WO2013021675A1 - 藻類培養方法及び藻類培養装置 - Google Patents

藻類培養方法及び藻類培養装置 Download PDF

Info

Publication number
WO2013021675A1
WO2013021675A1 PCT/JP2012/057853 JP2012057853W WO2013021675A1 WO 2013021675 A1 WO2013021675 A1 WO 2013021675A1 JP 2012057853 W JP2012057853 W JP 2012057853W WO 2013021675 A1 WO2013021675 A1 WO 2013021675A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
algae
red
blue
irradiation
Prior art date
Application number
PCT/JP2012/057853
Other languages
English (en)
French (fr)
Inventor
正義 執行
廣志 鈴木
山内 直樹
博則 荒
陽大 下川
已紗都 松本
裕樹 殿岡
Original Assignee
昭和電工株式会社
国立大学法人山口大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社, 国立大学法人山口大学 filed Critical 昭和電工株式会社
Priority to CN201280035383.5A priority Critical patent/CN103747670B/zh
Priority to EP12822667.7A priority patent/EP2740349B1/en
Priority to JP2013527906A priority patent/JP5729785B2/ja
Priority to US14/236,152 priority patent/US20140170733A1/en
Publication of WO2013021675A1 publication Critical patent/WO2013021675A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • A01G7/04Electric or magnetic or acoustic treatment of plants for promoting growth
    • A01G7/045Electric or magnetic or acoustic treatment of plants for promoting growth with electric lighting
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G33/00Cultivation of seaweed or algae
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H3/00Processes for modifying phenotypes, e.g. symbiosis with bacteria
    • A01H3/02Processes for modifying phenotypes, e.g. symbiosis with bacteria by controlling duration, wavelength, intensity, or periodicity of illumination
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/12Unicellular algae; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N13/00Treatment of microorganisms or enzymes with electrical or wave energy, e.g. magnetism, sonic waves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/14Measures for saving energy, e.g. in green houses

