WO2015121987A1 - 微細藻類の培養状態の判断方法及び微細藻類の培養方法 - Google Patents

微細藻類の培養状態の判断方法及び微細藻類の培養方法 Download PDF

Info

Publication number
WO2015121987A1
WO2015121987A1 PCT/JP2014/053543 JP2014053543W WO2015121987A1 WO 2015121987 A1 WO2015121987 A1 WO 2015121987A1 JP 2014053543 W JP2014053543 W JP 2014053543W WO 2015121987 A1 WO2015121987 A1 WO 2015121987A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
microalgae
culture
absorbance
green light
Prior art date
Application number
PCT/JP2014/053543
Other languages
English (en)
French (fr)
Inventor
加来 啓憲
Original Assignee
栗田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 栗田工業株式会社 filed Critical 栗田工業株式会社
Priority to PCT/JP2014/053543 priority Critical patent/WO2015121987A1/ja
Priority to JP2015562654A priority patent/JPWO2015121987A1/ja
Publication of WO2015121987A1 publication Critical patent/WO2015121987A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/30Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration
    • C12M41/36Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration of biomass, e.g. colony counters or by turbidity measurements
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/02Photobioreactors

Definitions

  • the present invention relates to a determination method for managing the culture state of microalgae performing photosynthesis.
  • the present invention also relates to a method for culturing microalgae that performs photosynthesis using this determination method.
  • Microalgae are single-cell organisms with a size of several ⁇ m to several tens of ⁇ m. Among them, those that carry out photosynthesis efficiently convert solar energy into hydrocarbons and accumulate them, and also store various minerals and unsaturated fatty acids. Because it is contained in a high concentration, it can be used as an alternative fuel such as diesel fuel, it can be used as a health food as represented by chlorella, lipids and oils produced in the body can be used as fuel raw materials, and unsaturated fatty acids Artificial cultures are used for various purposes such as collecting functional substances that serve as supplement raw materials.
  • microalgae In order to produce microalgae stably in the process of producing fuel from microalgae and the production process for making health foods and supplements, stable cultivation of microalgae is necessary. is important.
  • microalgae are often cultured in an open-air culture pond called an open pond. In this open pond, there is a possibility that microalgae may be killed by contamination (contamination) of bacteria and molds, which is a problem.
  • Patent Document 1 discloses a method for detecting the fluorescence of a culture solution and measuring the growth activity of microalgae based on this.
  • Patent Documents 2 and 3 disclose methods for determining the culture state of microalgae by combining visible light and near infrared light.
  • JP 2008-283946 A Japanese Patent No. 3276760 JP-A-6-261793
  • the present invention decomposes and detects green light (500 to 570 nm) and red light (620 to 740 nm) from the color of a culture solution containing microalgae, Provided is a method for determining the growth activity of microalgae, wherein the growth activity of microalgae is determined from the intensity of the wavelength and the intensity of the wavelength of red light (Invention 1).
  • the color of the culture solution containing microalgae is detected by decomposing it into green light and red light, which can be detected by dividing the chromaticity into RGB and is inexpensive.
  • a color sensor can be applied. This color sensor can detect changes in a wide range of colors such as satellite photographs using only visible light. By these, it becomes possible to efficiently and economically monitor the culture state of microalgae for photosynthesis and judge the culture state.
  • the absorbance ratio of red light and green light is correlated with the growth rate difference of microalgae, and when the culture state deteriorates, the absorbance of green light decreases. Based on this ratio, the culture state of microalgae can be easily determined.
  • the present invention detects the color of a culture solution containing microalgae by decomposing it into green light (500 to 570 nm) and red light (620 to 740 nm), and the absorbance of the red light is measured with green light.
  • green light 500 to 570 nm
  • red light 620 to 740 nm
  • the absorbance of the red light is measured with green light.
  • the color of the culture solution containing microalgae is detected by decomposing it into green light and red light, and monitoring is performed while calculating the value obtained by dividing the absorbance of red light by the absorbance of green light. To do. At this time, since the absorbance of green light increases as the culture state deteriorates, if the ratio of both absorbances is less than 1.2, it is considered that the culture state has deteriorated and the culture is promoted (a), ( By taking the measures of b) or (c), the microalgae can be cultured in good condition.
  • the present invention detects the color of a culture solution containing microalgae by decomposing it into green light (500 to 570 nm) and red light (620 to 740 nm), and the absorbance of the red light is measured with green light.
  • the value divided by the absorbance is calculated and the value shows a tendency to decrease with time, (a) the nutrient salt of the microalgae is added, (b) the culture is stopped, and the microalgae is harvested.
  • a method for cultivating microalgae characterized in that any one of the methods described above is performed (Invention 4).
  • the color of the culture solution containing microalgae is detected by decomposing it into green light and red light, and monitoring is performed while calculating the value obtained by dividing the absorbance of red light by the absorbance of green light. To do. At this time, since the absorbance of green light increases as the culture state deteriorates, if the tendency to decrease with time is shown, the culture state is considered to be worsening and the culture is promoted (a), (b) Alternatively, by taking the measure (c), the microalgae can be cultured in a good state.
