WO2019214413A1 - 阵列基板的制作方法 - Google Patents

阵列基板的制作方法 Download PDF

Info

Publication number
WO2019214413A1
WO2019214413A1 PCT/CN2019/083176 CN2019083176W WO2019214413A1 WO 2019214413 A1 WO2019214413 A1 WO 2019214413A1 CN 2019083176 W CN2019083176 W CN 2019083176W WO 2019214413 A1 WO2019214413 A1 WO 2019214413A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
array substrate
fabricating
substrate according
metal layer
Prior art date
Application number
PCT/CN2019/083176
Other languages
English (en)
French (fr)
Inventor
胡小波
Original Assignee
深圳市华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电半导体显示技术有限公司 filed Critical 深圳市华星光电半导体显示技术有限公司
Publication of WO2019214413A1 publication Critical patent/WO2019214413A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28079Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being a single metal, e.g. Ta, W, Mo, Al
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • H01L29/6675Amorphous silicon or polysilicon transistors
    • H01L29/66765Lateral single gate single channel transistors with inverted structure, i.e. the channel layer is formed after the gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78651Silicon transistors
    • H01L29/7866Non-monocrystalline silicon transistors
    • H01L29/78663Amorphous silicon transistors
    • H01L29/78669Amorphous silicon transistors with inverted-type structure, e.g. with bottom gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78651Silicon transistors
    • H01L29/7866Non-monocrystalline silicon transistors
    • H01L29/78672Polycrystalline or microcrystalline silicon transistor
    • H01L29/78678Polycrystalline or microcrystalline silicon transistor with inverted-type structure, e.g. with bottom gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a method for fabricating an array substrate.
  • LCDs liquid crystal displays
  • Various consumer electronic products such as digital assistants, digital cameras, notebook computers, and desktop computers have become mainstream in display devices.
  • the liquid crystal display panel is composed of a color film (CF, Color Filter) substrate, and a thin film transistor array (TFT, Thin Film). Transistor)
  • the substrate, the liquid crystal (LC) and the sealant between the color filter substrate and the thin film transistor substrate, the molding process generally includes: an Array process (film, yellow light, Etching and stripping), middle-stage cell (Cell process) (TFT substrate and CF substrate bonding) and rear-end module assembly process (drive integrated circuit (IC) and printed circuit board are pressed together).
  • the front Array process mainly forms a TFT substrate to control the movement of liquid crystal molecules; the middle Cell process mainly adds liquid crystal between the TFT substrate and the CF substrate; the rear module assembly process is mainly to drive the IC to press and print the circuit.
  • the integration of the plates drives the liquid crystal molecules to rotate and display images.
  • metal aluminum is generally used as a conductive metal material in an array substrate.
  • display technology people have higher and higher requirements on display panel size, resolution, and picture refresh rate, and metal having higher resistivity.
  • Aluminum is not enough to meet technical needs in high-quality display panels.
  • a technical proposal of using a metal copper instead of a metal aluminum as a conductive metal material of an array substrate is proposed, but in a technical solution using a metal copper as a conductive metal material of an array substrate, the surface roughness of the copper film is high, especially In a large-sized display panel, the thickness of the copper film is relatively larger, and the surface roughness thereof is also larger.
  • a copper film of 10,000 angstroms has a surface roughness of 5 nm, and a grain peak height is higher than an average interface of 500 angstroms.
  • the gate insulating layer and the semiconductor layer deposited on the gate electrode have a shape which is consistent with the surface of the gate electrode, and the roughness is also large, and the thickness is thin.
  • the surface roughness is too large, the device characteristics are deteriorated, which affects the quality of the display panel.