Definitions

  • the present invention relates to an algal culture method and an algal culture apparatus. More specifically, the present invention relates to a method for culturing algae that promotes growth by irradiating algae with artificial light.
  • Patent Document 1 discloses a plant irradiation apparatus configured to irradiate a plant alternately with green light and white light.
  • This irradiation device constitutes a change of day and night by alternately irradiating with green light with a wavelength of 500 to 570 nm and white light with a wavelength of 300 to 800 nm, thereby facilitating the growth of the plant by facilitating the translocation of the plant. is there.
  • Patent Document 2 discloses that a plant is cultivated and grown by lighting a light emitting diode emitting blue light (400 to 480 nm) and a light emitting diode emitting red light (620 to 700 nm) simultaneously or alternately.
  • a light source for plant cultivation that irradiates light energy for cultivation and tissue culture is disclosed. This light source for plant cultivation is intended to cultivate a plant with high energy efficiency by irradiating only light having a wavelength matching the light absorption peak of chlorophyll (around 450 nm and around 660 nm).
  • Patent Document 2 stipulates that blue light and red light may be irradiated simultaneously or alternately (see “Claim 1”).
  • Patent Document 2 in the comparison of blue light single irradiation, red light single irradiation, and simultaneous irradiation of blue light and red light, healthy growth similar to cultivation under sunlight (such as a length in single irradiation) under simultaneous irradiation. In comparison with unhealthy growth (see paragraph “0011” in the document), and the growth promoting effect when blue light and red light are alternately applied has not been confirmed. Therefore, Patent Document 2 does not substantially disclose a plant cultivation method by alternately irradiating blue light and red light.
  • algae include many unicellular or multicellular species belonging to prokaryotes and eukaryotes, and diatoms, dinoflagellates, green algae and the like belong to them.
  • green algae are those that are expected as raw materials for biofuels to produce hydrocarbons that can be substituted for petroleum by fixing carbon dioxide by photosynthesis, and health foods that produce abundant nutrients and antioxidants. And those that are used as raw materials for pharmaceuticals.
  • Patent Document 3 describes a method for extracting hydrocarbons from cultured green algae.
  • Patent Document 4 discloses a green algae that is a kind of red carotenoid and produces astaxanthin having a strong antioxidant action.
  • the main object of the present invention is to provide a simple technique for promoting the growth of algae.
  • the present invention provides an algal culture that promotes the growth of algae by separately performing a procedure of irradiating algae with red light illumination and a procedure of irradiating algae with blue light illumination within a certain period of time.
  • This algae culture method (execution method (Shigyo Method)) is, as a specific example, a procedure of irradiating red light illumination light and a procedure of irradiating blue light illumination light alternately and continuously.
  • the present invention also includes a light irradiation unit that irradiates algae with red light illumination light and blue light illumination light, a step of irradiating the algae with red light illumination light by controlling the light irradiation unit, and irradiates the algae with blue light illumination light.
  • an algae culture apparatus comprising: a step; and a control unit that executes the steps independently within a certain period of time.
  • the control unit maintains the light amount, wavelength and / or irradiation time of the red light illumination light and the blue light illumination light emitted from the light irradiation unit at a predetermined value or in a predetermined pattern. It is supposed to change.
  • the said light irradiation part is comprised including the light emitting diode which radiates
  • the “algae” has a photosynthetic ability of aquatic organisms such as unicellular organisms such as green algae, brown algae, cyanobacteria, red photosynthetic bacteria, aquatic plants, regardless of whether they are prokaryotes or eukaryotes. Multicellular organisms are widely included.
  • the present invention provides a method for culturing algae that is simple and capable of obtaining an excellent growth promoting effect.
  • Botryococcus brownie it is a drawing substitute photograph which shows the result of having examined the proliferation promotion effect by alternating irradiation of red light and blue light (Test Example 1).
  • Botryococcus brownie it is a drawing substitute graph which shows the result of having examined the proliferation promotion effect by the alternate irradiation of red light and blue light (Test Example 1).
  • Botryococcus brownie it is a drawing substitute graph which shows the result of having examined the proliferation promotion effect by the alternate irradiation of red light and blue light (Test Example 1).
  • Chlorella querseri it is a drawing substitute graph which shows the result of having examined the proliferation promotion effect by alternate irradiation of red light and blue light (Test Example 2).
  • Hematococcus lactolis it is a drawing substitute graph which shows the result of having examined the growth promotion effect by alternate irradiation of red light and blue light (Test Example 3).
  • Hematococcus lactolis it is a drawing substitute graph which shows the result of having examined the growth promotion effect by alternate irradiation of red light and blue light (Test Example 3).
  • Algal culture method (1) Algal culture method according to first embodiment (2) Algal culture method according to second embodiment (3) Algal culture method according to third embodiment (4) Wavelength (5) Light quantity (6) Irradiation time 2.
  • Algal culture device (1) Algal culture device according to the first embodiment (1-1) Light irradiation unit (1-2) Control unit Cultured algae
  • Algae culture method comprises a procedure of irradiating algae with red light illumination light (hereinafter also referred to as “red light irradiation step”), and blue light illumination light. This is a method of promoting the growth of algae by separately performing the procedure of irradiating algae (hereinafter also referred to as “blue light irradiation step”) within a certain period of time.
  • the red illumination light is substantially red light having a wavelength range of 570 to 730 nm.
  • the red light illumination light may include light having a wavelength range different from that of the red light, but preferably does not include blue light described below.
  • the red illumination light particularly preferably contains only the red light.
  • Blue light illumination light is illumination light that substantially includes blue light having a wavelength range of 400 to 515 nm.
  • the blue illumination light may include light having a wavelength range different from that of the blue light, but preferably does not include the above-described red light.
  • the blue illumination light particularly preferably contains only the blue light. Furthermore, it is preferable that the red light illumination light does not include the blue light, the blue light illumination light does not include the red light, the red light illumination light is only the red light, and the blue light illumination light is only the blue light. .
  • fixed period means a period of arbitrary length of time during algae culture. This period is the longest culture period. Further, the shortest period can be arbitrarily set as long as the effect of the present invention is exhibited. This period may be, for example, time (hr) as a unit of time length, and may be a longer time length unit (for example, day) or a shorter time length unit (for example, minutes). It may be a thing.
  • the algae culture method according to the present invention is started or ended at an arbitrary timing in the algae culture period, and can be applied at an arbitrary time length.
  • red light irradiation step and the blue light irradiation step exist separately within the above period.
  • the red light irradiation step and the blue light irradiation step may be included in at least one step in the period.
  • the red light irradiation step and the blue light irradiation step may be performed alternately and alternately, and during both steps, a procedure for simultaneously irradiating the algae with the red light illumination light and the blue light illumination light or a procedure for stopping the light irradiation to the algae is performed. It may be performed repeatedly and discontinuously. However, in order to enhance the algal growth promoting effect, it is preferable to carry out alternately and continuously.
  • Embodiments of the algal culture method according to the present invention will be specifically described with reference to FIGS. It should be noted that the plant cultivation method according to the present invention can naturally be implemented by appropriately combining the embodiments described with reference to FIGS.
  • FIG. 1 is a diagram for explaining the procedure of the algal culture method according to the first embodiment of the present invention.
  • the red light irradiation step and the blue light irradiation step are alternately and continuously performed.
  • reference numeral S 1 indicates a red light irradiation step
  • reference numeral S 2 indicates a blue light irradiation step.
  • red light irradiation step S 1 and the blue light irradiation step S 2 is performed continuously alternately, irradiation cycle of red light irradiation step S 1 and the blue light irradiation step S 2 Metropolitan is repeated.
  • FIG. 2 is a diagram for explaining the procedure of the algal culture method according to the second embodiment of the present invention.
  • the step of irradiating red light and the step of irradiating blue light is not performed with a procedure of simultaneously irradiating algae with red light illumination light and blue light illumination light (hereinafter also referred to as “simultaneous irradiation step”) between both steps. It is performed repeatedly in succession.
  • reference numeral S 3 illustrates the simultaneous irradiation step.
  • the red light irradiation step S 1 and the blue light irradiation step S 2 are discontinuously performed with the simultaneous irradiation step S 3 interposed therebetween, and the red light irradiation step S 1 , the simultaneous irradiation step S 3, and the blue light irradiation are performed.
  • irradiation cycle consisting of steps S 2 Metropolitan is repeated.
  • red light irradiation step S 1 in each irradiation cycle, simultaneous irradiation step S 3 and the blue light irradiation one or performed before the step S 2 is optional.
  • FIG. 3 is a diagram illustrating the procedure of the algae culturing method according to the third embodiment of the present invention.
  • the red light irradiation step and the blue light irradiation step are repeatedly performed discontinuously with a procedure (hereinafter also referred to as “pause step”) for stopping the light irradiation on the algae between both steps. It is.
  • reference numeral S 4 shows the idle step.
  • the red light irradiation step S 1 and the blue light irradiation step S 2 are discontinuously performed with the pause step S 4 interposed therebetween, and the red light irradiation step S 1 , the pause step S 4 and the blue light irradiation step S are performed.
  • the irradiation cycle consisting of 2 is repeated.
  • red light irradiation step S 1 in each irradiation cycle, idle step S 4, and the blue light irradiation step S Which of 2 is performed first is arbitrary.
  • red light means light having a wavelength of 570 to 730 nm, and light having a central wavelength of 635 to 660 nm is preferably used.
  • Blue light means light having a wavelength of 400 to 515 nm, and light having a central wavelength of 450 nm is preferably used.
  • the red light and the blue light may have a predetermined wavelength range with the above wavelength as a central wavelength.
  • the wavelength range for example, in the case of blue light, it can be 450 ⁇ 30 nm, preferably 450 ⁇ 20 nm, and more preferably 450 ⁇ 10 nm.
  • the wavelengths of red light and blue light may be changed within the above-mentioned wavelength range.
  • the wavelengths may be changed in the Nth irradiation cycle CN (N is an integer of 1 or more).
  • the M-th and the N-th irradiation cycles C N (M is one or more different integers N) wavelength and the irradiation cycle C M of may be different within the scope of the wavelength range.
  • red light irradiation step S 1 simultaneous irradiation step S 3 and blue light irradiation step S 2 , in addition to red light and blue light, light in a plurality of wavelength regions is combined with light in other wavelength regions. Irradiation may be performed.
  • the amount of light (intensity) of red light and blue light in the red light irradiation step S 1 , the blue light irradiation step S 2, and the simultaneous light irradiation step S 3 is not particularly limited.
  • photosynthetic photon flux density (PPFD) And 1 to 1000 ⁇ mol / m 2 s, preferably 10 to 500 ⁇ mol / m 2 s, particularly preferably about 50 to 250 ⁇ mol / m 2 s.
  • the light quantity (intensity) ratio of the red light illumination light and the blue light illumination light in each of the above steps is 1: 1, 5: 3, 2: 1, 3: 1 for “red: blue” or “blue: red”, for example. It can be arbitrarily set such as 4: 1, 10: 1, 20: 1, and the like.
  • the light amounts of the red light illumination light and the blue light illumination light may be changed within the above range.
  • the intensity may be changed in the Nth irradiation cycle CN (N is an integer of 1 or more).
  • the M-th and the N-th irradiation cycles C N may be the light intensity is varied within the above range in the irradiation cycle C M of.
  • the time of one irradiation cycle is the longest culture period.
  • the shortest time can be arbitrarily set as long as the effect of the present invention is exhibited.
  • One irradiation cycle may be, for example, in units of time length (hr), and may be longer time units (eg, days) or shorter time units (eg, minutes). It may be.
  • the algal culture method according to the first embodiment performed continuously red light irradiation step S 1 and the blue light irradiation step S 2 alternately, if the day one irradiation cycle, the red light irradiation step S 1 12 hours, the blue light irradiation step S 2 may be 12 hours.
  • the red light irradiation step S 1 12 hours
  • the blue light irradiation step S 2 may be 12 hours.
  • one irradiation cycle becomes 6 hours, it can be a red light irradiation step S 1 3 hour, 3 hours blue light irradiation step S 2.
  • the M-th and the N-th irradiation cycles C N may be changed by the irradiation cycle C M of.
  • the irradiation cycle CN can be 12 hours, and the subsequent irradiation cycle CN + 1 can be 6 hours.
