WO2014141811A1 - 微細藻類の脂溶性成分含量の判断方法および微細藻類の培養方法 - Google Patents

微細藻類の脂溶性成分含量の判断方法および微細藻類の培養方法 Download PDF

Info

Publication number
WO2014141811A1
WO2014141811A1 PCT/JP2014/053546 JP2014053546W WO2014141811A1 WO 2014141811 A1 WO2014141811 A1 WO 2014141811A1 JP 2014053546 W JP2014053546 W JP 2014053546W WO 2014141811 A1 WO2014141811 A1 WO 2014141811A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
microalgae
fat
absorbance
content
Prior art date
Application number
PCT/JP2014/053546
Other languages
English (en)
French (fr)
Inventor
加来 啓憲
Original Assignee
栗田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 栗田工業株式会社 filed Critical 栗田工業株式会社
Publication of WO2014141811A1 publication Critical patent/WO2014141811A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/12Unicellular algae; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/02Photobioreactors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/30Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration
    • C12M41/38Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration of metabolites or enzymes in the cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/314Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths

Definitions

  • the present invention relates to a method for determining the fat-soluble component content of microalgae for determining the culture state of microalgae.
  • the present invention also relates to a method for culturing microalgae using this determination method.
  • Microalgae are single-cell organisms with a size of several ⁇ m to several tens of ⁇ m. Among them, those that perform photosynthesis efficiently use lipids and wax components such as fatty acids and fats and fat-soluble components such as triterpene hydrocarbons. In addition, because it contains various minerals and unsaturated fatty acids at high concentrations, fat-soluble components such as lipids and hydrocarbons produced in the body are used as alternative fuels for oil such as jet fuel and diesel fuel. Various uses have been proposed, such as using it as a health food as represented by chlorella, or extracting functional lipids such as unsaturated fatty acids into supplements and functional feeds. In particular, the use as biofuel has attracted attention in recent years.
  • microalgae When such microalgae are produced by a predetermined growth process for the purpose of producing fuel, it is necessary to separate the microalgae from the culture solution and to extract fat-soluble components such as fatty acids and fats and oils from the microalgae. .
  • a method of extracting the fat-soluble component from the microalgae and measuring the extracted fat-soluble component content a method of measuring the weight by extracting the fat-soluble component with a solvent, extracting the fat-soluble component with a solvent, and then extracting the fat-soluble component by gas chromatography.
  • a method for measuring the weight or the like of a soluble component is generally known.
  • Patent Document 1 Non-Patent Document 1 and Non-Patent Document 2 each stain a fat-soluble component in microalgae cells with Nile Red, and determine the amount of the fat-soluble component from the size of the stained site with a fluorescence microscope.
  • a method has been proposed.
  • Non-Patent Document 3 proposes a method of staining a fat-soluble component in microalgae cells with BODIPY and determining fluorescence intensity with a fluorescence plate reader.
  • Patent Document 1 Non-Patent Document 1
  • Non-Patent Document 2 Non-Patent Document 3
  • Non-Patent Document 3 it is conceivable to construct a system for completely automating on-site analysis, but this involves a problem that the equipment cost is very high.
  • microalgae In the process of producing fuel from microalgae, in order to perform stable fuel production, it is important that microalgae collect (harvest) at the timing when fat-soluble components are sufficiently accumulated.
  • microalgae are often cultured in an open-air culture pond called an open pond.
  • the culture conditions of microalgae are affected by environmental factors such as temperature and solar radiation, so the culture period until microalgae accumulate the maximum fat-soluble component suitable for recovery varies. Therefore, if it collects
  • the present invention has been made in view of the above problems, and an object thereof is to provide a method for efficiently monitoring the culture state of microalgae and determining the content of fat-soluble components of the microalgae. Another object of the present invention is to provide a method for culturing microalgae using this determination method.
  • the present invention is a method for determining the content of fat-soluble components of microalgae. From the color of the culture solution containing microalgae, blue light (450 to 490 nm), green light ( 500 to 570 nm) and red light (620 to 740 nm) are detected by decomposing at least two or more wavelength ranges, and the amount of fat-soluble component content of microalgae is judged based on the light intensity of the two or more light wavelengths.
  • a method for judging the content of fat-soluble components of microalgae is provided (Invention 1).
  • invention 1 in order to decompose the color of the culture solution containing microalgae into blue light, green light, and red light, it is only necessary to detect the chromaticity of visible light separately for RGB, which is inexpensive.
  • a simple color sensor can be applied. By applying the color sensor, online measurement is possible, and the measurement time can be greatly shortened and the measurement can be simplified. Furthermore, this color sensor can sense changes in a wide range of color tone using only visible light and using satellite photographs. By these, it becomes possible to monitor the culture state of a microalgae efficiently and judge the fat-soluble component content of the microalgae.
  • the green light (500 to 570 nm) and the red light (620 to 740 nm) are decomposed and detected, and the light intensity of the green light wavelength and the light intensity of the red light wavelength are determined. From the above, it is preferable to determine the amount of fat-soluble component content of microalgae (Invention 2).
  • the microalgae is calculated by calculating the absorbance of the red light and the absorbance of the green light from the light intensity of the wavelength of the green light and the light intensity of the wavelength range of the red light, and dividing the absorbance of the green light by the absorbance of the red light. It is preferable to determine the amount of the fat-soluble component content (Invention 3).
  • the light intensity ratio between the absorbance of red light and the absorbance of green light is correlated with the fat-soluble component content of the green microalga that performs photosynthesis. Since the absorbance ratio decreases as the content increases, if this absorbance ratio falls below a predetermined value according to the type of microalgae, it is possible to determine that the fat-soluble component content retained by the microalgae is sufficient. .
  • the light intensity of each wavelength of the culture solution containing the microalgae is calculated by comparing with the light intensity of each wavelength obtained by spectrally separating white light. It is preferable to determine the amount of the fat-soluble component content (Invention 4).
  • the said white light is the white light which permeate
  • the light intensity of the blue light, the green light and the red light of the culture solution containing microalgae is compared with the light intensity of each wavelength obtained by spectrally dividing the white light.
  • the present invention detects the color of a culture solution containing microalgae by decomposing it into green light (500 to 570 nm) and red light (620 to 740 nm), and the absorbance of the red light is measured with green light.
  • a method of cultivating microalgae is provided, wherein a value divided by absorbance is calculated, and when the value falls below a predetermined threshold, all or part of the culture solution is collected (Invention 6).
  • the color of the culture solution containing microalgae is detected by decomposing it into green light and red light, the light intensity of the green light and red light is calculated, and the absorbance of this red light is calculated.
  • the value (absorbance ratio) divided by the absorbance of green light is monitored.
