WO2013026376A1 - 超薄玻璃基板上导电膜的制备方法、lcd基板、液晶面板及液晶显示器件 - Google Patents

超薄玻璃基板上导电膜的制备方法、lcd基板、液晶面板及液晶显示器件 Download PDF

Info

Publication number
WO2013026376A1
WO2013026376A1 PCT/CN2012/080326 CN2012080326W WO2013026376A1 WO 2013026376 A1 WO2013026376 A1 WO 2013026376A1 CN 2012080326 W CN2012080326 W CN 2012080326W WO 2013026376 A1 WO2013026376 A1 WO 2013026376A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass substrate
ultra
magnetron sputtering
film
liquid crystal
Prior art date
Application number
PCT/CN2012/080326
Other languages
English (en)
French (fr)
Inventor
周伟峰
薛建设
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US13/703,724 priority Critical patent/US9134559B2/en
Publication of WO2013026376A1 publication Critical patent/WO2013026376A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/13336Combining plural substrates to produce large-area displays, e.g. tiled displays
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/06Surface treatment of glass, not in the form of fibres or filaments, by coating with metals
    • C03C17/09Surface treatment of glass, not in the form of fibres or filaments, by coating with metals by deposition from the vapour phase
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3492Variation of parameters during sputtering

Definitions

  • Embodiments of the present invention relate to a method of fabricating a conductive film on an ultra-thin glass substrate, an LCD substrate, a liquid crystal panel, and a liquid crystal display device. Background technique
  • the main flexible display device is a display device prepared on an organic material substrate, such as an organic film such as a polyimide film, a polyethylene naphthalate film, or a polyethylene terephthalate film. And a cholesteric liquid crystal display, an electrophoretic display, an organic electroluminescence display, and the like prepared on the composite film.
  • an organic material substrate such as an organic film such as a polyimide film, a polyethylene naphthalate film, or a polyethylene terephthalate film.
  • a cholesteric liquid crystal display, an electrophoretic display, an organic electroluminescence display, and the like prepared on the composite film.
  • the preparation of display elements on a flexible substrate necessitates a low stress on the prepared film layer in order to impart flexibility to the fabricated device.
  • Conventional devices for manufacturing display elements often require the substrate to be flat during the preparation process.
  • the flexible substrate 1 tends to warp after the film layer 2 is deposited. As shown in Figure 1. This seriously affects the continuation of subsequent processing, and even cracks for the glass substrate.
  • Glass has much better transmittance, chemical stability, water blocking, and dielectric properties than organic materials.
  • the glass thickness of the glass substrate is usually 0.5-1. lmm, and the thinnest is also 0.2 mm or more.
  • the ultra-thin glass substrate in particular, a glass substrate of 0.1 mm or less has not only the above properties but also good flexibility, and is an ideal material for a flexible display substrate.
  • due to the traditional film formation process The large stress, combined with the brittleness of the glass substrate itself, has greatly restricted the application of ultra-thin glass. Summary of the invention
  • Embodiments of the present invention provide a method of preparing a conductive film on an ultra-thin glass substrate.
  • the preparation method uses a magnetron sputtering method to set an initial magnetron sputtering power and/or an initial argon gas flow to deposit a conductive film, and the conductive electrode is detected by a pressure sensor disposed on the ultra-thin glass substrate.
  • the film layer stress of the film, the magnetron sputtering power and/or the argon gas flow rate are adjusted in real time according to the detected film layer stress, so that the absolute value of the film layer stress is kept below a predetermined value; wherein the ultrathin
  • the thickness of the glass substrate is 0.1 mm or less.
  • Embodiments of the present invention also provide an LCD substrate comprising an ultra-thin glass substrate, at least one of which is prepared by the above-described method for preparing a conductive film.
  • Embodiments of the present invention further provide a liquid crystal panel including the above LCD substrate.
  • Embodiments of the present invention also provide a liquid crystal display device including the above liquid crystal panel.
  • Figure 1 is a schematic view of conventional magnetron sputtering
  • FIG. 2 is a schematic view of magnetron sputtering in accordance with an embodiment of the present invention
