは、粗動テーブル32A上面に固定された固定子59と、微動ステージ26の下面に固定された可動子57とから成り、微動ステージ26の下面の四隅部に対応する箇所に配置されている(図1では、4つのZボイスコイルモータ54Zのうち2つのみが示され、他の2つは図示省略。また、図3では4つのZボイスコイルモータ54Zのうち1つのみが示され、他の3つは図示省略)。上記各ボイスコイルモータ54X,54Y,54Zの固定子は、粗動テーブル32Aにすべて取付けられている。各ボイスコイルモータ54X,54Y,54Zは、ムービングマグネット型、ムービングコイル型のいずれでも良い。なお、微動ステージ26の位置を計測する位置計測系については、後述する。 Further, as shown in FIG. 1, the fine movement stage drive system 52 has a plurality of, for example, four, fine movement stages 26 for finely driving the fine movement stage 26 in the remaining three degrees of freedom (each direction of θx, θy, and Z axis). A Z voice coil motor 54Z is provided. Each of the plurality of Z voice coil motors 54Z includes a stator 59 fixed to the upper surface of the coarse movement table 32A and a mover 57 fixed to the lower surface of the fine movement stage 26, and is formed at four corners of the lower surface of the fine movement stage 26. (In FIG. 1, only two of the four Z voice coil motors 54Z are shown, and the other two are not shown. In FIG. 3, the four Z voice coil motors 54Z are arranged.) Only one of them is shown, and the other three are not shown). The stators of the voice coil motors 54X, 54Y, 54Z are all attached to the coarse motion table 32A. Each voice coil motor 54X, 54Y, 54Z may be either a moving magnet type or a moving coil type. A position measurement system for measuring the position of fine movement stage 26 will be described later.
 粗動テーブル32A,32Bのそれぞれの上方には、図2及び図3に示されるように、平面視矩形の支持面(上面)を有する4つのエア浮上ユニット84が配置され、支持部材86をそれぞれ介して粗動テーブル32A,32Bの上面に固定されている。 As shown in FIGS. 2 and 3, four air levitation units 84 having a rectangular support surface (upper surface) are arranged above the coarse movement tables 32A and 32B. And fixed to the upper surfaces of the coarse motion tables 32A and 32B.
 各エア浮上ユニット84の支持面(上面)は、多孔質体や機械的に複数の微小な穴を有するスラスト型のエアベアリング構造になっている。各エア浮上ユニット84は、気体供給装置85(図4参照)からの加圧気体(例えば高圧空気)の供給により、基板Pの一部を浮上支持することができるようになっている。各エア浮上ユニット84に対する高圧空気の供給のオン・オフは、図4に示される主制御装置50によって制御される。ここで、図4では、作図の便宜上、単一の気体供給装置85が図示されているが、これに限らず、各エア浮上ユニット84に対して個別に高圧空気を供給するエア浮上ユニット84と同数の気体供給装置を用いても良いし、あるいは、複数のエア浮上ユニット84にそれぞれ接続された2つ以上の気体供給装置を用いても良い。図4では、これらの全てを代表して、単一の気体供給装置85が示されている。いずれにしても、主制御装置50によって、気体供給装置85からの各エア浮上ユニット84に対する高圧空気の供給のオン・オフが個別に制御される。 The support surface (upper surface) of each air levitation unit 84 has a thrust type air bearing structure having a porous body and mechanically a plurality of minute holes. Each air levitation unit 84 can float and support a part of the substrate P by supplying pressurized gas (for example, high-pressure air) from a gas supply device 85 (see FIG. 4). On / off of the supply of high-pressure air to each air levitation unit 84 is controlled by the main controller 50 shown in FIG. Here, in FIG. 4, for convenience of drawing, a single gas supply device 85 is illustrated. However, the present invention is not limited to this, and the air levitation unit 84 that supplies high-pressure air individually to each air levitation unit 84 The same number of gas supply devices may be used, or two or more gas supply devices respectively connected to the plurality of air levitation units 84 may be used. In FIG. 4, the single gas supply apparatus 85 is shown on behalf of all of these. In any case, on / off of the supply of high-pressure air from the gas supply device 85 to each air levitation unit 84 is individually controlled by the main controller 50.
 粗動テーブル32A,32Bのそれぞれに取り付けられた各4つのエア浮上ユニット84は、基板ホルダPHのY軸方向の両側に配置されている。各エア浮上ユニット84の上面は基板ホルダPHの上面と同等、あるいは、幾分低くなるように設定されている。 Each of the four air levitation units 84 attached to each of the coarse motion tables 32A and 32B is disposed on both sides of the substrate holder PH in the Y-axis direction. The upper surface of each air levitation unit 84 is set to be equal to or somewhat lower than the upper surface of the substrate holder PH.
 図2に示されるように、基板ホルダPHのY軸方向の一側と他側に配置された各4つのエア浮上ユニット84は、平面視で基板ホルダPHとほぼ同じ面積(すなわち基板Pの約1/2)の矩形の領域内に、X軸方向に所定間隔を隔てて、かつY軸方向にわずかの隙間を隔てて2行2列で配置されている。この場合、上記各4つのエア浮上ユニット84は、基板Pの約1/2を浮上支持することができる。 As shown in FIG. 2, each of the four air levitation units 84 arranged on one side and the other side of the substrate holder PH in the Y-axis direction has almost the same area as the substrate holder PH (that is, about the size of the substrate P). In a rectangular area of 1/2), they are arranged in 2 rows and 2 columns with a predetermined gap in the X-axis direction and a slight gap in the Y-axis direction. In this case, each of the four air levitation units 84 can levitate and support about ½ of the substrate P.
 上述の説明から明らかなように、本実施形態では、基板ホルダPHと基板ホルダPHの両側(±Y側)に隣接する各2つのエア浮上ユニット84とによって基板Pの全体を浮上支持することができる。また、基板ホルダPHと基板ホルダPHの片側(+Y側又は-Y側)の4つのエア浮上ユニット84とによって基板Pの全体を浮上支持することもできる。 As is clear from the above description, in this embodiment, the entire substrate P is supported by the substrate holder PH and the two air levitation units 84 adjacent to both sides (± Y side) of the substrate holder PH. it can. Further, the entire substrate P can be levitated and supported by the substrate holder PH and the four air levitation units 84 on one side (+ Y side or −Y side) of the substrate holder PH.
 上述の基板ホルダPHの両側(±Y側)の各4つのエア浮上ユニット84は、平面視で基板ホルダPHとほぼ同じ面積の1つの大型のエア浮上ユニットに置き換えても良いし、Y軸方向に並んだ各2つのエア浮上ユニット84を、ほぼ同じ面積の1つのエア浮上ユニットにそれぞれ置き換えても良い。但し、後述する基板Yステップ送り装置の適切な配置スペースを確保するため、基板ホルダPHの+Y側のエア浮上ユニットは、全体として基板ホルダPHとY軸方向長さが同等で、基板ホルダPHより幾分X軸方向の長さが短い矩形の支持面を有し、少なくともX軸方向に関して2分割されていることが望ましい。 Each of the four air levitation units 84 on both sides (± Y side) of the substrate holder PH described above may be replaced with one large air levitation unit having substantially the same area as the substrate holder PH in plan view. Each of the two air levitation units 84 arranged in a row may be replaced with one air levitation unit having substantially the same area. However, in order to secure an appropriate arrangement space for the substrate Y step feeding device described later, the air floating unit on the + Y side of the substrate holder PH as a whole has the same length in the Y-axis direction as the substrate holder PH. It is desirable to have a rectangular support surface that is somewhat shorter in the X-axis direction and to be divided into two at least in the X-axis direction.
 基板Yステップ送り装置88は、基板Pを保持してY軸方向に移動させるための装置であり、基板ホルダPHの+Y側の4つのエア浮上ユニット84のうち、+X側と-X側の各2つのエア浮上ユニット84相互間に配置されている。基板Yステップ送り装置88は、粗動テーブル32Aに支持部材89を介して固定されている(図3参照)。 The substrate Y step feeding device 88 is a device for holding the substrate P and moving it in the Y-axis direction. Of the four air floating units 84 on the + Y side of the substrate holder PH, each of the + X side and the −X side It is disposed between the two air levitation units 84. The substrate Y step feeding device 88 is fixed to the coarse motion table 32A via a support member 89 (see FIG. 3).
 基板Yステップ送り装置88は、図3に示されるように、基板Pの裏面を吸着してY軸方向に移動する可動部88aと粗動テーブル32Aに固定された固定部88bと、を備えている。可動部88aは、一例として可動部88aに設けられた可動子と固定部88bに設けられた固定子とから成るリニアモータによって構成される駆動装置90(図3では不図示、図4参照)によって、粗動テーブル32Aに対してY軸方向に駆動される。基板Yステップ送り装置88には、可動部88aの位置を計測するエンコーダなどの位置読み取り装置92(図3では不図示、図4参照)が設けられている。なお、駆動装置90は、リニアモータに限らず、ボールねじ又はベルトを用いた回転モータを駆動源とする駆動機構によって構成しても良い。 As shown in FIG. 3, the substrate Y step feeding device 88 includes a movable portion 88a that attracts the back surface of the substrate P and moves in the Y-axis direction, and a fixed portion 88b that is fixed to the coarse motion table 32A. Yes. As an example, the movable portion 88a is driven by a driving device 90 (not shown in FIG. 3, refer to FIG. 4) including a linear motor including a mover provided on the movable portion 88a and a stator provided on the fixed portion 88b. The Y-axis direction is driven with respect to the coarse movement table 32A. The substrate Y step feeding device 88 is provided with a position reading device 92 (not shown in FIG. 3, see FIG. 4) such as an encoder for measuring the position of the movable portion 88a. Note that the drive device 90 is not limited to a linear motor, and may be configured by a drive mechanism that uses a rotary motor using a ball screw or a belt as a drive source.
 基板Yステップ送り装置88の可動部88aのY軸方向の移動ストロークは基板PのY軸方向の長さの約1/2であり、基板Pの裏面を吸着して、基板Pの露光対象領域の全域を基板ホルダPH上に位置させることができる。従って、基板PのY軸方向のステップ送りの都度、投影光学系PLの露光領域IAに対して基板ホルダPHに保持された基板PをX軸方向にスキャンすることで、結果的に基板Pの露光対象領域の全域を露光することが可能になる。 The movement stroke of the movable portion 88a of the substrate Y step feeding device 88 in the Y-axis direction is about ½ of the length of the substrate P in the Y-axis direction. Can be located on the substrate holder PH. Therefore, each time step feed of the substrate P in the Y-axis direction is performed, the substrate P held by the substrate holder PH is scanned in the X-axis direction with respect to the exposure area IA of the projection optical system PL. It becomes possible to expose the entire area to be exposed.
 また、基板Yステップ送り装置88の可動部88a(基板吸着面)は基板Pの裏面を吸着したり、吸着を解除して基板Pから分離したりする必要があるので、駆動装置90によってZ軸方向にも微少駆動可能に構成されている。 Further, since the movable portion 88a (substrate suction surface) of the substrate Y step feeding device 88 needs to suck the back surface of the substrate P or release the suction to separate the substrate P from the substrate P, the drive device 90 performs the Z-axis operation. It is configured to be able to be driven minutely in the direction.
 なお、本実施形態では、基板Yステップ送り装置88は、粗動テーブル32Aに取付けられるものとしたが、これに限らず微動ステージ26に取り付けられていても良い。また、上記説明では、基板Yステップ送り装置88の可動部88aは、基板Pとの分離、接触を行なう必要があるため、Z軸方向にも移動可能であるものとしたが、これに限らず、可動部88a(基板吸着面)による基板Pの吸着及び基板Pとの分離のために、微動ステージ26がZ軸方向に移動しても良い。 In the present embodiment, the substrate Y step feeding device 88 is attached to the coarse movement table 32A, but is not limited thereto, and may be attached to the fine movement stage 26. In the above description, since the movable portion 88a of the substrate Y step feeding device 88 needs to be separated from and contacted with the substrate P, the movable portion 88a is also movable in the Z-axis direction. The fine movement stage 26 may move in the Z-axis direction for the adsorption of the substrate P by the movable portion 88a (substrate adsorption surface) and the separation from the substrate P.
 重量キャンセル装置28は、図1及び図3に示されるように、Z軸方向に延びる柱状の部材から成り、心柱とも称される。重量キャンセル装置28は、後述するレベリング装置と称される装置を介して微動ステージ26を下方から支持している。重量キャンセル装置28は、粗動テーブル32Aの凹部内に配置されており、その上半部が粗動テーブル32A(及び32B)より上方に露出し、その下半部が粗動テーブル32A(及び32B)より下方に露出している。 As shown in FIGS. 1 and 3, the weight canceling device 28 is composed of a columnar member extending in the Z-axis direction, and is also referred to as a core column. The weight canceling device 28 supports the fine movement stage 26 from below via a device called a leveling device described later. The weight cancellation device 28 is disposed in the recess of the coarse motion table 32A, and its upper half is exposed above the coarse motion table 32A (and 32B), and its lower half is the coarse motion table 32A (and 32B). ) Exposed below.
 重量キャンセル装置28は、図3に示されるように、筐体64、空気ばね66及びZスライダ68などを有する。筐体64は、+Z側が開口した有底の筒状部材から成る。筐体64の下面には、軸受面が-Z側を向いた複数のエアベアリング(以下、ベースパッドと呼ぶ)70が取り付けられている。空気ばね66は、筐体64の内部に収容されている。空気ばね66には、外部から加圧気体(例えば高圧空気)が供給される。Zスライダ68は、Z軸方向に延びる、例えば高さの低い円柱状の部材から成り、筐体64内に挿入され、空気ばね66上に載置されている。Zスライダ68にはZ軸方向以外の方向の運動を規制するためのガイド(不図示)が設けられている。ガイドとしては、例えばエアベアリング、又は平行板ばねなどが用いられる。平行板ばねは、例えば、XY平面に平行な厚さの薄いばね鋼板などから成る、例えば6枚の板ばねを用いて構成される。6枚の板ばねのうち3枚の板ばねを、Zスライダ68の上端部の周囲3箇所に放射状に配置し、残り3枚の板ばねを、Zスライダ68の下端部の周囲3箇所に上記3枚の板ばねと上下方向に重なるように、放射状に配置する。そして、それぞれの板ばねの一端部を、Zスライダ68の外周面に取り付け、他端部を筐体64に取付けて構成する。平行板ばねを用いることにより、板ばねの撓み量でストロークが決まるので、Zスライダ68は、Z軸方向に短い、すなわち背(高さ)が低い構造にすることができる。ただし、Zスライダ68は、エアベアリングでガイドを構成する場合のように長いストロークには対応できない。Zスライダ68の上部(+Z側の端部)には、軸受面が+Z側を向いた不図示のエアベアリング(シーリングパッドという)が取り付けられている。また、筐体64の周囲には、図1及び図3に示されるように、複数の腕(フィーラと呼ばれる)71が放射状に配置されて固定されている。そして、各フィーラ71の先端部上面には微動ステージ26の下面に取り付けられた複数の反射型光センサ(レベリングセンサとも呼ばれる)74のそれぞれで用いられるターゲット板72が設置されている。反射型光センサ74は、実際には、一直線上にない3箇所以上に配置されている。これらの複数の反射型光センサ74によって、微動ステージ26のZ軸方向の位置、及びチルト量(θx及びθy方向の回転量)を計測するZチルト計測系76(図4参照)が構成されている。なお、図3では図面の錯綜を避けるために反射型光センサ74は1つのみ示されている。 The weight cancellation device 28 includes a housing 64, an air spring 66, a Z slider 68, and the like, as shown in FIG. The housing 64 is formed of a bottomed cylindrical member that is open on the + Z side. A plurality of air bearings (hereinafter referred to as base pads) 70 whose bearing surfaces face the −Z side are attached to the lower surface of the housing 64. The air spring 66 is housed inside the housing 64. Pressurized gas (for example, high-pressure air) is supplied to the air spring 66 from the outside. The Z slider 68 is made of, for example, a low-profile columnar member extending in the Z-axis direction, is inserted into the housing 64, and is placed on the air spring 66. The Z slider 68 is provided with a guide (not shown) for restricting movement in directions other than the Z-axis direction. For example, an air bearing or a parallel leaf spring is used as the guide. The parallel leaf spring is configured by using, for example, six leaf springs made of, for example, a thin spring steel plate having a thickness parallel to the XY plane. Of the six leaf springs, three leaf springs are radially arranged around the upper end of the Z slider 68, and the remaining three leaf springs are placed at the three places around the lower end of the Z slider 68. It arrange | positions radially so that it may overlap with three leaf | plate springs in an up-down direction. Then, one end portion of each leaf spring is attached to the outer peripheral surface of the Z slider 68 and the other end portion is attached to the housing 64. Since the stroke is determined by the amount of bending of the leaf spring by using the parallel leaf spring, the Z slider 68 can be structured to be short in the Z-axis direction, that is, to have a low back (height). However, the Z slider 68 cannot cope with a long stroke as in the case where the guide is constituted by an air bearing. An air bearing (not shown) (referred to as a sealing pad) whose bearing surface faces the + Z side is attached to the upper portion (the end portion on the + Z side) of the Z slider 68. Further, as shown in FIGS. 1 and 3, a plurality of arms (referred to as “feelers”) 71 are radially arranged and fixed around the housing 64. A target plate 72 used in each of a plurality of reflective optical sensors (also referred to as leveling sensors) 74 attached to the lower surface of the fine movement stage 26 is installed on the upper surface of the tip of each feeler 71. The reflective optical sensors 74 are actually arranged at three or more places that are not on a straight line. A plurality of these reflective optical sensors 74 constitute a Z tilt measurement system 76 (see FIG. 4) that measures the position of the fine movement stage 26 in the Z-axis direction and the tilt amount (rotation amount in the θx and θy directions). Yes. In FIG. 3, only one reflective photosensor 74 is shown in order to avoid complication of the drawing.
 レベリング装置78は、微動ステージ26をチルト自在(XY平面に対してθx及びθy方向に揺動自在)に支持する装置である。レベリング装置78は、固定部78a(図3中に直方体部材で模式的に示されている)と可動部78b(図3中に球状部材で模式的に示されている)とを有する球面軸受、あるいは擬似球面軸受構造体であり、固定部78aは可動部78bを下方から支持しながら可動部78bを水平面内の軸(例えばX軸とY軸)回りに微少ストロークで傾斜させることができるようになっている。この場合、例えば固定部78aの上面に可動部78bのθx方向及びθy方向の傾斜を許容する凹部が形成されているものとすることができる。 The leveling device 78 is a device that supports the fine movement stage 26 so as to be tiltable (swingable in the θx and θy directions with respect to the XY plane). The leveling device 78 includes a spherical bearing having a fixed portion 78a (schematically shown by a rectangular parallelepiped member in FIG. 3) and a movable portion 78b (schematically shown by a spherical member in FIG. 3). Or it is a pseudo-spherical bearing structure, and the fixed part 78a can incline the movable part 78b around the axis (for example, X axis and Y axis) in a horizontal plane with a small stroke while supporting the movable part 78b from below. It has become. In this case, for example, a concave portion that allows inclination of the movable portion 78b in the θx direction and the θy direction may be formed on the upper surface of the fixed portion 78a.
 そして、可動部78bの上面(球面の上半部)は微動ステージ26に固定されており、固定部78aに対して微動ステージ26を傾動可能にしている。固定部78aの下面は水平な平面に仕上げられており、重量キャンセル装置28の前述したシーリングパッドのガイド面として、シーリングパッド全体の軸受面よりもやや広い面積を有している。そして、固定部78aは、重量キャンセル装置28のZスライダ68に取り付けられたシーリングパッドにより下方から非接触支持されている。 The upper surface (the upper half of the spherical surface) of the movable part 78b is fixed to the fine movement stage 26, and the fine movement stage 26 can be tilted with respect to the fixed part 78a. The lower surface of the fixing portion 78a is finished in a horizontal plane, and has a slightly larger area as the guide surface of the above-described sealing pad of the weight cancellation device 28 than the bearing surface of the entire sealing pad. The fixed portion 78a is supported in a non-contact manner from below by a sealing pad attached to the Z slider 68 of the weight cancellation device 28.
 重量キャンセル装置28は、空気ばね66が発生する重力方向上向きの力により、Zスライダ68、及びレベリング装置78を介して微動ステージ26を含む系の重量(重力方向下向きの力)を打ち消す(キャンセルする)ことにより、上述した複数のZボイスコイルモータ54Zの負荷を軽減する。 The weight canceling device 28 cancels (cancels) the weight of the system including the fine movement stage 26 (downward force in the gravity direction) via the Z slider 68 and the leveling device 78 by the upward force in the gravity direction generated by the air spring 66. This reduces the load on the plurality of Z voice coil motors 54Z described above.
 重量キャンセル装置28は、一対の連結装置80を介して粗動テーブル32Aに接続されている(図1参照)。一対の連結装置80のZ位置は、重量キャンセル装置28のZ軸方向に関する重心位置とほぼ一致している。各連結装置80は、XY平面に平行な厚さの薄い鋼板などを含み、フレクシャ装置とも称される。一対の連結装置80のそれぞれは、重量キャンセル装置28の+X側と-X側とに互いに対峙して配置されている。各連結装置80は、重量キャンセル装置28の筐体64と粗動テーブル32Aとの間に、X軸に平行に配置され、両者を連結している。従って、重量キャンセル装置28は、一対の連結装置80のいずれかを介して粗動テーブル32Aに牽引されることにより、粗動テーブル32Aと一体的にX軸方向に移動する。また、重量キャンセル装置28に非接触でレベリング装置78を介して支持された上部構成部分(微動ステージ26及び基板ホルダPH等)は、一対のXボイスコイルモータ54Xの駆動によって、粗動テーブル32Aと一体的にX軸方向に移動する。この際、重量キャンセル装置28には、そのZ軸方向に関する重心位置を含むXY平面に平行な平面内で牽引力が作用するので、移動方向(X軸)に直交する軸(Y軸)周りのモーメント(ピッチングモーメント)が作用しない。 The weight canceling device 28 is connected to the coarse motion table 32A via a pair of connecting devices 80 (see FIG. 1). The Z position of the pair of coupling devices 80 substantially coincides with the position of the center of gravity of the weight cancellation device 28 in the Z-axis direction. Each coupling device 80 includes a thin steel plate having a thickness parallel to the XY plane, and is also referred to as a flexure device. Each of the pair of connecting devices 80 is disposed opposite to the + X side and the −X side of the weight canceling device 28. Each connecting device 80 is arranged in parallel to the X axis between the casing 64 of the weight canceling device 28 and the coarse motion table 32A, and connects the two. Therefore, the weight canceling device 28 moves in the X-axis direction integrally with the coarse motion table 32A by being pulled by the coarse motion table 32A via one of the pair of connecting devices 80. Further, the upper components (fine movement stage 26, substrate holder PH, etc.) supported by the weight cancellation device 28 through the leveling device 78 in a non-contact manner are connected to the coarse movement table 32A by driving the pair of X voice coil motors 54X. Moves integrally in the X-axis direction. At this time, since the traction force acts on the weight cancellation device 28 in a plane parallel to the XY plane including the center of gravity position in the Z-axis direction, the moment around the axis (Y-axis) orthogonal to the moving direction (X-axis). (Pitching moment) does not work.
 上述の如く、本実施形態では、粗動テーブル32A,32B、重量キャンセル装置28、微動ステージ26、及び基板ホルダPH等を含んで、基板Pと一体で(基板Pの一部を保持して)X軸方向に移動する移動体(以下、適宜、基板ステージ(26,28,32A,32B,PH)と表記する)が構成されている。 As described above, in this embodiment, the coarse movement tables 32A and 32B, the weight cancellation device 28, the fine movement stage 26, the substrate holder PH, and the like are integrated with the substrate P (holding a part of the substrate P). A moving body that moves in the X-axis direction (hereinafter, referred to as a substrate stage (26, 28, 32A, 32B, PH) as appropriate) is configured.
 なお、レベリング装置78、連結装置80を含み、本実施形態の重量キャンセル装置28の詳細な構成については、例えば米国特許出願公開第2010/0018950号明細書に開示されている(但し、本実施形態では、重量キャンセル装置28がY軸方向に移動しないので、Y軸方向の連結装置は不要である)。なお、不図示であるが、重量キャンセル装置28はY軸方向に単独移動しないように、Y軸方向の連結装置等により規制を設けても良い。 The detailed configuration of the weight cancellation device 28 of the present embodiment including the leveling device 78 and the coupling device 80 is disclosed in, for example, US Patent Application Publication No. 2010/0018950 (however, the present embodiment). Then, since the weight cancellation device 28 does not move in the Y-axis direction, a connecting device in the Y-axis direction is unnecessary). Although not shown, the weight canceling device 28 may be restricted by a connecting device in the Y-axis direction so as not to move alone in the Y-axis direction.
 Xガイド82は、図1及び図2に示されるように、X軸方向を長手方向とする直方体形状をしている。Xガイド82は、上述した一対の架台18の上面(+Z側面)に、一対の架台18を横断するように配置して固定されている。Xガイド82の長手方向(X軸方向)の寸法は、X軸方向に所定間隔で配置された一対の架台18のそれぞれのX軸方向寸法と、一対の架台18間の隙間のX軸方向寸法との和よりも幾分長く(ほぼ同等に)設定されている。 The X guide 82 has a rectangular parallelepiped shape with the X-axis direction as the longitudinal direction, as shown in FIGS. 1 and 2. The X guide 82 is disposed and fixed on the upper surfaces (+ Z side surfaces) of the pair of mounts 18 described above so as to cross the pair of mounts 18. The length in the longitudinal direction (X-axis direction) of the X guide 82 is the X-axis direction dimension of each of the pair of mounts 18 arranged at predetermined intervals in the X-axis direction and the X-axis direction dimension of the gap between the pair of mounts 18. It is set somewhat longer (almost equal) than the sum of
 Xガイド82の上面(+Z側の面)は、XY平面に平行で平坦度が非常に高く仕上げられている。Xガイド82上には、図1及び図3に示されるように、重量キャンセル装置28が搭載され、ベースパッド70を介して浮上支持(非接触状態で支持)されている。Xガイド82の上面は、水平面(XY平面)とほぼ平行となるように調整されており、重量キャンセル装置28が移動する際のガイド面として機能する。Xガイド82の長手方向の寸法は、重量キャンセル装置28(すなわち粗動テーブル32A)のX軸方向の移動可能量よりも幾分長く設定されている。Xガイド82の上面の幅方向寸法(Y軸方向寸法)は、複数のベースパッド70全ての軸受面と対向可能な寸法に設定されている(図3参照)。Xガイド82の材質、及び製造方法は特に限定されないが、例えば、鋳鉄などの鋳造により形成される場合、石材(例えば、斑レイ岩)により形成される場合、セラミックス、あるいはCFRP(Carbon Fiver Reinforced Plastics)材などにより形成される場合などがある。また、Xガイド82は、中実の部材、又は内部にリブをもつ中空の部材であってその形状が直方体の部材により形成されている。なお、Xガイド82は直方体部材に限らず、YZ断面がI型の棒状部材であっても良い。 The upper surface (+ Z side surface) of the X guide 82 is parallel to the XY plane and finished with a very high flatness. As shown in FIGS. 1 and 3, the weight canceling device 28 is mounted on the X guide 82 and supported to float (supported in a non-contact state) via the base pad 70. The upper surface of the X guide 82 is adjusted to be substantially parallel to the horizontal plane (XY plane), and functions as a guide surface when the weight cancellation device 28 moves. The longitudinal dimension of the X guide 82 is set to be somewhat longer than the movable amount of the weight canceling device 28 (that is, the coarse motion table 32A) in the X axis direction. The width direction dimension (Y-axis direction dimension) of the upper surface of the X guide 82 is set to a dimension that can face all the bearing surfaces of the plurality of base pads 70 (see FIG. 3). The material and manufacturing method of the X guide 82 are not particularly limited. For example, when formed by casting such as cast iron, when formed by stone (for example, gabbro), ceramics, or CFRP (Carbon Fiber Reinforced Plastics) ) It may be formed of materials. The X guide 82 is a solid member or a hollow member having a rib inside, and the shape thereof is formed by a rectangular parallelepiped member. The X guide 82 is not limited to a rectangular parallelepiped member, but may be a rod-shaped member having an I-shaped YZ cross section.
 基板ホルダPHの-X側の側面には、図1及び図2に示されるように、不図示のミラー保持部品を介して、X軸に直交する反射面を有する平面ミラー(あるいはコーナーキューブ)から成る一対のX移動鏡94X、94Xが固定されている。ここで、一対のX移動鏡94X、94Xは、ブラケットを介して微動ステージ26に固定されていても良い。 As shown in FIGS. 1 and 2, a flat mirror (or a corner cube) having a reflective surface orthogonal to the X axis is provided on the side surface of the substrate holder PH on the −X side via a mirror holding component (not shown). A pair of X movable mirrors 94X 1 and 94X 2 is fixed. Here, the pair of X movable mirrors 94X 1 and 94X 2 may be fixed to the fine movement stage 26 via a bracket.
 微動ステージ26の-Y側の側面には、図3に示されるように、ミラー保持部品96を介して、Y軸に直交する反射面を有する長尺の平面ミラーから成るY移動鏡94Yが固定されている。微動ステージ26(基板ホルダPH)のXY平面内の位置情報は、一対のX移動鏡94X、94X、及びY移動鏡94Yを用いるレーザ干渉計システム(以下、基板ステージ干渉計システムと呼ぶ)98(図4参照)によって、例えば0.5~1nm程度の分解能で常時検出されている。なお、実際には、基板ステージ干渉計システム98は、図2及び図4に示されるように、一対のX移動鏡94X、94Xに対応するXレーザ干渉計(以下、X干渉計と略記する)98X、及びY移動鏡94Yに対応するYレーザ干渉計(以下、Y干渉計と略記する)98Yを備えている。X干渉計98X、及びY干渉計98Yの計測結果は、主制御装置50に供給されている(図4参照)。 As shown in FIG. 3, a Y moving mirror 94Y composed of a long plane mirror having a reflecting surface orthogonal to the Y axis is fixed to the side surface on the −Y side of fine movement stage 26, as shown in FIG. Has been. The position information of fine movement stage 26 (substrate holder PH) in the XY plane is a laser interferometer system using a pair of X moving mirrors 94X 1 , 94X 2 and Y moving mirror 94Y (hereinafter referred to as a substrate stage interferometer system). 98 (see FIG. 4), for example, it is always detected with a resolution of about 0.5 to 1 nm. Actually, as shown in FIGS. 2 and 4, the substrate stage interferometer system 98 includes an X laser interferometer (hereinafter abbreviated as an X interferometer) corresponding to a pair of X movable mirrors 94X 1 and 94X 2. Y laser interferometer (hereinafter abbreviated as Y interferometer) 98Y corresponding to 98X and Y movable mirror 94Y. The measurement results of the X interferometer 98X and the Y interferometer 98Y are supplied to the main controller 50 (see FIG. 4).
 X干渉計98Xは、図1に示されるように、Xガイド82(又は-X側の架台18)に一端が固定されたL字型の干渉計コラム102の上端に、一対のX移動鏡94X、94Xに対向する高さで取付けられている。X干渉計98Xとしては、一対のX移動鏡94X、94Xのそれぞれに個別に干渉計ビーム(計測ビーム)を照射する一対の干渉計を用いることもできるし、一対のX移動鏡94X、94Xのそれぞれに照射される2本の計測ビーム(測長ビーム)を射出する多軸干渉計を用いることもできる。以下では、多軸干渉計によって、X干渉計98Xが構成されているものとする。 As shown in FIG. 1, the X interferometer 98X has a pair of X movable mirrors 94X at the upper end of an L-shaped interferometer column 102 whose one end is fixed to the X guide 82 (or the −X side frame 18). 1, is mounted at a height facing the 94X 2. As the X interferometer 98X, a pair of interferometers that individually irradiate an interferometer beam (measurement beam) to each of the pair of X movable mirrors 94X 1 and 94X 2 can be used, or the pair of X movable mirrors 94X 1 , 94X 2 can also be used a multi-axis interferometer that emits two measurement beams (measurement beams) irradiated. In the following, it is assumed that the X interferometer 98X is configured by a multi-axis interferometer.
 Y干渉計98Yは、図3に示されるように、2つの粗動テーブル32A,32Bの間に配置され、架台18に下端が固定された支持部材104の上面にY移動鏡94Yに対向して固定されている。Y干渉計98Yとしては、Y移動鏡94Yにそれぞれ干渉計ビーム(計測ビーム)を照射する一対の干渉計を用いることもできるし、Y移動鏡94Yに2本の計測ビームを照射する多軸干渉計を用いることもできる。以下では、多軸干渉計によって、Y干渉計98Yが構成されているものとする。 As shown in FIG. 3, the Y interferometer 98Y is disposed between the two coarse motion tables 32A and 32B, and faces the Y moving mirror 94Y on the upper surface of the support member 104 whose lower end is fixed to the gantry 18. It is fixed. As the Y interferometer 98Y, a pair of interferometers that respectively irradiate the Y moving mirror 94Y with an interferometer beam (measurement beam) can be used, or multi-axis interference that irradiates the Y moving mirror 94Y with two measurement beams. A meter can also be used. In the following, it is assumed that the Y interferometer 98Y is configured by a multi-axis interferometer.
 この場合、Y干渉計98YはZ軸方向に関して基板Pの表面(露光の際には、この面が投影光学系PLの像面に一致するように、基板Pのフォーカス・レベリング制御が行われる)よりも低い位置にあるため、Y位置の計測結果にX軸方向の移動時の微動ステージ26の姿勢変化(ローリング)によるアッベ誤差が含まれる。この場合、不図示ではあるが、Y干渉計98Yとして、X軸方向に離間した2本の計測ビームの他、この2本の計測ビームに対してZ軸方向に離間した少なくとも1本の計測ビームを含む、少なくとも3本の干渉計ビーム(計測ビーム)をY移動鏡94Yに照射する多軸干渉計を用いても良い。主制御装置50は、該多軸干渉計によって微動ステージ26のローリング量を検出し、その検出結果に基づいて、Y干渉計98YによるY位置の計測結果に含まれる上記アッベ誤差の補正を行うようにしても良い。 In this case, the Y interferometer 98Y has the surface of the substrate P in the Z-axis direction (focusing and leveling control of the substrate P is performed so that this surface coincides with the image plane of the projection optical system PL during exposure). Therefore, the measurement result of the Y position includes an Abbe error due to the attitude change (rolling) of the fine movement stage 26 when moving in the X-axis direction. In this case, although not shown, as the Y interferometer 98Y, in addition to the two measurement beams separated in the X-axis direction, at least one measurement beam separated in the Z-axis direction with respect to the two measurement beams A multi-axis interferometer that irradiates the Y moving mirror 94Y with at least three interferometer beams (measurement beams) may be used. Main controller 50 detects the amount of rolling of fine movement stage 26 by the multi-axis interferometer, and corrects the Abbe error included in the measurement result of the Y position by Y interferometer 98Y based on the detection result. Anyway.
 また、微動ステージ26のθx、θy、及びZ軸方向に関する位置情報は、前述したZチルト計測系76(微動ステージ26の下面に固定された一直線上にない3箇所以上の反射型光センサ74)により、前述のフィーラ71先端のターゲット板72を用いて求められる。Zチルト計測系76を含み、上述した微動ステージ26の位置計測系の構成については、例えば米国特許出願公開第2010/0018950号明細書に開示されている。従って、Y干渉計98Yとして微動ステージ26のローリング量を検出しないタイプの干渉計を用いる場合などには、主制御装置50は、Zチルト計測系76によって求められた、微動ステージ26のθy方向に関する位置情報(ローリング量)に基づいて、Y干渉計98YによるY位置の計測結果に含まれる上記アッベ誤差の補正を行うようにしても良い。 Further, the positional information regarding the θx, θy, and the Z-axis direction of the fine movement stage 26 is the Z tilt measurement system 76 described above (three or more reflective optical sensors 74 not on a straight line fixed to the lower surface of the fine movement stage 26). Thus, it is obtained using the target plate 72 at the tip of the feeler 71 described above. The configuration of the position measurement system of the fine movement stage 26 including the Z tilt measurement system 76 is disclosed in, for example, US Patent Application Publication No. 2010/0018950. Accordingly, when using an interferometer that does not detect the amount of rolling of the fine movement stage 26 as the Y interferometer 98Y, the main controller 50 relates to the θy direction of the fine movement stage 26, which is obtained by the Z tilt measurement system 76. Based on the position information (rolling amount), the Abbe error included in the measurement result of the Y position by the Y interferometer 98Y may be corrected.
 この他、微動ステージ26単体のθx、θy、及びZ軸方向に関する位置情報を計測せず、投影光学系PLと一体とみなせる微動ステージ26上方の部材(ボディBDの一部、例えば鏡筒定盤16)に固定された不図示の斜入射方式の多点焦点位置検出系(フォーカスセンサ)により、上方から直接基板Pのθx、θy、及びZ軸方向に関する位置情報を計測するのみでも良い。勿論、基板Pと微動ステージ26とのθx、θy、及びZ軸方向に関する位置情報を計測しても良い。 In addition, the position information regarding the θx, θy, and Z-axis directions of the fine movement stage 26 alone is not measured, and a member above the fine movement stage 26 that can be regarded as being integrated with the projection optical system PL (a part of the body BD, for example, a lens barrel surface plate) The position information regarding the θx, θy, and the Z-axis direction of the substrate P may be directly measured from above by an oblique incidence type multi-point focal position detection system (focus sensor) (not shown) fixed to 16). Of course, position information regarding θx, θy, and the Z-axis direction between the substrate P and the fine movement stage 26 may be measured.
 基板ホルダPHの上方に位置する鏡筒定盤16の下端部には、不図示ではあるが、複数のアライメント検出系が設けられている。アライメント検出系は、X軸とY軸方向に所定の間隔で複数配置されている。基板ホルダPHは微動ステージ26のX軸方向の移動によって、複数のアライメント検出系の下を通過できるようになっている。少なくとも一部のアライメント検出系は、基板P上のパターン領域の配置(ショット数、面取り数)に応じて、そのXY方向の位置を変更できるようになっていても良い。 Although not shown, a plurality of alignment detection systems are provided at the lower end portion of the lens barrel surface plate 16 located above the substrate holder PH. A plurality of alignment detection systems are arranged at predetermined intervals in the X-axis and Y-axis directions. The substrate holder PH can pass under a plurality of alignment detection systems by the movement of the fine movement stage 26 in the X-axis direction. At least some of the alignment detection systems may be configured to change the positions in the XY directions according to the arrangement (number of shots, number of chamfers) of the pattern area on the substrate P.
 各アライメント検出系は、例えば、CCDカメラを備える顕微鏡を有しており、予め基板Pの所定の位置に設けられたアライメントマークが顕微鏡の視野内に入ると画像処理によってアライメント計測が実行され、アライメントマークの位置情報(位置ずれ情報)が、基板ステージ装置PSTの可動部の位置を制御する主制御装置50に送られるようになっている。 Each alignment detection system has, for example, a microscope equipped with a CCD camera. When an alignment mark previously provided at a predetermined position on the substrate P enters the field of view of the microscope, alignment measurement is performed by image processing, and alignment is performed. The mark position information (position shift information) is sent to the main controller 50 that controls the position of the movable portion of the substrate stage apparatus PST.
 図4には、露光装置100の制御系を中心的に構成し、構成各部を統括制御する主制御装置50の入出力関係を示すブロック図が示されている。図4では、基板ステージ系に関連する構成各部が示されている。主制御装置50は、ワークステーション(又はマイクロコンピュータ)等を含み、露光装置100の構成各部を統括制御する。 FIG. 4 is a block diagram showing the input / output relationship of the main controller 50 that centrally configures the control system of the exposure apparatus 100 and performs overall control of each component. In FIG. 4, each part of the configuration related to the substrate stage system is shown. The main controller 50 includes a workstation (or a microcomputer) and the like, and comprehensively controls each part of the exposure apparatus 100.
 次に、上述のようにして構成された本実施形態に係る露光装置100で行われる基板処理のための一連の動作について説明する。ここでは、一例として基板Pに対して第2層目以降の露光を行う場合について、図5~図13に基づいて説明する。なお、図5~図13において示される露光領域IAは、露光時に照明光ILが投影光学系PLを介して照射される照明領域であり、実際には、露光時以外に形成されることはないが、基板Pと投影光学系PLとの位置関係を明確にするため常に図示されている。 Next, a series of operations for substrate processing performed by the exposure apparatus 100 according to this embodiment configured as described above will be described. Here, as an example, a case where the second and subsequent layers of the substrate P are exposed will be described with reference to FIGS. The exposure area IA shown in FIGS. 5 to 13 is an illumination area where the illumination light IL is irradiated through the projection optical system PL during exposure, and is not actually formed except during exposure. Is always shown in order to clarify the positional relationship between the substrate P and the projection optical system PL.
 まず、主制御装置50の管理の下、不図示のマスク搬送装置(マスクローダ)によって、マスクステージMST上へのマスクMのロードが行われるとともに、不図示の基板搬入装置によって、基板ステージ装置PST上への基板Pの搬入(投入)が行なわれる。基板Pには前層以前の露光の際に、一例として図5に示されるように、複数、例えば4つのショット領域SA1~SA4とともに、各ショット領域のパターンと同時に転写された複数のアライメントマーク(不図示)が、ショット領域毎に設けられている。 First, under the management of the main controller 50, the mask M is loaded onto the mask stage MST by a mask transfer device (mask loader) (not shown), and the substrate stage device PST is loaded by a substrate carry-in device (not shown). The substrate P is loaded (introduced) upward. As shown in FIG. 5 as an example, the substrate P is exposed to a plurality of alignment marks (for example, four shot areas SA1 to SA4 and a plurality of alignment marks (transferred simultaneously with the pattern of each shot area). (Not shown) is provided for each shot area.
 基板ステージ装置PST上への搬入に際し、基板Pは、図5に示されるように、基板ホルダPHと基板ホルダPHの+Y側の4つのエア浮上ユニット84とに跨って載置され、基板ホルダPHは基板Pの一部(基板P全体の約1/2)を吸着固定し、4つのエア浮上ユニット84は基板Pの一部(基板P全体の残りの約1/2)を浮上支持する。このとき、基板P上の少なくとも2つのアライメントマークが、いずれかのアライメント検出系の視野に入るように、かつ基板ホルダPH上にくるように、基板Pが、基板ホルダPHと基板ホルダPHの+Y側の4つのエア浮上ユニット84とに跨って載置される。 When the substrate P is loaded onto the substrate stage apparatus PST, the substrate P is placed across the substrate holder PH and the four air levitation units 84 on the + Y side of the substrate holder PH, as shown in FIG. Adsorbs and fixes a part of the substrate P (about ½ of the whole substrate P), and the four air levitation units 84 levitate and support a part of the substrate P (about the remaining half of the whole substrate P). At this time, the substrate P is + Y of the substrate holder PH and the substrate holder PH so that at least two alignment marks on the substrate P are in the field of view of one of the alignment detection systems and on the substrate holder PH. It is placed across the four air levitation units 84 on the side.
 その後、主制御装置50により、従来と同様のアライメント計測の方法によって投影光学系PLに対する微動ステージ26の位置と、微動ステージ26に対する基板Pの凡その位置とが求められる。なお、微動ステージ26に対する基板Pのアライメント計測は省略しても良い。 Thereafter, the main controller 50 determines the position of the fine movement stage 26 with respect to the projection optical system PL and the approximate position of the substrate P with respect to the fine movement stage 26 by the same alignment measurement method as before. Note that the alignment measurement of the substrate P with respect to the fine movement stage 26 may be omitted.
 そして、主制御装置50は、上記の計測結果に基づいて、粗動テーブル32Aを介して微動ステージ26を駆動して基板P上の少なくとも2つのアライメントマークをいずれかのアライメント検出系の視野内に移動させ、投影光学系PLに対する基板Pのアライメント計測を行い、その結果に基づいて、基板P上のショット領域SA1の露光のためのスキャン開始位置を求める。ここで、露光のためのスキャンは、走査露光時の等速移動区間の前後に加速区間及び減速区間を含むので、スキャン開始位置は、厳密に言えば加速開始位置である。そして、主制御装置50は、粗動テーブル32A,32Bを駆動するとともに微動ステージ26を微小駆動して、そのスキャン開始位置(加速開始位置)に基板Pを位置決めする。このとき、図5中に十字の矢印で示されるように、微動ステージ26(基板ホルダPH)の粗動テーブル32Aに対する、X軸、Y軸及びθz方向(あるいは6自由度方向)の精密な微少位置決め駆動が行われる。図5には、このようにして、基板P上のショット領域SA1の露光のためのスキャン開始位置(加速開始位置)に基板Pが位置決めされた直後の状態が示されている。
 その後、ステップ・アンド・スキャン方式の露光動作が行なわれる。
Then, main controller 50 drives fine movement stage 26 via coarse movement table 32A on the basis of the above measurement result to place at least two alignment marks on substrate P within the field of view of any alignment detection system. The alignment measurement of the substrate P with respect to the projection optical system PL is performed, and the scan start position for exposure of the shot area SA1 on the substrate P is obtained based on the result. Here, since the scan for exposure includes an acceleration section and a deceleration section before and after the constant speed movement section during scanning exposure, the scan start position is strictly an acceleration start position. Then, main controller 50 drives coarse movement tables 32A and 32B and fine movement stage 26 to position substrate P at its scan start position (acceleration start position). At this time, as indicated by a cross arrow in FIG. 5, the fine movement stage 26 (substrate holder PH) has a fine minuteness in the X-axis, Y-axis, and θz directions (or directions of 6 degrees of freedom) with respect to the coarse movement table 32A. Positioning drive is performed. FIG. 5 shows a state immediately after the substrate P is positioned at the scan start position (acceleration start position) for exposure of the shot area SA1 on the substrate P in this way.
Thereafter, a step-and-scan exposure operation is performed.
 ステップ・アンド・スキャン方式の露光動作では、基板P上の複数のショット領域SA1~SA4に対して順次露光処理が行われる。基板Pは、スキャン動作時には、X軸方向に、所定の加速時間加速され、その後所定時間等速駆動され(この等速駆動中に露光(スキャン露光)が行われ)、その後加速時間と同じ時間だけ減速される(以下、この基板Pの一連の動作をXスキャン動作と呼ぶ)。また、基板は、ステップ動作時(ショット領域間移動時)には、X軸又はY軸方向に適宜駆動される(以下、それぞれXステップ動作、Yステップ動作と呼ぶ)。本実施形態では、各ショット領域SAn(n=1、2、3、4)の最大露光幅(Y軸方向の幅)は基板Pの約1/2である。
 具体的には、露光動作は次のようにして行なわれる。
In the step-and-scan exposure operation, the plurality of shot areas SA1 to SA4 on the substrate P are sequentially exposed. During the scanning operation, the substrate P is accelerated in the X-axis direction for a predetermined acceleration time, and then driven at a constant speed for a predetermined time (exposure (scan exposure) is performed during this constant speed driving), and then the same time as the acceleration time. (Hereinafter, a series of operations of the substrate P is referred to as an X scan operation). Further, the substrate is appropriately driven in the X-axis or Y-axis direction during the step operation (moving between shot areas) (hereinafter referred to as X-step operation and Y-step operation, respectively). In the present embodiment, the maximum exposure width (width in the Y-axis direction) of each shot area SAn (n = 1, 2, 3, 4) is about ½ of the substrate P.
Specifically, the exposure operation is performed as follows.
 図5の状態から、基板ステージ(26,28,32A,32B,PH)は、図5中に白抜き矢印で示されるように、-X方向へ駆動され、基板PのXスキャン動作が行われる。このとき、マスクM(マスクステージMST)が基板P(微動ステージ26)と同期して-X方向へ駆動されており、ショット領域SA1が、投影光学系PLによるマスクMのパターンの投影領域である露光領域IAを通過するので、その際に、ショット領域SA1に対する走査露光が行われる。走査露光は、微動ステージ26(基板ホルダPH)の-X方向へ加速後の等速移動中に、マスクM、投影光学系PLを介して基板Pに照明光ILが照射されることで行われる。 From the state of FIG. 5, the substrate stage (26, 28, 32A, 32B, PH) is driven in the −X direction as indicated by the white arrow in FIG. 5, and the X scan operation of the substrate P is performed. . At this time, the mask M (mask stage MST) is driven in the −X direction in synchronization with the substrate P (fine movement stage 26), and the shot area SA1 is a projection area of the pattern of the mask M by the projection optical system PL. Since it passes through the exposure area IA, scanning exposure for the shot area SA1 is performed at that time. The scanning exposure is performed by irradiating the substrate P with the illumination light IL through the mask M and the projection optical system PL while the fine movement stage 26 (substrate holder PH) is moving in the −X direction at a constant speed. .
 上述のXスキャン動作に際し、主制御装置50は、微動ステージ26に搭載された基板ホルダPHに基板Pの一部(基板P全体の約1/2)を吸着固定させ、粗動テーブル32A上にある4つのエア浮上ユニット84上に基板Pの一部(基板P全体の約1/2)を浮上支持させた状態で、基板ステージ(26,28,32A,32B,PH)を駆動する。この際、主制御装置50は、Xリニアエンコーダシステム46A、46Bの計測結果に基づいて、Xリニアモータ42A,42Bを介して粗動テーブル32A及び32BをX軸方向に駆動するとともに、基板ステージ干渉計システム98及び/又はZチルト計測系76の計測結果に基づいて、微動ステージ駆動系52(各ボイスコイルモータ54X、54Y、54Z)を駆動する。これにより、基板Pは微動ステージ26と一体となって、重量キャンセル装置28の上に浮上支持された状態で、粗動テーブル32Aに牽引されてX軸方向に移動するとともに、粗動テーブル32Aからの相対駆動によって、X軸、Y軸、Z軸、θx、θy及びθzの各方向(6自由度方向)に関して精密に位置制御される。また、主制御装置50は、Xスキャン動作に際し、微動ステージ26(基板ホルダPH)と同期して、マスク干渉計システム14の計測結果に基づいて、マスクMを保持するマスクステージMSTを、X軸方向に走査駆動するとともに、Y軸方向及びθz方向に微小駆動する。図6には、ショット領域SA1に対するスキャン露光が終了して、基板Pの一部を保持する基板ステージ(26,28,32A,32B,PH)が停止した状態が示されている。 During the above-described X scan operation, main controller 50 suctions and fixes a part of substrate P (about 1/2 of the entire substrate P) to substrate holder PH mounted on fine movement stage 26 and places it on coarse movement table 32A. The substrate stage (26, 28, 32A, 32B, PH) is driven in a state where a part of the substrate P (about ½ of the entire substrate P) is floated and supported on four air levitation units 84. At this time, the main controller 50 drives the coarse motion tables 32A and 32B in the X-axis direction via the X linear motors 42A and 42B based on the measurement results of the X linear encoder systems 46A and 46B, and the substrate stage interference. Based on the measurement result of the meter system 98 and / or the Z tilt measurement system 76, the fine movement stage drive system 52 (each voice coil motor 54X, 54Y, 54Z) is driven. As a result, the substrate P is integrated with the fine movement stage 26 and is lifted and supported on the weight cancellation device 28, and is pulled by the coarse movement table 32A to move in the X-axis direction, and from the coarse movement table 32A. With relative driving, the position is precisely controlled in each of the X-axis, Y-axis, Z-axis, θx, θy, and θz directions (6 degrees of freedom direction). Further, in the X scan operation, main controller 50 synchronizes with fine movement stage 26 (substrate holder PH), and sets mask stage MST for holding mask M on the X axis based on the measurement result of mask interferometer system 14. Scanning is performed in the direction, and minute driving is performed in the Y-axis direction and θz direction. FIG. 6 shows a state in which the scanning exposure for the shot area SA1 is completed and the substrate stage (26, 28, 32A, 32B, PH) holding a part of the substrate P is stopped.
 次に、主制御装置50は、次の露光のための加速に備えて、基板Pを、図6中に白抜き矢印で示されるように、少し+X方向へ駆動する基板PのXステップ動作を行う。基板PのXステップ動作は、主制御装置50が、Xスキャン動作と同様の状態で基板ステージ(26,28,32A,32B,PH)を駆動して(但し、移動中の位置偏差はスキャン動作ほど厳密に規制しないで)行なう。図7には、ショット領域SA2の露光のためのスキャン開始位置に基板ステージ(26,28,32A,32B,PH)が移動した状態が示されている。主制御装置50は、基板PのXステップ動作と並行して、マスクステージMSTを加速開始位置に戻している。 Next, in preparation for acceleration for the next exposure, main controller 50 performs the X step operation of substrate P that slightly drives substrate P in the + X direction as shown by the white arrow in FIG. Do. In the X step operation of the substrate P, the main controller 50 drives the substrate stage (26, 28, 32A, 32B, PH) in the same state as the X scan operation (however, the positional deviation during movement is a scan operation). (Without as much regulation). FIG. 7 shows a state where the substrate stage (26, 28, 32A, 32B, PH) has moved to the scan start position for exposure of the shot area SA2. Main controller 50 returns mask stage MST to the acceleration start position in parallel with the X-step operation of substrate P.
 次いで、主制御装置50は、図7中に白抜き矢印で示されるように、基板P(基板ステージ(26,28,32A,32B,PH))とマスクM(マスクステージMST)との-X方向の加速を開始して、前述と同様にしてショット領域SA2に対しスキャン露光を行なう。図8には、ショット領域SA2に対するスキャン露光が終了して、基板ステージ(26,28,32A,32B,PH)が停止した状態が示されている。 Next, as indicated by the white arrow in FIG. 7, main controller 50 determines -X between substrate P (substrate stage (26, 28, 32A, 32B, PH)) and mask M (mask stage MST). Direction acceleration is started, and scan exposure is performed on the shot area SA2 in the same manner as described above. FIG. 8 shows a state where the scanning exposure for the shot area SA2 is completed and the substrate stage (26, 28, 32A, 32B, PH) is stopped.
 次に、基板Pの未露光領域を基板ホルダPH上へ移動させるためのYステップ動作が行われる。この基板PのYステップ動作は、主制御装置50が、基板Yステップ送り装置88の可動部88aによって、図8に示される状態にある基板Pの+Y側端部の裏面を吸着保持し、その基板Pに対する基板ホルダPHの吸着を解除した後、基板ホルダPHからの高圧空気の排気とエア浮上ユニット84による引き続きの高圧空気の排気とによって基板Pを浮上させた状態で、基板Yステップ送り装置88の可動部88aを、図9中に黒塗り矢印で示されるように、-Y方向へ駆動することによって行われる。これにより、基板ホルダPHに対して基板Pのみが-Y方向に移動し、基板Pは未露光のショット領域SA3,SA4が、基板ホルダPH上に対向し、基板ホルダPHと-Y側の4つのエア浮上ユニット84とに跨って載置された状態となる。このとき、基板Pは、基板ホルダPHとエア浮上ユニット84とによって浮上支持されている。そして、主制御装置50により基板ホルダPHが、排気から吸気(吸引)に切り替えられる。これにより、基板ホルダPHにより基板Pの一部(基板P全体の約1/2)が吸着固定され、4つのエア浮上ユニット84によって基板Pの一部(基板P全体の残りの約1/2)が浮上支持された状態となる。上記の基板ホルダPHによる基板Pの吸着動作の開始の直後に、主制御装置50によって、基板Yステップ送り装置88による基板Pの吸着が解除される。 Next, a Y-step operation for moving the unexposed area of the substrate P onto the substrate holder PH is performed. In the Y step operation of the substrate P, the main controller 50 sucks and holds the back surface of the + Y side end of the substrate P in the state shown in FIG. 8 by the movable portion 88a of the substrate Y step feeding device 88. After releasing the adsorption of the substrate holder PH to the substrate P, the substrate Y step feeding device in a state where the substrate P is levitated by exhausting high-pressure air from the substrate holder PH and continuing high-pressure air exhaust by the air levitation unit 84. This is done by driving the 88 movable parts 88a in the -Y direction as shown by the black arrows in FIG. As a result, only the substrate P moves in the −Y direction with respect to the substrate holder PH, the unexposed shot areas SA3 and SA4 face the substrate holder PH, and the substrate holder PH and the −Y side 4 The air suspending unit 84 is placed across the two air levitation units 84. At this time, the substrate P is levitated and supported by the substrate holder PH and the air levitation unit 84. The main controller 50 switches the substrate holder PH from exhaust to intake (suction). Accordingly, a part of the substrate P (about 1/2 of the whole substrate P) is sucked and fixed by the substrate holder PH, and a part of the substrate P (about the remaining half of the whole substrate P is about 1/2) by the four air levitation units 84. ) Is supported in a floating state. Immediately after the start of the adsorption operation of the substrate P by the substrate holder PH, the main controller 50 releases the adsorption of the substrate P by the substrate Y step feeding device 88.
 そして、投影光学系PLに対する基板Pの新たなアライメント計測、すなわち基板P上に予め設けられている次のショット領域用のアライメントマークの計測が、行われる。このアライメント計測に際し、計測対象のアライメントマークがアライメント検出系の検出視野内に位置するように、必要に応じて、前述した基板PのXステップ動作が行われる(図9中の白抜き矢印参照)。 Then, new alignment measurement of the substrate P with respect to the projection optical system PL, that is, measurement of the alignment mark for the next shot area provided in advance on the substrate P is performed. In this alignment measurement, the above-described X-step operation of the substrate P is performed as necessary so that the alignment mark to be measured is positioned within the detection visual field of the alignment detection system (see the white arrow in FIG. 9). .
 そして、投影光学系PLに対する基板Pの新たなアライメント計測が終了すると、主制御装置50により、その結果に基づいて、図10中に十字の矢印で示されるように、微動ステージ26の粗動テーブル32Aに対する、X軸、Y軸及びθz方向(あるいは6自由度方向)の精密な微少位置決め駆動が行われる。 Then, when the new alignment measurement of the substrate P with respect to the projection optical system PL is finished, the main controller 50 makes a coarse movement table of the fine movement stage 26 based on the result, as indicated by a cross arrow in FIG. Precise minute positioning drive in the X-axis, Y-axis, and θz directions (or 6-degree-of-freedom directions) with respect to 32A is performed.
 次いで、主制御装置50により、図10中に白抜き矢印で示されるように、基板PとマスクMとの+X方向の加速が開始され、前述と同様のショット領域SA3に対するスキャン露光が行われる。図11には、ショット領域SA3に対するスキャン露光が終了して、基板ステージ(26,28,32A,32B,PH)が停止した状態が示されている。 Next, as indicated by the white arrow in FIG. 10, the main controller 50 starts acceleration in the + X direction between the substrate P and the mask M, and scan exposure is performed on the shot area SA3 as described above. FIG. 11 shows a state in which the scanning exposure for the shot area SA3 is completed and the substrate stage (26, 28, 32A, 32B, PH) is stopped.
 次に、主制御装置50により、次の露光のための加速に備えて、基板ステージ(26,28,32A,32B,PH)を、図11中に白抜き矢印で示されるように、少し-X方向へ駆動するXステップ動作が行われる。図12には、ショット領域SA4の露光のためのスキャン開始位置に基板ステージ(26,28,32A,32B,PH)が移動した状態が示されている。 Next, in preparation for acceleration for the next exposure, the main controller 50 slightly moves the substrate stage (26, 28, 32A, 32B, PH) as shown by the white arrow in FIG. An X step operation for driving in the X direction is performed. FIG. 12 shows a state where the substrate stage (26, 28, 32A, 32B, PH) has moved to the scan start position for exposure of the shot area SA4.
 次いで、主制御装置50により、図12中に白抜き矢印で示されるように、基板PとマスクMとの+X方向の加速が開始され、前述と同様にしてショット領域SA4に対するスキャン露光が行われる。図13には、ショット領域SA4に対するスキャン露光が終了して、基板ステージ(26,28,32A,32B,PH)が停止した状態が示されている。 Next, as indicated by the white arrow in FIG. 12, the main controller 50 starts acceleration in the + X direction between the substrate P and the mask M, and scan exposure is performed on the shot area SA4 in the same manner as described above. . FIG. 13 shows a state where the scanning exposure for the shot area SA4 is completed and the substrate stage (26, 28, 32A, 32B, PH) is stopped.
 以上のように、本実施形態に係る露光装置100では、スキャン露光とステップ動作とを繰り返すことで、基板P全体(基板上の全てのショット領域SA1~SA4)に対する露光(マスクMのパターンの重ね合わせ転写)が行われる。 As described above, the exposure apparatus 100 according to the present embodiment repeats the scan exposure and the step operation, thereby exposing the entire substrate P (all the shot areas SA1 to SA4 on the substrate) (overlaying the pattern of the mask M). Alignment transfer) is performed.
 ここで、基板P上のショット領域SA1~SA4に対する露光の順番及びスキャンの方向は上述した順番、方向に限られるものではない。また、投影光学系PLを介した照明光ILの基板P上への照射は、マスクステージMSTと微動ステージ26とのX軸方向への等速同期移動時にのみ行われるように、不図示のマスキングブレードの位置、又はシャッタの開閉等が行われている。また、マスキングブレードの開口幅を可変にして露光領域IAの幅を変更可能に構成しても良い。 Here, the order of exposure and the direction of scanning for the shot areas SA1 to SA4 on the substrate P are not limited to the order and direction described above. Further, the irradiation of the illumination light IL onto the substrate P via the projection optical system PL is performed by masking (not shown) so that it is performed only when the mask stage MST and the fine movement stage 26 are moved at a constant speed in the X-axis direction. The position of the blade or the opening and closing of the shutter is performed. Further, the opening width of the masking blade may be made variable so that the width of the exposure area IA can be changed.
 以上説明したように、本実施形態に係る露光装置100では、基板Pが載置され、その基板Pの平坦度を確保した状態で吸着保持する基板ホルダPHの基板保持面(基板載置面)は従来の基板ホルダの約1/2の面積で足りるので、基板ホルダPHを小型、軽量化することが可能になる。また、軽量化された基板ホルダPHを支持する微動ステージ26も小型、軽量化され、各ボイスコイルモータ54X,54Y,54Zによる微動ステージ26の高速、高加減速駆動、及び位置制御性の向上が可能となる。また、基板ホルダPHは小型化されることによって、その基板保持部の平面度の加工時間が短縮され、加工精度も向上する。また、本実施形態では、微動ステージ26はY軸方向に関してステップ移動は行なわず、粗動テーブル32A上の基板Yステップ送り装置88により、基板PのみをY軸方向へラフな精度でステップ移動させるので、粗動テーブル32Aの構造もシンプルで小型、軽量、低コスト化することが可能である。 As described above, in the exposure apparatus 100 according to this embodiment, the substrate P is placed and the substrate holding surface (substrate placing surface) of the substrate holder PH that holds the substrate P in a state where the flatness of the substrate P is secured. Is about half the area of the conventional substrate holder, the substrate holder PH can be reduced in size and weight. Further, the fine movement stage 26 that supports the reduced substrate holder PH is also reduced in size and weight, and the high speed, high acceleration / deceleration drive, and position controllability of the fine movement stage 26 by the voice coil motors 54X, 54Y, and 54Z are improved. It becomes possible. Further, by downsizing the substrate holder PH, the processing time for flatness of the substrate holding portion is shortened, and the processing accuracy is also improved. In the present embodiment, the fine movement stage 26 does not perform step movement in the Y-axis direction, and the substrate Y step feed device 88 on the coarse movement table 32A moves only the substrate P in the Y-axis direction with rough accuracy. Therefore, the structure of the coarse motion table 32A is simple and can be reduced in size, weight, and cost.
 本実施形態に係る露光装置100が備える基板ステージ装置PSTは、基板Pにクロススキャン方向(Y軸方向)に複数のショット領域を配置する多面取りレイアウトに有効である。 The substrate stage apparatus PST provided in the exposure apparatus 100 according to the present embodiment is effective for a multi-chamfer layout in which a plurality of shot areas are arranged on the substrate P in the cross scan direction (Y-axis direction).
 なお、上記実施形態では、基板ホルダPHの+Y側及び-Y側にそれぞれ配置されるエア浮上ユニットの基板支持面の面積(合計面積)は、必ずしも基板Pの約1/2である必要はなく、また、そのクロススキャン方向の寸法は、必ずしも基板Pの約1/2の寸法である必要はない。すなわち、より小さな面積、サイズの基板支持面を有するエア浮上ユニットによって、基板Pを浮上させても良い。この場合、そのエア浮上ユニットとして、エア剛性を高くできるエアベアリング構造を用いることができるし、エア剛性が低いエアベアリング構造を用いるとともに、負荷容量の大きなファンによって気流を起こし、その気流によって基板Pを浮上させるようにしても良い。 In the above embodiment, the area (total area) of the substrate support surfaces of the air levitation units respectively disposed on the + Y side and the −Y side of the substrate holder PH is not necessarily about ½ of the substrate P. In addition, the dimension in the cross scan direction does not necessarily need to be about ½ the dimension of the substrate P. That is, the substrate P may be levitated by an air levitation unit having a substrate supporting surface with a smaller area and size. In this case, an air bearing structure capable of increasing air rigidity can be used as the air levitation unit, an air bearing structure having low air rigidity is used, and an air current is generated by a fan having a large load capacity. You may make it surface.
《第2の実施形態》
 次に、第2の実施形態について、図14~図16に基づいて説明する。ここで、前述した第1の実施形態と同一若しくは同等の構成部分については、同一若しくは類似の符号を用いるとともに、その説明を簡略若しくは省略する。
<< Second Embodiment >>
Next, a second embodiment will be described with reference to FIGS. Here, the same or similar components as those in the first embodiment described above are denoted by the same or similar reference numerals, and the description thereof is simplified or omitted.
 図14には、第2の実施形態に係る露光装置200の構成が概略的に示され、図15には、露光装置200の一部省略した平面図が示されている。また、図16には、露光装置200を+X方向から見た概略側面図が一部省略して示されている。但し、図16では、前述の図3と同様に、粗動テーブル32Aは、断面図にて示されている。 FIG. 14 schematically shows a configuration of an exposure apparatus 200 according to the second embodiment, and FIG. 15 shows a plan view in which the exposure apparatus 200 is partially omitted. In FIG. 16, a schematic side view of the exposure apparatus 200 viewed from the + X direction is partially omitted. However, in FIG. 16, the coarse motion table 32A is shown in a cross-sectional view as in FIG.
 本第2の実施形態に係る露光装置200では、前述した基板ステージ装置PSTに代えて、基板ステージ装置PSTaが設けられている点が、前述の第1の実施形態と相違するが、その他の部分の構成等は、前述した第1の実施形態と同様である。 The exposure apparatus 200 according to the second embodiment is different from the first embodiment described above in that a substrate stage apparatus PSTa is provided instead of the substrate stage apparatus PST described above. The configuration and the like are the same as those in the first embodiment described above.
 基板ステージ装置PSTaは、図15及び図16からわかるように、前述の基板ステージ装置PSTが備える2つの粗動テーブル32A,32Bのうち、-Y側の粗動テーブル32Bをなくし、これに伴い、基板ホルダPHの-Y側のエア浮上ユニットを、可動ではなく固定型としている点が、前述の基板ステージ装置PSTと相違している。以下、相違点を中心として、第2の実施形態に係る基板ステージ装置PSTaについて説明する。 As can be seen from FIGS. 15 and 16, the substrate stage apparatus PSTa eliminates the −Y side coarse movement table 32B from the two coarse movement tables 32A and 32B provided in the substrate stage apparatus PST. The point that the air floating unit on the −Y side of the substrate holder PH is not movable but a fixed type is different from the substrate stage apparatus PST described above. Hereinafter, the substrate stage apparatus PSTa according to the second embodiment will be described focusing on the differences.
 基板ホルダPHの-Y側には、図15に示されるように、エア浮上ユニット84Aと、エア浮上ユニット84Bとが、それぞれ一対Y軸方向にわずかの隙間を介して並べられて組をなし、その組がX軸方向に、所定の順番で並んで配置されている。エア浮上ユニット84Aは、前述したエア浮上ユニット84とほぼ同じ形状及び大きさの支持面を有し、エア浮上ユニット84Bは、エア浮上ユニット84AとY軸方向の長さが同じで、X軸方向の長さが1/3程度の支持面を有している。 On the −Y side of the substrate holder PH, as shown in FIG. 15, an air levitation unit 84A and an air levitation unit 84B are arranged in a pair with a slight gap in the Y-axis direction. The set is arranged in a predetermined order in the X-axis direction. The air levitation unit 84A has a support surface having substantially the same shape and size as the air levitation unit 84 described above, and the air levitation unit 84B has the same length in the Y-axis direction as the air levitation unit 84A and is in the X-axis direction. The support surface has a length of about 1/3.
 エア浮上ユニット84A及び84Bは、ともにエア浮上ユニット84と同様に構成されている。本第2の実施形態では、エア浮上ユニット84Aは、4組、エア浮上ユニット84Bは、3組、合計で7組用いられている。合計7組のエア浮上ユニット84A、84Bは、Y軸方向の幅が基板PのY軸方向の幅の約1/2、X軸方向の長さは、基板ホルダPHがスキャン移動したときの移動範囲とほぼ同等の長さの矩形領域内に、X軸方向に所定の間隔で配置されている。合計7組のエア浮上ユニット84A、84Bは、図16に示されるように、架台18に接触しないように床面Fに固定されたフレーム110の上に固定されている。 The air levitation units 84A and 84B are both configured in the same manner as the air levitation unit 84. In the second embodiment, four sets of air levitation units 84A and three sets of air levitation units 84B are used, for a total of seven sets. A total of seven sets of air levitation units 84A and 84B have a width in the Y-axis direction that is about ½ of the width in the Y-axis direction of the substrate P, and a length in the X-axis direction that moves when the substrate holder PH is scanned. They are arranged at a predetermined interval in the X-axis direction within a rectangular region having a length substantially equal to the range. A total of seven sets of air levitation units 84A and 84B are fixed on a frame 110 fixed to the floor F so as not to contact the gantry 18, as shown in FIG.