  • the time ratio of the red light irradiation step S 1 , the blue light irradiation step S 2 , the simultaneous irradiation step S 3 and the pause step S 4 in one irradiation cycle may be arbitrary.
  • “red light irradiation step S 1 / blue light irradiation step S 2 ” is set to “12 hours ⁇ 12 hours (1 : 1) "," 16 hours ⁇ 8 hours (2: 1) ",” 21 hours ⁇ 3 hours (7: 1) ", etc.
  • the plant cultivation method according to the first embodiment continuously performing red light irradiation step S 1 and the blue light irradiation step S 2 alternately, and a red light irradiation step S 1 and the blue light irradiation step S 2 Switching at time intervals according to the algal cell division cycle.
  • the culture conditions other than the illumination conditions can be the same as those of conventionally known culture methods.
  • a medium for freshwater algae for example, AF6 medium, C medium, URO medium, etc.
  • a marine algae medium ESM medium, f / 2 medium, IMR medium, MNK medium, etc.
  • ESM medium f / 2 medium, IMR medium, MNK medium, etc.
  • the algal culture method according to the present invention is considered to produce a remarkable mitogenic effect by making the irradiation of red light and blue light correspond to the photosynthesis mechanism of algae.
  • the growth promoting effect may be further enhanced by using carbon dioxide gas or a known drug having a photosynthetic promoting effect in combination.
  • Algae culture device (1) Algae culture device according to first embodiment (1-1) Light irradiation unit
  • the algae culture device according to the present invention is capable of executing each procedure of the algae culture method described above, and A light irradiation unit that irradiates algae with bright light and blue light illumination light, a step of controlling the light irradiation unit to irradiate the algae with red light illumination light, and a step of irradiating the algae with blue light illumination light within a certain period of time. And a control unit that executes separately and independently.
  • the light irradiator includes a light source that emits red light or blue light.
  • a light source that emits red light or blue light.
  • Conventionally known light sources can be used as the red and blue light sources.
  • an optical semiconductor element such as a light emitting diode (LED) or a laser diode (LD) that emits light that allows easy wavelength selection and a large proportion of light energy in the effective wavelength region.
  • LED light emitting diode
  • LD laser diode
  • EL electroluminescence
  • EL may be organic or inorganic.
  • the optical semiconductor element is small and has a long life, and emits light at a specific wavelength depending on the material, so that there is no unnecessary heat radiation. Therefore, the optical semiconductor element has good energy efficiency, and it is difficult to damage the cells even if it is irradiated near the algae. For this reason, it becomes possible by using an optical semiconductor element for a light source to cultivate at a lower power cost and more space-saving than other light sources.
  • an SMD line light source in which SMD (2 Chips Surface Mount Device) mounted by combining one red light semiconductor element and one blue light semiconductor element is linearly arranged, or a red light semiconductor element or a blue light semiconductor element
  • SMD Chips Surface Mount Device
  • a monochromatic line light source or a monochromatic panel light source in which only one of them is arranged in a line or plane can be used.
  • a semiconductor element can be driven to blink at a frequency as high as several megahertz (MHz) or more. For this reason, by using the optical semiconductor element as a light source, it is possible to perform switching of each of the red light irradiation step S 1 , the blue light irradiation step S 2 , the simultaneous irradiation step S 3 and the pause step S 4 at extremely high speed. It becomes.
  • a red LED includes an aluminum / gallium / indium / phosphorus light emitting diode (gallium / phosphorous substrate, sold by Showa Denko KK as product number HRP-350F).
  • the red LED includes a light emitting diode having a product number GM2LR450G.
  • Examples of light sources other than light-emitting diodes include straight tube and compact fluorescent lamps and bulb-type fluorescent lamps, high-pressure discharge lamps, metal halide lamps, and laser diodes. In combination with these light sources, an optical filter for selectively using light in the above wavelength range may be used.
  • Control Unit maintains the light amount (intensity), wavelength, and / or irradiation time of the red light illumination light and the blue light illumination light emitted from the light irradiation unit at a predetermined value, or in a predetermined pattern. Change.
  • the control unit can be configured using a general-purpose computer. For example, when an LED is used as the light source, the control unit adjusts the magnitude of the LED drive current based on a control pattern previously stored and stored in a memory or a hard disk, and the intensity and irradiation of red light illumination light and blue light illumination light. Change time. Moreover, a control part switches and drives several LED which radiates
  • the algae targeted by the method for culturing algae according to the present invention include unicellular organisms such as green algae, brown algae, cyanobacteria, red photosynthetic bacteria, aquatic plants, etc. Such as multicellular organisms having aquatic photosynthetic ability.
  • specific examples of algae include cyanobacteria, prokaryotic green algae, red algae, gray algae, crypt algae, dinoflagellates, golden algae, diatoms, brown algae, yellow green algae, hapto algae, rafido algae (green cyanobacterium) Chloracarnion algae, Euglena algae, prasino algae, green algae, axle algae and the like.
  • Algae can be green algae called microalgae in particular.
  • microalgae include green algae belonging to the class of green algae (Class Chlorophyceae) and trebauxia algae (Class Trebouxiophyceae).
  • green algae include green algae of the genus Botryococcus, Haematococcus and Chlorella, and examples of the algae of Trevoxia algae of Pseudochoricystis. .
  • Botryococcus brownie Botryococcus braunii
  • Pseudocollistis ellipsoidea Pseudochoricystis ellipsoidea fix carbon dioxide by photosynthesis and oil (heavy oil or light oil) Hydrocarbons that can be substituted for Hematococcus copluvialis and Haematococcus lacustris, which are members of the genus Haematococcus, produce astaxanthin, an antioxidant.
  • one irradiation cycle is, for example, a red light irradiation step 12 hours and a blue light irradiation step 12 hours.
  • a red light irradiation step and a blue light irradiation step are each performed for 0.1 to 3 hours to form one irradiation cycle.
  • Botryococcus brownie growth promotion test> the growth promoting effect by alternately irradiating red light and blue light was examined in Botryococcus brownie, which is a hydrocarbon-producing alga and is a kind of green algae.
  • Botryococcus braunii N-2199 strain distributed by the National Institute for Environmental Studies was initially grown on an agar medium (Hyponex, 1000-fold diluted, 1% agarose). Initial growth was performed in a fluorescent lighting environment. Colonies were picked up from the agar medium, suspended in 70 ⁇ l of distilled water, and 30 ⁇ l each was seeded on the agar medium.
  • a red LED center wavelength: 660 nm, Showa Denko KK
  • a blue LED center wavelength: 480 nm, Showa Denko KK
  • a fluorescent lamp was used as the light source.
  • the number of mounted one set of each LED is 240 for both the red LED and the blue LED.
  • Control zone Light source: fluorescent lamp, photosynthetic photon flux density of illumination light: 140 ⁇ mol / m 2 s, 12 hours light period / 12 hours dark period
  • LED section Light source: red LED and blue LED, photosynthetic photon flux density of illumination light: red 87.5, blue 52.5 ⁇ mol / m 2 s (red / blue ratio 5: 3), 12 hours red / 12 hours blue (red-blue alternating irradiation) )
  • the results are shown in FIG.
  • the upper part of the figure shows a photograph of 10 colonies randomly selected from the plate cultured in the control group and the lower part in the LED group. For comparison of the colony size, a 200 ⁇ m scale bar is included in the photograph.
  • the colony size was larger than in the control ward. From the observation of individual cells, it was considered that the increase in colony size was not due to the increase in the size of the cells themselves but to the increase in the number of cells.
  • FIG. 5 is a graph showing the average value of the area of 10 colonies, and the vertical axis shows the average value and standard deviation of the colony area ( ⁇ m 2 ).
  • the colony growth was better than that in the control group, and the growth was promoted by about 3 times in the culture period of 3 weeks compared to the control group.
  • Control zone Light source: fluorescent lamp, photosynthetic photon flux density of illumination light: 140 ⁇ mol / m 2 s, 12 hours light period / 12 hours dark period
  • LED A Light source: red LED and blue LED, photosynthetic photon flux density of illumination light: red 87.5, blue 52.5 ⁇ mol / m 2 s (red / blue ratio 5: 3), 12 hours red / 12 hours blue (red-blue alternating irradiation) )
  • LED ward B Light source: red LED and blue LED, photosynthesis photon flux density of illumination light: red 87.5, blue 52.5 ⁇ mol / m 2 s (red / blue ratio 5: 3), 12 hours light period / 12 hours dark period (red blue Simultaneous irradiation)
  • the average value of the area of 10 colonies is graphed, and the vertical axis indicates the average value and standard deviation of the colony area ( ⁇ m 2 ).
  • the colony growth was better than the control group and the LED group B (red and blue simultaneous irradiation), indicating the fastest growth.
  • the red light is obtained. It was found that in the alternating irradiation environment (LED section A) in which the light and blue light were alternately irradiated for 12 hours, cell proliferation was remarkably promoted. Moreover, in FIG. 4, an oil droplet can be confirmed in the colony of an alternate irradiation environment (LED section A), and it was suggested that the alternate irradiation promotes the production of hydrocarbons as well as cell division.
  • Chlorella kueseri growth promotion test> we examined the growth promotion effect by alternating irradiation of red light and blue light in Chlorella querseri, a kind of Chlorella green algae that is widely used as experimental algae and applied to supplement foods etc. .
  • Chlorella kessleri C531 strain (same as Chlorella kessleri NIES-2160 possessed by National Institute for Environmental Studies) was initially grown on an agar medium (Hyponex, diluted 1000 times, 1% agarose). Initial growth was performed in a fluorescent lighting environment. Colonies were picked up from the agar medium, suspended in 50 ⁇ l of distilled water, and 9 ⁇ l each was inoculated into 10 ml of liquid medium (Hyponex, diluted 1000 times).
  • a red LED center wavelength: 660 nm, Showa Denko KK
  • a blue LED center wavelength: 480 nm, Showa Denko KK
  • a fluorescent lamp was used as the light source.
  • the number of mounted one set of each LED is 240 for both the red LED and the blue LED.
  • Control zone Light source: fluorescent lamp, photosynthetic photon flux density of illumination light: 140 ⁇ mol / m 2 s, 12 hours light period / 12 hours dark period
  • LED A Light source: Red LED and blue LED, photosynthetic photon flux density of illumination light: red 105, blue 35 ⁇ mol / m 2 s (red / blue ratio 3: 1), 12 hours light period / 12 hours dark period (simultaneous irradiation of red and blue)
  • LED ward B Light source: red LED and blue LED, photosynthetic photon flux density of illumination light: red 105, blue 35 ⁇ mol / m 2 s (red / blue ratio 3: 1), 12 hours red / 12 hours blue (alternating red and blue)
  • LED Ward C Light source: red LED and blue LED, photosynthetic photon flux density of illumination light: red 105, blue 35 ⁇ mol / m 2 s
  • the vertical axis represents the cell density (cells / ⁇ l), and the horizontal axis represents the experimental group.
  • the cell density was shown with the standard deviation of the average value in 4 divisions of the hemocytometer.
  • Haematococcus lacustris NIES-144 strain distributed by the National Institute for Environmental Studies was initially grown on an agar medium (Hyponex, 1000-fold diluted, 1% agarose). Initial growth was performed in a fluorescent lighting environment. Colonies were picked up from the agar medium, suspended in 600 ⁇ l of liquid medium (Hyponex, diluted 1000 times), and cultured in a fluorescent lighting environment. Thereafter, 200 ⁇ l of the culture solution was seeded on an agar medium.
  • a red LED center wavelength: 660 nm, Showa Denko KK
  • a blue LED center wavelength: 480 nm, Showa Denko KK
  • a fluorescent lamp was used as the light source.
  • the number of mounted one set of each LED is 240 for both the red LED and the blue LED.
  • Control zone Light source: fluorescent lamp, photosynthetic photon flux density of illumination light: 140 ⁇ mol / m 2 s, 12 hours light period / 12 hours dark period
  • LED A Light source: Red LED and blue LED, photosynthetic photon flux density of illumination light: red 105, blue 35 ⁇ mol / m 2 s (red / blue ratio 3: 1), 12 hours light period / 12 hours dark period (simultaneous irradiation of red and blue)
  • LED ward B Light source: red LED and blue LED, photosynthetic photon flux density of illumination light: red 105, blue 35 ⁇ mol / m 2 s (red / blue ratio 3: 1), 12 hours red / 12 hours blue (alternating red and blue)
  • FIG. 1 The results of measuring the colony area in the same manner as in Test Example 1 are shown in FIG.
  • the figure is a graph of the average value and median value of the area of 20 colonies, and the vertical axis shows the average value, standard deviation, and median value of the colony area ( ⁇ m 2 ).
  • the LED group B colony growth was promoted as compared to the control group.
  • FIG. 1 shows the frequency distribution of the colony area in each experimental section.
  • the figure shows the measured colony area values less than 20,000, 20,000-60,000, 60,000-120,000, 120,000-180,000, 180,000 or more (unit: ⁇ m 2 ).
  • the number of colonies included in each section is shown as a percentage.
  • shaft shows a ratio (%).
  • the growth of algae can be promoted by a simple method, the culture period can be shortened, and the productivity can be improved. Therefore, the method for culturing algae according to the present invention can be suitably used for culturing algae for raw materials such as biofuels, health foods and pharmaceuticals.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Botany (AREA)
  • Environmental Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Forests & Forestry (AREA)
  • Cell Biology (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Developmental Biology & Embryology (AREA)
  • Cultivation Of Plants (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Cultivation Of Seaweed (AREA)
  • Hydroponics (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