  • the green microalgae that carry out photosynthesis decreases the absorbance ratio when the content of the fat-soluble component held increases, so if this absorbance ratio falls below a predetermined threshold, the content of the fat-soluble component held by the microalgae is sufficient.
  • the present invention detects the color of a culture solution containing microalgae by decomposing it into green light (500 to 570 nm) and red light (620 to 740 nm), and the absorbance of the red light is measured with green light.
  • a method for culturing microalgae wherein a value divided by absorbance is calculated, and if the value shows a tendency to decrease with time, all or part of the culture solution is recovered (Invention 7).
  • the color of the culture solution containing microalgae is detected by decomposing it into green light and red light, and the value (absorbance ratio) obtained by dividing the absorbance of red light by the absorbance of green light is obtained. Monitor while calculating. At this time, the green microalgae that perform photosynthesis will decrease in the absorbance ratio when the content of the fat-soluble component held increases, so if the absorbance ratio tends to decrease over time, the content of the fat-soluble component held in the microalgae By judging that it has become sufficient and recovering a part or all of it, microalgae can be cultured efficiently.
  • the color of a culture solution containing microalgae is detected by decomposing into blue light, green light and red light, and the lipid solubility retained by the microalgae by comparing the light intensity in these wavelength ranges. Since the component content is determined, the on-line measurement of the fat-soluble component content of microalgae can be performed, and the measurement time can be greatly shortened and the measurement can be simplified. This makes it possible to efficiently monitor the culture state of the microalgae and determine the fat-soluble component content of the microalgae.
  • the color of a culture solution containing green microalgae that performs photosynthesis is detected by decomposing green light and red light, and the absorbance of red light is determined from the light intensity of the green light wavelength and the light intensity of the red light wavelength. Is calculated by dividing the absorbance by the absorbance of green light (absorbance ratio). If the ratio of these absorbances falls below a predetermined value, it can be determined that the fat-soluble component content retained by the microalgae is sufficient.
  • the present invention decomposes the color (chromaticity) of a culture solution containing microalgae into at least two wavelength ranges of blue light (450 to 490 nm), green light (500 to 570 nm), and red light (620 to 740 nm).
  • the amount of the fat-soluble component content of the microalgae is judged based on the light intensity in the wavelength range of these two or more lights.
  • the color is detected by decomposing into green light (500 to 570 nm) and red light (620 to 740 nm) from the color (chromaticity) of the culture solution containing microalgae.
  • the fat-soluble component content accumulated in the microalgae is determined from the light intensity in the wavelength range of green light and the light intensity in the wavelength range of red light.
  • the green microalgae those having a high maximum fat-soluble component content, that is, those having an excellent ability to produce a fat-soluble component are preferable.
  • a color sensor As a means for detecting the chromaticity of the culture solution, it is preferable to use a color sensor because it is inexpensive and can separately detect green light, red light and blue light.
  • This color sensor has a mechanism in which a measured color is decomposed into RGB components by a color filter, and the light intensity of each color component is detected by a photodiode or the like. This color sensor can sense changes in a wide range of color tone using only visible light and using satellite photographs.
  • the content of fat-soluble components of microalgae is determined as follows. That is, first, white light is irradiated to transparent water (for example, pure water) that does not absorb light, and the transmitted light is detected by a color sensor. Since the white light is separated into RGB components by the color filter of the color sensor and received, the respective light intensities of the red band light (green light) R1 and the green band light (green light) G1 are obtained. measure.
  • the culture solution containing microalgae is irradiated with white light in the same manner using the same color sensor, and the transmitted light is detected with the color sensor. Since this transmitted light is separated into RGB components by the color filter of the color sensor and received, the respective light intensities of the red band light (red light) R2 and the green band light (green light) G2 at this time are obtained. measure.
  • the red band light (red light) and the green band light (green light) can be measured using, for example, a transmissive color sensor 1 as shown in FIG. 1 described in Japanese Patent Application Laid-Open No. 2010-151605. it can.
  • the transmissive color sensor 1 includes a light emitting unit 2 and a light receiving unit 3 provided with a color filter (not shown). The light that has been irradiated with white light from the light emitting unit 2 and transmitted through the culture solution 4. Is received by the light receiving unit 3, and the light intensity of each of the red band light (green light) and the green band light (green light) is calculated by a control mechanism (not shown).
  • a reflective color sensor 11 as shown in FIG. 2 described in JP 2010-181150 can also be used.
  • the reflective color sensor 11 includes a light-emitting unit 12, a light-receiving unit 13 including a color filter (not shown), and a reflection plate 14.
  • the reflection-type color sensor 11 emits white light from the light-emitting unit 12 and reflects the reflection plate 14.
  • the light transmitted through the culture medium 15 is received by the light receiving unit 13, and the light intensity of each of the red band light (green light) and the green band light (green light) is calculated by a control mechanism (not shown).
  • Absorbance ratio: X AR / AG
  • the fat-soluble component content of microalgae in the culture solution is measured.
  • Extraction of fat-soluble components from microalgae may be performed by a Soxhlet extraction method using an organic solvent such as n-hexane as an extraction solvent.
  • the culture state of the microalgae is determined based on the green light (500 to 570 nm) and the red light (620 to 740 nm).
  • absorbance data of blue light 450 to 490 nm can also be used.
  • the fat-soluble component content of the microalgae was judged as follows using the color sensor shown in FIG. That is, pure water produced by a pure water production apparatus “WG270” manufactured by Yamato Scientific Co., Ltd. is used as transparent water that does not absorb light, and the pure water is irradiated with white light, and the transmitted light is detected by a color sensor. The light intensities of the red band light (red light) R1 and the green band light (green light) G1 were measured.
  • the culture medium of Example 1 and Example 2 described above is irradiated with white light in the same manner, and the transmitted light is detected by the color sensor, and red band light (red light) R2 and green are detected. Each light intensity with the band light (green light) G2 was measured. The red light absorbance and green light absorbance were calculated from the red light intensity and the green light intensity, and the absorbance ratio was calculated from both absorbance values.
  • fat-soluble components were extracted from squid damo and chlorella in the culture solutions of Example 1 and Example 2, and their fat-soluble component contents were measured and compared. Extraction was performed by Soxhlet extraction method using n-hexane as an extraction solvent, and the weight of the extract was measured.
  • an inexpensive color sensor can be applied, and by applying this color sensor, online Measurement with this is possible.
  • the measurement time can be greatly shortened, the measurement can be simplified, and the measurement cost can be reduced.
  • this color sensor can sense changes in a wide range of color tone using only visible light and using satellite photographs.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Sustainable Development (AREA)
  • Analytical Chemistry (AREA)
  • Cell Biology (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Botany (AREA)
  • Medicinal Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

 透過型カラーセンサ1の発光部2から白色光を照射して、培養液4を透過してきた光を受光部3で受光し、図示しないカラー・フィルタで緑色光(500~570nm)と赤色光(620~740nm)とを分解して検出し、緑色光の光強度と赤色光の光強度とから各色の吸光度を算出し、これらの光強度の比(吸光度比)に基づいて微細藻類の脂溶性成分含量を判断する。これにより、微細藻類の培養状態を効率よくモニタリングして、その微細藻類の脂溶性成分含量を判断することができる。

Description

微細藻類の脂溶性成分含量の判断方法および微細藻類の培養方法
 本発明は、微細藻類の培養状態を判断するための微細藻類の脂溶性成分含量の判断方法に関する。また、本発明はこの判断方法を利用した微細藻類の培養方法に関する。
 微細藻類は、数μm~数十μmの大きさの単細胞生物であり、このうち光合成を行うものは、太陽エネルギーを効率よく脂肪酸や油脂といった脂質やワックス成分、トリテルペン系炭化水素などの脂溶性成分に転換して蓄積し、また各種ミネラルや不飽和脂肪酸などを高濃度に含有することから、体内に産生された脂質や炭化水素などの脂溶性成分をジェット燃料やディーゼル燃料などの石油代替燃料として用いたり、クロレラに代表されるようにそれ自身を健康食品としたり、不飽和脂肪酸などの機能性の脂質を抽出してサプリメントや機能性飼料とするなど種々の利用法が提案されている。特に近年、バイオ燃料としての利用が注目されている。
 このような微細藻類は、燃料を生産する目的の場合、所定の育成プロセスにより生産したら、微細藻類を培養液から分離し、該微細藻類中から脂肪酸や油脂といった脂溶性成分を抽出する必要がある。この微細藻類から脂溶性成分を抽出しその抽出された脂溶性成分含量を計測する方法としては、脂溶性成分を溶媒により抽出して重量を測定する方法、溶媒で抽出した後にガスクマトグラフィーにより脂溶性成分の重量等を測定する方法などが一般に知られている。
 これらの方法は、脂溶性成分含量の計測精度が高いものの、固液分離、乾燥、抽出及び分析と多くの工程を経る必要があり、分析完了までに長時間を要するため、分析の結果を反映させた最適なタイミングでの回収(収穫)ができない、という問題点がある。微細藻類の培養においては、培養池への原生動物やバクテリアの混入により短時間のうちに微細藻類が死滅するおそれがあるため、収穫時期の判断を迅速に行えることは重要である。
 そこで、微細藻類の収穫時期を迅速に判断する方法として、微細藻類細胞内の脂溶性成分を蛍光染料などで染色し、蛍光検出器を用いて蛍光強度から脂溶性成分を推定する方法が種々開示されている。例えば、特許文献1、非特許文献1及び非特許文献2には、それぞれナイルレッドで微細藻類細胞内の脂溶性成分を染色し、蛍光顕微鏡で染色部位の大きさから脂溶性成分の量を判断する方法が提案されている。また、非特許文献3には、BODIPYで微細藻類細胞内の脂溶性成分を染色し、蛍光プレートリーダーで蛍光強度を判断する方法が提案されている。これらの方法は、前述した脂溶性成分を溶媒により抽出して重量を測定する方法と比べて脂溶性成分含量の計測精度がやや劣るものの比較的高く、簡便な装置で済むという利点を有する。
特開平05-268993号公報
"Determination of Algal Cell Lipids Using Nile Red Using Microplates to Monitor Neutral Lipids in Chlorella Vulgaris" K.Raymond et al.,Application Note,Bio Tek Instrument,Inc.,AN071211_08,Rev07/12/11,2011 "A high throughput Nile red method for quantitative measurement of neutral lipids in microalgae" Q.Hu et al.,Journal of Microbiological Methods,Vol.77,No.1,pp.41-47,2009 "Visualizing"green oil"in live algae cells" R.A.Cattolico et al.,Journal of Bioscience and Bioengineering,Vol.109,No.2,pp.198-201,2010
 しかしながら、特許文献1、非特許文献1、非特許文献2及び非特許文献3に記載の方法は、操作が煩雑なため現場においてオンラインでの自動分析には不適であるという問題がある。そこで現場における分析を完全に自動化するシステムを構成することが考えられるが、そのためには機器コストが非常にかさむという問題がある。
 微細藻類から燃料を生産するプロセスにおいて、安定した燃料生産を行うためには、微細藻類が脂溶性成分を十分に蓄積したタイミングで回収(収穫)することが重要である。ここで微細藻類の培養は、現状では培養コストを削減するためオープンポンドと呼ばれる屋外開放型の培養池で行われることが多い。このオープンポンドでは、気温や日射量などの環境要因によって微細藻類の培養状況が影響を受けるため、微細藻類が回収に適した脂溶性成分を最大に蓄積するまでの培養期間は変化する。そのため、一定の培養期間の後に回収することにすると、抽出できる脂溶性成分含量にバラツキが生じてしまう。しかしながら、上述したような種々の方法により脂溶性成分含量を分析して、微細藻類を回収する最適なタイミングを計る場合には、手間とコストがかかり現実的ではない。さらに、実用化時のオープンポンドは数千ha規模と予想され、広範囲における微細藻類が蓄積した脂溶性成分を効率よくモニタリングする手法が必要であるが、このようなモニタリング技術は従来なかった。
 本発明は上記課題に鑑みてなされたものであり、微細藻類の培養状態を効率よくモニタリングして、その微細藻類の脂溶性成分含量を判断するための方法を提供することを目的とする。また、本発明はこの判断方法を利用した微細藻類の培養方法を提供することを目的とする。
 上記課題を解決するために、第一に本発明は、微細藻類の脂溶性成分含量の判断方法であって、微細藻類を含む培養液の色合いから、青色光(450~490nm)、緑色光(500~570nm)及び赤色光(620~740nm)の少なくとも2以上の波長域を分解して検出し、これら2以上の光の波長の光強度に基づき微細藻類の脂溶性成分含量の多寡を判断することを特徴とする微細藻類の脂溶性成分含量の判断方法を提供する(発明1)。
 かかる発明(発明1)によれば、微細藻類を含む培養液の色合いを、青色光、緑色光及び赤色光に分解するには、可視光の色度をRGBに分けて検出すればよく、安価なカラーセンサを適用することができる。そして、カラーセンサを適用することで、オンラインでの計測が可能となり、測定時間の大幅な短縮及び測定の簡易化することができる。さらに、このカラーセンサは、可視光のみで衛星写真などを利用して広い範囲の色調の変化を感知することができる。これらにより、微細藻類の培養状態を効率よくモニタリングして、その微細藻類の脂溶性成分含量を判断することが可能となる。
 上記発明(発明1)においては、前記緑色光(500~570nm)と前記赤色光(620~740nm)とを分解して検出し、緑色光の波長の光強度と赤色光の波長の光強度とから微細藻類の脂溶性成分含量の多寡を判断するのが好ましい(発明2)。特に前記緑色光の波長の光強度と赤色光の波長域の光強度とから赤色光の吸光度と緑色光の吸光度を算出し、該赤色光の吸光度で緑色光の吸光度を除した値で微細藻類の脂溶性成分含量の多寡を判断するのが好ましい(発明3)。
 かかる発明(発明2,3)によれば、この赤色光の吸光度と緑色光の吸光度との強光度比は、光合成を行う緑色の微細藻類の脂溶性成分含量と相関性があり、脂溶性成分含量が多くなると吸光度比が低下するので、この吸光度比が微細藻類の種類に応じた所定の値を下回ったら、微細藻類が保持する脂溶性成分含量が十分であると判断することが可能となる。
 上記発明(発明1~3)においては、前記微細藻類を含む培養液の分光した各波長の光強度を、それぞれ白色光を分光した各波長の光強度と対比することにより算出し、微細藻類の脂溶性成分含量の多寡を判断するのが好ましい(発明4)。上記発明(発明4)においては、前記白色光が、清澄水を透過した白色光もしくは清澄水に浸漬した白色物質からの反射光であるのが好ましい(発明5)。
 かかる発明(発明4,5)によれば、微細藻類を含む培養液の青色光、緑色光及び赤色光の光強度を、それぞれ白色光を分光した各波長の光強度と対比して各色光の吸光度を算出することで、微細藻類の保持する脂溶性成分含量を簡便に判断することができる。
 また、第二に本発明は、微細藻類を含む培養液の色合いを緑色光(500~570nm)と赤色光(620~740nm)とに分解して検出し、前記赤色光の吸光度を緑色光の吸光度で除した値を算出し、該値が所定の閾値を下回ったら、培養液の全部又は一部を回収することを特徴とする微細藻類の培養方法を提供する(発明6)。
 かかる発明(発明6)によれば、微細藻類を含む培養液の色合いを緑色光と赤色光とに分解して検出して緑色光及び赤色光の光強度を算出し、この赤色光の吸光度を緑色光の吸光度で除した値(吸光度比)を監視する。このとき光合成を行う緑色の微細藻類は保持する脂溶性成分含量が多くなると吸光度比が低下するので、この吸光度比が所定の閾値を下回ったら微細藻類の保持する脂溶性成分含量が十分であると判断して、一部もしくは全量を回収することで、微細藻類を効率的に培養することができる。
 さらに、第三に本発明は、微細藻類を含む培養液の色合いを緑色光(500~570nm)と赤色光(620~740nm)とに分解して検出し、前記赤色光の吸光度を緑色光の吸光度で除した値を算出し、該値が経時的に低下する傾向を示したら、培養液の全部又は一部を回収することを特徴とする微細藻類の培養方法を提供する(発明7)。
 かかる発明(発明7)によれば、微細藻類を含む培養液の色合いを緑色光と赤色光とに分解して検出し、赤色光の吸光度を緑色光の吸光度で除した値(吸光度比)を算出しながら監視する。このとき光合成を行う緑色の微細藻類は保持する脂溶性成分含量が多くなると吸光度比が低下するので、この吸光度比が経時的に低下する傾向を示したら、微細藻類の保持する脂溶性成分含量が十分になったと判断して、一部もしくは全量を回収することで、微細藻類を効率的に培養することができる。
 本発明によれば、微細藻類を含む培養液の色合いを、青色光、緑色光及び赤色光に分解して検出し、これらの波長域の光強度を対比することで微細藻類の保持する脂溶性成分含量を判断するので、微細藻類の脂溶性成分含量のオンラインでの計測が可能となり、測定時間の大幅な短縮及び測定の簡易化することができる。これにより、微細藻類の培養状態を効率よくモニタリングして、その微細藻類の脂溶性成分含量の判断することが可能となる。
 特に、光合成を行う緑色の微細藻類を含む培養液の色合いを緑色光と赤色光とを分解して検出し、緑色光の波長の光強度と赤色光の波長の光強度とから赤色光の吸光度を緑色光の吸光度で除した値(吸光度比)を算出し、これら吸光度の比が所定の値を下回ったら、微細藻類が保持する脂溶性成分含量が十分であると判断することができる。
本発明の第一の実施形態に係る微細藻類の脂溶性成分含量の判断方法を実施可能な装置を示す概略図である。 本発明の第二の実施形態に係る微細藻類の脂溶性成分含量の判断方法を実施可能な装置を示す概略図である。 実施例1における微細藻類(イカダモ)の脂溶性成分含量の判断方法における脂溶性成分含量と吸光度との関係を示すグラフである。 実施例2における微細藻類(クロレラ)の脂溶性成分含量の判断方法における脂溶性成分含量と吸光度との関係を示すグラフである。
 以下、本発明の実施形態について図面を参照して詳細に説明する。ただし、本実施形態はいずれも例示であり、本発明はこれに限定されるものではない。
 本発明は、微細藻類を含む培養液の色合い(色度)から青色光(450~490nm)、緑色光(500~570nm)及び赤色光(620~740nm)の少なくとも2以上の波長域に分解して検出し、これら2以上の光の波長域の光強度により微細藻類の脂溶性成分含量の多寡を判断する。
 具体的には、光合成を行う緑色の微細藻類の場合、微細藻類を含む培養液の色合い(色度)から緑色光(500~570nm)と赤色光(620~740nm)とに分解して検出し、緑色光の波長域の光強度と赤色光の波長域の光強度とから微細藻類の蓄積する脂溶性成分含量を判断する。ここで、緑色の微細藻類としては、最大脂溶性成分含量の高いもの、すなわち脂溶性成分生産能に優れているものが好ましい。
 また、この培養液の色度を検知する手段としては、安価で緑色光、赤色光及び青色光をそれぞれ分けて検出可能であることから、カラーセンサを用いるのが好ましい。このカラーセンサは、測定した色をカラー・フィルタによってRGB成分に分解し、それぞれの色成分の光強度をフォトダイオード等により検知する仕組みを有するものである。このカラーセンサは、可視光のみで衛星写真などを利用して広い範囲の色調の変化を感知することができる。
 具体的には、カラーセンサを用いて、以下のようにして微細藻類の脂溶性成分含量を判断する。すなわち、まず、光の吸収が生じない透明な水(例えば純水)に白色光を照射して、透過した光をカラーセンサで検出する。この白色光は、カラーセンサのカラー・フィルタによってRGB成分に分解されて受光されるので、このときの赤色帯域光(緑色光)R1と緑色帯域光(緑色光)G1とのそれぞれの光強度を計測する。
 次に微細藻類を含む培養液を同じカラーセンサを用い、同様に白色光を照射して、透過した光をカラーセンサで検出する。この透過光は、カラーセンサのカラー・フィルタによってRGB成分に分解されて受光されるので、このときの赤色帯域光(赤色光)R2と緑色帯域光(緑色光)G2とのそれぞれの光強度を計測する。
 この赤色帯域光(赤色光)と緑色帯域光(緑色光)とは、例えば、特開2010-151605号に記載されている図1に示すような透過型カラーセンサ1を用いて測定することができる。この透過型カラーセンサ1は、発光部2とカラー・フィルタ(図示せず)を備えた受光部3とを有し、発光部2から白色光を照射して、培養液4を透過してきた光を受光部3で受光し、図示しない制御機構で赤色帯域光(緑色光)と緑色帯域光(緑色光)とのそれぞれの光強度を算出する。
 また、特開2010-181150号に記載されている図2に示すような反射型カラーセンサ11を用いることもできる。この反射型カラーセンサ11は、発光部12とカラー・フィルタ(図示せず)を備えた受光部13と、反射板14とを有し、発光部12から白色光を照射して、反射板14を経由して培養液15を透過してきた光を受光部13で受光し、図示しない制御機構で赤色帯域光(緑色光)と緑色帯域光(緑色光)とのそれぞれの光強度を算出する。
 このようにして、透明な水と微細藻類を含む培養液の赤色光と緑色光の吸光強度を測定したら、下記式により赤色光の吸光度と緑色光の吸光度と両者の比(吸光度比)とをそれぞれ算出する。
 赤色帯域光吸光度:A=-log(R2/R1)
 緑色帯域光吸光度:A=-log(G2/G1)
 吸光度比:X=A/A
 一方、初期段階においては、培養液中の微細藻類の脂溶性成分含量を計測する。微細藻類からの脂溶性成分の抽出は、例えばn-ヘキサンなどの有機溶媒を抽出溶媒に用いてソックスレー抽出法により行えばよい。
 本発明者の研究によれば、この赤色光と緑色光との吸光度比と微細藻類の脂溶性成分含量との間には高い相関が認められることがわかった。そこで、この相関性を解析した結果、吸光度比(X)(赤色光の吸光度を緑色光の吸光度で除した値)が所定の閾値を下回ると、脂溶性成分の蓄積状態(含有量)が十分に大きくなり、それ以上培養しても脂溶性成分の増加効率が低下して培養効率的に好ましくないので、微細藻類の一部もしくは全量を回収(収穫)することで、微細藻類を効率的に培養することができる。そして、この閾値は、微細藻類の種類により異なるので、あらかじめ微細藻類を培養して脂溶性成分含量との関係から閾値を設定すればよい。
 さらに、この相関性を応用すれば、吸光度比(X)が経時的に低下する傾向を示した時点で脂溶性成分が増加したと判断して、微細藻類の一部もしくは全量を回収(収穫)することで、微細藻類を効率的に培養するようにしてもよい。
 以上、本発明について前記実施形態に基づき説明してきたが、本発明は前記実施形態に限られず種々の変更実施が可能である。例えば、本実施形態では、緑色の微細藻類について、緑色光(500~570nm)と赤色光(620~740nm)とに基づいて、微細藻類の培養状態の判断を行っているが、ヘマトコッカスなどの赤色の微細藻類の場合には、青色光(450~490nm)の吸光度のデータを用いることもできる。
 以下の具体的実施例及び比較例に基づき本発明をさらに詳細に説明するが、本発明は下記の実施例に限定されるものではない。
(実施例1、2)
 国立環境研究所微生物系統保存施設より分譲されたイカダモ(NIES-96株:実施例1)及びクロレラ(NIES-2170株:実施例2)を、pH6.5~7.5に調整した表1及び表2に示す組成のC培地を用いて、このC培地に空気に工業用COを3体積%の濃度で添加したものを通気し、蛍光灯照明(明/暗=12hr/12hr)で培養を行った。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 この微細藻類の脂溶性成分含量を図1に示すカラーセンサを用いて、以下のようにして判断した。すなわち、ヤマト科学社製純水製造装置「WG270」で製造した純水を光の吸収が生じない透明な水として、この純水に白色光を照射して、透過した光をカラーセンサで検出し、赤色帯域光(赤色光)R1と緑色帯域光(緑色光)G1とのそれぞれの光強度を計測した。
 次に同じカラーセンサを用いて前述した実施例1及び実施例2の培養液に同様に白色光を照射して、透過した光をカラーセンサで検出し、赤色帯域光(赤色光)R2と緑色帯域光(緑色光)G2とのそれぞれの光強度を計測した。これらの赤色光の光強度と緑色光の光強度とから赤色光の吸光度と緑色光の吸光度を算出し、さらに両吸光度の値から吸光度比を算出した。
 一方、実施例1及び実施例2の培養液中のイカダモ及びクロレラから脂溶性成分を抽出し、その脂溶性成分含量を計測し比較を行った。抽出はn-ヘキサンを抽出溶媒に用いてソックスレー抽出法により行い、抽出物の重量を測定した。
 なお、上記培養液による培養は、表3に示す2条件でそれぞれ行い、吸光度比Xと脂溶性成分含量との関係を断続的に観測した。結果を図3及び図4に示す。
Figure JPOXMLDOC01-appb-T000003
 図3及び図4より明らかなとおり、培養条件に関係なく脂溶性成分含量と赤色光及び緑色光の吸光度比(X)とには高い相関が認められ、吸光度比(X)が脂溶性成分の蓄積状況の判断指標となりうることが確認された。また、脂溶性成分含量と吸光度比(X)との相関関係は、イカダモ(実施例1)とクロレラ(実施例2)とで異なっており、培養する微細藻類種ごとに事前に相関性を確認しておく必要があることがわかった。
 上述したような本発明の微細藻類の脂溶性成分含量の判断方法および微細藻類の培養方法によれば、安価なカラーセンサを適用することができ、そして、このカラーセンサを適用することで、オンラインでの計測が可能となる。これにより、測定時間の大幅な短縮、測定の簡易化及び測定費用の削減を達成できる。さらに、このカラーセンサは、可視光のみで衛星写真などを利用して広い範囲の色調の変化を感知することができる。これらにより、微細藻類の培養状態を効率よくかつ安価にモニタリングして、その微細藻類の脂溶性成分含量を判断することが可能となる。この結果、微細藻類の回収(収穫)の最適なタイミングを判定でき、燃料原料としての微細藻類の安定生産を実現することができる。
1…透過型カラーセンサ
2…発光部
3…受光部
4…培養液
11…反射型カラーセンサ
12…発光部
13…受光部
14…反射板
15…培養液

Claims (7)

  1.  微細藻類の脂溶性成分含量の判断方法であって、
     微細藻類を含む培養液の色合いから、青色光(450~490nm)、緑色光(500~570nm)及び赤色光(620~740nm)の少なくとも2以上の波長域を分解して検出し、
     これら2以上の光の波長の光強度に基づき微細藻類の脂溶性成分含量の多寡を判断することを特徴とする微細藻類の脂溶性成分含量の判断方法。
  2.  前記緑色光(500~570nm)と前記赤色光(620~740nm)とを分解して検出し、緑色光の波長の光強度と赤色光の波長域の光強度とから微細藻類の脂溶性成分含量の多寡を判断することを特徴とする請求項1に記載の微細藻類の脂溶性成分含量の判断方法。
  3.  前記緑色光の波長の光強度と赤色光の波長域の光強度とから赤色光の吸光度と緑色光の吸光度を算出し、該赤色光の吸光度で緑色光の吸光度を除した値で微細藻類の脂溶性成分含量の多寡を判断することを特徴とする請求項2に記載の微細藻類の脂溶性成分含量の判断方法。
  4.  前記微細藻類を含む培養液の分光した各波長の光強度を、それぞれ白色光を分光した各波長の光強度と対比することにより算出し、微細藻類の脂溶性成分含量の多寡を判断することを特徴とする請求項1~3のいずれかに記載の微細藻類の脂溶性成分含量の判断方法。
  5.  前記白色光が、清澄水を透過した白色光もしくは清澄水に浸漬した白色物質からの反射光であることを特徴とする請求項3に記載の微細藻類の脂溶性成分含量の判断方法。
  6.  微細藻類を含む培養液の色合いを緑色光(500~570nm)と赤色光(620~740nm)とに分解して検出し、前記赤色光の吸光度を緑色光の吸光度で除した値を算出し、該値が所定の閾値を下回ったら、培養液の全部又は一部を回収することを特徴とする微細藻類の培養方法。
  7.  微細藻類を含む培養液の色合いを緑色光(500~570nm)と赤色光(620~740nm)とに分解して検出し、前記赤色光の吸光度を緑色光の吸光度で除した値を算出し、該値が経時的に低下する傾向を示したら、培養液の全部又は一部を回収することを特徴とする微細藻類の培養方法。
PCT/JP2014/053546 2013-03-11 2014-02-14 微細藻類の脂溶性成分含量の判断方法および微細藻類の培養方法 WO2014141811A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-047851 2013-03-11
JP2013047851A JP6115199B2 (ja) 2013-03-11 2013-03-11 微細藻類の脂溶性成分含量の判断方法および微細藻類の培養方法

Publications (1)

Publication Number Publication Date
WO2014141811A1 true WO2014141811A1 (ja) 2014-09-18

Family

ID=51536486

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/053546 WO2014141811A1 (ja) 2013-03-11 2014-02-14 微細藻類の脂溶性成分含量の判断方法および微細藻類の培養方法

Country Status (2)

Country Link
JP (1) JP6115199B2 (ja)
WO (1) WO2014141811A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017072395A (ja) * 2015-10-05 2017-04-13 株式会社デンソー 微細藻類生成物含有量測定装置
JP2017106831A (ja) 2015-12-10 2017-06-15 アズビル株式会社 微細藻類のモニタリング装置及び微細藻類のモニタリング方法
JP6706416B2 (ja) * 2016-03-24 2020-06-10 国立大学法人 鹿児島大学 微細藻類の培養方法及びデータ解析装置
JP6860902B2 (ja) * 2017-03-01 2021-04-21 国立大学法人 鹿児島大学 微細藻類の培養方法及びデータ解析装置
JP7150640B2 (ja) * 2019-03-11 2022-10-11 株式会社神戸製鋼所 残存状態判定方法及び残存状態判定装置
JP7389570B2 (ja) * 2019-06-06 2023-11-30 オルガノ株式会社 水処理装置、および水処理方法
JP7304272B2 (ja) * 2019-11-13 2023-07-06 東亜ディーケーケー株式会社 珪藻中に蓄積されたオイルの濃度の測定装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05268993A (ja) * 1991-03-26 1993-10-19 Mitsubishi Heavy Ind Ltd 脂質含有藻類の識別方法
JP2004101196A (ja) * 2002-09-04 2004-04-02 Hamamatsu Photonics Kk 植物性細胞の育成状態測定装置および育成状態測定方法
WO2006109588A1 (ja) * 2005-04-12 2006-10-19 Denso Corporation 新規微細藻類及び炭化水素の生産方法
JP2008283946A (ja) * 2007-05-21 2008-11-27 Yanmar Co Ltd 微細藻類の増殖活性測定方法および微細藻類の増殖活性測定装置
JP2010151605A (ja) * 2008-12-25 2010-07-08 Kurita Water Ind Ltd 溶解物濃度の測定方法及び測定装置、並びに色調の検出方法及び検出装置
JP2010181150A (ja) * 2009-02-03 2010-08-19 Kurita Water Ind Ltd 溶解物濃度の測定方法及び測定装置、並びに色調の検出方法及び検出装置
JP2011515667A (ja) * 2008-03-19 2011-05-19 シュヴァイゲルト,フロリアン 生物材料から脂溶性含有成分を抽出および検出する方法
JP2013505462A (ja) * 2009-09-22 2013-02-14 ビーピー・コーポレーション・ノース・アメリカ・インコーポレーテッド 中赤外分光法を用いて生物学的プロセスを測定するための方法及び装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05268993A (ja) * 1991-03-26 1993-10-19 Mitsubishi Heavy Ind Ltd 脂質含有藻類の識別方法
JP2004101196A (ja) * 2002-09-04 2004-04-02 Hamamatsu Photonics Kk 植物性細胞の育成状態測定装置および育成状態測定方法
WO2006109588A1 (ja) * 2005-04-12 2006-10-19 Denso Corporation 新規微細藻類及び炭化水素の生産方法
JP2008283946A (ja) * 2007-05-21 2008-11-27 Yanmar Co Ltd 微細藻類の増殖活性測定方法および微細藻類の増殖活性測定装置
JP2011515667A (ja) * 2008-03-19 2011-05-19 シュヴァイゲルト,フロリアン 生物材料から脂溶性含有成分を抽出および検出する方法
JP2010151605A (ja) * 2008-12-25 2010-07-08 Kurita Water Ind Ltd 溶解物濃度の測定方法及び測定装置、並びに色調の検出方法及び検出装置
JP2010181150A (ja) * 2009-02-03 2010-08-19 Kurita Water Ind Ltd 溶解物濃度の測定方法及び測定装置、並びに色調の検出方法及び検出装置
JP2013505462A (ja) * 2009-09-22 2013-02-14 ビーピー・コーポレーション・ノース・アメリカ・インコーポレーテッド 中赤外分光法を用いて生物学的プロセスを測定するための方法及び装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
J.A.THOMASSON ET AL.: "Toward On-line Measurement of Algel Properties", 2010 ASABE ANNUAL INTERNATIONAL MEETING, June 2010 (2010-06-01), pages 4406 - 4413 *
Y.CHEN ET AL.: "A simple, reproducible and sensitive spectrophotometric method to estimate microalgal lipids", ANALYTICA CHIMECA ACTA, vol. 724, March 2012 (2012-03-01), pages 67 - 72 *

Also Published As

Publication number Publication date
JP2014174034A (ja) 2014-09-22
JP6115199B2 (ja) 2017-04-19

Similar Documents

Publication Publication Date Title
WO2014141811A1 (ja) 微細藻類の脂溶性成分含量の判断方法および微細藻類の培養方法
Santos-Ballardo et al. A simple spectrophotometric method for biomass measurement of important microalgae species in aquaculture
Zhang et al. Nitrogen starvation induced oxidative stress in an oil-producing green alga Chlorella sorokiniana C3
Suggett et al. Comparing electron transport with gas exchange: parameterising exchange rates between alternative photosynthetic currencies for eukaryotic phytoplankton
CN104374758B (zh) 一种利用叶绿素荧光参数Fv/Fm确定产油微藻收获时间的方法
Brennan et al. Enhancement of BODIPY505/515 lipid fluorescence method for applications in biofuel-directed microalgae production
da Silva et al. Effects of nitrogen starvation on the photosynthetic physiology of a tropical marine microalga Rhodomonas sp.(Cryptophyceae)
Chen et al. Simplified, rapid, and inexpensive estimation of water primary productivity based on chlorophyll fluorescence parameter Fo
Peniuk et al. Identification and quantification of suspended algae and bacteria populations using flow cytometry: applications for algae biofuel and biochemical growth systems
Balduyck et al. Optimization of a Nile Red method for rapid lipid determination in autotrophic, marine microalgae is species dependent
US20190033216A1 (en) Microalgae monitoring apparatus and microalgae monitoring method
Dashkova et al. Microalgal cytometric analysis in the presence of endogenous autofluorescent pigments
Duarte et al. Brackish groundwater from Brazilian backlands in Spirulina cultures: potential of carbohydrate and polyunsaturated fatty acid production
Karsten et al. A new in vivo fluorimetric technique to measure growth of adhering phototrophic microorganisms
Pahija et al. A systematic study on the effects of dynamic environments on microalgae concentration
Poli et al. An environmentally-friendly fluorescent method for quantification of lipid contents in yeast
Davis et al. Label-free measurement of algal triacylglyceride production using fluorescence hyperspectral imaging
WO2015120144A1 (en) Methods and systems for diagnostics
Pilát et al. Raman microspectroscopy of algal lipid bodies: β-carotene as a volume sensor
de Souza et al. Interference of starch accumulation in microalgal cell growth measurement
Yacobi et al. Delayed fluorescence excitation spectroscopy: A rapid method for qualitative and quantitative assessment of natural population of phytoplankton
Thiviyanathan et al. Microalgae biomass and biomolecule quantification: Optical techniques, challenges and prospects
CN111024670B (zh) 一种基于pea荧光曲线测定水体初级生产力的方法
Lazcano-Hernández et al. Off-line and on-line optical monitoring of microalgal growth
WO2015121987A1 (ja) 微細藻類の培養状態の判断方法及び微細藻類の培養方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14763855

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14763855

Country of ref document: EP

Kind code of ref document: A1