 図15に示されるように、露光領域IAの中心と合計7組のエア浮上ユニット84A、84Bの配置領域の中心とのX位置はほぼ一致しており、X軸方向の中央に1組(一対)のエア浮上ユニット84Bが配置されている。この1組のエア浮上ユニット84Bと該1組のエア浮上ユニット84Bに隣接するX軸方向両側のエア浮上ユニット84Aとの間の隙間から、Y干渉計98YからのX軸方向に離間した一対の計測ビームがY移動鏡94Yに照射されるようになっている。この場合、Y干渉計98Yは、7組のエア浮上ユニット84A、84Bよりも-Y側に位置するボディBDのサイドフレーム20に固定されている。Y干渉計98Yとして、微動ステージ26のローリング量の計測が可能な多軸干渉計が用いられている(図16参照)。 As shown in FIG. 15, the X positions of the center of the exposure area IA and the centers of the arrangement areas of the seven air levitation units 84A and 84B in total are substantially coincident with each other, ) Air levitation unit 84B is disposed. A pair of air levitation units 84B and a pair of air levitation units 84A adjacent to the one set of air levitation units 84B are spaced from each other in the X axis direction from the Y interferometer 98Y through a gap between the air levitation units 84A on both sides in the X axis direction. A measurement beam is applied to the Y moving mirror 94Y. In this case, the Y interferometer 98Y is fixed to the side frame 20 of the body BD located on the −Y side of the seven sets of air levitation units 84A and 84B. As the Y interferometer 98Y, a multi-axis interferometer capable of measuring the amount of rolling of the fine movement stage 26 is used (see FIG. 16).
 また、図14及び図16に示されるように、レベリング装置78の可動部が、重量キャンセル装置28のZスライダ68に、水平面内の軸(例えばX軸とY軸)回りに微少ストロークで傾斜可能に取り付けられている。レベリング装置78は、例えば上面が(球面の上半部)が微動ステージ26に固定されており、Zスライダ68の上面にレベリング装置78のθx方向及びθy方向の回転(傾斜)を許容する凹部が形成されているものとすることができる。あるいは、この反対に、レベリング装置78は、例えば下面(球面の下半部)がZスライダ68に固定され、レベリング装置78に対する微動ステージ26のθx方向及びθy方向の傾斜を許容する凹部が、微動ステージ26に形成されているものとすることもできる。いずれにしても、レベリング装置78は、Zスライダ68に下方から支持され、微動ステージ26の水平面内の軸(例えばX軸とY軸)回りの微少角度範囲内での傾動を許容する。 As shown in FIGS. 14 and 16, the movable portion of the leveling device 78 can be tilted to the Z slider 68 of the weight cancellation device 28 with a slight stroke around an axis in the horizontal plane (for example, the X axis and the Y axis). Is attached. In the leveling device 78, for example, the upper surface (the upper half of the spherical surface) is fixed to the fine movement stage 26, and the Z slider 68 has a concave portion that allows rotation (inclination) of the leveling device 78 in the θx and θy directions. It may be formed. Alternatively, the leveling device 78 has a lower surface (lower half of the spherical surface) fixed to the Z slider 68, for example, and a recess that allows the fine movement stage 26 to tilt in the θx direction and the θy direction with respect to the leveling device 78 is finely moved. It may be formed on the stage 26. In any case, the leveling device 78 is supported by the Z slider 68 from below and allows the fine movement stage 26 to tilt within a minute angle range around an axis (for example, the X axis and the Y axis) in the horizontal plane.
 第2の実施形態に係る基板ステージ装置PSTaでは、Zスライダ68がレベリング装置78の固定部を兼ね、シーリングパッドは設けられておらず、重量キャンセル装置28が微動ステージ26と一体化されている。また、重量キャンセル装置28は微動ステージ26と一体化されているので、重量キャンセル装置28の単独運動を規制する連結装置80(フレクシャ装置)などは設けられていない。基板ステージ装置PSTaのその他部分の構成は、基板ステージ装置PSTと同様になっている。 In the substrate stage apparatus PSTa according to the second embodiment, the Z slider 68 also serves as a fixing portion of the leveling apparatus 78, no sealing pad is provided, and the weight cancellation apparatus 28 is integrated with the fine movement stage 26. Further, since the weight canceling device 28 is integrated with the fine movement stage 26, there is no connecting device 80 (flexure device) or the like that restricts the single motion of the weight canceling device 28. The configuration of the other parts of the substrate stage apparatus PSTa is the same as that of the substrate stage apparatus PST.
 以上のように構成される本第2の実施形態に係る露光装置200によると、前述した第1の実施形態に係る露光装置100と同等の効果が得られる他、基板ホルダPHの-Y側のエア浮上ユニット84A,84Bを粗動テーブル32Bに搭載しないで、別置きのフレーム110に固定したので、エア浮上ユニット84A,84BがY干渉計98Yの計測ビームを遮ることがない。なお、Y移動鏡94Yは、基板ホルダPHの側面、あるいは微動ステージ26にブラケットを介して取り付けても良い。 According to the exposure apparatus 200 according to the second embodiment configured as described above, the same effects as those of the exposure apparatus 100 according to the first embodiment described above can be obtained, and the −Y side of the substrate holder PH can be obtained. Since the air levitation units 84A and 84B are not mounted on the coarse motion table 32B and are fixed to the separately placed frame 110, the air levitation units 84A and 84B do not block the measurement beam of the Y interferometer 98Y. The Y moving mirror 94Y may be attached to the side surface of the substrate holder PH or the fine movement stage 26 via a bracket.
《第3の実施形態》
 次に、第3の実施形態について、図17及び図18に基づいて説明する。ここで、前述した第1、第2の実施形態と同一若しくは同等の構成部分については、同一若しくは類似の符号を用いるとともに、その説明を簡略若しくは省略する。
<< Third Embodiment >>
Next, a third embodiment will be described with reference to FIGS. 17 and 18. Here, the same or similar reference numerals are used for the same or equivalent components as those in the first and second embodiments described above, and the description thereof is simplified or omitted.
 図17には、本第3の実施形態に係る露光装置が備える基板ステージ装置PSTbがボディBDの一部とともに平面図にて示され、図18には、第3の実施形態に係る露光装置を+X方向から見た概略側面図が一部省略して示されている。但し、図18では、前述の図16と同様に、粗動テーブル32A(及び32B)は、断面図にて示されている。 FIG. 17 shows a plan view of a substrate stage device PSTb included in the exposure apparatus according to the third embodiment together with a part of the body BD, and FIG. 18 shows the exposure apparatus according to the third embodiment. A schematic side view seen from the + X direction is partially omitted. However, in FIG. 18, the coarse motion table 32 </ b> A (and 32 </ b> B) is shown in a cross-sectional view, as in FIG. 16 described above.
 基板ステージ装置PSTbでは、図18に示されるように、前述の第1の実施形態に係る基板ステージ装置PSTと同様に、2つの粗動テーブル32A,32Bが設けられているが、-Y側の粗動テーブル32Bにはエア浮上ユニットは搭載されておらず、前述の第2の実施形態に係る基板ステージ装置PSTaと同様に、基板ホルダPHの-Y側のエア浮上ユニットは、別置きのフレーム110に基板ホルダPHのX方向移動範囲全体に渡って取り付けられている(図17参照)。この場合も、-Y側のエア浮上ユニットとして、第2の実施形態と同様に配置された合計7組のエア浮上ユニット84A,84Bが用いられている。また、一対のXボイスコイルモータ54X及び複数のZボイスコイルモータ54Zの一部(図18では、1つのZボイスコイルモータ54Zの1つが図示されている)が、粗動テーブル32Bと微動ステージ26との間に設けられている。 As shown in FIG. 18, the substrate stage apparatus PSTb is provided with two coarse movement tables 32A and 32B as in the substrate stage apparatus PST according to the first embodiment described above. The coarse table 32B is not equipped with an air levitation unit. Like the substrate stage apparatus PSTa according to the second embodiment, the air levitation unit on the −Y side of the substrate holder PH is a separate frame. 110 is attached to the entire range of movement of the substrate holder PH in the X direction (see FIG. 17). Also in this case, a total of seven sets of air levitation units 84A and 84B arranged in the same manner as in the second embodiment are used as the −Y side air levitation units. Further, a part of the pair of X voice coil motors 54X and the plurality of Z voice coil motors 54Z (one of the one Z voice coil motors 54Z is shown in FIG. 18) includes the coarse movement table 32B and the fine movement stage 26. Between.
 さらに、Y移動鏡94Yが、基板ホルダPHの-Y側の側面の、X移動鏡94X、94Xとほぼ同一の高さの位置に配置され、ブラケット96Aを介して微動ステージ26の-Y側の面に固定されている。この場合、アッベ誤差が生じないので、Y干渉計98Yは、ローリング量の計測は、必ずしもできなくても良い。 Further, the Y moving mirror 94Y is disposed on the −Y side side surface of the substrate holder PH at a position substantially the same as the X moving mirrors 94X 1 and 94X 2, and the −Y of the fine movement stage 26 is passed through the bracket 96A. It is fixed to the side surface. In this case, since an Abbe error does not occur, the Y interferometer 98Y may not necessarily be able to measure the rolling amount.
 この場合も、重量キャンセル装置28が微動ステージ26と一体化されている。基板ステージ装置PSTbのその他の部分の構成、及び基板ステージ装置PSTb以外の各部の構成は、前述した第1の実施形態、又は第2の実施形態と同様になっている。 Also in this case, the weight canceling device 28 is integrated with the fine movement stage 26. The configuration of other parts of the substrate stage apparatus PSTb and the configuration of each part other than the substrate stage apparatus PSTb are the same as those in the first embodiment or the second embodiment described above.
 以上のように構成される本第3の実施形態に係る露光装置によると、前述した第1及び第2の実施形態に係る露光装置100、200と同等の効果が得られる他、微動ステージ26を駆動するXボイスコイルモータ54X及びZボイスコイルモータ54Zは、粗動テーブル32A,32Bの両方にバランス良く分散して取り付けることが可能となり、第2実施形態よりも剛性の高いモータ配置が可能となる(図18参照)。 According to the exposure apparatus according to the third embodiment configured as described above, the same effects as those of the exposure apparatuses 100 and 200 according to the first and second embodiments described above can be obtained, and the fine movement stage 26 is provided. The X voice coil motor 54X and the Z voice coil motor 54Z to be driven can be mounted in a balanced manner on both the coarse motion tables 32A and 32B, and a motor arrangement having higher rigidity than that of the second embodiment is possible. (See FIG. 18).
 なお、上記第3の実施形態では、2つの粗動テーブル32A,32Bが設けられた場合について説明したが、これに限らず、図19に示されるように、粗動テーブル32A,32Bを一体化したような粗動テーブル32を設け、該粗動テーブル32を2つのXビーム30A,30B上にスライド可能に取り付けても良い。 In the third embodiment, the case where the two coarse motion tables 32A and 32B are provided has been described. However, the present invention is not limited to this, and the coarse motion tables 32A and 32B are integrated as shown in FIG. The coarse motion table 32 as described above may be provided, and the coarse motion table 32 may be slidably mounted on the two X beams 30A and 30B.
 なお、上記第1~第3の実施形態及び図19の変形例では、基板ホルダPHのY軸方向の少なくとも一側のエア浮上ユニットを、粗動テーブル32A又は32上に搭載してX軸方向に可動な構成としたが、これに限らず、粗動テーブルに追従して移動する別の移動体を設け、該別の移動体上にエア浮上ユニットを搭載して、X軸方向に可動な構成としても良い。例えば、前述の第1の実施形態では、粗動テーブル32Aの移動経路の+Y側及び/又は粗動テーブル32Bの移動経路の-Y側の移動経路に沿って移動する別の移動体を設け、該別の移動体上に例えば逆L字状の支持部材を介してエア浮上ユニットをY軸方向に関して基板ホルダPHに近接する状態で搭載しても良い。 In the first to third embodiments and the modification of FIG. 19, the air levitation unit on at least one side of the substrate holder PH in the Y-axis direction is mounted on the coarse motion table 32A or 32 and the X-axis direction. However, the present invention is not limited to this, and another moving body that moves following the coarse movement table is provided, and an air levitation unit is mounted on the other moving body so as to be movable in the X-axis direction. It is good also as a structure. For example, in the first embodiment described above, another moving body that moves along the + Y side of the movement path of the coarse movement table 32A and / or the movement path on the −Y side of the movement path of the coarse movement table 32B is provided. The air levitation unit may be mounted on the other moving body in the state of being close to the substrate holder PH in the Y-axis direction, for example, via an inverted L-shaped support member.
《第4の実施形態》
 次に、第4の実施形態について、図20及び図21に基づいて説明する。ここで、前述した第1、第2及び第3の実施形態と同一若しくは同等の構成部分については、同一若しくは類似の符号を用いるとともに、その説明を簡略若しくは省略する。
<< Fourth Embodiment >>
Next, a fourth embodiment will be described with reference to FIGS. Here, the same or similar components as those in the first, second, and third embodiments described above are denoted by the same or similar reference numerals, and the description thereof is simplified or omitted.
 図20には、本第4の実施形態に係る露光装置が備える基板ステージ装置PSTcがボディの一部とともに平面図にて示され、図21には、第4の実施形態に係る露光装置を図20の+X方向から見た概略側面図が一部省略して示されている。 FIG. 20 shows a plan view of a substrate stage device PSTc included in the exposure apparatus according to the fourth embodiment together with a part of the body, and FIG. 21 shows the exposure apparatus according to the fourth embodiment. A schematic side view of 20 viewed from the + X direction is partially omitted.
 基板ステージ装置PSTcでは、図21に示されるよう、図19と同様に、一体化された粗動テーブル32が、2つのXビーム30A,30B上にスライド可能に取り付けられているが、粗動テーブル32上にはエア浮上ユニットは搭載されていない。図21では、粗動テーブル32は、断面図にて示されている。基板ホルダPHの-Y側及び+Y側のエア浮上ユニットは、第2、第3実施形態の-Y側のエア浮上ユニットと同様に架台18に接触しないように床面F上に設置されたフレーム110A,110Bのそれぞれに固定されている。また、基板ホルダPHの-Y側及び+Y側のエア浮上ユニットのそれぞれは、図20に示されるように、Y軸方向の幅が基板PのY軸方向の幅の約1/2、X軸方向の長さは、基板ホルダPHがスキャン移動したときの移動範囲とほぼ同等の長さの矩形領域内に、X軸方向に所定の間隔で、Y軸方向にわずかの隙間を空けて配置されている。この場合、-Y側のエア浮上ユニットとして、第2、第3の実施形態と同様に配置された合計7組のエア浮上ユニット84A,84Bが用いられている。一方、+Y側のエア浮上ユニットとしては、図20に示されるように、上記の矩形領域内にX軸方向に関して所定の隙間を空けて配置された4組(合計8つ)のエア浮上ユニット84Dが用いられている。エア浮上ユニット84Dは、前述したエア浮上ユニット84と同様に構成され、Y軸方向の幅はエア浮上ユニット84と同等であるが、X軸方向の長さがエア浮上ユニット84より幾分長い。 In the substrate stage apparatus PSTc, as shown in FIG. 21, the integrated coarse motion table 32 is slidably mounted on the two X beams 30A and 30B as in FIG. No air levitation unit is mounted on 32. In FIG. 21, the coarse motion table 32 is shown in a sectional view. The −Y side and + Y side air levitation units of the substrate holder PH are frames installed on the floor surface F so as not to contact the gantry 18 like the −Y side air levitation units of the second and third embodiments. It is fixed to each of 110A and 110B. Further, as shown in FIG. 20, each of the −Y side and + Y side air levitation units of the substrate holder PH has a width in the Y axis direction that is approximately ½ of the width in the Y axis direction of the substrate P, and the X axis. The length in the direction is arranged within a rectangular region having a length substantially equal to the moving range when the substrate holder PH is scanned, with a predetermined gap in the X-axis direction and a slight gap in the Y-axis direction. ing. In this case, a total of seven sets of air levitation units 84A and 84B arranged in the same manner as in the second and third embodiments are used as the −Y side air levitation units. On the other hand, as the + Y side air levitation unit, as shown in FIG. 20, four sets (total of eight) air levitation units 84D arranged in the rectangular area with a predetermined gap in the X-axis direction. Is used. The air levitation unit 84D is configured in the same manner as the air levitation unit 84 described above, and the width in the Y-axis direction is the same as that of the air levitation unit 84, but the length in the X-axis direction is somewhat longer than the air levitation unit 84.
 +Y側の4組のエア浮上ユニット84Dが固定されているフレーム110Aには、前述の基板Yステップ送り装置88が、X軸方向に所定の間隔で複数(図20では3つ)設けられている。ここで、基板Pが可動領域内のいずれの位置(Y軸方向の位置)にあるときでも基板Pの裏面を可動部88aで吸着してY軸方向に送ることができるようにするために、基板Yステップ送り装置88は複数設けられている。各基板Yステップ送り装置88は、X軸方向に隣接するエア浮上ユニット84D間の隙間に配置されている。各基板Yステップ送り装置88の可動部88aの上面は、エア浮上ユニット84D上に浮上した基板Pを吸着して、Y軸方向に移動させることができるとともに、吸着を解除して基板Pから分離することができるようになっている。 A plurality of (three in FIG. 20) substrate Y step feeding devices 88 described above are provided in the X-axis direction on the frame 110A to which the four sets of air floating units 84D on the + Y side are fixed. . Here, in order to allow the back surface of the substrate P to be attracted by the movable portion 88a and sent in the Y-axis direction when the substrate P is in any position (position in the Y-axis direction) within the movable region. A plurality of substrate Y step feeding devices 88 are provided. Each substrate Y step feeding device 88 is disposed in a gap between air levitation units 84D adjacent in the X-axis direction. The upper surface of the movable portion 88a of each substrate Y step feeding device 88 can adsorb the substrate P levitated on the air levitation unit 84D and move it in the Y-axis direction, and releases the adsorption and separates it from the substrate P. Can be done.
 基板ステージ装置PSTcのその他の部分の構成、及び基板ステージ装置PSTc以外の各部の構成は、前述した第1、第2、又は第3の実施形態と同様になっている。 The configuration of other parts of the substrate stage apparatus PSTc and the configuration of each part other than the substrate stage apparatus PSTc are the same as those in the first, second, or third embodiment described above.
 以上のように構成される本第4の実施形態に係る露光装置によると、前述した各実施形態に係る露光装置と同等の効果が得られる他、基板ホルダPHの-Y側のみならず、+Y側に位置するエア浮上ユニット84D、及び基板Yステップ送り装置88が、粗動テーブル32とは分離して、フレーム110A上に固定されているので、粗動テーブル32にかかる負荷が減り、粗動テーブル32を駆動する推力を小さくすることができる。 According to the exposure apparatus according to the fourth embodiment configured as described above, the same effect as the exposure apparatus according to each of the embodiments described above can be obtained, and not only the −Y side of the substrate holder PH but also + Y Since the air levitation unit 84D and the substrate Y step feeding device 88 located on the side are separated from the coarse motion table 32 and fixed on the frame 110A, the load applied to the coarse motion table 32 is reduced and the coarse motion is reduced. The thrust for driving the table 32 can be reduced.
《第5の実施形態》
 次に、第5の実施形態について、図22~図24に基づいて説明する。ここで、前述した第1、第2、第3又は第4の実施形態と同一若しくは同等の構成部分については、同一若しくは類似の符号を用いるとともに、その説明を簡略若しくは省略する。
<< Fifth Embodiment >>
Next, a fifth embodiment will be described with reference to FIGS. Here, the same or similar components as those in the first, second, third, or fourth embodiment described above are denoted by the same or similar reference numerals, and the description thereof is simplified or omitted.
 図22には、第5の実施形態に係る露光装置500の構成が概略的に示され、図23には、露光装置500の一部省略した平面図が示されている。また、図24には、露光装置500を図22の+X方向から見た概略側面図が一部省略して示されている。図24では、粗動テーブル32は断面図にて示されている。 FIG. 22 schematically shows a configuration of an exposure apparatus 500 according to the fifth embodiment, and FIG. 23 shows a plan view in which the exposure apparatus 500 is partially omitted. 24 is a schematic side view of the exposure apparatus 500 viewed from the + X direction in FIG. In FIG. 24, the coarse motion table 32 is shown in a sectional view.
 本第5の実施形態に係る露光装置500は、基本的には、前述した第4の実施形態に係る露光装置と同様に構成されているが、基板ステージ装置PSTdが、第4の実施形態に係る基板ステージ装置PSTcと一部相違する。具体的には、基板ステージ装置PSTdは、一対のX移動鏡94X、94Xの微動ステージ26上での取り付け位置が、基板ステージ装置PSTcと相違し、これに対応してX干渉計の構成等が、基板ステージ装置PSTcと相違している。以下、相違点を中心として、第5の実施形態に係る露光装置500について説明する。 The exposure apparatus 500 according to the fifth embodiment is basically configured in the same manner as the exposure apparatus according to the fourth embodiment described above, but the substrate stage apparatus PSTd is the same as that of the fourth embodiment. This is partly different from the substrate stage apparatus PSTc. Specifically, the substrate stage apparatus PSTd differs from the substrate stage apparatus PSTc in the mounting position of the pair of X movable mirrors 94X 1 and 94X 2 on the fine movement stage 26, and the configuration of the X interferometer is corresponding to this. Etc. are different from the substrate stage apparatus PSTc. The exposure apparatus 500 according to the fifth embodiment will be described below with a focus on the differences.
 図22、図23、図24からわかるように、一対のX移動鏡94X、94Xは、それぞれ不図示の移動鏡支持部品を介して微動ステージ26のY軸方向の両側面のX軸方向中央付近に取り付けられている。一対のX移動鏡94X、94Xに対応して、一対のX移動鏡94X、94Xのそれぞれに対向する一対のX干渉計98X,98Xが設けられている。一対のX干渉計98X,98Xのそれぞれは、図24に示されるように、-X側の架台18にそれぞれの一端部(下端部)が固定されたL字状のフレーム(X干渉計フレーム)102A,102Bの他端(上端)に個別に固定されている。フレーム102A,102Bとして、前述のフレーム110A,110B、及びX軸方向に移動する粗動テーブル32との干渉を避けるためにL字状のものが用いられている。 As can be seen from FIGS. 22, 23, and 24, the pair of X moving mirrors 94X 1 and 94X 2 are respectively in the X axis direction on both side surfaces in the Y axis direction of the fine movement stage 26 via moving mirror support parts (not shown). It is attached near the center. A pair of X interferometers 98X 1 and 98X 2 facing each of the pair of X movable mirrors 94X 1 and 94X 2 are provided corresponding to the pair of X movable mirrors 94X 1 and 94X 2 . As shown in FIG. 24, each of the pair of X interferometers 98X 1 and 98X 2 has an L-shaped frame (X interferometer) with one end portion (lower end portion) fixed to the −X side frame 18. Frames) 102A and 102B are individually fixed to the other ends (upper ends). L-shaped frames are used as the frames 102A and 102B in order to avoid interference with the above-described frames 110A and 110B and the coarse motion table 32 moving in the X-axis direction.
 また、一対のX移動鏡94X、94Xは、基板ホルダPHの-X側端面よりも+X側で基板Pの上面(表面)よりも低い位置、具体的には基板ホルダPHの下面より僅かに低い位置に設けられている。一対のX移動鏡94X、94Xに対向して、一対のX干渉計98X,98Xは、基板Pの上面よりも低い位置でY軸方向に関して基板ホルダPHとエア浮上ユニット84D又は84Aとの隙間に収まる位置に配置されている。これにより、本第5の実施形態に係る基板ステージ装置PSTdでは、一対のX干渉計98X,98Xは、例えば図23と図20とを比較するとわかるように、X干渉計(一対のX干渉計98X,98X)を、第4の実施形態(及び第1~第3の実施形態)に係るX干渉計98Xに比べて-X側の架台18から近い位置に配置することが可能となる。 Further, the pair of X movable mirrors 94X 1 and 94X 2 is located at a position lower than the upper surface (front surface) of the substrate P on the + X side than the −X side end surface of the substrate holder PH, specifically, slightly lower than the lower surface of the substrate holder PH. It is provided at a low position. Opposing to the pair of X moving mirrors 94X 1 and 94X 2 , the pair of X interferometers 98X 1 and 98X 2 is located at a position lower than the upper surface of the substrate P, and the substrate holder PH and the air floating unit 84D or 84A in the Y-axis direction. It is arranged at a position that fits in the gap. As a result, in the substrate stage apparatus PSTd according to the fifth embodiment, the pair of X interferometers 98X 1 and 98X 2 is, for example, an X interferometer (a pair of X interferometers) as can be seen by comparing FIG. 23 and FIG. The interferometers 98X 1 and 98X 2 ) can be arranged closer to the −X side mount 18 than the X interferometer 98X according to the fourth embodiment (and the first to third embodiments). It becomes.
 また、基板ステージ装置PSTdでは、図23に示されるように、+Y側のX移動鏡94Xと、微動ステージ26をY軸方向に微小駆動するYボイスコイルモータ54Yと、が干渉しないように、一対のYボイスコイルモータ54Yが、微動ステージ26のX軸方向の中心(中央)に近い位置に取り付けられている。ただし、これに限らず、X移動鏡94XとYボイスコイルモータ54Yとが干渉しないようにできるのであれば、一対のYボイスコイルモータ54Yは、どこに取り付けても良い。不図示であるが、例えば、微動ステージ26のX軸方向の両側面でも良い。この場合、一対のYボイスコイルモータ54Yの位置は、駆動力の合力が、微動ステージ26の重心位置に作用するように、すなわち微動ステージ26の重心駆動が可能となるように配置することが好ましい。 Furthermore, the substrate stage device Pstd, as shown in FIG. 23, + a X movable mirror 94X 1 of Y side, the fine motion stage 26 so that the Y voice coil motors 54Y that finely drives the Y-axis direction, do not interfere, A pair of Y voice coil motors 54 </ b> Y are attached at positions close to the center (center) of fine movement stage 26 in the X-axis direction. However, not limited thereto, as long as the the X movable mirror 94X 1 and Y voice coil motors 54Y can be prevented from interfering with each other, a pair of Y voice coil motors 54Y may be anywhere mounting. Although not shown, for example, both side surfaces of the fine movement stage 26 in the X-axis direction may be used. In this case, the positions of the pair of Y voice coil motors 54Y are preferably arranged so that the resultant force of the driving force acts on the position of the center of gravity of the fine movement stage 26, that is, the center of gravity of the fine movement stage 26 can be driven. .
 以上のように構成される本第5の実施形態に係る露光装置500によると、前述した第4の実施形態に係る露光装置と同等の効果が得られる他、一対のX干渉計98X,98Xを、第4の実施形態(及び第1~第3の実施形態)に係るX干渉計98Xに比べて-X側の架台18から近い位置に配置することが可能となるので、フレーム102A、102Bの総重量が干渉計コラム102の重量に比べて軽くなり、剛性が増すという利点がある。 According to the exposure apparatus 500 according to the fifth embodiment configured as described above, the same effects as those of the exposure apparatus according to the fourth embodiment described above can be obtained, and a pair of X interferometers 98X 1 and 98X. 2 can be disposed closer to the −X side frame 18 than the X interferometer 98X according to the fourth embodiment (and the first to third embodiments). There is an advantage that the total weight of 102B is lighter than the weight of the interferometer column 102, and the rigidity is increased.
《第6の実施形態》
 次に、第6の実施形態について、図25~図29に基づいて説明する。ここで、前述した第1、第2、第3、第4又は第5の実施形態と同一若しくは同等の構成部分については、同一若しくは類似の符号を用いるとともに、その説明を簡略若しくは省略する。
<< Sixth Embodiment >>
Next, a sixth embodiment will be described with reference to FIGS. Here, the same or similar components as those in the first, second, third, fourth, or fifth embodiment described above are denoted by the same or similar reference numerals, and the description thereof is simplified or omitted.
 図25には、第6の実施形態に係る露光装置の一部省略した平面図が示されている。また、図26には、第6の実施形態に係る露光装置のXZ断面図が一部省略して示されている。 FIG. 25 is a plan view in which a part of the exposure apparatus according to the sixth embodiment is omitted. FIG. 26 is a partially omitted XZ sectional view of the exposure apparatus according to the sixth embodiment.
 本第6の実施形態に係る露光装置は、基本的には、前述した第5の実施形態に係る露光装置と同様に構成されているが、基板ステージ装置PSTeが、第5の実施形態に係る基板ステージ装置PSTdと一部相違する。 The exposure apparatus according to the sixth embodiment is basically configured in the same manner as the exposure apparatus according to the fifth embodiment described above, but the substrate stage apparatus PSTe is according to the fifth embodiment. This is partly different from the substrate stage device PSTd.
 具体的には、基板ステージ装置PSTeでは、図25に示されるように、基板ホルダPHとして、Y軸方向のサイズのみならず、X軸方向のサイズも、基板PのX軸方向のサイズよりも小さく、例えば、基板Pの約1/2のものが用いられている。そして、基板ホルダPHのX軸方向の両側には、一対のエア浮上ユニット(移動エア浮上ユニット)84Cが配置されている。一対のエア浮上ユニット84Cのそれぞれは、図26に示されるように、その上面が基板ホルダPHとほぼ同等(僅かに低い)の高さとなるように、支持部材112を介して粗動テーブル32の上面に固定されている。一対のエア浮上ユニット84Cのそれぞれは、例えばY軸方向の長さが基板ホルダPHと同等(若しくは基板ホルダPHよりも僅かに短い)で、X軸方向の長さが基板ホルダPHとほぼ同等、あるいは幾分短い。 Specifically, in the substrate stage apparatus PSTe, as shown in FIG. 25, as the substrate holder PH, not only the size in the Y axis direction but also the size in the X axis direction is larger than the size of the substrate P in the X axis direction. For example, about 1/2 of the substrate P is used. A pair of air levitation units (moving air levitation units) 84C are disposed on both sides of the substrate holder PH in the X-axis direction. As shown in FIG. 26, each of the pair of air levitation units 84 </ b> C has the coarse motion table 32 through the support member 112 so that the upper surface thereof is almost the same height (slightly lower) as the substrate holder PH. It is fixed on the top surface. Each of the pair of air levitation units 84C has, for example, a length in the Y-axis direction that is equivalent to (or slightly shorter than the substrate holder PH) the length in the X-axis direction and substantially the same as that in the substrate holder PH. Or rather short.
 基板ステージ装置PSTeでは、一対のX移動鏡94X、94Xは、図25及び図26から分かるように、基板ホルダPHの-X側側面のY軸方向の両端付近に不図示の移動鏡支持部材を介して固定されている。基板ステージ装置PSTeのその他の部分の構成は、第4の実施形態に係る基板ステージ装置PSTdと同様になっている。この場合、一対のX干渉計98X,98Xは、第5の実施形態と同様に、固定のエア浮上ユニット(84A,84B)と、粗動テーブル32上のエア浮上ユニット84Cとに干渉しないで、一対のX移動鏡94X、94Xに接近できるような配置になっている。 In the substrate stage apparatus PSTe, as shown in FIGS. 25 and 26, the pair of X movable mirrors 94X 1 and 94X 2 are supported by a movable mirror (not shown) near both ends in the Y-axis direction on the −X side surface of the substrate holder PH. It is fixed via a member. The configuration of other parts of the substrate stage apparatus PSTe is the same as that of the substrate stage apparatus PSTd according to the fourth embodiment. In this case, the pair of X interferometers 98X 1 and 98X 2 does not interfere with the fixed air levitation unit (84A, 84B) and the air levitation unit 84C on the coarse motion table 32, as in the fifth embodiment. Thus, the arrangement is such that the pair of X movable mirrors 94X 1 and 94X 2 can be approached.
 なお、一対のX干渉計98X,98Xは、第5の実施形態と同様に、基板ホルダPHの両側面でX軸方向の中央付近に取付けても良い。かかる場合には、X干渉計98X,98Xを、より+X側に配置することが可能となる。また、一対のX移動鏡94X、94Xは、基板ホルダPHではなく、微動ステージ26に、X移動鏡支持フレームを介して取付けても良い。 The pair of X interferometers 98X 1 and 98X 2 may be attached near the center in the X-axis direction on both side surfaces of the substrate holder PH, as in the fifth embodiment. In such a case, the X interferometers 98X 1 and 98X 2 can be further arranged on the + X side. Further, the pair of X movable mirrors 94X 1 and 94X 2 may be attached to the fine movement stage 26 instead of the substrate holder PH via the X movable mirror support frame.
 次に、本第6の実施形態に係る露光装置で、基板の処理を行う際の一連の動作について図26~図29に基づいて、説明する。ここでは、前述した第1の実施形態のショット領域SA1及びSA2(又はショット領域SA3及びSA4)に最初に露光を行う場合を取り上げて説明する。なお、図26から図29では、固定のエア浮上ユニットなどの図示は省略されている。また、本第6の実施形態では、粗動テーブル32、重量キャンセル装置28、微動ステージ26、及び基板ホルダPH等を含んで、基板Pと一体で(基板Pの一部を保持して)X軸方向に移動する移動体が構成されているが、以下ではこの移動体を基板ステージ(26,28,32,PH)と表記する。 Next, a series of operations when the substrate is processed in the exposure apparatus according to the sixth embodiment will be described with reference to FIGS. Here, the case where the shot areas SA1 and SA2 (or the shot areas SA3 and SA4) of the first embodiment described above are first exposed will be described. 26 to 29, the illustration of a fixed air levitation unit and the like is omitted. Further, in the sixth embodiment, the coarse movement table 32, the weight cancellation device 28, the fine movement stage 26, the substrate holder PH, and the like are integrated with the substrate P (holding a part of the substrate P) X Although the moving body which moves to an axial direction is comprised, below, this moving body is described as a substrate stage (26,28,32, PH).
 まず、主制御装置50の管理の下、不図示のマスク搬送装置(マスクローダ)によって、マスクステージMST上へのマスクMのロードが行われるとともに、不図示の基板搬入装置によって、基板ステージ装置PSTe上への基板Pの搬入が行なわれる。基板Pには前層以前の露光の際に、一例として図25に示されるように、複数、例えばX軸方向に2つ、Y軸方向に2つ、合計4つのショット領域SA1~SA4とともに、各ショット領域のパターンと同時に転写された複数のアライメントマーク(不図示)が、ショット領域毎に設けられている。 First, under the control of the main controller 50, the mask M is loaded onto the mask stage MST by a mask transfer device (mask loader) (not shown), and the substrate stage device PSTe is loaded by a substrate carry-in device (not shown). The substrate P is carried in upward. As shown in FIG. 25 as an example, the substrate P is exposed to a plurality of shot areas SA1 to SA4, for example, two in the X-axis direction and two in the Y-axis direction. A plurality of alignment marks (not shown) transferred simultaneously with the pattern of each shot area are provided for each shot area.
 まず、基板Pは、基板ホルダPHと、+Y側の固定の複数のエア浮上ユニット84Dの一部と+X側のエア浮上ユニット84Cとに跨って載置される。このとき、基板ホルダPH、エア浮上ユニット84D及びエア浮上ユニット84Cの上面からは、高圧空気が噴出されており、基板Pは浮上支持されている。そして、主制御装置50により基板ホルダPHが、排気から吸気(吸引)に切り替えられる。これにより、基板ホルダPHにより基板Pの一部(ショット領域SA1を含む矩形領域に対応する基板P全体の約1/4)が吸着固定され、複数のエア浮上ユニット84Dの一部及びエア浮上ユニット84Cにより基板Pの一部(基板P全体の残りの約3/4)が浮上支持された状態となる。そして、前述した第1の実施形態と同様の方法により、アライメント動作が行なわれる(図26参照)。 First, the substrate P is placed across the substrate holder PH, a part of the + Y side fixed air levitation units 84D, and the + X side air levitation unit 84C. At this time, high-pressure air is ejected from the upper surfaces of the substrate holder PH, the air levitation unit 84D, and the air levitation unit 84C, and the substrate P is supported to be levitated. The main controller 50 switches the substrate holder PH from exhaust to intake (suction). Accordingly, a part of the substrate P (about ¼ of the whole substrate P corresponding to the rectangular area including the shot area SA1) is sucked and fixed by the substrate holder PH, and a part of the plurality of air levitation units 84D and the air levitation unit A part of the substrate P (about 3/4 of the entire substrate P) is levitated and supported by 84C. Then, an alignment operation is performed by the same method as in the first embodiment described above (see FIG. 26).
 続いて、図26中に白抜き矢印で示されるように、基板P(基板ステージ(26,28,32、PH))とマスクM(マスクステージMST)とが同期して-X方向に移動することで、前述した第1の実施形態と同様にして、基板ホルダPHに吸着されている基板Pの最初のショット領域SA1がスキャン露光される。図27には、ショット領域SA1の露光終了後に、基板ステージ(26,28,32、PH)が停止した状態が示されている。 Subsequently, as indicated by an outline arrow in FIG. 26, the substrate P (substrate stage (26, 28, 32, PH)) and the mask M (mask stage MST) move in the −X direction in synchronization. Thus, as in the first embodiment described above, the first shot area SA1 of the substrate P adsorbed on the substrate holder PH is subjected to scan exposure. FIG. 27 shows a state in which the substrate stage (26, 28, 32, PH) is stopped after the exposure of the shot area SA1 is completed.
 次に、主制御装置50が、その時点で基板Pに対向する位置にある基板Yステップ送り装置88の可動部88a(図27では不図示、図25参照)を用いて基板Pの裏面を吸着し、基板ホルダPHによる基板Pの吸着を解除した後、基板ホルダPHからの高圧空気の排気と+X側のエア浮上ユニット84Cによる引き続きの高圧空気の排気とによって基板Pを浮上させる。これにより、基板Pは基板Yステップ送り装置88の可動部88aのみによって保持された状態となる。 Next, the main controller 50 sucks the back surface of the substrate P by using the movable portion 88a (not shown in FIG. 27, see FIG. 25) of the substrate Y step feeding device 88 at the position facing the substrate P at that time. Then, after the adsorption of the substrate P by the substrate holder PH is released, the substrate P is floated by exhausting high-pressure air from the substrate holder PH and continuing high-pressure air exhausting by the + X side air levitation unit 84C. As a result, the substrate P is held only by the movable portion 88a of the substrate Y step feeding device 88.
 次に、主制御装置50は、この基板Yステップ送り装置88の可動部88aのみによる基板Pの保持状態を維持したまま、基板ステージ(26,28,32、PH)を、図27中に白抜き矢印で示されるように、+X方向に駆動する、基板PのXステップを開始する。これにより、基板Pは、Xステップ開始前の位置に停止したまま、この基板Pに対して基板ホルダPHが、+X方向に移動する。そして、主制御装置50は、基板ホルダPHが、基板Pの次のショット領域SA2の真下に到達すると、基板ステージ(26,28,32、PH)を、停止させる(図28参照)。このとき、基板Pは、基板ホルダPHと、+Y側の固定の複数のエア浮上ユニット84Dの一部と-X側のエア浮上ユニット84Cとに跨って載置されている。基板ホルダPH、複数のエア浮上ユニット84Dの一部及びエア浮上ユニット84Cの上面からは、高圧エアが噴出されており、基板Pは浮上支持されている。 Next, main controller 50 maintains the substrate stage (26, 28, 32, PH) in FIG. 27 while maintaining the holding state of substrate P only by movable portion 88a of substrate Y step feeding device 88. As indicated by the blank arrow, the X step of the substrate P, which is driven in the + X direction, is started. Accordingly, the substrate holder PH moves in the + X direction with respect to the substrate P while the substrate P is stopped at the position before the start of the X step. Then, when the substrate holder PH reaches just below the next shot area SA2 of the substrate P, the main controller 50 stops the substrate stage (26, 28, 32, PH) (see FIG. 28). At this time, the substrate P is placed across the substrate holder PH, a part of the + Y side fixed air levitation units 84D, and the −X side air levitation unit 84C. High-pressure air is ejected from the substrate holder PH, a part of the plurality of air levitation units 84D, and the upper surface of the air levitation unit 84C, and the substrate P is levitated and supported.
 上記の基板PのXステップのための基板ステージ(26,28,32、PH)の駆動と並行して、主制御装置50は、マスクステージMSTを、所定の加速開始位置へ戻している。 In parallel with the driving of the substrate stage (26, 28, 32, PH) for the X step of the substrate P, the main controller 50 returns the mask stage MST to a predetermined acceleration start position.
 その後、基板ホルダPHによる基板Pの吸着、及び基板Yステップ送り装置88の可動部88aによる基板Pの吸着解除と、基板P上の新たなアライメントマークを用いたアライメント計測と、微動ステージ26による基板Pの位置決めと、が行なわれる。その後、基板ステージ(26,28,32、PH)とマスクステージMSTとが同期して、図28中に白抜き矢印で示されるように、-X方向に移動することで、次のショット領域SA2のスキャン露光が行なわれる。図29には、ショット領域SA2の露光終了後に、基板ステージ(26,28,32、PH)が停止した状態が示されている。 Thereafter, the adsorption of the substrate P by the substrate holder PH, the adsorption release of the substrate P by the movable portion 88a of the substrate Y step feeding device 88, the alignment measurement using a new alignment mark on the substrate P, and the substrate by the fine movement stage 26 P is positioned. Thereafter, the substrate stage (26, 28, 32, PH) and the mask stage MST are synchronously moved in the −X direction as indicated by the white arrow in FIG. Scanning exposure is performed. FIG. 29 shows a state where the substrate stage (26, 28, 32, PH) is stopped after the exposure of the shot area SA2.
 以降、前述の第1の実施形態に係る露光装置100と同様に、基板Yステップ送り装置88によって、基板PのYステップ動作が行なわれ、アライメントによる位置合わせを行なってスキャン露光が繰り返し行なわれる。 Thereafter, similarly to the exposure apparatus 100 according to the first embodiment described above, the Y step operation of the substrate P is performed by the substrate Y step feeding device 88, the alignment by alignment is performed, and the scan exposure is repeatedly performed.
 以上説明したように本第6の実施形態に係る露光装置によると、前述した第5の実施形態に係る露光装置500と同等の効果を得ることができる。これに加え、本第6の実施形態に係る露光装置によると、基板ホルダPHを1つのショット領域(一括露光領域)と同等の大きさにし、それ以外の領域はエア浮上ユニットによって浮上支持するようにしたので、微動ステージ26に搭載される基板ホルダPHは、上記第1ないし第5の実施形態に比べて、さらに小型、軽量になる。また、基板ステージ(26,28,32、PH)は、一つのショット領域をスキャンするだけなので、基板ステージ(26,28,32、PH)のX軸方向のストロークは、上記第1ないし第5の実施形態よりも短く(約1/2)なる。従って、基板ステージ装置、ひいては該基板ステージ装置を備える露光装置の、一層の小型化及び軽量コンパクト化、並びにコストの低減も可能になる。 As described above, the exposure apparatus according to the sixth embodiment can obtain the same effects as those of the exposure apparatus 500 according to the fifth embodiment described above. In addition, according to the exposure apparatus of the sixth embodiment, the size of the substrate holder PH is set to be equal to one shot area (collective exposure area), and the other areas are levitated and supported by the air levitation unit. Therefore, the substrate holder PH mounted on the fine movement stage 26 is smaller and lighter than the first to fifth embodiments. Further, since the substrate stage (26, 28, 32, PH) only scans one shot area, the stroke of the substrate stage (26, 28, 32, PH) in the X-axis direction is the first to the fifth. It becomes shorter (about 1/2) than the embodiment. Accordingly, it is possible to further reduce the size and weight of the substrate stage apparatus, and thus the exposure apparatus including the substrate stage apparatus, and to reduce the cost.
 なお、上記の説明では、最初のショット領域をスキャン露光した後、基板Pを残して、基板ステージ(26,28,32、PH)を次のショット領域の露光のため、+X方向へ移動させたが(図27及び図28参照)、基板ステージ(26,28,32、PH)を残して、不図示の基板Xステップ送り装置によって、基板のみを-X方向へ移動させ、その後、基板ステージ(26,28,32、PH)による+X方向へのスキャンによって露光しても良い。基板Xステップ送り装置は、基板Pの搬入、搬出装置を兼ねていても良い。 In the above description, after scanning exposure of the first shot area, the substrate P is left, and the substrate stage (26, 28, 32, PH) is moved in the + X direction for exposure of the next shot area. (See FIGS. 27 and 28), leaving the substrate stage (26, 28, 32, PH), the substrate X step feed device (not shown) moves only the substrate in the −X direction, and then the substrate stage ( (26, 28, 32, PH), exposure may be performed by scanning in the + X direction. The substrate X step feeding device may also serve as a substrate P loading / unloading device.
 なお、上記の説明では、第2実施形態から第6実施形態において、粗動ステージとは分離したエア浮上ユニットをフレームを介して床面に固定したが、振動を発生する虞が少ない場合、これらは架台18に固定しても良い。 In the above description, in the second to sixth embodiments, the air levitation unit separated from the coarse movement stage is fixed to the floor surface through the frame. May be fixed to the gantry 18.
 以上詳細に説明した第1~第6の各実施形態に係る基板ステージ装置及び露光装置について要約すると、次の通りである。基板ステージ装置は、基板を吸着して平面矯正する基板ホルダを、従来装置のような基板と同等のサイズにはしないで、投影光学系による露光フィールドと同等の幅(Y軸方向のサイズ)にし、スキャン方向(X軸方向)の長さは基板のX軸方向の長さと同等もしくは一回のスキャン動作で露光する一括露光領域のスキャン長と同等の長さにした。そして、基板の基板ホルダからはみ出した部分は、移動もしくは固定のエア浮上ユニットによって浮上支持するようにした。このため、基板ホルダは小型、軽量で高精度(高平面度)化が容易になり、微動ステージの制御性(位置速度制御性など)が向上して、高精度、高速化が可能となる。また、粗動テーブルは露光フィールド(照明光ILの照射領域(露光位置))に対して1軸方向(X軸方向)にのみ移動するテーブル(ステージ)としたので、粗動ステージ部がシンプルな構成となり、コストの低減が可能になる。 The substrate stage apparatus and exposure apparatus according to the first to sixth embodiments described in detail above are summarized as follows. In the substrate stage device, the substrate holder that adsorbs the substrate and corrects the plane is not made the same size as the substrate as in the conventional device, but the same width (size in the Y-axis direction) as the exposure field by the projection optical system. The length in the scanning direction (X-axis direction) is equal to the length of the substrate in the X-axis direction or the same as the scanning length of the collective exposure region exposed by a single scanning operation. Then, the portion of the substrate that protrudes from the substrate holder is levitated and supported by a moving or fixed air levitation unit. For this reason, the substrate holder is small, light and easy to achieve high precision (high flatness), and the controllability (position speed controllability, etc.) of the fine movement stage is improved, so that high precision and high speed can be achieved. Further, since the coarse movement table is a table (stage) that moves only in one axial direction (X-axis direction) with respect to the exposure field (irradiation area (exposure position) of illumination light IL), the coarse movement stage portion is simple. This makes it possible to reduce the cost.
 また、基板のY方向へのステップ移動は、基板Yステップ送り装置によって、基板のみをY方向へ移動させるようにしたので移動質量が軽い。また、基板のYステップ位置決めはラフな精度で行なうようにしたので、基板Yステップ送り装置のコストも安い。シンプルな構成の粗動ステージ部は、微動ステージとは分離されているので、ラフな精度で良く、ラフな精度の可動部を含む構成部分(粗動ステージ部及び基板Yステップ送り装置など)は、軽量、高剛性のセラミックス部材を用いることなく、一般工業用材料を用いて作ることができる。従って、軽量、高剛性のセラミックス部材を大型化するのに必要となる大きな焼成炉、及びそれを高精度に加工するのに必要となる大型の研削盤などが不要である。また、ラフな精度の可動部を含む構成部分は、高精度なガイド及び高剛性の静圧気体軸受などのいずれも用いることなく、ボールあるいはローラによるころがりガイドなどを使って作ることができる。また、ラフな精度の可動部を含む構成部分は、高精度な位置決めを高速で行なう場合に必要とされる、高推力で低リップルのコアレスリニアモータ(ボイスコイルモータ)などを用いることなく、コア付きリニアモータ、ボールねじ駆動、あるいはベルト駆動など比較的安価で大型化が容易なものを使うことができる。 Also, the step movement of the substrate in the Y direction is light because the substrate Y step feed device moves only the substrate in the Y direction. Further, since the Y step positioning of the substrate is performed with rough accuracy, the cost of the substrate Y step feeding device is also low. Since the coarse movement stage portion with a simple configuration is separated from the fine movement stage, rough accuracy is sufficient, and the components including the rough accuracy movable portion (such as the coarse movement stage portion and the substrate Y step feeding device) are not included. It can be made using general industrial materials without using a lightweight, high-rigidity ceramic member. Therefore, there is no need for a large firing furnace required to increase the size of a lightweight and highly rigid ceramic member, and a large grinding machine required to process the ceramic member with high accuracy. In addition, the component including the movable portion with rough accuracy can be made using a rolling guide with a ball or a roller without using any of a highly accurate guide and a highly rigid static pressure gas bearing. In addition, the components including the moving parts with rough accuracy can be used without using a coreless linear motor (voice coil motor) with high thrust and low ripple, which is required for high-precision positioning at high speed. A linear motor, ball screw drive, belt drive, or the like that is relatively inexpensive and easy to increase in size can be used.
 さらに、微動ステージと粗動ステージ部とを分離して配置することによって、微動ステージへの振動伝達を抑えることができる。 Furthermore, vibration transmission to the fine movement stage can be suppressed by arranging the fine movement stage and the coarse movement stage separately.
 そして、X、Y方向へのステップ移動後の位置決めは、あらかじめ基板に設けられているアライメントマークをアライメント検出系で検出し、その検出結果に基づいて微動ステージを移動することによって行なうようにしたので、露光の際の位置決め精度も高い。 The positioning after the step movement in the X and Y directions is performed by detecting the alignment mark provided on the substrate in advance with the alignment detection system and moving the fine movement stage based on the detection result. Also, the positioning accuracy during exposure is high.
《第7の実施形態》
 次に、第7の実施形態について、図30~図49に基づいて説明する。ここで、前述した第1ないし第6の各実施形態と同一若しくは同等の構成部分については、同一若しくは類似の符号を用いるとともに、その説明を簡略若しくは省略する。
<< Seventh Embodiment >>
Next, a seventh embodiment will be described with reference to FIGS. Here, the same or similar reference numerals are used for the same or equivalent components in the first to sixth embodiments described above, and the description thereof is simplified or omitted.
 図30には、第7の実施形態に係る露光装置700の構成が、後述するエア浮上ユニット群等を省略して、概略的に示され、図31には、露光装置700の一部省略した平面図が示されている。図31は、図30の投影光学系PLより下方の部分(鏡筒定盤より下方の部分)の平面図に相当する。また、図32には、露光装置700を図30の+X方向から見た側面図(一部省略、一部断面にて示す図)が示されている。また、図33には、露光装置700の制御系を中心的に構成し、構成各部を統括制御する主制御装置50の入出力関係を示すブロック図が示されている。図33では、基板ステージ系に関連する構成各部が示されている。主制御装置50は、ワークステーション(又はマイクロコンピュータ)等を含み、露光装置700の構成各部を統括制御する。 FIG. 30 schematically shows a configuration of an exposure apparatus 700 according to the seventh embodiment, omitting an air levitation unit group and the like which will be described later, and FIG. 31 partially omits the exposure apparatus 700. A plan view is shown. FIG. 31 corresponds to a plan view of a portion below the projection optical system PL in FIG. 30 (portion below the lens barrel surface plate). FIG. 32 shows a side view of the exposure apparatus 700 as viewed from the + X direction in FIG. 30 (partially omitted, partially sectional view). FIG. 33 is a block diagram showing the input / output relationship of the main controller 50 that centrally configures the control system of the exposure apparatus 700 and performs overall control of each component. In FIG. 33, each component related to the substrate stage system is shown. The main controller 50 includes a workstation (or a microcomputer) and the like, and comprehensively controls each part of the exposure apparatus 700.
 本第7の実施形態に係る露光装置700では、前述した基板ステージ装置PSTに代えて、基板ステージ装置PSTfが設けられている点が、前述の第1の実施形態と相違するが、その他の部分の構成等は、前述した第1の実施形態と同様である。 The exposure apparatus 700 according to the seventh embodiment is different from the first embodiment described above in that a substrate stage apparatus PSTf is provided instead of the substrate stage apparatus PST described above. The configuration and the like are the same as those in the first embodiment described above.
 基板ステージ装置PSTfの構成は、これまでに説明した基板ステージ装置PST、PSTa、PSTb、PSTc、PSTd、PSTeの中では、前述した第5の実施形態に係る露光装置500が備える基板ステージ装置PSTdの構成にもっとも近い。そこで、以下では、本第7の実施形態に係る露光装置700が備える基板ステージ装置PSTfについて、基板ステージ装置PSTdとの相違点を中心として説明する。 The configuration of the substrate stage apparatus PSTf is the same as that of the substrate stage apparatus PSTd included in the exposure apparatus 500 according to the fifth embodiment described above, among the substrate stage apparatuses PST, PSTa, PSTb, PSTc, PSTd, and PSTe described so far. Closest to the configuration. Therefore, hereinafter, the substrate stage apparatus PSTf included in the exposure apparatus 700 according to the seventh embodiment will be described focusing on differences from the substrate stage apparatus PSTd.
 図23と図31とを比べるとわかるように、基板ステージ装置PSTfは、基板ホルダPH(微動ステージ26)のサイズ、基板ホルダPHのY軸方向の両側に配置されたエア浮上ユニット群の配置及び構成、並びにそのY軸方向の両側のエア浮上ユニット群の配置領域内に基板Xステップ送り装置91が各1つ配置されている点が、基板ステージ装置PSTdと相違している。また、図24と図32とを比べるとわかるように、基板ステージ装置PSTfが有する一対のXビーム30A、30BのY軸方向の幅が、基板ステージ装置PSTdが有する一対のXビームの幅より狭く(ほぼ半分程度)なっている。 As can be seen from a comparison between FIG. 23 and FIG. 31, the substrate stage apparatus PSTf includes the size of the substrate holder PH (fine movement stage 26), the arrangement of air levitation unit groups arranged on both sides of the substrate holder PH in the Y-axis direction, and It differs from the substrate stage apparatus PSTd in that the substrate X step feeding device 91 is arranged in the arrangement area of the air levitation unit group on both sides in the Y axis direction. 24 and 32, the width of the pair of X beams 30A and 30B in the substrate stage apparatus PSTf in the Y-axis direction is narrower than the width of the pair of X beams in the substrate stage apparatus PSTd. (Almost half).
 Xビーム30A,30Bのそれぞれの上面には、図32に示されるように、Y軸方向の中央にX軸方向に延びるXリニアガイド36が、1本のみ固定されている。本第7の実施形態では、Xリニアガイド36は、X軸方向に所定間隔で配列された複数の永久磁石を含む磁石ユニットを有し、X固定子を兼ねている。なお、Xリニアガイド36とは別に、磁石ユニットを有するX固定子を設けても良い。また、Xリニアガイドを、Xビーム30A,30B上に複数本、例えば2本設けても良い。 32. As shown in FIG. 32, only one X linear guide 36 extending in the X-axis direction is fixed to the upper surface of each of the X beams 30A and 30B in the center in the Y-axis direction. In the seventh embodiment, the X linear guide 36 has a magnet unit including a plurality of permanent magnets arranged at predetermined intervals in the X-axis direction, and also serves as an X stator. In addition to the X linear guide 36, an X stator having a magnet unit may be provided. Further, a plurality of, for example, two X linear guides may be provided on the X beams 30A and 30B.
 粗動テーブル32は、図32に示されるように、前述の基板ステージ装置PSTdと同様、Xビーム30A,30Bの上に配置されている。粗動テーブル32は、中央にZ軸方向に貫通する開口が形成された平面視矩形の板状部材から成る。図32では、粗動テーブル32は、重量キャンセル装置28とともに、部分的に断面図にて示されている。粗動テーブル32の下面には、図32に示されるように、スライダ44が、各Xリニアガイド36に対して、X軸方向に所定間隔で、例えば4個(図30参照)、合計8個固定されている。粗動テーブル32は、Xリニアガイド36とスライダ44とを含む複数のXリニアガイド装置により、X軸方向に直進案内される。 As shown in FIG. 32, the coarse motion table 32 is disposed on the X beams 30A and 30B in the same manner as the substrate stage apparatus PSTd described above. The coarse motion table 32 is made of a plate member having a rectangular shape in plan view and having an opening penetrating in the Z-axis direction at the center. In FIG. 32, the coarse motion table 32 is partially shown in a sectional view together with the weight canceling device 28. On the lower surface of the coarse motion table 32, as shown in FIG. 32, there are four sliders 44, for example, four (see FIG. 30) at predetermined intervals in the X-axis direction with respect to each X linear guide 36. It is fixed. The coarse motion table 32 is guided linearly in the X-axis direction by a plurality of X linear guide devices including an X linear guide 36 and a slider 44.
 また、この場合、各スライダ44は、コイルユイットを含み、各スライダ44が有する合計8個のコイルユニットによって、前述のX固定子とともに、粗動テーブル32を、X軸方向に所定のストロークで駆動するXリニアモータ42(図33参照)が構成されている。 Further, in this case, each slider 44 includes a coil unit, and the coarse motion table 32 is driven with a predetermined stroke in the X-axis direction together with the above-described X stator by a total of eight coil units included in each slider 44. An X linear motor 42 (see FIG. 33) is configured.
 なお、スライダ44とは、別にX可動子を設けても良く、この場合には、スライダ44は、転動体(例えば、複数のボールなど)を含み、各Xリニアガイド36に対してスライド可能に係合しても良い。 An X mover may be provided separately from the slider 44. In this case, the slider 44 includes rolling elements (for example, a plurality of balls) and is slidable with respect to each X linear guide 36. You may engage.
 なお、図30~図32では不図示であるが、Xビーム30A,30Bの所定の一方、例えばXビーム30Aには、X軸方向を周期方向とするXスケールが固定され、粗動テーブル32には、Xスケールを用いて粗動テーブル32のX軸方向に関する位置情報を求めるXリニアエンコーダシステム46(図33参照)を構成するエンコーダヘッドが固定されている。粗動テーブル32のX軸方向に関する位置は、上記エンコーダヘッドの出力に基づいて主制御装置50(図33参照)により制御される。 Although not shown in FIGS. 30 to 32, an X scale having a periodic direction in the X axis direction is fixed to a predetermined one of the X beams 30A and 30B, for example, the X beam 30A, The encoder head constituting the X linear encoder system 46 (see FIG. 33) for obtaining the position information in the X axis direction of the coarse motion table 32 using the X scale is fixed. The position of the coarse movement table 32 in the X-axis direction is controlled by the main controller 50 (see FIG. 33) based on the output of the encoder head.
 ここで、説明は前後するが、微動ステージ26の上面に搭載された基板ホルダPHについて説明する。基板ホルダPHは、図31からわかるように、X軸方向の長さが基板Pと同等であり、Y軸方向の幅(長さ)は基板Pの約1/3である。基板ホルダPHは、基板Pの一部(ここでは、基板PのY軸方向に関する約1/3の部分)を、例えば真空吸着(又は静電吸着)により吸着保持するとともに、加圧気体(例えば高圧空気)を上向きに噴き出してその噴き出し圧力によって基板Pの一部(基板Pの約1/3)を下方から非接触(浮上)支持することができる。基板ホルダPHによる基板Pに対する高圧空気の噴き出しと真空吸着との切り替えは、不図示の真空ポンプと高圧空気源とに基板ホルダPHを切り替え接続するホルダ吸排気切替装置51(図33参照)を介して、主制御装置50によって行われる。 Here, although the explanation is omitted, the substrate holder PH mounted on the upper surface of the fine movement stage 26 will be explained. As can be seen from FIG. 31, the substrate holder PH has the same length in the X-axis direction as that of the substrate P, and the width (length) in the Y-axis direction is about 1/3 of the substrate P. The substrate holder PH adsorbs and holds a part of the substrate P (here, a portion of about 1/3 of the substrate P in the Y-axis direction) by, for example, vacuum adsorption (or electrostatic adsorption) and a pressurized gas (for example, High pressure air) is ejected upward, and a part of the substrate P (about 1/3 of the substrate P) can be supported non-contacting (floating) from below by the ejection pressure. Switching between high-pressure air ejection and vacuum suction to the substrate P by the substrate holder PH is performed via a holder intake / exhaust switching device 51 (see FIG. 33) that switches and connects the substrate holder PH to a vacuum pump and a high-pressure air source (not shown). This is performed by the main controller 50.
 本第7の実施形態においても、微動ステージ26は、複数のボイスコイルモータ(あるいはリニアモータ)、例えば一対のXボイスコイルモータ54X、一対のYボイスコイルモータ54Y、及び4つのZボイスコイルモータ54Zを含み、前述の第1の実施形態と同様に構成された微動ステージ駆動系52(図33参照)により、粗動テーブル32上で6自由度方向(X軸、Y軸、Z軸、θx、θy及びθzの各方向)に微少駆動される。また、本第7の実施形態においても、上述したXリニアモータ42と、微動ステージ駆動系52の各一対のXボイスコイルモータ54X及びYボイスコイルモータ54Yと、によって、微動ステージ26は、投影光学系PL(図30参照)に対し、X軸方向に長ストロークで移動(粗動)可能、かつX軸,Y軸及びθz方向の3自由度方向に微少移動(微動)可能となっている。 Also in the seventh embodiment, fine movement stage 26 includes a plurality of voice coil motors (or linear motors), for example, a pair of X voice coil motors 54X, a pair of Y voice coil motors 54Y, and four Z voice coil motors 54Z. The fine movement stage drive system 52 (see FIG. 33) configured in the same manner as in the first embodiment described above includes six degrees of freedom directions (X axis, Y axis, Z axis, θx, It is slightly driven in each direction of θy and θz. Also in the seventh embodiment, the fine movement stage 26 is provided with the projection optical by the above-described X linear motor 42 and the pair of X voice coil motor 54X and Y voice coil motor 54Y of the fine movement stage drive system 52. With respect to the system PL (see FIG. 30), it can be moved (coarse movement) with a long stroke in the X-axis direction, and can be slightly moved (fine movement) in the three-degree-of-freedom directions of the X-axis, Y-axis, and θz directions.
 図32に示されるように、Xビーム30Aの+Y側、及びXビーム30Bの-Y側には、前述の第5の実施形態のフレームに比べてY軸方向の幅(長さ)が大きい、一対のフレーム110A,110Bのそれぞれが、架台18に接触しないように床面F上に設置されている。一対のフレーム110A,110Bのそれぞれの上面には、エア浮上ユニット群84E,84Fが設置されている。なお、一対のフレーム110A,110Bは架台18の上に設置されていても良い。 As shown in FIG. 32, the width (length) in the Y-axis direction is larger on the + Y side of the X beam 30A and on the −Y side of the X beam 30B than in the frame of the fifth embodiment described above. Each of the pair of frames 110 </ b> A and 110 </ b> B is installed on the floor surface F so as not to contact the gantry 18. Air levitation unit groups 84E and 84F are installed on the upper surfaces of the pair of frames 110A and 110B, respectively. The pair of frames 110 </ b> A and 110 </ b> B may be installed on the gantry 18.
 エア浮上ユニット群84E,84Fは、図31及び図32に示されるように、基板ホルダPHのY軸方向の両側に配置されている。エア浮上ユニット群84E,84Fのそれぞれは、図31に示されるように、Y軸方向の幅が基板PのY軸方向の幅と同等で、X軸方向の長さが、基板ホルダPHがスキャン移動したときの移動範囲とほぼ同等の長さの矩形領域内に、X軸方向に所定の間隔で、Y軸方向にわずかの隙間を空けて分散配置された複数のエア浮上ユニットによって構成されている。露光領域IAの中心とエア浮上ユニット群84E,84Fの中心とのX位置はほぼ一致している。各エア浮上ユニットの上面は基板ホルダPHの上面と同等、あるいは、幾分低くなるように設定されている。 The air levitation unit groups 84E and 84F are arranged on both sides of the substrate holder PH in the Y-axis direction, as shown in FIGS. As shown in FIG. 31, each of the air levitation unit groups 84E and 84F has a width in the Y-axis direction equal to the width in the Y-axis direction of the substrate P, and the length in the X-axis direction is scanned by the substrate holder PH. It is composed of a plurality of air levitation units that are dispersedly arranged in a rectangular region having a length substantially equal to the moving range when moving, with a predetermined gap in the X-axis direction and a slight gap in the Y-axis direction. Yes. The X positions of the center of the exposure area IA and the centers of the air levitation unit groups 84E and 84F substantially coincide. The upper surface of each air levitation unit is set to be equal to or somewhat lower than the upper surface of the substrate holder PH.
 エア浮上ユニット群84E,84Fをそれぞれ構成する各エア浮上ユニットは、サイズは異なるが、前述した第1の実施形態に係るエア浮上ユニット84と同様に構成されている。各エア浮上ユニットに対する高圧空気の供給のオン・オフは、図33に示される主制御装置50によって制御される。 The air levitation units constituting the air levitation unit groups 84E and 84F are different in size, but are configured in the same manner as the air levitation unit 84 according to the first embodiment described above. ON / OFF of the supply of high-pressure air to each air levitation unit is controlled by the main controller 50 shown in FIG.
 上述の説明から明らかなように、本第7の実施形態では、基板ホルダPHと基板ホルダPHの両側(±Y側)のエア浮上ユニット群84E,84Fの少なくとも一方とによって基板Pの全体を浮上支持することができる。また、基板ホルダPHの片側(+Y側又は-Y側)のエア浮上ユニット群84E又は84Fによっても基板Pの全体を浮上支持することができる。 As is apparent from the above description, in the seventh embodiment, the entire substrate P is levitated by the substrate holder PH and at least one of the air levitation unit groups 84E and 84F on both sides (± Y side) of the substrate holder PH. Can be supported. Further, the entire substrate P can be levitated and supported by the air levitation unit group 84E or 84F on one side (+ Y side or −Y side) of the substrate holder PH.
 なお、エア浮上ユニット群84E,84Fは、それぞれ、上記のY軸方向の幅が基板PのY軸方向の幅と同等で、X軸方向の長さが、基板ホルダPHがスキャン移動したときの移動範囲とほぼ同等の長さの矩形領域とほぼ同等の総支持面積を有していれば、単一の大型のエア浮上ユニットに置き換えても良いし、個々のエア浮上ユニットの大きさを、図31の場合と異ならせて、上記矩形領域内に分散配置しても良い。 Each of the air levitation unit groups 84E and 84F has the same width in the Y-axis direction as that of the substrate P in the Y-axis direction and the length in the X-axis direction when the substrate holder PH is scanned. If it has a total support area that is almost the same as a rectangular area that is almost the same length as the moving range, it may be replaced with a single large air levitation unit, and the size of each individual air levitation unit Different from the case of FIG. 31, it may be distributed in the rectangular area.
 エア浮上ユニット群84E,84Fそれぞれを構成する複数のエア浮上ユニットが配置された、基板ホルダPHのY軸方向の両側の2つの矩形領域内には、図31に示されるように、複数、例えば3つの基板Yステップ送り装置88と、1つの基板Xステップ送り装置91とが、露光領域IAの中心(投影光学系PLの中心)を通るX軸に関して、非対称に配置されている。基板Yステップ送り装置88及び基板Xステップ送り装置91のそれぞれは、エア浮上ユニットと干渉することなく、上記2つの矩形領域内に配置されている。ここで、基板Yステップ送り装置88の数は、2つでも良いし、4つ以上でも良い。 In the two rectangular regions on both sides in the Y-axis direction of the substrate holder PH, where a plurality of air levitation units constituting each of the air levitation unit groups 84E and 84F are arranged, as shown in FIG. Three substrate Y step feeding devices 88 and one substrate X step feeding device 91 are arranged asymmetrically with respect to the X axis passing through the center of the exposure area IA (the center of the projection optical system PL). Each of the substrate Y step feeding device 88 and the substrate X step feeding device 91 is arranged in the two rectangular regions without interfering with the air floating unit. Here, the number of substrate Y step feeding devices 88 may be two, or four or more.
 基板Yステップ送り装置88は、基板Pを保持(例えば吸着)してY軸方向に移動させるための装置であり、平面視で、エア浮上ユニット群84E、88Fのそれぞれの内部にX軸方向に所定の間隔で3つ配置されている。各基板Yステップ送り装置88は、フレーム110A又は110B上に支持部材89をそれぞれ介して固定されている(図32参照)。各基板Yステップ送り装置88は、基板Pの裏面を吸着してY軸方向に移動する可動部88aとフレーム110A又は110Bに固定された固定部88bと、を備えている。可動部88aは、一例として可動部88aに設けられた可動子と固定部88bに設けられた固定子とから成るリニアモータによって構成される駆動装置90(図32では不図示、図33参照)によって、フレーム110A又は110Bに対してY軸方向に駆動される。基板Yステップ送り装置88には、可動部88aの位置を計測するエンコーダなどの位置読み取り装置92(図32では不図示、図33参照)が設けられている。 The substrate Y step feeding device 88 is a device for holding (for example, adsorbing) the substrate P and moving it in the Y-axis direction. In the plan view, the substrate Y step feeding device 88 is arranged in each of the air levitation unit groups 84E and 88F in the X-axis direction. Three are arranged at predetermined intervals. Each substrate Y step feeding device 88 is fixed on a frame 110A or 110B via a support member 89 (see FIG. 32). Each substrate Y step feeding device 88 includes a movable portion 88a that attracts the back surface of the substrate P and moves in the Y-axis direction, and a fixed portion 88b fixed to the frame 110A or 110B. As an example, the movable portion 88a is driven by a driving device 90 (not shown in FIG. 32, see FIG. 33) configured by a linear motor including a mover provided in the movable portion 88a and a stator provided in the fixed portion 88b. , Driven in the Y-axis direction with respect to the frame 110A or 110B. The substrate Y step feeding device 88 is provided with a position reading device 92 (not shown in FIG. 32, see FIG. 33) such as an encoder for measuring the position of the movable portion 88a.