 藻類の増殖を促進するための簡便な手法として、赤色光照明光を藻類に照射する手順Sと、青色光照明光を藻類に照射する手順Sと、を一定期間内に別個独立に行いながら藻類を培養する方法を提供する。

Description

藻類培養方法及び藻類培養装置
 本発明は、藻類培養方法及び藻類培養装置に関する。より詳しくは、藻類に人工光を照射して増殖を促進させる藻類培養方法等に関する。
 従来、植物栽培において、植物苗に人工光を照射して育苗を促す技術が取り入れられている。植物の生長を促進することで、栽培期間を短縮して、同一場所での収穫回数を増やすことができる。また、同じ栽培期間であっても、植物をより大きく生長させることができれば、収穫量を増やすことができる。
 人工光の照射を利用した植物栽培方法として、例えば特許文献1には、植物を緑色光と白色光で交互に照射するように構成した植物の照射装置が開示されている。この照射装置は、波長500~570nmの緑色光と300~800nmの白色光とで交互に照射することにより昼夜の変化を構成し、植物の転流作用を円滑にして植物の育成を図るものである。
 また、例えば特許文献2には、青色光(400~480nm)を放射する発光ダイオードと赤色光(620~700nm)を放射する発光ダイオードを同時もしくは交互に点灯することにより、植物の培養、生育、栽培及び組織培養のための光エネルギーを照射する植物栽培用光源が開示されている。この植物栽培用光源は、葉緑素の光吸収ピーク(450nm付近及び660nm付近)に一致する波長の光のみを照射することによって、エネルギー効率良く植物を栽培しようとするものである。
 特許文献2には、青色光と赤色光を同時に照射しても交互に照射してもよいことが規定されている(当該文献「請求項1」参照)。しかし、特許文献2は、青色光単独照射、赤色光単独照射、青色光及び赤色光の同時照射の比較において、同時照射下では日光下での栽培と同様の健全な生長(単独照射における徒長などの不健全な生長と比較して)が確認されたというものであり(当該文献段落「0011」参照)、青色光と赤色光を交互に照射した場合の生長促進効果は確認していない。従って、特許文献2は、青色光と赤色光の交互照射による植物栽培方法を実質的開示するものとはなっていない。
 一方、光合成を行う生物として、地上に生息するいわゆる高等植物以外に、藻類がある。一般に、藻類には、原核生物及び真核生物に属する単細胞又は多細胞の多くの生物種が含まれ、珪藻類、渦鞭毛藻類及び緑藻類などが属する。このうち、緑藻類には、光合成によって二酸化炭素を固定し、石油の代替となりうる炭化水素を生産するためバイオ燃料の原料として期待されるものや、豊富な栄養素や抗酸化物質を産生するため健康食品や医薬品の原料とされているものなどが含まれる。
 例えば特許文献3には、培養された緑藻類から炭化水素を取り出す方法が記載されている。また、特許文献4には、赤色のカロチノイドの一種であり、強力な抗酸化作用を有するアスタキサンチンを産生する緑藻類が開示されている。
特開平6-276858号公報 特開平8-103167号公報 特開2010-252700号公報 特開2007-097584号公報
 バイオ燃料、健康食品及び医薬品などの原料として藻類を工業的に大量培養することが行われている(上記特許文献3・4参照)。藻類の工業的な培養では、藻類の増殖を促進し、培養期間を短縮して生産性を向上させることが求められている。そこでは、本発明は、藻類の増殖を促進するための簡便な手法を提供することを主な目的とする。
 本発明者らは、人工光の照射による藻類の増殖促進効果について鋭意検討を行った結果、驚くべきことに、赤色光と青色光を交互に照射するという簡便な手法によって非常に顕著な効果が得られることを見出した。
 この知見に基づき、本発明は、赤色光照明光を藻類に照射する手順と、青色光照明光を藻類に照射する手順と、を一定期間内に別個独立に行うことによって藻類の増殖を促進する藻類培養方法を提供する。
 この藻類培養方法(執行メソッド(Shigyo Method))は、具体例としては、赤色光照明光を照射する手順と、青色光照明光を照射する手順と、を交互に連続して行うものである。
 また、本発明は、赤色光照明光及び青色光照明光を藻類に照射する光照射部と、光照射部を制御して、赤色光照明光を藻類に照射するステップと、青色光照明光を藻類に照射するステップと、を一定期間内に別個独立に実行する制御部と、を備える藻類培養装置を提供する。
 この藻類培養装置において、前記制御部は、前記光照射部から放射される前期赤色光照明光及び前記青色光照明光の光量、波長及び/又は照射時間を所定値に維持するか、あるいは所定のパターンで変化させるものとされる。また、前記光照射部は、赤色光又は青色光を放射する発光ダイオードを含んで構成されることが好ましい。
 本発明において、「藻類」には、原核生物であるか真核生物であるかを問わず、緑藻類、褐藻類、藍藻類、紅色光合成細菌等の単細胞生物、水草等の水生の光合成能を有する多細胞生物などが広く含まれるものとする。
 本発明により、簡便で、優れた増殖促進効果を得ることが可能な藻類培養方法が提供される。
本発明の第一実施形態に係る藻類培養方法の手順を説明する図である。 本発明の第二実施形態に係る藻類培養方法の手順を説明する図である。 本発明の第三実施形態に係る藻類培養方法の手順を説明する図である。 ボトリオコッカス・ブラウニーにおいて、赤色光と青色光との交互照射による増殖促進効果を検討した結果を示す図面代用写真である(試験例1)。 ボトリオコッカス・ブラウニーにおいて、赤色光と青色光との交互照射による増殖促進効果を検討した結果を示す図面代用グラフである(試験例1)。 ボトリオコッカス・ブラウニーにおいて、赤色光と青色光との交互照射による増殖促進効果を検討した結果を示す図面代用グラフである(試験例1)。 クロレラ・ケスレリにおいて、赤色光と青色光との交互照射による増殖促進効果を検討した結果を示す図面代用グラフである(試験例2)。 ヘマトコッカス・ラクストリスにおいて、赤色光と青色光との交互照射による増殖促進効果を検討した結果を示す図面代用グラフである(試験例3)。 ヘマトコッカス・ラクストリスにおいて、赤色光と青色光との交互照射による増殖促進効果を検討した結果を示す図面代用グラフである(試験例3)。
 以下、本発明を実施するための好適な形態について図面を参照しながら説明する。なお、以下に説明する実施形態は、本発明の代表的な実施形態の一例を示したものであり、これにより本発明の範囲が狭く解釈されることはない。説明は以下の順序で行う。
1.藻類培養方法
(1)第一実施形態に係る藻類培養方法
(2)第二実施形態に係る藻類培養方法
(3)第三実施形態に係る藻類培養方法
(4)波長
(5)光量
(6)照射時間
2.藻類培養装置
(1)第一実施形態に係る藻類培養装置
(1-1)光照射部
(1-2)制御部
3.培養藻類
1.藻類培養方法
(1)第一実施形態に係る藻類培養方法
 本発明に係る藻類培養方法は、赤色光照明光を藻類に照射する手順(以下「赤色光照射ステップ」とも称する)と、青色光照明光を藻類に照射する手順(以下「青色光照射ステップ」とも称する)と、を一定期間内に別個独立に行うことによって藻類の増殖を促進する方法である。
 赤色光照明光は、実質的に波長域570~730nmの赤色光である。赤色光照明光は、上記赤色光と異なる波長域の光を含んでいてもよいが、次に述べる青色光を含まないことが好ましい。赤色光照明光は、特に好ましくは、上記赤色光のみを含む。青色光照明光は、実質的に波長域400~515nmの青色光を含む照明光である。青色光照明光は、上記青色光と異なる波長域の光を含んでいてもよいが、上述の赤色光を含まないことが好ましい。青色光照明光は、特に好ましくは、上記青色光のみを含む。さらに、赤色光照明光が上記青色光を含まず、青色光照明光が上記赤色光を含まない場合が好ましく、赤色光照明光が上記赤色光のみで、青色光照明光が上記青色光のみの場合が特に好ましい。
 ここで、「一定期間」とは、藻類培養中の任意時間長の期間を意味する。この期間は最長で培養全期間である。また、最短の期間は、本発明の効果が奏される限りにおいて任意に設定できる。この期間は、例えば時間(hr)を時間長の単位とするものであってよく、さらにより長い時間長単位(例えば日(day))あるいはより短い時間長単位(例えば分(minutes))とするものであってもよい。
 本発明に係る藻類培養方法は、藻類の培養期間において、任意のタイミングで開始あるいは終了され、任意時間長で適用され得るものとする。
 また、「別個独立」とは、上記期間内に、赤色光照射ステップと青色光照射ステップとが別々に存することを意味する。赤色光照射ステップと青色光照射ステップは、上記期間内に少なくとも一工程ずつ含まれていればよい。
 赤色光照射ステップと青色光照射ステップは交互に連続して行ってもよく、両ステップの間に赤色光照明光及び青色光照明光を藻類に同時照射する手順又は藻類への光照射を休止する手順を挟んで不連続に繰り返して行ってもよい。ただし、藻類増殖促進効果を高めるためには交互に連続して行うことが好ましい。これらの本発明に係る藻類培養方法の実施形態について、図1~図3を参照しながら具体的に説明する。なお、本発明に係る植物栽培方法は、図1~図3で説明する各実施形態を適宜組み合わせて実施することも当然に可能である。
 図1は、本発明の第一実施形態に係る藻類培養方法の手順を説明する図である。この実施形態は、赤色光照射ステップと青色光照射ステップを交互に連続して行うものである。
 図中、符号Sは赤色光照射ステップ、符号Sは青色光照射ステップを示す。本実施形態では、赤色光照射ステップSと青色光照射ステップSが交互に連続して行われ、赤色光照射ステップSと青色光照射ステップSとからなる照射サイクルが繰り返し行われる。 
 このように、藻類に対して赤色光照明光と青色光照明光を交互に照射することにより、分裂を顕著に促進することができる(後述実施例参照)。
 ここでは、第1回目の照射サイクルCにおいて赤色光照射ステップSから手順を開始する場合を例に説明したが、各照射サイクルにおいて赤色光照射ステップS及び青色光照射ステップSのいずれを先に行うかは任意である。
(2)第二実施形態に係る藻類培養方法
 図2は、本発明の第二実施形態に係る藻類培養方法の手順を説明する図である。この実施形態は、赤色光照射ステップと青色光照射ステップとを、両ステップの間に赤色光照明光及び青色光照明光を藻類に同時照射する手順(以下「同時照射ステップ」とも称する)を挟んで不連続に繰り返して行うものである。
 図中、符号Sは、同時照射ステップを示す。本実施形態では、赤色光照射ステップSと青色光照射ステップSが、同時照射ステップSを挟んで不連続に行われ、赤色光照射ステップS、同時照射ステップS及び青色光照射ステップSとからなる照射サイクルが繰り返し行われる。
 ここでは、第1回目の照射サイクルCにおいて同時照射ステップSから手順を開始する場合を例に説明したが、各照射サイクルにおいて赤色光照射ステップS、同時照射ステップS及び青色光照射ステップSのいずれを先に行うかは任意である。
(3)第三実施形態に係る藻類培養方法
 図3は、本発明の第三実施形態に係る藻類培養方法の手順を説明する図である。この実施形態は、赤色光照射ステップと青色光照射ステップとを、両ステップの間に藻類への光照射を休止する手順(以下「休止ステップ」とも称する)を挟んで不連続に繰り返して行うものである。
 図中、符号Sは、休止ステップを示す。本実施形態では、赤色光照射ステップSと青色光照射ステップSが、休止ステップSを挟んで不連続に行われ、赤色光照射ステップS、休止ステップS及び青色光照射ステップSとからなる照射サイクルが繰り返し行われる。
 ここでは、第1回目の照射サイクルCにおいて休止ステップSから手順を開始する場合を例に説明したが、各照射サイクルにおいて赤色光照射ステップS、休止ステップS及び青色光照射ステップSのいずれを先に行うかは任意である。
(4)波長
 上述した各実施形態に係る藻類培養方法において、赤色光は波長570~730nmの光をいい、635~660nmの波長を中心波長をとする光が好適に用いられる。また、青色光は、波長400~515nmの光をいい、中心波長を450nmとする光が好適に用いられる。赤色光及び青色光は、上記波長を中心波長として所定の波長域を有するものであってよい。波長域としては、例えば青色光であれば、450±30nm、好ましくは450±20nm、さらに好ましくは450±10nmとできる。
 また、赤色光及び青色光の波長は上記波長域の範囲内で変化させてもよく、例えば第N回目(Nは1以上の整数)の照射サイクルCにおいて波長が変化してもよい。また、第N回目の照射サイクルCと第M回目(MはNと異なる1以上の整数)の照射サイクルCとで波長が上記波長域の範囲内で異なっていてもよい。
 さらに、上述の赤色光照射ステップS、同時照射ステップS及び青色光照射ステップSにおいて、赤色光及び青色光に加えて、他の波長域の光を組み合わせて複数の波長域の光によって照射を行ってもよい。
(5)光量(強度)
 赤色光照射ステップS、青色光照射ステップS及び同時照射ステップSにおける赤色光及び青色光の光量(強度)は、特に限定されないが、例えば光合成光量子束密度(Photosynthetic Photon Flux Density:PPFD)でそれぞれ1~1000μmol/ms、好ましくは10~500μmol/ms、特に好ましくは50~250μmol/ms程度とされる。
 また、上記各ステップにおける赤色光照明光及び青色光照明光の光量(強度)比は、例えば「赤:青」あるいは「青:赤」で1:1、5:3、2:1、3:1、4:1、10:1、20:1などのように任意に設定され得る。
 また、赤色光照明光及び青色光照明光の光量は上記範囲内で変化させてもよく、例えば第N回目(Nは1以上の整数)の照射サイクルCにおいて強度が変化してもよい。また、第N回目の照射サイクルCと第M回目(MはNと異なる1以上の整数)の照射サイクルCとで光強度を上記範囲内で変化させてもよい。
(6)照射時間
 上述した各実施形態に係る藻類培養方法において、一つの照射サイクルの時間は、最長で培養全期間である。また、最短の時間は、本発明の効果が奏される限りにおいて任意に設定できる。一つの照射サイクルは、例えば時間(hr)を時間長の単位とするものであってよく、さらにより長い時間長単位(例えば日(day))あるいはより短い時間長単位(例えば分(minutes))とするものであってもよい。
 例えば、赤色光照射ステップSと青色光照射ステップSを交互に連続して行う第一実施形態に係る藻類培養方法において、一つの照射サイクルを一日とする場合、赤色光照射ステップSを12時間、青色光照射ステップSを12時間とすることができる。また、例えば、一日に照射サイクルを4回繰り返す場合、一つの照射サイクルは6時間となり、赤色光照射ステップSを3時間、青色光照射ステップSを3時間とすることができる。
 一つの照射サイクルの時間は、第N回目の照射サイクルCと第M回目(MはNと異なる1以上の整数)の照射サイクルCとで変化させてもよい。例えば、照射サイクルCを12時間とし、続く照射サイクルCN+1を6時間とすることもできる。
 また、一つの照射サイクル内における赤色光照射ステップS、青色光照射ステップS、同時照射ステップS及び休止ステップSの時間比は、任意であってよい。例えば、上述の第一実施形態に係る藻類培養方法において、一つの照射サイクルを一日とする場合、「赤色光照射ステップS・青色光照射ステップS」を「12時間・12時間(1:1)」、「16時間・8時間(2:1)」、「21時間・3時間(7:1)」などのように任意に設定し得る。
 特に好ましくは、赤色光照射ステップSと青色光照射ステップSを交互に連続して行う第一実施形態に係る植物栽培方法において、赤色光照射ステップSと青色光照射ステップSとを藻類の細胞分裂周期に応じた時間間隔で切り換える。
(7)その他
 本発明に係る藻類培養方法において、照明条件以外の培養条件は、従来公知の培養方法と同様とできる。例えば、培地には、淡水産藻類用の培地(例えば、AF6培地、C培地、URO培地等)、海産藻類用培地(ESM培地、f/2培地、IMR培地、MNK培地等)などを用いればよい。