  • Fig. 3 is a control cycle of deposition of a conductive film according to an embodiment of the present invention. detailed description
  • embodiments of the present invention provide a method for preparing a conductive film on an ultra-thin glass substrate.
  • the preparation method according to the embodiment of the present invention can only apply the magnetron sputtering power and the argon flow rate in the preparation process of the corresponding production line corresponding to the existing production line without changing the process route and equipment of the existing ordinary glass substrate production.
  • the stress of the resulting conductive film can be significantly reduced, thereby directly using the existing production line for the production of ultra-thin glass substrates.
  • the preparation method according to the embodiment of the invention makes the metal or semiconductor produced by the magnetron sputtering have larger crystal grains, reduces defects such as grain boundaries, and the film layer is slightly sparse.
  • the stress of the conductive film layer obtained on the substrate of the embodiment of the present invention can be greatly reduced, for example, can be reduced to less than 30%, thereby being able to adapt to the demand for flexible display, and the uniformity remains unchanged.
  • the technical solution of the embodiment of the invention can make the surface of the obtained ultra-thin glass substrate flat and not easy to be deformed, realize the possibility that the ultra-thin glass substrate of 0.1 mm or less can be used as a flexible substrate, improve the bendability, and thereby improve the yield rate. And the flexible performance of flexible displays, increased productivity and product competitiveness.
  • the preparation method described in the embodiments of the present invention is applicable to the currently common 1 ⁇ 10 generation production lines.
  • Most of the production equipment in this field is produced by Japan's ULVAC, and the equipment of the same generation line is universal. That is to say, the ordinary glass substrate with a thickness of 0.5 ⁇ 1. lmm is deposited in the same generation line.
  • the parameters of the magnetron sputtering power and the argon flow rate of the conductive film are the same.
  • the Mo deposition of the 2.5-generation line has a power of 12kw for magnetron sputtering and 100sccm for argon. Therefore, the preparation of all generations of production lines and all conductive films can be realized according to the parameters of the existing production line by the method described in the embodiments of the present invention.
  • a metal Mo film 2 is deposited on a 0.1 mm ultra-thin glass substrate 1 to form a gate line and a gate electrode.
  • the initial magnetron sputtering power of the 2.5-generation line was set to 15 kw from the original 12 kw, and the argon flow rate was set to 50 sccm from the original 100 sccm to start Mo deposition.
  • a pressure sensor 4 is provided on a surface of the glass substrate 1 opposite to the surface on which the film layer 2 is to be deposited. As the film layer 2 is deposited, a stress is generated therein. As the stress of the film 2 increases during the deposition process, the glass substrate is deformed by Hooke's law, so that the stress value detected on the pressure sensor 4 changes, and an electrical signal is emitted. For example, when the absolute value of the stress in the film layer 2 is greater than about 100 MPa, the glass substrate is warped.
  • the stress in the ultra-thin glass substrate 1 and the stress in the film layer 2 are the relationship between the force and the reaction force, and the magnitudes of the two are equal and opposite. Then, the control system sends the telecommunications from the sensor
  • the magnetron sputtering power and the argon flow rate are adjusted according to the conversion result. The adjustment effect is always obtained by the pressure sensor.
  • the absolute value of the film stress generated during the deposition may be maintained at a predetermined value of 100 MPa or less. It is to be noted that this predetermined value may differ depending on the thickness and material of the ultra-thin glass substrate to be used.
  • the pressure in the chamber is guaranteed to be below 0.36 Pa according to the change in the flow rate of the argon gas.
  • the above control loop is shown in Figure 3. Finally, a film layer which does not cause warpage of the ultra-thin glass substrate is obtained.
  • the metal Mo film prepared according to the conventional 2.5-generation production line has a film stress of 500 to 600 MPa.