 各基板Yステップ送り装置88の可動部88aのY軸方向の移動ストロークは基板PのY軸方向の長さの約2/3(幾分短い)である。本第7の実施形態においても、各基板Yステップ送り装置88の可動部88a(基板吸着面)は基板Pの裏面を吸着したり、吸着を解除して基板Pから分離したりする必要があるので、駆動装置90によってZ軸方向にも微少駆動可能に構成されている。なお、実際には、可動部88aが、基板Pを吸着してY軸方向に移動するのであるが、以下では、特に区別が必要な場合を除き、基板Yステップ送り装置88と可動部88aとを区別することなく用いる。 The moving stroke of the movable portion 88a of each substrate Y step feeding device 88 in the Y-axis direction is about 2/3 (somewhat shorter) of the length of the substrate P in the Y-axis direction. Also in the seventh embodiment, the movable portion 88a (substrate adsorption surface) of each substrate Y step feeding device 88 needs to adsorb the back surface of the substrate P or release the adsorption to separate it from the substrate P. Therefore, the driving device 90 is configured to be able to be driven minutely in the Z-axis direction. Actually, the movable portion 88a adsorbs the substrate P and moves in the Y-axis direction. However, in the following description, the substrate Y step feeding device 88 and the movable portion 88a Are used without distinction.
 基板Xステップ送り装置91は、基板Pを保持(例えば吸着)してX軸方向に移動させるための装置であり、平面視でエア浮上ユニット群84E、84Fの内部に各1つ配置されている。各基板Xステップ送り装置91は、フレーム110A又は110B上に支持部材93をそれぞれ介して固定されている(図32参照)。 The substrate X step feeding device 91 is a device for holding (for example, adsorbing) the substrate P and moving it in the X-axis direction. One substrate X step feeding device 91 is disposed in each of the air levitation unit groups 84E and 84F in plan view. . Each substrate X step feeding device 91 is fixed on a frame 110A or 110B via a support member 93 (see FIG. 32).
 各基板Xステップ送り装置91は、図32に示されるように、基板Pの裏面を吸着してX軸方向に移動する可動部91aとフレーム110A又は110Bに固定された固定部91bと、を備えている。可動部91aは、例えばリニアモータによって構成される駆動装置95(図32では不図示、図33参照)によって、フレーム110A又は110Bに対してX軸方向に駆動される。基板Xステップ送り装置91には、可動部91aの位置を計測するエンコーダなどの位置読み取り装置97(図32では不図示、図33参照)が設けられている。なお、駆動装置95は、リニアモータに限らず、ボールねじ又はベルトを用いた回転モータを駆動源とする駆動機構によって構成しても良い。 As shown in FIG. 32, each substrate X step feeding device 91 includes a movable portion 91a that sucks the back surface of the substrate P and moves in the X-axis direction, and a fixed portion 91b fixed to the frame 110A or 110B. ing. The movable portion 91a is driven in the X-axis direction with respect to the frame 110A or 110B by a driving device 95 (not shown in FIG. 32, see FIG. 33) configured by, for example, a linear motor. The substrate X step feeding device 91 is provided with a position reading device 97 (not shown in FIG. 32, see FIG. 33) such as an encoder for measuring the position of the movable portion 91a. The drive device 95 is not limited to a linear motor, and may be configured by a drive mechanism that uses a rotary motor using a ball screw or a belt as a drive source.
 各基板Xステップ送り装置91の可動部91aのX軸方向の移動ストロークは例えば基板PのX軸方向の長さの約2倍である。各固定部91bの+X側の端部は、エア浮上ユニット群84E,84Fから、+X側に所定長さ張り出している。 The movement stroke in the X-axis direction of the movable portion 91a of each substrate X step feeding device 91 is, for example, about twice the length of the substrate P in the X-axis direction. The + X side end of each fixing portion 91b protrudes from the air levitation unit group 84E, 84F to the + X side by a predetermined length.
 また、各基板Xステップ送り装置91の可動部91a(基板吸着面)は基板Pの裏面を吸着したり、吸着を解除して基板Pから分離したりする必要があるので、駆動装置95によってZ軸方向にも微少駆動可能に構成されている。なお、実際には、可動部91aが、基板Pを吸着してX軸方向に移動するのであるが、以下では、特に区別が必要な場合を除き、基板Xステップ送り装置91と可動部91aとを区別することなく用いる。 Further, since the movable portion 91a (substrate adsorption surface) of each substrate X step feeding device 91 needs to adsorb the back surface of the substrate P or release the adsorption to separate it from the substrate P, the drive device 95 performs Z It is configured so that it can be driven minutely in the axial direction. Actually, the movable portion 91a adsorbs the substrate P and moves in the X-axis direction. However, in the following, the substrate X step feeding device 91 and the movable portion 91a Are used without distinction.
 なお、上記説明では、基板Yステップ送り装置88及び基板Xステップ送り装置91のそれぞれの可動部は、基板Pとの分離、接触を行なう必要があるため、Z軸方向にも移動可能であるものとしたが、これに限らず、可動部(基板吸着面)による基板Pの吸着及び基板Pとの分離のために、基板Pの裏面の一部を吸着保持する基板ホルダPH(微動ステージ26)がZ軸方向に移動しても良い。 In the above description, since the movable parts of the substrate Y step feeding device 88 and the substrate X step feeding device 91 need to be separated from and contacted with the substrate P, they can also move in the Z-axis direction. However, the present invention is not limited to this, and the substrate holder PH (fine movement stage 26) that holds and holds a part of the back surface of the substrate P for the adsorption of the substrate P by the movable portion (substrate adsorption surface) and the separation from the substrate P. May move in the Z-axis direction.
 重量キャンセル装置28は、レベリング装置78を介して微動ステージ26を下方から支持している。重量キャンセル装置28は、粗動テーブル32の開口内に配置されており、その上半部が粗動テーブル32より上方に露出し、その下半部が粗動テーブル32より下方に露出している。 The weight canceling device 28 supports the fine movement stage 26 from below via a leveling device 78. The weight canceling device 28 is disposed in the opening of the coarse motion table 32, and its upper half is exposed above the coarse motion table 32 and its lower half is exposed below the coarse motion table 32. .
 重量キャンセル装置28は、図32に示されるように、筐体64、空気ばね66及びZスライダ68などを有し、例えば前述した第2の実施形態以下の各実施形態と同様に構成されている。すなわち、本第7の実施形態に係る基板ステージ装置PSTfでは、Zスライダ68がレベリング装置78の固定部を兼ね、シーリングパッドは設けられておらず、重量キャンセル装置28が微動ステージ26と一体化されている。また、重量キャンセル装置28は微動ステージ26と一体化されているので、重量キャンセル装置28の単独運動を規制する連結装置80(フレクシャ装置)などは設けられていない。微動ステージ26は、図32中に球状部材で模式的に示されている球面軸受、あるいは擬似球面軸受構造体を有するレベリング装置78によってZスライダ68上でチルト自在(XY平面に対してθx及びθy方向に揺動自在)に支持されている。 As shown in FIG. 32, the weight canceling device 28 includes a housing 64, an air spring 66, a Z slider 68, and the like, and is configured in the same manner as the above-described second and subsequent embodiments, for example. . That is, in the substrate stage device PSTf according to the seventh embodiment, the Z slider 68 also serves as a fixing portion of the leveling device 78, no sealing pad is provided, and the weight cancellation device 28 is integrated with the fine movement stage 26. ing. Further, since the weight canceling device 28 is integrated with the fine movement stage 26, there is no connecting device 80 (flexure device) or the like that restricts the single motion of the weight canceling device 28. Fine movement stage 26 can be tilted on Z slider 68 by a leveling device 78 having a spherical bearing or a pseudo spherical bearing structure schematically shown as a spherical member in FIG. 32 (θx and θy with respect to the XY plane). It can be swung in the direction).
 重量キャンセル装置28、及び重量キャンセル装置28にレベリング装置78を介して支持された上部構成部分(微動ステージ26及び基板ホルダPH等)は、一対のXボイスコイルモータ54Xの働きによって、粗動テーブル32と一体的にX軸方向に移動する。すなわち、上部構成部分(微動ステージ26及び基板ホルダPH等)は、主制御装置50によって、一対のXボイスコイルモータ54Xを用いて重量キャンセル装置28に支持されて粗動テーブル32に同期駆動(粗動テーブル32と同方向に同速度で駆動)されることにより、粗動テーブル32と共にX軸方向に所定のストロークで移動する。また、上部構成部分(微動ステージ26及び基板ホルダPH等)は、主制御装置50により、一対のXボイスコイルモータ54X、一対のYボイスコイルモータ54Y及び4つのZボイスコイルモータ54Zを介して、粗動テーブル32に対し6自由度方向に微少駆動される。 The weight canceling device 28 and the upper constituent parts (the fine motion stage 26 and the substrate holder PH) supported by the weight canceling device 28 via the leveling device 78 are operated by the pair of X voice coil motors 54X to operate the coarse motion table 32. And move in the X-axis direction. That is, the upper components (fine movement stage 26, substrate holder PH, etc.) are supported by the weight canceling device 28 by the main controller 50 using a pair of X voice coil motors 54X and are synchronously driven (coarse) by the coarse movement table 32. And is driven at the same speed in the same direction as the moving table 32), and moves with the coarse moving table 32 in the X-axis direction with a predetermined stroke. Further, the upper components (fine movement stage 26, substrate holder PH, etc.) are controlled by main controller 50 via a pair of X voice coil motors 54X, a pair of Y voice coil motors 54Y, and four Z voice coil motors 54Z. The coarse movement table 32 is slightly driven in the direction of six degrees of freedom.
 本第7の実施形態では、粗動テーブル32、重量キャンセル装置28、微動ステージ26、及び基板ホルダPH等を含んで、基板Pと一体でX軸方向に移動する移動体(以下、適宜、基板ステージ(26,28,32、PH)と表記する)が構成されている。 In the seventh embodiment, a moving body (hereinafter referred to as a substrate as appropriate) including the coarse movement table 32, the weight cancellation device 28, the fine movement stage 26, the substrate holder PH, and the like, which moves integrally with the substrate P in the X-axis direction. Stages (denoted as 26, 28, 32, PH) are configured.
 図30及び図31に示されるように、微動ステージ26のY軸方向の両側面のX軸方向中央付近に、それぞれ不図示の移動鏡支持部品を介して、X軸に直交する反射面を有する平面ミラー(あるいはコーナーキューブ)から成る一対のX移動鏡94X、94Xが、前述の第5の実施形態と同様に取り付けられている。微動ステージ26の-Y側の側面には、図32に示されるように、不図示のミラー保持部品を介して、Y軸に直交する反射面を有する長尺の平面ミラーから成るY移動鏡94Yが固定されている。 As shown in FIGS. 30 and 31, the fine movement stage 26 has reflection surfaces orthogonal to the X axis in the vicinity of the center in the X axis direction on both side surfaces in the Y axis direction via movable mirror support parts (not shown). A pair of X movable mirrors 94X 1 , 94X 2 composed of plane mirrors (or corner cubes) are attached in the same manner as in the fifth embodiment. As shown in FIG. 32, on the side surface on the −Y side of fine movement stage 26, Y movable mirror 94Y composed of a long plane mirror having a reflecting surface orthogonal to the Y axis via a mirror holding part (not shown). Is fixed.
 本第7の実施形態では、微動ステージ26(基板ホルダPH)のXY平面内の位置情報は、前述の各実施形態と同様に基板ステージ干渉計システム98(図33参照)によって、例えば0.5~1nm程度の分解能で常時検出されている。なお、実際には、基板ステージ干渉計システム98は、図31及び図33に示されるように、一対のX移動鏡94X、94Xに対応する一対のXレーザ干渉計(以下、X干渉計と略記する)98X,98X、及びY移動鏡94Yに対応する一対のYレーザ干渉計(以下、Y干渉計と略記する)98Y,98Yを備えている。X干渉計98X,98X、及びY干渉計98Y,98Yの計測結果は、主制御装置50に供給されている(図33参照)。 In the seventh embodiment, the positional information of the fine movement stage 26 (substrate holder PH) in the XY plane is set to, for example, 0.5 by the substrate stage interferometer system 98 (see FIG. 33) as in the above-described embodiments. It is always detected with a resolution of about 1 nm. Actually, as shown in FIGS. 31 and 33, the substrate stage interferometer system 98 includes a pair of X laser interferometers (hereinafter referred to as X interferometers) corresponding to the pair of X movable mirrors 94X 1 and 94X 2. 98X 1 , 98X 2 , and a pair of Y laser interferometers (hereinafter abbreviated as Y interferometers) 98Y 1 , 98Y 2 corresponding to the Y moving mirror 94Y. The measurement results of the X interferometers 98X 1 and 98X 2 and the Y interferometers 98Y 1 and 98Y 2 are supplied to the main controller 50 (see FIG. 33).
 一対のX干渉計98X,98Xのそれぞれは、図32に示されるように、-X側の架台18にそれぞれの一端部(下端部)が固定された+X方向から見てL字の形状を有するフレーム(X干渉計フレーム)102A,102Bの他端(上端)に個別に固定されている。ここで、フレーム102A,102Bとして、L字状のものが用いられているので、フレーム102A,102Bと、前述のフレーム110A,110B、及びX軸方向に移動する粗動テーブル32との干渉を避けることができる。 As shown in FIG. 32, each of the pair of X interferometers 98X 1 and 98X 2 has an L shape when viewed from the + X direction in which one end portion (lower end portion) is fixed to the −X side frame 18. Are individually fixed to the other ends (upper ends) of frames (X interferometer frames) 102A and 102B. Here, since L-shaped frames are used as the frames 102A and 102B, avoid interference between the frames 102A and 102B and the above-described frames 110A and 110B and the coarse motion table 32 moving in the X-axis direction. be able to.
 また、一対のX干渉計98X,98Xは、一対のX移動鏡94X、94Xに対向して、基板Pの上面よりも低い位置でY軸方向に関して基板ホルダPHとエア浮上ユニット群84E又は84Fとの隙間に収まる位置に配置されている。これにより、本実施形態に係る基板ステージ装置PSTfでは、一対のX干渉計98X,98Xは、基板ホルダPHのX軸方向移動範囲外の位置に設置する場合に比べて、-X側の架台18から近い位置に配置することが可能となっている。 In addition, the pair of X interferometers 98X 1 and 98X 2 are opposed to the pair of X movable mirrors 94X 1 and 94X 2 and at a position lower than the upper surface of the substrate P, the substrate holder PH and the air floating unit group in the Y-axis direction. It is arranged at a position that fits in a gap with 84E or 84F. Thereby, in the substrate stage apparatus PSTf according to the present embodiment, the pair of X interferometers 98X 1 and 98X 2 is on the −X side as compared with the case where the pair of X interferometers 98X 1 and 98X 2 are installed outside the X axis direction movement range of the substrate holder PH. It can be arranged at a position close to the gantry 18.
 また、X干渉計98X,98Xのうちの所定の一方、例えばX干渉計98Xとしては、図30に示されるように、Z軸方向に離間した2本の干渉計ビーム(計測ビーム)をX移動鏡94Xに照射する多軸干渉計が用いられている。この理由については後述する。 Further, a predetermined one of the X interferometers 98X 1 and 98X 2 , for example, the X interferometer 98X 2, as shown in FIG. 30, two interferometer beams (measurement beams) separated in the Z-axis direction. multi-axis interferometer which irradiates the X movable mirror 94X 2 are used. The reason for this will be described later.
 なお、X干渉計としては、一対のX移動鏡94X、94Xのそれぞれに個別に干渉計ビーム(計測ビーム)を照射する一対のX干渉計98X,98Xに限らず、一対のX移動鏡94X、94Xのそれぞれに照射される少なくとも各1本の計測ビームを含む複数の計測ビームを射出する多軸干渉計を用いることもできる。 The X interferometer is not limited to the pair of X interferometers 98X 1 and 98X 2 that individually irradiate the pair of X movable mirrors 94X 1 and 94X 2 with the interferometer beam (measurement beam). A multi-axis interferometer that emits a plurality of measurement beams including at least one measurement beam irradiated to each of the movable mirrors 94X 1 and 94X 2 can also be used.
 一対のY干渉計98Y,98Yは、図31に示されるように、エア浮上ユニット群84Fを構成する最も基板ホルダPHに近い第1の列のエア浮上ユニット列と、これに隣接する第2列のエア浮上ユニット列との間で、かつ第1列のエア浮上ユニット列を構成するX軸方向中心近傍に位置する隣接するエア浮上ユニット相互間の2箇所の隙間に対向する位置に配置されている。この2箇所の隙間は、露光領域IAの中心を通るY軸に関して対称な隙間である。一対のY干渉計98Y,98Yは、図32に示されるように、前述のフレーム110Bの上面に設置された支持部材104’の上面にY移動鏡94Yに対向して、かつエア浮上ユニット群84Fを構成するエア浮上ユニットとは分離されて(非接触で)固定されている。本実施形態では、一対のY干渉計98Y,98Yから、上述の2箇所の隙間をそれぞれ介して、計測ビーム(測長ビーム)がY移動鏡94Yに照射されるようになっている。なお、Y干渉計98Y,98Yを支持する支持部材をフレーム110Bに取付ける場合、Y干渉計の計測の基準を投影光学系PLとするために、フレーム110Bは投影光学系PLと一体化された架台18に設置するのが好ましい。あるいは、Y干渉計98Y,98Yを支持する支持部材104’を床面に設置したフレーム110Bではなく、直接架台18に固定してもよい。 As shown in FIG. 31, the pair of Y interferometers 98Y 1 and 98Y 2 includes a first row of air levitation unit rows that are closest to the substrate holder PH that constitutes the air levitation unit group 84F, and a first row that is adjacent thereto. Arranged at a position facing two gaps between adjacent air levitation units located between the two air levitation unit rows and in the vicinity of the center in the X-axis direction constituting the first air levitation unit row Has been. These two gaps are symmetrical with respect to the Y axis passing through the center of the exposure area IA. As shown in FIG. 32, the pair of Y interferometers 98Y 1 and 98Y 2 are arranged so that the upper surface of the support member 104 ′ installed on the upper surface of the frame 110B is opposed to the Y moving mirror 94Y and is an air floating unit. The air levitation units constituting the group 84F are separated (non-contact) and fixed. In the present embodiment, the Y moving mirror 94Y is irradiated with the measurement beam (measurement beam) from the pair of Y interferometers 98Y 1 and 98Y 2 through the above-mentioned two gaps. When the support members that support the Y interferometers 98Y 1 and 98Y 2 are attached to the frame 110B, the frame 110B is integrated with the projection optical system PL so that the measurement standard of the Y interferometer is the projection optical system PL. It is preferable to install it on the gantry 18. Alternatively, the support member 104 ′ that supports the Y interferometers 98Y 1 and 98Y 2 may be directly fixed to the gantry 18 instead of the frame 110B installed on the floor surface.
 Y干渉計としては、Y移動鏡94Yに個別に干渉計ビーム(計測ビーム)を照射する一対のY干渉計98Y,98Yに限らず、Y移動鏡94Yに2本の計測ビームを照射する多軸干渉計を用いることもできる。 The Y interferometer is not limited to the pair of Y interferometers 98Y 1 and 98Y 2 that individually irradiate the Y moving mirror 94Y with the interferometer beam (measurement beam), and the Y moving mirror 94Y is irradiated with two measurement beams. A multi-axis interferometer can also be used.
 本実施形態では、X干渉計98X,98Xは、Z軸方向に関して基板Pの表面(露光の際には、この面が投影光学系PLの像面に一致するように、基板Pのフォーカス・レベリング制御が行われる)よりも低い位置にあるため、X位置の計測結果にX軸方向の移動時の微動ステージ26の姿勢変化(ピッチング)によるアッベ誤差が含まれる。主制御装置50は、前述の多軸干渉計から成るX干渉計98Xによって微動ステージ26のピッチング量を検出し、その検出結果に基づいて、X干渉計98X,98XによるX位置の計測結果に含まれる上記アッベ誤差の補正を行うようにしている。すなわち、かかるアッベ誤差の補正のため、X干渉計98Xとして、Z軸方向に離間した2本干渉計ビーム(計測ビーム)をX移動鏡94Xに照射する、すなわち微動ステージ26のピッチング量を検出可能な多軸干渉計が用いられている。 In the present embodiment, the X interferometers 98X 1 and 98X 2 are arranged such that the surface of the substrate P in the Z-axis direction (the surface of the substrate P is focused so that this surface coincides with the image plane of the projection optical system PL during exposure). Since the position is lower than the position where leveling control is performed), the X position measurement result includes an Abbe error due to the attitude change (pitching) of the fine movement stage 26 when moving in the X-axis direction. The main controller 50 detects the pitching amount of the fine movement stage 26 by X interferometer 98x 2 consisting of multi-axis interferometer described above, based on the detection result, the measurement of the X-position by X interferometer 98x 1, 98x 2 The Abbe error included in the result is corrected. That is, since the correction of such Abbe errors, as the X interferometer 98x 2, irradiates two interferometer beams spaced in the Z-axis direction (measurement beam) to the X movable mirror 94X 2, i.e. the pitching amount of the fine movement stage 26 A detectable multi-axis interferometer is used.
 基板ステージ装置PSTfのその他部分の構成は、基板ステージ装置PSTdと同様になっている。また、基板ステージ装置以外の構成各部は、前述の各実施形態と同様である(図30~図33参照)。 The configuration of the other parts of the substrate stage apparatus PSTf is the same as that of the substrate stage apparatus PSTd. In addition, the components other than the substrate stage apparatus are the same as those in the above-described embodiments (see FIGS. 30 to 33).
 次に、上述のようにして構成された本第7の実施形態に係る露光装置700で行われる基板処理のための一連の動作について説明する。ここでは、一例として基板Pに対して第2層目以降の露光を行う場合について、図34~図49に基づいて説明する。なお、図34~図49において示される露光領域IAは、露光時に照明光ILが投影光学系PLを介して照射される照明領域であり、実際には、露光時以外に形成されることはないが、基板Pと投影光学系PLとの位置関係を明確にするため常に図示されている。 Next, a series of operations for substrate processing performed in the exposure apparatus 700 according to the seventh embodiment configured as described above will be described. Here, as an example, the case where the second and subsequent layers of the substrate P are exposed will be described with reference to FIGS. Note that the exposure area IA shown in FIGS. 34 to 49 is an illumination area in which the illumination light IL is irradiated through the projection optical system PL during exposure, and is not actually formed except during exposure. Is always shown in order to clarify the positional relationship between the substrate P and the projection optical system PL.
 まず、主制御装置50の管理の下、不図示のマスク搬送装置(マスクローダ)によって、マスクステージMST上へのマスクMのロードが行われるとともに、不図示の基板搬入装置によって、基板ステージ装置PSTf上への基板Pの搬入(投入)が行なわれる。基板Pには前層以前の露光の際に、一例として図31に示されるように、複数、例えばX軸方向に2つ、Y軸方向に3つ、合計6つのショット領域SA1~SA6とともに、各ショット領域のパターンと同時に転写された複数のアライメントマーク(不図示)が、ショット領域毎に設けられている。 First, under the control of the main controller 50, the mask M is loaded onto the mask stage MST by a mask transfer device (mask loader) (not shown), and the substrate stage device PSTf is loaded by a substrate carry-in device (not shown). The substrate P is loaded (introduced) upward. As shown in FIG. 31 as an example when the substrate P is exposed before the previous layer, a plurality of, for example, two in the X-axis direction and three in the Y-axis direction, with a total of six shot areas SA1 to SA6, A plurality of alignment marks (not shown) transferred simultaneously with the pattern of each shot area are provided for each shot area.
 主制御装置50は、図34に示されるように、基板搬入装置によって-Y側のエア浮上ユニット群84Fの上方に搬入された基板Pを、エア浮上ユニット群84Fを用いて浮上支持しつつ、-Y側の基板Xステップ送り装置91を用いて吸着保持して、図34中に黒塗り矢印で示されるように、-X方向に搬送する。 As shown in FIG. 34, main controller 50 levitates and supports substrate P carried above −Y side air levitation unit group 84F by the substrate carry-in device using air levitation unit group 84F. The substrate is sucked and held by using the substrate Y step feeding device 91 on the −Y side, and is conveyed in the −X direction as indicated by the black arrow in FIG.
 次に、主制御装置50は、エア浮上ユニット群84Fによって浮上支持された基板Pを-Y側の最も+X側の基板Yステップ送り装置88を用いて吸着保持するとともに、その基板Pに対する基板Xステップ送り装置91による吸着を解除する。そして、主制御装置50は、基板Pを、基板Yステップ送り装置88を用いて、図34中に点線矢印で示されるように+Y方向に搬送する。 Next, the main controller 50 sucks and holds the substrate P levitated and supported by the air levitation unit group 84F using the -Y side most + X side substrate Y step feeding device 88, and the substrate X with respect to the substrate P The suction by the step feeding device 91 is released. Then, main controller 50 transports substrate P in the + Y direction as shown by the dotted arrow in FIG. 34 using substrate Y step feeding device 88.
 これにより、基板Pは、図35に示されるように、基板ホルダPHと基板ホルダPHの-Y側のエア浮上ユニット群84Fの一部とに跨って載置される。このとき、基板Pは、基板ホルダPHとエア浮上ユニット群84Fの一部とによって浮上支持されている。そして、主制御装置50により基板ホルダPHが、排気から吸引に切り替えられる。これにより、基板ホルダPHにより基板Pの一部(基板P全体の約1/3)が吸着固定され、エア浮上ユニット群84Fの一部により基板Pの一部(基板P全体の残りの約2/3)が浮上支持された状態となる。このとき、基板P上の少なくとも2つのアライメントマークが、いずれかのアライメント検出系の視野に入るように、かつ基板ホルダPH上にくるように、基板Pが、基板ホルダPHとエア浮上ユニット群84Fの一部とに跨って載置される。 Thereby, as shown in FIG. 35, the substrate P is placed across the substrate holder PH and a part of the air floating unit group 84F on the −Y side of the substrate holder PH. At this time, the substrate P is levitated and supported by the substrate holder PH and a part of the air levitation unit group 84F. Then, the main controller 50 switches the substrate holder PH from exhaust to suction. As a result, a part of the substrate P (about 3 of the whole substrate P) is attracted and fixed by the substrate holder PH, and a part of the substrate P (about the remaining about 2 of the whole substrate P by the part of the air floating unit group 84F) / 3) is in a state of being supported by levitation. At this time, the substrate P is placed on the substrate holder PH and the air levitation unit group 84F so that at least two alignment marks on the substrate P are in the field of view of any alignment detection system and on the substrate holder PH. It is placed across a part of.
 上記の基板ホルダPHによる基板Pの吸着動作の開始の直後に、主制御装置50によって、基板Yステップ送り装置88による基板Pの吸着が解除され、基板Yステップ送り装置88(可動部88a)は、図36に示される-Y側の移動限界位置である待機位置に戻されている。このとき、基板Xステップ送り装置91(可動部91a)も、主制御装置50によって、図36に示される-X側の移動限界位置である待機位置に戻されている。 Immediately after the start of the adsorption operation of the substrate P by the substrate holder PH, the main controller 50 releases the adsorption of the substrate P by the substrate Y step feeding device 88, and the substrate Y step feeding device 88 (movable portion 88a) 36, it is returned to the standby position which is the movement limit position on the -Y side shown in FIG. At this time, the substrate X step feeding device 91 (movable part 91a) is also returned to the standby position, which is the movement limit position on the −X side shown in FIG.
 その後、主制御装置50により、従来と同様のアライメント計測の方法によって投影光学系PLに対する微動ステージ26(基板ホルダPH)の位置と、微動ステージ26に対する基板Pの凡その位置とが求められる。なお、微動ステージ26に対する基板Pのアライメント計測は省略しても良い。 Thereafter, the main controller 50 obtains the position of the fine movement stage 26 (substrate holder PH) with respect to the projection optical system PL and the approximate position of the substrate P with respect to the fine movement stage 26 by the same alignment measurement method as before. Note that the alignment measurement of the substrate P with respect to the fine movement stage 26 may be omitted.
 そして、主制御装置50は、上記の計測結果に基づいて、粗動テーブル32を介して微動ステージ26を駆動して基板P上の少なくとも2つのアライメントマークをいずれかのアライメント検出系の視野内に移動させ、投影光学系PLに対する基板Pのアライメント計測を行い、その結果に基づいて、基板P上のショット領域SA1の露光のためのスキャン開始位置を求める。ここで、露光のためのスキャンは、走査露光時の等速移動区間の前後に加速区間及び減速区間を含むので、スキャン開始位置は、厳密に言えば加速開始位置である。そして、主制御装置50は、粗動テーブル32を駆動するとともに微動ステージ26を微小駆動して、そのスキャン開始位置(加速開始位置)に基板Pを位置決めする。このとき、微動ステージ26(基板ホルダPH)の粗動テーブル32に対する、X軸、Y軸及びθz方向(あるいは6自由度方向)の精密な微少位置決め駆動が行われる。図36には、このようにして、基板P上のショット領域SA1の露光のためのスキャン開始位置(加速開始位置)に基板Pが位置決めされた直後の状態が示されている。
 その後、ステップ・アンド・スキャン方式の露光動作が行なわれる。
Then, main controller 50 drives fine movement stage 26 via coarse movement table 32 based on the above measurement result to place at least two alignment marks on substrate P within the field of view of any alignment detection system. The alignment measurement of the substrate P with respect to the projection optical system PL is performed, and the scan start position for exposure of the shot area SA1 on the substrate P is obtained based on the result. Here, since the scan for exposure includes an acceleration section and a deceleration section before and after the constant speed movement section during scanning exposure, the scan start position is strictly an acceleration start position. Then, main controller 50 drives coarse movement table 32 and finely moves fine movement stage 26 to position substrate P at its scan start position (acceleration start position). At this time, precise fine positioning drive in the X-axis, Y-axis, and θz directions (or 6-degree-of-freedom directions) is performed on the coarse movement table 32 of the fine movement stage 26 (substrate holder PH). FIG. 36 shows a state immediately after the substrate P is positioned at the scan start position (acceleration start position) for exposure of the shot area SA1 on the substrate P in this way.
Thereafter, a step-and-scan exposure operation is performed.
 ステップ・アンド・スキャン方式の露光動作では、基板P上の複数のショット領域SA1~SA6に対して順次露光処理が行われる。基板Pは、スキャン動作(Xスキャン動作)時には、X軸方向に、所定の加速時間加速され、その後所定時間等速駆動され(この等速駆動中に露光(スキャン露光)が行われ)、その後加速時間と同じ時間だけ減速される。また、基板は、ステップ動作時(ショット領域間移動時)には、X軸又はY軸方向に適宜駆動される(以下、それぞれXステップ動作、Yステップ動作と呼ぶ)。本実施形態では、各ショット領域SAn(n=1、2、3、4、5、6)の最大露光幅(Y軸方向の幅)は基板Pの約1/3である。
 具体的には、露光動作は次のようにして行なわれる。
In the step-and-scan type exposure operation, the plurality of shot areas SA1 to SA6 on the substrate P are sequentially exposed. During the scan operation (X scan operation), the substrate P is accelerated in the X axis direction for a predetermined acceleration time, and then driven at a constant speed for a predetermined time (exposure (scan exposure) is performed during this constant speed drive), and thereafter It is decelerated by the same time as the acceleration time. Further, the substrate is appropriately driven in the X-axis or Y-axis direction during the step operation (moving between shot areas) (hereinafter referred to as X-step operation and Y-step operation, respectively). In the present embodiment, the maximum exposure width (width in the Y-axis direction) of each shot area SAn (n = 1, 2, 3, 4, 5, 6) is about 1/3 of the substrate P.
Specifically, the exposure operation is performed as follows.
 図36の状態から、基板ステージ(26,28,32、PH)は、図36中に白抜き矢印で示されるように、-X方向へ駆動され、基板PのXスキャン動作が行われる。このとき、マスクM(マスクステージMST)が基板P(微動ステージ26)と同期して-X方向へ駆動されており、ショット領域SA1が、投影光学系PLによるマスクMのパターンの投影領域である露光領域IAを通過するので、その際に、ショット領域SA1に対する走査露光が行われる。走査露光は、微動ステージ26(基板ホルダPH)の-X方向へ加速後の等速移動中に、マスクM、投影光学系PLを介して基板Pに照明光ILが照射されることで行われる。 36, the substrate stage (26, 28, 32, PH) is driven in the −X direction as shown by the white arrow in FIG. 36, and the X scan operation of the substrate P is performed. At this time, the mask M (mask stage MST) is driven in the −X direction in synchronization with the substrate P (fine movement stage 26), and the shot area SA1 is a projection area of the pattern of the mask M by the projection optical system PL. Since it passes through the exposure area IA, scanning exposure for the shot area SA1 is performed at that time. The scanning exposure is performed by irradiating the substrate P with the illumination light IL through the mask M and the projection optical system PL while the fine movement stage 26 (substrate holder PH) is moving in the −X direction at a constant speed. .
 上述のXスキャン動作に際し、主制御装置50は、微動ステージ26に搭載された基板ホルダPHに基板Pの一部(基板P全体の約1/3)を吸着固定させ、エア浮上ユニット群84F上に基板Pの一部(基板P全体の約2/3)を浮上支持させた状態で、基板ステージ(26,28,32、PH)を駆動する。この際、主制御装置50は、Xリニアエンコーダシステム46の計測結果に基づいて、Xリニアモータ42を介して粗動テーブル32をX軸方向に駆動するとともに、基板ステージ干渉計システム98、Zチルト計測系76の計測結果に基づいて、微動ステージ駆動系52(各ボイスコイルモータ54X、54Y、54Z)を駆動する。これにより、基板Pは微動ステージ26と共に、重量キャンセル装置28に一体的に支持された状態で、一対のXボイスコイルモータ54Xの働きによって、粗動テーブル32と一体的にX軸方向に移動するとともに、粗動テーブル32からの相対駆動によって、X軸、Y軸、Z軸、θx、θy及びθzの各方向(6自由度方向)に関して精密に位置制御される。また、主制御装置50は、Xスキャン動作に際し、微動ステージ26(基板ホルダPH)と同期して、マスク干渉計システム14の計測結果に基づいて、マスクMを保持するマスクステージMSTを、X軸方向に走査駆動するとともに、Y軸方向及びθz方向に微小駆動する。図37には、ショット領域SA1に対するスキャン露光が終了して、基板Pの一部を保持する基板ステージ(26,28,32、PH)が停止した状態が示されている。 During the above-described X-scan operation, main controller 50 adsorbs and fixes a part of substrate P (about 1/3 of the entire substrate P) to substrate holder PH mounted on fine movement stage 26, and moves on air floating unit group 84F. The substrate stage (26, 28, 32, PH) is driven in a state in which a part of the substrate P (about 2/3 of the entire substrate P) is levitated and supported. At this time, the main controller 50 drives the coarse movement table 32 in the X-axis direction via the X linear motor 42 based on the measurement result of the X linear encoder system 46, and the substrate stage interferometer system 98, Z tilt Based on the measurement result of measurement system 76, fine movement stage drive system 52 (each voice coil motor 54X, 54Y, 54Z) is driven. Thus, the substrate P is moved together with the coarse movement table 32 in the X-axis direction by the action of the pair of X voice coil motors 54X while being supported by the weight cancellation device 28 together with the fine movement stage 26. At the same time, by relative driving from the coarse motion table 32, the position of each of the X axis, Y axis, Z axis, θx, θy, and θz directions (6 degrees of freedom direction) is precisely controlled. Further, in the X scan operation, main controller 50 synchronizes with fine movement stage 26 (substrate holder PH), and sets mask stage MST for holding mask M on the X axis based on the measurement result of mask interferometer system 14. Scanning is performed in the direction, and minute driving is performed in the Y-axis direction and θz direction. FIG. 37 shows a state in which the scanning exposure for the shot area SA1 is completed and the substrate stage (26, 28, 32, PH) holding a part of the substrate P is stopped.
 次に、主制御装置50は、次の露光のための加速に備えて、基板Pを、図37中に白抜き矢印で示されるように、少し+X方向へ駆動する基板PのXステップ動作を行う。基板PのXステップ動作は、主制御装置50が、Xスキャン動作と同様の状態で基板ステージ(26,28,32、PH)を駆動して(但し、移動中の位置偏差はスキャン動作ほど厳密に規制しないで)行なう。主制御装置50は、基板PのXステップ動作と並行して、マスクステージMSTを加速開始位置に戻している。 Next, in preparation for acceleration for the next exposure, main controller 50 performs the X step operation of substrate P that slightly drives substrate P in the + X direction as shown by the white arrow in FIG. Do. In the X step operation of the substrate P, the main controller 50 drives the substrate stage (26, 28, 32, PH) in the same state as the X scan operation (however, the positional deviation during movement is as strict as the scan operation). Do not regulate). Main controller 50 returns mask stage MST to the acceleration start position in parallel with the X-step operation of substrate P.
 そして、Xステップ動作後、主制御装置50は、基板P(基板ステージ(26,28,32、PH))とマスクM(マスクステージMST)との-X方向の加速を開始して、前述と同様にしてショット領域SA2に対しスキャン露光を行なう。図38には、ショット領域SA2に対するスキャン露光が終了して、基板ステージ(26,28,32、PH)が停止した状態が示されている。 Then, after the X step operation, main controller 50 starts acceleration in the −X direction of substrate P (substrate stage (26, 28, 32, PH)) and mask M (mask stage MST). Similarly, the scan exposure is performed on the shot area SA2. FIG. 38 shows a state where the scanning exposure for the shot area SA2 is completed and the substrate stage (26, 28, 32, PH) is stopped.
 次に、基板Pの未露光領域を基板ホルダPH上へ移動させるためのYステップ動作が行われる。この基板PのYステップ動作は、主制御装置50が、-Y側でかつ最も-X側の基板Yステップ送り装置88(可動部88a)によって、図38に示される状態にある基板Pの裏面を吸着保持し、その基板Pに対する基板ホルダPHの吸着を解除した後、基板ホルダPHからの高圧空気の排気とエア浮上ユニット群84Fによる引き続きの高圧空気の排気とによって基板Pを浮上させた状態で、図38中に点線矢印で示されるように、基板Yステップ送り装置88により基板Pを+Y方向へ搬送することによって行われる。これにより、基板ホルダPHに対して基板Pのみが+Y方向に移動し、図39に示されるように、基板Pは、未露光のショット領域SA3,SA4が基板ホルダPHに対向し、基板ホルダPHとエア浮上ユニット群84Eの一部とエア浮上ユニット群84Fの一部とに跨って載置された状態となる。このとき、基板Pは、基板ホルダPHとエア浮上ユニット群84Eの一部とエア浮上ユニット群84Fの一部とによって浮上支持されている。そして、主制御装置50により基板ホルダPHが、排気から吸気(吸引)に切り替えられる。これにより、基板ホルダPHにより基板Pの一部(基板P全体の約1/3)が吸着固定され、エア浮上ユニット群84Eの一部とエア浮上ユニット群84Fの一部とによって基板Pの一部(基板P全体の残りの約2/3)が浮上支持された状態となる。上記の基板ホルダPHによる基板Pの吸着動作の開始の直後に、主制御装置50によって、基板Yステップ送り装置88による基板Pの吸着が解除される。 Next, a Y-step operation for moving the unexposed area of the substrate P onto the substrate holder PH is performed. This Y step operation of the substrate P is performed by the main controller 50 using the substrate Y step feeding device 88 (movable portion 88a) closest to the −Y side and the −X side to move the back surface of the substrate P in the state shown in FIG. , And the substrate P is lifted by releasing the high-pressure air from the substrate holder PH and continuing the high-pressure air exhaust by the air levitation unit group 84F. Thus, as shown by the dotted arrow in FIG. 38, the substrate P is transferred by the substrate Y step feeding device 88 in the + Y direction. As a result, only the substrate P moves in the + Y direction with respect to the substrate holder PH. As shown in FIG. 39, the unexposed shot areas SA3 and SA4 face the substrate holder PH as shown in FIG. And part of the air levitation unit group 84E and part of the air levitation unit group 84F. At this time, the substrate P is levitated and supported by the substrate holder PH, part of the air levitation unit group 84E, and part of the air levitation unit group 84F. The main controller 50 switches the substrate holder PH from exhaust to intake (suction). Thereby, a part of the substrate P (about 1 / of the whole substrate P) is sucked and fixed by the substrate holder PH, and a part of the substrate P is formed by a part of the air levitation unit group 84E and a part of the air levitation unit group 84F. The part (the remaining approximately 2/3 of the entire substrate P) is levitated and supported. Immediately after the start of the adsorption operation of the substrate P by the substrate holder PH, the main controller 50 releases the adsorption of the substrate P by the substrate Y step feeding device 88.
 そして、投影光学系PLに対する基板Pの新たなアライメント計測、すなわち基板P上に予め設けられている次のショット領域用のアライメントマークの計測が、行われる。このアライメント計測に際し、計測対象のアライメントマークがアライメント検出系の検出視野内に位置するように、必要に応じて、前述した基板PのXステップ動作が行われる(図40の白抜き矢印参照)。 Then, new alignment measurement of the substrate P with respect to the projection optical system PL, that is, measurement of the alignment mark for the next shot area provided in advance on the substrate P is performed. In the alignment measurement, the X step operation of the substrate P described above is performed as necessary so that the alignment mark to be measured is positioned within the detection visual field of the alignment detection system (see the white arrow in FIG. 40).
 そして、投影光学系PLに対する基板Pの新たなアライメント計測が終了すると、主制御装置50により、その結果に基づいて、微動ステージ26の粗動テーブル32に対する、X軸、Y軸及びθz方向(あるいは6自由度方向)の精密な微少位置決め駆動が行われる。 Then, when the new alignment measurement of the substrate P with respect to the projection optical system PL is completed, the main controller 50 determines, based on the result, the X-axis, Y-axis, and θz directions (or the z-axis direction relative to the coarse movement table 32 of the fine movement stage 26) Precise fine positioning drive in the direction of 6 degrees of freedom is performed.
 次いで、主制御装置50により、基板PとマスクMとの+X方向の加速(図41中の白抜き矢印参照)が開始され、前述と同様のショット領域SA3に対するスキャン露光が行われる。図41には、ショット領域SA3に対するスキャン露光が終了して、基板ステージ(26,28,32、PH)が停止した状態が示されている。 Next, the main controller 50 starts acceleration in the + X direction between the substrate P and the mask M (see the white arrow in FIG. 41), and scan exposure is performed on the shot area SA3 as described above. FIG. 41 shows a state in which the scanning exposure for the shot area SA3 is completed and the substrate stage (26, 28, 32, PH) is stopped.
 次に、主制御装置50により、次の露光のための加速に備えて、基板ステージ(26,28,32、PH)を-X方向へ駆動する基板PのXステップ動作及びマスクステージMSTの加速開始位置への戻し動作が行われた後、基板PとマスクMとの+X方向の加速(図42中の白抜き矢印参照)が開始され、前述と同様にしてショット領域SA4に対しスキャン露光が行われる。図42には、ショット領域SA4に対するスキャン露光が終了して、基板ステージ(26,28,32、PH)が停止した状態が示されている。 Next, in preparation for acceleration for the next exposure, the main controller 50 performs the X step operation of the substrate P for driving the substrate stage (26, 28, 32, PH) in the −X direction and the acceleration of the mask stage MST. After returning to the start position, acceleration in the + X direction (see the white arrow in FIG. 42) of the substrate P and the mask M is started, and scan exposure is performed on the shot area SA4 in the same manner as described above. Done. FIG. 42 shows a state where the scanning exposure for the shot area SA4 is completed and the substrate stage (26, 28, 32, PH) is stopped.
 次に、基板Pの未露光領域を基板ホルダPH上へ移動させるためのYステップ動作が行われる。この基板PのYステップ動作に際し、主制御装置50は、図42に示される状態にある基板Pの裏面を-Y側でかつ最も+X側の基板Yステップ送り装置88(可動部88a)によって吸着保持し、その基板Pに対する基板ホルダPHの吸着を解除した後、基板ホルダPHからの高圧空気の排気とエア浮上ユニット群84E及び84Fによる引き続きの高圧空気の排気とによって基板Pを浮上させた状態で、図42中に黒塗り矢印で示されるように、基板Yステップ送り装置88により基板Pを+Y方向へ搬送する。これにより、基板ホルダPHに対して基板PのみがY軸方向に移動する(図43参照)。このとき、前記-Y側の基板Yステップ送り装置88のストロークが短い場合には、主制御装置50は、+Y側の基板Yステップ送り装置88を用いて基板Pの送りを引き継ぐようにしても良い(図44参照)。この引き継ぎに備えて、主制御装置50は、+Y側の基板Yステップ送り装置88(可動部88a)を、予め-Y方向に駆動して基板ホルダPHの近傍で待機させておいても良い(図43参照)。 Next, a Y-step operation for moving the unexposed area of the substrate P onto the substrate holder PH is performed. In the Y step operation of the substrate P, the main controller 50 adsorbs the back surface of the substrate P in the state shown in FIG. 42 by the substrate Y step feeding device 88 (movable part 88a) on the −Y side and the most + X side. After holding and releasing the adsorption of the substrate holder PH to the substrate P, the substrate P is levitated by exhausting high-pressure air from the substrate holder PH and continuing high-pressure air exhausting by the air levitation unit groups 84E and 84F. 42, the substrate P is transported in the + Y direction by the substrate Y step feeding device 88, as indicated by the black arrow in FIG. Thereby, only the substrate P moves in the Y-axis direction with respect to the substrate holder PH (see FIG. 43). At this time, if the stroke of the substrate Y step feeding device 88 on the −Y side is short, the main controller 50 may take over the feeding of the substrate P using the substrate Y step feeding device 88 on the + Y side. Good (see FIG. 44). In preparation for this takeover, the main controller 50 may drive the + Y-side substrate Y step feeding device 88 (movable portion 88a) in advance in the −Y direction and wait in the vicinity of the substrate holder PH ( (See FIG. 43).
 基板Yステップ送り装置88によって+Y方向へ駆動され、未露光のショット領域SA5,SA6が、基板ホルダPH上に移動した基板Pは、その一部(基板P全体の約1/3)が基板ホルダPHによる吸着によって再び基板ホルダPHに固定され、一部(基板P全体の残りの約2/3)がエア浮上ユニット群84Eの一部により浮上支持される。上記の基板ホルダPHによる基板Pの吸着動作の開始の直後に、主制御装置50によって、基板Yステップ送り装置88による基板Pの吸着が解除される。そして、投影光学系PLに対する基板Pの新たなアライメント計測、すなわち基板P上に予め設けられている次のショット領域用のアライメントマークの計測が、行われる。このアライメント計測に際し、計測対象のアライメントマークがアライメント検出系の検出視野内に位置するように、必要に応じて、前述した基板PのXステップ動作が行われる(図45中の白抜き矢印参照)。 A part of the substrate P that is driven in the + Y direction by the substrate Y step feeding device 88 and has moved the unexposed shot areas SA5 and SA6 onto the substrate holder PH (about 1/3 of the entire substrate P) is the substrate holder. It is fixed to the substrate holder PH again by adsorption by PH, and a part (the remaining approximately 2/3 of the whole substrate P) is levitated and supported by a part of the air levitation unit group 84E. Immediately after the start of the adsorption operation of the substrate P by the substrate holder PH, the main controller 50 releases the adsorption of the substrate P by the substrate Y step feeding device 88. Then, new alignment measurement of the substrate P with respect to the projection optical system PL, that is, measurement of an alignment mark for the next shot area provided in advance on the substrate P is performed. In this alignment measurement, the above-described X-step operation of the substrate P is performed as necessary so that the alignment mark to be measured is positioned within the detection visual field of the alignment detection system (see the white arrow in FIG. 45). .
 上記の基板Pの新たなアライメント計測が開始される直前に、-Y側のエア浮上ユニット群84Fには、不図示の基板搬入装置によって、新しい基板Pが投入される(図45参照)。このとき、-Y側の基板Xステップ送り装置91の可動部91aは、+X側の移動限界位置の近傍の位置、すなわち新たに投入される基板Pの下方の位置に移動してその位置で待機している。また、-Y側で最も-X側の基板Yステップ送り装置88の可動部88aは、主制御装置50によって、図45中に黒塗り矢印で示されるように、-Y側の移動限界位置に移動されている。 Immediately before the new alignment measurement of the substrate P is started, a new substrate P is loaded into the −Y side air levitation unit group 84F by a substrate carry-in device (not shown) (see FIG. 45). At this time, the movable portion 91a of the −Y side substrate X step feeding device 91 moves to a position near the + X side movement limit position, that is, a position below the newly loaded substrate P, and waits at that position. is doing. Further, the movable portion 88a of the substrate Y step feed device 88 closest to the -X side on the -Y side is moved by the main controller 50 to the movement limit position on the -Y side, as indicated by a solid arrow in FIG. Has been moved.
 一方、基板ホルダPHにその一部が固定(保持)された基板Pに対しては、投影光学系PLに対する基板Pの新たなアライメント計測が終了すると、主制御装置50により、その結果に基づいて、微動ステージ26の粗動テーブル32に対する、X軸、Y軸及びθz方向(あるいは6自由度方向)の精密な微少位置決め駆動が行われる。そして、前述した第1ショット領域SA1とSA2の場合と同様の手順に従って、主制御装置50によって、最後の2つのショット領域SA5、SA6に対する露光が行われる。図46には、最後のショット領域SA6に対する露光が終了した直後の状態が示されている。 On the other hand, when a new alignment measurement of the substrate P with respect to the projection optical system PL is completed for the substrate P partially fixed (held) on the substrate holder PH, the main controller 50 determines based on the result. Then, precise fine positioning drive in the X-axis, Y-axis, and θz directions (or 6-degree-of-freedom directions) is performed on the coarse movement table 32 of the fine movement stage 26. Then, according to the same procedure as in the case of the first shot areas SA1 and SA2, the main controller 50 exposes the last two shot areas SA5 and SA6. FIG. 46 shows a state immediately after the exposure for the last shot area SA6 is completed.
 上記のショット領域SA5,SA6に対する露光と並行して、新しく投入された基板Pが、主制御装置50によって、-Y側の基板Xステップ送り装置91で吸着保持されて-X側に搬送される(図46参照)。 In parallel with the exposure for the shot areas SA5 and SA6, the newly loaded substrate P is sucked and held by the main controller 50 at the −Y side substrate X step feeding device 91 and is transported to the −X side. (See FIG. 46).
 一方、すべてのショット領域SA1~SA6に対する露光が終わった基板Pは、主制御装置50により、+Y側でかつ最も-X側の基板Yステップ送り装置88を用いて、図47中に点線の白抜き矢印で示されるように+Y側に搬送され、基板ホルダPH上から完全に退避してエア浮上ユニット群84Eの上に運ばれる。これとほぼ同時に、新たに投入された基板Pは、主制御装置50により、-Y側でかつ最も-X側の基板Yステップ送り装置88を用いて、図47中に黒塗り矢印で示されるように+Y側に搬送され、ショット領域SA1,SA2が基板ホルダPH上に位置させられる(図47参照)。 On the other hand, the substrate P that has been exposed to all the shot areas SA1 to SA6 is whitened with a dotted line in FIG. 47 by the main controller 50 using the substrate Y step feed device 88 on the + Y side and the most −X side. As indicated by the extraction arrow, the sheet is conveyed to the + Y side, completely retracted from the substrate holder PH, and conveyed onto the air floating unit group 84E. At substantially the same time, the newly loaded substrate P is indicated by the black arrow in FIG. 47 by the main controller 50 using the substrate Y step feed device 88 on the −Y side and the most −X side. In this way, the shot areas SA1 and SA2 are positioned on the substrate holder PH (see FIG. 47).
 エア浮上ユニット群84Eの上に運ばれた露光済みの基板Pは、主制御装置50によって、+Y側の基板Xステップ送り装置91を用いて、図48に黒塗り矢印で示されるように、+X方向に搬送され、不図示の基板搬出装置によって+X方向に搬出される(図48、図49参照)。 The exposed substrate P carried on the air levitation unit group 84E is subjected to + X by the main controller 50 using the + Y side substrate X step feed device 91, as indicated by the black arrow in FIG. And is carried out in the + X direction by a substrate carrying-out device (not shown) (see FIGS. 48 and 49).
 上記の露光済みの基板Pの搬出と並行して、基板ホルダPH上の基板Pに対しては、前述と同様のアライメント動作が行われた後、基板PとマスクMとの+X方向の加速が開始され、前述と同様にして最初のショット領域SA2に対するスキャン露光が行われる(図48、図49参照)。以後、前述した第1枚目の基板Pに対する露光の際と同様の手順で、第2枚目の基板P上の残りのショット領域に対するアライメント(Xステップ、Yステップ)、露光等の動作、並びに第3枚目以降の基板に対するアライメント(Xステップ、Yステップ)、露光等の動作が繰り返される。 In parallel with the unloading of the exposed substrate P, the substrate P on the substrate holder PH is subjected to the same alignment operation as described above, and then the substrate P and the mask M are accelerated in the + X direction. In the same manner as described above, the first shot area SA2 is subjected to scan exposure (see FIGS. 48 and 49). Thereafter, in the same procedure as the exposure for the first substrate P described above, alignment (X step, Y step) for the remaining shot regions on the second substrate P, operations such as exposure, and the like Operations such as alignment (X step, Y step) and exposure with respect to the third and subsequent substrates are repeated.
 ただし、第2枚目の基板Pについてショット領域SA2に対する露光が最初に行われることについての上記の説明からもわかるように、本実施形態では、1枚目(奇数枚目)の基板Pと2枚目(偶数枚目)の基板Pではショット領域の露光順が異なっている。1枚目(奇数枚目)の基板Pでは、露光順はショット領域SA1、SA2、SA3、SA4、SA5、SA6であるのに対し、2枚目(偶数枚目)の基板Pでは、露光順はショット領域SA2、SA1、SA4、SA3、SA6、SA5の順となる。但し、露光の順番はこれに限られるものではない。 However, as can be seen from the above description that the exposure of the second substrate P to the shot area SA2 is first performed, in this embodiment, the first (odd-numbered) substrates P and 2 are used. In the first (even number) substrate P, the exposure order of the shot areas is different. In the first (odd-numbered) substrate P, the exposure order is the shot areas SA1, SA2, SA3, SA4, SA5, and SA6, whereas in the second (even-numbered) substrate P, the exposure order. Are in the order of shot areas SA2, SA1, SA4, SA3, SA6, and SA5. However, the order of exposure is not limited to this.
 以上説明したように、本第7の実施形態に係る露光装置700によると、前述した第1の実施形態に係る露光装置100と同等の効果を得ることができる。これに加えて、本第7の実施形態に係る露光装置700によると、微動ステージ26に搭載された基板ホルダPHが、基板Pの被露光面(被処理面)と反対側の面の一部を保持する。すなわち、基板ホルダPHの基板保持面は、基板Pよりも小さく、具体的には、約1/3に設定されている。このため、主制御装置50の指示に基づき、基板Yステップ送り装置88が、基板Pを微動ステージ26(基板ホルダPH)から搬出する際に、基板PはY軸方向に変位するようにXY平面内で搬送されるが、その際、基板Yステップ送り装置88は、基板PのY軸方向のサイズ(幅又は長さ)よりも小さい距離、すなわち基板PのY軸方向のサイズの約1/3である基板ホルダPHのY軸方向の幅と同一距離だけ基板PをY軸方向に変位させるだけで、基板Pの搬出が終了する(例えば図46、図47参照)。このように、本実施形態では、基板Pの搬出の際の基板の移動距離(搬出距離)が基板のサイズよりも小さいので、基板の搬出時間を、従来に比べて短縮することが可能になる。 As described above, the exposure apparatus 700 according to the seventh embodiment can obtain the same effects as those of the exposure apparatus 100 according to the first embodiment described above. In addition, according to the exposure apparatus 700 of the seventh embodiment, the substrate holder PH mounted on the fine movement stage 26 is a part of the surface opposite to the exposed surface (processed surface) of the substrate P. Hold. That is, the substrate holding surface of the substrate holder PH is smaller than the substrate P, specifically, is set to about 1/3. For this reason, when the substrate Y step feeding device 88 carries the substrate P out of the fine movement stage 26 (substrate holder PH) based on an instruction from the main control device 50, the substrate P is displaced in the Y-axis direction so as to be displaced in the XY plane. In this case, the substrate Y step feeding device 88 is at a distance smaller than the size (width or length) of the substrate P in the Y-axis direction, that is, about 1 / the size of the substrate P in the Y-axis direction. The substrate P is unloaded only by displacing the substrate P in the Y-axis direction by the same distance as the width in the Y-axis direction of the substrate holder PH 3 (see, for example, FIGS. 46 and 47). Thus, in this embodiment, since the movement distance (carrying distance) of the board | substrate at the time of carrying out the board | substrate P is smaller than the size of a board | substrate, it becomes possible to shorten board | substrate carrying-out time compared with the past. .
 また、本第7の実施形態に係る露光装置700によると、基板P上の最終ショット領域に対するスキャン露光が終了した時点で微動ステージ26(基板ホルダPH)があるX軸方向の位置で、Y軸方向の一側に露光済みの基板Pをスライドさせて基板ホルダPH上から搬出(退避)し、これと並行して(ほぼ同時に)Y軸方向の他側から露光前の基板Pをスライドさせて基板ホルダPH上に搬入(投入)することが可能になる(図46及び図47参照)。 Further, according to the exposure apparatus 700 according to the seventh embodiment, the fine movement stage 26 (substrate holder PH) is located at the position in the X-axis direction when the scan exposure for the final shot area on the substrate P is completed, and the Y-axis. The exposed substrate P is slid to one side in the direction and taken out (retracted) from the substrate holder PH, and in parallel (substantially simultaneously), the unexposed substrate P is slid from the other side in the Y-axis direction. It becomes possible to carry (inject) the substrate onto the substrate holder PH (see FIGS. 46 and 47).
 また、露光前の基板Pを微動ステージ26(基板ホルダPH)に搬入する際にも、基板PはY軸方向に変位するように、主制御装置50の指示に基づき、基板Yステップ送り装置88によってXY平面内で搬送されるが、その際、基板Yステップ送り装置88は、基板PのY軸方向のサイズ(幅又は長さ)よりも小さい距離、すなわち基板ホルダPHのY軸方向の幅(基板PのY軸方向のサイズの約1/3)と同一距離だけ基板PをY軸方向に変位させるだけで、基板Pの搬入が終了する。従って、基板の搬出時間に加えて、基板の搬入時間をも従来に比べて短縮することが可能になり、結果的に基板の交換時間を短縮することが可能になる。 Further, also when the substrate P before exposure is carried into the fine movement stage 26 (substrate holder PH), the substrate Y step feeding device 88 is based on an instruction from the main controller 50 so that the substrate P is displaced in the Y-axis direction. In this case, the substrate Y step feeding device 88 has a distance smaller than the size (width or length) of the substrate P in the Y-axis direction, that is, the width of the substrate holder PH in the Y-axis direction. The loading of the substrate P is completed simply by displacing the substrate P in the Y-axis direction by the same distance as (about 1/3 of the size of the substrate P in the Y-axis direction). Therefore, in addition to the substrate carry-out time, the substrate carry-in time can be shortened compared to the conventional case, and as a result, the substrate exchange time can be shortened.
 また、主制御装置50は、基板P上のショット領域の配置、及び露光順に応じた基板ホルダPHのX軸方向の位置で、基板Pの基板ホルダPH上からのY軸方向一側へのスライド搬出と、基板Pの基板ホルダPH上へのY軸方向他側からのスライド搬入とを行う。従って、従来の基板交換の際のように、基板ホルダPHは決められた基板交換位置(例えば、+X方向の移動限界位置近傍の位置)へ移動する必要がない。これにより、基板交換時間を一層短縮することができる。 The main controller 50 also slides the substrate P from the substrate holder PH to one side in the Y-axis direction at a position in the X-axis direction of the substrate holder PH according to the arrangement of the shot areas on the substrate P and the exposure order. Unloading and slide loading from the other side in the Y-axis direction onto the substrate holder PH of the substrate P are performed. Therefore, unlike the conventional substrate replacement, the substrate holder PH does not need to move to a predetermined substrate replacement position (for example, a position near the movement limit position in the + X direction). Thereby, the substrate replacement time can be further shortened.
 ここで、上記実施形態中の説明では、露光済みの基板Pの基板ホルダPHからの搬出方向が、いずれの基板でも+Y方向である場合について例示したが、基板上のショット領域の配置、及び露光順によっては、偶数枚目の基板及び奇数枚目の基板の少なくとも一方で、基板は基板ホルダPH上から-Y方向に搬出されることは当然にあり得る。すなわち、本実施形態では、主制御装置50は、基板の交換時間が最短となるように、基板P上のショット領域の配置、及び露光順に応じた基板ホルダPHのX軸方向の位置で、基板P上のショット領域の配置、及び露光順に応じた方向(+Y方向又は-Y方向)に基板Pを搬出する。従って、基板上のショット領域(被処理領域)の配置と処理の順番とに拘らず、常に一定のX位置で、同じ方向に搬出する場合に比べて、基板交換時間の短縮が可能である。 Here, in the description of the above embodiment, an example has been given in which the carry-out direction of the exposed substrate P from the substrate holder PH is the + Y direction in any substrate, but the arrangement of shot areas on the substrate and the exposure Depending on the order, at least one of the even-numbered substrate and the odd-numbered substrate may naturally be unloaded from the substrate holder PH in the −Y direction. That is, in the present embodiment, the main controller 50 sets the substrate at the position in the X-axis direction of the substrate holder PH according to the arrangement of the shot areas on the substrate P and the exposure order so that the substrate replacement time is minimized. The substrate P is unloaded in a direction (+ Y direction or -Y direction) according to the arrangement of the shot areas on P and the order of exposure. Therefore, regardless of the arrangement of shot areas (processed areas) on the substrate and the order of processing, the substrate replacement time can be shortened as compared with the case of always carrying out at the constant X position in the same direction.
 なお、基板ホルダPHのY軸方向両側のエア浮上ユニット群84E,84Fの支持面のY軸方向のサイズは、基板PのY軸方向のサイズと同等に限らず、それより大きくても良いし、僅かに小さくても良い。 The size of the support surfaces of the air levitation unit groups 84E and 84F on both sides of the substrate holder PH in the Y-axis direction is not limited to the size in the Y-axis direction of the substrate P, and may be larger. It may be slightly smaller.
 また、基板ホルダPHの基板保持面のY軸方向のサイズは、基板PのY軸方向のサイズの1/3に限らず、1/2、1/4等であっても良く、要は、基板ホルダPHの基板保持面のY軸方向のサイズは、基板PのY軸方向のサイズよりある程度以上小さければ良い。実際には、基板P上に形成されるショット領域のサイズと同等に(僅かに大きく)設定される。 Further, the size of the substrate holding surface of the substrate holder PH in the Y-axis direction is not limited to 1/3 of the size of the substrate P in the Y-axis direction, and may be 1/2, 1/4, etc. The size of the substrate holding surface of the substrate holder PH in the Y-axis direction may be smaller than the size of the substrate P in the Y-axis direction to some extent. Actually, it is set to be the same (slightly larger) as the size of the shot area formed on the substrate P.
《第8の実施形態》
 次に、第8の実施形態について、図50~図65に基づいて説明する。ここで、前述した第1ないし第7の各実施形態と同一若しくは同等の構成部分については、同一若しくは類似の符号を用いるとともに、その説明を簡略若しくは省略する。
<< Eighth Embodiment >>
Next, an eighth embodiment will be described with reference to FIGS. Here, the same or similar reference numerals are used for the same or equivalent components in the first to seventh embodiments described above, and the description thereof is simplified or omitted.
 図50には、第8の実施形態に係る露光装置800の構成が、エア浮上ユニット群84E,84F等を省略して、概略的に示されている。また、図51には、露光装置800の一部省略した平面図が示されている。図51は、図50の投影光学系PLより下方の部分(鏡筒定盤16より下方の部分)の平面図に相当する。 FIG. 50 schematically shows the arrangement of an exposure apparatus 800 according to the eighth embodiment, omitting the air levitation unit groups 84E and 84F. FIG. 51 shows a plan view in which a part of the exposure apparatus 800 is omitted. 51 corresponds to a plan view of a portion below the projection optical system PL in FIG. 50 (portion below the lens barrel surface plate 16).
 本第8の実施形態に係る露光装置800は、基本的には、前述した第7の実施形態に係る露光装置700と同様に構成されているが、基板ステージ装置PSTgが、第7の実施形態に係る基板ステージ装置PSTfと一部相違する。 The exposure apparatus 800 according to the eighth embodiment is basically configured in the same manner as the exposure apparatus 700 according to the seventh embodiment described above, but the substrate stage apparatus PSTg is the seventh embodiment. This is partly different from the substrate stage apparatus PSTf according to FIG.
 具体的には、基板ステージ装置PSTgでは、図51に示されるように、基板ホルダPHとして、Y軸方向のサイズのみならず、X軸方向のサイズも、基板PのX軸方向のサイズよりも小さいサイズ(例えば、基板Pの約1/2)のものが用いられている。基板ホルダPHのY軸方向のサイズは、基板PのY軸方向のサイズの約1/2である。そして、基板ホルダPHのX軸方向の両側には、基板ホルダPH及び微動ステージ26とは独立の一対のエア浮上ユニット(移動エア浮上ユニット)84Gが配置されている。一対のエア浮上ユニット84Gのそれぞれは、図50に示されるように、その上面が基板ホルダPHとほぼ同等(僅かに低い)の高さとなるように、支持部材112を介して粗動テーブル32の上面に固定されている。一対のエア浮上ユニット84Gのそれぞれは、例えばY軸方向の長さが基板ホルダPHと同等(若しくは基板ホルダPHよりも僅かに短い)で、X軸方向の長さが例えば基板ホルダPHの約1/2である。 Specifically, in the substrate stage apparatus PSTg, as shown in FIG. 51, not only the size in the Y axis direction but also the size in the X axis direction is larger than the size in the X axis direction of the substrate P as the substrate holder PH. A small size (for example, about 1/2 of the substrate P) is used. The size of the substrate holder PH in the Y-axis direction is about ½ of the size of the substrate P in the Y-axis direction. A pair of air levitation units (moving air levitation units) 84G independent of the substrate holder PH and the fine movement stage 26 are disposed on both sides of the substrate holder PH in the X-axis direction. As shown in FIG. 50, each of the pair of air levitation units 84G has the coarse motion table 32 through the support member 112 so that the upper surface thereof is almost the same height as the substrate holder PH (slightly lower). It is fixed on the top surface. Each of the pair of air levitation units 84G has, for example, a length in the Y-axis direction that is equivalent to (or slightly shorter than the substrate holder PH) the length in the X-axis direction, for example, about 1 of the substrate holder PH. / 2.
 また、基板ホルダPHと、一対のエア浮上ユニット84Gのそれぞれとの間には、図51に示されるように、一対の移動基板Yステップ送り装置120が配置されている。一対の移動基板Yステップ送り装置120のそれぞれは、前述の基板Yステップ送り装置88と同様に構成され、図50に示されるように、粗動テーブル32に搭載されている。各移動基板Yステップ送り装置120の可動部120aは、粗動テーブル32上に固定された固定部120bに対してY軸方向に相対移動可能である。従って、各移動基板Yステップ送り装置120は、粗動テーブル32とともにX軸方向に移動可能であるとともに、基板PのみをY軸方向に搬送することが可能になっている。 Further, as shown in FIG. 51, a pair of moving substrate Y step feeding devices 120 is disposed between the substrate holder PH and each of the pair of air levitation units 84G. Each of the pair of moving substrate Y step feeding devices 120 is configured in the same manner as the substrate Y step feeding device 88 described above, and is mounted on the coarse motion table 32 as shown in FIG. The movable part 120 a of each movable substrate Y step feeding device 120 is relatively movable in the Y-axis direction with respect to the fixed part 120 b fixed on the coarse motion table 32. Accordingly, each moving substrate Y step feeding device 120 can move in the X-axis direction together with the coarse movement table 32 and can transport only the substrate P in the Y-axis direction.
 また、基板ホルダPHのY軸方向両側に配置された一対のエア浮上ユニット群84E,84Fの配置領域の内部には、それぞれ、第7の実施形態と同様の3つの基板Yステップ送り装置88と、1つの基板Xステップ送り装置91とが、配置されている。ただし、図51に示されるように、本第8の実施形態では、エア浮上ユニット群84E,84Fの配置領域のそれぞれの内部の3つの基板Yステップ送り装置88及び1つの基板Xステップ送り装置91は、露光領域IAの中心を通るX軸に関して対称に配置されている。また、このような対称配置を採用した関係から、一対のY干渉計98Y、98Yの配置位置が、前述の第7の実施形態に比べて+Y側にずれている。 Further, in the arrangement area of the pair of air levitation unit groups 84E and 84F arranged on both sides in the Y-axis direction of the substrate holder PH, respectively, three substrate Y step feeding devices 88 similar to those in the seventh embodiment are provided. One substrate X step feeding device 91 is arranged. However, as shown in FIG. 51, in the eighth embodiment, three substrate Y step feeding devices 88 and one substrate X step feeding device 91 inside each of the arrangement regions of the air levitation unit groups 84E and 84F. Are arranged symmetrically with respect to the X axis passing through the center of the exposure area IA. Further, from the relationship of adopting such a symmetrical arrangement, the arrangement positions of the pair of Y interferometers 98Y 1 and 98Y 2 are shifted to the + Y side as compared with the seventh embodiment.