 本発明に係る藻類培養方法は、赤色光と青色光の照射を藻類の光合成のメカニズムに対応させることにより、顕著な分裂促進効果を生み出しているものと考えられる。本発明に係る藻類培養方法では、炭酸ガスや既知の光合成促進効果があるとされる薬剤などを併用することにより、増殖促進効果をさらに高めることができる場合がある。
2.藻類培養装置
(1)第一実施形態に係る藻類培養装置
(1-1)光照射部
 本発明に係る藻類培養装置は、上述した藻類培養方法の各手順を実行可能なものであり、赤色光照明光及び青色光照明光を藻類に照射する光照射部と、光照射部を制御して、赤色光照明光を藻類に照射するステップと、青色光照明光を藻類に照射するステップと、を一定期間内に別個独立に実行する制御部と、を備える。
 光照射部には、赤色光又は青色光を放射する光源が含まれる。赤色光及び青色光の光源には、従来公知の光源を用いることができる。光源には、波長選択が容易で、有効波長域の光エネルギーの占める割合が大きい光を放射する発光ダイオード(LED)やレーザーダイオード(LD)などの光半導体素子を用いることが好ましい。エレクトロルミネッセンス(EL)を用いる場合、ELは有機であっても無機であってもよい。
 光半導体素子は、小型で寿命が長く、材料によって特定の波長で発光して不要な熱放射がないためエネルギー効率が良く、藻類に近接照射しても細胞を障害し難い。このため、光半導体素子を光源に用いることで、他の光源に比べて、より低電力コストで、より省スペースで栽培を行うことが可能となる。
 光源には、1つの赤色光半導体素子と1つの青色光半導体素子を組み合わせて実装したSMD(2 Chips Surface Mount Device)を線状に配列したSMDライン光源や、赤色光半導体素子あるいは青色光半導体素子のどちらか一方のみを線状あるいは面状に配列した単色ライン光源あるいは単色パネル光源などを使用できる。
 半導体素子は、原理上、数メガヘルツ(MHz)以上もの高い周波数で点滅駆動が可能である。このため、光半導体素子を光源に用いることで、赤色光照射ステップS、青色光照射ステップS、同時照射ステップS及び休止ステップSの各ステップの切り替えを極めて高速に行うことも可能となる。
 上記波長域の光を放射するLEDとしては、例えば赤色LEDには、昭和電工株式会社から製品番号HRP-350Fとして販売されているアルミニウム・ガリウム・インジウム・リン系発光ダイオード(ガリウム・リン系基板、赤色波長660nm)などがあり、青色LEDには同社製品番号GM2LR450Gの発光ダイオードなどがある。
 発光ダイオード以外の光源としては、例えば直管形及びコンパクト形の蛍光ランプ及び電球形蛍光ランプ、高圧放電ランプ、メタルハライドランプ、レーザーダイオードなどが挙げられる。これらの光源に組み合わせて、上記波長域の光を選択的に利用するための光学フィルタを用いてもよい。
(1-2)制御部
 制御部は、光照射部から放射される赤色光照明光及び青色光照明光の光量(強度)、波長及び/又は照射時間を所定値に維持するか、あるいは所定のパターンで変化させる。
 制御部は、汎用のコンピューターを用いて構成することができる。例えば光源としてLEDを用いる場合、制御部は、メモリやハードディスクに予め保持、記憶された制御パターンに基づいて、LEDの駆動電流の大きさを調整し、赤色光照明光及び青色光照明光の強度及び照射時間を変化させる。また、制御部は、制御パターンに基づいて、異なる波長域の光を放射する複数のLEDを切り替えて駆動し、照射される光の波長域を変化させる。
3.培養藻類
 本発明に係る藻類培養方法等が対象とする藻類には、原核生物であるか真核生物であるかを問わず、緑藻類、褐藻類、藍藻類、紅色光合成細菌等の単細胞生物、水草等の水生の光合成能を有する多細胞生物などが広く含まれる。藻類として、具体的には、藍藻類、原核緑藻類、紅藻類、灰色藻類、クリプト藻類、渦鞭毛藻類、黄金色藻類、珪藻類、褐藻類、黄緑藻類、ハプト藻類、ラフィド藻類(緑色鞭藻類)、クロララクニオン藻類、ミドリムシ藻類、プラシノ藻類、緑藻類、車軸藻類などが挙げられる。
 藻類は、特に微細藻類と呼ばれる緑藻類とすることができる。微細藻類としては、緑藻綱(Class Chlorophyceae)やトレボウクシア藻綱(Class Trebouxiophyceae)に属する緑藻類が含まれる。緑藻綱では、例えば、ボトリオコッカス属(Botryococcus)、ヘマトコッカス属(Haematococcus)、クロレラ属(Chlorella)の緑藻類があげられ、トレボウクシア藻綱では、シュードコリシスチス属(Pseudochoricystis)の藻類が挙げられる。
 ボトリオコッカス属の一種ボトリオコッカス・ブラウニー(Botryococcus braunii)やシュードコリシスチス属の一種シュードコリシスチス・エリプソイディア(Pseudochoricystis ellipsoidea)は、光合成によって二酸化炭素を固定し、石油(重油又は軽油)の代替となりうる炭化水素を生成する。また、ヘマトコッカス属の一種ヘマトコッカス・プルビアリス(Haematococcus pluvialis)やヘマトコッカス・ラクストリス(Haematococcus lacustris)は、抗酸化作用物質であるアスタキサンチンを産生する。
 上述のように、本発明に係る藻類培養方法においては、赤色光照射ステップと青色光照射ステップとを対象とする藻類の細胞分裂周期に応じた時間間隔で切り換えることが望ましい。具体的には、細胞分裂周期が長いボトリオコッカス・ブラウニーでは、一つの照射サイクルを、例えば赤色光照射ステップ12時間・青色光照射ステップ12時間とする。また、細胞分裂周期が短いクロレラ属の緑藻類では、例えば赤色光照射ステップと青色光照射ステップを0.1~3時間ずつとして一つの照射サイクルを構成する。
<試験例1:ボトリオコッカス・ブラウニーの増殖促進試験>
 本試験例では、炭化水素産生藻類であり、緑藻類の一種であるボトリオコッカス・ブラウニーにおいて、赤色光と青色光との交互照射による増殖促進効果を検討した。
 国立環境研究所より分譲されたBotryococcus braunii N-2199株を寒天培地(Hyponex、1000倍希釈、1%アガロース)で初期増殖させた。初期増殖は、蛍光灯照明環境下で行った。寒天培地からコロニーをピックアップし、70μlの蒸留水に懸濁し、30μlずつを寒天培地に播種した。
 光源には、赤色LED(中心波長:660nm、昭和電工株式会社製)、青色LED(中心波長:480nm、昭和電工株式会社製)及び蛍光灯を用いた。各LEDの1セットの実装数は、赤色LED及び青色LEDともに240個である。
 以下に示す照明環境とした実験区を作成し、3週間培養を行ってコロニーを形成させた。
「対照区」
 光源:蛍光灯、照明光の光合成光量子束密度:140μmol/ms、12時間明期/12時間暗期
「LED区」
 光源:赤色LED及び青色LED、照明光の光合成光量子束密度:赤87.5、青52.5μmol/ms(赤青比5:3)、12時間赤/12時間青(赤青交互照射)
 結果を図4に示す。図上段は対照区、下段はLED区で培養したプレートからランダムに選択された10コロニーの写真を示す。コロニーサイズの比較のため、写真には、200μmのスケールバーを入れている。
 LED区では対照区に比べてコロニーのサイズが大きくなった。個々の細胞の観察から、コロニーサイズの増大は、細胞自体の大きさの増大ではなく、細胞数の増加によるものと考えられた。
 lenaraf 202b software (Atelier M&M)を用いてコロニー面積を計測した結果を図5及び表1に示す。図5は、10コロニーの面積の平均値をグラフ化したものであり、縦軸はコロニー面積(μm)の平均値と標準偏差を示す。LED区では、対照区に比べてコロニー増殖が良好であり、3週間の培養期間内に対照区に比して3倍程度増殖が促進された。
Figure JPOXMLDOC01-appb-T000001
(表中、標準偏差以外の値は、コロニー面積(μm)を示す)
 次に、以下に示す照明環境とした実験区を作成し、2週間培養を行ってコロニーを形成させた。培養は、期間変更した以外は上述した通りの方法で行った。
「対照区」
 光源:蛍光灯、照明光の光合成光量子束密度:140μmol/ms、12時間明期/12時間暗期
「LED区A」
 光源:赤色LED及び青色LED、照明光の光合成光量子束密度:赤87.5、青52.5μmol/ms(赤青比5:3)、12時間赤/12時間青(赤青交互照射)
「LED区B」
 光源:赤色LED及び青色LED、照明光の光合成光量子束密度:赤87.5、青52.5μmol/ms(赤青比5:3)、12時間明期/12時間暗期(赤青同時照射)
 結果を図6及び表1に示す。図は、10コロニーの面積の平均値をグラフ化したものであり、縦軸はコロニー面積(μm)の平均値と標準偏差を示す。LED区A(赤青交互照射)では、対照区及びLED区B(赤青同時照射)に比べてコロニー増殖が良好であり、最も早い増殖を示した。
Figure JPOXMLDOC01-appb-T000002
  (表中、標準偏差以外の値は、コロニー面積(μm)を示す)
 以上、本試験例の結果から、蛍光灯照明環境(対照区)及び赤色光と青色光の同時照射12時間、暗期12時間を繰り返した同時照明環境(LED区B)に比べて、赤色光と青色光を12時間ずつ交互に照射した交互照射環境(LED区A)では、細胞の増殖が顕著に促進されていることが分かった。また、図4では、交互照射環境(LED区A)のコロニーにおいて油滴が確認でき、交互照射によって細胞分裂とともに炭化水素の産生も促進されていることが示唆された。
<試験例2:クロレラ・ケスレリの増殖促進試験>
 本試験例では、実験用藻類として広く用いられ、サプリメント食品などにも応用されているクロレラ属緑藻類の一種であるクロレラ・ケスレリにおいて、赤色光と青色光との交互照射による増殖促進効果を検討した。
 Chlorella kessleri C531株(国立環境研究所所蔵Chlorella kessleri NIES-2160株と同一)を寒天培地(Hyponex、1000倍希釈、1%アガロース)で初期増殖させた。初期増殖は、蛍光灯照明環境下で行った。寒天培地からコロニーをピックアップし、50μlの蒸留水に懸濁し、9μlずつを10mlの液体培地(Hyponex、1000倍希釈)に播種した。
 光源には、赤色LED(中心波長:660nm、昭和電工株式会社製)、青色LED(中心波長:480nm、昭和電工株式会社製)及び蛍光灯を用いた。各LEDの1セットの実装数は、赤色LED及び青色LEDともに240個である。
 以下に示す照明環境とした実験区を作成し、6日間静置培養を行ってコロニーを形成させた。
「対照区」
 光源:蛍光灯、照明光の光合成光量子束密度:140μmol/ms、12時間明期/12時間暗期
「LED区A」
 光源:赤色LED及び青色LED、照明光の光合成光量子束密度:赤105、青35μmol/ms(赤青比3:1)、12時間明期/12時間暗期(赤青同時照射)
「LED区B」
 光源:赤色LED及び青色LED、照明光の光合成光量子束密度:赤105、青35μmol/ms(赤青比3:1)、12時間赤/12時間青(赤青交互照射)
「LED区C」
 光源:赤色LED及び青色LED、照明光の光合成光量子束密度:赤105、青35μmol/ms(赤青比3:1)、3時間赤/3時間青(赤青交互照射)
「LED区D」
 光源:赤色LED及び青色LED、照明光の光合成光量子束密度:赤105、青35μmol/ms(赤青比3:1)、0.1時間赤/0.1時間青(赤青交互照射)
 培養開始から3日後及び6日後に、培養液から5μlを取り、Thoma血球計算盤を用いて細胞密度(cells/μl)を計測した。結果を図7に示す。縦軸は細胞密度(cells/μl)を、横軸は実験区を表す。細胞密度は、血球計算盤の4区画における平均値の標準偏差とともに示した。
 3日後では対照区の細胞密度とLED区A~Dの細胞密度との間に有意な差が見られなかった。しかし、6日後には対照区が125cells/μlであったのに対し、12時間交互照射を行ったLED区Bでは280、3時間交互照射を行ったLED区Cでは370、0.1時間交互照射を行ったLED区Dでは365cells/μlとなり、赤青交互照射を行った実験区では対照区に比して2倍~3倍程度の増殖が観察された。
 事前の培養実験から、クロレラ・ケスレリは液体培地(Hyponex、1000倍希釈)での増殖がきわめて良好で、クロレラ・ケスレリの細胞分裂周期はボトリオコッカス・ブラウニーの細胞分裂周期より短いことが予測された。本試験例においても、増殖効果は、クロレラ・ケスレリでは12時間交互照射を行ったLED区Bよりも3時間交互照射を行ったLED区Cにおいて高く、細胞分裂周期に応じた交互照射のサイクルを構築することの重要性が示唆された。
<試験例3:ヘマトコッカス・ラクストリスの増殖促進試験>
 本試験例では、魚類の色揚げや、化粧品及び抗酸化効果を有するサプリメントなどに利用されるアスタキサンチンを生産する緑藻類の一種であるヘマトコッカス・ラクストリスにおいて、赤色光と青色光との交互照射による増殖促進効果を検討した。
 国立環境研究所より分譲されたHaematococcus lacustris NIES-144株を寒天培地(Hyponex、1000倍希釈、1%アガロース)で初期増殖させた。初期増殖は、蛍光灯照明環境下で行った。寒天培地からコロニーをピックアップし、600μlの液体培地(Hyponex、1000倍希釈)に懸濁し、蛍光灯照明環境下で培養した。その後、培養液200μlずつを寒天培地に播種した。
 光源には、赤色LED(中心波長:660nm、昭和電工株式会社製)、青色LED(中心波長:480nm、昭和電工株式会社製)及び蛍光灯を用いた。各LEDの1セットの実装数は、赤色LED及び青色LEDともに240個である。
 以下に示す照明環境とした実験区を作成し、1週間培養を行ってコロニーを形成させた。
「対照区」
 光源:蛍光灯、照明光の光合成光量子束密度:140μmol/ms、12時間明期/12時間暗期
「LED区A」
 光源:赤色LED及び青色LED、照明光の光合成光量子束密度:赤105、青35μmol/ms(赤青比3:1)、12時間明期/12時間暗期(赤青同時照射)
「LED区B」
 光源:赤色LED及び青色LED、照明光の光合成光量子束密度:赤105、青35μmol/ms(赤青比3:1)、12時間赤/12時間青(赤青交互照射)
 試験例1と同様にしてコロニー面積を計測した結果を図8及び表3に示す。図は、20コロニーの面積の平均値及び中央値をグラフ化したものであり、縦軸はコロニー面積(μm)の平均値とその標準偏差、及び中央値を示す。LED区Bでは、対照区に比べてコロニー増殖が促進された。
Figure JPOXMLDOC01-appb-T000003
(表中、標準偏差以外の値は、コロニー面積(μm)を示す)
 さらに、各実験区におけるコロニー面積の度数分布を図9に示す。図は、計測されたコロニー面積の値を20,000未満、20,000~60,000、60,000~120,000、120,000~180,000、180,000以上(単位はμm)に区切って、各区間に含まれるコロニーの数を割合で示したものである。縦軸は割合(%)を示す。
 対照区では20,000未満のものが31.6%、20,000~60,000のものが36.8%であり、60,000未満のものが7割程度を占めていた。これに対し、赤青交互照射を行ったLED区Bでは、60,000~120,000のものが3割程度、120,000~180,000のものが1割程度、180,000以上のものが1割程度みられ、60,000以上のものが5割程度を占めた。
 以上、本試験例の結果から、ヘマトコッカス・ラクストリスにおいても、赤色光と青色光を交互に照射することで、細胞の増殖を顕著に促進できることが明らかとなった。
 本発明に係る藻類培養方法等によれば、簡便な手法によって藻類の増殖を促進し、培養期間を短縮して生産性を向上させることができる。従って、本発明に係る藻類培養方法等は、バイオ燃料、健康食品及び医薬品などの原料を目的とした藻類の培養に好適に用いられ得る。
:赤色光照射ステップ、S:青色光照射ステップ、S:同時照射ステップ、S:休止ステップ、C、C:サイクル