  • An object of the present invention is to provide a method for fabricating an array substrate, which can reduce the roughness of the surface of the gate, prevent excessive surface roughness of the semiconductor layer due to excessive surface roughness of the gate, and improve device characteristics of the TFT.
  • the present invention provides a method for fabricating an array substrate, comprising the following steps:
  • Step S1 providing a substrate, forming a first metal layer on the substrate;
  • Step S2 performing plasma treatment on the first metal layer to reduce surface roughness of the first metal layer
  • Step S3 patterning the first metal layer to form a gate
  • Step S4 depositing a gate insulating layer on the gate and the substrate;
  • Step S5 forming a semiconductor layer on the gate insulating layer above the gate
  • Step S6 forming a source and a drain respectively contacting the both ends of the semiconductor layer on the gate insulating layer.
  • the first metal layer includes a barrier layer on the substrate and a conductive functional layer covering the barrier layer.
  • the material of the barrier layer is molybdenum, and the material of the conductive functional layer is copper.
  • the barrier layer has a thickness of 100 to 500 angstroms, and the conductive functional layer has a thickness of more than 5000 angstroms.
  • the processing gas used in the plasma treatment of the first metal layer in the step S2 is helium gas.
  • the flow rate of the processing gas during the plasma treatment is 100 sccm to 1000 sccm, the energy is 1 kW to 4 kW, and the processing time is 10 s to 100 s.
  • the method for fabricating the array substrate further includes: step S7, forming a passivation layer on the gate insulating layer, the semiconductor layer, the source and the drain, and forming a pixel electrode on the passivation layer.
  • the step S7 further forms a via hole penetrating the passivation layer and exposing a portion of the drain, and the pixel electrode is in contact with the drain through the via.
  • a first metal layer is formed by a sputtering plating process.
  • the plasma treatment in the step S2 is performed in a vacuum chamber.
  • the invention provides a method for fabricating an array substrate, which reduces the surface roughness of the first metal layer by plasma treatment on the surface of the first metal layer, thereby reducing the surface roughness of the gate electrode made of the first metal layer.
  • the surface roughness of the semiconductor layer is prevented from being excessive due to excessive surface roughness of the gate electrode, and the device characteristics of the TFT are improved.
  • FIG. 1 is a schematic view showing a step S1 of a method of fabricating an array substrate of the present invention
  • FIG. 2 is a schematic view showing a step S2 of the method for fabricating the array substrate of the present invention
  • step S3 is a schematic diagram of step S3 of the method for fabricating the array substrate of the present invention.
  • FIG. 5 is a flow chart of a method of fabricating an array substrate of the present invention.
  • the present invention provides a method for fabricating an array substrate, comprising the following steps:
  • Step S1 a substrate 10 is provided, and a first metal layer 20' is formed on the substrate.
  • the first metal layer 20' includes: two laminated film layers, respectively a barrier layer 21 and a cover layer on the substrate 10.
  • the conductive functional layer 22 of the barrier layer 21 is described.
  • the material of the barrier layer 21 is molybdenum (Mo)
  • the material of the conductive functional layer 22 is copper (Cu)
  • the material of the conductive functional layer 22 is copper to reduce the resistivity of the conductive material in the array substrate.
  • the barrier layer 21 has a thickness of 100 to 500 angstroms
  • the conductive functional layer 22 has a thickness of more than 5000 angstroms.
  • composition of the first metal layer 20' is not limited to the structure of the barrier layer 21 and the conductive functional layer 22 described above, and the material is not limited to molybdenum and copper, and other suitable structures and materials are equally applicable to the present invention.
  • the first metal layer 20' is formed by a PVD sputter process in the step S1.
  • Step S2 as shown in Fig. 2, the first metal layer 20' is subjected to plasma treatment to reduce the surface roughness of the first metal layer 20'.