 また、Xビーム30A、30Bとして、Y軸方向の幅が第7の実施形態のXビーム30A、30Bと比べて幾分広いものが用いられている。Xビーム30A、30Bの上面には、例えば前述の基板ステージ装置PSTなどと同様、Xリニアガイド36が、各2本固定され、その2本のXリニアガイド36の間に、X固定子38が固定されている。各2本のXリニアガイド36のそれぞれに係合する複数のスライダ44が、粗動テーブル32の下面に固定されている。粗動テーブル32の下面には、X固定子38とともにXリニアモータを構成する不図示のX可動子が固定されている。 Further, as the X beams 30A and 30B, those having a slightly wider width in the Y-axis direction than the X beams 30A and 30B of the seventh embodiment are used. For example, two X linear guides 36 are fixed to the upper surfaces of the X beams 30A and 30B, respectively, as in the above-described substrate stage apparatus PST, and an X stator 38 is interposed between the two X linear guides 36. It is fixed. A plurality of sliders 44 that are engaged with each of the two X linear guides 36 are fixed to the lower surface of the coarse motion table 32. An X mover (not shown) that constitutes an X linear motor together with the X stator 38 is fixed to the lower surface of the coarse motion table 32.
 基板ステージ装置PSTgのその他の部分の構成は、第7の実施形態に係る基板ステージ装置PSTfと同様になっている。この場合、一対のX干渉計98X,98Xは、固定のエア浮上ユニット群84E,84F、及び粗動テーブル32上のエア浮上ユニット84Gのいずれにも干渉しないで、一対のX移動鏡94X、94Xに接近できるような配置になっている。 The configuration of other parts of the substrate stage apparatus PSTg is the same as that of the substrate stage apparatus PSTf according to the seventh embodiment. In this case, the pair of X interferometers 98X 1 and 98X 2 does not interfere with any of the fixed air levitation unit groups 84E and 84F and the air levitation unit 84G on the coarse motion table 32, and the pair of X movable mirrors 94X. 1 and 94X 2 are accessible.
 基板ステージ装置PSTgのその他の部分の構成は、第7の実施形態に係る基板ステージ装置PSTfと同様になっている。従って、基板ステージ装置PSTgにおいても、粗動テーブル32、重量キャンセル装置28、微動ステージ26、及び基板ホルダPH等を含んで、基板Pと一体でX軸方向に移動する移動体が構成されている。本第8の実施形態においても、この移動体を、以下では、適宜、基板ステージ(26,28,32、PH)と表記する。 The configuration of other parts of the substrate stage apparatus PSTg is the same as that of the substrate stage apparatus PSTf according to the seventh embodiment. Accordingly, the substrate stage apparatus PSTg also includes a moving body that moves in the X-axis direction integrally with the substrate P, including the coarse movement table 32, the weight cancellation device 28, the fine movement stage 26, the substrate holder PH, and the like. . Also in the eighth embodiment, this moving body will be appropriately referred to as a substrate stage (26, 28, 32, PH) below.
 次に、本第8の実施形態に係る露光装置800で行われる基板処理のための一連の動作について説明する。ここでは、一例として基板Pに対して第2層目以降の露光を行う場合について、図52~図65に基づいて説明する。なお、図52~図65において示される露光領域IAは、露光時に照明光ILが投影光学系PLを介して照射される照明領域であり、実際には、露光時以外に形成されることはないが、基板Pと投影光学系PLとの位置関係を明確にするため常に図示されている。 Next, a series of operations for substrate processing performed in the exposure apparatus 800 according to the eighth embodiment will be described. Here, as an example, the case where the second and subsequent layers of the substrate P are exposed will be described with reference to FIGS. Note that the exposure area IA shown in FIGS. 52 to 65 is an illumination area where the illumination light IL is irradiated through the projection optical system PL during exposure, and is not actually formed except during exposure. Is always shown in order to clarify the positional relationship between the substrate P and the projection optical system PL.
 まず、主制御装置50の管理の下、不図示のマスク搬送装置(マスクローダ)によって、マスクステージMST上へのマスクMのロードが行われるとともに、不図示の基板搬入装置によって、基板ステージ装置PSTg上への基板Pの搬入が行なわれる。基板Pには前層以前の露光の際に、一例として図51に示されるように、複数、例えばX軸方向に2つ、Y軸方向に2つ、合計4つのショット領域SA1~SA4とともに、各ショット領域のパターンと同時に転写された複数のアライメントマーク(不図示)が、ショット領域毎に設けられている。 First, under the control of the main controller 50, the mask M is loaded onto the mask stage MST by a mask transfer device (mask loader) (not shown), and the substrate stage device PSTg is loaded by a substrate carry-in device (not shown). The substrate P is carried in upward. As shown in FIG. 51 as an example, the substrate P is exposed to a plurality of shot areas SA1 to SA4, for example, two in the X-axis direction and two in the Y-axis direction. A plurality of alignment marks (not shown) transferred simultaneously with the pattern of each shot area are provided for each shot area.
 まず、前述の第7の実施形態における1枚目の基板Pと同様の手順に従って、基板Pは、図52に示されるように、基板ホルダPHと基板ホルダPHの-Y側のエア浮上ユニット群84Fの一部とに跨って載置される。このとき、基板Pは、基板ホルダPHとエア浮上ユニット群84Fの一部と、+X側のエア浮上ユニット84Gとによって浮上支持されている。そして、主制御装置50により基板ホルダPHが、排気から吸気(吸引)に切り替えられる。これにより、基板ホルダPHにより基板Pの一部(ショット領域SA1を含む矩形領域に対応する基板P全体の約1/4)が吸着固定され、エア浮上ユニット群84Fの一部及びエア浮上ユニット84Gにより基板Pの一部(基板P全体の残りの約3/4)が浮上支持された状態となる。このとき、基板P上の少なくとも2つのアライメントマークが、いずれかのアライメント検出系(不図示)の視野に入るように、かつ基板ホルダPH上にくるように、基板Pが、基板ホルダPHとエア浮上ユニット群84Fの一部とエア浮上ユニット84Gとに跨って載置される。 First, according to the same procedure as that of the first substrate P in the seventh embodiment described above, the substrate P is, as shown in FIG. 52, the substrate holder PH and the air floating unit group on the −Y side of the substrate holder PH. It is placed straddling part of 84F. At this time, the substrate P is levitated and supported by the substrate holder PH, a part of the air levitation unit group 84F, and the + X side air levitation unit 84G. The main controller 50 switches the substrate holder PH from exhaust to intake (suction). Thereby, a part of the substrate P (about ¼ of the whole substrate P corresponding to the rectangular area including the shot area SA1) is sucked and fixed by the substrate holder PH, and a part of the air levitation unit group 84F and the air levitation unit 84G are fixed. As a result, a part of the substrate P (the remaining approximately 3/4 of the entire substrate P) is supported in a floating state. At this time, the substrate P is in contact with the substrate holder PH and the air so that at least two alignment marks on the substrate P are in the field of view of any alignment detection system (not shown) and on the substrate holder PH. It is placed across a part of the levitation unit group 84F and the air levitation unit 84G.
 上記の基板ホルダPHによる基板Pの吸着動作の開始の直後に、主制御装置50によって、基板Yステップ送り装置88による基板Pの吸着が解除される。このとき、基板Yステップ送り装置88(可動部88a)及び基板Xステップ送り装置91(可動部91a)は、それぞれ、主制御装置50によって、-Y側の移動限界位置である待機位置、-X側の移動限界位置である待機位置に戻される。 Immediately after the start of the adsorption operation of the substrate P by the substrate holder PH, the main controller 50 releases the adsorption of the substrate P by the substrate Y step feeding device 88. At this time, the substrate Y step feeding device 88 (movable portion 88a) and the substrate X step feeding device 91 (movable portion 91a) are respectively set by the main controller 50 to a standby position that is a movement limit position on the −Y side, −X It is returned to the standby position which is the movement limit position on the side.
 その後、主制御装置50により、従来と同様のアライメント計測の方法によって投影光学系PLに対する微動ステージ26の位置と、微動ステージ26に対する基板Pの凡その位置とが求められる。なお、微動ステージ26に対する基板Pのアライメント計測は省略しても良い。 Thereafter, the main controller 50 determines the position of the fine movement stage 26 with respect to the projection optical system PL and the approximate position of the substrate P with respect to the fine movement stage 26 by the same alignment measurement method as before. Note that the alignment measurement of the substrate P with respect to the fine movement stage 26 may be omitted.
 そして、主制御装置50は、上記の計測結果に基づいて、粗動テーブル32を介して微動ステージ26を駆動して基板P上の少なくとも2つのアライメントマークをいずれかのアライメント検出系の視野内に移動させ、投影光学系PLに対する基板Pのアライメント計測を行い、その結果に基づいて、基板P上のショット領域SA1の露光のためのスキャン開始位置(加速開始位置)を求める。そして、主制御装置50は、粗動テーブル32を駆動するとともに微動ステージ26を微小駆動して、そのスキャン開始位置(加速開始位置)に基板Pを位置決めする。このとき、微動ステージ26の粗動テーブル32に対する、X軸、Y軸及びθz方向(あるいは6自由度方向)の精密な微少位置決め駆動が行われる。図52には、このようにして、基板P上のショット領域SA1の露光のためのスキャン開始位置(加速開始位置)に基板Pが位置決めされた直後の状態が示されている。
 その後、ステップ・アンド・スキャン方式の露光動作が行なわれる。
Then, main controller 50 drives fine movement stage 26 via coarse movement table 32 based on the above measurement result to place at least two alignment marks on substrate P within the field of view of any alignment detection system. The substrate P is moved, the alignment measurement of the substrate P with respect to the projection optical system PL is performed, and the scan start position (acceleration start position) for exposure of the shot area SA1 on the substrate P is obtained based on the result. Then, main controller 50 drives coarse movement table 32 and finely moves fine movement stage 26 to position substrate P at its scan start position (acceleration start position). At this time, precise fine positioning drive in the X-axis, Y-axis, and θz directions (or 6-degree-of-freedom directions) is performed on the coarse movement table 32 of the fine movement stage 26. FIG. 52 shows a state immediately after the substrate P is positioned at the scan start position (acceleration start position) for exposure of the shot area SA1 on the substrate P in this way.
Thereafter, a step-and-scan exposure operation is performed.
 ステップ・アンド・スキャン方式の露光動作では、基板P上の複数のショット領域SA1~SA4に対して順次露光処理が行われる。本第8の実施形態においても、スキャン動作時には、基板Pの前述のXスキャン動作が行われ、ステップ動作時(ショット領域間移動時)には、基板PのXステップ動作又はYステップ動作が行われる。ここで、本第8の実施形態では、基板PのYステップ動作は、第7の実施形態と同様であるが、基板PのXステップ動作は、後述するように第7の実施形態と異なる。本第8の実施形態では、各ショット領域SAn(n=1、2、3、4)の最大露光幅(Y軸方向の幅)は基板Pの約1/2である。 In the step-and-scan exposure operation, the plurality of shot areas SA1 to SA4 on the substrate P are sequentially exposed. Also in the eighth embodiment, the X scan operation of the substrate P is performed during the scan operation, and the X step operation or the Y step operation of the substrate P is performed during the step operation (when moving between shot areas). Is called. Here, in the eighth embodiment, the Y step operation of the substrate P is the same as that of the seventh embodiment, but the X step operation of the substrate P is different from that of the seventh embodiment as will be described later. In the eighth embodiment, the maximum exposure width (width in the Y-axis direction) of each shot area SAn (n = 1, 2, 3, 4) is about ½ of the substrate P.
 具体的には、露光動作は次のようにして行なわれる。
 図52の状態から、基板ステージ(26,28,32、PH)は、図52中に白抜き矢印で示されるように、-X方向へ駆動され、基板PのXスキャン動作が行われる。このときマスクM(マスクステージMST)が基板P(微動ステージ26)と同期して-X方向へ駆動されており、ショット領域SA1が、投影光学系PLによるマスクMのパターンの投影領域である露光領域IAを通過するので、その際に、ショット領域SA1に対する走査露光が行われる。走査露光は、微動ステージ26(基板ホルダPH)の-X方向へ加速後の等速移動中に、マスクM、投影光学系PLを介して基板Pに照明光ILが照射されることで行われる。
Specifically, the exposure operation is performed as follows.
From the state of FIG. 52, the substrate stage (26, 28, 32, PH) is driven in the −X direction as shown by the white arrow in FIG. 52, and the X scan operation of the substrate P is performed. At this time, the mask M (mask stage MST) is driven in the −X direction in synchronization with the substrate P (fine movement stage 26), and the shot area SA1 is an exposure area where the projection optical system PL projects the pattern of the mask M. Since it passes through the area IA, scanning exposure for the shot area SA1 is performed at that time. The scanning exposure is performed by irradiating the substrate P with the illumination light IL through the mask M and the projection optical system PL while the fine movement stage 26 (substrate holder PH) is moving in the −X direction at a constant speed. .
 上述のXスキャン動作に際し、主制御装置50は、微動ステージ26上の基板ホルダPHに基板Pの一部(基板P全体の約1/4)を吸着固定させ、エア浮上ユニット群84Fの一部及び+X側のエア浮上ユニット84Gに基板Pの一部(基板P全体の約3/4)を浮上支持させた状態で、基板ステージ(26,28,32、PH)を駆動する。この際、主制御装置50は、前述と同様にして、粗動テーブル32をX軸方向に駆動するとともに、微動ステージ駆動系52を駆動する。これにより、基板Pは微動ステージ26と共に、重量キャンセル装置28に一体的に支持された状態で、一対のXボイスコイルモータ54Xの働きによって、粗動テーブル32と一体的にX軸方向に移動するとともに、粗動テーブル32からの相対駆動によって、X軸、Y軸、Z軸、θx、θy及びθzの各方向(6自由度方向)に関して精密に位置制御される。また、主制御装置50は、Xスキャン動作に際し、微動ステージ26(基板ホルダPH)と同期して、マスクMを保持するマスクステージMSTを、X軸方向に走査駆動(Y軸方向及びθz方向に微小駆動)する。図53には、ショット領域SA1に対するスキャン露光が終了して、基板ステージ(26,28,32、PH)が停止した状態が示されている。 During the above-described X scan operation, main controller 50 adsorbs and fixes a part of substrate P (about ¼ of the entire substrate P) to substrate holder PH on fine movement stage 26, and a part of air levitation unit group 84F. The substrate stage (26, 28, 32, PH) is driven in a state where a part of the substrate P (about 3/4 of the entire substrate P) is supported by the air floating unit 84G on the + X side. At this time, main controller 50 drives coarse movement table 32 in the X-axis direction and fine movement stage drive system 52 in the same manner as described above. Thus, the substrate P is moved together with the coarse movement table 32 in the X-axis direction by the action of the pair of X voice coil motors 54X while being supported by the weight cancellation device 28 together with the fine movement stage 26. At the same time, by relative driving from the coarse motion table 32, the position of each of the X axis, Y axis, Z axis, θx, θy, and θz directions (6 degrees of freedom direction) is precisely controlled. Further, main controller 50 scans the mask stage MST holding the mask M in the X-axis direction (in the Y-axis direction and the θz direction) in synchronization with fine movement stage 26 (substrate holder PH) during the X-scan operation. (Small drive). FIG. 53 shows a state in which the scanning exposure for the shot area SA1 is completed and the substrate stage (26, 28, 32, PH) is stopped.
 次に、基板Pの次のショット領域SA2を基板ホルダPH上へ移動させるためのXステップ動作が行われる。この基板PのXステップ動作は、主制御装置50が、図53に示される状態にある基板Pの裏面を-Y側の基板Xステップ送り装置91(可動部91a)によって吸着保持し、基板ホルダPHの吸着を解除した後、基板ホルダPHからの高圧空気の排気とエア浮上ユニット群84F及び+X側のエア浮上ユニット84Gによる引き続きの高圧空気の排気とによって基板Pを浮上させる。これにより、基板Pは基板Xステップ送り装置91(可動部91a)のみによって保持された状態となる。 Next, an X-step operation for moving the next shot area SA2 of the substrate P onto the substrate holder PH is performed. In the X step operation of the substrate P, the main controller 50 sucks and holds the back surface of the substrate P in the state shown in FIG. 53 by the substrate X step feeding device 91 (movable portion 91a) on the −Y side, After releasing the adsorption of PH, the substrate P is floated by exhausting high-pressure air from the substrate holder PH and continuing high-pressure air exhausting by the air levitation unit group 84F and the + X side air levitation unit 84G. Thereby, the board | substrate P will be in the state hold | maintained only by the board | substrate X step feeding apparatus 91 (movable part 91a).
 次に、主制御装置50は、基板Xステップ送り装置91のみによる基板Pの保持状態を維持したまま、基板ステージ(26,28,32、PH)を、図53中に白抜き矢印で示されるように、+X方向に駆動する、基板PのXステップを開始する。これにより、基板Pは、Xステップ開始前の位置に停止したまま、この基板Pに対して基板ホルダPHが、+X方向に移動する。そして、主制御装置50は、基板ホルダPHが、基板Pの次のショット領域SA2の真下に到達すると、基板ステージ(26,28,32、PH)を、停止させる(図54参照)。このとき、基板Pは、基板ホルダPHと、エア浮上ユニット群84Fの一部と-X側のエア浮上ユニット84Gとに跨って載置されている。基板ホルダPH、エア浮上ユニット群84F及びエア浮上ユニット84Gの上面からは、高圧空気が噴出されており、基板Pは浮上支持されている。 Next, the main controller 50 indicates the substrate stage (26, 28, 32, PH) with a white arrow in FIG. 53 while maintaining the holding state of the substrate P only by the substrate X step feeding device 91. Thus, the X step of the substrate P, which is driven in the + X direction, is started. Accordingly, the substrate holder PH moves in the + X direction with respect to the substrate P while the substrate P is stopped at the position before the start of the X step. Then, when the substrate holder PH reaches just below the next shot area SA2 of the substrate P, the main controller 50 stops the substrate stage (26, 28, 32, PH) (see FIG. 54). At this time, the substrate P is placed across the substrate holder PH, part of the air levitation unit group 84F, and the −X side air levitation unit 84G. High pressure air is jetted from the upper surfaces of the substrate holder PH, the air levitation unit group 84F, and the air levitation unit 84G, and the substrate P is supported to be levitated.
 上記の基板PのXステップのための基板ステージ(26,28,32、PH)の駆動と並行して、主制御装置50は、マスクステージMSTを、所定の加速開始位置へ戻している。 In parallel with the driving of the substrate stage (26, 28, 32, PH) for the X step of the substrate P, the main controller 50 returns the mask stage MST to a predetermined acceleration start position.
 その後、基板ホルダPHによる基板Pの吸着、及び基板Xステップ送り装置91による基板Pの吸着解除と、基板P上の新たなアライメントマークを用いたアライメント計測と、微動ステージ26による基板Pの位置決めと、が行なわれる(図54中の白抜き矢印参照)。その後、基板ステージ(26,28,32、PH)とマスクステージMSTとが同期して、図55中に白抜き矢印で示されるように、-X方向に移動することで、次のショット領域SA2のスキャン露光が行なわれる。図56には、ショット領域SA2の露光終了後に、基板ステージ(26,28,32、PH)が停止した状態が示されている。 Thereafter, the adsorption of the substrate P by the substrate holder PH, the desorption of the substrate P by the substrate X step feeding device 91, the alignment measurement using a new alignment mark on the substrate P, and the positioning of the substrate P by the fine movement stage 26 Are performed (see white arrows in FIG. 54). Thereafter, the substrate stage (26, 28, 32, PH) and the mask stage MST are synchronously moved in the −X direction as indicated by the white arrow in FIG. Scanning exposure is performed. FIG. 56 shows a state in which the substrate stage (26, 28, 32, PH) is stopped after the exposure of the shot area SA2.
 次に、基板Pの次のショット領域SA3を基板ホルダPH上へ移動させるためのYステップ動作が行われる。この基板PのYステップ動作は、次の通り行われる。すなわち、主制御装置50が、図56に示される状態にある基板Pの裏面を-X側の移動基板Yステップ送り装置120(可動部120a)によって吸着保持し、基板Pに対する基板ホルダPHの吸着を解除する。しかる後、主制御装置50は、基板ホルダPHからの高圧空気の排気とエア浮上ユニット群84F及びエア浮上ユニット84Gによる引き続きの高圧空気の排気とによって基板Pを浮上させた状態で、図56中に点線の白抜き矢印で示されるように、-X側の移動基板Yステップ送り装置120により基板Pを+Y方向へ搬送する。これにより、基板ホルダPHに対して基板Pのみが+Y方向に移動する(図57参照)。このとき、-X側の移動基板Yステップ送り装置120のストロークが足りない場合には、主制御装置50は、最も-X側に位置する+Y側の基板Yステップ送り装置88を用いて基板Pの送りを引き継ぐようにしても良い(図58中の黒塗り矢印参照)。 Next, a Y-step operation for moving the next shot area SA3 of the substrate P onto the substrate holder PH is performed. The Y step operation of the substrate P is performed as follows. That is, main controller 50 sucks and holds the back surface of substrate P in the state shown in FIG. 56 by moving substrate Y step feeding device 120 (movable part 120a) on the −X side, and sucks substrate holder PH to substrate P. Is released. Thereafter, the main controller 50 causes the substrate P to float in the state shown in FIG. 56 by exhausting high-pressure air from the substrate holder PH and continuing high-pressure air exhausting by the air levitation unit group 84F and the air levitation unit 84G. As indicated by the dotted white arrow, the substrate P is transported in the + Y direction by the moving substrate Y step feeding device 120 on the −X side. Accordingly, only the substrate P moves in the + Y direction with respect to the substrate holder PH (see FIG. 57). At this time, if the stroke of the moving substrate Y step feeding device 120 on the −X side is insufficient, the main controller 50 uses the + Y side substrate Y step feeding device 88 located closest to the −X side to use the substrate P. (See black arrows in FIG. 58).
 このとき、基板Pは、基板ホルダPHと、エア浮上ユニット群84Eの一部と-X側のエア浮上ユニット84Gとに跨って載置されている。基板ホルダPH、エア浮上ユニット群84E及びエア浮上ユニット84Gの上面からは、高圧空気が噴出されており、基板Pは浮上支持されている。 At this time, the substrate P is placed across the substrate holder PH, a part of the air levitation unit group 84E, and the air levitation unit 84G on the −X side. High pressure air is jetted from the upper surfaces of the substrate holder PH, the air levitation unit group 84E, and the air levitation unit 84G, and the substrate P is supported to be levitated.
 その後、基板ホルダPHによる基板Pの吸着、及び移動基板Yステップ送り装置120による基板Pの吸着解除と、基板P上の新たなアライメントマークを用いたアライメント計測と、微動ステージ26による基板Pの位置決めと、が行なわれる(図57又は図58中の白抜き矢印参照)。その後、基板ステージ(26,28,32、PH)とマスクステージMSTとが同期して、図59中に白抜き矢印で示されるように、+X方向に移動することで、次のショット領域SA3のスキャン露光が行なわれる。図60には、ショット領域SA3の露光終了後に、基板ステージ(26,28,32、PH)が停止した状態が示されている。 Thereafter, the adsorption of the substrate P by the substrate holder PH, the desorption of the substrate P by the moving substrate Y step feeding device 120, the alignment measurement using a new alignment mark on the substrate P, and the positioning of the substrate P by the fine movement stage 26 are performed. (See the white arrow in FIG. 57 or 58). Thereafter, the substrate stage (26, 28, 32, PH) and the mask stage MST are synchronized and moved in the + X direction as indicated by the white arrow in FIG. Scan exposure is performed. FIG. 60 shows a state in which the substrate stage (26, 28, 32, PH) is stopped after the exposure of the shot area SA3 is completed.
 次に、基板Pの次のショット領域SA4を基板ホルダPH上へ移動させるためのXステップ動作が行われる。この基板PのXステップ動作は、次の通りに行われる。 Next, an X-step operation for moving the next shot area SA4 of the substrate P onto the substrate holder PH is performed. The X step operation of the substrate P is performed as follows.
 すなわち、主制御装置50が、図60に示される状態にある基板Pの裏面を+Y側の基板Xステップ送り装置91(可動部91a)によって吸着保持し、基板ホルダPHの吸着を解除した後、基板ホルダPHからの高圧空気の排気とエア浮上ユニット群84E及び-X側のエア浮上ユニット84Gによる引き続きの高圧空気の排気とによって基板Pを浮上させる。これにより、基板Pは基板Xステップ送り装置91(可動部91a)のみによって保持された状態となる。 That is, after the main controller 50 sucks and holds the back surface of the substrate P in the state shown in FIG. 60 by the + Y-side substrate X step feeding device 91 (movable part 91a) and releases the suction of the substrate holder PH, The substrate P is levitated by the high-pressure air exhaust from the substrate holder PH and the subsequent high-pressure air exhaust by the air levitation unit group 84E and the -X side air levitation unit 84G. Thereby, the board | substrate P will be in the state hold | maintained only by the board | substrate X step feeding apparatus 91 (movable part 91a).
 次いで、主制御装置50は、基板Xステップ送り装置91のみによる基板Pの保持状態を維持したまま、基板ステージ(26,28,32、PH)を、図60中に白抜き矢印で示されるように、-X方向に駆動するXステップを開始する。これにより、基板Pは、基板ステージ(26,28,32、PH)のXステップ開始前の位置に停止したまま、この基板Pに対して基板ホルダPHが、-X方向に移動する。そして、主制御装置50は、基板ホルダPHが、基板Pの次のショット領域SA4の真下に到達すると、基板ステージ(26,28,32、PH)を、停止させる(図61参照)。このとき、基板Pは、基板ホルダPHと、エア浮上ユニット群84Eの一部と+X側のエア浮上ユニット84Gとに跨って載置されている。基板ホルダPH、エア浮上ユニット群84E及びエア浮上ユニット84Gの上面からは、高圧空気が噴出されており、基板Pは浮上支持されている。 Next, the main control device 50 indicates the substrate stage (26, 28, 32, PH) as indicated by the white arrow in FIG. 60 while maintaining the holding state of the substrate P only by the substrate X step feeding device 91. Then, the X step for driving in the −X direction is started. As a result, the substrate holder PH moves in the −X direction with respect to the substrate P while the substrate P is stopped at the position before the start of the X step of the substrate stage (26, 28, 32, PH). Then, when the substrate holder PH reaches just below the next shot area SA4 of the substrate P, the main controller 50 stops the substrate stage (26, 28, 32, PH) (see FIG. 61). At this time, the substrate P is placed across the substrate holder PH, a part of the air levitation unit group 84E, and the + X side air levitation unit 84G. High pressure air is jetted from the upper surfaces of the substrate holder PH, the air levitation unit group 84E, and the air levitation unit 84G, and the substrate P is supported to be levitated.
 上記の基板ステージ(26,28,32、PH)のステップ駆動と並行して、主制御装置50は、マスクステージMSTを、所定の加速開始位置へ戻している。 In parallel with the step drive of the substrate stage (26, 28, 32, PH), the main controller 50 returns the mask stage MST to a predetermined acceleration start position.
 その後、基板ホルダPHによる基板Pの吸着、及び基板Xステップ送り装置91による基板Pの吸着解除と、基板P上の新たなアライメントマークを用いたアライメント計測と、微動ステージ26による基板Pの位置決めと、が行なわれる(図61中の白抜き矢印参照)。その後、基板ステージ(26,28,32、PH)とマスクステージMSTとが同期して、図62中に白抜き矢印で示されるように、+X方向に移動することで、次のショット領域SA4のスキャン露光が行なわれる。図63には、ショット領域SA4の露光終了後に、基板ステージ(26,28,32、PH)が停止した状態が示されている。 Thereafter, the adsorption of the substrate P by the substrate holder PH, the desorption of the substrate P by the substrate X step feeding device 91, the alignment measurement using a new alignment mark on the substrate P, and the positioning of the substrate P by the fine movement stage 26 Are performed (see the white arrow in FIG. 61). Thereafter, the substrate stage (26, 28, 32, PH) and the mask stage MST are synchronously moved in the + X direction as indicated by the white arrow in FIG. Scan exposure is performed. FIG. 63 shows a state where the substrate stage (26, 28, 32, PH) is stopped after the exposure of the shot area SA4 is completed.
 上記の基板P上のショット領域SA4のスキャン露光に先立って、-Y側の基板Xステップ送り装置91の可動部91aが、次の基板の搬入に備えるために、主制御装置50により、+X側の移動限界位置近傍の待機位置に駆動され、その位置に待機させられている(図62中の黒塗り矢印参照)。 Prior to the above-described scan exposure of the shot area SA4 on the substrate P, the main controller 50 causes the movable portion 91a of the −Y side substrate X step feeding device 91 to prepare for the next substrate loading. Is driven to a standby position in the vicinity of the movement limit position and is made to wait at that position (see the black arrow in FIG. 62).
 そして、上記の基板P上のショット領域SA4のスキャン露光と並行して、不図示の基板搬入装置によってエア浮上ユニット群84F上に新たに投入された基板Pが、主制御装置50によって、-Y側の基板Xステップ送り装置91(可動部91a)で吸着保持されて-X側に搬送される(図63中の白抜き矢印参照)。 In parallel with the scanning exposure of the shot area SA4 on the substrate P, the substrate P newly introduced onto the air levitation unit group 84F by the substrate carry-in device (not shown) is -Y Is sucked and held by the side substrate X step feeding device 91 (movable portion 91a) and is transported to the −X side (see the white arrow in FIG. 63).
 一方、すべてのショット領域SA1~SA4に対する露光が終わった基板Pは、主制御装置50により、+X側の移動基板Yステップ送り装置120を用いて、図63中に点線矢印で示されるように+Y側に搬送され、基板ホルダPH上から完全に退避して+Y側のエア浮上ユニット群84Eの上に運ばれる。このとき、前記+X側の移動基板Yステップ送り装置120のストロークが足りない場合には、主制御装置50は、+Y側で最も+X側の基板Yステップ送り装置88を使って基板の送りを引き継ぐようにしても良い(図64参照)。これとほぼ同時に、新たに投入された基板Pは、主制御装置50により、-Y側でかつ最も+X側の基板Yステップ送り装置88を用いて、図64中に黒塗り矢印で示されるように+Y側に搬送され、ショット領域SA1が基板ホルダ上に位置させられる(図64参照)。 On the other hand, the substrate P that has been exposed to all the shot areas SA1 to SA4 is + Y as shown by the dotted arrow in FIG. 63 by the main controller 50 using the + X-side moving substrate Y step feed device 120. Then, it is completely retracted from above the substrate holder PH and carried onto the + Y side air floating unit group 84E. At this time, if the stroke of the + X side moving substrate Y step feeding device 120 is insufficient, the main controller 50 takes over the substrate feeding using the + Y side most substrate Y step feeding device 88 on the + Y side. You may make it (refer FIG. 64). At almost the same time, the newly introduced substrate P is indicated by the black arrow in FIG. 64 by the main controller 50 using the substrate Y step feed device 88 on the −Y side and the most + X side. Then, the shot area SA1 is positioned on the substrate holder (see FIG. 64).
 エア浮上ユニット群84Eの上に運ばれた露光済みの基板Pは、主制御装置50によって、+Y側の基板Xステップ送り装置91を用いて、+X方向に搬送され、不図示の基板搬出装置によって+X方向に搬出される(図64、図65参照)。 The exposed substrate P carried on the air levitation unit group 84E is transported in the + X direction by the main controller 50 using the + Y-side substrate X step feeding device 91, and by a substrate unloading device (not shown). It is carried out in the + X direction (see FIGS. 64 and 65).
 上記の露光済みの基板Pの搬出と並行して、基板ホルダPHにその一部が保持された基板Pに対しては、前述と同様のアライメント動作が行われた後、基板PとマスクMとの+X方向の加速が開始され、前述と同様にして最初のショット領域SA1に対するスキャン露光が行われる(図65参照)。以後、前述した第1枚目の基板Pに対する露光の際と同様の手順で、第2枚目以降の基板P上の残りのショット領域に対するアライメント(Xステップ、Yステップ)、露光等の動作、並びに第3枚目以降の基板に対するアライメント(Xステップ、Yステップ)、露光等の動作が繰り返される。この場合、奇数枚目の基板P及び偶数枚目の基板Pのいずれも、ショット領域SA1、SA2、SA3、SA4の順に露光される。 In parallel with the unloading of the exposed substrate P, the substrate P partially held by the substrate holder PH is subjected to the same alignment operation as described above, and then the substrate P, the mask M, The acceleration in the + X direction is started, and scan exposure is performed on the first shot area SA1 in the same manner as described above (see FIG. 65). Thereafter, operations such as alignment (X step, Y step), exposure and the like for the remaining shot regions on the second and subsequent substrates P in the same procedure as the exposure for the first substrate P described above, In addition, operations such as alignment (X step, Y step) and exposure with respect to the third and subsequent substrates are repeated. In this case, both the odd-numbered substrates P and the even-numbered substrates P are exposed in the order of the shot areas SA1, SA2, SA3, and SA4.
 以上説明したように本第8の実施形態に係る露光装置800によると、前述した第7の実施形態に係る露光装置700と同等の効果が得られる他、基板ホルダPH、該基板ホルダPHが搭載された微動ステージ26、及びこれを支持する重量キャンセル装置28を、第1実施形態よりもさらに軽量、コンパクトにすることができる。 As described above, according to the exposure apparatus 800 according to the eighth embodiment, the same effects as those of the exposure apparatus 700 according to the seventh embodiment described above can be obtained, and the substrate holder PH and the substrate holder PH are mounted. The fine movement stage 26 and the weight canceling device 28 that supports the fine movement stage 26 can be made lighter and more compact than the first embodiment.
《変形例》
 上記各実施形態の露光装置において、基板Pを一体的に保持するとともにエア浮上ユニットによって基板Pと一体的に浮上させることができる枠状の基板支持部材を用いても良い。一例として、第8の実施形態に係る露光装置800に、この基板支持部材を適用した場合について、図66に基づいて説明する。
<Modification>
In the exposure apparatus of each of the embodiments described above, a frame-shaped substrate support member that can hold the substrate P integrally and can be floated integrally with the substrate P by an air floating unit may be used. As an example, a case where this substrate support member is applied to an exposure apparatus 800 according to the eighth embodiment will be described with reference to FIG.
 基板支持部材69は、図66に示されるように、平面視で矩形(ほぼ正方形状)の輪郭を有し、中央部にZ軸方向に貫通する平面視矩形の開口部を有する厚さ方向寸法が小さい(薄い)枠状部材から成る。基板支持部材69は、X軸方向を長手方向とするXY平面に平行な平板状の部材であるX枠部材61xを、Y軸方向に所定間隔で一対有し、一対のX枠部材61xは、+X側、-X側の端部のそれぞれにおいて、Y軸方向を長手方向とするXY平面に平行な平板状の部材であるY枠部材61yにより接続されている。一対のX枠部材61x、及び一対のY枠部材61yのそれぞれは、例えばGFRP(Glass Fiber Reinforced Plastics)などの繊維強化合成樹脂材料、あるいはセラミックスなどにより形成することが、剛性の確保、及び軽量化の観点から好ましい。 As shown in FIG. 66, the substrate support member 69 has a rectangular (substantially square) outline in plan view, and has a rectangular opening in plan view that penetrates in the Z-axis direction at the center. Consists of a small (thin) frame-shaped member. The substrate support member 69 has a pair of X frame members 61x, which are flat members parallel to the XY plane with the X axis direction as the longitudinal direction, at a predetermined interval in the Y axis direction. Each of the + X side and −X side ends is connected by a Y frame member 61y that is a flat plate member parallel to the XY plane whose longitudinal direction is the Y-axis direction. Each of the pair of X frame members 61x and the pair of Y frame members 61y is made of, for example, a fiber reinforced synthetic resin material such as GFRP (Glass Fiber Reinforced Plastics), or ceramics to ensure rigidity and reduce weight. From the viewpoint of
 -Y側のX枠部材61xの上面には、-Y側の面に反射面を有するY移動鏡94Yが固定されている。また、-X側のY枠部材61yの上面には、-X側の面に反射面を有する平面ミラーから成るX移動鏡94Xが固定されている。この場合、基板ホルダPH及び微動ステージ26のいずれにも、X移動鏡、Y移動鏡を設ける必要がない。 On the upper surface of the -Y side X frame member 61x, a Y movable mirror 94Y having a reflecting surface on the -Y side surface is fixed. Further, an X movable mirror 94X composed of a plane mirror having a reflecting surface on the −X side surface is fixed to the upper surface of the −X side Y frame member 61y. In this case, it is not necessary to provide the X moving mirror and the Y moving mirror in either the substrate holder PH or the fine movement stage 26.
 基板支持部材69(すなわち基板P)のXY平面内の位置情報(θz方向の回転情報を含む)は、X移動鏡94Xの反射面に測長ビームを照射する一対のX干渉計98X,98X、及びY移動鏡94Yの反射面に測長ビームを照射する一対のY干渉計98Y,98Yを含む前述の基板ステージ干渉計システム98により、例えば0.5nm程度の分解能で常時検出される。 Position information in the XY plane (including rotation information in the θz direction) of the substrate support member 69 (that is, the substrate P) is a pair of X interferometers 98X 1 and 98X that irradiate a length measurement beam onto the reflection surface of the X movable mirror 94X. 2 and the above-described substrate stage interferometer system 98 including a pair of Y interferometers 98Y 1 and 98Y 2 that irradiate a length measuring beam onto the reflecting surface of the Y moving mirror 94Y, and is always detected with a resolution of, for example, about 0.5 nm. The
 なお、X干渉計、Y干渉計は、それぞれ基板支持部材69の移動可能範囲内で、少なくとも一つの測長ビームが対応する移動鏡に照射されるように、その台数及び/または測長ビームの光軸の数、又は間隔が設定される。従って、各干渉計の台数(光軸数)は2台に限定されず、基板支持部材の移動ストロークによっては、例えば1台(1軸)のみ、あるいは3台(3軸)以上であっても良い。 Note that the number of X interferometers and / or Y interferometers is such that at least one length measuring beam is irradiated to the corresponding movable mirror within the movable range of the substrate support member 69. The number of optical axes or the interval is set. Therefore, the number of interferometers (number of optical axes) is not limited to two, and depending on the movement stroke of the substrate support member, for example, only one (one axis), or three (three axes) or more good.
 基板支持部材69は、基板Pの端部(外周縁部)を下方から真空吸着保持する複数、例えば4つの保持ユニット65を有している。4つの保持ユニット65は、一対のX枠部材61xのそれぞれの互いに対向する対向面に2つずつ、X軸方向に離間して取り付けられている。なお、保持ユニットの数及び配置は、これに限られず、例えば基板の大きさ、撓み易さなどに応じて適宜追加しても良い。また、保持ユニットは、Y枠部材に取り付けられても良い。保持ユニット65は、例えばその上面に基板Pを真空吸着により吸着するための吸着パッドが設けられた断面L字状の基板載置部材と、該基板載置部材をX枠部材61xに接続する平行板ばねとを有し、基板載置部材が、X枠部材61xに対してX軸方向、及びY軸方向に関しては、平行板ばねの剛性によりその位置が拘束され、かつ板バネの弾性により、θx方向に回転することなくZ軸方向に変位(上下動)する構成になっている。かかる保持ユニット65及びこれを備えた基板支持部材69と同様の構成の基板保持枠については、例えば米国特許出願公開第2011/0042874号明細書に詳細に開示されている。 The substrate support member 69 has a plurality of, for example, four holding units 65 that hold the end (outer peripheral edge) of the substrate P by vacuum suction from below. The four holding units 65 are attached to the opposing surfaces of each of the pair of X frame members 61x so as to be separated from each other in the X axis direction. Note that the number and arrangement of the holding units are not limited to this, and may be appropriately added according to the size of the substrate, the ease of bending, and the like. The holding unit may be attached to the Y frame member. The holding unit 65 has, for example, an L-shaped substrate mounting member provided with a suction pad for vacuum suction of the substrate P on its upper surface, and a parallel connecting the substrate mounting member to the X frame member 61x. A plate spring, the position of the substrate mounting member with respect to the X frame member 61x in the X-axis direction and the Y-axis direction is constrained by the rigidity of the parallel leaf springs, and the elasticity of the leaf springs It is configured to be displaced (moved up and down) in the Z-axis direction without rotating in the θx direction. A substrate holding frame having the same configuration as the holding unit 65 and the substrate support member 69 provided with the holding unit 65 is disclosed in detail in, for example, US Patent Application Publication No. 2011/0042874.
 図66の変形例では、基板PのXステップ若しくはYステップ動作、又は基板Pの基板ステージ装置PSTgに対する搬出入に際しては、主制御装置50は、基板Xステップ送り装置91の可動部91a又は基板Yステップ送り装置88の可動部88aによって、基板支持部材69のいずれかのX枠部材61x又はいずれかのY枠部材61yを、吸着保持しても良いし、基板Pを吸着保持しても良い。 In the modification of FIG. 66, the main controller 50 moves the movable part 91a or the substrate Y of the substrate X step feeding device 91 when the substrate P is moved in and out of the X step or the Y step, or when the substrate P is carried in and out of the substrate stage device PSTg. Any X frame member 61x or any Y frame member 61y of the substrate support member 69 may be sucked and held, or the substrate P may be sucked and held by the movable portion 88a of the step feeding device 88.
 図66の変形例では、基板Pの位置を、基板支持部材69に固定されたX移動鏡94X、Y移動鏡94Yを介して基板ステージ干渉計システム98によって、計測することができるので、この変形例に係る露光装置を用いて、基板Pに対する第1層目の露光を行う場合であっても、基板ステージ干渉計システム98によって計測される基板Pの位置情報に基づいて、設計値に従って、基板Pの各ショット領域の露光のための加速開始位置への位置決めを十分な精度で行うことが可能になる。 In the modification of FIG. 66, the position of the substrate P can be measured by the substrate stage interferometer system 98 via the X moving mirror 94X and the Y moving mirror 94Y fixed to the substrate support member 69. Even when the exposure of the first layer on the substrate P is performed by using the exposure apparatus according to the example, the substrate according to the design value based on the position information of the substrate P measured by the substrate stage interferometer system 98 Positioning to the acceleration start position for exposure of each shot area of P can be performed with sufficient accuracy.
 なお、基板支持部材69のY枠部材61y、X枠部材61xに、X移動鏡94X、Y移動鏡94Yの反射面に相当する反射面を形成することができるのであれば、必ずしもX移動鏡94X、Y移動鏡94Yを設ける必要はない。この場合には、その分、基板支持部材69を軽量化することができる。 In addition, if the reflective surface equivalent to the reflective surface of X movable mirror 94X and Y movable mirror 94Y can be formed in Y frame member 61y and X frame member 61x of substrate support member 69, X movable mirror 94X is not necessarily required. It is not necessary to provide the Y moving mirror 94Y. In this case, the substrate support member 69 can be reduced in weight accordingly.
 基板支持部材は、基板Pに対する1層目の露光の際にのみ用いても良いし、2層目以降の露光の際にも用いるようにしても良い。前者の場合、2層目以降の露光に際しては、基板ステージ干渉計システム98によって、微動ステージ26の位置を計測する必要があるので、例えば前述したコーナーキューブから成る一対のX移動鏡94X、94X、及び長尺鏡から成るY移動鏡94Yを、前述した第8の実施形態と同様の位置に取り付けておく必要がある。また、この場合に、基板ステージ干渉計システム98を、一層目の露光の際の基板支持部材69(基板P)及び2層目の露光の際の微動ステージ26の位置情報の計測に兼用しても良いが、これに限らず、基板支持部材69(基板P)の位置を計測する基板干渉計システムを、基板ステージ干渉計システム98とは別に設けても良い。 The substrate support member may be used only when the first layer is exposed to the substrate P, or may be used when the second and subsequent layers are exposed. In the former case, since the position of the fine movement stage 26 needs to be measured by the substrate stage interferometer system 98 during the exposure of the second and subsequent layers, for example, the pair of X movable mirrors 94X 1 and 94X composed of the above-described corner cubes. 2 and a Y movable mirror 94Y composed of a long mirror must be attached at the same positions as in the eighth embodiment. In this case, the substrate stage interferometer system 98 is also used for measuring the positional information of the substrate support member 69 (substrate P) at the time of the first exposure and the fine movement stage 26 at the time of the second exposure. However, the present invention is not limited to this, and a substrate interferometer system that measures the position of the substrate support member 69 (substrate P) may be provided separately from the substrate stage interferometer system 98.
 なお、基板支持部材として、枠状の部材に限らず、枠の一部が欠けたような形状の基板支持部材を用いても良い。例えば上記米国特許出願公開第2011/0042874号明細書の第8の実施形態中に開示されているような平面視U字状の基板保持枠を用いても良い。また、基板のスキャン露光時の動作に悪影響を与えない構成であれば、基板支持部材69のXY平面内の駆動、例えばX軸方向の長ストローク駆動をアシストする駆動機構を新たに設けても良い。 Note that the substrate support member is not limited to a frame-shaped member, and a substrate support member having a shape in which a part of the frame is cut off may be used. For example, a U-shaped substrate holding frame as disclosed in the eighth embodiment of the above-mentioned US Patent Application Publication No. 2011/0042874 may be used. In addition, a drive mechanism that assists driving in the XY plane of the substrate support member 69, for example, long stroke driving in the X-axis direction, may be newly provided as long as the configuration does not adversely affect the operation during scanning exposure of the substrate. .
 なお、上記の説明では、第8の実施形態を代表的に取りあげて説明したが、前述の第1~第7の各実施形態においても、上記の基板支持部材を、基板Pの支持に用いても良いことは勿論である。 In the above description, the eighth embodiment has been described as a representative. However, in the first to seventh embodiments described above, the substrate support member is used for supporting the substrate P. Of course, it is also good.
 なお、上記第7、第8の実施形態では、基板ホルダPHのY軸方向の一側と他側に、粗動テーブル32及び微動ステージ26等と分離して配置されたフレーム上にエア浮上ユニット群84E,84Fが設置される場合について説明したが、エア浮上ユニット群84E,84Fのうち少なくとも一方を、粗動テーブル32上に搭載してX軸方向に可動な構成としても良いし、これに限らず、粗動テーブルに追従して移動する別の移動体を設け、該別の移動体上にエア浮上ユニット群を搭載して、X軸方向に可動な構成としても良い。この場合、エア浮上ユニット群が搭載された粗動テーブル32又は粗動テーブルに追従して移動する別の移動体上に、エア浮上ユニット群の内部に配置された前述の基板Yステップ送り装置88を設けても良い。また、エア浮上ユニット群84E,84Fはフレームを介して床に設置したが、架台上に設置しても良い。 In the seventh and eighth embodiments, the air levitation unit is mounted on a frame arranged separately from the coarse movement table 32 and the fine movement stage 26 on one side and the other side of the substrate holder PH in the Y-axis direction. Although the case where the groups 84E and 84F are installed has been described, at least one of the air levitation unit groups 84E and 84F may be mounted on the coarse motion table 32 and configured to be movable in the X-axis direction. Not limited to this, another moving body that moves following the coarse movement table may be provided, and an air floating unit group may be mounted on the other moving body so as to be movable in the X-axis direction. In this case, the above-described substrate Y step feeding device 88 disposed inside the air levitation unit group on the coarse movement table 32 on which the air levitation unit group is mounted or another moving body that moves following the coarse movement table. May be provided. Moreover, although the air levitation unit groups 84E and 84F are installed on the floor via the frame, they may be installed on a gantry.
《第9の実施形態》
 次に、第9の実施形態について、図67~図99に基づいて説明する。ここで、前述した第1ないし第8の各実施形態と同一若しくは同等の構成部分については、同一若しくは類似の符号を用いるとともに、その説明を簡略若しくは省略する。
<< Ninth embodiment >>
Next, a ninth embodiment will be described with reference to FIGS. Here, the same or similar reference numerals are used for the same or equivalent components in the first to eighth embodiments described above, and the description thereof is simplified or omitted.
 図67には、第9の実施形態に係る露光装置900の構成が、エア浮上ユニット群等を省略して、概略的に示されている。図68には、露光装置900の一部省略した平面図、すなわち、図67の投影光学系PLより下方の部分(後述する鏡筒定盤より下方の部分)の平面図が示されている。また、図69には、本第9の実施形態に係る露光装置を図67の+X方向から見て一部省略して示す概略側面図が示されている。図70には、図68の平面図の一部が取り出して拡大して示されている。また、図71には、露光装置900の制御系を中心的に構成し、構成各部を統括制御する主制御装置50の入出力関係がブロック図にて示されている。図71では、基板ステージ系に関連する構成各部が示されている。主制御装置50は、ワークステーション(又はマイクロコンピュータ)等を含み、露光装置900の構成各部を統括制御する。 FIG. 67 schematically shows the arrangement of an exposure apparatus 900 according to the ninth embodiment, omitting the air levitation unit group and the like. 68 shows a plan view in which a part of the exposure apparatus 900 is omitted, that is, a plan view of a portion below the projection optical system PL in FIG. 67 (portion below a lens barrel surface plate described later). FIG. 69 is a schematic side view showing the exposure apparatus according to the ninth embodiment with a part omitted from the + X direction of FIG. In FIG. 70, a part of the plan view of FIG. 68 is taken out and enlarged. FIG. 71 is a block diagram showing the input / output relationship of the main control device 50 that centrally configures the control system of the exposure apparatus 900 and performs overall control of each component. In FIG. 71, each component related to the substrate stage system is shown. The main controller 50 includes a workstation (or a microcomputer) and the like, and comprehensively controls each part of the exposure apparatus 900.
 露光装置900は、照明系IOP、マスクMを保持するマスクステージMST、投影光学系PL、マスクステージMST及び投影光学系PLなどが搭載されたボディBD(図67等ではその一部のみが図示されている)、微動ステージ26(基板テーブル)を含む基板ステージ装置PSTh、及びこれらの制御系等を備え、全体的には、前述の第1~第8の実施形態に係る各露光装置と同様に構成されている。しかしながら、基板ステージ装置PSThは、2枚の基板(図67では、基板P1及び基板P2が示されている)のそれぞれの一部を保持可能なっている点が、これまでに説明した基板ステージ装置PST~PSTgとは異なる。 The exposure apparatus 900 includes an illumination system IOP, a mask stage MST for holding a mask M, a projection optical system PL, a mask stage MST, a projection optical system PL, etc., and a body BD (FIG. 67 and the like show only a part thereof. A substrate stage apparatus PSTh including a fine movement stage 26 (substrate table), and a control system thereof, and the like, which are generally the same as those of the exposure apparatuses according to the first to eighth embodiments described above. It is configured. However, the substrate stage apparatus PSTh described above is capable of holding a part of each of two substrates (the substrate P1 and the substrate P2 are shown in FIG. 67). Different from PST to PSTg.
 基板ステージ装置PSThは、図67及び図69に示されるように、粗動ステージ部24、微動ステージ26、及び重量キャンセル装置28等を有している。微動ステージ26の上面には、図67及び図69から分かるように、基板ホルダPHが搭載されている。基板ホルダPHは、図68からわかるように、X軸方向の長さが基板(P1、P2)と同等であり、Y軸方向の幅(長さ)は基板(P1、P2)の約1/3である。 The substrate stage apparatus PSTh includes a coarse movement stage section 24, a fine movement stage 26, a weight cancellation apparatus 28, and the like, as shown in FIGS. As can be seen from FIGS. 67 and 69, a substrate holder PH is mounted on the upper surface of the fine movement stage 26. As can be seen from FIG. 68, the substrate holder PH has the same length in the X-axis direction as that of the substrates (P1, P2), and the width (length) in the Y-axis direction is about 1 / of that of the substrates (P1, P2). 3.
 基板ホルダPHの上面のX軸方向の中央部には、図70に示されるように、その上面を2つの保持領域ADA1、ADA2に分割するY軸に平行な溝150が設けられている。溝150で分割された2つの保持領域ADA1、ADA2では、互いに独立して、基板P1、P2の一部(ここでは、基板P1,P2のY軸方向に関する約1/3の部分であって、+X側又は-X側半部であるそれぞれの基板の1/6の領域)を、例えば真空吸着(又は静電吸着)により吸着保持するとともに、加圧気体(例えば高圧空気)を上向きに噴き出してその噴き出し圧力によって基板P1、P2の一部(それぞれの基板の約1/6の領域)を下方から非接触(浮上)支持することができる。 As shown in FIG. 70, a groove 150 parallel to the Y axis that divides the upper surface into two holding areas ADA1 and ADA2 is provided at the center of the upper surface of the substrate holder PH in the X-axis direction. In the two holding areas ADA1 and ADA2 divided by the groove 150, a part of the substrates P1 and P2 (here, about one third of the substrate P1 and P2 with respect to the Y-axis direction, 1/6 region of each substrate that is + X side or −X side half) is adsorbed and held by, for example, vacuum adsorption (or electrostatic adsorption), and pressurized gas (for example, high-pressure air) is blown upward. A part of the substrates P1 and P2 (a region of about 1/6 of each substrate) can be supported in a non-contact (floating) from below by the ejection pressure.
 基板ホルダPHの保持領域ADA1、ADA2による各基板に対する高圧空気の噴き出しと真空吸着との切り替えは、不図示の真空ポンプと高圧空気源とに基板ホルダPHの保持領域ADA1、ADA2を個別に切り替え接続するホルダ吸排気切替装置51A、51B(図71参照)を介して、主制御装置50によって行われる。 Switching between high-pressure air ejection and vacuum suction to each substrate by the holding areas ADA1 and ADA2 of the substrate holder PH is performed by switching the holding areas ADA1 and ADA2 of the substrate holder PH individually to a vacuum pump and a high-pressure air source (not shown). This is performed by the main controller 50 via the holder intake / exhaust switching devices 51A and 51B (see FIG. 71).
 粗動ステージ部24は、図69に示されるように、2本(一対)のXビーム30A,30Bと、2つ(一対)の粗動テーブル32A,32Bと、2本のXビーム30A,30Bのそれぞれを床面F上で支持する複数の脚部34と、を有している。粗動テーブル32A,32Bは、例えば前述の基板ステージ装置PSTが備える2つの粗動テーブルと同様に構成されている。 As shown in FIG. 69, the coarse movement stage unit 24 includes two (a pair) X beams 30A and 30B, two (a pair) coarse movement tables 32A and 32B, and two X beams 30A and 30B. And a plurality of legs 34 that support each of the two on the floor surface F. The coarse movement tables 32A and 32B are configured in the same manner as the two coarse movement tables provided in the substrate stage apparatus PST described above, for example.
 粗動テーブル32A,32Bのそれぞれの上方には、図68及び図69に示されるように、平面視矩形の支持面(上面)を有する複数、ここでは各8つのエア浮上ユニット84Hが配置され、支持部材86をそれぞれ介して粗動テーブル32A,32Bの上面に固定されている。各8つのエア浮上ユニット84Hは、それぞれ、露光領域IA(投影光学系PL)の+Y側、-Y側で、Y軸方向に関して基板P1、P2のサイズの2/3、かつX軸方向に関して基板P1とP2とのX軸方向の合計サイズとほぼ同等のサイズの領域内に、2次元配列されている。各エア浮上ユニット84Hの上面は基板ホルダPHの上面と同等、あるいは、幾分低くなるように設定されている。以下の説明では、上記各8つのエア浮上ユニット84Hをそれぞれ、+Y側のエア浮上ユニット群84H、-Y側のエア浮上ユニット群84Hと称する。 As shown in FIGS. 68 and 69, a plurality of, in this case, eight air levitation units 84H each having a rectangular support surface (upper surface) are disposed above the coarse movement tables 32A and 32B, It is being fixed to the upper surface of coarse movement table 32A, 32B via the supporting member 86, respectively. Each of the eight air levitation units 84H has a substrate size of 2/3 of the size of the substrates P1 and P2 with respect to the Y axis direction on the + Y side and the −Y side of the exposure area IA (projection optical system PL), and the substrate with respect to the X axis direction Two-dimensionally arranged in an area having a size substantially equal to the total size of P1 and P2 in the X-axis direction. The upper surface of each air levitation unit 84H is set to be equal to or somewhat lower than the upper surface of the substrate holder PH. In the following description, the eight air levitation units 84H are referred to as a + Y side air levitation unit group 84H and a -Y side air levitation unit group 84H, respectively.
 また、基板ホルダPHのX軸方向の両側には、図68に示されるように、各一対のエア浮上ユニット84Iが配置されている。各一対のエア浮上ユニット84Iは、図67に示されるように、その上面が基板ホルダPHとほぼ同等(僅かに低い)の高さとなるように、XZ断面がL字状の支持部材112を介して粗動テーブル32Aの上面に固定されている。各エア浮上ユニット84Iは、例えばY軸方向の長さが基板ホルダPHの1/2よりも幾分短く、X軸方向の長さが基板ホルダPHの1/2より幾分短い。 Further, as shown in FIG. 68, a pair of air levitation units 84I are arranged on both sides of the substrate holder PH in the X-axis direction. As shown in FIG. 67, each pair of air levitation units 84I has a support member 112 whose XZ cross section is L-shaped so that the upper surface thereof is almost the same height (slightly lower) as the substrate holder PH. And fixed to the upper surface of the coarse motion table 32A. For example, each air levitation unit 84I has a length in the Y-axis direction somewhat shorter than ½ of the substrate holder PH, and a length in the X-axis direction is slightly shorter than ½ of the substrate holder PH.
 Xビーム30Aの+Y側、及びXビーム30Bの-Y側には、図69に示されるように、一対のフレーム110A,110Bのそれぞれが、架台18に接触しないように床面F上に設置されている。一対のフレーム110A,110Bのそれぞれの上面には、複数、例えば各4つのエア浮上ユニット84Jが設置されている(図68参照)。 On the + Y side of the X beam 30A and the -Y side of the X beam 30B, as shown in FIG. 69, each of the pair of frames 110A and 110B is installed on the floor surface F so as not to contact the gantry 18. ing. A plurality of, for example, four air levitation units 84J, for example, are installed on the upper surfaces of the pair of frames 110A and 110B (see FIG. 68).
 各4つのエア浮上ユニット84Jは、図68及び図69に示されるように、前述の+Y側のエア浮上ユニット群84Hの+Y側、-Y側のエア浮上ユニット群84Hの-Y側に、それぞれ配置されている。各4つのエア浮上ユニット84Jのそれぞれは、図68に示されるように、Y軸方向の幅が基板P1、P2のY軸方向の長さのほぼ1/3で、X軸方向の長さが、基板ホルダPHのX軸方向の長さの1/2より幾分短い。以下の説明では、上記各4つのエア浮上ユニット84Jをそれぞれ、+Y側のエア浮上ユニット群84J、-Y側のエア浮上ユニット群84Jと称する。+Y側及び-Y側のエア浮上ユニット群84Jのそれぞれは、Y軸方向のサイズが基板PのY軸方向の長さのほぼ1/3で、かつX軸方向のサイズが基板P1とP2とのX軸方向の合計サイズとほぼ同等のサイズの領域内にX軸方向に配列されている。露光領域IAの中心と+Y側及び-Y側のエア浮上ユニット群84Jの中心とのX位置はほぼ一致している。各エア浮上ユニット84Jの上面は基板ホルダPHの上面と同等、あるいは、幾分低くなるように設定されている。 As shown in FIGS. 68 and 69, each of the four air levitation units 84J is arranged on the + Y side of the + Y side air levitation unit group 84H and the −Y side of the −Y side air levitation unit group 84H, respectively. Has been placed. As shown in FIG. 68, each of the four air levitation units 84J has a width in the Y-axis direction that is approximately 1/3 of the length in the Y-axis direction of the substrates P1 and P2, and a length in the X-axis direction. It is somewhat shorter than 1/2 of the length of the substrate holder PH in the X-axis direction. In the following description, the four air levitation units 84J are referred to as a + Y side air levitation unit group 84J and a -Y side air levitation unit group 84J, respectively. Each of the + Y side and −Y side air levitation unit groups 84J has a Y-axis size of approximately one third of the Y-axis length of the substrate P and an X-axis size of the substrates P1 and P2. Are arranged in the X-axis direction in a region having a size substantially equal to the total size in the X-axis direction. The X positions of the center of the exposure area IA and the centers of the + Y side and −Y side air levitation unit groups 84J substantially coincide. The upper surface of each air levitation unit 84J is set to be equal to or somewhat lower than the upper surface of the substrate holder PH.
 上述したエア浮上ユニット84H、84I、及び84Jのそれぞれの支持面(上面)は、多孔質体や機械的に複数の微小な穴を有するスラスト型のエアベアリング構造になっている。各エア浮上ユニット84H、84I、及び84Jは、気体供給装置85(図71参照)からの加圧気体(例えば高圧空気)の供給により、基板(例えばP1、P2)の一部を浮上支持することができるようになっている。各エア浮上ユニット84H、84I、及び84Jに対する高圧空気の供給のオン・オフは、図71に示される主制御装置50によって個別に制御される。 Each of the support surfaces (upper surfaces) of the air levitation units 84H, 84I, and 84J described above has a thrust type air bearing structure having a porous body or a plurality of mechanically minute holes. Each of the air levitation units 84H, 84I, and 84J levitates and supports a part of the substrate (for example, P1 and P2) by supplying pressurized gas (for example, high-pressure air) from the gas supply device 85 (see FIG. 71). Can be done. On / off of the supply of high-pressure air to each of the air levitation units 84H, 84I, and 84J is individually controlled by the main controller 50 shown in FIG.
 上述の説明から明らかなように、本実施形態では、+Y側又は-Y側のエア浮上ユニット群84H及び84Jによって2枚の基板の全体を浮上支持することができる。また、基板ホルダPHの保持領域ADA1と+X側の一対のエア浮上ユニット84Iと+Y側又は-Y側の4つのエア浮上ユニット84Hとによって1枚の基板の全体を浮上支持することができる。また、基板ホルダPHの保持領域ADA2と-X側の一対のエア浮上ユニット84Iと+Y側又は-Y側の4つのエア浮上ユニット84Hとによって1枚の基板の全体を浮上支持することができる。さらに、基板ホルダPHと該基板ホルダPHの+Y側又は-Y側の4つのエア浮上ユニット84Hとによって1枚の基板の全体を浮上支持することができる。 As is clear from the above description, in the present embodiment, the whole of the two substrates can be levitated and supported by the + Y side or -Y side air levitation unit groups 84H and 84J. Further, the entire substrate can be levitated and supported by the holding area ADA1 of the substrate holder PH, the pair of air levitation units 84I on the + X side, and the four air levitation units 84H on the + Y side or the −Y side. Further, the entire substrate can be levitated and supported by the holding area ADA2 of the substrate holder PH, the pair of air levitation units 84I on the −X side, and the four air levitation units 84H on the + Y side or the −Y side. Further, the entire substrate can be supported by the substrate holder PH and the four air levitation units 84H on the + Y side or the −Y side of the substrate holder PH.
 なお、エア浮上ユニット群84H、84Jは、それぞれ、上述した各矩形領域とほぼ同等の総支持面積を有していれば、単一の大型のエア浮上ユニットに置き換えても良いし、個々のエア浮上ユニットの大きさを、図68の場合と異ならせて、上記矩形領域内に分散配置しても良い。一対のエア浮上ユニット84Iに代えて、支持面の面積が2倍の単一のエア浮上ユニットを用いても良い。エア浮上ユニットは、基板を浮上させるものなので、全面に敷き詰める必要はなく、エア浮上ユニットの浮上能力(負荷容量)に応じて、適切に所定の間隔で所定の位置に配置すれば良い。 Note that each of the air levitation unit groups 84H and 84J may be replaced with a single large air levitation unit, as long as each of the air levitation unit groups 84H and 84J has a total support area substantially equal to each rectangular area described above. The size of the levitation unit may be distributed in the rectangular area, different from the case of FIG. Instead of the pair of air levitation units 84I, a single air levitation unit having a double support area may be used. Since the air levitation unit floats the substrate, it does not need to be spread over the entire surface, and may be arranged at predetermined positions at appropriate intervals according to the levitation capacity (load capacity) of the air levitation unit.
 +X側及び-X側の各一対のエア浮上ユニット84Iと基板ホルダPHとの間には、図68及び図70に示されるように、一対の基板Yステップ送り装置88のそれぞれが配置されている。 Between each pair of air levitation units 84I on the + X side and −X side and the substrate holder PH, as shown in FIGS. 68 and 70, each of the pair of substrate Y step feeding devices 88 is disposed. .
 各基板Yステップ送り装置88は、基板(例えばP1又はP2)を保持(例えば吸着)してY軸方向に移動させるための装置であり、前述の支持部材112の上面に固定されている(図67参照)。各基板Yステップ送り装置88は、図67及び図70に示されるように、支持部材112を介して粗動テーブル32Aに固定されたY軸方向に伸びる固定部88bと、基板(例えばP1又はP2)の裏面を吸着してY軸方向に固定部88bに沿って移動する可動部88aと、を備えている。本実施形態では、各基板Yステップ送り装置88の可動部88aのY軸方向の移動ストロークは基板ホルダPHのY軸方向の幅と同等である。 Each substrate Y step feeding device 88 is a device for holding (for example, sucking) a substrate (for example, P1 or P2) and moving it in the Y-axis direction, and is fixed to the upper surface of the support member 112 (see FIG. 67). As shown in FIGS. 67 and 70, each substrate Y step feeding device 88 includes a fixing portion 88b fixed to the coarse motion table 32A via the support member 112 and extending in the Y-axis direction, and a substrate (for example, P1 or P2). ), And a movable portion 88a that moves along the fixed portion 88b in the Y-axis direction. In the present embodiment, the movement stroke in the Y-axis direction of the movable portion 88a of each substrate Y step feeding device 88 is equal to the width of the substrate holder PH in the Y-axis direction.
 なお、実際には、可動部88aが、基板Pを吸着してY軸方向に移動するのであるが、以下では、特に区別が必要な場合を除き、基板Yステップ送り装置88と可動部88aとを区別することなく用いる。 Actually, the movable portion 88a adsorbs the substrate P and moves in the Y-axis direction. However, in the following description, the substrate Y step feeding device 88 and the movable portion 88a Are used without distinction.
 +Y側及び-Y側のエア浮上ユニット群84Hと基板ホルダPHとの間には、図68及び図70に示されるように、一対の基板Xステップ送り装置91のそれぞれが配置されている。 As shown in FIGS. 68 and 70, each of a pair of substrate X step feeding devices 91 is arranged between the + Y side and −Y side air levitation unit group 84H and the substrate holder PH.
 基板Xステップ送り装置91は、基板(例えばP1又はP2)を保持(例えば吸着)してX軸方向に移動させるための装置であり、基板ホルダPHの+X側半部の+Y側、-Y側に配置された一対のエア浮上ユニット84Hのそれぞれの基板ホルダPHに対向する側の面に支持部材を介して固定されている(図69参照)。 The substrate X step feeding device 91 is a device for holding (for example, adsorbing) a substrate (for example, P1 or P2) and moving it in the X-axis direction. The + X side of the + X side half of the substrate holder PH, the −Y side The pair of air levitation units 84H disposed on the surface are fixed to the surfaces facing the substrate holders PH via support members (see FIG. 69).
 各基板Xステップ送り装置91は、図69及び図70に示されるように、エア浮上ユニット84Hとともに粗動テーブル32A又は32Bに固定されたX軸方向に伸びる固定部91bと、基板(例えばP1又はP2)の裏面を吸着してX軸方向に固定部91bに沿って移動する可動部91aと、を備えている。可動部91aは、例えばリニアモータによって構成される駆動装置95(図69及び図70では不図示、図71参照)によって、粗動テーブル32A又は32Bに対してX軸方向に駆動される。基板Xステップ送り装置91には、可動部91aの位置を計測するエンコーダなどの位置読み取り装置97(図69及び図70では不図示、図71参照)が設けられている。なお、駆動装置95は、リニアモータに限らず、ボールねじ又はベルトを用いた回転モータを駆動源とする駆動機構によって構成しても良い。 As shown in FIGS. 69 and 70, each substrate X step feeding device 91 includes a fixed portion 91b extending in the X-axis direction fixed to the coarse movement table 32A or 32B together with the air floating unit 84H, and a substrate (for example, P1 or And a movable portion 91a that adsorbs the back surface of P2) and moves along the fixed portion 91b in the X-axis direction. The movable portion 91a is driven in the X-axis direction with respect to the coarse motion table 32A or 32B by a drive device 95 (not shown in FIGS. 69 and 70, see FIG. 71) configured by, for example, a linear motor. The substrate X step feeding device 91 is provided with a position reading device 97 (not shown in FIGS. 69 and 70, see FIG. 71) such as an encoder for measuring the position of the movable portion 91a. The drive device 95 is not limited to a linear motor, and may be configured by a drive mechanism that uses a rotary motor using a ball screw or a belt as a drive source.
 各基板Xステップ送り装置91の可動部91aのX軸方向の移動ストロークは基板ホルダのX軸方向長さのほぼ1/2(幾分長い)である。各固定部91bの-X側の端部は、それぞれが固定されたエア浮上ユニット84Hから、-X側に所定長さ張り出している。 The movement stroke in the X-axis direction of the movable portion 91a of each substrate X step feeding device 91 is approximately ½ (somewhat longer) the length of the substrate holder in the X-axis direction. The end portion on the −X side of each fixing portion 91b protrudes from the air levitation unit 84H to which the fixing portion 91b is fixed to the −X side by a predetermined length.
 また、各基板Xステップ送り装置91の可動部91a(基板吸着面)は基板Pの裏面を吸着したり、吸着を解除して基板Pから分離したりする必要があるので、駆動装置95によってZ軸方向にも微少駆動可能に構成されている。なお、実際には、可動部91aが、基板Pを吸着してX軸方向に移動するのであるが、以下では、特に区別が必要な場合を除き、基板Xステップ送り装置91と可動部91aとを区別することなく用いる。 Further, since the movable portion 91a (substrate adsorption surface) of each substrate X step feeding device 91 needs to adsorb the back surface of the substrate P or release the adsorption to separate it from the substrate P, the drive device 95 performs Z It is configured so that it can be driven minutely in the axial direction. Actually, the movable portion 91a adsorbs the substrate P and moves in the X-axis direction. However, in the following, the substrate X step feeding device 91 and the movable portion 91a Are used without distinction.
 なお、本実施形態においても、基板Yステップ送り装置88及び基板Xステップ送り装置91のそれぞれの可動部(基板吸着面)による基板Pの吸着及び基板との分離のために、微動ステージ26がZ軸方向に移動しても良い。 Also in this embodiment, the fine movement stage 26 is Z for the adsorption of the substrate P and the separation from the substrate by the respective movable parts (substrate adsorption surfaces) of the substrate Y step feeding device 88 and the substrate X step feeding device 91. It may move in the axial direction.