  • green light and red light are decomposed and detected from the color of a culture solution containing microalgae, and the growth activity of microalgae is determined from the intensity of the wavelength of green light and the intensity of the wavelength of red light. Therefore, an inexpensive color sensor can be applied, so that changes in a wide range of colors such as satellite photographs can be sensed with only visible light. By these, the culture state of the microalgae which carry out photosynthesis can be monitored efficiently and economically, and the culture state can be judged.
  • 6 is a graph showing the relationship between absorbance and specific growth rate in the method for determining the culture state of microalgae in Examples 1 to 4.
  • the present invention decomposes and detects green light (500 to 570 nm) and red light (620 to 740 nm) from the color (chromaticity) of a culture solution containing microalgae, and detects the intensity of the wavelength of green light and the red light.
  • the growth activity of microalgae is determined from the intensity of the wavelength.
  • the microalgae those excellent in hydrocarbon production ability are preferable.
  • a color sensor As a means for detecting the chromaticity of the culture solution, it is preferable to use a color sensor because it is inexpensive and can separately detect green light, red light and blue light.
  • This color sensor has a mechanism in which a measured color is decomposed into RGB components by a color filter, and the intensity of each color component is detected by a photodiode or the like. This color sensor can detect changes in a wide range of color tones such as satellite photographs using only visible light.
  • the culture state of microalgae is determined as follows. That is, first, white light is irradiated to transparent water (for example, pure water) that does not absorb light, and the transmitted light is detected by a color sensor. Since the white light is separated into RGB components by the color filter of the color sensor and received, the respective light intensities of the red band light (green light) R1 and the green band light (green light) G1 are obtained. measure.
  • the culture solution containing microalgae is irradiated with white light in the same manner using the same color sensor, and the transmitted light is detected with the color sensor. Since this transmitted light is separated into RGB components by the color filter of the color sensor and received, the respective light intensities of the red band light (red light) R2 and the green band light (green light) G2 at this time are obtained. measure.
  • the red band light (red light) and the green band light (green light) are measured using, for example, a transmissive color sensor 1 shown in FIG. 1 described in Japanese Patent Application Laid-Open No. 2010-151605. be able to.
  • the transmissive color sensor 1 includes a light emitting unit 2 and a light receiving unit 3 including a color filter (not shown).
  • a reflective color sensor 11 as shown in FIG. 2 described in JP 2010-181150 A can also be used.
  • the reflective color sensor 11 includes a light-emitting unit 12, a light-receiving unit 13 including a color filter (not shown), and a reflection plate 14.
  • the reflection-type color sensor 11 emits white light from the light-emitting unit 12 and reflects the reflection plate 14.
  • the light transmitted through the culture medium 15 is received by the light receiving unit 13, and the light intensity of each of the red band light (green light) and the green band light (green light) is calculated by a control mechanism (not shown).
  • Absorbance ratio: X AR / AG
  • the weight concentration of microalgae in the culture solution is measured, and the specific growth rate is measured.
  • the specific growth rate is determined, for example, by measuring the suspended substance in the culture solution with a glass fiber filter having a pore diameter of 1 ⁇ m and setting the weight concentration. Then, the weight concentration C1 [mg / L] and the amount of culture solution V1 [L] at the culture day T1 [day], and the weight concentration C2 [mg / L] and the culture solution amount at the culture day T2 [day].
  • the culture state of microalgae is determined based on green light (500 to 570 nm) and red light (620 to 740 nm), but the absorbance of blue light (450 to 490 nm) is determined. Data may be used supplementarily.
  • Ikadamo NIES-96 strain
  • C medium having the composition shown in Tables 1 and 2
  • air was used as the C medium.
  • the weight concentration of squid was over 1 g / L, a part of the culture solution was extracted, and semi-batch culture was performed to supplement the culture solution.
  • the culture state of the microalgae was determined as follows using the color sensor shown in FIG. That is, pure water produced by a pure water production apparatus “WG270” manufactured by Yamato Scientific Co., Ltd. is irradiated with white light, and the transmitted light is detected by a color sensor, and red band light (red light) R1 and green band light (green) Light) Each light intensity with G1 was measured.
  • the same color sensor is used to irradiate white light with the same color sensor, and the transmitted light is detected by the color sensor, and the red band light (red light) R2 and the green band light (green light) are detected. Each light intensity with G2 was measured. The absorbance ratio was calculated from the absorbance of red light and the absorbance of green light.
  • FIG. 7 shows a graph in which the relationship between the absorbance and the specific growth rate is arranged based on the results of FIGS.
  • the absorbance ratio X can be an index for determining the culture state.
  • the absorbance ratio X is less than 1.0, the specific growth rate becomes negative, or when the absorbance ratio X shows a tendency to decrease, the specific growth rate decreases. It was confirmed that it could be a tool for stabilizing the culture of microalgae by adding or collecting (harvesting) cultured squid (microalgae).
  • green light 500 to 570 nm
  • red light 620 to 740 nm
  • the growth activity of microalgae is determined from the intensity of the wavelength of green light and the intensity of the wavelength of red light
  • the culture state of microalgae can be grasped with an inexpensive detection device such as a color sensor.
  • an inexpensive detection device such as a color sensor.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Sustainable Development (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

 透過型カラーセンサ1の発光部2から白色光を照射して、培養液4を透過してきた光を受光部3で受光し、カラー・フィルタで緑色光(500~570nm)と赤色光(620~740nm)とを分解して検出し、緑色光の波長の強度と赤色光の波長の強度とから微細藻類の増殖活性を判定する。これにより、光合成を行う微細藻類の培養状態を効率よくモニタリングして、その培養状態を判断することができる。

Description

微細藻類の培養状態の判断方法及び微細藻類の培養方法
 本発明は、光合成を行う微細藻類の培養状態を管理するための判断方法に関する。また、本発明はこの判断方法を利用した光合成を行う微細藻類の培養方法に関する。
 微細藻類は、数μm~数十μmの大きさの単細胞生物であり、このうち光合成を行うものは、太陽エネルギーを効率よく炭化水素に転換して蓄積し、また各種ミネラルや不飽和脂肪酸などを高濃度に含有することから、ディーゼル燃料などの代替燃料として用いたり、クロレラに代表されるようにそれ自身を健康食品としたり、体内に生産された脂質や油分を燃料原料としたり、不飽和脂肪酸などのサプリメント原料となる機能物質を回収したりするなどの種々の用途に用いる目的で人工培養されている。
 このように微細藻類から燃料を生産するプロセスや、健康食品としたりサプリメント原料としたりするための生産プロセスにおいて、安定して微細藻類の生産を行うためには、微細藻を安定して培養することが重要である。ここで微細藻類の培養は、現状では培養コストを削減するためオープンポンドと呼ばれる屋外開放型の培養池で行われることが多い。このオープンポンドでは、バクテリアやカビなどの混入(コンタミネーション)により微細藻類が死滅してしまう虞があり課題となっている。
 そこで、培養液のpHを酸性やアリカリ性に調整したり、殺菌剤を添加したりしてコンタミネーションの回避が試みられているが、決定的な解決策は見出されていない。一方、実用化時のオープンポンドは数千ha規模となることが予想され、広大な培養池における培養状態を培養液の光線の透過などに基づき効率よくモニタリングする手法が望まれている。
 このような培養液の状態を光線の透過などに基づきモニタリングする方法として、濁度計による培養液の濁度に基づき判断する手法が提案されている。また、特許文献1には、培養液の蛍光度を検出して、これに基づき微細藻類の増殖活性を測定する方法が開示されている。さらに、特許文献2、3には、可視光と近赤外線とを組み合わせて、微細藻類の培養状態を判断する方法が開示されている。
特開2008-283946号公報 特許3276760号公報 特開平6-261793号公報
 しかしながら、濁度計を用いて微細藻類の増殖活性を測定する方法や特許文献1に記載されているように蛍光度計を用いて微細藻類の増殖活性を測定する方法では、計測機器である濁度計や蛍光度計は非常に高価であり、測定範囲も限られるので現実的でないという問題点がある。また、特許文献2、3に記載の技術は、可視光の他に赤外線を測定する必要があるため、検出には高額な分光光度計が必要であり、このため、広範囲をモニタリングするのではコストが嵩むという問題点があった。すなわち、広大な培養池における光合成を行う微細藻類の培養状態を効率よく経済的にモニタリングする技術は従来なかった。
 本発明は上記課題に鑑みてなされたものであり、光合成を行う微細藻類の培養状態を効率よくモニタリングして、その培養状態の判断するための方法を提供することを目的とする。また、本発明は、光合成を行う微細藻類の培養状態を判断して、最適化することで微細藻類を効率的に培養する方法を提供することを目的とする。
 上記課題を解決するために、第一に本発明は、微細藻類を含む培養液の色合いから緑色光(500~570nm)と赤色光(620~740nm)とを分解して検出し、緑色光の波長の強度と赤色光の波長の強度とから微細藻類の増殖活性を判断することを特徴とする微細藻類の増殖活性の判定方法を提供する(発明1)。
 かかる発明(発明1)によれば、微細藻類を含む培養液の色合いを緑色光と赤色光とに分解して検出するが、これには色度をRGBに分けて検出すればよく、安価なカラーセンサを適用することができる。このカラーセンサは可視光のみで衛星写真など広い範囲の色超の変化を感知することができる。これらにより、光合成を行う微細藻類の培養状態を効率よく経済的にモニタリングして、その培養状態を判断することが可能となる。
 上記発明(発明1)においては、前記赤色光の吸光度を前記緑色光の吸光度で除した値で微細藻類の増殖活性を判断するのが好ましい(発明2)。
 かかる発明(発明2)によれば、この赤色光の吸光度と緑色光の吸光度比は、微細藻類の成長差速度と相関性があり、培養状態が悪化すると緑色光の吸光度が小さくなるので、両者の比に基づいて微細藻類の培養状態を簡便に判断することができる。
 また、第二に本発明は、微細藻類を含む培養液の色合いを緑色光(500~570nm)と赤色光(620~740nm)とに分解して検出し、前記赤色光の吸光度を緑色光の吸光度で除した値を算出し、該値が1.2を下回ったら、(a)前記微細藻類の栄養塩類を添加する、(b)培養を停止し、微細藻類を収穫する、(c)培養液を入れ替える、のいずれかを行うことを特徴とする微細藻類の培養方法を提供する(発明3)。
 かかる発明(発明3)によれば、微細藻類を含む培養液の色合いを緑色光と赤色光とに分解して検出し、赤色光の吸光度を緑色光の吸光度で除した値を算出しながら監視する。このとき培養状態が悪化するに伴い緑色光の吸光度が大きくなるので、両吸光度の比が1.2を下回ったら、培養状態が悪化していると見なして、培養を促進する(a)、(b)あるいは(c)の措置を採ることで、微細藻類を良好な状態で培養することができる。
 さらに、第三に本発明は、微細藻類を含む培養液の色合いを緑色光(500~570nm)と赤色光(620~740nm)とに分解して検出し、前記赤色光の吸光度を緑色光の吸光度で除した値を算出し、該値が経時的に低下する傾向を示したら、(a)前記微細藻類の栄養塩類を添加する、(b)培養を停止し、微細藻類を収穫する、(c)培養液を入れ替える、のいずれかを行うことを特徴とする微細藻類の培養方法を提供する(発明4)。
 かかる発明(発明4)によれば、微細藻類を含む培養液の色合いを緑色光と赤色光とに分解して検出し、赤色光の吸光度を緑色光の吸光度で除した値を算出しながら監視する。このとき培養状態が悪化するに伴い緑色光の吸光度が大きくなるので、経時的に低下する傾向を示したら、培養状態が悪化しつつあると見なして、培養を促進する(a)、(b)あるいは(c)の措置を採ることで、微細藻類を良好な状態で培養することができる。
 本発明によれば、微細藻類を含む培養液の色合いから緑色光と赤色光とを分解して検出し、緑色光の波長の強度と赤色光の波長の強度とから微細藻類の増殖活性を判定しているので、安価なカラーセンサを適用することができ、このため可視光のみで衛星写真など広い範囲の色超の変化を感知することができる。これらにより、光合成を行う微細藻類の培養状態を効率よく経済的にモニタリングして、その培養状態を判断することできる。
本発明の第一の実施形態に係る微細藻類の培養状態の判断方法を実施可能な装置を示す概略図である。 本発明の第二の実施形態に係る微細藻類の培養状態の判断方法を実施可能な装置を示す概略図である。 実施例1における微細藻類の培養状態の判断方法における培養期間と吸光度及び比増殖速度との関係を示すグラフである。 実施例2における微細藻類の培養状態の判断方法における培養期間と吸光度及び比増殖速度との関係を示すグラフである。 実施例3における微細藻類の培養状態の判断方法における培養期間と吸光度及び比増殖速度との関係を示すグラフである。 実施例4における微細藻類の培養状態の判断方法における培養期間と吸光度及び比増殖速度との関係を示すグラフである。 実施例1~4における微細藻類の培養状態の判断方法における吸光度と比増殖速度との関係を示すグラフである。
 以下、本発明の実施形態について図面を参照して詳細に説明する。ただし、本実施形態はいずれも例示であり、本発明はこれに限定されるものではない。
 本発明は、微細藻類を含む培養液の色合い(色度)から緑色光(500~570nm)と赤色光(620~740nm)とを分解して検出し、緑色光の波長の強度と赤色光の波長の強度とから微細藻類の増殖活性を判定する。ここで、微細藻類として、炭化水素生産能に優れているものが好ましい。
 また、この培養液の色度を検知する手段としては、安価で緑色光、赤色光及び青色光をそれぞれ分けて検出可能であることから、カラーセンサを用いるのが好ましい。このカラーセンサは、測定した色をカラー・フィルタによってRGB成分に分解し、それぞれの色成分の強度をフォトダイオード等により検知する仕組みを有するものである。このカラーセンサは、可視光のみで衛星写真など広い範囲の色調の変化を感知することができる。
 具体的には、カラーセンサを用いて、以下のようにして微細藻類の培養状態を判断する。すなわち、まず、光の吸収が生じない透明な水(例えば純水)に白色光を照射して、透過した光をカラーセンサで検出する。この白色光は、カラーセンサのカラー・フィルタによってRGB成分に分解されて受光されるので、このときの赤色帯域光(緑色光)R1と緑色帯域光(緑色光)G1とのそれぞれの光強度を計測する。
 次に微細藻類を含む培養液を同じカラーセンサを用い、同様に白色光を照射して、透過した光をカラーセンサで検出する。この透過光は、カラーセンサのカラー・フィルタによってRGB成分に分解されて受光されるので、このときの赤色帯域光(赤色光)R2と緑色帯域光(緑色光)G2とのそれぞれの光強度を計測する。
 この赤色帯域光(赤色光)と緑色帯域光(緑色光)とは、例えば、特開2010-151605号公報に記載されている、図1に示すような透過型カラーセンサ1を用いて測定することができる。この透過型カラーセンサ1は、発光部2とカラー・フィルタ(図示せず)を備えた受光部3とを有し、発光部2から白色光を照射して、培養液4を透過してきた光を受光部3で受光し、図示しない制御機構で赤色帯域光(緑色光)と緑色帯域光(緑色光)とのそれぞれの光強度を算出する。
 また、特開2010-181150号公報に記載されている、図2に示すような反射型カラーセンサ11を用いることもできる。この反射型カラーセンサ11は、発光部12とカラー・フィルタ(図示せず)を備えた受光部13と、反射板14とを有し、発光部12から白色光を照射して、反射板14を経由して培養液15を透過してきた光を受光部13で受光し、図示しない制御機構で赤色帯域光(緑色光)と緑色帯域光(緑色光)とのそれぞれの光強度を算出する。
 このようにして、赤色光の吸光度と緑色光の吸光度とを測定したら、下記式により赤色光の吸光度と緑色光の吸光度と両者の比(吸光度比)とを算出する。
 赤色帯域光吸光度:A=-log(R2/R1)
 緑色帯域光吸光度:A=-log(G2/G1)
 吸光度比:X=A/A
 一方、培養液中の微細藻類の重量濃度を測定し、比増殖速度を測定する。この比増殖速度は、例えば、孔径1μmのガラス繊維ろ紙で培養液の懸濁物質を測定し、重量濃度とする。そして、培養日数T1[日]のときの重量濃度C1[mg/L]及び培養液量V1[L]と、培養日数T2[日]のときの重量濃度C2[mg/L]及び培養液量V2[L]とから下記式により比増殖速度ν[1/日]を算出する。この比増殖速度νがマイナス領域となると培養状態が悪化しているといえる。
 比増殖速度:ν=(ln(m2/m1))/(T2-T1)
 (ここで、m1=C1×V1、m2=C2×V2)
 本発明者の研究によれば、この比増殖速度νと吸光度比Xとの間には高い相関が認められることがわかった。そして、この相関性を解析した結果、吸光度比X(赤色光の吸光度を緑色光の吸光度で除した値)が1.0を下回ると、比増殖速度νがマイナスの領域であり、培養状態が悪化しているので、培養状態を向上させるための措置を採る。具体的には、(a)前記微細藻類の栄養塩類を添加する、(b)培養を停止し、藻類を収穫する、(c)培養液を入れ替える(遠心分離などで微細藻類を濃縮した後、新しい培養液で希釈する)、のいずれかを行えばよい。上記(a)~(c)の措置は、予防的に吸光度比Xが1.2を下回ったら行うようにしてもよい。
 さらに、この相関性を応用すれば、吸光度比X(赤色光の吸光度を緑色光の吸光度で除した値)が経時的に低下する傾向を示した時点で培養状態が悪化しつつあると判断して、培養状態を向上させるために同様の措置を採るようにしてもよい。
 以上、本発明について実施形態に基づき説明してきたが、本発明は前記実施形態に限られず種々の変更実施が可能である。例えば、本実施形態では、緑色光(500~570nm)と赤色光(620~740nm)とに基づいて、微細藻類の培養状態の判断を行っているが、青色光(450~490nm)の吸光度のデータを補助的に用いてもよい。
 以下の具体的実施例及び比較例に基づき本発明をさらに詳細に説明するが、本発明は以下の実施例に限定されるものではない。
(実施例1~4)
 国立環境研究所微生物系統保存施設より分譲されたイカダモ(NIES-96株)を、pH6.5~7.5に調整した表1及び表2に示す組成のC培地を用い、このC培地に空気に工業用COを3体積%の濃度で添加したものを通気し、蛍光灯照明(明/暗=12hr/12hr)で培養を行った。そして、イカダモの重量濃度が1g/Lを超えたら、培養液の一部を抜き取り、培養液を補完する半回分培養を行った。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 この微細藻類の培養状態を図1に示すカラーセンサを用いて、以下のようにして判断した。すなわち、ヤマト科学社製純水製造装置「WG270」で製造した純水に白色光を照射して、透過した光をカラーセンサで検出し、赤色帯域光(赤色光)R1と緑色帯域光(緑色光)G1とのそれぞれの光強度を計測した。
 次に前述したイカダモの培養液を同じカラーセンサを用いて同様に白色光を照射して、透過した光をカラーセンサで検出し、赤色帯域光(赤色光)R2と緑色帯域光(緑色光)G2とのそれぞれの光強度を計測した。これらの赤色光の吸光度と緑色光の吸光度とから吸光度比を算出した。
 一方、孔径1μmのガラス繊維ろ紙で培養液中の懸濁物質を採取し、この懸濁物質の質量を測定し、培養液量から重量濃度を算出した。そして、培養日数T1[日]のときの重量濃度C1[mg/L]及び培養液量V1[L]と、培養日数T2[日]のときの重量濃度C2[mg/L]及び培養液量V2[L]とから比増殖速度ν[1/日]を算出した。
 培養液は、表3に示す4条件(実施例1~4)でそれぞれ半回分培養を行い、比増殖速度ν及び吸光度比Xの60日間の経時変化を観測した。結果を図3~図6に示す。さらに、この図3~図6の結果に基づき、吸光度と比増殖速度との関係を整理したグラフを図7に示す。
Figure JPOXMLDOC01-appb-T000003
 図3~図7より明らかなとおり、比増殖速度νと吸光度比Xとの間には相関関係があり、吸光度比Xが培養状態を判断する指標となりうることが確認された。そして、吸光度比Xが1.0を下回ると比増殖速度がマイナスとなること、あるいは吸光度比Xが低下傾向を示すと比増殖速度が低下することから、これらの状態が確認されたら肥料成分の添加や、培養したイカダモ(微細藻類)を回収(収穫)するなどすればよく、微細藻類の培養を安定化させるためのツールとなりうることが確認された。
 上述したような本発明の微細藻類の増殖活性の判定方法によれば、微細藻類を含む培養液の色合いから緑色光(500~570nm)と赤色光(620~740nm)とを分解して検出し、緑色光の波長の強度と赤色光の波長の強度とから微細藻類の増殖活性を判定しているので、カラーセンサなどの安価な検出装置で、微細藻類の培養状態を把握することができる。また、赤色光と緑色光の吸光度比の数値の経時変化を観察することで、適切な肥料成分の追加や微細藻類の回収のタイミングを判定できる。これらにより、微細藻類の安定培養を実現することができる。
1…透過型カラーセンサ
2…発光部
3…受光部
4…培養液
11…反射型カラーセンサ
12…発光部
13…受光部
14…反射板
15…培養液

Claims (4)

  1.  微細藻類を含む培養液の色合いから緑色光(500~570nm)と赤色光(620~740nm)とを分解して検出し、
     緑色光の波長の強度と赤色光の波長の強度とから微細藻類の増殖活性を判断することを特徴とする微細藻類の増殖活性の判定方法。
  2.  前記赤色光の吸光度を前記緑色光の吸光度で除した値で微細藻類の増殖活性を判断することを特徴とする請求項1に記載の微細藻類の増殖活性の判定方法。
  3.  微細藻類を含む培養液の色合いを緑色光(500~570nm)と赤色光(620~740nm)とに分解して検出し、前記赤色光の吸光度を緑色光の吸光度で除した値を算出し、該値が1.2を下回ったら、下記(a)~(c)のいずれかを行うことを特徴とする微細藻類の培養方法。
    (a)前記微細藻類の栄養塩類を添加する
    (b)培養を停止し、微細藻類を収穫する
    (c)培養液を入れ替える
  4.  微細藻類を含む培養液の色合いを緑色光(500~570nm)と赤色光(620~740nm)とに分解して検出し、前記赤色光の吸光度を緑色光の吸光度で除した値を算出し、該値が経時的に低下する傾向を示したら、下記(a)~(c)のいずれかを行うことを特徴とする微細藻類の培養方法。
    (a)前記微細藻類の栄養塩類を添加する
    (b)培養を停止し、微細藻類を収穫する
    (c)培養液を入れ替える
PCT/JP2014/053543 2014-02-14 2014-02-14 微細藻類の培養状態の判断方法及び微細藻類の培養方法 WO2015121987A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2014/053543 WO2015121987A1 (ja) 2014-02-14 2014-02-14 微細藻類の培養状態の判断方法及び微細藻類の培養方法
JP2015562654A JPWO2015121987A1 (ja) 2014-02-14 2014-02-14 微細藻類の培養状態の判断方法及び微細藻類の培養方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/053543 WO2015121987A1 (ja) 2014-02-14 2014-02-14 微細藻類の培養状態の判断方法及び微細藻類の培養方法

Publications (1)

Publication Number Publication Date
WO2015121987A1 true WO2015121987A1 (ja) 2015-08-20

Family

ID=53799751

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/053543 WO2015121987A1 (ja) 2014-02-14 2014-02-14 微細藻類の培養状態の判断方法及び微細藻類の培養方法

Country Status (2)

Country Link
JP (1) JPWO2015121987A1 (ja)
WO (1) WO2015121987A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3056225A1 (fr) * 2016-09-21 2018-03-23 Inria Institut National De Recherche En Informatique Et En Automatique Bioreacteur pour la selection de microalgues

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06261793A (ja) * 1993-03-16 1994-09-20 Kawasaki Heavy Ind Ltd 微細藻類増殖量測定方法及び装置
JPH07184636A (ja) * 1993-12-27 1995-07-25 Hitachi Ltd 光合成生物の培養方法及び装置
JP2008283946A (ja) * 2007-05-21 2008-11-27 Yanmar Co Ltd 微細藻類の増殖活性測定方法および微細藻類の増殖活性測定装置
WO2013021675A1 (ja) * 2011-08-05 2013-02-14 昭和電工株式会社 藻類培養方法及び藻類培養装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06261793A (ja) * 1993-03-16 1994-09-20 Kawasaki Heavy Ind Ltd 微細藻類増殖量測定方法及び装置
JPH07184636A (ja) * 1993-12-27 1995-07-25 Hitachi Ltd 光合成生物の培養方法及び装置
JP2008283946A (ja) * 2007-05-21 2008-11-27 Yanmar Co Ltd 微細藻類の増殖活性測定方法および微細藻類の増殖活性測定装置
WO2013021675A1 (ja) * 2011-08-05 2013-02-14 昭和電工株式会社 藻類培養方法及び藻類培養装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JEON, Y.-C. ET AL.: "Measurement of microalgal photosynthetic activity depending on light intensity and quality", BIOCHEMICAL ENGINEERING JOURNAL, vol. 27, no. 2, 2005, pages 127 - 131, XP027849184, ISSN: 1369-703x *
MOHSENPOUR, S.F. ET AL.: "Spectral conversion of light for enhanced microalgae growth rates and photosynthetic pigment production", BIORESOURCE TECHNOLOGY, vol. 125, 2012, pages 75 - 81, XP055219530, ISSN: 0960-8524 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3056225A1 (fr) * 2016-09-21 2018-03-23 Inria Institut National De Recherche En Informatique Et En Automatique Bioreacteur pour la selection de microalgues
WO2018055282A1 (fr) * 2016-09-21 2018-03-29 Inria Institut National De Recherche En Informatique Et En Automatique Bioreacteur pour la selection de microalgues
JP2019528791A (ja) * 2016-09-21 2019-10-17 イー・エヌ・エール・イー・アー−アンスティチュ・ナシオナル・ドゥ・ルシェルシュ・アン・ナンフォルマティーク・エ・タン・ノトマティーク 微細藻類の選択に用いられるバイオリアクタ
JP7062672B2 (ja) 2016-09-21 2022-05-06 イー・エヌ・エール・イー・アー-アンスティチュ・ナシオナル・ドゥ・ルシェルシュ・アン・ナンフォルマティーク・エ・タン・ノトマティーク 微細藻類の選択に用いられるバイオリアクタ
US11427796B2 (en) 2016-09-21 2022-08-30 Inria Institut National De Recherche En Informatique Et En Automatique Bioreactor for the selection of microalgae

Also Published As

Publication number Publication date
JPWO2015121987A1 (ja) 2017-03-30

Similar Documents

Publication Publication Date Title
Luimstra et al. Blue light reduces photosynthetic efficiency of cyanobacteria through an imbalance between photosystems I and II
Ihnken et al. Exposure times in rapid light curves affect photosynthetic parameters in algae
Tamburic et al. The effect of diel temperature and light cycles on the growth of Nannochloropsis oculata in a photobioreactor matrix
Detweiler et al. Evaluation of wavelength selective photovoltaic panels on microalgae growth and photosynthetic efficiency
US11261474B2 (en) Optical device for in-line and real-time monitoring of microorganisms
WO2014141811A1 (ja) 微細藻類の脂溶性成分含量の判断方法および微細藻類の培養方法
Kromkamp et al. Short-term variations in photosynthetic parameters of Nannochloropsis cultures grown in two types of outdoor mass cultivation systems
CN104374758B (zh) 一种利用叶绿素荧光参数Fv/Fm确定产油微藻收获时间的方法
Kula et al. Far‐red light (720 or 740 nm) improves growth and changes the chemical composition of Chlorella vulgaris
Karsten et al. A new in vivo fluorimetric technique to measure growth of adhering phototrophic microorganisms
Pachiappan et al. Isolation and culture of microalgae
CN108277163A (zh) 一种分离纯化裸藻藻种的方法
Perumal et al. Isolation and culture of microalgae
Iwasaki et al. Improving light and CO2 availability to enhance the growth rate of the diatom, Chaetoceros muelleri
Rodríguez et al. Macronutrients requirements of the dinoflagellate Protoceratium reticulatum
Huang et al. Artificial light source selection in seaweed production: growth of seaweed and biosynthesis of photosynthetic pigments and soluble protein
Rearte et al. Unicellular microalgae vs. filamentous algae for wastewater treatment and nutrient recovery
WO2015121987A1 (ja) 微細藻類の培養状態の判断方法及び微細藻類の培養方法
JP6575987B2 (ja) 緑藻類培養方法およびアスタキサンチンの製造方法
Hou et al. Effects of nutrient limitation on pigments in Thalassiosira weissflogii and Prorocentrum donghaiense
KR101125666B1 (ko) 자연해수를 이용한 조류 배양액 제조 방법
Kvíderová et al. The effect of ampicillin plus streptomycin on growth and photosynthesis of two halotolerant chlorophyte algae
JP2014143921A (ja) 微細藻類の培養状態の判断方法及び微細藻類の培養方法
WO2014156363A1 (ja) 藻類を利用した水質試験方法
KR102024456B1 (ko) 발광다이오드(Light-Emitting Diodes)를 이용한 담녹조강 Tetraselmis suecica 및 Tetraselmis tetrathele의 대량 배양방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14882316

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015562654

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14882316

Country of ref document: EP

Kind code of ref document: A1