  • the initial power of magnetron sputtering can be set to an arbitrary value between 120 150% of the original power (magnetron sputtering power when preparing a conductive film on a common glass substrate), for example, the original Any value between 125 and 130% of power; at the same time, the argon flow rate can be set to any value between 50% and 90% of the original flow rate (argon flow rate when preparing a conductive film on a common glass substrate) For example, it is an arbitrary value between 70% and 80% of the original traffic.
  • the magnetron sputtering power range is about 4 to 16 KW, and the argon gas flow rate is about 80 to 120 sccm.
  • the photolithography, etching, and the like are completed according to the conventional method to form a desired pattern to obtain a gate line and a gate electrode layer.
  • the other film layers of the array substrate may be deposited in one or more steps according to the foregoing methods, for example, the source and drain electrodes and the data lines are deposited by the above method to form a TFT-LCD array substrate.
  • the array substrate can be finally formed into a thin film transistor liquid crystal display according to an existing preparation method.
  • a metal Mo film 2 was deposited on a 0.1 mm ultra-thin glass substrate, and the power generation of the 5th generation line was increased from the original 90 kw to 120 kw.
  • the argon flow rate was reduced from the original 200 sccm to 150 sccm, and Mo deposition was started.
  • a pressure sensor 4 is provided on a surface of the deposited glass substrate 1 opposite to the surface of the film layer 2 to be deposited. As the film layer 2 is deposited, a stress is generated therein. As the film stress increases during the deposition process, the ultra-thin glass substrate 1 is deformed by Hooke's law, so that the stress value of the glass substrate 1 is detected on the pressure sensor 4, and an electrical signal is emitted.
  • the ultra-thin glass substrate 1 is caused to occur. Warp deformation.
  • the stress in the ultra-thin glass substrate 1 and the stress in the film layer 2 are the relationship between the force and the reaction force, and the magnitudes of the two are equal and opposite.
  • the absolute value of the film stress generated during the deposition can be kept within 100 MPa. It is to be noted that this predetermined value may differ depending on the thickness and material of the ultra-thin glass substrate to be used. And according to the change of argon flow rate, the pressure inside the cavity is guaranteed to be below 0.30Pa.
  • the above control loop is shown in Figure 3. Finally, a film layer which does not cause warpage of the ultra-thin glass substrate is obtained.
  • the metal Mo film prepared according to the conventional 5th generation line has a film stress of 900 to 1200 MPa.
  • the initial power of magnetron sputtering can be set to an arbitrary value between 120 150% of the original power (magnetron sputtering power when preparing a conductive film on a common glass substrate), for example, Any value between 125 and 130% of the power; meanwhile, the argon flow rate can be set to an arbitrary value between 50% and 90% of the original flow rate (the flow rate of the argon gas when the conductive film is prepared on a common glass substrate). For example, any value between 70% and 80% of the original traffic.
  • the magnetron sputtering power range is about 50 ⁇ 110KW, and the argon gas flow range is about 150 ⁇ 300sccm.
  • the coefficients of the primary sub-production line are A, B, C, D
  • the coefficients of the new generation production line are A', B', C', D'
  • L and W respectively
  • the length and width of the target used for the primary sub-production line, L, and W respectively refer to the length and width of the target used for the new generation line
  • V refers to the volume of the magnetron sputtering chamber of the primary sub-production line
  • V ' refer to the volume of the magnetron sputtering chamber of the new generation line.
  • the pressure sensor may be a stress-strain sensor that deforms by depositing a stress change of the upper film layer, thereby causing a change in electrical resistance to produce a change in electrical signal.
  • the generated signal is filtered and amplified and fed back to the control system (PID)
  • PID control system
  • the ultra-thin glass substrate obtained by the above method can be applied to various display fields such as LCD, OLED, touch screen, etc., and can be prepared into various display devices according to the prior art, especially flexible display devices, such as electronic paper, digital photo frame, mobile phone, TV, etc.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Nonlinear Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Physical Vapour Deposition (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