 重量キャンセル装置28は、図69に示されるように、筐体64、空気ばね66及びZスライダ68などを有し、例えば前述した第2の実施形態以下の各実施形態と同様に構成されている。すなわち、本第9の実施形態に係る基板ステージ装置PSThでは、Zスライダ68がレベリング装置78の固定部を兼ね、シーリングパッドは設けられておらず、重量キャンセル装置28が微動ステージ26と一体化されている。また、重量キャンセル装置28は微動ステージ26と一体化されているので、重量キャンセル装置28の単独運動を規制する連結装置80(フレクシャ装置)などは設けられていない。微動ステージ26は、図69中に球状部材で模式的に示されている球面軸受、あるいは擬似球面軸受構造体を有するレベリング装置78によってZスライダ68上でチルト自在(XY平面に対してθx及びθy方向に揺動自在)に支持されている。 As shown in FIG. 69, the weight canceling device 28 includes a housing 64, an air spring 66, a Z slider 68, and the like, and is configured in the same manner as the above-described second and subsequent embodiments, for example. . That is, in the substrate stage device PSTh according to the ninth embodiment, the Z slider 68 also serves as a fixing portion of the leveling device 78, no sealing pad is provided, and the weight cancellation device 28 is integrated with the fine movement stage 26. ing. Further, since the weight canceling device 28 is integrated with the fine movement stage 26, there is no connecting device 80 (flexure device) or the like that restricts the single motion of the weight canceling device 28. The fine movement stage 26 is freely tiltable on the Z slider 68 by a leveling device 78 having a spherical bearing or a pseudo spherical bearing structure schematically shown as a spherical member in FIG. 69 (θx and θy with respect to the XY plane). It can be swung in the direction).
 重量キャンセル装置28、及び重量キャンセル装置28にレベリング装置78を介して支持された上部構成部分(微動ステージ26及び基板ホルダPH等)は、一対のXボイスコイルモータ54Xの働きによって、粗動テーブル32Aと一体的にX軸方向に移動する。すなわち、上部構成部分(微動ステージ26及び基板ホルダPH等)は、主制御装置50によって、一対のXボイスコイルモータ54Xを用いて重量キャンセル装置28に支持されて粗動テーブル32Aに同期駆動(粗動テーブル32Aと同方向に同速度で駆動)されることにより、粗動テーブル32Aと共にX軸方向に所定のストロークで移動する。また、上部構成部分(微動ステージ26及び基板ホルダPH等)は、主制御装置50により、一対のXボイスコイルモータ54X、一対のYボイスコイルモータ54Y及び4つのZボイスコイルモータ54Zを介して、粗動テーブル32Aに対し6自由度方向に微少駆動される。 The weight canceling device 28 and the upper components (the fine motion stage 26, the substrate holder PH, etc.) supported by the weight canceling device 28 through the leveling device 78 are operated by the coarse motion table 32A by the action of the pair of X voice coil motors 54X. And move in the X-axis direction. That is, the upper components (fine movement stage 26, substrate holder PH, etc.) are supported by the weight canceling device 28 by the main controller 50 using a pair of X voice coil motors 54X, and are synchronously driven (coarse) to the coarse movement table 32A. And is moved at a predetermined stroke in the X-axis direction together with the coarse motion table 32A. Further, the upper components (fine movement stage 26, substrate holder PH, etc.) are controlled by main controller 50 via a pair of X voice coil motors 54X, a pair of Y voice coil motors 54Y, and four Z voice coil motors 54Z. The coarse movement table 32A is slightly driven in the direction of 6 degrees of freedom.
 本第9の実施形態では、粗動テーブル32A(及び32B)、重量キャンセル装置28、微動ステージ26、及び基板ホルダPH等を含んで、基板(P1、P2)と一体でX軸方向に移動する移動体(以下、適宜、基板ステージ(PH、26,28,32A、32B)と表記する)が構成されている。 In the ninth embodiment, the coarse movement table 32A (and 32B), the weight cancellation device 28, the fine movement stage 26, the substrate holder PH, and the like are moved in the X-axis direction integrally with the substrates (P1, P2). A movable body (hereinafter referred to as a substrate stage (PH, 26, 28, 32A, 32B) as appropriate) is configured.
 本第9の実施形態に係る露光装置900において、微動ステージ26(基板ホルダPH)のXY平面内の位置情報は、基板ステージ干渉計システム98(図71参照)によって0.5~1nm程度の分解能で常時検出されている。本第9の実施形態に係る基板ステージ干渉計システム98は、図67~図69と、図30~図32とを比較するとわかるように、前述した第7の実施形態に係る基板ステージ干渉計システム98と同様に構成されている。但し、本第9の実施形態に係る露光装置900では、Y干渉計98Y、98Yは、図69に示されるように、エア浮上ユニット84Hの下方に、Y移動鏡94Yに対向して、X軸方向に所定間隔で配置されている。Y干渉計98Y、98Yは、支持部材104をそれぞれ介して一対の架台18のそれぞれに固定されている。 In the exposure apparatus 900 according to the ninth embodiment, the positional information of the fine movement stage 26 (substrate holder PH) in the XY plane has a resolution of about 0.5 to 1 nm by the substrate stage interferometer system 98 (see FIG. 71). Always detected. The substrate stage interferometer system 98 according to the ninth embodiment can be understood by comparing FIGS. 67 to 69 with FIGS. 30 to 32, and the substrate stage interferometer system according to the seventh embodiment described above. It is comprised similarly to 98. However, in the exposure apparatus 900 according to the ninth embodiment, as shown in FIG. 69, the Y interferometers 98Y 1 and 98Y 2 are positioned below the air floating unit 84H so as to face the Y moving mirror 94Y. They are arranged at predetermined intervals in the X-axis direction. The Y interferometers 98Y 1 and 98Y 2 are fixed to the pair of mounts 18 via the support members 104, respectively.
 基板ステージ装置PSThのその他部分の構成は、例えば基板ステージ装置PSTa、PSTfなどと同様になっている。また、基板ステージ装置以外の構成各部は、前述の各実施形態と同様である(図67~図71参照)。 The configuration of other parts of the substrate stage apparatus PSTh is the same as that of the substrate stage apparatuses PSTa, PSTf, etc., for example. Further, the components other than the substrate stage apparatus are the same as those in the above-described embodiments (see FIGS. 67 to 71).
 次に、上述のようにして構成された本実施形態に係る露光装置900で行われる基板の露光処理のための一連の動作について説明する。ここでは、一例として複数枚の基板に対して第2層目以降の露光を行う場合について、基板の露光処理のための一連の動作手順(すなわち、露光手順)を説明するための露光手順説明図(その1~その27)に相当する図72~図74、図76~図99、及び一方の基板のショット領域の露光と他方の基板のYステップ動作との並行動作を示す図75(A)~図75(D)に基づいて説明する。なお、図72~図99には、説明を分かりやすくするために、図70をさらに簡略化して基板ホルダPH、基板のみが図示されている。また、図72~図99において示される露光領域IAは、露光時に照明光ILが投影光学系PLを介して照射される照明領域であり、実際には、露光時以外に形成されることはないが、基板Pと投影光学系PLとの位置関係を明確にするため常に図示されている。また、ここでは、各基板に対し、X軸方向に2面(2スキャン)、Y軸方向に3面(3スキャン)の6面取り(合計6スキャン)の露光を行なう場合について説明する。 Next, a series of operations for substrate exposure processing performed by the exposure apparatus 900 according to this embodiment configured as described above will be described. Here, as an example, an exposure procedure explanatory diagram for explaining a series of operation procedures (ie, exposure procedures) for substrate exposure processing in the case of performing exposure of the second and subsequent layers on a plurality of substrates. 72 to 74 and FIGS. 76 to 99 corresponding to (No. 1 to No. 27), and FIG. 75 (A) showing the parallel operation of the exposure of the shot region of one substrate and the Y step operation of the other substrate. Description will be made with reference to FIG. 75 (D). 72 to 99 show only the substrate holder PH and the substrate by further simplifying FIG. 70 for easy understanding. The exposure area IA shown in FIGS. 72 to 99 is an illumination area where the illumination light IL is irradiated through the projection optical system PL during exposure, and is not actually formed except during exposure. Is always shown in order to clarify the positional relationship between the substrate P and the projection optical system PL. Further, here, a case will be described in which each substrate is subjected to 6-chamfer exposure (6 scans in total) of 2 surfaces (2 scans) in the X-axis direction and 3 surfaces (3 scans) in the Y-axis direction.
 まず、主制御装置50の管理の下、不図示のマスク搬送装置(マスクローダ)によって、マスクステージMST上へのマスクMのロードが行われるとともに、不図示の基板搬入装置によって、基板ステージ装置PSTh上への2枚の基板P1、P2の搬入(投入)が行なわれる。基板P1、P2のそれぞれには前層以前の露光の際に、例えば図72等に示されるように、複数、例えばX軸方向に2つ、Y軸方向に3つ、合計6つのショット領域SA1~SA6とともに、各ショット領域のパターンと同時に転写された複数のアライメントマークPM(図70参照)が、ショット領域毎に設けられている。なお、図70では、各ショット領域の図示が省略されている。 First, under the control of the main controller 50, the mask M is loaded onto the mask stage MST by a mask transport device (mask loader) (not shown), and the substrate stage device PSTh is loaded by a substrate carry-in device (not shown). The two substrates P1 and P2 are carried in (introduced) upward. Each of the substrates P1 and P2 has a total of six shot areas SA1, for example, two in the X-axis direction and three in the Y-axis direction, as shown in FIG. Along with .about.SA6, a plurality of alignment marks PM (see FIG. 70) transferred simultaneously with the pattern of each shot area are provided for each shot area. In FIG. 70, illustration of each shot area is omitted.
 この場合、基板搬入装置によって、2枚の基板P2、P1が、図72中に黒塗り矢印及び白抜き矢印で示されるように、+Y方向及び-Y方向に搬送され、図68、図70及び図72に示される位置に搬入される。この場合、基板P2は、基板ホルダPHの保持領域ADA1と+X側の一対のエア浮上ユニット84Iと-Y側のエア浮上ユニット群84Hの一部とに跨がって載置され、基板P1は、基板ホルダPHの保持領域ADA2と-X側の一対のエア浮上ユニット84Iと+Y側のエア浮上ユニット群84Hの一部とに跨がって載置されている。このとき、基板P2は、基板ホルダPHの保持領域ADA1と+X側の一対のエア浮上ユニット84Iと-Y側のエア浮上ユニット群84Hの一部とによって浮上支持され、基板P1は、基板ホルダPHの保持領域ADA2と-X側の一対のエア浮上ユニット84Iと+Y側のエア浮上ユニット群84Hの一部とによって浮上支持されている。なお、各基板は必ずしも図72中の各矢印の方向から搬入しなくても良い。例えば、上方(+Z側)又はX軸方向の外側から搬入しても良い。 In this case, the two substrates P2 and P1 are conveyed in the + Y direction and the −Y direction by the substrate carry-in device as shown by the black arrow and the white arrow in FIG. It is carried in to the position shown in FIG. In this case, the substrate P2 is placed across the holding area ADA1 of the substrate holder PH, the pair of + X side air levitation units 84I, and a part of the −Y side air levitation unit group 84H. The substrate holder PH is placed across the holding area ADA2, the pair of air levitation units 84I on the -X side, and a part of the air levitation unit group 84H on the + Y side. At this time, the substrate P2 is levitated and supported by the holding area ADA1 of the substrate holder PH, a pair of + X side air levitation units 84I and a part of the −Y side air levitation unit group 84H, and the substrate P1 is supported by the substrate holder PH. The holding area ADA2, the pair of air levitation units 84I on the -X side, and a part of the + Y side air levitation unit group 84H are supported by levitation. Each substrate does not necessarily have to be loaded from the direction of each arrow in FIG. For example, it may be carried in from above (+ Z side) or outside in the X-axis direction.
 そして、主制御装置50により基板ホルダPHの保持領域ADA1、ADA2が、排気から吸引に切り替えられる。これにより、基板ホルダPHの保持領域ADA1、ADA2に基板P2、P1の一部(基板全体の約1/6)が吸着固定され、一対のエア浮上ユニット84Iとエア浮上ユニット群84Hの一部とにより基板P2,P1の一部(基板全体の残りの約5/6)が浮上支持された状態となる。 The main controller 50 switches the holding areas ADA1 and ADA2 of the substrate holder PH from exhaust to suction. Thereby, a part (about 1/6 of the whole substrate) of the substrates P2 and P1 is sucked and fixed to the holding areas ADA1 and ADA2 of the substrate holder PH, and a pair of the air levitation unit 84I and a part of the air levitation unit group 84H As a result, a part of the substrates P2 and P1 (the remaining approximately 5/6 of the entire substrate) is levitated and supported.
 その後、主制御装置50により、従来と同様のアライメント計測の方法によって投影光学系PLに対する微動ステージ26(基板ホルダPH)の位置と、微動ステージ26に対する基板P1,P2の凡その位置とが求められる。なお、微動ステージ26に対する基板P1,P2のアライメント計測は省略しても良い。 Thereafter, the main controller 50 determines the position of the fine movement stage 26 (substrate holder PH) with respect to the projection optical system PL and the approximate positions of the substrates P1 and P2 with respect to the fine movement stage 26 by the same alignment measurement method as before. . The alignment measurement of the substrates P1 and P2 with respect to the fine movement stage 26 may be omitted.
 そして、主制御装置50は、上記の計測結果に基づいて、粗動テーブル32Aを介して微動ステージ26を駆動して基板P1上の少なくとも2つのアライメントマークPM(図72では不図示、図70参照)をいずれかのアライメント検出系の視野内に移動させ、投影光学系PLに対する基板P1のアライメント計測を行い、その結果に基づいて、基板P1上のショット領域SA1の露光のためのスキャン開始位置を求める。ここで、露光のためのスキャンは、走査露光時の等速移動区間の前後に加速区間及び減速区間を含むので、スキャン開始位置は、厳密に言えば加速開始位置である。そして、主制御装置50は、粗動テーブル32A、32Bを駆動するとともに微動ステージ26を微小駆動して、そのスキャン開始位置(加速開始位置)に基板P1を位置決めする。このとき、微動ステージ26(基板ホルダPH)の粗動テーブル32Aに対する、X軸、Y軸及びθz方向(あるいは6自由度方向)の精密な微少位置決め駆動が行われる。図73には、このようにして、基板P1上のショット領域SA1の露光のためのスキャン開始位置(加速開始位置)に基板P1(及び基板ホルダPH)が位置決めされた直後の状態が示されている。 Then, main controller 50 drives fine movement stage 26 via coarse movement table 32A on the basis of the above measurement result to drive at least two alignment marks PM (not shown in FIG. 72, see FIG. 70) on substrate P1. ) Is moved into the field of view of any alignment detection system, the alignment measurement of the substrate P1 with respect to the projection optical system PL is performed, and based on the result, the scan start position for exposure of the shot area SA1 on the substrate P1 is determined. Ask. Here, since the scan for exposure includes an acceleration section and a deceleration section before and after the constant speed movement section during scanning exposure, the scan start position is strictly an acceleration start position. Then, main controller 50 drives coarse movement tables 32A and 32B and fine movement stage 26 to position substrate P1 at its scan start position (acceleration start position). At this time, precise fine positioning drive in the X-axis, Y-axis, and θz directions (or 6-degree-of-freedom directions) is performed on the coarse movement table 32A of the fine movement stage 26 (substrate holder PH). FIG. 73 shows a state immediately after the substrate P1 (and substrate holder PH) is positioned at the scan start position (acceleration start position) for exposure of the shot area SA1 on the substrate P1 in this way. Yes.
 そして、図73の状態から、基板ステージ(PH、26,28,32A、32B)は、図73中に白抜き矢印で示されるように、-X方向へ駆動され、基板P1のXスキャン動作が行われる。このとき、主制御装置50により、マスクMを保持するマスクステージMSTが、基板ホルダPH(微動ステージ26)と同期して-X方向へ駆動されており、基板P1のショット領域SA1が、投影光学系PLによるマスクMのパターンの投影領域である露光領域IAを通過するので、その際に、ショット領域SA1に対する走査露光が行われる。主制御装置50は、Xスキャン動作に際し、実際には、微動ステージ26(基板ホルダPH)と同期して、マスク干渉計システム14の計測結果に基づいて、マスクステージMSTを、X軸方向に走査駆動するとともに、Y軸方向及びθz方向に微小駆動する。 Then, from the state of FIG. 73, the substrate stage (PH, 26, 28, 32A, 32B) is driven in the −X direction as shown by the white arrow in FIG. 73, and the X scan operation of the substrate P1 is performed. Done. At this time, the main controller 50 drives the mask stage MST holding the mask M in the −X direction in synchronization with the substrate holder PH (fine movement stage 26), and the shot area SA1 of the substrate P1 is projected optically. Since it passes through the exposure area IA that is the projection area of the pattern of the mask M by the system PL, at that time, the scanning exposure to the shot area SA1 is performed. In the X-scan operation, main controller 50 actually scans mask stage MST in the X-axis direction based on the measurement result of mask interferometer system 14 in synchronization with fine movement stage 26 (substrate holder PH). While being driven, it is finely driven in the Y-axis direction and θz direction.
 走査露光は、微動ステージ26(基板ホルダPH)の-X方向へ加速後の等速移動中に、マスクM、投影光学系PLを介して基板P1に照明光ILが照射されることで行われる。 The scanning exposure is performed by irradiating the substrate P1 with the illumination light IL through the mask M and the projection optical system PL while the fine movement stage 26 (substrate holder PH) is moving at a constant speed after being accelerated in the −X direction. .
 上述のXスキャン動作に際し、主制御装置50は、基板ホルダPHの保持領域ADA2に基板P1の一部(基板P1全体の約1/6)を吸着固定させ、+Y側のエア浮上ユニット群84Hの一部及び-X側の一対のエア浮上ユニット84Iに基板P1の一部(基板P1全体の約5/6)を浮上支持させ、かつ基板ホルダPHの保持領域ADA1に基板P2の一部(基板P2全体の約1/6)を吸着固定させ、-Y側のエア浮上ユニット群84Hの一部及び+X側の一対のエア浮上ユニット84Iに基板P2の一部(基板P2全体の約5/6)を浮上支持させた状態で、基板ステージ(PH、26,28,32A、32B)を駆動する。 During the above-described X scan operation, main controller 50 adsorbs and fixes a part of substrate P1 (about 1/6 of the entire substrate P1) to holding area ADA2 of substrate holder PH, and sets + Y side air floating unit group 84H. A part of the substrate P1 (about 5/6 of the whole substrate P1) is levitated and supported by a part and a pair of air floating units 84I on the −X side, and a part of the substrate P2 (substrate) is held in the holding area ADA1 of the substrate holder PH About 1/6 of the entire P2 is adsorbed and fixed, and a part of the substrate P2 (about 5/6 of the entire substrate P2) is attached to a part of the −Y side air levitation unit group 84H and a pair of + X side air levitation units 84I The substrate stage (PH, 26, 28, 32A, 32B) is driven in a state where the substrate stage is floated and supported.
 この際、主制御装置50は、Xリニアエンコーダシステム46A、46Bの計測結果に基づいて、Xリニアモータ42A、42Bをそれぞれ介して粗動テーブル32A、32BをX軸方向に駆動するとともに、基板ステージ干渉計システム98、Zチルト計測系76の計測結果に基づいて、微動ステージ駆動系52(各ボイスコイルモータ54X、54Y、54Z)を駆動する。これにより、基板P1、P2は微動ステージ26と一体となって、Xボイスコイルモータ54Xによって粗動テーブル32Aと一体的に移動する。また、重量キャンセル装置28も、微動ステージ26と一体となって、Xボイスコイルモータ54Xによって駆動される。また、基板P1、P2は微動ステージ26と一体となって、粗動テーブル32Aからの相対駆動によって、X軸、Y軸、Z軸、θx、θy及びθzの各方向(6自由度方向)に関して精密に位置制御される。 At this time, main controller 50 drives coarse movement tables 32A and 32B in the X-axis direction via X linear motors 42A and 42B, respectively, based on the measurement results of X linear encoder systems 46A and 46B. Based on the measurement results of interferometer system 98 and Z tilt measurement system 76, fine movement stage drive system 52 (each voice coil motor 54X, 54Y, 54Z) is driven. Thus, the substrates P1 and P2 are integrated with the fine movement stage 26 and are moved integrally with the coarse movement table 32A by the X voice coil motor 54X. The weight cancellation device 28 is also integrated with the fine movement stage 26 and is driven by the X voice coil motor 54X. Further, the substrates P1 and P2 are integrated with the fine movement stage 26, and relative to the X-axis, Y-axis, Z-axis, θx, θy, and θz directions (6 degrees of freedom direction) by relative driving from the coarse movement table 32A. The position is precisely controlled.
 図74には、基板P1のショット領域SA1に対するスキャン露光が終了して、基板ステージ(PH、26,28,32A、32B)が停止した状態が示されている。 FIG. 74 shows a state in which the scanning exposure for the shot area SA1 of the substrate P1 is completed and the substrate stage (PH, 26, 28, 32A, 32B) is stopped.
 続いて、投影光学系PLに対する基板P2の新たなアライメント計測、すなわち基板P2上に予め設けられている次の露光対象のショット領域(この場合、基板P2上のショット領域SA1)用のアライメントマークの計測が、前述と同様に行われる。 Subsequently, a new alignment measurement of the substrate P2 with respect to the projection optical system PL, that is, the alignment mark for the next exposure target shot region (in this case, the shot region SA1 on the substrate P2) provided in advance on the substrate P2. Measurement is performed in the same manner as described above.
 そして、投影光学系PLに対する基板P2の新たなアライメント計測が終了すると、主制御装置50は、その結果に基づいて、次の露光のための加速に備えて、基板P2(及び基板ホルダPH)を、図74中に白抜き矢印で示されるように、少し+X方向へ駆動する基板P2(及び基板ホルダPH)のXステップ動作を行う。基板P2のXステップ動作は、主制御装置50が、Xスキャン動作と同様の状態で基板ステージ(PH、26,28,32A、32B)を駆動して(但し、移動中の位置偏差はスキャン動作ほど厳密に規制しないで)行なう。主制御装置50は、基板P2のXステップ動作と並行して、マスクステージMSTを加速開始位置に戻している。図76には、このようにして、基板P2上のショット領域SA1の露光のためのスキャン開始位置(加速開始位置)に基板P2(及び基板ホルダPH)が位置決めされた直後の状態が示されている。 When the new alignment measurement of the substrate P2 with respect to the projection optical system PL is completed, the main controller 50 prepares the substrate P2 (and the substrate holder PH) in preparation for acceleration for the next exposure based on the result. 74, the X step operation of the substrate P2 (and the substrate holder PH) that is slightly driven in the + X direction is performed as indicated by the white arrow in FIG. In the X step operation of the substrate P2, the main controller 50 drives the substrate stage (PH, 26, 28, 32A, 32B) in the same state as the X scan operation (however, the positional deviation during movement is a scan operation). (Without as much regulation). Main controller 50 returns mask stage MST to the acceleration start position in parallel with the X-step operation of substrate P2. FIG. 76 shows a state immediately after the substrate P2 (and substrate holder PH) is positioned at the scan start position (acceleration start position) for exposure of the shot area SA1 on the substrate P2 in this way. Yes.
 そして、Xステップ動作後、主制御装置50は、図76中に白抜き矢印で示されるように、基板P2(基板ステージ(PH、26,28,32A、32B))とマスクM(マスクステージMST)との-X方向の加速を開始して、前述と同様にしてショット領域SA1に対しスキャン露光を行なう。これと並行して、主制御装置50は、図76中に黒塗り矢印で示されるように、基板P1を基板ホルダPH上で-Y方向に送って基板P1のYステップ動作を行う。この基板P1のYステップ動作は、主制御装置50が、保持領域ADA2を吸引から排気に切り替えて、基板P1の吸着を解除し、-X側の基板Yステップ送り装置88を用いて基板P1を、ショット領域のY軸方向の幅とほぼ等しいYステップ距離だけ-Y方向に搬送することで行われる。ここで、基板Yステップ送り装置88は、保持領域ADA2が吸引から排気に切り替えられた時点では、基板P1を吸着保持している。 Then, after the X step operation, main controller 50, as shown by the white arrow in FIG. 76, substrate P2 (substrate stage (PH, 26, 28, 32A, 32B)) and mask M (mask stage MST). ) In the -X direction is started, and scan exposure is performed on the shot area SA1 in the same manner as described above. In parallel with this, the main controller 50 sends the substrate P1 in the −Y direction on the substrate holder PH to perform the Y-step operation of the substrate P1, as indicated by the solid arrows in FIG. In the Y step operation of the substrate P1, the main controller 50 switches the holding area ADA2 from suction to exhaust, releases the adsorption of the substrate P1, and uses the −X side substrate Y step feed device 88 to move the substrate P1. This is performed by transporting in the −Y direction by a Y step distance substantially equal to the width of the shot area in the Y axis direction. Here, the substrate Y step feeding device 88 holds the substrate P1 by suction when the holding area ADA2 is switched from suction to exhaust.
 図75(A)~図75(D)には、基板P2のショット領域SA1の露光と基板P1のYステップ動作とが並行して行われているときの、時間の経過に応じた各基板の位置等の変化が示されている。図75(A)~図75(D)から視覚的にわかるように、本実施形態では、一方の基板(P2)の走査露光と、他方の基板(P1)のYステップ動作とを、並行して行うことができる。これは、Yステップに用いられる基板Yステップ送り装置88が、粗動テーブル32Aに固定され、粗動テーブル32Aと一体で基板ホルダPHと同期して移動するからである。 75 (A) to 75 (D), the exposure of the shot area SA1 of the substrate P2 and the Y step operation of the substrate P1 are performed in parallel with each substrate as time elapses. Changes in position etc. are shown. As visually understood from FIGS. 75A to 75D, in this embodiment, the scanning exposure of one substrate (P2) and the Y step operation of the other substrate (P1) are performed in parallel. Can be done. This is because the substrate Y step feeding device 88 used for the Y step is fixed to the coarse motion table 32A and moves integrally with the coarse motion table 32A in synchronization with the substrate holder PH.
 この場合において、主制御装置50は、一方の基板の走査露光中には、他方の基板のYステップ動作を一時的に停止し、一方の基板の走査露光の前後の加速中及び減速中に他方の基板のYステップ動作を行うこととしても良い。このようにすれば、他方の基板のYステップ動作が、一方の基板の走査露光に与える悪影響(例えば基板Yステップ送り装置88の駆動力の反力が微動ステージ26の振動要因とならないように微動ステージ26を駆動する結果、走査露光中の微動ステージ26の位置制御精度(及びマスクMと基板P2との同期精度)が低下するなど)を確実に防止することができる。 In this case, main controller 50 temporarily stops the Y step operation of the other substrate during the scanning exposure of one substrate, and the other during acceleration and deceleration before and after the scanning exposure of one substrate. The Y step operation of the substrate may be performed. In this way, the Y step operation of the other substrate adversely affects the scanning exposure of one substrate (for example, the fine movement is performed so that the reaction force of the driving force of the substrate Y step feeding device 88 does not cause the vibration of the fine movement stage 26). As a result of driving the stage 26, the position control accuracy of the fine movement stage 26 during scanning exposure (and the synchronization accuracy between the mask M and the substrate P2) can be reliably prevented.
 図75(D)及び図77には、基板P2上のショット領域SA1に対するスキャン露光が終了して、基板ステージ(PH、26,28,32A、32B)が停止した状態が示されている。このとき、基板P1は、Yステップ動作が終了し、基板P1上のショット領域SA2が基板ホルダPHの保持領域ADA2上に位置している。 75 (D) and 77 show a state where the scanning exposure for the shot area SA1 on the substrate P2 is completed and the substrate stage (PH, 26, 28, 32A, 32B) is stopped. At this time, the Y-step operation of the substrate P1 is completed, and the shot area SA2 on the substrate P1 is located on the holding area ADA2 of the substrate holder PH.
 この後、主制御装置50により、基板ホルダPHの保持領域ADA2が排気から吸引に切り替えられ、基板P1のショット領域SA2を含む1/6の部分が、保持領域ADA2に吸着固定される。このとき、基板P1は、残りの部分(約5/6)が、+Y側のエア浮上ユニット群84Hの一部、-Y側のエア浮上ユニット群84Hの一部、並びに-X側の一対のエア浮上ユニット84Iによって浮上支持されている。 Thereafter, the main controller 50 switches the holding area ADA2 of the substrate holder PH from exhaust to suction, and the 1/6 portion including the shot area SA2 of the substrate P1 is adsorbed and fixed to the holding area ADA2. At this time, the remaining portion (about 5/6) of the substrate P1 is a part of the + Y side air levitation unit group 84H, a part of the −Y side air levitation unit group 84H, and a pair of −X side air levitation unit groups. It is levitated and supported by an air levitating unit 84I.
 そして、投影光学系PLに対する基板P1の新たなアライメント計測、すなわち基板P1上に予め設けられている次のショット領域SA2用のアライメントマークの計測が、行われる。このアライメント計測に先立って、計測対象のアライメントマークがアライメント検出系の検出視野内に位置するように、基板P1の前述と同様のXステップ動作が行われる(図77中の白抜き矢印参照)。 Then, new alignment measurement of the substrate P1 with respect to the projection optical system PL, that is, measurement of the alignment mark for the next shot area SA2 provided in advance on the substrate P1 is performed. Prior to this alignment measurement, the same X-step operation as described above is performed on the substrate P1 so that the alignment mark to be measured is positioned within the detection visual field of the alignment detection system (see the white arrow in FIG. 77).
 そして、投影光学系PLに対する基板P1の新たなアライメント計測が終了すると、主制御装置50により、その結果に基づいて、基板P1上のショット領域SA2の露光のための加速開始位置への基板P1(及び基板ホルダPH)の位置決め、及び微動ステージ26の粗動テーブル32Aに対する、X軸、Y軸及びθz方向(あるいは6自由度方向)の精密な微少位置決め駆動が行われる。図78には、この位置決めが終了した直後の状態が示されている。なお、以下の説明では、微動ステージ26の粗動テーブル32Aに対する精密な微少位置決め駆動については、その記載を省略する。 When the new alignment measurement of the substrate P1 with respect to the projection optical system PL is completed, the main controller 50 determines the substrate P1 (to the acceleration start position for exposure of the shot area SA2 on the substrate P1) based on the result. In addition, the positioning of the substrate holder PH) and the fine positioning driving in the X axis, Y axis and θz directions (or 6 degrees of freedom) with respect to the coarse movement table 32A of the fine movement stage 26 are performed. FIG. 78 shows a state immediately after the positioning is completed. In the following description, the description of the precise fine positioning drive of the fine movement stage 26 with respect to the coarse movement table 32A is omitted.
 次いで、主制御装置50により、基板P1とマスクMとの+X方向の加速(図78中の白抜き矢印参照)が開始され、前述と同様の基板P1のショット領域SA2に対するスキャン露光が行われる。これと並行して、主制御装置50により、図78中に黒塗り矢印で示されるように、基板P2を基板ホルダPH上で+Y方向に送る基板P2の前述と同様のYステップ動作が行われる。 Next, the main controller 50 starts acceleration of the substrate P1 and the mask M in the + X direction (see a white arrow in FIG. 78), and scan exposure is performed on the shot area SA2 of the substrate P1 as described above. In parallel with this, the main controller 50 performs the same Y-step operation as described above for the substrate P2 that sends the substrate P2 in the + Y direction on the substrate holder PH, as indicated by a solid arrow in FIG. .
 図79には、基板P1上のショット領域SA2に対するスキャン露光が終了して、基板ステージ(PH、26,28,32A、32B)が停止した状態が示されている。このとき、基板P2は、Yステップ動作が終了し、基板P2上のショット領域SA2が基板ホルダPHの保持領域ADA1上に位置している。 FIG. 79 shows a state in which the scanning exposure for the shot area SA2 on the substrate P1 is completed and the substrate stage (PH, 26, 28, 32A, 32B) is stopped. At this time, the substrate P2 has finished the Y step operation, and the shot area SA2 on the substrate P2 is located on the holding area ADA1 of the substrate holder PH.
 この後、主制御装置50により、基板ホルダPHの保持領域ADA1が排気から吸引に切り替えられ、基板P2のショット領域SA2を含む1/6の部分が、保持領域ADA1に吸着固定される。このとき、基板P2は、残りの部分(約5/6)が、+Y側のエア浮上ユニット群84Hの一部、-Y側のエア浮上ユニット群84Hの一部、並びに+X側の一対のエア浮上ユニット84Iによって浮上支持されている。 Thereafter, the main controller 50 switches the holding area ADA1 of the substrate holder PH from exhaust to suction, and the 1/6 portion including the shot area SA2 of the substrate P2 is adsorbed and fixed to the holding area ADA1. At this time, the remaining portion (about 5/6) of the substrate P2 is a part of the + Y side air levitation unit group 84H, a part of the −Y side air levitation unit group 84H, and a pair of + X side air levitation units. It is supported by the flying unit 84I.
 そして、投影光学系PLに対する基板P2の新たなアライメント計測、すなわち基板P2上に予め設けられている次のショット領域SA2用のアライメントマークの計測が、行われる。このアライメント計測の開始に先立って、計測対象のアライメントマークがアライメント検出系の検出視野内に位置するように、基板P2の前述と同様のXステップ動作が行われる(図79中の白抜き矢印参照)。 Then, new alignment measurement of the substrate P2 with respect to the projection optical system PL, that is, measurement of the alignment mark for the next shot area SA2 provided in advance on the substrate P2 is performed. Prior to the start of the alignment measurement, the same X-step operation as described above is performed on the substrate P2 so that the alignment mark to be measured is positioned within the detection visual field of the alignment detection system (see the white arrow in FIG. 79). ).
 そして、投影光学系PLに対する基板P2の新たなアライメント計測が終了すると、主制御装置50により、その結果に基づいて、基板P2上のショット領域SA2の露光のための加速開始位置への基板P2(及び基板ホルダPH)の位置決めが行われる。図80には、この位置決めが終了した直後の状態が示されている。 When the new alignment measurement of the substrate P2 with respect to the projection optical system PL is completed, the main controller 50 determines the substrate P2 (to the acceleration start position for exposure of the shot area SA2 on the substrate P2) based on the result. And the substrate holder PH) are positioned. FIG. 80 shows a state immediately after the positioning is completed.
 次いで、主制御装置50により、基板P2とマスクMとの-X方向の加速(図80中の白抜き矢印参照)が開始され、前述と同様の基板P2のショット領域SA2に対するスキャン露光が行われる。これと並行して、主制御装置50により、図80中に黒塗り矢印で示されるように、基板P1を基板ホルダPH上で-Y方向に送る基板P1の前述と同様のYステップ動作が行われる。 Next, the main controller 50 starts acceleration of the substrate P2 and the mask M in the −X direction (see the white arrow in FIG. 80), and scan exposure is performed on the shot area SA2 of the substrate P2 as described above. . In parallel with this, the main controller 50 performs the same Y-step operation as described above for the substrate P1 that sends the substrate P1 in the −Y direction on the substrate holder PH, as indicated by the black arrow in FIG. Is called.
 図81には、基板P2上のショット領域SA2に対するスキャン露光が終了して、基板ステージ(PH、26,28,32A、32B)が停止した状態が示されている。このとき、基板P1は、Yステップ動作が終了し、基板P1上のショット領域SA3が基板ホルダPHの保持領域ADA2上に位置している。 81 shows a state in which the scanning exposure for the shot area SA2 on the substrate P2 is completed and the substrate stage (PH, 26, 28, 32A, 32B) is stopped. At this time, the Y step operation of the substrate P1 is completed, and the shot area SA3 on the substrate P1 is located on the holding area ADA2 of the substrate holder PH.
 この後、主制御装置50により、基板ホルダPHの保持領域ADA2が排気から吸引に切り替えられ、基板P1のショット領域SA3を含む1/6の部分が、保持領域ADA2に吸着固定される。このとき、基板P1は、残りの部分(約5/6)が、-Y側のエア浮上ユニット群84Hの一部、並びに-X側の一対のエア浮上ユニット84Iによって浮上支持されている。 Thereafter, the main controller 50 switches the holding area ADA2 of the substrate holder PH from exhaust to suction, and the 1/6 portion including the shot area SA3 of the substrate P1 is adsorbed and fixed to the holding area ADA2. At this time, the remaining portion (about 5/6) of the substrate P1 is supported by levitation by a part of the −Y side air levitation unit group 84H and a pair of air levitation units 84I on the −X side.
 そして、投影光学系PLに対する基板P1の新たなアライメント計測、すなわち基板P1上に予め設けられている次のショット領域SA3用のアライメントマークの計測が、行われる。このアライメント計測に先立って、計測対象のアライメントマークがアライメント検出系の検出視野内に位置するように、基板P1の前述と同様のXステップ動作が行われる(図81中の白抜き矢印参照)。 Then, new alignment measurement of the substrate P1 with respect to the projection optical system PL, that is, measurement of the alignment mark for the next shot area SA3 provided in advance on the substrate P1 is performed. Prior to this alignment measurement, the same X-step operation as described above is performed on the substrate P1 so that the alignment mark to be measured is positioned within the detection visual field of the alignment detection system (see the white arrow in FIG. 81).
 そして、投影光学系PLに対する基板P1の新たなアライメント計測が終了すると、主制御装置50により、その結果に基づいて、基板P1上のショット領域SA3の露光のための加速開始位置への基板P1(及び基板ホルダPH)の位置決めが行われる。図82には、この位置決めが終了した直後の状態が示されている。 When the new alignment measurement of the substrate P1 with respect to the projection optical system PL is completed, the main controller 50 determines the substrate P1 (to the acceleration start position for exposure of the shot area SA3 on the substrate P1) based on the result. And the substrate holder PH) are positioned. FIG. 82 shows a state immediately after the positioning is completed.
 次いで、主制御装置50により、基板P1とマスクMとの+X方向の加速(図82中の白抜き矢印参照)が開始され、基板P1のショット領域SA3に対する前述と同様のスキャン露光が行われる。これと並行して、主制御装置50により、図82中に黒塗り矢印で示されるように、基板P2を基板ホルダPH上で+Y方向に送る基板P2の前述と同様のYステップ動作が行われる。 Next, the main controller 50 starts acceleration in the + X direction between the substrate P1 and the mask M (see the white arrow in FIG. 82), and scan exposure similar to that described above is performed on the shot area SA3 of the substrate P1. In parallel with this, the main controller 50 performs the same Y-step operation as described above for the substrate P2 that sends the substrate P2 in the + Y direction on the substrate holder PH, as indicated by a solid arrow in FIG. .
 図83には、基板P1上のショット領域SA3に対するスキャン露光が終了して、基板ステージ(PH、26,28,32A、32B)が停止した状態が示されている。このとき、基板P2は、Yステップ動作が終了し、基板P2上のショット領域SA3が基板ホルダPHの保持領域ADA1上に位置している。 83 shows a state in which the scanning exposure for the shot area SA3 on the substrate P1 is completed and the substrate stage (PH, 26, 28, 32A, 32B) is stopped. At this time, the substrate P2 has finished the Y step operation, and the shot area SA3 on the substrate P2 is located on the holding area ADA1 of the substrate holder PH.
 この後、主制御装置50により、基板ホルダPHの保持領域ADA1が排気から吸引に切り替えられ、基板P2のショット領域SA3を含む1/6の部分が、保持領域ADA1に吸着固定される。このとき、基板P2は、残りの部分(約5/6)が、+Y側のエア浮上ユニット群84Hの一部、並びに+X側の一対のエア浮上ユニット84Iによって浮上支持されている。 Thereafter, the main controller 50 switches the holding area ADA1 of the substrate holder PH from exhaust to suction, and the 1/6 portion including the shot area SA3 of the substrate P2 is adsorbed and fixed to the holding area ADA1. At this time, the remaining portion (about 5/6) of the substrate P2 is supported by levitation by a part of the + Y side air levitation unit group 84H and a pair of + X side air levitation units 84I.
 そして、投影光学系PLに対する基板P2の新たなアライメント計測、すなわち基板P2上に予め設けられている次のショット領域SA3用のアライメントマークの計測が、行われる。このアライメント計測に先立って、計測対象のアライメントマークがアライメント検出系の検出視野内に位置するように、基板P2の前述したXステップ動作が行われる(図83中の白抜き矢印参照)。 Then, new alignment measurement of the substrate P2 with respect to the projection optical system PL, that is, measurement of the alignment mark for the next shot area SA3 provided in advance on the substrate P2 is performed. Prior to this alignment measurement, the above-described X-step operation of the substrate P2 is performed so that the alignment mark to be measured is located within the detection visual field of the alignment detection system (see the white arrow in FIG. 83).
 そして、投影光学系PLに対する基板P2の新たなアライメント計測が終了すると、主制御装置50により、その結果に基づいて、基板P2上のショット領域SA3の露光のための加速開始位置への基板P2(及び基板ホルダPH)の位置決めが行われる。図84には、この位置決めが終了した直後の状態が示されている。 When the new alignment measurement of the substrate P2 with respect to the projection optical system PL is completed, the main controller 50 determines the substrate P2 (to the acceleration start position for exposure of the shot area SA3 on the substrate P2) based on the result. And the substrate holder PH) are positioned. FIG. 84 shows a state immediately after the positioning is completed.
 次いで、主制御装置50により、基板P2とマスクMとの-X方向の加速(図84中の白抜き矢印参照)が開始され、基板P2のショット領域SA3に対する前述と同様のスキャン露光が行われる。これと並行して、主制御装置50により、図84中に黒塗り矢印で示されるように、基板P1を基板ホルダPH上で-Y方向に送る基板P1の前述と同様のYステップ動作が行われる。このYステップ動作により、基板P1は、基板ホルダPH上から完全に外れ、-Y側のエア浮上ユニット群84Hの一部、及び-Y側のエア浮上ユニット群84Jの一部によって全体が浮上支持されるようになる。 Next, the main controller 50 starts acceleration of the substrate P2 and the mask M in the −X direction (see the white arrow in FIG. 84), and scan exposure similar to that described above is performed on the shot area SA3 of the substrate P2. . In parallel with this, the main controller 50 performs the same Y-step operation as described above for the substrate P1 that sends the substrate P1 in the −Y direction on the substrate holder PH, as indicated by a solid arrow in FIG. Is called. As a result of this Y-step operation, the substrate P1 is completely removed from the substrate holder PH, and is supported entirely by the −Y side air floating unit group 84H and the −Y side air floating unit group 84J. Will come to be.
 図85には、基板P2上のショット領域SA3に対するスキャン露光が終了して、基板ステージ(PH、26,28,32A、32B)が停止した状態が示されている。このとき、基板P1は、基板ホルダPH上から退避している。 FIG. 85 shows a state in which the scanning exposure for the shot area SA3 on the substrate P2 is completed and the substrate stage (PH, 26, 28, 32A, 32B) is stopped. At this time, the substrate P1 is retracted from the substrate holder PH.
 その後、主制御装置50は、基板ホルダPHの保持領域ADA1を吸引から排気に切り替えるとともに、+Y側の基板Xステップ送り装置91(図70参照)によって基板P2を吸着保持して、図85中に白抜き矢印で示されるように-X方向にXステップ距離(ショット領域のX軸方向の長さのほぼ2倍の距離)搬送する。これと並行して、主制御装置50は、-Y側の基板Xステップ送り装置91(図70参照)によって基板P1を吸着保持して、図85中に黒塗り矢印で示されるように+X方向にXステップ距離搬送する。ここで、基板P1の+X方向への搬送と、基板P2の-X方向への搬送とは、両者を干渉させることなく、行われる。 Thereafter, main controller 50 switches holding area ADA1 of substrate holder PH from suction to exhaust, and sucks and holds substrate P2 by + Y-side substrate X step feed device 91 (see FIG. 70). As indicated by the white arrow, the X step distance (a distance approximately twice the length of the shot area in the X axis direction) is conveyed in the −X direction. In parallel with this, the main controller 50 sucks and holds the substrate P1 by the substrate Y step feeding device 91 (see FIG. 70) on the −Y side, and the + X direction as indicated by the black arrow in FIG. To the X step distance. Here, the transport of the substrate P1 in the + X direction and the transport of the substrate P2 in the −X direction are performed without causing the two to interfere with each other.
 図86には、上記の基板P1と基板P2とのXステップ距離の搬送が終了したときの両基板P1、P2の基板ホルダPHに対する位置関係が示されている。 FIG. 86 shows the positional relationship between the substrates P1 and P2 with respect to the substrate holder PH when the conveyance of the X step distance between the substrate P1 and the substrate P2 is completed.
 図86の状態から、主制御装置50により、+X側の基板Yステップ送り装置88を用いて基板P1が吸着保持されるとともに、-Y側の基板Xステップ送り装置91による基板P1の吸着が解除される。そして、図86中の黒塗り矢印で示されるように、+X側の基板Yステップ送り装置88によって、基板P1の+Y方向のステップ移動が行なわれる。これにより、基板P1と基板P2とは、基板ホルダPH上での互いの位置は逆転しているが、基板ホルダPH上で図72と同じ位置関係になる(図87参照)。 From the state shown in FIG. 86, the main controller 50 holds the substrate P1 by suction using the + X side substrate Y step feeding device 88 and cancels the suction of the substrate P1 by the −Y side substrate X step feeding device 91. Is done. Then, as indicated by a black arrow in FIG. 86, the + Y side substrate Y step feeding device 88 performs step movement of the substrate P1 in the + Y direction. Accordingly, the positions of the substrate P1 and the substrate P2 are reversed on the substrate holder PH, but are in the same positional relationship as FIG. 72 on the substrate holder PH (see FIG. 87).
 そして、主制御装置50により基板ホルダPHの保持領域ADA1、ADA2が、排気から吸引に切り替えられる。これにより、基板ホルダPHの保持領域ADA1、ADA2に基板P1、P2の一部(基板全体の約1/6)が吸着固定され、一対のエア浮上ユニット84Iとエア浮上ユニット群84Hの一部とにより基板P1,P2の一部(基板全体の残りの約5/6)が浮上支持された状態となる。 The main controller 50 switches the holding areas ADA1 and ADA2 of the substrate holder PH from exhaust to suction. Thus, a part of the substrates P1 and P2 (about 1/6 of the entire substrate) is sucked and fixed to the holding areas ADA1 and ADA2 of the substrate holder PH, and a pair of the air levitation unit 84I and a part of the air levitation unit group 84H As a result, a part of the substrates P1 and P2 (the remaining approximately 5/6 of the entire substrate) is levitated and supported.
 続いて、投影光学系PLに対する基板P1の新たなアライメント計測、すなわち基板P1上に予め設けられている次の露光対象のショット領域(この場合、基板P1上のショット領域SA4)用のアライメントマークの計測が、前述と同様に行われる。 Subsequently, a new alignment measurement of the substrate P1 with respect to the projection optical system PL, that is, the alignment mark for the next exposure target shot region (in this case, the shot region SA4 on the substrate P1) provided in advance on the substrate P1. Measurement is performed in the same manner as described above.
 そして、投影光学系PLに対する基板P1の新たなアライメント計測が終了すると、主制御装置50は、その結果に基づいて、粗動テーブル32A、32Bを駆動するとともに微動ステージ26を微小駆動して、次の露光のための加速に備えて、基板P1(及び基板ホルダPH)を、そのスキャン開始位置(加速開始位置)に位置決めする。図87には、このようにして、基板P1上のショット領域SA4の露光のためのスキャン開始位置(加速開始位置)に基板P1(及び基板ホルダPH)が位置決めされた直後の状態が示されている。 When the new alignment measurement of the substrate P1 with respect to the projection optical system PL is completed, the main controller 50 drives the coarse movement tables 32A and 32B and finely drives the fine movement stage 26 based on the result. In preparation for acceleration for the exposure, the substrate P1 (and the substrate holder PH) is positioned at the scan start position (acceleration start position). FIG. 87 shows a state immediately after the substrate P1 (and substrate holder PH) is positioned at the scan start position (acceleration start position) for exposure of the shot area SA4 on the substrate P1 in this way. Yes.
 そして、主制御装置50は、図87中に白抜き矢印で示されるように、基板P1(基板ステージ(PH、26,28,32A、32B))とマスクM(マスクステージMST)との+X方向の加速を開始して、前述と同様にしてショット領域SA4に対しスキャン露光を行なう。 Then, main controller 50, as indicated by the white arrow in FIG. 87, + X direction between substrate P1 (substrate stage (PH, 26, 28, 32A, 32B)) and mask M (mask stage MST). Is started and scan exposure is performed on the shot area SA4 in the same manner as described above.
 図88には、基板P1のショット領域SA4に対するスキャン露光が終了して、基板ステージ(PH、26,28,32A、32B)が停止した状態が示されている。 88 shows a state in which the scanning exposure for the shot area SA4 of the substrate P1 is completed and the substrate stage (PH, 26, 28, 32A, 32B) is stopped.
 続いて、投影光学系PLに対する基板P2の新たなアライメント計測、すなわち基板P2上に予め設けられている次の露光対象のショット領域(この場合、基板P2上のショット領域SA4)用のアライメントマークの計測が、前述と同様に行われる。 Subsequently, a new alignment measurement of the substrate P2 with respect to the projection optical system PL, that is, the alignment mark for the next shot area to be exposed (the shot area SA4 on the substrate P2 in this case) provided in advance on the substrate P2. Measurement is performed in the same manner as described above.
 そして、投影光学系PLに対する基板P2の新たなアライメント計測が終了すると、主制御装置50は、その結果に基づいて、次の露光のための加速に備えて、基板P2(及び基板ホルダPH)を、図88中に白抜き矢印で示されるように、少し-X方向へ駆動する基板P2(及び基板ホルダPH)のXステップ動作を前述と同様に行う。図89には、このようにして、基板P2上のショット領域SA4の露光のためのスキャン開始位置(加速開始位置)に基板P2(及び基板ホルダPH)が位置決めされた直後の状態が示されている。 When the new alignment measurement of the substrate P2 with respect to the projection optical system PL is completed, the main controller 50 prepares the substrate P2 (and the substrate holder PH) in preparation for acceleration for the next exposure based on the result. 88, the X step operation of the substrate P2 (and the substrate holder PH) that is slightly driven in the −X direction is performed in the same manner as described above, as indicated by the white arrow. FIG. 89 shows a state immediately after the substrate P2 (and substrate holder PH) is positioned at the scan start position (acceleration start position) for exposure of the shot area SA4 on the substrate P2 in this way. Yes.
 そして、主制御装置50は、図89中に白抜き矢印で示されるように、基板P2(基板ステージ(PH、26,28,32A、32B))とマスクM(マスクステージMST)との+X方向の加速を開始して、前述と同様にしてショット領域SA4に対しスキャン露光を行なう。これと並行して、主制御装置50は、図89中に黒塗り矢印で示されるように、基板P1を基板ホルダPH上で+Y方向に送って基板P1の前述と同様のYステップ動作を行う。 Then, as indicated by a hollow arrow in FIG. 89, main controller 50 determines + X direction between substrate P2 (substrate stage (PH, 26, 28, 32A, 32B)) and mask M (mask stage MST). Is started and scan exposure is performed on the shot area SA4 in the same manner as described above. In parallel with this, the main controller 50 sends the substrate P1 in the + Y direction on the substrate holder PH and performs the same Y-step operation as described above for the substrate P1, as indicated by the solid arrows in FIG. .
 図90には、基板P2上のショット領域SA4に対するスキャン露光が終了して、基板ステージ(PH、26,28,32A、32B)が停止した状態が示されている。このとき、基板P1は、Yステップ動作が終了し、基板P1上のショット領域SA5が基板ホルダPHの保持領域ADA1上に位置している。 FIG. 90 shows a state in which the scanning exposure for the shot area SA4 on the substrate P2 is completed and the substrate stage (PH, 26, 28, 32A, 32B) is stopped. At this time, the Y step operation of the substrate P1 is finished, and the shot area SA5 on the substrate P1 is located on the holding area ADA1 of the substrate holder PH.
 この後、主制御装置50により、基板ホルダPHの保持領域ADA1が排気から吸引に切り替えられ、基板P1のショット領域SA5を含む1/6の部分が、保持領域ADA1に吸着固定される。このとき、基板P1は、残りの部分(約5/6)が、+Y側のエア浮上ユニット群84Hの一部、-Y側のエア浮上ユニット群84Hの一部、並びに+X側の一対のエア浮上ユニット84Iによって浮上支持されている。 Thereafter, the main controller 50 switches the holding area ADA1 of the substrate holder PH from exhaust to suction, and the 1/6 portion including the shot area SA5 of the substrate P1 is adsorbed and fixed to the holding area ADA1. At this time, the remaining portion (about 5/6) of the substrate P1 is a part of the + Y side air levitation unit group 84H, a part of the −Y side air levitation unit group 84H, and a pair of + X side air levitation units. It is supported by the flying unit 84I.
 そして、投影光学系PLに対する基板P1の新たなアライメント計測、すなわち基板P1上に予め設けられている次のショット領域SA5用のアライメントマークの計測が、行われる。このアライメント計測に先立って、計測対象のアライメントマークがアライメント検出系の検出視野内に位置するように、基板P1の前述と同様のXステップ動作が行われる(図90中の白抜き矢印参照)。 Then, new alignment measurement of the substrate P1 with respect to the projection optical system PL, that is, measurement of the alignment mark for the next shot area SA5 provided in advance on the substrate P1 is performed. Prior to this alignment measurement, the same X-step operation as described above is performed on the substrate P1 so that the alignment mark to be measured is positioned within the detection visual field of the alignment detection system (see the white arrow in FIG. 90).
 そして、投影光学系PLに対する基板P1の新たなアライメント計測が終了すると、主制御装置50により、その結果に基づいて、基板P1上のショット領域SA5の露光のための加速開始位置への基板P1(及び基板ホルダPH)の位置決めが行われる。図91には、この位置決めが終了した直後の状態が示されている。 When the new alignment measurement of the substrate P1 with respect to the projection optical system PL is completed, the main controller 50 determines the substrate P1 (to the acceleration start position for exposure of the shot area SA5 on the substrate P1) based on the result. And the substrate holder PH) are positioned. FIG. 91 shows a state immediately after the positioning is completed.
 次いで、主制御装置50により、基板P1とマスクMとの-X方向の加速(図91中の白抜き矢印参照)が開始され、前述と同様の基板P1のショット領域SA5に対するスキャン露光が行われる。これと並行して、主制御装置50により、図91中に黒塗り矢印で示されるように、基板P2を基板ホルダPH上で-Y方向に送る基板P2の前述と同様のYステップ動作が行われる。 Next, the main controller 50 starts acceleration of the substrate P1 and the mask M in the −X direction (see the white arrow in FIG. 91), and scan exposure is performed on the shot area SA5 of the substrate P1 as described above. . In parallel with this, the main controller 50 performs the same Y-step operation as described above for the substrate P2 that sends the substrate P2 in the -Y direction on the substrate holder PH, as indicated by the black arrow in FIG. Is called.
 図92には、基板P1上のショット領域SA5に対するスキャン露光が終了して、基板ステージ(PH、26,28,32A、32B)が停止した状態が示されている。このとき、基板P2は、Yステップ動作が終了し、基板P2上のショット領域SA5が基板ホルダPHの保持領域ADA2上に位置している。 FIG. 92 shows a state in which the scanning exposure for the shot area SA5 on the substrate P1 is completed and the substrate stage (PH, 26, 28, 32A, 32B) is stopped. At this time, the substrate P2 has finished the Y step operation, and the shot area SA5 on the substrate P2 is located on the holding area ADA2 of the substrate holder PH.
 この後、主制御装置50により、基板ホルダPHの保持領域ADA2が排気から吸引に切り替えられ、基板P2のショット領域SA5を含む1/6の部分が、保持領域ADA2に吸着固定される。このとき、基板P2は、残りの部分(約5/6)が、+Y側のエア浮上ユニット群84Hの一部、-Y側のエア浮上ユニット群84Hの一部、並びに-X側の一対のエア浮上ユニット84Iによって浮上支持されている。 Thereafter, the main controller 50 switches the holding area ADA2 of the substrate holder PH from exhaust to suction, and the 1/6 portion including the shot area SA5 of the substrate P2 is adsorbed and fixed to the holding area ADA2. At this time, the remaining part (about 5/6) of the substrate P2 is a part of the + Y side air levitation unit group 84H, a part of the −Y side air levitation unit group 84H, and a pair of −X side air levitation unit groups. It is levitated and supported by an air levitating unit 84I.
 そして、投影光学系PLに対する基板P2の新たなアライメント計測、すなわち基板P2上に予め設けられている次のショット領域SA5用のアライメントマークの計測が、行われる。このアライメント計測に先立って、計測対象のアライメントマークがアライメント検出系の検出視野内に位置するように、基板P2の前述と同様のXステップ動作が行われる(図92中の白抜き矢印参照)。 Then, new alignment measurement of the substrate P2 with respect to the projection optical system PL, that is, measurement of the alignment mark for the next shot area SA5 provided in advance on the substrate P2 is performed. Prior to this alignment measurement, the same X-step operation as described above is performed on the substrate P2 so that the alignment mark to be measured is positioned within the detection visual field of the alignment detection system (see the white arrow in FIG. 92).
 そして、投影光学系PLに対する基板P2の新たなアライメント計測が終了すると、主制御装置50により、その結果に基づいて、基板P2上のショット領域SA5の露光のための加速開始位置への基板P2(及び基板ホルダPH)の位置決めが行われる。図93には、この位置決めが終了した直後の状態が示されている。 When the new alignment measurement of the substrate P2 with respect to the projection optical system PL is completed, the main controller 50 determines the substrate P2 (to the acceleration start position for exposure of the shot area SA5 on the substrate P2) based on the result. And the substrate holder PH) are positioned. FIG. 93 shows a state immediately after the positioning is completed.
 次いで、主制御装置50により、基板P2とマスクMとの+X方向の加速(図93中の白抜き矢印参照)が開始され、前述と同様の基板P2のショット領域SA5に対するスキャン露光が行われる。これと並行して、主制御装置50により、図93中に黒塗り矢印で示されるように、基板P1を基板ホルダPH上で+Y方向に送る基板P1の前述と同様のYステップ動作が行われる。 Next, the main controller 50 starts acceleration in the + X direction between the substrate P2 and the mask M (see the white arrow in FIG. 93), and scan exposure is performed on the shot area SA5 of the substrate P2 as described above. In parallel with this, the main controller 50 performs the same Y-step operation as described above for the substrate P1 that sends the substrate P1 in the + Y direction on the substrate holder PH, as indicated by the black arrow in FIG. .
 図94には、基板P2上のショット領域SA5に対するスキャン露光が終了して、基板ステージ(PH、26,28,32A、32B)が停止した状態が示されている。このとき、基板P1は、Yステップ動作が終了し、基板P1上のショット領域SA6が基板ホルダPHの保持領域ADA1上に位置している。 FIG. 94 shows a state in which the scanning exposure for the shot area SA5 on the substrate P2 is completed and the substrate stage (PH, 26, 28, 32A, 32B) is stopped. At this time, the substrate P1 has finished the Y step operation, and the shot area SA6 on the substrate P1 is located on the holding area ADA1 of the substrate holder PH.
 この後、主制御装置50により、基板ホルダPHの保持領域ADA1が排気から吸引に切り替えられ、基板P1のショット領域SA6を含む1/6の部分が、保持領域ADA1に吸着固定される。このとき、基板P1は、残りの部分(約5/6)が、+Y側のエア浮上ユニット群84Hの一部、並びに+X側の一対のエア浮上ユニット84Iによって浮上支持されている。 Thereafter, the main controller 50 switches the holding area ADA1 of the substrate holder PH from exhaust to suction, and the 1/6 portion including the shot area SA6 of the substrate P1 is adsorbed and fixed to the holding area ADA1. At this time, the remaining portion (about 5/6) of the substrate P1 is supported by levitation by a part of the + Y side air levitation unit group 84H and the pair of air levitation units 84I on the + X side.
 そして、投影光学系PLに対する基板P1の新たなアライメント計測、すなわち基板P1上に予め設けられている次のショット領域SA6用のアライメントマークの計測が、行われる。このアライメント計測に先立って、計測対象のアライメントマークがアライメント検出系の検出視野内に位置するように、基板P1の前述と同様のXステップ動作が行われる(図94中の白抜き矢印参照)。 Then, new alignment measurement of the substrate P1 with respect to the projection optical system PL, that is, measurement of the alignment mark for the next shot area SA6 provided in advance on the substrate P1 is performed. Prior to this alignment measurement, the same X-step operation as described above is performed on the substrate P1 so that the alignment mark to be measured is positioned within the detection visual field of the alignment detection system (see the white arrow in FIG. 94).
 そして、投影光学系PLに対する基板P2の新たなアライメント計測が終了すると、主制御装置50により、その結果に基づいて、基板P1上のショット領域SA6の露光のための加速開始位置への基板P1(及び基板ホルダPH)の位置決めが行われる。図95には、この位置決めが終了した直後の状態が示されている。 When the new alignment measurement of the substrate P2 with respect to the projection optical system PL is completed, the main controller 50 determines the substrate P1 (to the acceleration start position for exposure of the shot area SA6 on the substrate P1) based on the result. And the substrate holder PH) are positioned. FIG. 95 shows a state immediately after the positioning is completed.
 次いで、主制御装置50により、基板P1とマスクMとの-X方向の加速(図95中の白抜き矢印参照)が開始され、基板P1のショット領域SA6に対する前述と同様のスキャン露光が行われる。これと並行して、主制御装置50により、図95中に黒塗り矢印で示されるように、基板P2を基板ホルダPH上で-Y方向に送る、基板P2の前述と同様のYステップ動作が行われる。 Next, the main controller 50 starts acceleration in the −X direction between the substrate P1 and the mask M (see the white arrow in FIG. 95), and scan exposure similar to that described above is performed on the shot area SA6 of the substrate P1. . In parallel with this, the main controller 50 performs the same Y step operation as described above of the substrate P2 to send the substrate P2 in the −Y direction on the substrate holder PH as indicated by the black arrow in FIG. Done.
 図96には、基板P1上のショット領域SA6に対するスキャン露光が終了して、基板ステージ(PH、26,28,32A、32B)が停止した状態が示されている。このとき、基板P2は、Yステップ動作が終了し、基板P2上のショット領域SA6が基板ホルダPHの保持領域ADA2上に位置している。 FIG. 96 shows a state in which the scanning exposure for the shot area SA6 on the substrate P1 is completed and the substrate stage (PH, 26, 28, 32A, 32B) is stopped. At this time, the substrate P2 has finished the Y step operation, and the shot area SA6 on the substrate P2 is located on the holding area ADA2 of the substrate holder PH.
 この後、主制御装置50により、基板ホルダPHの保持領域ADA2が排気から吸引に切り替えられ、基板P2のショット領域SA6を含む1/6の部分が、保持領域ADA2に吸着固定される。このとき、基板P2は、残りの部分(約5/6)が、-Y側のエア浮上ユニット群84Hの一部、並びに-X側の一対のエア浮上ユニット84Iによって浮上支持されている。 Thereafter, the main controller 50 switches the holding area ADA2 of the substrate holder PH from exhaust to suction, and the 1/6 portion including the shot area SA6 of the substrate P2 is adsorbed and fixed to the holding area ADA2. At this time, the remaining portion (about 5/6) of the substrate P2 is supported by levitation by a part of the −Y side air levitation unit group 84H and a pair of air levitation units 84I on the −X side.
 そして、投影光学系PLに対する基板P2の新たなアライメント計測、すなわち基板P2上に予め設けられている次のショット領域SA6用のアライメントマークの計測が、行われる。このアライメント計測に先立って、計測対象のアライメントマークがアライメント検出系の検出視野内に位置するように、基板P2の前述と同様のXステップ動作が行われる(図96中の白抜き矢印参照)。 Then, new alignment measurement of the substrate P2 with respect to the projection optical system PL, that is, measurement of the alignment mark for the next shot area SA6 provided in advance on the substrate P2 is performed. Prior to this alignment measurement, the same X-step operation as described above is performed on the substrate P2 so that the alignment mark to be measured is positioned within the detection visual field of the alignment detection system (see the white arrow in FIG. 96).
 そして、投影光学系PLに対する基板P2の新たなアライメント計測が終了すると、主制御装置50により、その結果に基づいて、基板P2上のショット領域SA6の露光のための加速開始位置への基板P2(及び基板ホルダPH)の位置決めが行われる。図97には、この位置決めが終了した直後の状態が示されている。 When the new alignment measurement of the substrate P2 with respect to the projection optical system PL is completed, the main controller 50 determines the substrate P2 (to the acceleration start position for exposure of the shot area SA6 on the substrate P2) based on the result. And the substrate holder PH) are positioned. FIG. 97 shows a state immediately after the positioning is completed.
 次いで、主制御装置50により、基板P2とマスクMとの+X方向の加速(図97中の白抜き矢印参照)が開始され、基板P2のショット領域SA6に対する前述と同様のスキャン露光が行われる。 Next, the main controller 50 starts acceleration in the + X direction between the substrate P2 and the mask M (see the white arrow in FIG. 97), and scan exposure similar to that described above is performed on the shot area SA6 of the substrate P2.
 図98には、基板P2上のショット領域SA6に対するスキャン露光が終了して、基板ステージ(PH、26、28、32A、32B)が停止した状態が示されている。 FIG. 98 shows a state in which the scanning exposure for the shot area SA6 on the substrate P2 is completed and the substrate stage (PH, 26, 28, 32A, 32B) is stopped.
 その後、主制御装置50は、基板ホルダPHの保持領域ADA1、ADA2を吸引から排気に切り替えるとともに、-X側の基板Yステップ送り装置88(図70参照)によって基板P2を吸着保持して、図98中に黒塗り矢印で示されるように-Y方向に搬出(搬送)する。これと並行して、主制御装置50は、+X側の基板Yステップ送り装置88(図70参照)によって基板P1を吸着保持して図98中に白抜き矢印で示されるように+Y方向に搬出(搬送)する。 After that, the main controller 50 switches the holding areas ADA1 and ADA2 of the substrate holder PH from suction to exhaust, and sucks and holds the substrate P2 by the −X side substrate Y step feeding device 88 (see FIG. 70). As shown by a black arrow in 98, it is carried out (conveyed) in the -Y direction. In parallel with this, the main controller 50 sucks and holds the substrate P1 by the + Y-side substrate Y step feeding device 88 (see FIG. 70) and carries it out in the + Y direction as indicated by the white arrow in FIG. (Convey).
 そして、図99に示されるように、露光済みの基板P1、P2は搬出され、新しい基板P3、P4が、図72と同様に基板ホルダPH上に搬入される。この場合も、各基板の搬入及び搬出方向は、必ずしも図99中の矢印の方向でなくても良い。例えば、上方又はX軸方向から搬入及び/又は搬出しても良い。 Then, as shown in FIG. 99, the exposed substrates P1 and P2 are unloaded, and new substrates P3 and P4 are loaded onto the substrate holder PH as in FIG. Also in this case, the loading and unloading directions of the substrates do not necessarily have to be in the directions indicated by the arrows in FIG. For example, you may carry in and / or carry out from the upper direction or the X-axis direction.
 以上説明したように、本第9の実施形態に係る露光装置900では、小型(基板の1/3のサイズ)の基板ホルダPHを搭載した微動ステージ26を1軸(X軸)方向に移動させ、基板のみを2軸(X軸とY軸)方向に移動させるようにしたので、基板ステージ装置PSThを小型軽量化でき、上記各実施形態と同様に、基板ホルダPH及び基板ステージ装置PSThの小型化に伴う種々の効果を得ることができる。さらに、本第9の実施形態に係る露光装置900では、主制御装置50が、2枚の基板のそれぞれの一部を基板ホルダPHの保持領域ADA1、ADA2にそれぞれ載置して、基板ホルダPHがその一部を構成する基板ステージがX軸方向に移動して一方の基板の一部のショット領域が走査露光されるのと並行して、他方の基板を基板Yステップ送り装置88により基板ホルダPHに対してY軸方向に移動させることが可能になる。これにより、1枚目の基板について、1つのショット領域(未露光領域)の露光が終了した後に、その基板をステップ移動させて次のショット領域(未露光領域)を露光する、露光及びステップ移動を交互に繰り返して、その基板の露光を行い、2枚目の基板について、同様の手順で露光を行う場合に比べて、2枚の基板の露光処理に掛かる時間を短縮することが可能になる。また、本実施形態では、2枚の基板の露光を交互に行い、一方の基板のYステップ時間を、他方の基板のXスキャン時間に完全にオーバーラップさせることができるので、1枚の基板について考えると、(1ショット領域の走査露光に要する時間+アライメント時間)×スキャン回数(ショット領域の数)+α、具体的には、基板の基板ホルダ上での持ち替えを行わない従来のステップ・アンド・スキャン方式で露光処理するのとほぼ同程度の時間で、露光処理が可能になる。 As described above, in the exposure apparatus 900 according to the ninth embodiment, the fine movement stage 26 on which the small (1/3 size of the substrate) substrate holder PH is mounted is moved in the direction of one axis (X axis). Since only the substrate is moved in the two-axis (X-axis and Y-axis) directions, the substrate stage device PSTh can be reduced in size and weight, and the substrate holder PH and the substrate stage device PSTh can be reduced in size as in the above embodiments. Various effects accompanying the conversion can be obtained. Further, in the exposure apparatus 900 according to the ninth embodiment, the main controller 50 places a part of each of the two substrates on the holding areas ADA1 and ADA2 of the substrate holder PH, and the substrate holder PH. In parallel with the substrate stage which constitutes a part thereof moving in the X-axis direction and a part of the shot area of one substrate is scanned and exposed, the other substrate is moved to the substrate holder by the substrate Y step feeding device 88. It is possible to move in the Y-axis direction with respect to PH. Thereby, after the exposure of one shot area (unexposed area) is completed for the first substrate, the substrate is stepped to expose the next shot area (unexposed area). Exposure and step movement Are alternately repeated to expose the substrate, and the time required for the exposure processing of the two substrates can be shortened as compared with the case where the second substrate is exposed in the same procedure. . In this embodiment, the exposure of two substrates is alternately performed, and the Y step time of one substrate can be completely overlapped with the X scan time of the other substrate. Considering this, (time required for scanning exposure of one shot area + alignment time) × number of scans (number of shot areas) + α, specifically, conventional step-and-step in which the substrate is not changed over on the substrate holder. The exposure process can be performed in approximately the same time as the exposure process using the scanning method.