Claims (8)

  1.  赤色光照明光を藻類に照射する手順と、青色光照明光を前記藻類に照射する手順と、を一定期間内に別個独立に行うことによって前記藻類の増殖を促進する藻類培養方法。
  2.  前記赤色光照明光を照射する手順と、前記青色光照明光を照射する手順と、を交互に連続して行う請求項1記載の藻類培養方法。
  3.  前記赤色光照明光を照射する手順と、前記青色光照明光を照射する手順と、を前記藻類の細胞分裂周期に応じた時間間隔で切り換えて行う請求項1又は2記載の藻類培養方法。
  4.  前記藻類は、ボトリオコッカス(Botryococcus)属又はクロレラ(Chlorella)属の緑藻類である請求項1~3のいずれか一項に記載の藻類培養方法。
  5.  前記藻類は、ヘマトコッカス(Hematococcus)属の緑藻類である請求項1~3のいずれか一項に記載の藻類培養方法。
  6.  赤色光照明光と青色光照明光を藻類に照射する光照射部と、
    光照射部を制御して、前記赤色光照明光を前記藻類に照射するステップと、前記青色光照明光を前記藻類に照射するステップと、を一定期間内に別個独立に実行する制御部と、を備える藻類培養装置。
  7.  前記制御部は、前記光照射部から放射される前記赤色光照明光及び前記青色光照明光の光量、波長及び/又は照射時間を所定値に維持するか、あるいは所定のパターンで変化させる請求項6記載の藻類培養装置。
  8.  前記光照射部に、赤色光又は青色光を放射する発光ダイオードを含む請求項6又は7記載の藻類培養装置。
PCT/JP2012/057853 2011-08-05 2012-03-27 藻類培養方法及び藻類培養装置 WO2013021675A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201280035383.5A CN103747670B (zh) 2011-08-05 2012-03-27 藻类培养方法及藻类培养装置
EP12822667.7A EP2740349B1 (en) 2011-08-05 2012-03-27 Algae cultivation method
JP2013527906A JP5729785B2 (ja) 2011-08-05 2012-03-27 藻類培養方法及び藻類培養装置
US14/236,152 US20140170733A1 (en) 2011-08-05 2012-03-27 Algae cultivation method and algae cultivation equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-172089 2011-08-05
JP2011172089 2011-08-05

Publications (1)

Publication Number Publication Date
WO2013021675A1 true WO2013021675A1 (ja) 2013-02-14

Family

ID=47668206

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/JP2012/057859 WO2013021676A1 (ja) 2011-08-05 2012-03-27 植物栽培方法及び植物栽培装置
PCT/JP2012/057853 WO2013021675A1 (ja) 2011-08-05 2012-03-27 藻類培養方法及び藻類培養装置
PCT/JP2012/069884 WO2013021952A1 (ja) 2011-08-05 2012-08-03 植物栽培方法及び植物栽培装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/057859 WO2013021676A1 (ja) 2011-08-05 2012-03-27 植物栽培方法及び植物栽培装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/069884 WO2013021952A1 (ja) 2011-08-05 2012-08-03 植物栽培方法及び植物栽培装置

Country Status (7)