本发明涉及一种超薄玻璃基板上导电膜的制备方法,采用磁控溅射法,设定初始磁控溅射功率和/或初始氩气流量进行导电膜的沉积,通过设置在所述超薄玻璃基板上的压力传感器检测所述导电膜的膜层应力,根据检测到的所述膜层应力实时调整磁控溅射功率和/或氩气流量,使得所述膜层的应力的绝对值保持在预定值以下;其中,所述超薄玻璃基板的厚度小于等于0.1mm。

Description

超薄玻璃基板上导电膜的制备方法、 LCD基板、 液晶面板及液晶显示器 件 技术领域
本发明实施例涉及超薄玻璃基板上导电膜的制备方法, LCD基板、 液晶 面板及液晶显示器件。 背景技术
平板显示技术在近十年有了飞速地发展, 从屏幕的尺寸到显示的质量都 取得了很大进步。经过不断的努力, LCD各方面的性能已经达到了传统 CRT 的水平, 逐渐取代 CRT。 随着平板显示产品需求的不断扩大, 各个生产厂商 之间的竟争也日趋激烈。 各厂家在不断提高产品性能的同时, 也在不断努力 降低产品的生产成本, 从而提高市场的竟争力。
柔性显示器件凭借其能够弯曲的特性可以胜任很多需要曲面显示的领 域, 如智能卡、 电子纸、 智能标签、 以及传统显示器件所能适用的所有领域, 并可能在未来的显示产品市场中凭借其梦幻般的靓丽外观占领巨大的市场份 额。 目前主要的柔性显示器件是在有机材料基板上制备的显示器件, 如在聚 酰亚胺薄膜、 聚萘二曱酸乙二醇酯薄膜、 聚对苯二曱酸乙二醇酯薄膜等有机 薄膜及其复合薄膜上制备的胆甾相液晶显示器、 电泳式显示器、 有机电致发 光显示器等。
在柔性基板上制备显示元件, 必须使所制备的膜层具有较低的应力, 这 样才能使制备的器件具有柔韧性。 传统的制造显示元件的设备往往需要基板 在制备过程中保持平整, 但是由于传统的磁控溅射膜层的应力较大, 往往会 使柔性基板 1在沉积完成膜层 2后发生翘曲变形, 如图 1所示。 这严重地影 响了后续加工的继续进行, 对于玻璃基板来说甚至会破裂。
玻璃具有比有机材料优秀很多的透过率、化学稳定性、 阻水、介电特性。 目前常用玻璃基板的玻璃厚度为 0.5-1. lmm, 最薄也在 0.2mm以上。 超薄玻 璃基板尤其是 0.1mm及以下的玻璃基板不仅拥有上述性能,也具有良好的柔 韧性, 是柔性显示基板理想的材料。 但是, 由于传统膜层制备过程中往往产 生较大的应力, 加之玻璃基板本身的脆性, 致使超薄玻璃的应用受到了很大 的制约。 发明内容
本发明的实施例提供了一种超薄玻璃基板上导电膜的制备方法。 所述制 备方法釆用磁控溅射法,设定初始磁控溅射功率和 /或初始氩气流量进行导电 膜的沉积, 通过设置在所述超薄玻璃基板上的压力传感器检测所述导电膜的 膜层应力, 根据检测到的所述膜层应力实时调整磁控溅射功率和 /或氩气流 量, 使得所述膜层应力的绝对值保持在预定值以下; 其中, 所述超薄玻璃基 板的厚度小于等于 0.1mm。
本发明的实施例还提供了一种 LCD基板, 包括超薄玻璃基板, 所述基 板上导电膜的至少一种釆用上述的导电膜制备方法制备。
本发明的实施例进一步提供了一种液晶面板, 所述液晶面板包括上述 LCD基板。
本发明的实施例还提供了一种液晶显示器件, 所述液晶显示器件包括上 述液晶面板。
附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例或现有技 术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图 仅仅涉及本发明的一些实施例, 并非对本发明的限制。
图 1 是传统磁控溅射示意图;
图 2是本发明实施例的磁控溅射示意图;
图 3 是本发明实施例的导电膜沉积的控制循环。 具体实施方式
下面将结合附图,对本发明实施例中的技术方案进行清楚、完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有做出创造性劳动前提下 所获得的所有其他实施例, 都属于本发明保护的范围。