 なお、上記第9の実施形態では、2枚の基板を、同時に基板ホルダPH(基板ステージ装置PST)上に搬入して、同時に基板ホルダPH(基板ステージ装置PSTh)上から搬出するようにした。しかしながら、露光装置900では、次に説明する変形例のように、2枚の基板を1枚ずつ交互に、基板ホルダPH(基板ステージ装置PSTh)に対して搬入及び搬出することとしても良い。
《第9の実施形態の変形例》
In the ninth embodiment, two substrates are simultaneously loaded onto the substrate holder PH (substrate stage apparatus PST) and simultaneously unloaded from the substrate holder PH (substrate stage apparatus PSTh). However, in the exposure apparatus 900, two substrates may be alternately carried into and out of the substrate holder PH (substrate stage apparatus PSTh) as in a modification described below.
<< Modification of Ninth Embodiment >>
 図100は、前述の第9の実施形態における露光手順説明図(その13)である図85に相当するものであるが、主制御装置50の指示に応じて、搬出装置(不図示)によって、基板P1は、この時点で基板ステージ装置PSThの外部に搬出される(図100中の黒塗り太矢印参照)。基板P1の-X側半分は、図100に示されるように未露光のままでも良いし、予め露光されていても良い。 FIG. 100 corresponds to FIG. 85, which is an explanatory view (No. 13) of the exposure procedure in the ninth embodiment described above, but in accordance with an instruction from the main controller 50, a carry-out device (not shown) At this point, the substrate P1 is carried out of the substrate stage apparatus PSTh (see the thick black arrow in FIG. 100). The −X side half of the substrate P1 may be left unexposed as shown in FIG. 100 or may be exposed in advance.
 主制御装置50は、基板P1が、搬出の途中で、基板ホルダPH上から完全に退避すると、+Y側の基板Xステップ送り装置91(図70参照)によって基板P2を吸着保持して、図100中に白抜き矢印で示されるように-X方向にXステップ距離(ショット領域のX軸方向の長さのほぼ2倍の距離)搬送する。 When the substrate P1 is completely retracted from the substrate holder PH in the middle of unloading, the main controller 50 suctions and holds the substrate P2 by the + Y side substrate X step feeding device 91 (see FIG. 70). As indicated by the white arrow, the X step distance (distance approximately twice the length of the shot area in the X axis direction) is conveyed in the −X direction.
 図101には、上記の基板P2のXステップ距離の搬送が終了したときの基板P2の基板ホルダPHに対する位置関係が示されている。このとき、新しい基板P3が、-Y側のエア浮上ユニット群84H及び84Jの上に搬入されている。 FIG. 101 shows the positional relationship of the substrate P2 with respect to the substrate holder PH when the conveyance of the X step distance of the substrate P2 is completed. At this time, a new substrate P3 is carried onto the −Y side air levitation unit groups 84H and 84J.
 図101の状態から、主制御装置50により、+X側の基板Yステップ送り装置88を用いて基板P3が吸着保持され、図101中の黒塗り矢印で示されるように、基板P3の+Y方向のステップ移動が行なわれる。これにより、図102に示される状態となり、基板P2と基板P3とは、基板ホルダPH上で図72における基板P1と基板P2と同様の位置関係になる。 101, the main controller 50 sucks and holds the substrate P3 using the + Y side substrate Y step feeding device 88, and the + P direction of the substrate P3 in the + Y direction is indicated by the black arrow in FIG. Step movement is performed. Thus, the state shown in FIG. 102 is obtained, and the substrate P2 and the substrate P3 have the same positional relationship as the substrate P1 and the substrate P2 in FIG. 72 on the substrate holder PH.
 そして、主制御装置50により基板ホルダPHの保持領域ADA1、ADA2が、排気から吸引に切り替えられる。これにより、基板ホルダPHの保持領域ADA1、ADA2に基板P3、P2の一部(基板全体の約1/6)が吸着固定され、一対のエア浮上ユニット84Iとエア浮上ユニット群84Hの一部とにより基板P3,P2の一部(基板全体の残りの約5/6)が浮上支持された状態となる。 The main controller 50 switches the holding areas ADA1 and ADA2 of the substrate holder PH from exhaust to suction. Accordingly, a part of the substrates P3 and P2 (about 1/6 of the entire substrate) is sucked and fixed to the holding areas ADA1 and ADA2 of the substrate holder PH, and a pair of the air levitation unit 84I and a part of the air levitation unit group 84H As a result, part of the substrates P3 and P2 (the remaining approximately 5/6 of the entire substrate) is levitated and supported.
 続いて、投影光学系PLに対する基板P3の新たなアライメント計測、すなわち基板P3上に予め設けられている次の露光対象のショット領域(この場合、基板P3上のショット領域SA1)用のアライメントマークの計測が、前述と同様に行われる。 Subsequently, a new alignment measurement of the substrate P3 with respect to the projection optical system PL, that is, the alignment mark for the next shot area to be exposed (previously shot area SA1 on the substrate P3) provided on the substrate P3. Measurement is performed in the same manner as described above.
 そして、投影光学系PLに対する基板P3の新たなアライメント計測が終了すると、主制御装置50は、その結果に基づいて、粗動テーブル32A、32Bを駆動するとともに微動ステージ26を微小駆動して、次の露光のための加速に備えて、基板P3(及び基板ホルダPH)を、そのスキャン開始位置(加速開始位置)に位置決めする。図102には、このようにして、基板P3上のショット領域SA1の露光のためのスキャン開始位置(加速開始位置)に基板P3(及び基板ホルダPH)が位置決めされた直後の状態が示されている。 Then, when the new alignment measurement of the substrate P3 with respect to the projection optical system PL is completed, the main controller 50 drives the coarse movement tables 32A and 32B and finely drives the fine movement stage 26 based on the result. In preparation for acceleration for the exposure, the substrate P3 (and the substrate holder PH) is positioned at the scan start position (acceleration start position). FIG. 102 shows a state immediately after the substrate P3 (and the substrate holder PH) is positioned at the scan start position (acceleration start position) for exposure of the shot area SA1 on the substrate P3 in this way. Yes.
 そして、主制御装置50は、図102中に白抜き矢印で示されるように、基板P3(基板ステージ(PH、26、28、32A、32B))とマスクM(マスクステージMST)との+X方向の加速を開始して、前述と同様にしてショット領域SA1に対しスキャン露光を行なう。 Then, as indicated by the white arrow in FIG. 102, main controller 50 determines + X direction between substrate P3 (substrate stage (PH, 26, 28, 32A, 32B)) and mask M (mask stage MST). Is started and scan exposure is performed on the shot area SA1 in the same manner as described above.
 図103には、基板P3のショット領域SA1に対するスキャン露光が終了して、基板ステージ(PH、26、28、32A、32B)が停止した状態が示されている。 FIG. 103 shows a state in which the scanning exposure for the shot area SA1 of the substrate P3 is completed and the substrate stage (PH, 26, 28, 32A, 32B) is stopped.
 続いて、投影光学系PLに対する基板P2の新たなアライメント計測、すなわち基板P2上に予め設けられている次の露光対象のショット領域(この場合、基板P2上のショット領域SA4)用のアライメントマークの計測が、前述と同様に行われる。 Subsequently, a new alignment measurement of the substrate P2 with respect to the projection optical system PL, that is, the alignment mark for the next shot area to be exposed (the shot area SA4 on the substrate P2 in this case) provided in advance on the substrate P2. Measurement is performed in the same manner as described above.
 そして、投影光学系PLに対する基板P2の新たなアライメント計測が終了すると、主制御装置50は、その結果に基づいて、次の露光のための加速に備えて、基板P2(及び基板ホルダPH)を、図103中に白抜き矢印で示されるように、少し-X方向へ駆動する基板P2(及び基板ホルダPH)のXステップ動作を前述と同様に行う。図104には、このようにして、基板P2上のショット領域SA4の露光のためのスキャン開始位置(加速開始位置)に基板P2(及び基板ホルダPH)が位置決めされた直後の状態が示されている。 When the new alignment measurement of the substrate P2 with respect to the projection optical system PL is completed, the main controller 50 prepares the substrate P2 (and the substrate holder PH) in preparation for acceleration for the next exposure based on the result. As shown by the white arrow in FIG. 103, the X step operation of the substrate P2 (and substrate holder PH) that is slightly driven in the −X direction is performed in the same manner as described above. FIG. 104 shows a state immediately after the substrate P2 (and substrate holder PH) is positioned at the scan start position (acceleration start position) for exposure of the shot area SA4 on the substrate P2 in this way. Yes.
 そして、主制御装置50は、図104中に白抜き矢印で示されるように、基板P2(基板ステージ(PH、26、28、32A、32B))とマスクM(マスクステージMST)との+X方向の加速を開始して、前述と同様にしてショット領域SA4に対しスキャン露光を行なう。これと並行して、主制御装置50は、図104中に黒塗り矢印で示されるように、基板P3を基板ホルダPH上で+Y方向に送って基板P3の前述と同様のYステップ動作を行う。 Then, main controller 50, as indicated by the white arrow in FIG. 104, + X direction between substrate P2 (substrate stage (PH, 26, 28, 32A, 32B)) and mask M (mask stage MST) Is started and scan exposure is performed on the shot area SA4 in the same manner as described above. In parallel with this, the main controller 50 sends the substrate P3 in the + Y direction on the substrate holder PH and performs the same Y-step operation as described above for the substrate P3, as indicated by the solid arrows in FIG. .
 図105には、基板P2上のショット領域SA4に対するスキャン露光が終了して、基板ステージ(PH、26,28,32A、32B)が停止した状態が示されている。このとき、基板P3は、Yステップ動作が終了し、基板P3上のショット領域SA2が基板ホルダPHの保持領域ADA1上に位置している。 FIG. 105 shows a state in which the scanning exposure for the shot area SA4 on the substrate P2 is completed and the substrate stage (PH, 26, 28, 32A, 32B) is stopped. At this time, the substrate P3 has finished the Y step operation, and the shot area SA2 on the substrate P3 is located on the holding area ADA1 of the substrate holder PH.
 この後、主制御装置50により、基板ホルダPHの保持領域ADA1が排気から吸引に切り替えられ、基板P3のショット領域SA2を含む1/6の部分が、保持領域ADA1に吸着固定される。このとき、基板P3は、残りの部分(約5/6)が、+Y側のエア浮上ユニット群84Hの一部、-Y側のエア浮上ユニット群84Hの一部、並びに+X側の一対のエア浮上ユニット84Iによって浮上支持されている。 Thereafter, the main controller 50 switches the holding area ADA1 of the substrate holder PH from exhaust to suction, and the 1/6 portion including the shot area SA2 of the substrate P3 is adsorbed and fixed to the holding area ADA1. At this time, the remaining portion (about 5/6) of the substrate P3 is a part of the + Y side air floating unit group 84H, a part of the −Y side air floating unit group 84H, and a pair of + X side air floating units. It is supported by the flying unit 84I.
 そして、投影光学系PLに対する基板P3の新たなアライメント計測、すなわち基板P3上に予め設けられている次のショット領域SA2用のアライメントマークの計測が、行われる。このアライメント計測に先立って、計測対象のアライメントマークがアライメント検出系の検出視野内に位置するように、基板P3の前述したXステップ動作が行われる(図105中の白抜き矢印参照)。 Then, new alignment measurement of the substrate P3 with respect to the projection optical system PL, that is, measurement of the alignment mark for the next shot area SA2 provided in advance on the substrate P3 is performed. Prior to this alignment measurement, the above-described X-step operation of the substrate P3 is performed so that the alignment mark to be measured is positioned within the detection visual field of the alignment detection system (see the white arrow in FIG. 105).
 そして、投影光学系PLに対する基板P3の新たなアライメント計測が終了すると、主制御装置50により、その結果に基づいて、基板P3上のショット領域SA2の露光のための加速開始位置への基板P3(及び基板ホルダPH)の位置決めが行われる。図106には、この位置決めが終了した直後の状態が示されている。 When the new alignment measurement of the substrate P3 with respect to the projection optical system PL is finished, the main controller 50 determines the substrate P3 (to the acceleration start position for exposure of the shot area SA2 on the substrate P3) based on the result. And the substrate holder PH) are positioned. FIG. 106 shows a state immediately after the positioning is completed.
 次いで、主制御装置50により、基板P3とマスクMとの-X方向の加速(図106中の白抜き矢印参照)が開始され、前述と同様の基板P3のショット領域SA2に対するスキャン露光が行われる。これと並行して、主制御装置50により、図106中に黒塗り矢印で示されるように、基板P2を基板ホルダPH上で-Y方向に送る基板P2の前述と同様のYステップ動作が行われる。 Next, main controller 50 starts acceleration in the −X direction between substrate P3 and mask M (see the white arrow in FIG. 106), and scan exposure is performed on shot area SA2 of substrate P3 as described above. . In parallel with this, the main controller 50 performs the same Y step operation as described above for the substrate P2 that sends the substrate P2 in the −Y direction on the substrate holder PH, as indicated by the solid arrows in FIG. Is called.
 図107には、基板P3上のショット領域SA2に対するスキャン露光が終了して、基板ステージ(PH、26、28、32A、32B)が停止した状態が示されている。このとき、基板P2は、Yステップ動作が終了し、基板P2上のショット領域SA5が基板ホルダPHの保持領域ADA2上に位置している。 FIG. 107 shows a state in which the scanning exposure for the shot area SA2 on the substrate P3 is completed and the substrate stage (PH, 26, 28, 32A, 32B) is stopped. At this time, the substrate P2 has finished the Y step operation, and the shot area SA5 on the substrate P2 is located on the holding area ADA2 of the substrate holder PH.
 この後、主制御装置50により、基板ホルダPHの保持領域ADA2が排気から吸引に切り替えられ、基板P2のショット領域SA5を含む1/6の部分が、保持領域ADA2に吸着固定される。このとき、基板P2は、残りの部分(約5/6)が、+Y側のエア浮上ユニット群84Hの一部、-Y側のエア浮上ユニット群84Hの一部、並びに-X側の一対のエア浮上ユニット84Iによって浮上支持されている。 Thereafter, the main controller 50 switches the holding area ADA2 of the substrate holder PH from exhaust to suction, and the 1/6 portion including the shot area SA5 of the substrate P2 is adsorbed and fixed to the holding area ADA2. At this time, the remaining part (about 5/6) of the substrate P2 is a part of the + Y side air levitation unit group 84H, a part of the −Y side air levitation unit group 84H, and a pair of −X side air levitation unit groups. It is levitated and supported by an air levitating unit 84I.
 そして、投影光学系PLに対する基板P2の新たなアライメント計測、すなわち基板P2上に予め設けられている次のショット領域SA5用のアライメントマークの計測が、行われる。このアライメント計測に先立って、計測対象のアライメントマークがアライメント検出系の検出視野内に位置するように、基板P2の前述したXステップ動作が行われる(図107中の白抜き矢印参照)。 Then, new alignment measurement of the substrate P2 with respect to the projection optical system PL, that is, measurement of the alignment mark for the next shot area SA5 provided in advance on the substrate P2 is performed. Prior to this alignment measurement, the above-described X-step operation of the substrate P2 is performed so that the alignment mark to be measured is positioned within the detection visual field of the alignment detection system (see the white arrow in FIG. 107).
 そして、投影光学系PLに対する基板P2の新たなアライメント計測が終了すると、主制御装置50により、その結果に基づいて、基板P2上のショット領域SA5の露光のための加速開始位置への基板P2(及び基板ホルダPH)の位置決めが行われる。図108には、この位置決めが終了した直後の状態が示されている。 When the new alignment measurement of the substrate P2 with respect to the projection optical system PL is completed, the main controller 50 determines the substrate P2 (to the acceleration start position for exposure of the shot area SA5 on the substrate P2) based on the result. And the substrate holder PH) are positioned. FIG. 108 shows a state immediately after the positioning is completed.
 次いで、主制御装置50により、基板P2とマスクMとの+X方向の加速(図108中の白抜き矢印参照)が開始され、前述と同様の基板P2のショット領域SA5に対するスキャン露光が行われる。これと並行して、主制御装置50により、図108中に黒塗り矢印で示されるように、基板P3を基板ホルダPH上で+Y方向に送る基板P3の前述と同様のYステップ動作が行われる。 Next, the main controller 50 starts acceleration in the + X direction between the substrate P2 and the mask M (see the white arrow in FIG. 108), and scan exposure is performed on the shot area SA5 of the substrate P2 as described above. In parallel with this, the main controller 50 performs the same Y-step operation as described above for the substrate P3 that sends the substrate P3 in the + Y direction on the substrate holder PH, as indicated by a solid arrow in FIG. .
 図109には、基板P2上のショット領域SA5に対するスキャン露光が終了して、基板ステージ(PH、26、28、32A、32B)が停止した状態が示されている。このとき、基板P3は、Yステップ動作が終了し、基板P3上のショット領域SA3が基板ホルダPHの保持領域ADA1上に位置している。 FIG. 109 shows a state in which the scanning exposure for the shot area SA5 on the substrate P2 is completed and the substrate stage (PH, 26, 28, 32A, 32B) is stopped. At this time, the Y step operation of the substrate P3 is finished, and the shot area SA3 on the substrate P3 is located on the holding area ADA1 of the substrate holder PH.
 この後、主制御装置50により、基板ホルダPHの保持領域ADA1が排気から吸引に切り替えられ、基板P3のショット領域SA3を含む1/6の部分が、保持領域ADA1に吸着固定される。このとき、基板P3は、残りの部分(約5/6)が、+Y側のエア浮上ユニット群84Hの一部、並びに+X側の一対のエア浮上ユニット84Iによって浮上支持されている。 Thereafter, the main controller 50 switches the holding area ADA1 of the substrate holder PH from exhaust to suction, and the 1/6 portion including the shot area SA3 of the substrate P3 is adsorbed and fixed to the holding area ADA1. At this time, the remaining portion (about 5/6) of the substrate P3 is supported by levitation by a part of the + Y side air levitation unit group 84H and a pair of + X side air levitation units 84I.
 そして、投影光学系PLに対する基板P3の新たなアライメント計測、すなわち基板P3上に予め設けられている次のショット領域SA3用のアライメントマークの計測が、行われる。このアライメント計測に先立って、計測対象のアライメントマークがアライメント検出系の検出視野内に位置するように、基板P3の前述したXステップ動作が行われる(図109中の白抜き矢印参照)。 Then, new alignment measurement of the substrate P3 with respect to the projection optical system PL, that is, measurement of the alignment mark for the next shot area SA3 provided in advance on the substrate P3 is performed. Prior to this alignment measurement, the above-described X-step operation of the substrate P3 is performed so that the alignment mark to be measured is positioned within the detection visual field of the alignment detection system (see the white arrow in FIG. 109).
 そして、投影光学系PLに対する基板P3の新たなアライメント計測が終了すると、主制御装置50により、その結果に基づいて、基板P3上のショット領域SA3の露光のための加速開始位置への基板P3(及び基板ホルダPH)の位置決めが行われる。図110には、この位置決めが終了した直後の状態が示されている。 When the new alignment measurement of the substrate P3 with respect to the projection optical system PL is completed, the main controller 50 determines the substrate P3 (to the acceleration start position for exposure of the shot area SA3 on the substrate P3 based on the result). And the substrate holder PH) are positioned. FIG. 110 shows a state immediately after the positioning is completed.
 次いで、主制御装置50により、基板P3とマスクMとの-X方向の加速(図110中の白抜き矢印参照)が開始され、基板P3のショット領域SA3に対する前述と同様のスキャン露光が行われる。これと並行して、主制御装置50により、図110中に黒塗り矢印で示されるように、基板P2を基板ホルダPH上で-Y方向に送る基板P2の前述と同様のYステップ動作が行われる。 Next, the main controller 50 starts acceleration in the −X direction between the substrate P3 and the mask M (see the white arrow in FIG. 110), and scan exposure similar to that described above is performed on the shot area SA3 of the substrate P3. . In parallel with this, the main controller 50 performs the same Y-step operation as described above for the substrate P2 that sends the substrate P2 in the −Y direction on the substrate holder PH, as indicated by the black arrow in FIG. Is called.
 図111には、基板P3上のショット領域SA3に対するスキャン露光が終了して、基板ステージ(PH、26、28、32A、32B)が停止した状態が示されている。このとき、基板P2は、Yステップ動作が終了し、基板P2上のショット領域SA6が基板ホルダPHの保持領域ADA2上に位置している。 FIG. 111 shows a state in which the scanning exposure for the shot area SA3 on the substrate P3 is completed and the substrate stage (PH, 26, 28, 32A, 32B) is stopped. At this time, the substrate P2 has finished the Y step operation, and the shot area SA6 on the substrate P2 is located on the holding area ADA2 of the substrate holder PH.
 この後、主制御装置50により、基板ホルダPHの保持領域ADA2が排気から吸引に切り替えられ、基板P2のショット領域SA6を含む1/6の部分が、保持領域ADA2に吸着固定される。このとき、基板P2は、残りの部分(約5/6)が、-Y側のエア浮上ユニット群84Hの一部、並びに-X側の一対のエア浮上ユニット84Iによって浮上支持されている。 Thereafter, the main controller 50 switches the holding area ADA2 of the substrate holder PH from exhaust to suction, and the 1/6 portion including the shot area SA6 of the substrate P2 is adsorbed and fixed to the holding area ADA2. At this time, the remaining portion (about 5/6) of the substrate P2 is supported by levitation by a part of the −Y side air levitation unit group 84H and a pair of air levitation units 84I on the −X side.
 そして、投影光学系PLに対する基板P2の新たなアライメント計測、すなわち基板P2上に予め設けられている次のショット領域SA6用のアライメントマークの計測が、行われる。このアライメント計測に先立って、計測対象のアライメントマークがアライメント検出系の検出視野内に位置するように、基板P2の前述したXステップ動作が行われる(図111中の白抜き矢印参照)。 Then, new alignment measurement of the substrate P2 with respect to the projection optical system PL, that is, measurement of the alignment mark for the next shot area SA6 provided in advance on the substrate P2 is performed. Prior to this alignment measurement, the above-described X-step operation of the substrate P2 is performed so that the alignment mark to be measured is positioned within the detection visual field of the alignment detection system (see the white arrow in FIG. 111).
 そして、投影光学系PLに対する基板Pの新たなアライメント計測が終了すると、主制御装置50により、その結果に基づいて、基板P2上のショット領域SA6の露光のための加速開始位置への基板P2(及び基板ホルダPH)の位置決めが行われる。図112には、この位置決めが終了した直後の状態が示されている。 When the new alignment measurement of the substrate P with respect to the projection optical system PL is completed, the main controller 50 determines the substrate P2 (to the acceleration start position for exposure of the shot area SA6 on the substrate P2) based on the result. And the substrate holder PH) are positioned. FIG. 112 shows a state immediately after the positioning is completed.
 次いで、主制御装置50により、基板P2とマスクMとの+X方向の加速(図112中の白抜き矢印参照)が開始され、基板P2のショット領域SA6に対する前述と同様のスキャン露光が行われる。 Next, the main controller 50 starts acceleration of the substrate P2 and the mask M in the + X direction (see a white arrow in FIG. 112), and scan exposure similar to that described above is performed on the shot area SA6 of the substrate P2.
 図113には、基板P2上のショット領域SA6に対するスキャン露光が終了して、基板ステージ(PH、26、28、32A、32B)が停止した状態が示されている。 FIG. 113 shows a state where the substrate stage (PH, 26, 28, 32A, 32B) is stopped after the scan exposure for the shot area SA6 on the substrate P2 is completed.
 その後、主制御装置50は、基板ホルダPHの保持領域ADA1、ADA2を吸引から排気に切り替えるとともに、-X側の基板Yステップ送り装置88(図70参照)によって基板P2を吸着保持して、図113中に黒塗り矢印で示されるように-Y方向に搬出(搬送)する。これと並行して、主制御装置50は、+Y側の基板Xステップ送り装置91(図70参照)によって基板P3を吸着保持する。そして、基板P2が基板ホルダPH上から完全に退避した時点で、主制御装置50は、図113中に白抜き矢印で示されるように-X方向に基板P3をXステップ距離搬送する。 After that, the main controller 50 switches the holding areas ADA1 and ADA2 of the substrate holder PH from suction to exhaust, and sucks and holds the substrate P2 by the −X side substrate Y step feeding device 88 (see FIG. 70). As shown by a black arrow in 113, it is carried out (conveyed) in the -Y direction. In parallel with this, the main controller 50 sucks and holds the substrate P3 by the + Y side substrate X step feeding device 91 (see FIG. 70). When the substrate P2 is completely retracted from the substrate holder PH, the main controller 50 conveys the substrate P3 in the −X direction by an X step distance as indicated by a white arrow in FIG.
 その後、図114に示されるように、基板全面の露光が終了した基板P2は搬出され、基板ホルダPHの保持領域ADA1上に新しい基板P4が搬入される。 Thereafter, as shown in FIG. 114, the substrate P2 that has been exposed on the entire surface of the substrate is unloaded, and a new substrate P4 is loaded onto the holding area ADA1 of the substrate holder PH.
 以後、3つのショット領域の露光が終了した基板P3及び未露光の基板P4に対して、前述の基板P2と基板P3と同様の処理が繰り返される。 Thereafter, the same processes as those of the substrate P2 and the substrate P3 described above are repeated for the substrate P3 and the unexposed substrate P4 that have been exposed in the three shot areas.
 このように、本変形例では、基板の2枚同時交換(搬入・搬出)を行なわないので、露光対象のショット領域変更及び基板交換作業の効率が良い。具体的には、上記第9の実施形態の露光手順・その13及び14(図85及び図86)に示される、基板P1で実施していたような、X軸とY軸の2軸移動がなくなる。また、基板の搬入と搬出が1枚ずつ行なわれるので、基板の搬入及び搬出にかかわる不図示の搬入装置及び搬出装置が1台ずつでも交換作業を短時間で行なうことができる。 Thus, in this modification, since the two substrates are not simultaneously exchanged (in / out), the shot area to be exposed is changed and the efficiency of the substrate exchange operation is high. Specifically, the two-axis movement of the X axis and the Y axis as shown in the exposure procedure of the ninth embodiment, 13 and 14 (FIGS. 85 and 86), as performed on the substrate P1, is performed. Disappear. In addition, since the substrate is carried in and out one by one, the exchange operation can be performed in a short time even if one unillustrated loading device and unloading device are involved in loading and unloading the substrate.
 なお、上記第9の実施形態及びその変形例では、基板ホルダPHの保持領域ADA1、ADA2を、それぞれ基板の約1/6の面積とし、X軸方向2面(2スキャン)かつY軸方向3面(3スキャン)の6面取り(露光スキャン数)に対応する場合について例示したが、これに限らず、基板ホルダPHの保持領域ADA1、ADA2のそれぞれを、基板の約1/4の面積に設定しても良い。この場合、X軸方向2面(2スキャン)かつY軸方向2面(2スキャン)の4面取りにも対応できる。 In the ninth embodiment and the modifications thereof, the holding regions ADA1 and ADA2 of the substrate holder PH are approximately 1/6 of the area of the substrate, respectively, two surfaces in the X-axis direction (two scans) and three in the Y-axis direction. Although the case corresponding to 6 chamfers (number of exposure scans) of the surface (3 scans) is illustrated, the present invention is not limited to this, and each of the holding regions ADA1 and ADA2 of the substrate holder PH is set to an area of about 1/4 of the substrate. You may do it. In this case, it is possible to cope with four chamfering of two surfaces in the X-axis direction (two scans) and two surfaces in the Y-axis direction (two scans).
 また、上述した基板ホルダPH上に配置する2枚の基板の配置関係や露光領域変更の順番は、一例に過ぎず、これに限定されるものではない。例えば、上記第9の実施形態及びその変形例では、2枚の基板の一方と他方に対する走査露光を交互に行う(従って、他方の基板と一方の基板とのYステップ動作が、これと並行して、交互に行われる)場合について説明したが、2枚の基板の一方と他方に対する走査露光を必ずしも交互に行う必要はない。ただし、2枚の基板を基板ホルダPH上の保持領域ADA1、ADA2に載置して、一方の基板の少なくも1つのショット領域の走査露光と他方の基板のYステップ動作とを少なくとも一部並行して行うことが望ましく、2枚の基板のうち、一方の基板の露光が開始されてから終了するまでの間に、他方の基板の少なくとも1つのショット領域の露光を行うことが望ましい。これによれば、2枚の基板のうち、一方の基板の露光が終了後に他方の基板の露光を開始する場合に比べて、より短時間で、2枚の基板に対する露光を終了することが可能になる。 Also, the arrangement relationship between the two substrates arranged on the substrate holder PH and the order of changing the exposure area are merely examples, and are not limited to this. For example, in the ninth embodiment and the modification thereof, scanning exposure is alternately performed on one and the other of the two substrates (therefore, the Y step operation of the other substrate and the one substrate is performed in parallel with this. However, it is not always necessary to alternately perform scanning exposure on one and the other of the two substrates. However, two substrates are placed on the holding areas ADA1 and ADA2 on the substrate holder PH, and at least partly the scanning exposure of at least one shot area of one substrate and the Y step operation of the other substrate are at least partially parallel. It is desirable to perform exposure of at least one shot area of the other substrate between the start and end of exposure of one of the two substrates. According to this, it is possible to complete the exposure of the two substrates in a shorter time than the case of starting the exposure of the other substrate after the exposure of one of the two substrates is completed. become.
 また、上記第9の実施形態及び変形例では、溝部によって2分割された2つの保持領域を有する基板ホルダPHを用いる場合を例示したが、これに限らず、独立した2つの基板ホルダを1つの微動ステージ上に並べて固定しても良い。 In the ninth embodiment and the modification, the case where the substrate holder PH having two holding regions divided into two by the groove is used is exemplified. However, the present invention is not limited to this, and two independent substrate holders are used. It may be fixed side by side on the fine movement stage.
 また、基板Xステップ送り装置91及び基板Yステップ送り装置88は、基板ホルダPHの周辺に配置したが、2枚の基板を上述と同様の位置関係になるように基板ホルダPHに対して移動させることができるのであれば、基板Xステップ送り装置91及び基板Yステップ送り装置88の配置、数等は任意で良い。ただし、基板Yステップ送り装置88は、一方の基板上のショット領域に対するスキャン露光と他方の基板のYステップ送りとを並行して行う必要から、基板ホルダPHが搭載された微動ステージ26又は基板ホルダPHと一体的に移動する移動体上に設ける必要がある。 The substrate X step feeding device 91 and the substrate Y step feeding device 88 are arranged around the substrate holder PH. However, the two substrates are moved with respect to the substrate holder PH so as to have the same positional relationship as described above. If possible, the arrangement, number, etc. of the substrate X step feeding device 91 and the substrate Y step feeding device 88 may be arbitrary. However, since the substrate Y step feeding device 88 needs to perform the scanning exposure on the shot area on one substrate and the Y step feeding of the other substrate in parallel, the fine movement stage 26 on which the substrate holder PH is mounted or the substrate holder It is necessary to provide on the moving body which moves integrally with PH.
《第10の実施形態》
 次に、第10の実施形態について、図115~図117に基づいて説明する。ここで、前述した第9の実施形態と同一若しくは同等の構成部分については、同一若しくは類似の符号を用いるとともに、その説明を簡略若しくは省略する。
<< Tenth Embodiment >>
Next, a tenth embodiment will be described based on FIGS. 115 to 117. Here, the same or similar reference numerals are used for the same or equivalent components as those in the ninth embodiment described above, and the description thereof is simplified or omitted.
 図115には、第10の実施形態に係る露光装置1000の一部省略した平面図が示されている。また、図116には、露光装置1000を+X方向から見た概略側面図が一部省略して示されている。但し、図116では、前述の図69と同様に、粗動テーブル32は、重量キャンセル装置28とともに、部分的に断面図にて示されている。 FIG. 115 shows a partially omitted plan view of the exposure apparatus 1000 according to the tenth embodiment. In FIG. 116, a schematic side view of the exposure apparatus 1000 viewed from the + X direction is partially omitted. However, in FIG. 116, the coarse motion table 32 is partially shown in a sectional view together with the weight cancellation device 28, as in FIG.
 本第10の実施形態に係る露光装置1000では、前述した基板ステージ装置PSThに代えて、基板ステージ装置PSTiが設けられている点が、前述の第9の実施形態と相違するが、その他の部分の構成等は、前述した第9の実施形態と同様である。 The exposure apparatus 1000 according to the tenth embodiment differs from the above-described ninth embodiment in that a substrate stage apparatus PSTi is provided instead of the above-described substrate stage apparatus PSTh. The configuration and the like are the same as those in the ninth embodiment described above.
 基板ステージ装置PSTiは、図116に示されるように、前述の粗動ステージ部24に代えて粗動ステージ部24’を備えている。粗動ステージ部24’は、図116に示されるように、2本(一対)のXビーム30A’,30B’と、粗動テーブル32と、2本のXビーム30A’,30B’のそれぞれを床面F上で支持する複数の脚部34と、を有している。 The substrate stage apparatus PSTi includes a coarse movement stage portion 24 ′ instead of the coarse movement stage portion 24 described above, as shown in FIG. 116. As shown in FIG. 116, the coarse movement stage unit 24 ′ includes two (a pair) of X beams 30 A ′ and 30 B ′, a coarse movement table 32, and two X beams 30 A ′ and 30 B ′. A plurality of legs 34 supported on the floor surface F.
 粗動テーブル32は、例えば前述の基板ステージ装置PSThが備える2つの粗動テーブル32A及び32Bに代えて設けられたもので、図115及び図116からわかるように、粗動テーブル32A及び32Bを一体化してかつY軸方向のサイズを小さくしたような形状を有している。 The coarse motion table 32 is provided in place of the two coarse motion tables 32A and 32B provided in the substrate stage apparatus PSTh, for example, and as can be seen from FIGS. 115 and 116, the coarse motion tables 32A and 32B are integrated. And having a shape that is reduced in size in the Y-axis direction.
 粗動ステージ部24’の各部の構成は、例えば先に説明した第4の実施形態に係る露光装置が備える基板ステージ装置PSTcと同様になっているので、詳細説明は省略する。 Since the configuration of each part of the coarse movement stage unit 24 ′ is the same as that of the substrate stage apparatus PSTc included in the exposure apparatus according to the fourth embodiment described above, for example, detailed description thereof is omitted.
 基板ステージ装置PSTiでは、図116に示されるように、基板ホルダPHのY軸方向両側のエア浮上ユニットが、粗動テーブル32とは分離され、床面F上に設置されている。さらには、これらに伴って、一対の基板Yステップ送り装置88及び一対の基板Xステップ送り装置91が、微動ステージ26に取り付けられている。 In the substrate stage apparatus PSTi, as shown in FIG. 116, the air levitation units on both sides in the Y-axis direction of the substrate holder PH are separated from the coarse motion table 32 and installed on the floor surface F. Further, along with these, a pair of substrate Y step feeding devices 88 and a pair of substrate X step feeding devices 91 are attached to the fine movement stage 26.
 Xビーム30A’の+Y側、及びXビーム30B’の-Y側には、図116に示されるように、一対のフレーム110A’,110B’のそれぞれが、架台18に接触しないように床面F上に設置されている。一対のフレーム110A’,110B’の上面には、一対のエア浮上ユニット群84H’のそれぞれが設置されている。 On the + Y side of the X beam 30A ′ and the −Y side of the X beam 30B ′, as shown in FIG. 116, each of the pair of frames 110A ′ and 110B ′ prevents the floor F from contacting the gantry 18. It is installed on the top. A pair of air levitation unit groups 84 </ b> H ′ is installed on the upper surfaces of the pair of frames 110 </ b> A ′ and 110 </ b> B ′.
 一対のエア浮上ユニット群84H’のそれぞれは、図115及び図116に示されるように、基板ホルダPHのY軸方向の両側に配置されている。一対のエア浮上ユニット群84H’のそれぞれは、図115に示されるように、Y軸方向の幅が基板(例えばP1又はP2)のY軸方向の幅より幾分短く、X軸方向の長さが、基板ホルダPHと後述する一対のエア浮上ユニット群84I’との露光シーケンスにおける移動範囲とほぼ同等の長さの矩形領域内に、X軸方向及びY軸方向に所定の隙間を空けて分散配置された複数のエア浮上ユニットによって構成されている。露光領域IAの中心と一対のエア浮上ユニット群84H’のそれぞれの中心とのX位置はほぼ一致している。一対のエア浮上ユニット群84H’の各エア浮上ユニットの上面は基板ホルダPHの上面と同等、あるいは、幾分低くなるように設定されている。 Each of the pair of air levitation unit groups 84H ′ is disposed on both sides of the substrate holder PH in the Y-axis direction, as shown in FIGS. 115 and 116. As shown in FIG. 115, each of the pair of air levitation unit groups 84H ′ has a width in the Y-axis direction that is somewhat shorter than the width in the Y-axis direction of the substrate (for example, P1 or P2), and the length in the X-axis direction. However, within a rectangular region having a length substantially the same as the moving range in the exposure sequence of the substrate holder PH and a pair of air levitation unit groups 84I ′ to be described later, a predetermined gap is provided in the X-axis direction and the Y-axis direction. It is composed of a plurality of air levitation units arranged. The X positions of the center of the exposure area IA and the centers of the pair of air levitation unit groups 84H 'are substantially coincident. The upper surface of each air levitation unit of the pair of air levitation unit groups 84H 'is set to be equal to or slightly lower than the upper surface of the substrate holder PH.
 また、基板ステージ装置PSTiでは、基板ホルダPHのX軸方向の両側には、前述の各一対のエア浮上ユニット84Iに代えて、一対のエア浮上ユニット群84I’のそれぞれが配置されている。一対のエア浮上ユニット群84I’のそれぞれは、図115に示されるように、X軸方向に所定間隔で配置された複数、例えば3つのY軸方向に細長い矩形のエア浮上ユニットから成る。各エア浮上ユニットのY軸方向の長さは、一対のエア浮上ユニット群84H’相互間の間隔より幾分短い。一対のエア浮上ユニット群84I’のそれぞれは、エア浮上ユニット84Iと同様にして、粗動テーブル32の上面に固定されている。 Further, in the substrate stage apparatus PSTi, a pair of air levitation unit groups 84I ′ is arranged on both sides of the substrate holder PH in the X-axis direction instead of the pair of air levitation units 84I described above. As shown in FIG. 115, each of the pair of air levitation unit groups 84I 'includes a plurality of, for example, three air levitation units elongated in the Y axis direction, which are arranged at predetermined intervals in the X axis direction. The length of each air levitation unit in the Y-axis direction is somewhat shorter than the distance between the pair of air levitation unit groups 84H ′. Each of the pair of air levitation unit groups 84I 'is fixed to the upper surface of the coarse movement table 32 in the same manner as the air levitation unit 84I.
 一対のエア浮上ユニット群84H’、及び一対のエア浮上ユニット群84I’を、それぞれ構成する各エア浮上ユニットの支持面(上面)は、前述のエア浮上ユニット84と同様に、多孔質体や機械的に複数の微小な穴を有するスラスト型のエアベアリング構造になっている。各エア浮上ユニットは、前述の気体供給装置からの加圧気体(例えば高圧空気)の供給により、基板の一部を浮上支持することができるようになっている。各エア浮上ユニットに対する高圧空気の供給のオン・オフは、主制御装置50によって制御される。 The support surfaces (upper surfaces) of the air levitation units constituting the pair of air levitation unit groups 84H ′ and the pair of air levitation unit groups 84I ′ are the same as the air levitation unit 84 described above. Thus, it is a thrust type air bearing structure having a plurality of minute holes. Each air levitation unit can float and support a part of the substrate by supplying pressurized gas (for example, high-pressure air) from the above-described gas supply device. On / off of the supply of high-pressure air to each air levitation unit is controlled by main controller 50.
 本第10の実施形態では、上述の一対のエア浮上ユニット群84H’、及び一対のエア浮上ユニット群84I’によって、基板が基板ステージ(PH、26、28、32)によってX軸方向に、例えばフルストローク移動したときであっても、基板の垂れ下がりを防いで、基板を浮上支持することができる。 In the tenth embodiment, the pair of air levitation unit groups 84H ′ and the pair of air levitation unit groups 84I ′ described above cause the substrate to move in the X-axis direction by the substrate stage (PH, 26, 28, 32), for example, Even when the full stroke is moved, the substrate can be prevented from sagging and can be supported in a floating manner.
 なお、一対のエア浮上ユニット群84H’は、それぞれ、上記の矩形領域とほぼ同等の総支持面積を有していれば、単一の大型のエア浮上ユニットに置き換えても良いし、個々のエア浮上ユニットの形状又は大きさを、図115の場合と異ならせて、上記矩形領域内に分散配置しても良い。同様に、一対のエア浮上ユニット群84I’も、個々のエア浮上ユニットの形状又は大きさを、図115の場合と異ならせても良い。 Note that each of the pair of air levitation unit groups 84H ′ may be replaced with a single large air levitation unit as long as it has a total support area substantially equal to that of the rectangular area. The shape or size of the levitation unit may be different from the case of FIG. 115 and distributed in the rectangular area. Similarly, in the pair of air levitation unit groups 84I ', the shape or size of each air levitation unit may be different from that in FIG.
 また、基板ステージ装置PSTiでは、図116に示されるように、一対の基板Xステップ送り装置91が、基板ホルダPHのY軸方向の両側に配置され、支持部材を介して微動ステージ26に固定されている。同様に、一対の基板Yステップ送り装置88が、基板ホルダPHのX軸方向の両側に配置され、支持部材を介して微動ステージ26に固定されている(図115参照)。 In the substrate stage apparatus PSTi, as shown in FIG. 116, a pair of substrate X step feeding apparatuses 91 are arranged on both sides of the substrate holder PH in the Y-axis direction, and are fixed to the fine movement stage 26 via a support member. ing. Similarly, a pair of substrate Y step feeding devices 88 are disposed on both sides of the substrate holder PH in the X-axis direction, and are fixed to the fine movement stage 26 via a support member (see FIG. 115).
 さらに、一対のY干渉計98Y,98Yは、図115に示されるように、-Y側のエア浮上ユニット群84H’を構成する、基板ホルダPHに近い第1列の複数のエア浮上ユニットのうちのX軸方向中心近傍に位置する隣接するエア浮上ユニット相互間の2箇所の隙間に対向する位置で、サイドフレーム20に固定されている。2箇所の隙間は、露光領域IAの中心を通るY軸に関して対称な隙間である。本実施形態では、一対のY干渉計98Y,98Yから、上述の2箇所の隙間をそれぞれ介して、計測ビーム(測長ビーム)がY移動鏡94Yに照射されるようになっている。 Further, as shown in FIG. 115, the pair of Y interferometers 98Y 1 and 98Y 2 includes a plurality of air levitation units in the first row that are close to the substrate holder PH and constitute the air levitation unit group 84H ′ on the −Y side. Are fixed to the side frame 20 at positions facing two gaps between adjacent air levitation units located near the center in the X-axis direction. The two gaps are symmetrical with respect to the Y axis passing through the center of the exposure area IA. In the present embodiment, the Y moving mirror 94Y is irradiated with the measurement beam (measurement beam) from the pair of Y interferometers 98Y 1 and 98Y 2 through the above-mentioned two gaps.
 基板ステージ装置PSTiのその他の部分の構成は、前述の基板ステージ装置PSThと同様になっている。 The configuration of the other parts of the substrate stage apparatus PSTi is the same as that of the substrate stage apparatus PSTh described above.
 なお、一対のエア浮上ユニット群84H’の近くに、前述した基板Xステップ送り装置91及び基板Yステップ送り装置88とは別の基板送り装置(不図示)を設け、この装置によって基板の搬入や搬出を行なうこととしても良い。 A substrate feeding device (not shown) different from the substrate X step feeding device 91 and the substrate Y step feeding device 88 described above is provided near the pair of air levitation unit groups 84H ′. It is good also as carrying out.
 本第10の実施形態に係る露光装置1000では、前述した第9の実施形態に係る露光装置900と同様の手順で、基板交換、アライメント及び露光等の一連の動作が行われる。 In the exposure apparatus 1000 according to the tenth embodiment, a series of operations such as substrate replacement, alignment, and exposure are performed in the same procedure as the exposure apparatus 900 according to the ninth embodiment described above.
 以上説明した本第10の実施形態に係る露光装置1000によると、前述した第9の実施形態に係る露光装置900と同等の効果を得ることができる。これに加え、露光装置1000では、基板ホルダPHのY軸方向の両側のエア浮上ユニット群84H’が固定で、X軸方向に関して広い範囲で配置された複数のエア浮上ユニットによって構成されているので、基板交換に際して、基板を固定のエア浮上ユニット群84H’の上に予め待機させておくことが可能になり、基板交換を、効率的にかつ短時間で行なうことが可能になる。図117には、一例として、前述の第9の実施形態の変形例における露光手順説明図(その15)に示される基板交換(図114参照)を、本第10の実施形態に係る露光装置1000で行う場合の平面図が示されている。この場合、図117からわかるように、露光手順15に先立つ、露光手順14(図113参照)で、新しい基板P4を、図示される位置に待機させておくことができる。また、前述した第9の実施形態における露光手順説明図(その27)に示される2枚同時基板交換(図99参照)を行う場合にも、予め新しい基板を2枚、一対のエア浮上ユニット群84H’の上で待機させておくことができるので、基板交換を効率的にかつ高速で行うことが可能になる。 According to the exposure apparatus 1000 according to the tenth embodiment described above, the same effects as those of the exposure apparatus 900 according to the ninth embodiment described above can be obtained. In addition, in the exposure apparatus 1000, the air levitation unit group 84H ′ on both sides in the Y-axis direction of the substrate holder PH is fixed, and is configured by a plurality of air levitation units arranged in a wide range with respect to the X-axis direction. When replacing the substrate, it is possible to wait for the substrate on the fixed air levitation unit group 84H ′ in advance, so that the substrate can be replaced efficiently and in a short time. In FIG. 117, as an example, the substrate replacement (see FIG. 114) shown in the exposure procedure explanatory diagram (No. 15) in the modification of the above-described ninth embodiment is replaced with the exposure apparatus 1000 according to the tenth embodiment. A plan view in the case of performing at is shown. In this case, as can be seen from FIG. 117, a new substrate P4 can be kept at the position shown in the exposure procedure 14 (see FIG. 113) prior to the exposure procedure 15. Also, when performing two-time simultaneous substrate replacement (see FIG. 99) shown in the exposure procedure explanatory diagram (No. 27) in the ninth embodiment described above, a pair of air levitation unit groups, two new substrates in advance. Since it is possible to stand by on 84H ', it becomes possible to perform substrate replacement efficiently and at high speed.
 また、本第10の実施形態に係る露光装置1000によると、基板ホルダPHのY軸方向両側のエア浮上ユニット群84H’を基板ステージ(粗動テーブル32)から分離したので、基板ステージ(粗動テーブル32)の負荷が減り、基板ステージの制御性が向上する。また、エア浮上ユニット群84H’の各エア浮上ユニットは動かないので、微動ステージ26のY軸方向位置を計測するY干渉計98Y,98Yの計測ビームがエア浮上ユニットによって遮られる虞がない。このため、Y干渉計98Y,98Yをエア浮上ユニット群84H’より外側(-Y側)の装置本体のサイドフレーム20に設置することが可能になっている(図115、図116参照)。 Further, according to the exposure apparatus 1000 according to the tenth embodiment, the air levitation unit group 84H ′ on both sides in the Y-axis direction of the substrate holder PH is separated from the substrate stage (coarse motion table 32). The load on the table 32) is reduced, and the controllability of the substrate stage is improved. Further, since each air levitation unit of the air levitation unit group 84H ′ does not move, there is no possibility that the measurement beams of the Y interferometers 98Y 1 and 98Y 2 that measure the Y-axis direction position of the fine movement stage 26 are blocked by the air levitation unit. . Therefore, the Y interferometers 98Y 1 and 98Y 2 can be installed on the side frame 20 of the apparatus main body outside (−Y side) the air levitation unit group 84H ′ (see FIGS. 115 and 116). .
 なお、本第10の実施形態に係る露光装置1000では、可動のエア浮上ユニット、基板Xステップ送り装置91及び基板Yステップ送り装置88は、基板ホルダPH(すなわち微動ステージ26)とは機械的に分離した粗動テーブル32に取り付けても良いし、基板ホルダPH又は微動ステージ26に一体的に取り付けても良い。 In the exposure apparatus 1000 according to the tenth embodiment, the movable air levitation unit, the substrate X step feeding device 91, and the substrate Y step feeding device 88 are mechanically different from the substrate holder PH (that is, the fine movement stage 26). It may be attached to the separated coarse motion table 32 or may be attached to the substrate holder PH or the fine motion stage 26 integrally.
《第10の実施形態の変形例》
 また、第10の実施形態において、一対のエア浮上ユニット群84H’を構成する複数のエア浮上ユニットの一部を基板ステージ(粗動テーブル32又は微動ステージ26)に取り付けて、前述の第1実施形態のように、可動のエア浮上ユニットにしても良い。例えば、図118及び図119に示される変形例のように、基板ホルダPHの-Y側のエア浮上ユニット群84H’を固定のエア浮上ユニットによって構成し、基板ホルダの+Y側のエア浮上ユニット群84Hを基板ステージ(粗動テーブル32)に搭載して可動にしても良い。また、固定のエア浮上ユニット群84H’は、図118では、基板ステージを搭載するボディBD(露光装置本体)から機械的及び振動的に分離して床面F上に設置しているが、ボディBD上に設置しても良い。
<< Modification of Tenth Embodiment >>
In the tenth embodiment, a part of the plurality of air levitation units constituting the pair of air levitation unit groups 84H ′ is attached to the substrate stage (coarse movement table 32 or fine movement stage 26), and the first embodiment described above. A movable air levitation unit may be used as in the embodiment. For example, as in the modification shown in FIGS. 118 and 119, the −Y side air floating unit group 84H ′ of the substrate holder PH is configured by a fixed air floating unit, and the + Y side air floating unit group of the substrate holder 84H may be mounted on the substrate stage (coarse movement table 32) to be movable. In FIG. 118, the fixed air levitation unit group 84H ′ is mechanically and vibrationally separated from the body BD (exposure apparatus main body) on which the substrate stage is mounted and installed on the floor surface F. You may install on BD.
《第11の実施形態》
 次に、第11の実施形態について、図120に基づいて説明する。図120には、本第11の実施形態に係る露光装置1100の構成が、概略的に示されている。この図120に示されるように、露光装置1100では、上記各実施形態の露光装置と異なり、基板のアライメントマークを検出する複数のアライメント検出系ALが基板P1、P2等が載置される基板ホルダPHに設けられている。
<< Eleventh Embodiment >>
Next, an eleventh embodiment will be described with reference to FIG. FIG. 120 schematically shows the arrangement of an exposure apparatus 1100 according to the eleventh embodiment. As shown in FIG. 120, in the exposure apparatus 1100, unlike the exposure apparatuses in the above embodiments, a plurality of alignment detection systems AL for detecting alignment marks on the substrate are substrate holders on which substrates P1, P2, etc. are placed. PH is provided.
 本第11の実施形態に係る露光装置1100で用いられる基板P1、P2等には、裏面(-Z側の面)に、少なくとも2つのアライメントマークが複数のアライメント検出系ALのいずれかに対応した所定の位置に設けられている。各アライメントマークは、例えば、複数の目盛り線を有しており、アライメント検出系ALによって基板の基板ホルダPHに対する位置(又は基準位置からの位置ずれ量)を計測できるようになっている。 In the substrates P1, P2, etc. used in the exposure apparatus 1100 according to the eleventh embodiment, at least two alignment marks correspond to one of the plurality of alignment detection systems AL on the back surface (the surface on the −Z side). It is provided at a predetermined position. Each alignment mark has, for example, a plurality of scale lines, and the alignment detection system AL can measure the position of the substrate with respect to the substrate holder PH (or the amount of displacement from the reference position).
 露光装置1100のその他の部分は、基板ステージ装置PSThを含み、前述の第9の実施形態に係る露光装置900と同様に構成されている。従って、本第11の実施形態に係る露光装置1100によると、第9の実施形態に係る露光装置900と同等の効果を得ることができる。これに加え、露光装置1100では、微動ステージ26を含む基板ステージが移動中であっても、基板のアライメント計測が可能になる。具体的には、主制御装置50は、2枚の基板、例えば基板P1、P2のうちの一方の基板に対するXスキャン中に他方の基板の基板ホルダPHに対するアライメント計測を行なうことができる。このため、主制御装置50は、一方の基板のXスキャンが終わった後、直ちに他方の基板を、上記のアライメント計測の結果に基づき、微動ステージ26(基板ホルダPH)ごと微少移動することによって、その他方の基板の位置を修正することができる。このため、一方の基板のスキャン露光が終わった後、直ちに他方の基板のスキャン露光を開始することができるようになり、スループットが向上する。 Other portions of the exposure apparatus 1100 include the substrate stage apparatus PSTh, and are configured in the same manner as the exposure apparatus 900 according to the ninth embodiment described above. Therefore, the exposure apparatus 1100 according to the eleventh embodiment can obtain the same effects as those of the exposure apparatus 900 according to the ninth embodiment. In addition, the exposure apparatus 1100 can measure the alignment of the substrate even when the substrate stage including the fine movement stage 26 is moving. Specifically, main controller 50 can perform alignment measurement on the substrate holder PH of the other substrate during the X scan for one of the two substrates, for example, substrates P1 and P2. Therefore, after the X scan of one substrate is finished, the main controller 50 moves the other substrate slightly along with the fine movement stage 26 (substrate holder PH) based on the result of the alignment measurement, The position of the other substrate can be corrected. For this reason, after the scanning exposure of one substrate is completed, the scanning exposure of the other substrate can be started immediately, and the throughput is improved.
 なお、露光装置1100において、アライメント検出系ALは、基板ホルダPHに限らず、基板ホルダPHが搭載された微動ステージ26に設けても良い。 In the exposure apparatus 1100, the alignment detection system AL is not limited to the substrate holder PH, and may be provided on the fine movement stage 26 on which the substrate holder PH is mounted.
 なお、上記第9~第11の各実施形態に係る露光装置では、粗動テーブル上に搭載されたエア浮上ユニット、基板Yステップ送り装置、基板Xステップ送り装置などを、微動ステージ上に搭載しても良いし、あるいは粗動テーブルに追従して移動する別の移動体を設け、該別の移動体上にエア浮上ユニットを搭載して、X軸方向に可動な構成としても良い。この場合、エア浮上ユニットが搭載された、粗動テーブルに追従して移動する別の移動体上に、前述の基板Yステップ送り装置88を設けても良い。また、上記第9~第11の各実施形態において、基板Xステップ送り装置91は、基板ステージの外部に配置しても良い。 In the exposure apparatuses according to the ninth to eleventh embodiments, the air levitation unit, the substrate Y step feeding device, the substrate X step feeding device and the like mounted on the coarse motion table are mounted on the fine motion stage. Alternatively, another moving body that moves following the coarse movement table may be provided, and an air floating unit may be mounted on the other moving body so as to be movable in the X-axis direction. In this case, the substrate Y step feeding device 88 described above may be provided on another moving body that moves following the coarse movement table on which the air levitation unit is mounted. In each of the ninth to eleventh embodiments, the substrate X step feeding device 91 may be disposed outside the substrate stage.
 なお、上記第1~第11の各実施形態では、基板ホルダPHのY軸方向の幅を基板の約1/3又は1/2としたが、基板ホルダPHのY軸方向の幅は、基板ホルダPHのY軸方向の幅より明らかに短ければ、これらに限られるものではない。基板ホルダPHのY軸方向の幅は、投影光学系による露光フィールド幅(Y方向)と同程度以上であれば良い。例えば、投影光学系による露光フィールド幅(Y方向)が基板の約1/n(nは2以上の整数)であるならば、基板ホルダPHの幅も基板のY方向寸法の約1/nにしても良い。この場合、基板ホルダPHのY軸方向の両側に配置されるエア浮上ユニットのY軸方向の幅は基板の撓みを抑えるために、それぞれ基板のY軸方向の寸法の約(n-1)/nにするのが良い。そして、基板Yステップ送り装置は、基板全体を基板ホルダ上の領域に移動させることができるだけのYストロークをもつようにすることが望ましい。 In each of the first to eleventh embodiments, the width of the substrate holder PH in the Y-axis direction is about 1/3 or 1/2 of the substrate. However, the width of the substrate holder PH in the Y-axis direction is As long as it is clearly shorter than the width of the holder PH in the Y-axis direction, it is not limited to these. The width of the substrate holder PH in the Y-axis direction may be equal to or greater than the exposure field width (Y direction) by the projection optical system. For example, if the exposure field width (Y direction) by the projection optical system is about 1 / n of the substrate (n is an integer of 2 or more), the width of the substrate holder PH is also about 1 / n of the Y direction dimension of the substrate. May be. In this case, the width in the Y-axis direction of the air levitation unit disposed on both sides of the substrate holder PH in the Y-axis direction is approximately (n−1) / of the dimension in the Y-axis direction of the substrate in order to suppress the substrate from bending. n is good. And it is desirable for the substrate Y step feeding device to have a Y stroke that can move the entire substrate to a region on the substrate holder.
 なお、上記各実施形態では、基板Pの撓みを防止する目的で、エア浮上ユニットを用いる場合について説明したが、これに限らず、コロ又はボール等を用いた接触型の転がり軸受を備えた基板の垂れ下がり防止装置を、上記各実施形態のエア浮上ユニットの少なくとも一部と入れ替えても良い。基板Pの撓みを防止する目的で、エア浮上ユニット、転がり軸受以外の軸受部材を備えた基板の垂れ下がり防止装置を用いても良い。 In each of the above embodiments, the case where the air levitation unit is used for the purpose of preventing the bending of the substrate P has been described. However, the present invention is not limited thereto, and the substrate is provided with a contact-type rolling bearing using a roller or a ball. The drooping prevention device may be replaced with at least a part of the air levitation unit of each of the above embodiments. For the purpose of preventing the substrate P from being bent, a substrate drooping prevention device including a bearing member other than the air floating unit and the rolling bearing may be used.
 また、上記各実施形態において、重量キャンセル装置(心柱)は、第1の実施形態のように、微動ステージと分離したもの(図1、図3参照)でも良いし、第2~第11の実施形態のように微動ステージと一体型でも良い。また、レベリングセンサのターゲット用のフィーラはなくても良い。また、レベリング機構と重量キャンセル機構部は上下逆配置でも良い。このように、重量キャンセル装置の構造は、前述の各実施形態に限定されるものではない。 In each of the above embodiments, the weight canceling device (center column) may be separated from the fine movement stage (see FIGS. 1 and 3) as in the first embodiment, or the second to eleventh ones. It may be integrated with the fine movement stage as in the embodiment. Further, the feeler for the target of the leveling sensor may not be provided. Further, the leveling mechanism and the weight cancellation mechanism may be arranged upside down. Thus, the structure of the weight cancellation device is not limited to the above-described embodiments.
 また、上記各実施形態では、微動ステージ26に基板ホルダPHが搭載された場合について説明したが、これに限らず、微動ステージの素材としてセラミックスなどを用いる場合には、その上部にエッチング加工等を施して、基板を保持する上記基板ホルダPHと同等の機能を有する保持部を微動ステージと一体で構成しても良い。 In each of the above embodiments, the case where the substrate holder PH is mounted on the fine movement stage 26 has been described. However, the present invention is not limited to this. The holding portion having the same function as the substrate holder PH for holding the substrate may be formed integrally with the fine movement stage.
 また、上記各実施形態が共通に備えている構成部分にも、露光装置が必ずしも備えていなくても良いものもある。例えば、基板Pを、水平面に垂直な面に平行に保持して、露光を行ういわゆる縦置きの露光装置などの場合、基板の自重による垂れ下がりは生じないので、エア浮上ユニットなどの基板支持装置は、必ずしも設けなくても良い。また、重量キャンセル装置も、必須ではない。この場合、基板ホルダを移動させるための移動ステージが必要になるが、その移動ステージは、いわゆる粗微動ステージであっても良いし、単独の6DOFステージであっても良い。要は、移動ステージは、基板ホルダをXY平面内で(少なくともX軸方向に)駆動できれば良く、6自由度方向に駆動可能でれば、一層望ましい。また、構成が相互に矛盾しない限りにおいて、上記第1~第11の実施形態の構成各部を任意に組み合わせても良い。 In addition, some of the components provided in common in the above embodiments may not necessarily be provided in the exposure apparatus. For example, in the case of a so-called vertical exposure apparatus that performs exposure while holding the substrate P parallel to a plane perpendicular to the horizontal plane, the substrate support apparatus such as an air levitation unit does not hang down due to the weight of the substrate. , It is not always necessary. Also, a weight cancellation device is not essential. In this case, a moving stage for moving the substrate holder is required, but the moving stage may be a so-called coarse / fine moving stage or a single 6DOF stage. In short, the moving stage only needs to be able to drive the substrate holder in the XY plane (at least in the X-axis direction), and it is more desirable if it can be driven in the direction of six degrees of freedom. Further, the components of the first to eleventh embodiments may be arbitrarily combined as long as the configurations do not contradict each other.
 なお、上記各実施形態では、露光装置が、基板Pのステップ・アンド・スキャン動作を伴う走査型露光を行う投影露光装置である場合について説明したが、これに限らず、ステップ・アンド・スティッチ方式の投影露光装置、さらには投影光学系を用いないプロキシミティ方式の露光装置にも、上記各実施形態は適用が可能である。 In each of the above-described embodiments, the case where the exposure apparatus is a projection exposure apparatus that performs scanning exposure with a step-and-scan operation of the substrate P has been described. However, the present invention is not limited to this, and the step-and-stitch method is used. The above-described embodiments can also be applied to a proximity exposure apparatus that does not use a projection optical system.
 また、上記各実施形態の露光装置では、照明光は、ArFエキシマレーザ光(波長193nm)、KrFエキシマレーザ光(波長248nm)などの紫外光、F2レーザ光(波長157nm)などの真空紫外光であっても良い。また、照明光としては、例えばDFB半導体レーザ又はファイバーレーザから発振される赤外域、又は可視域の単一波長レーザ光を、例えばエルビウム(又はエルビウムとイッテルビウムの両方)がドープされたファイバーアンプで増幅し、非線形光学結晶を用いて紫外光に波長変換した高調波を用いても良い。また、固体レーザ(波長:355nm、266nm)などを使用しても良い。 In the exposure apparatus of each of the above embodiments, the illumination light is ultraviolet light such as ArF excimer laser light (wavelength 193 nm), KrF excimer laser light (wavelength 248 nm), or vacuum ultraviolet light such as F 2 laser light (wavelength 157 nm). It may be. As the illumination light, for example, a single wavelength laser beam oscillated from a DFB semiconductor laser or a fiber laser is amplified by a fiber amplifier doped with, for example, erbium (or both erbium and ytterbium). In addition, harmonics converted into ultraviolet light using a nonlinear optical crystal may be used. A solid laser (wavelength: 355 nm, 266 nm) or the like may be used.
 また、上記各実施形態では、投影光学系PLが、複数の投影光学系(投影光学ユニット)を備えたマルチレンズ方式の投影光学系である場合について説明したが、投影光学ユニットの数はこれに限らず、1つ以上あれば良い。また、マルチレンズ方式の投影光学系に限らず、例えばオフナー型の大型ミラーを用いた投影光学系などであっても良い。 In each of the above-described embodiments, the case where the projection optical system PL is a multi-lens projection optical system including a plurality of projection optical systems (projection optical units) has been described. Not limited to one or more. The projection optical system is not limited to a multi-lens type projection optical system, and may be a projection optical system using an Offner type large mirror, for example.
 また、上記各実施形態では投影光学系PLとして、投影倍率が等倍のものを用いる場合について説明したが、これに限らず、投影光学系は縮小系及び拡大系のいずれでも良い。 In each of the above-described embodiments, the case where the projection optical system PL has an equal magnification is described. However, the present invention is not limited to this, and the projection optical system may be either a reduction system or an enlargement system.
 なお、上記各実施形態においては、光透過性のマスク基板上に所定の遮光パターン(又は位相パターン・減光パターン)を形成した光透過型マスクを用いたが、このマスクに代えて、例えば米国特許第6,778,257号明細書に開示されているように、露光すべきパターンの電子データに基づいて、透過パターン又は反射パターン、あるいは発光パターンを形成する電子マスク(可変成形マスク)、例えば、非発光型画像表示素子(空間光変調器とも呼ばれる)の一種であるDMD(Digital Micro-mirror Device)を用いる可変成形マスクを用いても良い。 In each of the above embodiments, a light transmissive mask in which a predetermined light shielding pattern (or phase pattern / dimming pattern) is formed on a light transmissive mask substrate is used. As disclosed in Japanese Patent No. 6,778,257, an electronic mask (variable molding mask) that forms a transmission pattern, a reflection pattern, or a light emission pattern based on electronic data of a pattern to be exposed, for example, Alternatively, a variable molding mask using DMD (Digital Micro-mirror Device) which is a kind of non-light emitting image display element (also referred to as a spatial light modulator) may be used.
 なお、上記各実施形態に係る露光装置は、サイズ(外径、対角線、一辺の少なくとも1つを含む)が500mm以上の基板、例えば液晶表示素子などのフラットパネルディスプレイ(FPD)用の大型基板を露光する露光装置に対して適用することが特に有効である。これは、基板の大型化に対応すべく本発明がなされているからである。 The exposure apparatus according to each of the above embodiments is a substrate having a size (including at least one of an outer diameter, a diagonal line, and one side) of 500 mm or more, for example, a large substrate for a flat panel display (FPD) such as a liquid crystal display element. It is particularly effective to apply to an exposure apparatus that performs exposure. This is because the present invention has been made to cope with an increase in the size of the substrate.
 また、上記各実施形態に係る露光装置を用いて、マイクロデバイスとしての液晶表示素子を製造することができる。まず、パターン像を感光性基板(レジストが塗布されたガラス基板等)に形成する、いわゆる光リソグラフィ工程が実行される。この光リソグラフィ工程によって、感光性基板上には多数の電極等を含む所定パターンが形成される。その後、露光された基板は、現像工程、エッチング工程、レジスト剥離工程等の各工程を経ることによって、基板上に所定のパターンが形成される。その後、カラーフィルタ形成工程、セル組み立て工程、及びモジュール組立工程等を経ることによって、マイクロデバイスとしての液晶表示素子を得ることができる。 Further, a liquid crystal display element as a micro device can be manufactured using the exposure apparatus according to each of the above embodiments. First, a so-called photolithography process is performed in which a pattern image is formed on a photosensitive substrate (such as a glass substrate coated with a resist). By this photolithography process, a predetermined pattern including a large number of electrodes and the like is formed on the photosensitive substrate. Thereafter, the exposed substrate is subjected to various processes such as a developing process, an etching process, and a resist stripping process, whereby a predetermined pattern is formed on the substrate. Thereafter, a liquid crystal display element as a micro device can be obtained through a color filter forming process, a cell assembling process, a module assembling process, and the like.
 なお、上記各実施形態では、基板処理装置として露光装置について説明したが、これに限らず、例えばインクジェット式の機能性液体付与装置を備えた素子製造装置、あるいは検査装置などの露光装置以外の基板処理装置に、上記第1ないし第11の実施形態のうちの少なくとも一部の実施形態を適用しても良い。 In each of the above embodiments, the exposure apparatus has been described as the substrate processing apparatus. However, the present invention is not limited to this, and for example, a substrate other than an exposure apparatus such as an element manufacturing apparatus provided with an ink jet type functional liquid application apparatus or an inspection apparatus. At least some of the first to eleventh embodiments may be applied to the processing apparatus.
 なお、これまでの説明で引用した露光装置などに関する全ての公報、国際公開、米国特許出願公開明細書及び米国特許明細書の開示を援用して本明細書の記載の一部とする。 It should be noted that all the publications related to the exposure apparatus and the like cited in the above description, the international publication, the US patent application specification, and the disclosure of the US patent specification are incorporated herein by reference.
 本発明の基板処理装置及び基板処理方法は、大型基板の処理に適している。また、本発明の露光方法及び露光装置は、大型基板の露光に適している。また、本発明のデバイス製造方法、及びフラットパネルディスプレイの製造方法は、液晶表示素子等の製造に適している。 The substrate processing apparatus and the substrate processing method of the present invention are suitable for processing large substrates. The exposure method and exposure apparatus of the present invention are suitable for exposure of a large substrate. The device manufacturing method and the flat panel display manufacturing method of the present invention are suitable for manufacturing liquid crystal display elements and the like.