  • the step S2 specifically includes: placing the substrate 10 on which the first metal layer 20' is formed into a vacuum chamber, performing plasma treatment on the first metal layer 20', and bombarding the atom by the processing gas.
  • the surface of the first metal layer 20' blasts the crystal peak of the raised first metal layer 20' to achieve the purpose of reducing the surface roughness of the first metal layer 20'.
  • the plasma treatment requires a processing gas having a small atomic radius to avoid damage to the surface of the first metal layer 20 ′ during bombardment.
  • the processing gas is helium (He).
  • He helium
  • the flow rate of the plasma processing gas is 100 sccm ⁇ 1000 sccm, the energy is 1 kW ⁇ 4 kW, and the processing time is 10 s ⁇ 100 s, wherein the energy control during the plasma processing needs to be in the operation process. It is particularly important to avoid new damage to the surface of the first metal layer 20' to avoid excessive energy.
  • the material of the conductive functional layer 22 may be replaced by aluminum (Al).
  • Al aluminum
  • the surface roughness of the conductive functional layer 22 may also be reduced by plasma treatment. .
  • Step S3 as shown in FIG. 3, the first metal layer 20' is patterned to form a gate electrode 20.
  • the first metal layer 20' is patterned by an exposure, development, and wet etching process to obtain the gate electrode 20.
  • the surface of the gate electrode 20 is subjected to plasma treatment, and the roughness is small.
  • Step S4 as shown in FIG. 4, a gate insulating layer 30 is deposited on the gate electrode 20 and the substrate 10.
  • the material of the gate insulating layer 30 is one or a combination of silicon oxide and silicon nitride.
  • Step S5 as shown in FIG. 4, a semiconductor layer 40 is formed on the gate insulating layer 30 above the gate electrode 20.
  • the material of the semiconductor layer 40 is amorphous silicon, polycrystalline silicon or an oxide semiconductor.
  • the surface of the gate electrode 20 is subjected to plasma treatment, the surface roughness thereof is low, and the gate insulating layer 30 laminated on the gate electrode 20 and the gate insulating layer 30 above the gate electrode 20 are disposed.
  • the roughness of the semiconductor layer 40 is also low, and the device performance of the TFT due to excessive roughness of the semiconductor layer 40 can be effectively prevented.
  • Step S6 as shown in FIG. 4, a source 50 and a drain 60 respectively contacting the both ends of the semiconductor layer 40 are formed on the gate insulating layer 30.
  • the material of the source 50 and the drain 60 is a combination of one or more of molybdenum, aluminum and copper.
  • the source 50 and the drain 60 have the same structure as the gate 20 . It consists of a molybdenum layer 51 and a copper layer 52 laminated on the molybdenum layer 51.
  • the semiconductor layer 40, the source 50 and the drain 60 may be fabricated together by a halftone mask or a gray scale mask, or separately by two conventional masks.
  • Step S7 as shown in FIG. 4, a passivation layer 70 is formed on the gate insulating layer 30, the semiconductor layer 40, the source 50, and the drain 60, and a pixel electrode 80 is formed on the passivation layer 70.
  • the step S7 further forms a via 71 penetrating the passivation layer 70 and exposing a portion of the drain 60, and the pixel electrode 80 is in contact with the drain 60 through the via 71.
  • the material of the passivation layer 70 is one or a combination of silicon oxide and silicon nitride, and the via hole 71 is formed by the process of the photomask, the pixel electrode 80
  • the material is indium tin oxide.
  • the present invention provides a method for fabricating an array substrate, which reduces the surface roughness of the first metal layer by plasma treatment on the surface of the first metal layer, thereby reducing the gate formed by the first metal layer.
  • the surface roughness of the pole avoids excessive surface roughness of the semiconductor layer due to excessive roughness of the gate surface, and improves the device characteristics of the TFT.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thin Film Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