为克服现有技术中玻璃基板制备的膜层应力高、 易发生变形甚至破裂等 缺陷, 本发明实施例提供了一种超薄玻璃基板上导电膜的制备方法。 本发明 实施例所述的制备方法可以在无需改变现有普通玻璃基板生产的工艺路线和 设备的条件下, 只对现有生产线对应导电膜制备步骤中的磁控溅射功率以及 氩气流量加以改变和控制, 并相应调整溅射装置腔体的压强, 就能使得到的 导电膜应力显著下降, 由此可直接将现有生产线用于超薄玻璃基板的生产。
本发明实施例所述的制备方法使得磁控溅射产生的金属或半导体具有较 大晶粒, 减少了晶界等缺陷, 膜层略微疏 ^ 。 与传统的生产线相比, 本发明 实施例的基板上得到的导电膜层应力可以大幅降低, 例如可降低至原先的 30%以下, 由此能够适应柔性显示的需求, 且均匀性保持不变。 本发明实施 例所述技术方案能使得到的超薄玻璃基板表面平整, 不易发生变形, 实现了 0.1mm及以下超薄玻璃基板作为柔性基板的可能, 提高了可弯曲性能, 从而 提升了良品率和柔性显示器的可弯曲性能、 提高了产能和产品的竟争力。
本发明实施例所述的制备方法适用于目前通用的 1~10代生产线。 本领 域的生产设备大都由日本爱发科( ULVAC )生产, 相同世代产线的设备都是 通用的, 也就是说, 目前厚度为 0.5~1. lmm的普通玻璃基板在同一代生产线 沉积同一种导电膜的磁控溅射功率以及氩气流量等参数都是相同的。 例如, 2.5代生产线的 Mo沉积, 磁控溅射的功率都为 12kw, 氩气流量为 100sccm。 因此, 釆用本发明实施例所述的方法, 才艮据现有生产线的参数, 可以实现所 有世代生产线及所有导电膜的制备。
第一实施例
以薄膜晶体管液晶显示器(TFT-LCD )的阵列基板为例, 在 0.1mm超薄 玻璃基板 1上沉积金属 Mo膜 2以制作栅线和栅电极。
将 2.5代生产线的磁控溅射初始功率由原先的 12kw设定为 15kw, 氩气 流量由原先的 lOOsccm设定为 50sccm, 开始进行 Mo沉积。 在玻璃基板 1的 与要沉积膜层 2的表面相对的表面设置有压力传感器 4。随着膜层 2的沉积, 其中产生一应力。 随着沉积过程中膜 2的应力增大, 会通过胡克定律使得玻 璃基板发生形变, 从而使得压力传感器 4上检测到的应力值发生变化, 发出 电信号。 例如, 当膜层 2中应力的绝对值大于约 lOOMpa, 会使得玻璃基板 发生翘曲形变。 超薄玻璃基板 1中的应力与膜层 2中的应力为作用力和反作 用力的关系, 两者大小相等方向相反。 然后, 控制系统将传感器发出的电信 号参照公式 SM=A+B · P+C · F^+DP · FAT进行换算, 其中, A=-2449.13, B=l 59.334, C=40.4063 , D=-2.25469。 并且根据换算结果调整磁控溅射功率 和氩气流量。 调节效果时时由压力传感器得出。 在本实施例中, 为了保持超 薄玻璃基板 1不发生翘曲变形, 例如可使沉积过程中产生的膜应力的绝对值 始终保持在预定值 lOOMPa以下。 值得注意的是, 此预定值根据所釆用的超 薄玻璃基板的厚度和材料等可以不同。 沉积过程中根据氩气流量的变化保证 腔体内的压强在 0.36Pa以下。 上述控制循环如图 3所示。 最终得到不会使得 超薄玻璃基板发生翘曲形变的膜层。
按照传统 2.5代生产线的制备的金属 Mo膜的膜应力为 500 ~ 600MPa。 作为可选的实施方式, 磁控溅射初始功率可以设定为原有功率(在普通 玻璃基板上制备导电膜时的磁控溅射功率) 的 120 150%之间的任意值, 例 如为原有功率的 125~130%之间的任意值; 同时, 氩气流量可以设定为原有 流量(在普通玻璃基板上制备导电膜时的氩气流量) 的 50~90%之间的任意 值, 例如为原有流量的 70~80%之间的任意值。 对于 2.5代线磁控溅射设备, 在普通玻璃基板上制备导电膜时,磁控溅射功率范围约为 4 ~ 16KW,氩气流 量范围约为 80 ~ 120sccm。
金属 Mo膜沉积完毕后, 再按照现有方法完成光刻、 刻蚀等步骤, 形成 所需要的图案, 得到栅线和栅电极层。
阵列基板其他膜层涉及磁控溅射沉积的步骤中, 也可将其中的一步或多 步根据前述方法进行沉积, 例如源漏电极和数据线釆用上述方法沉积, 形成 TFT-LCD阵列基板。
所述阵列基板可按现有制备方法最终形成薄膜晶体管液晶显示器。
第二实施例
0.1mm超薄玻璃基板上沉积金属 Mo膜 2, 将 5代生产线将功率由原先 的 90kw提升至 120kw。 氩气流量由原先的 200sccm降低至 150sccm, 开始 进行 Mo沉积。 在被沉积的玻璃基板 1的与要沉积的膜层 2的表面相对的表 面设置有压力传感器 4。 随着膜层 2的沉积, 其中产生一应力。 随着沉积过 程中膜应力增大, 会通过胡克定律使得超薄玻璃基板 1发生形变, 从而使得 压力传感器 4上检测到玻璃基板 1的应力值发生变化, 发出电信号。 例如, 当膜层 2中的应力值的绝对值大于 100 MPa时, 会使得超薄玻璃基板 1发生 翘曲形变。 超薄玻璃基板 1中的应力与膜层 2中的应力为作用力和反作用力 的关系, 两者大小相等方向相反。 控制系统将传感器发出的电信号参照公式 SM=A+B -P+C -FAT+DP -FAT进行换算,其中,A=1085.4, B=-3.6142 , C=1.2105 , D=0, 并且根据换算结果调整磁控溅射功率和氩气流量, 调节效果时时由压 力传感器得出。 在此实施例中, 为使超薄玻璃基板 1不发生翘曲形变, 例如 可使沉积过程中产生的膜应力的绝对值始终保持在 lOOMPa以内。 值得注意 的是, 此预定值根据所釆用的超薄玻璃基板的厚度和材料等可以不同。 且根 据氩气流量的变化保证腔体内的压强在 0.30Pa之下。上述控制循环如图 3所 示。 最终得到不会使得超薄玻璃基板发生翘曲形变的膜层。
按照传统 5代生产线的制备的金属 Mo膜的膜应力为 900 ~ 1200MPa。 作为可选的实施方式, 磁控溅射初始功率可以设定为原有功率(在普通 玻璃基板上制备导电膜时的磁控溅射功率) 的 120 150%之间的任意值, 例 如原有功率的 125~130%之间的任意值; 同时, 氩气流量可以设定为原有流 量(在普通玻璃基板上制备导电膜时的氩气流量)的 50~90%之间的任意值, 例如原有流量的 70~80%之间的任意值。 对于 5代线磁控溅射设备, 在普通 玻璃基板上制备导电膜时,磁控溅射功率范围约为 50 ~ 110KW,氩气流量范 围约为 150 ~ 300sccm。
在上面的实施例中, 所述制备方法中根据所述压力传感器检测到的膜层 应力, 按照公式 SM=A+B* Ρ+C· FAr+DP* FAr来实时调整磁控溅射功率和 /或氩气流量; 其中, SM为膜层应力, 单位 MPa, P为磁控溅射功率, 单位 kw, FAr为氩气流量, 单位为 sccm, A、 B、 C、 D为经验系数。 上述公式中 的经验系数 A、 B、 C、 D的值根据不同代次的生产线相应成一定比例关系进 行调整。 例如, 假设原代次生产线的系数为 A、 B、 C、 D, 新代次生产线的 系数为 A'、 B'、 C'、 D'; 则 A' - A, Β' - B(L' W'/L W), C - C(VVV溅 射腔体的容积), D' - D((L'*W'/L*W) (VVV))1/2, 其中, L、 W分别指原代 次生产线的所用靶材的长度和宽度, L,、 W 分别指新代次生产线的所用靶 材的长度和宽度, V是指原代次生产线的磁控溅射腔体的容积, V'是指新代 次生产线的磁控溅射腔体的容积。 在上面的实施例中, 压力传感器可以是一 个应力应变传感器, 通过沉积上膜层的应力变化, 产生形变, 从而发生电阻 变化,产生电信号的变化。产生的信号通过过滤和放大,反馈给控制系统( PID 电路) , 然后控制沉积参数发生变化, 实现稳定地应力沉积。
经上述方法得到的超薄玻璃基板可应用于 LCD、 OLED、 触摸屏等多项 显示领域, 可按照现有技术制备成多种显示器件, 尤其是柔性显示器件, 如 电子纸、 数码相框、 手机、 电视等。
虽然上文中已经用一般性说明、 具体实施方式及实验, 对本发明作了详 尽的描述, 但在本发明基础上, 可以对之作一些修改或改进, 这对本领域技 术人员而言是显而易见的。 因此, 在不偏离本发明精神的基础上所做的这些 修改或改进, 均属于本发明要求保护的范围。