Claims (116)

  1.  基板を処理する基板処理装置であって、
     前記基板の一部を平坦度を確保した状態で保持する保持部を有し、基板処理位置に対して、前記基板の面に平行な所定面内の少なくとも第1方向に移動する第1移動体と、
     前記基板を前記所定面内で前記第1方向に直交する第2方向に駆動するステップ駆動装置と、を備える基板処理装置。
    A substrate processing apparatus for processing a substrate,
    A first moving body having a holding portion that holds a part of the substrate in a state in which flatness is ensured and moves in at least a first direction within a predetermined plane parallel to the surface of the substrate with respect to the substrate processing position. When,
    And a step driving device that drives the substrate in a second direction orthogonal to the first direction within the predetermined plane.
  2.  前記保持部は、前記基板の前記第2方向の1/2以下の範囲の前記第1方向の少なくとも一部を保持する請求項1に記載の基板処理装置。 2. The substrate processing apparatus according to claim 1, wherein the holding unit holds at least a part of the first direction in a range of ½ or less of the second direction of the substrate.
  3.  前記基板は水平面に平行に配置され、前記保持部は、前記基板の被処理面と反対側の面の一部を下方から保持し、
     前記第1移動体を挟んで前記第2方向の両側にそれぞれ配置され、前記保持部に保持されない前記基板の部分の少なくとも一部を下方から支持する一対の第1支持装置をさらに備える請求項1又は2に記載の基板処理装置。
    The substrate is arranged parallel to a horizontal plane, and the holding unit holds a part of the surface of the substrate opposite to the surface to be processed from below,
    The first support device further comprising a pair of first support devices that are disposed on both sides in the second direction with the first moving body interposed therebetween and support at least a part of the portion of the substrate that is not held by the holding portion from below. Or the substrate processing apparatus of 2.
  4.  前記第1移動体は、前記保持部を構成する保持装置と、該保持装置とともに前記所定面内の少なくとも第1方向に可動な可動部とを有する請求項3に記載の基板処理装置。 4. The substrate processing apparatus according to claim 3, wherein the first moving body includes a holding device that constitutes the holding portion, and a movable portion that is movable together with the holding device in at least a first direction within the predetermined plane.
  5.  前記可動部は、前記第1方向に所定ストロークで移動する粗動ステージと、該粗動ステージに対して前記所定面内の3自由度方向に前記保持装置と一体で微動可能な微動ステージとを含む請求項4に記載の基板処理装置。 The movable portion includes a coarse movement stage that moves in the first direction with a predetermined stroke, and a fine movement stage that can finely move integrally with the holding device in the direction of three degrees of freedom within the predetermined plane with respect to the coarse movement stage. The substrate processing apparatus of Claim 4 containing.
  6.  前記保持装置の基板保持面のサイズは、前記第2方向に関して前記基板の約1/2又は約1/3である請求項5に記載の基板処理装置。 6. The substrate processing apparatus according to claim 5, wherein a size of a substrate holding surface of the holding device is about 1/2 or about 1/3 of the substrate in the second direction.
  7.  前記一対の第1支持装置は、前記基板の前記第2方向に関する1/2又は2/3の部分を支持する請求項6に記載の基板処理装置。 The substrate processing apparatus according to claim 6, wherein the pair of first support devices support a ½ or 2/3 portion of the substrate in the second direction.
  8.  前記粗動ステージ上に搭載され、前記基板の一部を前記保持装置の前記第1方向の一側及び他側の少なくとも一方で支持する第2支持装置をさらに備える請求項7に記載の基板処理装置。 The substrate processing according to claim 7, further comprising a second support device that is mounted on the coarse movement stage and supports a part of the substrate at least one of the one side and the other side of the holding device. apparatus.
  9.  前記保持装置の基板保持面のサイズは、前記基板の約1/4又は約1/6である請求項8に記載の基板処理装置。 9. The substrate processing apparatus according to claim 8, wherein the size of the substrate holding surface of the holding device is about 1/4 or about 1/6 of the substrate.
  10.  前記第2支持装置は、前記粗動ステージ上に前記保持装置を前記第1方向に挟んで一対配置され、該一対の第2支持装置のそれぞれは、前記基板の約1/4又は約1/6の部分をそれぞれ支持する請求項9に記載の基板処理装置。 A pair of the second support devices are disposed on the coarse movement stage with the holding device sandwiched in the first direction, and each of the pair of second support devices is about 1/4 or about 1 / of the substrate. The substrate processing apparatus according to claim 9, wherein each of the six portions is supported.
  11.  前記第2支持装置は、前記基板に対して下方から加圧気体を噴出して、前記加圧気体の圧力により前記基板の一部を下方から支持するガス浮上ユニットを含む請求項8~10のいずれか一項に記載の基板処理装置。 The apparatus according to any one of claims 8 to 10, wherein the second support device includes a gas levitation unit that ejects pressurized gas from below to the substrate and supports a part of the substrate from below by the pressure of the pressurized gas. The substrate processing apparatus as described in any one of Claims.
  12.  前記可動部は、前記粗動ステージによって前記第1方向に駆動され、前記微動ステージの自重を支持する重量キャンセル装置をさらに含み、
     前記重量キャンセル装置を支持するとともに、前記重量キャンセル装置の移動面を有する定盤ガイド、をさらに備える請求項5~11のいずれか一項に記載の基板処理装置。
    The movable portion further includes a weight cancellation device that is driven in the first direction by the coarse movement stage and supports the dead weight of the fine movement stage,
    The substrate processing apparatus according to any one of claims 5 to 11, further comprising a surface plate guide that supports the weight cancellation device and has a moving surface of the weight cancellation device.
  13.  前記微動ステージは、前記重量キャンセル装置と一体化されている請求項12に記載の基板処理装置。 The substrate processing apparatus according to claim 12, wherein the fine movement stage is integrated with the weight cancellation apparatus.
  14.  前記微動ステージの位置を計測するステージ干渉計システムをさらに備え、
     前記ステージ干渉系システムで用いられる前記第1方向の位置計測用の移動鏡は、前記微動ステージ及び前記保持装置の一方の前記第2方向の両側に取り付けられている請求項5~13のいずれか一項に記載の基板処理装置。
    A stage interferometer system for measuring the position of the fine movement stage;
    The movable mirror for position measurement in the first direction used in the stage interference system is attached to both sides of the fine movement stage and one of the holding devices in the second direction. The substrate processing apparatus according to one item.
  15.  前記一対の第1支持装置は、前記第1移動体又は該第1移動体に追従して前記第1方向に移動する第2移動体上に搭載されている請求項3~14のいずれか一項に記載の基板処理装置。 The pair of first support devices are mounted on the first moving body or the second moving body that moves in the first direction following the first moving body. The substrate processing apparatus according to item.
  16.  前記一対の第1支持装置の一方は、前記第1移動体又は該第1移動体に追従して前記第1方向に移動する第2移動体上に搭載され、他方は前記第1移動体の移動経路に隣接して、前記第1移動体の外部に配置されている請求項3~14のいずれか一項に記載の基板処理装置。 One of the pair of first support devices is mounted on the first moving body or the second moving body that moves in the first direction following the first moving body, and the other is the first moving body. The substrate processing apparatus according to any one of claims 3 to 14, wherein the substrate processing apparatus is disposed outside the first moving body adjacent to a moving path.
  17.  前記第1移動体又は前記第2移動体上に搭載された前記第1支持装置は、前記基板の前記第2方向に関する1/2又は2/3の部分を支持する請求項15又は16に記載の基板処理装置。 The said 1st support apparatus mounted on the said 1st moving body or the said 2nd moving body supports the 1/2 or 2/3 part regarding the said 2nd direction of the said board | substrate. Substrate processing equipment.
  18.  前記ステップ駆動装置は、前記第1移動体又は前記第2移動体上に搭載されている請求項15~17のいずれか一項に記載の基板処理装置。 The substrate processing apparatus according to any one of claims 15 to 17, wherein the step driving device is mounted on the first moving body or the second moving body.
  19.  前記ステップ駆動装置は、前記第1移動体の外部に複数配置されている請求項1~17のいずれか一項に記載の基板処理装置。 The substrate processing apparatus according to any one of claims 1 to 17, wherein a plurality of the step driving devices are arranged outside the first moving body.
  20.  前記一対の第1支持装置は、前記第1移動体の外部に配置されている請求項19に記載の基板処理装置。 20. The substrate processing apparatus according to claim 19, wherein the pair of first support devices are disposed outside the first moving body.
  21.  前記第1支持装置は、前記基板に対して下方から加圧気体を噴出して、前記加圧気体の圧力により前記基板の一部を下方から支持するガス浮上ユニットを含む請求項3~20のいずれか一項に記載の基板処理装置。 The first support device includes a gas levitation unit that ejects pressurized gas from below to the substrate and supports a part of the substrate from below by the pressure of the pressurized gas. The substrate processing apparatus as described in any one of Claims.
  22.  前記基板の位置を計測する基板干渉計システムをさらに備え、
     前記基板は、その外周縁部の少なくとも一部を吸着して支持する基板支持部材と一体化され、該基板支持部材には、前記基板干渉計システムで用いられる反射面が設けられている請求項1~21のいずれか一項に記載の基板処理装置。
    A substrate interferometer system for measuring the position of the substrate;
    The said board | substrate is integrated with the board | substrate support member which adsorb | sucks and supports at least one part of the outer periphery part, The said substrate support member is provided with the reflective surface used by the said board | substrate interferometer system. The substrate processing apparatus according to any one of 1 to 21.
  23.  前記ステップ駆動装置は、前記基板支持部材と一体で前記基板を前記第2方向に駆動する請求項22に記載の基板処理装置。 The substrate processing apparatus according to claim 22, wherein the step driving device drives the substrate in the second direction integrally with the substrate support member.
  24.  前記処理位置に配置され、設定された処理領域にエネルギビームを照射して前記処理領域を通過する前記基板を露光する露光系をさらに備える請求項1~23のいずれか一項に記載の基板処理装置。 The substrate processing according to any one of claims 1 to 23, further comprising an exposure system that is disposed at the processing position and that irradiates the set processing region with an energy beam to expose the substrate passing through the processing region. apparatus.
  25.  前記基板を保持する前記第1移動体が前記第1方向に移動するのと同期して、前記マスクを保持して前記第1方向に対応する方向に移動する第3移動体をさらに備える請求項24に記載の基板処理装置。 The third moving body that holds the mask and moves in a direction corresponding to the first direction in synchronization with the movement of the first moving body that holds the substrate in the first direction. 24. The substrate processing apparatus according to 24.
  26.  請求項24又は25に記載の基板処理装置を用いて基板を露光することと、
     露光された前記基板を現像することと、を含むデバイス製造方法。
    Exposing the substrate using the substrate processing apparatus according to claim 24 or 25;
    Developing the exposed substrate. A device manufacturing method.
  27.  請求項24又は25に記載の基板処理装置を用いて前記基板としてフラットパネルディスプレイに用いられる基板を露光することと、
     露光された前記基板を現像することと、を含むフラットパネルディスプレイの製造方法。
    Exposing a substrate used for a flat panel display as the substrate using the substrate processing apparatus according to claim 24 or 25;
    Developing the exposed substrate. A method of manufacturing a flat panel display.
  28.  基板を処理する基板処理装置であって、
     水平面に平行に配置された前記基板の被処理面と反対側の面の一部を保持する保持部を有し、基板処理位置に対して、前記基板の面に平行な所定面内の少なくとも第1方向に移動する第1移動体と、
     前記第1移動体を挟んで前記所定面内で前記第1方向に直交する第2方向の両側にそれぞれ配置され、前記基板の少なくとも一部を下方から支持する、前記基板と前記第1方向及び第2方向のサイズが同等以上の支持面を有する一対の第1支持装置と、
     少なくとも前記基板を前記第1移動体から搬出する際に、前記基板が前記第2方向に変位するように前記基板を前記所定面内で搬送する第1搬送装置と、を備える基板処理装置。
    A substrate processing apparatus for processing a substrate,
    A holding unit configured to hold a part of the surface of the substrate opposite to the surface to be processed, which is disposed in parallel to a horizontal plane, and at least a first surface in a predetermined plane parallel to the surface of the substrate with respect to the substrate processing position; A first moving body that moves in one direction;
    The substrate, the first direction, and the substrate, which are respectively disposed on both sides of the second direction perpendicular to the first direction within the predetermined plane across the first moving body and support at least a part of the substrate from below. A pair of first support devices having a support surface having a size in the second direction equivalent or greater;
    A substrate processing apparatus comprising: a first transfer device configured to transfer the substrate within the predetermined plane so that the substrate is displaced in the second direction when the substrate is unloaded from the first moving body.
  29.  前記保持部は、前記基板の前記第2方向の1/2以下の範囲の前記第1方向の少なくとも一部を保持する請求項28に記載の基板処理装置。 29. The substrate processing apparatus according to claim 28, wherein the holding unit holds at least a part of the first direction within a range of ½ or less of the second direction of the substrate.
  30.  前記第1移動体は、前記保持部を構成する保持装置と、該保持装置とともに前記所定面内の少なくとも第1方向に可動な可動部とを有する請求項28又は29に記載の基板処理装置。 30. The substrate processing apparatus according to claim 28, wherein the first moving body includes a holding device that constitutes the holding portion, and a movable portion that is movable together with the holding device in at least a first direction within the predetermined plane.
  31.  前記可動部は、前記第1方向に所定ストロークで移動する粗動ステージと、該粗動ステージに対して前記所定面内の3自由度方向に前記保持装置と一体で微動可能な微動ステージとを含む請求項30に記載の基板処理装置。 The movable portion includes a coarse movement stage that moves in the first direction with a predetermined stroke, and a fine movement stage that can finely move integrally with the holding device in the direction of three degrees of freedom within the predetermined plane with respect to the coarse movement stage. The substrate processing apparatus of Claim 30 containing.
  32.  前記保持装置の基板保持面のサイズは、前記第2方向に関して前記基板の約1/2又は約1/3である請求項31に記載の基板処理装置。 32. The substrate processing apparatus according to claim 31, wherein the size of the substrate holding surface of the holding device is about 1/2 or about 1/3 of the substrate in the second direction.
  33.  前記粗動ステージ上に搭載され、前記基板の一部を前記保持装置の前記第1方向の一側及び他側の少なくとも一方で支持する第2支持装置をさらに備える請求項31又は32に記載の基板処理装置。 33. The second support device according to claim 31 or 32, further comprising a second support device mounted on the coarse movement stage and supporting a part of the substrate at least one of one side and the other side of the holding device in the first direction. Substrate processing equipment.
  34.  前記保持装置の基板保持面のサイズは、前記基板の約1/4又は約1/6である請求項33に記載の基板処理装置。 The substrate processing apparatus according to claim 33, wherein a size of a substrate holding surface of the holding device is about 1/4 or about 1/6 of the substrate.
  35.  前記第2支持装置は、前記粗動ステージ上に前記保持装置を前記第1方向に挟んで一対配置され、該一対の第2支持装置のそれぞれは、前記基板の約1/4又は約1/6の部分をそれぞれ支持する請求項34に記載の基板処理装置。 A pair of the second support devices are disposed on the coarse movement stage with the holding device sandwiched in the first direction, and each of the pair of second support devices is about 1/4 or about 1 / of the substrate. The substrate processing apparatus according to claim 34, wherein each of the six portions is supported.
  36.  前記第2支持装置は、前記基板に対して下方から加圧気体を噴出して、前記加圧気体の圧力により前記基板の一部を下方から支持するガス浮上ユニットを含む請求項33~35のいずれか一項に記載の基板処理装置。 The second support device includes a gas levitation unit that ejects pressurized gas from below to the substrate and supports a part of the substrate from below by the pressure of the pressurized gas. The substrate processing apparatus as described in any one of Claims.
  37.  前記粗動ステージ上に搭載され、前記保持装置の前記第2方向の少なくとも一側に前記第2支持装置に隣接して配置されるとともに、前記基板を下方から吸着保持して前記第2方向に駆動するステップ駆動装置をさらに備える請求項33~36のいずれか一項に記載の基板処理装置。 It is mounted on the coarse movement stage, and is disposed adjacent to the second support device on at least one side of the holding device in the second direction, and sucks and holds the substrate from below in the second direction. The substrate processing apparatus according to any one of claims 33 to 36, further comprising a step driving device for driving.
  38.  前記可動部は、前記粗動ステージによって前記第1方向に駆動され、前記微動ステージの自重を支持する重量キャンセル装置をさらに含む請求項31~37のいずれか一項に記載の基板処理装置。 The substrate processing apparatus according to any one of claims 31 to 37, wherein the movable portion further includes a weight cancellation device that is driven in the first direction by the coarse movement stage and supports the weight of the fine movement stage.
  39.  前記一対の第1支持装置は、前記第1移動体又は該第1移動体に追従して前記第1方向に移動する第2移動体上に搭載されている請求項28~38のいずれか一項に記載の基板処理装置。 The pair of first support devices are mounted on the first moving body or the second moving body that moves in the first direction following the first moving body. The substrate processing apparatus according to item.
  40.  前記一対の第1支持装置の一方は、前記第1移動体又は該第1移動体に追従して前記第1方向に移動する第2移動体上に搭載され、他方は前記第1移動体の移動経路に隣接して、前記第1移動体の外部に配置されている請求項28~38のいずれか一項に記載の基板処理装置。 One of the pair of first support devices is mounted on the first moving body or the second moving body that moves in the first direction following the first moving body, and the other is the first moving body. The substrate processing apparatus according to any one of claims 28 to 38, which is disposed outside the first moving body adjacent to a moving path.
  41.  前記第1搬送装置は、前記第1移動体又は前記第2移動体上に搭載されている請求項39又は40に記載の基板処理装置。 41. The substrate processing apparatus according to claim 39, wherein the first transfer device is mounted on the first moving body or the second moving body.
  42.  前記第1搬送装置は、前記第1移動体の外部に配置されている請求項28~38のいずれか一項に記載の基板処理装置。 The substrate processing apparatus according to any one of claims 28 to 38, wherein the first transfer device is disposed outside the first moving body.
  43.  前記一対の第1支持装置は、前記第1移動体の外部に配置されている請求項42に記載の基板処理装置。 43. The substrate processing apparatus according to claim 42, wherein the pair of first support devices are disposed outside the first moving body.
  44.  前記第1搬送装置は、前記基板を前記所定面内で前記第1方向に交差する方向に駆動する第1基板駆動装置を複数含む請求項42又は43に記載の基板処理装置。 44. The substrate processing apparatus according to claim 42, wherein the first transport device includes a plurality of first substrate driving devices that drive the substrate in a direction intersecting the first direction within the predetermined plane.
  45.  前記第1搬送装置は、前記基板を第1方向に駆動する第2基板駆動装置をさらに含む請求項44に記載の基板処理装置。 45. The substrate processing apparatus according to claim 44, wherein the first transfer device further includes a second substrate driving device that drives the substrate in a first direction.
  46.  少なくとも前記基板を前記第1移動体上に搬入する際に、前記基板の前記第2方向のサイズより短い前記保持部の前記第2方向とサイズと同等の距離だけ前記基板が前記第2方向に変位するように前記基板を前記所定面内で搬送する第2搬送装置をさらに備える請求項28~45のいずれか一項に記載の基板処理装置。 At least when the substrate is carried onto the first moving body, the substrate is moved in the second direction by a distance equivalent to the second direction and the size of the holding portion that is shorter than the size of the substrate in the second direction. The substrate processing apparatus according to any one of claims 28 to 45, further comprising a second transport device that transports the substrate within the predetermined plane so as to be displaced.
  47.  前記第2搬送装置は、前記基板を前記所定面内で前記第1方向に交差する方向に駆動する第3基板駆動装置を複数含む請求項46に記載の基板処理装置。 The substrate processing apparatus according to claim 46, wherein the second transfer device includes a plurality of third substrate driving devices that drive the substrate in a direction intersecting the first direction within the predetermined plane.
  48.  前記第2搬送装置は、前記基板を第1方向に駆動する第4基板駆動装置をさらに含む請求項47に記載の基板処理装置。 48. The substrate processing apparatus according to claim 47, wherein the second transfer device further includes a fourth substrate driving device that drives the substrate in a first direction.
  49.  前記第1及び前記第2搬送装置の少なくとも一方は、前記基板の前記第1移動体上への搬入時及び前記第1移動体からの搬出時に、前記基板を前記第1方向に交差する方向に搬送する請求項46~48のいずれか一項に記載の基板処理装置。 At least one of the first and second transfer devices is configured so that the substrate intersects the first direction when the substrate is loaded onto the first moving body and unloaded from the first moving body. The substrate processing apparatus according to any one of claims 46 to 48, which is transported.
  50.  前記基板上の被処理領域の配置と処理の順番とに応じた前記第1方向の位置で、前記第1搬送装置を介して、前記基板を前記第1移動体から搬出する制御装置をさらに備える請求項28~49のいずれか一項に記載の基板処理装置。 The apparatus further includes a control device for unloading the substrate from the first moving body via the first transfer device at a position in the first direction according to the arrangement of the processing target region on the substrate and the processing order. The substrate processing apparatus according to any one of claims 28 to 49.
  51.  前記第1支持装置は、前記基板に対して下方から加圧気体を噴出して、前記加圧気体の圧力により前記基板の一部を下方から支持するガス浮上ユニットを含む請求項2~25及び28~50のいずれか一項に記載の基板処理装置。 The first support device includes a gas levitation unit that ejects a pressurized gas from below to the substrate and supports a part of the substrate from below by the pressure of the pressurized gas. The substrate processing apparatus according to any one of 28 to 50.
  52.  前記基板の位置を計測する基板干渉計システムをさらに備え、
     前記基板は、その外周縁部の少なくとも一部を吸着して支持する基板支持部材と一体化され、該基板支持部材には、前記基板干渉計システムで用いられる反射面が設けられている請求項46~49のいずれか一項に記載の基板処理装置。
    A substrate interferometer system for measuring the position of the substrate;
    The said board | substrate is integrated with the board | substrate support member which adsorb | sucks and supports at least one part of the outer periphery part, The said substrate support member is provided with the reflective surface used by the said board | substrate interferometer system. The substrate processing apparatus according to any one of 46 to 49.
  53.  前記第2搬送装置は、前記基板支持部材と一体で前記基板を搬送する請求項52に記載の基板処理装置。 53. The substrate processing apparatus according to claim 52, wherein the second transport device transports the substrate integrally with the substrate support member.
  54.  前記基板の位置を計測する基板干渉計システムをさらに備え、
     前記基板は、その外周縁部の少なくとも一部を吸着して支持する基板支持部材と一体化され、該基板支持部材には、前記基板干渉計システムで用いられる反射面が設けられている請求項28~45、50、51のいずれか一項に記載の基板処理装置。
    A substrate interferometer system for measuring the position of the substrate;
    The said board | substrate is integrated with the board | substrate support member which adsorb | sucks and supports at least one part of the outer periphery part, The said substrate support member is provided with the reflective surface used by the said board | substrate interferometer system. The substrate processing apparatus according to any one of 28 to 45, 50, 51.
  55.  前記第1搬送装置は、前記基板支持部材と一体で前記基板を搬送する請求項52に記載の基板処理装置。 53. The substrate processing apparatus according to claim 52, wherein the first transport device transports the substrate integrally with the substrate support member.
  56.  前記基板処理位置に配置され、設定された処理領域にエネルギビームを照射して前記処理領域を通過する前記基板を露光する露光系をさらに備える請求項28~55のいずれか一項に記載の基板処理装置。 The substrate according to any one of claims 28 to 55, further comprising an exposure system that is disposed at the substrate processing position and irradiates the set processing region with an energy beam to expose the substrate passing through the processing region. Processing equipment.
  57.  前記基板を保持する前記第1移動体が前記第1方向に移動するのと同期して、前記マスクを保持して前記第1方向に対応する方向に移動する第3移動体をさらに備える請求項56に記載の基板処理装置。 The third moving body that holds the mask and moves in a direction corresponding to the first direction in synchronization with the movement of the first moving body that holds the substrate in the first direction. 56. A substrate processing apparatus according to 56.
  58.  請求項56又は57に記載の基板処理装置を用いて基板を露光することと、
     露光された前記基板を現像することと、を含むデバイス製造方法。
    Exposing the substrate using the substrate processing apparatus of claim 56 or 57;
    Developing the exposed substrate. A device manufacturing method.
  59.  請求項56又は57に記載の基板処理装置を用いて前記基板としてフラットパネルディスプレイに用いられる基板を露光することと、
     露光された前記基板を現像することと、を含むフラットパネルディスプレイの製造方法。
    Exposing a substrate used in a flat panel display as the substrate using the substrate processing apparatus according to claim 56 or 57;
    Developing the exposed substrate. A method of manufacturing a flat panel display.
  60.  基板を処理する基板処理方法であって、
     前記基板の一部を平坦度を確保した状態で移動体に保持させ、該移動体を、基板処理位置に対して前記基板の面に平行な所定面内の第1方向に駆動して、前記基板の前記一部内の領域に対し所定の処理を行うことと、
     前記基板上の未処理領域を前記移動体に対向させるため、前記基板を前記移動体に対して前記所定面内で前記第1方向に直交する第2方向に所定量だけ駆動するステップ駆動を行うことと、を含む基板処理方法。
    A substrate processing method for processing a substrate, comprising:
    A part of the substrate is held by a moving body while ensuring flatness, the moving body is driven in a first direction within a predetermined plane parallel to the surface of the substrate with respect to the substrate processing position, and Performing a predetermined process on the region in the part of the substrate;
    In order to make the unprocessed region on the substrate face the moving body, step driving is performed in which the substrate is driven by a predetermined amount in a second direction orthogonal to the first direction within the predetermined plane with respect to the moving body. And a substrate processing method.
  61.  前記所定の処理を行うことを、前記ステップ駆動を行うことの前後で、少なくとも各1回行う請求項60に記載の基板処理方法。 61. The substrate processing method according to claim 60, wherein the predetermined processing is performed at least once before and after performing the step driving.
  62.  前記所定の処理を行うことでは、前記基板の前記第2方向の1/2以下の範囲の前記第1方向の少なくとも一部を平坦度を確保した状態で移動体に保持させ、該移動体を前記第1方向に駆動する請求項60又は61に記載の基板処理方法。 By performing the predetermined treatment, at least a part of the first direction in the range of ½ or less of the second direction of the substrate is held by the moving body in a state in which flatness is ensured, and the moving body is 62. The substrate processing method according to claim 60 or 61, wherein the substrate processing method is driven in the first direction.
  63.  前記所定の処理を行うことでは、前記基板の前記第2方向の1/2以下の範囲の前記第1方向の一部を平坦度を確保した状態で移動体に保持させる場合、
     前記所定の処理の終了後に、前記基板と前記移動体とを、前記第1方向に関して所定量相対駆動することをさらに含む請求項60~62のいずれか一項に記載の基板処理方法。
    By performing the predetermined treatment, when a part of the first direction in the range of ½ or less of the second direction of the substrate is held in a moving body in a state in which flatness is ensured,
    The substrate processing method according to any one of claims 60 to 62, further comprising relatively driving the substrate and the moving body by a predetermined amount in the first direction after the completion of the predetermined processing.
  64.  前記所定の処理を行うことでは、前記基板は、水平面に平行に配置され、被処理面と反対側の面の一部が前記移動体により下方から保持され、前記移動体によって保持されない部分の少なくとも一部が支持装置によって支持された状態で、前記第1方向に駆動される請求項60~63のいずれか一項に記載の基板処理方法。 In performing the predetermined treatment, the substrate is arranged in parallel to a horizontal plane, a part of the surface opposite to the surface to be processed is held from below by the moving body, and at least a portion not held by the moving body The substrate processing method according to any one of claims 60 to 63, wherein the substrate processing method is driven in the first direction while a part of the substrate is supported by a support device.
  65.  前記所定の処理を行うことでは、前記基板の前記移動体によって保持されない部分の少なくとも一部は、前記移動体に連動して前記第1方向に移動する前記支持装置によって支持される請求項64に記載の基板処理方法。 65. The method according to claim 64, wherein, by performing the predetermined processing, at least a part of the portion of the substrate that is not held by the moving body is supported by the support device that moves in the first direction in conjunction with the moving body. The substrate processing method as described.
  66.  前記所定の処理を行うことでは、前記基板の前記移動体によって保持されない部分の少なくとも一部は、前記移動体とは分離して、前記移動体の外部に固定された前記支持装置によって支持される請求項64又は65に記載の基板処理方法。 By performing the predetermined processing, at least a part of the portion of the substrate that is not held by the moving body is separated from the moving body and supported by the support device fixed to the outside of the moving body. 66. A substrate processing method according to claim 64 or 65.
  67.  前記基板は、その外周縁部の少なくとも一部を吸着して支持する基板支持部材と一体化され、
     前記所定の処理を行うことでは、前記基板支持部材に設けられた反射面に計測ビームを照射する基板干渉計システムによって、前記基板の位置が計測される請求項60~66のいずれか一項に記載の基板処理方法。
    The substrate is integrated with a substrate support member that adsorbs and supports at least a part of the outer peripheral edge portion thereof,
    The position of the substrate is measured by a substrate interferometer system that irradiates a measurement beam onto a reflecting surface provided on the substrate support member by performing the predetermined processing. The substrate processing method as described.
  68.  前記ステップ駆動を行うことでは、前記基板支持部材と一体で前記基板は、前記第2方向に駆動される請求項67に記載の基板処理方法。 68. The substrate processing method according to claim 67, wherein by performing the step drive, the substrate is driven in the second direction integrally with the substrate support member.
  69.  前記所定の処理を行うことでは、前記処理位置に配置された露光系から設定された処理領域にエネルギビームを照射して前記処理領域を通過する前記基板を露光する請求項60~68のいずれか一項に記載の基板処理方法。 70. The method according to claim 60, wherein performing the predetermined processing irradiates an energy beam onto a processing region set from an exposure system arranged at the processing position to expose the substrate passing through the processing region. The substrate processing method according to one item.
  70.  請求項69に記載の基板処理方法により基板を露光することと、
     露光された前記基板を現像することと、を含むデバイス製造方法。
    Exposing the substrate by the substrate processing method of claim 69;
    Developing the exposed substrate. A device manufacturing method.
  71.  請求項69に記載の基板処理方法により前記基板としてフラットパネルディスプレイに用いられる基板を露光することと、
     露光された前記基板を現像することと、を含むフラットパネルディスプレイの製造方法。
    Exposing a substrate used in a flat panel display as the substrate by the substrate processing method according to claim 69;
    Developing the exposed substrate. A method of manufacturing a flat panel display.
  72.  基板を処理する基板処理方法であって、
     水平面に平行に配置された前記基板の被処理面と反対側の面の一部を平坦度を確保した状態で移動体に保持させ、該移動体を、基板処理位置に対して前記基板の面に平行な所定面内の第1方向に駆動して、前記基板の前記一部内の領域に対し所定の処理を行うことと、
     前記所定の処理が施された前記基板を前記所定面内で前記第1方向に直交する第2方向に前記基板の前記第2方向のサイズより短い距離だけ搬送して、前記基板を前記移動体から搬出することと、を含む基板処理方法。
    A substrate processing method for processing a substrate, comprising:
    A part of the surface opposite to the surface to be processed of the substrate arranged in parallel to the horizontal plane is held by the moving body in a state in which the flatness is ensured, and the moving body is placed on the surface of the substrate with respect to the substrate processing position. Driving in a first direction within a predetermined plane parallel to the substrate to perform a predetermined process on the region within the part of the substrate;
    The substrate subjected to the predetermined processing is transported in a second direction perpendicular to the first direction within the predetermined plane by a distance shorter than the size of the substrate in the second direction, and the substrate is moved to the movable body. Unloading from the substrate.
  73.  前記基板上の未処理領域を前記移動体に対向させるため、前記基板を前記移動体に対して前記所定面内で前記第1方向に直交する第2方向に所定量だけ駆動するステップ駆動を行うことをさらに含む請求項72に記載の基板処理方法。 In order to make the unprocessed region on the substrate face the moving body, step driving is performed in which the substrate is driven by a predetermined amount in a second direction orthogonal to the first direction within the predetermined plane with respect to the moving body. The substrate processing method according to claim 72, further comprising:
  74.  前記所定の処理を行うことでは、前記基板の前記第2方向の1/2以下の範囲の前記第1方向の少なくとも一部を平坦度を確保した状態で移動体に保持させ、該移動体を前記第1方向に駆動する請求項72又は73に記載の基板処理方法。 By performing the predetermined treatment, at least a part of the first direction in the range of ½ or less of the second direction of the substrate is held by the moving body in a state in which flatness is ensured, and the moving body is The substrate processing method according to claim 72 or 73, wherein the substrate processing method is driven in the first direction.
  75.  前記所定の処理を行うことでは、前記基板の前記第2方向の1/2以下の範囲の前記第1方向の一部を平坦度を確保した状態で移動体に保持させる場合、
     前記所定の処理の終了後に、前記基板と前記移動体とを、前記第1方向に関して所定量相対駆動することをさらに含む請求項72~74のいずれか一項に記載の基板処理方法。
    By performing the predetermined treatment, when a part of the first direction in the range of ½ or less of the second direction of the substrate is held in a moving body in a state in which flatness is ensured,
    The substrate processing method according to any one of claims 72 to 74, further comprising: relatively driving the substrate and the moving body by a predetermined amount in the first direction after the completion of the predetermined processing.
  76.  前記所定の処理を行うことでは、前記基板は、前記被処理面と反対側の面の一部が前記移動体により下方から保持され、前記移動体によって保持されない部分の少なくとも一部が支持装置によって支持された状態で、前記第1方向に駆動される請求項72~75のいずれか一項に記載の基板処理方法。 In performing the predetermined processing, a part of the surface of the substrate opposite to the surface to be processed is held from below by the moving body, and at least a part of the part not held by the moving body is supported by a support device. The substrate processing method according to any one of claims 72 to 75, wherein the substrate is driven in the first direction in a supported state.
  77.  前記所定の処理を行うことでは、前記基板の前記移動体によって保持されない部分の少なくとも一部は、前記移動体に連動して前記第1方向に移動する前記支持装置によって支持される請求項76に記載の基板処理方法。 77. The apparatus according to claim 76, wherein by performing the predetermined processing, at least a part of the portion of the substrate that is not held by the moving body is supported by the support device that moves in the first direction in conjunction with the moving body. The substrate processing method as described.
  78.  前記所定の処理を行うことでは、前記基板の前記移動体によって保持されない部分の少なくとも一部は、前記移動体とは分離して、前記移動体の外部に固定された前記支持装置によって支持される請求項76又は77に記載の基板処理方法。 By performing the predetermined processing, at least a part of the portion of the substrate that is not held by the moving body is separated from the moving body and supported by the support device fixed to the outside of the moving body. 78. A substrate processing method according to claim 76 or 77.
  79.  前記搬出することでは、前記基板上の被処理領域の配置と処理の順番とに応じた前記第1方向の位置で、前記基板を前記移動体から搬出する請求項72~78のいずれか一項に記載の基板処理方法。 79. The unloading includes unloading the substrate from the movable body at a position in the first direction corresponding to an arrangement of processing target regions on the substrate and a processing order. The substrate processing method as described in 2. above.
  80.  前記基板が前記移動体から搬出されるのと並行して、前記基板の前記第2方向のサイズより短い前記保持部の前記第2方向のサイズと同等の距離だけ前記基板を前記所定面内で前記第2方向に搬送して、別の基板を前記移動体上に搬入することをさらに含む請求項72~79のいずれか一項に記載の基板処理方法。 In parallel with the unloading of the substrate from the movable body, the substrate is moved within the predetermined plane by a distance equivalent to the size in the second direction of the holding portion, which is shorter than the size in the second direction of the substrate. The substrate processing method according to any one of claims 72 to 79, further comprising transporting another substrate onto the movable body by transporting in the second direction.
  81.  前記基板は、その外周縁部の少なくとも一部を吸着して支持する基板支持部材と一体化され、
     前記所定の処理を行うことでは、前記基板支持部材に設けられた反射面に計測ビームを照射する基板干渉計システムによって、前記基板の位置が計測される請求項80に記載の基板処理方法。
    The substrate is integrated with a substrate support member that adsorbs and supports at least a part of the outer peripheral edge portion thereof,
    81. The substrate processing method according to claim 80, wherein in performing the predetermined processing, the position of the substrate is measured by a substrate interferometer system that irradiates a measurement surface to a reflection surface provided on the substrate support member.
  82.  前記移動体上への搬入開始から前記移動体からの搬出までの間、前記基板は、前記基板支持部材と一体で前記所定面に平行な面内で搬送される請求項81に記載の基板処理方法。 82. The substrate processing according to claim 81, wherein the substrate is transported in a plane that is integral with the substrate support member and parallel to the predetermined surface from the start of loading onto the movable body to unloading from the movable body. Method.
  83.  前記所定の処理を行うことでは、前記処理位置に配置された露光系から設定された処理領域にエネルギビームを照射して前記処理領域を通過する前記基板を露光する請求項72~82のいずれか一項に記載の基板処理方法。 The performing of the predetermined processing exposes the substrate passing through the processing region by irradiating an energy beam to a processing region set from an exposure system arranged at the processing position. The substrate processing method according to one item.
  84.  請求項83に記載の基板処理方法により基板を露光することと、
     露光された前記基板を現像することと、を含むデバイス製造方法。
    Exposing the substrate by the substrate processing method of claim 83;
    Developing the exposed substrate. A device manufacturing method.
  85.  請求項83に記載の基板処理方法により前記基板としてフラットパネルディスプレイに用いられる基板を露光することと、
     露光された前記基板を現像することと、を含むフラットパネルディスプレイの製造方法。
    Exposing a substrate used in a flat panel display as the substrate by the substrate processing method according to claim 83;
    Developing the exposed substrate. A method of manufacturing a flat panel display.
  86.  基板の処理を行う処理方法であって、
     水平面に平行に配置された前記基板の被処理面と反対側の面を平坦度を確保した状態で保持する移動体を、基板処理位置に対して前記基板の面に平行な所定面内の第1方向に駆動して、前記基板上の複数の被処理領域に順次所定の処理を行うことと、
     前記複数の被処理領域の前記基板上での配置と処理の順番とに応じて定められた前記第1方向の位置で、前記配置と前記順番とに応じて定められた方向へ、前記基板を搬送して前記移動体から搬出することと、を含む基板処理方法。
    A processing method for processing a substrate,
    A moving body that holds a surface of the substrate opposite to the surface to be processed arranged in parallel to a horizontal plane in a state in which flatness is ensured is provided in a predetermined plane parallel to the surface of the substrate with respect to the substrate processing position. Driving in one direction and sequentially performing predetermined processing on a plurality of processing regions on the substrate;
    The substrate in the direction determined according to the arrangement and the order at the position in the first direction determined according to the arrangement of the plurality of regions to be processed on the substrate and the order of processing. A substrate processing method including conveying and unloading from the movable body.
  87.  前記所定の処理を行うことでは、前記基板は、前記第2方向の一部が前記移動体によって保持された状態で前記第1方向に駆動される請求項86に記載の基板処理方法。 The substrate processing method according to claim 86, wherein, by performing the predetermined processing, the substrate is driven in the first direction while a part of the second direction is held by the movable body.
  88.  前記基板が前記移動体から搬出されるのと並行して、前記基板の前記第2方向のサイズより短い前記保持部の前記第2方向のサイズと同等の距離だけ前記基板を前記所定面内で前記第2方向に搬送して、別の基板を前記移動体上に搬入することをさらに含む請求項86又は87に記載の基板処理方法。 In parallel with the unloading of the substrate from the movable body, the substrate is moved within the predetermined plane by a distance equivalent to the size in the second direction of the holding portion, which is shorter than the size in the second direction of the substrate. 88. The substrate processing method according to claim 86 or 87, further comprising transporting another substrate onto the movable body by transporting in the second direction.
  89.  前記基板は、その外周縁部の少なくとも一部を吸着して支持する基板支持部材と一体化され、
     前記所定の処理を行うことでは、前記基板支持部材に設けられた反射面に計測ビームを照射する基板干渉計システムによって、前記基板の位置が計測される請求項88に記載の基板処理方法。
    The substrate is integrated with a substrate support member that adsorbs and supports at least a part of the outer peripheral edge portion thereof,
    90. The substrate processing method according to claim 88, wherein in performing the predetermined processing, the position of the substrate is measured by a substrate interferometer system that irradiates a measurement surface to a reflection surface provided on the substrate support member.
  90.  前記移動体上への搬入開始から前記移動体からの搬出までの間、前記基板は、前記基板支持部材と一体で前記所定面に平行な面内で搬送される請求項89に記載の基板処理方法。 90. The substrate processing according to claim 89, wherein the substrate is transported in a plane that is integral with the substrate support member and parallel to the predetermined surface from the start of loading onto the movable body to unloading from the movable body. Method.
  91.  前記所定の処理を行うことでは、前記処理位置に配置された露光系から設定された処理領域にエネルギビームを照射して前記処理領域を通過する前記基板を露光する請求項86~90のいずれか一項に記載の基板処理方法。 The process according to any one of claims 86 to 90, wherein in performing the predetermined processing, an energy beam is irradiated to a processing region set from an exposure system disposed at the processing position to expose the substrate passing through the processing region. The substrate processing method according to one item.
  92.  請求項91に記載の基板処理方法により基板を露光することと、
     露光された前記基板を現像することと、を含むデバイス製造方法。
    Exposing the substrate by the substrate processing method of claim 91;
    Developing the exposed substrate. A device manufacturing method.
  93.  請求項91に記載の基板処理方法により前記基板としてフラットパネルディスプレイに用いられる基板を露光することと、
     露光された前記基板を現像することと、を含むフラットパネルディスプレイの製造方法。
    Exposing a substrate used in a flat panel display as the substrate by the substrate processing method according to claim 91;
    Developing the exposed substrate. A method of manufacturing a flat panel display.
  94.  複数枚の基板を露光する露光方法であって、
     2枚の基板を個別に保持可能な第1及び第2保持領域を有する基板保持装置に前記2枚の基板を載置して、前記2枚の基板のうち、一方の基板の露光が開始されてから終了するまでの間に、他方の基板の少なくとも1つの処理領域の露光を行う露光方法。
    An exposure method for exposing a plurality of substrates,
    The two substrates are placed on a substrate holding device having first and second holding regions capable of holding two substrates individually, and exposure of one of the two substrates is started. An exposure method for performing exposure of at least one processing region of the other substrate during the period from the start to the end.
  95.  前記一方の基板の前記1つの処理領域を含む一部を前記基板保持装置の前記第1保持領域に保持させて前記処理領域を露光することと、前記他方の基板の前記1つの処理領域を含む一部を前記基板保持装置の前記第2保持領域に保持させて前記処理領域を露光することと、を、前記一方の基板の露光対象の処理領域と前記他方の基板の露光対象の処理領域とを、順次異なる処理領域に変更しつつ、実行する請求項94に記載の露光方法。 A portion of the one substrate including the one processing region is held in the first holding region of the substrate holding device to expose the processing region; and the one substrate includes the one processing region. Holding the part in the second holding region of the substrate holding device to expose the processing region, the processing region to be exposed on the one substrate and the processing region to be exposed on the other substrate, 95. The exposure method according to claim 94, wherein the process is executed while sequentially changing to different processing areas.
  96.  前記一方の基板の前記処理領域の露光と、前記他方の基板の前記処理領域の露光とは、交互に行われ、
     これと並行して、前記他方の基板の露光対象の処理領域の変更と、前記一方の基板の露光対象の処理領域の変更とが、交互に行われる請求項95に記載の露光方法。
    The exposure of the processing area of the one substrate and the exposure of the processing area of the other substrate are alternately performed,
    96. The exposure method according to claim 95, wherein in parallel with this, the change of the processing area to be exposed on the other substrate and the change of the processing area to be exposed on the one substrate are alternately performed.
  97.  前記一方の基板の1つの処理領域の露光は、前記一方の基板を前記基板保持装置と一体で第1方向に移動させつつ行われ、これと並行して前記他方の基板を前記第1方向と交差する第2方向に移動させて前記他方の基板の前記処理領域の変更が行われ、
     前記他方の基板の1つの処理領域の露光は、前記他方の基板を前記基板保持装置と一体で第1方向に移動させつつ行われ、これと並行して前記一方の基板を前記第2方向に移動させて前記一方の基板の前記処理領域の変更が行われる請求項96に記載の露光方法。
    The exposure of one processing region of the one substrate is performed while moving the one substrate in the first direction integrally with the substrate holding device, and in parallel with this, the other substrate is moved in the first direction. The processing area of the other substrate is changed by moving in the second direction that intersects,
    The exposure of one processing region of the other substrate is performed while moving the other substrate in the first direction integrally with the substrate holding device, and in parallel with this, moving the one substrate in the second direction. 97. The exposure method according to claim 96, wherein the processing region of the one substrate is changed by being moved.
  98.  前記2枚の基板を載置した前記基板保持装置を、前記第1方向に移動させて、前記一方の基板の1つの処理領域から前記他方の基板の1つの処理領域へ露光対象の処理領域を変更することをさらに含む請求項97に記載の露光方法。 The substrate holding device on which the two substrates are placed is moved in the first direction so that a processing region to be exposed is transferred from one processing region of the one substrate to one processing region of the other substrate. 98. The exposure method according to claim 97, further comprising changing.
  99.  請求項94~98のいずれか一項に記載の露光方法により前記基板を露光することと、
     露光された前記基板を現像することと、を含むデバイス製造方法。
    Exposing the substrate by the exposure method according to any one of claims 94 to 98;
    Developing the exposed substrate. A device manufacturing method.
  100.  請求項94~98のいずれか一項に記載の露光方法により前記基板としてフラットパネルディスプレイに用いられる基板を露光することと、
     露光された前記基板を現像することと、を含むフラットパネルディスプレイの製造方法。
    Exposing a substrate used in a flat panel display as the substrate by the exposure method according to any one of claims 94 to 98;
    Developing the exposed substrate. A method of manufacturing a flat panel display.
  101.  基板上の複数の領域を露光する露光装置であって、
     基板の一部をそれぞれ保持可能な第1及び第2保持領域を有する基板保持装置と、
     前記基板保持装置がその一部に設けられ、第1方向に移動する移動体と、
     前記移動体と一体的に前記第1方向に移動するとともに、前記基板を、前記第1方向に交差する第2方向に移動させる第1の基板送り装置と、
     を備える露光装置。
    An exposure apparatus that exposes a plurality of regions on a substrate,
    A substrate holding device having first and second holding regions each capable of holding a part of the substrate;
    A movable body provided in a part of the substrate holding device and moving in a first direction;
    A first substrate feeder that moves in the first direction integrally with the movable body and moves the substrate in a second direction that intersects the first direction;
    An exposure apparatus comprising:
  102.  前記第1の基板送り装置は、前記第1及び第2保持領域のそれぞれに対応して一対設けられている請求項101に記載の露光装置。 102. The exposure apparatus according to claim 101, wherein a pair of the first substrate feeding device is provided corresponding to each of the first and second holding regions.
  103.  前記移動体は、
     前記基板保持装置が搭載された微動ステージと、該微動ステージを相対駆動する粗動ステージとを有する請求項101又は102に記載の露光装置。
    The moving body is
    The exposure apparatus according to claim 101 or 102, comprising: a fine movement stage on which the substrate holding device is mounted; and a coarse movement stage that relatively drives the fine movement stage.
  104.  前記基板保持装置の前記第1、第2の保持領域には、2枚の基板のそれぞれの一部が載置され、
     前記移動体の移動を妨げることなく、前記2枚の基板のそれぞれの残りの部分を支持する複数の支持装置をさらに備える請求項103に記載の露光装置。
    A part of each of the two substrates is placed in the first and second holding regions of the substrate holding device,
    104. The exposure apparatus according to Claim 103, further comprising a plurality of support devices that support the remaining portions of the two substrates without hindering the movement of the moving body.
  105.  前記複数の支持装置は、前記粗動ステージに搭載されている請求項104に記載の露光装置。 105. The exposure apparatus according to claim 104, wherein the plurality of support devices are mounted on the coarse movement stage.
  106.  前記複数の支持装置の一部は、前記粗動ステージに搭載され、前記複数の支持装置の一部は、前記移動体とは分離して設置されている請求項104に記載の露光装置。 105. The exposure apparatus according to claim 104, wherein a part of the plurality of support devices is mounted on the coarse movement stage, and a part of the plurality of support devices is installed separately from the moving body.
  107.  前記複数の支持装置は、前記移動体とは分離して設置されている請求項104に記載の露光装置。 The exposure apparatus according to claim 104, wherein the plurality of support devices are installed separately from the movable body.
  108.  前記基板を前記第1方向へ移動させる第2の基板送り装置をさらに備える請求項103~106のいずれか一項に記載の露光装置。 The exposure apparatus according to any one of claims 103 to 106, further comprising a second substrate feeding device that moves the substrate in the first direction.
  109.  前記第2の基板送り装置は、前記第1及び第2保持領域のそれぞれに対応して一対設けられている請求項108に記載の露光装置。 109. The exposure apparatus according to claim 108, wherein a pair of the second substrate feeding apparatus is provided corresponding to each of the first and second holding regions.
  110.  前記第2の基板送り装置は、前記粗動ステージ上に搭載されている請求項108又は109に記載の露光装置。 The exposure apparatus according to claim 108 or 109, wherein the second substrate feeding apparatus is mounted on the coarse movement stage.
  111.  前記粗動ステージ上に前記第1の基板送り装置が搭載されている請求項103~110のいずれか一項に記載の露光装置。 The exposure apparatus according to any one of claims 103 to 110, wherein the first substrate feeder is mounted on the coarse movement stage.
  112.  前記基板保持装置は、前記第1及び第2保持領域のそれぞれで独立して前記基板を吸着しかつ前記基板を浮上させる請求項101~111のいずれか一項に記載の露光装置。 The exposure apparatus according to any one of claims 101 to 111, wherein the substrate holding device sucks the substrate and floats the substrate independently in each of the first and second holding regions.
  113.  前記基板保持装置は、独立した複数の基板ホルダを有する請求項101~112のいずれか一項に記載の露光装置。 The exposure apparatus according to any one of claims 101 to 112, wherein the substrate holding device has a plurality of independent substrate holders.
  114.  前記基板保持装置に設けられ、基板の裏面に設けられたマークを計測する複数のマーク検出系をさらに備える請求項101~113のいずれか一項に記載の露光装置。 The exposure apparatus according to any one of claims 101 to 113, further comprising a plurality of mark detection systems that are provided in the substrate holding device and measure marks provided on the back surface of the substrate.
  115.  請求項101~114のいずれか一項に記載の露光装置を用いて基板を露光することと、
     露光された前記基板を現像することと、を含むデバイス製造方法。
    Exposing the substrate using the exposure apparatus according to any one of claims 101 to 114;
    Developing the exposed substrate. A device manufacturing method.
  116.  請求項101~114のいずれか一項に記載の露光装置を用いて前記基板としてフラットパネルディスプレイに用いられる基板を露光することと、
     露光された前記基板を現像することと、を含むフラットパネルディスプレイの製造方法。
    Exposing a substrate used in a flat panel display as the substrate using the exposure apparatus according to any one of claims 101 to 114;
    Developing the exposed substrate. A method of manufacturing a flat panel display.
PCT/JP2012/005466 2011-08-30 2012-08-30 Substrate treatment device, substrate treatment method, light exposure method, light exposure device, method for manufacturing device, and method for manufacturing flat panel display WO2013031223A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020147008312A KR102105809B1 (en) 2011-08-30 2012-08-30 Substrate treatment device, substrate treatment method, light exposure method, light exposure device, method for manufacturing device, and method for manufacturing flat panel display
CN201280042608.XA CN103782239B (en) 2011-08-30 2012-08-30 The manufacture method of substrate board treatment and substrate processing method using same, exposure method and exposure device and manufacturing method and flat-panel monitor
JP2013531102A JP6071068B2 (en) 2011-08-30 2012-08-30 Exposure method, exposure apparatus, device manufacturing method, and flat panel display manufacturing method
KR1020207011723A KR102226989B1 (en) 2011-08-30 2012-08-30 Substrate treatment device, substrate treatment method, light exposure method, light exposure device, method for manufacturing device, and method for manufacturing flat panel display

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2011-186949 2011-08-30
JP2011-186922 2011-08-30
JP2011186949 2011-08-30
JP2011-186871 2011-08-30
JP2011186871 2011-08-30
JP2011186922 2011-08-30

Publications (1)

Publication Number Publication Date
WO2013031223A1 true WO2013031223A1 (en) 2013-03-07

Family

ID=47755751

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/005466 WO2013031223A1 (en) 2011-08-30 2012-08-30 Substrate treatment device, substrate treatment method, light exposure method, light exposure device, method for manufacturing device, and method for manufacturing flat panel display

Country Status (6)

Country Link
JP (4) JP6071068B2 (en)
KR (2) KR102105809B1 (en)
CN (4) CN107479332B (en)
HK (1) HK1245903A1 (en)
TW (2) TW201921166A (en)
WO (1) WO2013031223A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018062483A1 (en) * 2016-09-30 2018-04-05 株式会社ニコン Exposure device, flat-panel display manufacturing method, device manufacturing method and exposure method
US20230290667A1 (en) * 2014-06-17 2023-09-14 Kateeva, Inc. Printing system assemblies and methods

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108957966B (en) * 2014-03-28 2021-02-02 株式会社尼康 Moving body device
CN113043752B (en) * 2014-06-17 2022-10-25 科迪华公司 Printing system assembly and method
KR101715785B1 (en) * 2014-12-05 2017-03-13 프로미스 주식회사 A lithography apparatus for
CN113204177A (en) * 2015-03-31 2021-08-03 株式会社尼康 Exposure apparatus, method for manufacturing flat panel display, method for manufacturing device, and exposure method
CN104820346B (en) * 2015-04-24 2017-04-12 深圳市大川光电设备有限公司 Flat workpiece alignment method
KR102441111B1 (en) * 2017-03-31 2022-09-06 가부시키가이샤 니콘 A moving body apparatus, an exposure apparatus, a manufacturing method of a flat panel display, a device manufacturing method, and a driving method of a moving body
KR102653016B1 (en) 2018-09-18 2024-03-29 삼성전자주식회사 Chuck driving device and substrate processing apparatus
CN109870881B (en) * 2019-03-20 2021-06-15 哈尔滨工业大学 Macro-micro combined long-stroke precision motion platform
KR102125677B1 (en) * 2019-06-27 2020-06-24 세메스 주식회사 Method for processing substrate
CN111082596B (en) * 2019-12-23 2022-04-15 安徽机电职业技术学院 Freedom degree multi-azimuth micropositioner comprising two-freedom degree actuating mechanism

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001313246A (en) * 2000-04-28 2001-11-09 Nikon Corp Method and apparatus for exposure and method for fabricating device and device
JP2009147240A (en) * 2007-12-18 2009-07-02 Dainippon Printing Co Ltd Substrate supporting apparatus, substrate supporting method, substrate processing apparatus, substrate processing method, and method of manufacturing display apparatus constitutional member
JP2011044712A (en) * 2009-08-20 2011-03-03 Nikon Corp Object moving device, object processing device, exposure device, object inspection device, and method for manufacturing device
JP2011044713A (en) * 2009-08-20 2011-03-03 Nikon Corp Object processing device, exposure device, exposure method, and method for manufacturing device

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69717975T2 (en) * 1996-12-24 2003-05-28 Asml Netherlands Bv POSITIONER BALANCED IN TWO DIRECTIONS, AND LITHOGRAPHIC DEVICE WITH SUCH A POSITIONER
JP2000040662A (en) * 1999-08-05 2000-02-08 Nikon Corp Aligner
KR20010034990A (en) * 2000-06-29 2001-05-07 박용석 Multifunctional integration manufacturing apparatus for semiconductor and flat panel displays
JP2002251017A (en) * 2001-02-23 2002-09-06 Adtec Engineeng Co Ltd Aligner
TWI226303B (en) * 2002-04-18 2005-01-11 Olympus Corp Substrate carrying device
CN101504512B (en) * 2003-08-07 2012-11-14 株式会社尼康 Exposure method, expose apparatus, carrier apparatus and equipment manufacturing method
JP2005317916A (en) * 2004-03-30 2005-11-10 Canon Inc Exposure apparatus and device manufacturing method
JP2006049384A (en) * 2004-07-30 2006-02-16 Laserfront Technologies Inc Gantry xy stage
KR101116630B1 (en) * 2005-03-28 2012-03-07 엘지디스플레이 주식회사 exposing apparatus for flat panel display device and substrate photolithography method using thereof
JP2008182002A (en) * 2007-01-24 2008-08-07 Dainippon Printing Co Ltd Device and method for processing substrate, and method for manufacturing display component
JP4652351B2 (en) * 2007-02-02 2011-03-16 大日本印刷株式会社 Substrate support apparatus and substrate support method
WO2008129762A1 (en) 2007-03-05 2008-10-30 Nikon Corporation Moving body apparatus, apparatus for forming pattern, method of forming pattern, method of producing device, method of producing moving body apparatus, and method of driving moving body
US8896809B2 (en) * 2007-08-15 2014-11-25 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP2009088297A (en) * 2007-09-29 2009-04-23 Dainippon Printing Co Ltd Mounting device and mounting method, substrate processing device and substrate processing method, and method of manufacturing display device constitution member
JP2009200122A (en) * 2008-02-19 2009-09-03 Canon Inc Exposure system and process for fabricating device
JP2010067867A (en) * 2008-09-11 2010-03-25 Nikon Corp Exposure method and apparatus, and method for manufacturing device
US8599359B2 (en) * 2008-12-19 2013-12-03 Nikon Corporation Exposure apparatus, exposure method, device manufacturing method, and carrier method
CN201364460Y (en) * 2009-01-20 2009-12-16 清华大学 Double wafer stage exchanging device of photo-etching machine
TWI623819B (en) * 2009-05-15 2018-05-11 Nikon Corp Moving body device, power transmission device, exposure device, and element manufacturing method
US20110053092A1 (en) * 2009-08-20 2011-03-03 Nikon Corporation Object processing apparatus, exposure apparatus and exposure method, and device manufacturing method
US8598538B2 (en) * 2010-09-07 2013-12-03 Nikon Corporation Movable body apparatus, object processing device, exposure apparatus, flat-panel display manufacturing method, and device manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001313246A (en) * 2000-04-28 2001-11-09 Nikon Corp Method and apparatus for exposure and method for fabricating device and device
JP2009147240A (en) * 2007-12-18 2009-07-02 Dainippon Printing Co Ltd Substrate supporting apparatus, substrate supporting method, substrate processing apparatus, substrate processing method, and method of manufacturing display apparatus constitutional member
JP2011044712A (en) * 2009-08-20 2011-03-03 Nikon Corp Object moving device, object processing device, exposure device, object inspection device, and method for manufacturing device
JP2011044713A (en) * 2009-08-20 2011-03-03 Nikon Corp Object processing device, exposure device, exposure method, and method for manufacturing device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230290667A1 (en) * 2014-06-17 2023-09-14 Kateeva, Inc. Printing system assemblies and methods
WO2018062483A1 (en) * 2016-09-30 2018-04-05 株式会社ニコン Exposure device, flat-panel display manufacturing method, device manufacturing method and exposure method
JPWO2018062483A1 (en) * 2016-09-30 2019-07-04 株式会社ニコン Exposure apparatus, method of manufacturing flat panel display, method of manufacturing device, and exposure method

Also Published As

Publication number Publication date
JP6638774B2 (en) 2020-01-29
HK1245903A1 (en) 2018-08-31
JP2019049694A (en) 2019-03-28
TWI650612B (en) 2019-02-11
TW201921166A (en) 2019-06-01
CN107479332B (en) 2020-04-03
CN109324485A (en) 2019-02-12
KR102105809B1 (en) 2020-05-28
JP6071068B2 (en) 2017-02-01
JP2017102468A (en) 2017-06-08
CN103782239B (en) 2017-09-05
CN107479332A (en) 2017-12-15
CN107357137A (en) 2017-11-17
TW201319758A (en) 2013-05-16
JP6380564B2 (en) 2018-08-29
JPWO2013031223A1 (en) 2015-03-23
KR20200046127A (en) 2020-05-06
JP2020074009A (en) 2020-05-14
KR20140084007A (en) 2014-07-04
CN103782239A (en) 2014-05-07
KR102226989B1 (en) 2021-03-11

Similar Documents

Publication Publication Date Title
JP6380564B2 (en) Exposure apparatus, flat panel display manufacturing method, device manufacturing method, and exposure method
JP6885425B2 (en) Transport equipment, exposure equipment, and device manufacturing methods
JP6558721B2 (en) Moving body apparatus and moving method, exposure apparatus and exposure method, flat panel display manufacturing method, and device manufacturing method
JP6628154B2 (en) Object processing apparatus, flat panel display manufacturing method, device manufacturing method, and transport method
JP6708222B2 (en) Exposure apparatus, flat panel display manufacturing method, and device manufacturing method
WO2013031235A1 (en) Aligning method, exposure method, device manufacturing method, and method for manufacturing flat panel display
US20110053092A1 (en) Object processing apparatus, exposure apparatus and exposure method, and device manufacturing method
JP2020190740A (en) Exposure apparatus, manufacturing method of flat-panel display, device manufacturing method, and exposure method
JP2022133345A (en) Exposure apparatus, exposure method, production method of flat panel display, and production method of device
TWI685911B (en) Object exchange system, object exchange method, and exposure apparatus
JP2019045875A (en) Exposure device, manufacturing method of flat panel display, device manufacturing method and exposure method
JP6447845B2 (en) Exposure apparatus, flat panel display manufacturing method, device manufacturing method, and exposure method
JP2013051231A (en) Exposure method, exposure apparatus, device manufacturing method, and method for manufacturing flat panel display
JP2016170427A (en) Positioning method, exposure method, device manufacturing method and manufacturing method of flat panel display

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12828437

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013531102

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147008312

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12828437

Country of ref document: EP

Kind code of ref document: A1