一种阵列基板的制作方法。所述阵列基板的制作方法通过对第一金属层的表面进行等离子体处理,减少第一金属层的表面粗糙度,从而减少由第一金属层制得的栅极的表面粗糙度,避免因栅极表面粗糙度过大而引起半导体层的表面粗糙度过大,改善TFT的器件特性。

Description

阵列基板的制作方法 技术领域
本发明涉及显示技术领域,尤其涉及一种阵列基板的制作方法。
背景技术
随着显示技术的发展,液晶显示器(Liquid Crystal Display,LCD)等平面显示装置因具有高画质、省电、机身薄及应用范围广等优点,而被广泛的应用于手机、电视、个人数字助理、数字相机、笔记本电脑、台式计算机等各种消费性电子产品,成为显示装置中的主流。
通常液晶显示面板由彩膜(CF,Color Filter)基板、薄膜晶体管阵列(TFT,Thin Film Transistor) 基板、夹于彩膜基板与薄膜晶体管基板之间的液晶(LC,Liquid Crystal)及密封胶框(Sealant)组成,其成型工艺一般包括:前段阵列(Array)制程(薄膜、黄光、蚀刻及剥膜)、中段成盒(Cell)制程(TFT基板与CF基板贴合)及后段模组组装制程(驱动集成电路(IC)与印刷电路板压合)。
其中,前段Array制程主要是形成TFT基板,以便于控制液晶分子的运动;中段Cell制程主要是在TFT基板与CF基板之间添加液晶;后段模组组装制程主要是驱动IC压合与印刷电路板的整合,进而驱动液晶分子转动,显示图像。
技术问题
现有技术中,一般金属铝作为阵列基板中的导电金属材料,随着显示技术的发展,人们对显示面板尺寸、分辨率和画面刷新速率的要求越来越高,具有较高电阻率的金属铝在高品质显示面板中已经不足以满足技术需要,
技术解决方案
因此提出了一种采用金属铜取代金属铝作为阵列基板的导电金属材料的技术方案,但在采用金属铜作为阵列基板的导电金属材料的技术方案中,铜膜的表面粗糙度很高,尤其是在大尺寸的显示面板中,铜膜的厚度相对更大,其表面粗糙度也更大,例如10000埃米的铜膜其表面粗糙度可达5nm,晶粒峰高出平均界面超过500埃,在利用粗糙度较高的铜膜制作栅极时,沉积在栅极上的栅极绝缘层及半导体层,其形貌会和栅极表面保持一致,粗糙度也会较大,对于厚度较薄的半导体层来说,其表面粗糙度过大,会导致其器件特性变差,影响显示面板的品质。
本发明的目的在于提供一种阵列基板的制作方法,能够减少栅极表面的粗糙度,避免因栅极表面粗糙度过大而引起半导体层的表面粗糙度过大,改善TFT的器件特性。
为实现上述目的,本发明提供一种阵列基板的制作方法,包括如下步骤:
步骤S1、提供一基板,在所述基板上形成第一金属层;
步骤S2、对所述第一金属层进行等离子处理,减小第一金属层的表面粗糙度;
步骤S3、图案化所述第一金属层,形成栅极;
步骤S4、在所述栅极及基板上沉积栅极绝缘层;
步骤S5、在所述栅极上方的栅极绝缘层上形成半导体层;
步骤S6、在所述栅极绝缘层上形成分别与所述半导体层的两端接触的源极和漏极。
所述第一金属层包括:位于所述基板上的阻挡层及覆盖所述阻挡层的导电功能层。
所述阻挡层的材料为钼,所述导电功能层的材料为铜。
所述阻挡层的厚度为100~500埃米,所述导电功能层的厚度大于5000埃米。
所述步骤S2中对第一金属层进行等离子处理时采用的处理气体为氦气。
所述步骤S2中等离子体处理时处理气体的流量为100sccm~1000sccm,能量为1 kW ~4 kW,处理时间为10s~100s。
所述阵列基板的制作方法还包括:步骤S7、在所述栅极绝缘层、半导体层、源极及漏极上形成钝化层,在所述钝化层上形成像素电极。
所述步骤S7还形成贯穿所述钝化层并暴露出所述漏极的一部分的过孔,所述像素电极通过所述过孔与漏极接触。
所述步骤S1中采用溅射镀膜工艺形成第一金属层。
所述步骤S2中的等离子处理在真空腔室中进行。
有益效果
本发明提供一种阵列基板的制作方法,通过对第一金属层的表面进行等离子体处理,减少第一金属层的表面粗糙度,从而减少由第一金属层制得的栅极的表面粗糙度,避免因栅极表面粗糙度过大而引起半导体层的表面粗糙度过大,改善TFT的器件特性。
附图说明
为了能更进一步了解本发明的特征以及技术内容,请参阅以下有关本发明的详细说明与附图,然而附图仅提供参考与说明用,并非用来对本发明加以限制。
附图中,
图1为本发明的阵列基板的制作方法的步骤S1的示意图;
图2为本发明的阵列基板的制作方法的步骤S2的示意图;
图3为本发明的阵列基板的制作方法的步骤S3的示意图;
图4为本发明的阵列基板的制作方法的步骤S4至步骤S7的示意图;
图5为本发明的阵列基板的制作方法的流程图。