Country Link
US (2) US20140170733A1 (ja)
EP (2) EP2740349B1 (ja)
JP (4) JP5729785B2 (ja)
CN (2) CN103747670B (ja)
RU (1) RU2593905C2 (ja)
TW (2) TWI693882B (ja)
WO (3) WO2013021676A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0487335A (ja) * 1990-07-31 1992-03-19 Mitsubishi Electric Corp 半導体ウエハ洗浄装置
WO2014119789A1 (ja) * 2013-02-04 2014-08-07 昭和電工株式会社 緑藻類生育促進方法
WO2014119794A1 (ja) * 2013-02-04 2014-08-07 昭和電工株式会社 緑藻類生育促進方法
WO2014119792A1 (ja) * 2013-02-04 2014-08-07 昭和電工株式会社 緑藻類生育促進方法
WO2015121987A1 (ja) * 2014-02-14 2015-08-20 栗田工業株式会社 微細藻類の培養状態の判断方法及び微細藻類の培養方法
WO2015151577A1 (ja) * 2014-04-03 2015-10-08 日本水産株式会社 アスタキサンチンの生産方法
JP2015192618A (ja) * 2014-03-31 2015-11-05 信越半導体株式会社 植物育成用照明装置及び植物育成方法
JP2016523554A (ja) * 2013-07-12 2016-08-12 フェルメンタル 不連結細胞培養方法
JP2017503516A (ja) * 2014-01-27 2017-02-02 ユニヴァーシティ オヴ ニューカッスル アポン タインUniversity Of Newcastle Upon Tyne フィコシアニン合成の改善
WO2018043147A1 (ja) 2016-09-01 2018-03-08 昭和電工株式会社 光合成微細藻類の培養方法
WO2018043146A1 (ja) 2016-09-01 2018-03-08 昭和電工株式会社 光合成微細藻類の培養方法
CN107779384A (zh) * 2016-08-24 2018-03-09 中国航天员科研训练中心 一种空间微藻光照系统
WO2018056160A1 (ja) * 2016-09-21 2018-03-29 日本水産株式会社 アスタキサンチンの生産方法
CN113875514A (zh) * 2020-07-03 2022-01-04 株式会社理光 栽培方法、信息处理方法、控制方法、信息处理装置及控制装置

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013148254A1 (en) * 2012-03-30 2013-10-03 Dow Agrosciences Llc Lighting system
US10028448B2 (en) 2012-07-10 2018-07-24 Once Innovations, Inc. Light sources adapted to spectral sensitivity of plants
WO2014011623A2 (en) 2012-07-10 2014-01-16 Zdenko Grajcar Light sources adapted to spectral sensitivity of plant
EP2710883A1 (en) * 2012-09-24 2014-03-26 Heliospectra AB Spectrum optimization for artificial illumination
JP5723902B2 (ja) * 2013-02-04 2015-05-27 昭和電工株式会社 植物栽培方法
US9326454B2 (en) * 2013-02-04 2016-05-03 Showa Denko K.K. Method for cultivating plant
AU2014222032B2 (en) * 2013-02-26 2017-04-13 Fuji Seiko Co.,Ltd. Method for raising leaf-and-stem vegetables and light source device for raising leaf-and-stem vegetables
CA2901762C (en) * 2013-03-05 2021-10-19 Xiant Technologies, Inc. Photon modulation management system
CN105682450A (zh) * 2013-08-27 2016-06-15 阿尔曼德拉私人有限公司 用于照射田地的装置和照射植物的方法
JP6206805B2 (ja) * 2013-10-03 2017-10-04 パナソニックIpマネジメント株式会社 発光モジュール、照明用光源及び照明装置
JP6444611B2 (ja) * 2014-04-22 2018-12-26 岩谷産業株式会社 植物栽培方法
WO2016014456A1 (en) * 2014-07-21 2016-01-28 Zdenko Grajcar Photonic engine system for actuating the photosynthetic electron transport chain
US10244595B2 (en) 2014-07-21 2019-03-26 Once Innovations, Inc. Photonic engine system for actuating the photosynthetic electron transport chain
JP6513358B2 (ja) * 2014-09-25 2019-05-15 鹿島建設株式会社 農業プラント、農業プラント施設、及び、植物の栽培方法
US11457568B2 (en) * 2014-12-15 2022-10-04 Symbiotic Systems, Inc. Multiple colors, and color palettes, of narrowband photosynthetically active radiation (PAR) time-staged over hours, days, and growing seasons yields superior plant growth
EP3120692B1 (en) 2015-05-25 2018-04-11 Panasonic Intellectual Property Management Co., Ltd. Plant cultivation apparatus
WO2017012644A1 (en) * 2015-07-17 2017-01-26 Urban Crops Industrial plant growing facility and methods of use
CA3003982C (en) * 2015-11-03 2021-07-06 Epigenetics Ltd Non-gm improved crops and methods for obtaining crops with improved inheritable traits
JP6767105B2 (ja) * 2015-11-30 2020-10-14 西日本技術開発株式会社 車軸藻の復活方法およびその装置
CN105638431B (zh) * 2015-12-31 2019-04-02 浙江大学 一种高效海藻养殖设备
JP2017169509A (ja) * 2016-03-24 2017-09-28 昭和電工株式会社 育苗方法
JPWO2017209187A1 (ja) * 2016-06-02 2019-03-28 昭和電工株式会社 人工光を利用したホウレンソウ栽培法
US10306841B2 (en) * 2016-09-01 2019-06-04 Philip Fok Crop growing structure and method
CN106688657A (zh) * 2017-01-05 2017-05-24 江西省科学院生物资源研究所 一种led光源下龙牙百合鳞片繁育种球的方法
JP2018121590A (ja) * 2017-02-02 2018-08-09 昭和電工株式会社 人工光による育苗方法
JP2018121589A (ja) 2017-02-02 2018-08-09 昭和電工株式会社 人工光による植物苗の栽培方法
US20180249642A1 (en) * 2017-03-06 2018-09-06 Lun Huang Method and apparatus based on laser for providing high growth, high density plantation system
US10694681B2 (en) * 2017-03-09 2020-06-30 Ryan Joseph Topps Closed apparatus for irradiating plants and produce
WO2019031559A1 (ja) 2017-08-08 2019-02-14 Agcグリーンテック株式会社 植物栽培方法、及び植物栽培装置
RU183572U1 (ru) * 2018-05-21 2018-09-26 федеральное государственное бюджетное образовательное учреждение высшего образования "Донской государственный технический университет" (ДГТУ) Устройство фотобиологической светостимуляции семян плодово-ягодных, овощных и зеленных культур
US10820532B2 (en) * 2018-08-24 2020-11-03 Seoul Viosys Co., Ltd. Light source for plant cultivation
WO2020067266A1 (ja) * 2018-09-28 2020-04-02 昭和電工株式会社 ケールの栽培方法およびサラダ
JP7228152B2 (ja) 2018-10-03 2023-02-24 不二精工株式会社 植物育成装置
KR102194453B1 (ko) * 2018-12-06 2020-12-23 경북대학교 산학협력단 전색체 led 파장 변환에 따른 식물생장을 증진하는 방법
JP7313832B2 (ja) * 2019-02-04 2023-07-25 浜松ホトニクス株式会社 ハプト藻の培養方法、及びハプト藻の培養装置
US11473051B2 (en) * 2019-02-27 2022-10-18 Nichia Corporation Method of cultivating algae and photobioreactor
US11716938B2 (en) * 2019-03-26 2023-08-08 Seoul Viosys Co., Ltd. Plant cultivation light source and plant cultivation device
CN110024596A (zh) * 2019-05-24 2019-07-19 温州大学新材料与产业技术研究院 一种用于生菜大棚的培育结构及其植物灯的制备方法
WO2021092689A1 (en) * 2019-11-12 2021-05-20 Algae-C Inc. Methods for culturing microorganisms
JP2021122262A (ja) * 2020-02-10 2021-08-30 パナソニックIpマネジメント株式会社 植物育成の光照射方法、照明装置及び照明システム
JP7373852B2 (ja) * 2020-02-20 2023-11-06 国立研究開発法人農業・食品産業技術総合研究機構 ミニトマトの苗の栽培方法
WO2021168560A1 (en) * 2020-02-25 2021-09-02 Dam Laust Aabye Systems and methods for growing cannabis plants
WO2021243335A1 (en) * 2020-05-29 2021-12-02 Renquist Mica Multi-stage plant cultivation system for and method of enhancing plant production efficiency
CN111543300B (zh) * 2020-06-09 2023-01-13 福建省中科生物股份有限公司 一种促进莴苣类蔬菜包心的光环境调控方法
RU2739077C1 (ru) * 2020-07-02 2020-12-21 Автономная некоммерческая организация "Институт социально-экономических стратегий и технологий развития" Способ повышения антиоксидантной активности проростков редиса
CN111771701B (zh) * 2020-07-07 2022-05-17 福建省中科生物股份有限公司 一种促进石斛室内栽培存活率和品质的方法
RU2742609C1 (ru) * 2020-09-04 2021-02-09 Автономная некоммерческая организация «Институт социально-экономических стратегий и технологий развития» Способ активации проращивания семян нуга в закрытой агробиотехносистеме
RU2746276C1 (ru) * 2020-09-18 2021-04-12 Автономная некоммерческая организация «Институт социально-экономических стратегий и технологий развития» Способ активации проращивания семян злаковых луговых трав при светодиодном монохроматическом освещении
RU2759450C1 (ru) * 2020-11-02 2021-11-15 федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский Томский политехнический университет» Фотобиореактор для культивирования микроводорослей
WO2022165392A1 (en) * 2021-01-29 2022-08-04 Intematix Corporation Solid-state grow-lights for plant cultivation
US20220330489A1 (en) * 2021-03-03 2022-10-20 Seoul Viosys Co., Ltd. Light source module and plants cultivation device including the same
JP2023049336A (ja) * 2021-09-29 2023-04-10 トヨタ紡織株式会社 植物栽培方法及び植物栽培装置
CN114027120B (zh) * 2021-11-05 2022-11-22 中国农业科学院都市农业研究所 一种水稻快速加代育种的方法
WO2023105939A1 (ja) * 2021-12-06 2023-06-15 Agri Blue株式会社 植物栽培方法、植物栽培装置、及び光合成生物製造方法
WO2023228491A1 (ja) * 2022-05-25 2023-11-30 Agri Blue株式会社 植物栽培方法、植物栽培装置、及び光合成生物製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06276858A (ja) 1993-03-31 1994-10-04 Iwasaki Electric Co Ltd 閉鎖空間の植物の照明装置
JPH08103167A (ja) 1994-10-05 1996-04-23 Kensei Okamoto 植物栽培用光源
JPH11266727A (ja) * 1998-03-23 1999-10-05 Sanyo Electric Co Ltd 藻類養殖方法
JP2007097584A (ja) 2005-09-06 2007-04-19 Yamaha Motor Co Ltd アスタキサンチン含有量の高い緑藻およびその製造方法
JP2010252700A (ja) 2009-04-24 2010-11-11 Denso Corp 新規なアスティカカウリス・エキセントリカス菌株、それを用いた微細藻類の培養方法、及び炭化水素の製造方法