Claims

权利要求书
1、 一种超薄玻璃基板上制备导电膜的方法, 釆用磁控溅射法, 其中, 设 定初始磁控溅射功率和 /或初始氩气流量进行导电膜的沉积,通过设置在所述 超薄玻璃基板上的压力传感器检测所述导电膜的膜层应力, 根据检测到的所 述膜层应力实时调整磁控溅射功率和 /或氩气流量,使得所述膜层的应力的绝 对值保持在预定值以下; 其中, 所述超薄玻璃基板的厚度小于等于 0.1mm。
2、 根据权利要求 1 所述的方法, 其中, 所述超薄玻璃基板的厚度为 0.01~0.1mm。
3、根据权利要求 1所述的方法, 其中, 所述初始磁控溅射功率为在普通 玻璃基板上制备导电膜时磁控溅射功率的 120 150%, 所述初始氩气流量为 在普通玻璃基板上制备导电膜时氩气流量的 50~90%; 所述普通玻璃基板的 厚度为 0.5~l.lmm。
4、根据权利要求 3所述的方法, 其中, 所述初始磁控溅射功率为在普通 玻璃基板上制备导电膜时磁控溅射功率的 125 130%, 所述初始氩气流量为 在普通玻璃基板上制备导电膜时氩气流量的 70~80%。
5、根据权利要求 1所述的方法, 其中,根据所述压力传感器检测到的膜 层应力, 按照公式 SM=A+B · P+C · F^+DP · FAT来实时调整磁控溅射功率和 /或氩气流量; 其中, SM为膜层应力, 单位 MPa, P为磁控溅射功率, 单位 kw, FAT为氩气流量, 单位为 sccm, A、 B、 C、 D为经验系数。
6、根据权利要求 1所述的方法, 其中, 所述压力传感器设置于超薄玻璃 基板的与要沉积膜层的表面相对的表面。
7、根据权利要求 1所述的方法, 其中, 所述磁控溅射真空室的腔体压强 小于 0.36 Pa。
8、 一种液晶显示器 (LCD )基板, 包括超薄玻璃基板, 其中, 所述玻 璃基板上导电膜的至少一种釆用权利要求 1所述的方法制备。
9、 根据权利要求 8所述的 LCD基板, 其中, 所述导电膜为用于制备栅 线、 栅电极、 源漏电极、 数据线或像素电极的导电膜。
10、 根据权利要求 9所述的方法, 其中, 所述导电膜为 AlNd、 Al、 Cu、 Mo、 MoW、 Cr或铟锡氧化物 (ITO ) 的单层月莫, 或 AlNd、 Al、 Cu、 Mo、 MoW或 Cr任意组合构成的复合膜。
11、 一种液晶面板, 所述液晶面板包括权利要求 8所述的 LCD基板 t
12、 一种液晶显示器件, 包括权利要求 11所述的液晶面板。
PCT/CN2012/080326 2011-08-19 2012-08-17 超薄玻璃基板上导电膜的制备方法、lcd基板、液晶面板及液晶显示器件 WO2013026376A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/703,724 US9134559B2 (en) 2011-08-19 2012-08-17 Method for preparing conducting film on ultra-thin glass substrate, LCD substrate, liquid crystal panel and LCD device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110240380.2A CN102953037B (zh) 2011-08-19 2011-08-19 一种超薄玻璃基板上导电膜的制备方法
CN201110240380.2 2011-08-19

Publications (1)

Publication Number Publication Date
WO2013026376A1 true WO2013026376A1 (zh) 2013-02-28

Family

ID=47745941

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/080326 WO2013026376A1 (zh) 2011-08-19 2012-08-17 超薄玻璃基板上导电膜的制备方法、lcd基板、液晶面板及液晶显示器件

Country Status (3)

Country Link
US (1) US9134559B2 (zh)
CN (1) CN102953037B (zh)
WO (1) WO2013026376A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103091692B (zh) * 2013-01-10 2015-08-19 同济大学 基于激光刻蚀方法的阻抗式镍薄膜量热计及其制作方法
US9321677B2 (en) * 2014-01-29 2016-04-26 Corning Incorporated Bendable glass stack assemblies, articles and methods of making the same
US10302976B2 (en) * 2017-05-09 2019-05-28 Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Method and device for releasing film layer stress of array substrate
CN109411604B (zh) * 2017-08-15 2021-01-08 京东方科技集团股份有限公司 传感器及其制备方法、阵列基板、显示面板、显示装置
CN110963713A (zh) * 2019-12-30 2020-04-07 深圳市楠轩光电科技有限公司 一种超薄滤光片及其制造方法
CN114783298B (zh) * 2022-05-25 2023-08-01 苏州华星光电技术有限公司 柔性屏的校平装置和柔性屏的校平方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5745240A (en) * 1994-05-11 1998-04-28 Essilor International Compagnie Generale D'optique Method and device for in situ stress measurement within a thin film upon its deposition on a substrate
CN101457347A (zh) * 2008-12-22 2009-06-17 中国航天科技集团公司第五研究院第五一○研究所 一种薄膜应力控制方法
CN101626987A (zh) * 2007-01-30 2010-01-13 康宁股份有限公司 超薄玻璃的拉制和吹制
CN101793675A (zh) * 2010-03-26 2010-08-04 北京理工大学 一种薄膜应力在线测试系统
US20100275676A1 (en) * 2009-04-30 2010-11-04 King Michael J Passive blast pressure sensor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5448037A (en) * 1992-08-03 1995-09-05 Mitsui Toatsu Chemicals, Inc. Transparent panel heater and method for manufacturing same
JP4531358B2 (ja) * 2003-07-10 2010-08-25 株式会社エヌ・ティ・ティ・ドコモ タッチパネルディスプレイ装置
CN101515558A (zh) * 2006-03-30 2009-08-26 西安电子科技大学 在线检测薄膜生长率和应力的方法
CN1971248A (zh) * 2006-11-17 2007-05-30 中国科学院上海光学精密机械研究所 高精度薄膜应力实时测量装置及测量方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5745240A (en) * 1994-05-11 1998-04-28 Essilor International Compagnie Generale D'optique Method and device for in situ stress measurement within a thin film upon its deposition on a substrate
CN101626987A (zh) * 2007-01-30 2010-01-13 康宁股份有限公司 超薄玻璃的拉制和吹制
CN101457347A (zh) * 2008-12-22 2009-06-17 中国航天科技集团公司第五研究院第五一○研究所 一种薄膜应力控制方法
US20100275676A1 (en) * 2009-04-30 2010-11-04 King Michael J Passive blast pressure sensor
CN101793675A (zh) * 2010-03-26 2010-08-04 北京理工大学 一种薄膜应力在线测试系统

Also Published As

Publication number Publication date
CN102953037A (zh) 2013-03-06
US20130148073A1 (en) 2013-06-13
US9134559B2 (en) 2015-09-15
CN102953037B (zh) 2014-12-17

Similar Documents

Publication Publication Date Title
WO2013026376A1 (zh) 超薄玻璃基板上导电膜的制备方法、lcd基板、液晶面板及液晶显示器件
TWI472830B (zh) 顯示用基板及其製法與顯示裝置
WO2016177242A1 (zh) 触控显示面板及其制备方法、触控显示装置
WO2019114357A1 (zh) 阵列基板及其制造方法、显示装置
KR20110012182A (ko) 연속 스퍼터링을 구현하는 롤투롤 스퍼터 장치 및 연속 스퍼터링 방법
WO2013170607A1 (zh) 一种新型双面导电膜制作工艺
KR20080100358A (ko) 전자 장치, 이의 제조방법 및 스퍼터링 타겟
WO2014034575A1 (ja) 透明電極付き基板の製造方法、および透明電極付き基板
WO2019214413A1 (zh) 阵列基板的制作方法
CN108828844B (zh) 降低母板翘曲的成膜方法
US9620729B2 (en) Organic thin film transistor and method of manufacturing the same, array substrate and display device
CN102738081B (zh) Tft液晶显示器array板的制备方法
CN107357454A (zh) 一种带有ito消影膜的触控屏的生产工艺
WO2020114101A1 (zh) 薄膜晶体管、显示基板及其制备方法、显示装置
WO2019100496A1 (zh) Va型薄膜晶体管阵列基板及其制作方法
CN112209626A (zh) 一种高阻膜及其制备方法与应用
CN107532282B (zh) 制造用于显示器制造的层堆叠的方法和其设备
CN103995395B (zh) 一种液晶显示屏及制造方法
CN103489505A (zh) 一种触摸屏用ito导电膜及其制备方法
US20130240995A1 (en) Thin-film transistor array substrate and manufacturing method thereof
WO2014056252A1 (zh) 薄膜晶体管主动装置及其制作方法
CN109913858B (zh) 化学气相沉积非晶硅镀膜均匀性的改善方法
CN105116589A (zh) 阵列基板、透光钝化膜及液晶显示面板的制造方法
TW201604632A (zh) 銅導線結構及其製造方法
TWI618808B (zh) 透明導電性基板及透明導電性基板之製造方法、以及觸控面板

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 13703724

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12825622

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25/06/2014)

122 Ep: pct application non-entry in european phase

Ref document number: 12825622

Country of ref document: EP

Kind code of ref document: A1