本发明的实施方式
为更进一步阐述本发明所采取的技术手段及其效果,以下结合本发明的优选实施例及其附图进行详细描述。
请参阅图5,本发明提供一种阵列基板的制作方法,包括如下步骤:
步骤S1、提供一基板10,在所述基板上形成第一金属层20’。
具体地,如图1所示,在本发明的优选实施例中,所述第一金属层20’包括:两个层叠的膜层,分别为位于所述基板10上的阻挡层21及覆盖所述阻挡层21的导电功能层22。
优选地,所述阻挡层21的材料为钼(Mo),导电功能层22的材料为铜(Cu),通过设置所述导电功能层22的材料为铜能够降低阵列基板中导电材料的电阻率,满足大尺寸,高解析率的显示面板的要求。优选地,所述阻挡层21的厚度为100~500埃米,所述导电功能层22的厚度大于5000埃米。
当然,所述第一金属层20’的组成不限于上述的阻挡层21和导电功能层22组成的结构,材料也不局限与钼和铜,其他合适的结构和材料同样适用于本发明。
具体地,所述步骤S1中通过溅射镀膜(PVD sputter)工艺制作所述第一金属层20’。
步骤S2、如图2所示,对所述第一金属层20’进行等离子处理,减小第一金属层20’的表面粗糙度。
具体地,所述步骤S2具体包括:将所述制作有第一金属层20’的基板10放入真空腔室中,对所述第一金属层20’进行等离子处理,通过处理气体的原子轰击第一金属层20’的表面,将凸起的第一金属层20’的晶体峰轰击平整,达到减少第一金属层20’的表面粗糙度的目的。
需要说明的是,所述等离子处理需选用的原子半径较小的处理气体,以避免在轰击时造成第一金属层20’的表面产生损伤,优选地,所述处理气体为氦气(He),以上述优选实施例为例,在实验中利用氦气对5000埃米的由铜制成的导电功能层22进行等离子处理,可将其表面粗糙度由3.48nm降低至3.14nm。
进一步地,所述步骤S2中等离子体处理的处理气体的流量为100sccm~1000sccm,能量为1 kW ~4 kW,处理时间为10s~100s,其中,对于等离子体处理时的能量控制需要在操作过程中格外注意,以避免能量过大对所述第一金属层20’的表面造成新的损伤。
可选地,所述导电功能层22的材料也可以替换为铝(Al),当导电功能层22的材料为铝时,通过等离子体处理同样可以达到减少导电功能层22的表面粗糙度的目的。
步骤S3、如图3所示,图案化所述第一金属层20’,形成栅极20。
具体地,所述步骤S3通过曝光、显影及湿蚀刻制程图案化所述第一金属层20’,以得到栅极20,此时栅极20的表面经过等离子体处理,粗糙度较小。
步骤S4、如图4所示,在所述栅极20及基板10上沉积栅极绝缘层30。
具体地,所述栅极绝缘层30的材料为氧化硅及氮化硅中的一种或二者的组合。
步骤S5、如图4所示,在所述栅极20上方的栅极绝缘层30上形成半导体层40。
具体地,所述半导体层40的材料为非晶硅、多晶硅或氧化物半导体。
需要说明的是,由于栅极20的表面经过等离子处理,其表面粗糙度较低,层叠于栅极20上的栅极绝缘层30及位于所述栅极20上方的栅极绝缘层30上的半导体层40的粗糙度也较低,能够有效避免半导体层40的粗糙度过大而导致的TFT的器件性能下降。
步骤S6、如图4所示,在所述栅极绝缘层30上形成分别与所述半导体层40的两端接触的源极50和漏极60。
具体地,所述源极50和漏极60的材料为钼、铝及铜中的一种或多种的组合,优选地,所述源极50和漏极60与栅极20的结构相同,由一钼层51和层叠于钼层51上的铜层52构成。
进一步地,所述半导体层40、源极50和漏极60可通过一道半色调光罩或灰阶光罩一同制得,也可分别通过两道常规光罩分别制得。
步骤S7、如图4所示,在所述栅极绝缘层30、半导体层40、源极50及漏极60上形成钝化层70,在所述钝化层70上形成像素电极80。
具体地,所述步骤S7还形成贯穿所述钝化层70并暴露出所述漏极60的一部分的过孔71,所述像素电极80通过所述过孔71与漏极60接触。
优选地,所述钝化层70的材料为氧化硅及氮化硅中的一种或二者的组合,所述过孔71通过对所述一道光罩制程制得,所述像素电极80的材料为氧化铟锡。
综上所述,本发明提供一种阵列基板的制作方法,通过对第一金属层的表面进行等离子体处理,减少第一金属层的表面粗糙度,从而减少由第一金属层制得的栅极的表面粗糙度,避免因栅极表面粗糙度过大而引起半导体层的表面粗糙度过大,改善TFT的器件特性。
以上所述,对于本领域的普通技术人员来说,可以根据本发明的技术方案和技术构思作出其他各种相应的改变和变形,而所有这些改变和变形都应属于本发明权利要求的保护范围。

Claims (17)

  1. 一种阵列基板的制作方法,其特征在于,包括如下步骤:
    步骤S1、提供一基板,在所述基板上形成第一金属层;
    步骤S2、对所述第一金属层(进行等离子处理,减小第一金属层的表面粗糙度;
    步骤S3、图案化所述第一金属层,形成栅极;
    步骤S4、在所述栅极及基板上沉积栅极绝缘层;
    步骤S5、在所述栅极上方的栅极绝缘层上形成半导体层;
    步骤S6、在所述栅极绝缘层上形成分别与所述半导体层的两端接触的源极和漏极。
  2. 如权利要求1所述的阵列基板的制作方法,其特征在于,所述第一金属层包括:位于所述基板上的阻挡层及覆盖所述阻挡层的导电功能层。
  3. 如权利要求2所述的阵列基板的制作方法,其特征在于,所述阻挡层的材料为钼,所述导电功能层的材料为铜。
  4. 如权利要求2所述的阵列基板的制作方法,其特征在于,所述阻挡层的厚度为100~500埃米,所述导电功能层的厚度大于5000埃米。
  5. 如权利要求1所述的阵列基板的制作方法,其特征在于,所述步骤S2中对第一金属层进行等离子处理时采用的处理气体为氦气。
  6. 如权利要求1所述的阵列基板的制作方法,其特征在于,所述步骤S2中等离子体处理时处理气体的流量为100sccm~1000sccm,能量为1kW~4 kW,处理时间为10s~100s。
  7. 如权利要求1所述的阵列基板的制作方法,其特征在于,还包括:步骤S7、在所述栅极绝缘层、半导体层、源极及漏极上形成钝化层,在所述钝化层上形成像素电极。
  8. 如权利要求7所述的阵列基板的制作方法,其特征在于,所述步骤S7还形成贯穿所述钝化层并暴露出所述漏极的一部分的过孔,所述像素电极通过所述过孔与漏极接触。
  9. 如权利要求1所述的阵列基板的制作方法,其特征在于,所述步骤S1中采用溅射镀膜工艺形成第一金属层。
  10. 如权利要求1所述的阵列基板的制作方法,其特征在于,所述步骤S2中的等离子处理在真空腔室中进行。
  11. 如权利要求3所述的阵列基板的制作方法,其特征在于,所述导电功能层的材料为铝(Al)。
  12. 如权利要求1所述的阵列基板的制作方法,其特征在于,所述步骤S4中所述栅极绝缘层的材料为氧化硅及氮化硅中的一种或二者的组合。
  13. 如权利要求1所述的阵列基板的制作方法,其特征在于,所述步骤S5中所述半导体层的材料为非晶硅、多晶硅或氧化物半导体。
  14. 如权利要求1所述的阵列基板的制作方法,其特征在于,所述步骤S6中所述源极和漏极的材料为钼、铝及铜中的一种或多种的组合。
  15. 如权利要求14所述的阵列基板的制作方法,其特征在于,所述步骤S6中所述源极和漏极与栅极的结构相同,由一钼层和层叠于钼层上的铜层构成。
  16. 如权利要求7所述的阵列基板的制作方法,其特征在于,还包括:步骤S7中所述钝化层的材料为氧化硅及氮化硅中的一种或二者的组合。
  17. 如权利要求8所述的阵列基板的制作方法,其特征在于,还包括:步骤S7中所述过孔通过对所述一道光罩制程制得,所述像素电极的材料为氧化铟锡。
PCT/CN2019/083176 2018-05-09 2019-04-18 阵列基板的制作方法 WO2019214413A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810439398.7A CN108598174A (zh) 2018-05-09 2018-05-09 阵列基板的制作方法
CN201810439398.7 2018-05-09

Publications (1)

Publication Number Publication Date
WO2019214413A1 true WO2019214413A1 (zh) 2019-11-14

Family

ID=63636621

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/083176 WO2019214413A1 (zh) 2018-05-09 2019-04-18 阵列基板的制作方法

Country Status (2)

Country Link
CN (1) CN108598174A (zh)
WO (1) WO2019214413A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108598174A (zh) * 2018-05-09 2018-09-28 深圳市华星光电半导体显示技术有限公司 阵列基板的制作方法
CN109991787B (zh) * 2019-03-15 2022-06-07 惠科股份有限公司 一种阵列基板及其制作方法
CN112885848B (zh) * 2021-01-29 2024-05-24 Tcl华星光电技术有限公司 阵列基板及显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010093165A (ja) * 2008-10-10 2010-04-22 Konica Minolta Holdings Inc 電極の製造方法、これを用いた薄膜トランジスタ素子及び有機エレクトロルミネッセンス素子
CN103258743A (zh) * 2012-02-15 2013-08-21 乐金显示有限公司 薄膜晶体管、薄膜晶体管阵列基板及其制造方法
CN104716201A (zh) * 2015-04-03 2015-06-17 合肥鑫晟光电科技有限公司 薄膜晶体管及其制作方法、阵列基板、显示设备
CN106803485A (zh) * 2017-03-21 2017-06-06 深圳市华星光电技术有限公司 一种薄膜晶体管及其制备方法、显示器
CN108598174A (zh) * 2018-05-09 2018-09-28 深圳市华星光电半导体显示技术有限公司 阵列基板的制作方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5308019B2 (ja) * 2007-12-19 2013-10-09 三菱電機株式会社 薄膜トランジスタ、及びその製造方法、並びに表示装置
CN104979276B (zh) * 2014-04-09 2018-05-08 中芯国际集成电路制造(上海)有限公司 一种半导体器件的制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010093165A (ja) * 2008-10-10 2010-04-22 Konica Minolta Holdings Inc 電極の製造方法、これを用いた薄膜トランジスタ素子及び有機エレクトロルミネッセンス素子
CN103258743A (zh) * 2012-02-15 2013-08-21 乐金显示有限公司 薄膜晶体管、薄膜晶体管阵列基板及其制造方法
CN104716201A (zh) * 2015-04-03 2015-06-17 合肥鑫晟光电科技有限公司 薄膜晶体管及其制作方法、阵列基板、显示设备
CN106803485A (zh) * 2017-03-21 2017-06-06 深圳市华星光电技术有限公司 一种薄膜晶体管及其制备方法、显示器
CN108598174A (zh) * 2018-05-09 2018-09-28 深圳市华星光电半导体显示技术有限公司 阵列基板的制作方法

Also Published As

Publication number Publication date
CN108598174A (zh) 2018-09-28

Similar Documents

Publication Publication Date Title
WO2017147974A1 (zh) 阵列基板的制作方法及制得的阵列基板
WO2017166341A1 (zh) Tft基板的制作方法及制得的tft基板
US7776664B2 (en) Method of manufacturing semiconductor device
WO2016086539A1 (zh) 液晶面板及其制作方法
WO2016065852A1 (zh) 一种coa基板及其制作方法和显示装置
WO2018090482A1 (zh) 阵列基板及其制备方法、显示装置
WO2019214413A1 (zh) 阵列基板的制作方法
WO2019114357A1 (zh) 阵列基板及其制造方法、显示装置
WO2020093442A1 (zh) 阵列基板的制作方法及阵列基板
US20190043898A1 (en) Array substrate motherboard, method for manufacturing the same, and display device
WO2020073474A1 (zh) Tft阵列基板的制作方法
WO2015000257A1 (zh) 阵列基板及其制备方法、显示装置
WO2017201791A1 (zh) Tft基板的制作方法及tft基板
WO2018032670A1 (zh) Tft基板的制作方法
WO2019095482A1 (zh) Tft基板及其制作方法
WO2018170973A1 (zh) 用于4m制程制备tft的光罩及4m制程tft阵列制备方法
JP6110412B2 (ja) 薄膜トランジスタアレイ基板及びその製造方法
WO2017147973A1 (zh) 阵列基板的制作方法及制得的阵列基板
US8304266B2 (en) Manufacturing method of thin film transistor substrate of liquid crystal display panel
WO2018205569A1 (zh) 显示基板及其制备方法、显示面板和显示装置
WO2020047916A1 (zh) 有机发光二极管驱动背板制造方法
WO2019100494A1 (zh) Ips型薄膜晶体管阵列基板及其制作方法
WO2018040409A1 (zh) 一种金属氧化物薄膜晶体管及其制备方法
WO2019104849A1 (zh) 薄膜晶体管的制作方法及阵列基板的制作方法
CN107665926A (zh) 一种阵列基板及其制备方法、显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19799653

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19799653

Country of ref document: EP

Kind code of ref document: A1