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3930335A (en) * 1973-04-02 1976-01-06 Controlled Environment Systems, Inc. Plant growth system
CA1243237A (en) * 1983-03-17 1988-10-18 Prakash G. Kadkade Application of specific lighting treatments for promotion of anthocyanin in economically important crops
NL9001277A (nl) * 1990-06-06 1992-01-02 Ingbureau D Kuiper B V Werkwijze voor het kweken van een fototroof aquatisch organisme.
JP2005151850A (ja) * 2003-11-21 2005-06-16 Ccs Inc そば育成方法及びそば育成装置
JP2005158150A (ja) * 2003-11-26 2005-06-16 Renesas Technology Corp 半導体集積回路
JP2006050988A (ja) * 2004-08-13 2006-02-23 Koha Co Ltd 植物栽培用光源
JP2006149264A (ja) * 2004-11-29 2006-06-15 Mkv Platech Co Ltd 光選択透過性農業用不織布被覆材およびそれを用いる植物の栽培方法
JP2006320314A (ja) * 2005-04-19 2006-11-30 Tsujiko Co Ltd 照明装置
CN100336440C (zh) * 2005-05-11 2007-09-12 中国海洋大学 一种利用led单色光源促进海藻生长的方法
WO2007118223A2 (en) * 2006-04-06 2007-10-18 Brightsource Energy, Inc. Solar plant employing cultivation of organisms
RU2326525C2 (ru) * 2006-05-24 2008-06-20 Валерий Николаевич Марков Светоимпульсный осветитель (варианты) и способ светоимпульсного освещения растений
RU2332006C1 (ru) * 2006-11-07 2008-08-27 Валерий Николаевич Марков Конвейерный способ выращивания растений "зеленая волна"
JP4759746B2 (ja) * 2006-12-08 2011-08-31 国立大学法人 筑波大学 植物栽培方法
EP2025220A1 (en) * 2007-08-15 2009-02-18 Lemnis Lighting Patent Holding B.V. LED lighting device for growing plants
CA2706038C (en) * 2007-11-21 2016-10-11 Promachine, Inc. Continuous loop plant growing system
CN201167507Y (zh) * 2008-02-05 2008-12-24 莫家贤 一种可用于照明及给植物提供光照的栽培盆
US20090288340A1 (en) * 2008-05-23 2009-11-26 Ryan Hess LED Grow Light Method and Apparatus
JP2010004869A (ja) * 2008-05-28 2010-01-14 Mitsubishi Chemicals Corp 生物の育成装置及び育成方法
JP5104621B2 (ja) * 2008-07-28 2012-12-19 三菱化学株式会社 植物育成用の照明装置
CN201403385Y (zh) * 2009-04-10 2010-02-17 林健峯 藻类培养装置
RU2394265C1 (ru) * 2009-05-28 2010-07-10 Федеральное государственное образовательное учреждение высшего профессионального образования Дальневосточный государственный аграрный университет Способ регулирования радиационного режима при досвечивании растений
CN101889531B (zh) * 2010-06-28 2012-01-04 南京农业大学 一种陆地棉室内育苗的控制方法
CN201805751U (zh) * 2010-09-10 2011-04-27 和春技术学院 植株栽培光照装置
JP6012928B2 (ja) * 2011-03-01 2016-10-25 公立大学法人大阪府立大学 植物栽培方法及び体内時計最適化植物栽培装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06276858A (ja) 1993-03-31 1994-10-04 Iwasaki Electric Co Ltd 閉鎖空間の植物の照明装置
JPH08103167A (ja) 1994-10-05 1996-04-23 Kensei Okamoto 植物栽培用光源
JPH11266727A (ja) * 1998-03-23 1999-10-05 Sanyo Electric Co Ltd 藻類養殖方法
JP2007097584A (ja) 2005-09-06 2007-04-19 Yamaha Motor Co Ltd アスタキサンチン含有量の高い緑藻およびその製造方法
JP2010252700A (ja) 2009-04-24 2010-11-11 Denso Corp 新規なアスティカカウリス・エキセントリカス菌株、それを用いた微細藻類の培養方法、及び炭化水素の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2740349A4

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0487335A (ja) * 1990-07-31 1992-03-19 Mitsubishi Electric Corp 半導体ウエハ洗浄装置
US9624466B2 (en) 2013-02-04 2017-04-18 Showa Denko K.K. Method of promoting growth of green algae
WO2014119789A1 (ja) * 2013-02-04 2014-08-07 昭和電工株式会社 緑藻類生育促進方法
WO2014119794A1 (ja) * 2013-02-04 2014-08-07 昭和電工株式会社 緑藻類生育促進方法
WO2014119792A1 (ja) * 2013-02-04 2014-08-07 昭和電工株式会社 緑藻類生育促進方法
US9683211B2 (en) 2013-02-04 2017-06-20 Showa Denko K.K. Method of promoting growth of green algae
US9617510B2 (en) 2013-02-04 2017-04-11 Showa Denko K.K. Method of promoting growth of green algae
JP2016523554A (ja) * 2013-07-12 2016-08-12 フェルメンタル 不連結細胞培養方法
JP2017503516A (ja) * 2014-01-27 2017-02-02 ユニヴァーシティ オヴ ニューカッスル アポン タインUniversity Of Newcastle Upon Tyne フィコシアニン合成の改善
WO2015121987A1 (ja) * 2014-02-14 2015-08-20 栗田工業株式会社 微細藻類の培養状態の判断方法及び微細藻類の培養方法
JP2015192618A (ja) * 2014-03-31 2015-11-05 信越半導体株式会社 植物育成用照明装置及び植物育成方法
JPWO2015151577A1 (ja) * 2014-04-03 2017-04-13 日本水産株式会社 アスタキサンチンの生産方法
WO2015151577A1 (ja) * 2014-04-03 2015-10-08 日本水産株式会社 アスタキサンチンの生産方法
CN107779384A (zh) * 2016-08-24 2018-03-09 中国航天员科研训练中心 一种空间微藻光照系统
WO2018043147A1 (ja) 2016-09-01 2018-03-08 昭和電工株式会社 光合成微細藻類の培養方法
WO2018043146A1 (ja) 2016-09-01 2018-03-08 昭和電工株式会社 光合成微細藻類の培養方法
EP3508567A4 (en) * 2016-09-01 2020-02-19 Showa Denko K.K. METHOD FOR CULTURING PHOTOSYNTHETIC MICROALGAE
WO2018056160A1 (ja) * 2016-09-21 2018-03-29 日本水産株式会社 アスタキサンチンの生産方法
CN109642246A (zh) * 2016-09-21 2019-04-16 日本水产株式会社 虾青素的生产方法
CN113875514A (zh) * 2020-07-03 2022-01-04 株式会社理光 栽培方法、信息处理方法、控制方法、信息处理装置及控制装置
US11864507B2 (en) 2020-07-03 2024-01-09 Ricoh Company, Ltd. Cultivation method, information processing apparatus, and control apparatus

Also Published As

Publication number Publication date
US20140165462A1 (en) 2014-06-19
WO2013021952A1 (ja) 2013-02-14
JP5729786B2 (ja) 2015-06-03
EP2740349B1 (en) 2020-02-26
EP2740348B1 (en) 2020-05-06
EP2740348A4 (en) 2015-05-06
TW201306733A (zh) 2013-02-16
JPWO2013021675A1 (ja) 2015-03-05
TWI551216B (zh) 2016-10-01
JP2015142585A (ja) 2015-08-06
CN103747670B (zh) 2016-03-09
EP2740348A1 (en) 2014-06-11
EP2740349A4 (en) 2015-05-13
TW201306734A (zh) 2013-02-16
JP5729785B2 (ja) 2015-06-03
CN103687478A (zh) 2014-03-26
WO2013021676A1 (ja) 2013-02-14
JP2015128448A (ja) 2015-07-16
RU2014108314A (ru) 2015-09-10
TWI693882B (zh) 2020-05-21
RU2593905C2 (ru) 2016-08-10
CN103687478B (zh) 2015-09-23
US20140170733A1 (en) 2014-06-19
CN103747670A (zh) 2014-04-23
JP5926834B2 (ja) 2016-05-25
EP2740349A1 (en) 2014-06-11
JPWO2013021952A1 (ja) 2015-03-05

Similar Documents

Publication Publication Date Title
JP5926834B2 (ja) 藻類培養方法及び藻類培養装置
Vadiveloo et al. Effect of different light spectra on the growth and productivity of acclimated Nannochloropsis sp.(Eustigmatophyceae)
Schulze et al. Light emitting diodes (LEDs) applied to microalgal production
US8656636B2 (en) Biological optimization systems for enhancing photosynthetic efficiency and methods of use
Kendirlioglu et al. Effect of different wavelengths of light on growth, pigment content and protein amount of Chlorella vulgaris
KR101545274B1 (ko) Led 조사를 이용한 아스타잔틴 함량이 증가된 미세조류의 제조방법 및 상기 제조방법에 의해 제조된 아스타잔틴 함량이 증가된 미세조류
JPWO2018043146A1 (ja) 光合成微細藻類の培養方法
Bhat et al. Effect of photoperiod and white LED on biomass growth and protein production by Spirulina
JP6296659B2 (ja) 培養方法
US20150140642A1 (en) Method of promoting growth of green algae
Webb et al. Light spectral effect on a consortium of filamentous green algae grown on anaerobic digestate piggery effluent (ADPE)
US10711232B2 (en) Bioreactor for microalgae
Arkronrat et al. Growth performance and production cost of laboratory-scale marine microalgae culture using a light-emitting diode.
JP2016111984A (ja) 緑藻類培養方法およびアスタキサンチンの製造方法
Yago et al. Effects of flashing light from light emitting diodes (LEDs) on growth of the microalga Isochrysis galbana
Raha et al. Energy efficient cultivation of microalgae using phosphorescence materials and mirrors
Kim et al. Red and blue photons can enhance the production of astaxanthin from Haematococcus pluvialis
Tran-Nguyen et al. Effects of Light on the Growth and β-carotene Accumulation in the Green Algae Dunaliella salina
JPWO2018043147A1 (ja) 光合成微細藻類の培養方法
Montoya et al. Analysis of cell growth, photosynthetic behavior and the fatty acid profile in Tetraselmis subcordiformis under different lighting scenarios
Fakhri et al. Effect of photoperiod regimes on growth, biomass and pigment content of Nannochloropsis sp. BJ17
Gupta et al. Effect of spectral quality of light on growth and cell constituents of the wild-type (WT) and DCMU-tolerant strain of microalga Scenedesmus vacuolatus
Do et al. Effects of red and blue light emitting diodes on biomass and astaxanthin of Haematococcus pluvialis in pilot scale angled twin-layer porous substrate photobioreactors
Lee et al. Green light as supplementary light for enhancing biomass production of Ettlia sp. and preventing population invasion from other microalgae
Carpio et al. Effects of Light Sources and Light Wavelengths on the Growth and Lipid Content of the Green Alga, Chlorella vulgaris Beij

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280035383.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12822667

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013527906

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14236152

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE