WO2006109588A1 - 新規微細藻類及び炭化水素の生産方法 - Google Patents

新規微細藻類及び炭化水素の生産方法 Download PDF

Info

Publication number
WO2006109588A1
WO2006109588A1 PCT/JP2006/306785 JP2006306785W WO2006109588A1 WO 2006109588 A1 WO2006109588 A1 WO 2006109588A1 JP 2006306785 W JP2006306785 W JP 2006306785W WO 2006109588 A1 WO2006109588 A1 WO 2006109588A1
Authority
WO
WIPO (PCT)
Prior art keywords
microalgae
strain
hydrocarbon
hydrocarbons
pseudochoricystis
Prior art date
Application number
PCT/JP2006/306785
Other languages
English (en)
French (fr)
Inventor
Norihide Kurano
Hiroshi Sekiguchi
Akira Sato
Satoru Matsuda
Kyoko Adachi
Mika Atsumi
Original Assignee
Denso Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corporation filed Critical Denso Corporation
Priority to EP06730733.0A priority Critical patent/EP1873233B1/en
Priority to JP2007512903A priority patent/JP4748154B2/ja
Priority to US11/918,374 priority patent/US7981648B2/en
Publication of WO2006109588A1 publication Critical patent/WO2006109588A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P5/00Preparation of hydrocarbons or halogenated hydrocarbons
    • C12P5/02Preparation of hydrocarbons or halogenated hydrocarbons acyclic
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/12Unicellular algae; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/02Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only
    • C10L1/026Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only for compression ignition
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/12Unicellular algae; Culture media therefor
    • C12N1/125Unicellular algae isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P5/00Preparation of hydrocarbons or halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P5/00Preparation of hydrocarbons or halogenated hydrocarbons
    • C12P5/02Preparation of hydrocarbons or halogenated hydrocarbons acyclic
    • C12P5/026Unsaturated compounds, i.e. alkenes, alkynes or allenes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1011Biomass
    • C10G2300/1014Biomass of vegetal origin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/89Algae ; Processes using algae
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Definitions

  • the present invention relates to a novel microalgae having a hydrocarbon-producing ability, and a hydrocarbon production method using the microalgae.
  • Botryococcus braunii is known as a strain that accumulates linear hydrocarbons inside and outside cells as oil droplets. (Metzger and argeau, Botryococcus braunii: a rich source for hydrocarbons and related ether lipids, Appl. Microbiol. Biotechnol 66 (2005)). Botryococcus is characterized by the accumulation of long-chain hydrocarbons that are equivalent to heavy oil (30 or more carbon atoms), or else. However, there are no known examples of significant accumulation of linear hydrocarbons in other microalgae. Disclosure of the invention
  • hydrocarbon C0 2 as a raw material in particular, can be used as an alternative fuel for diesel fuel (gas oil), a novel microalgae to produce hydrocarbons in the range of 10 to 25 carbon atoms It is to provide.
  • the present invention includes the following inventions.
  • a novel microalgae Pseudochoric; stis ell ipsoidea that has the ability to produce hydrocarbons.
  • a method for producing hydrocarbons comprising culturing microalgae belonging to the genus Pseudochoricystis and capable of producing hydrocarbons, and collecting hydrocarbons from the culture.
  • the microalgae is Pseudochor icyst is el l ipsoidea Sekiguchi et Kurano gen. Et sp. Nov.MBIC11204 strain, The method according to (5).
  • microalgae is Pseudochohoris cystis el ipsoidea Sekiguchi et Kurano gen. Et sp. Nov. MBIC11220 strain, (5) The method described in 1.
  • a method for producing hydrocarbons comprising culturing microalgae belonging to the genus Choricystis and having hydrocarbon-producing ability, and collecting hydrocarbons from the culture.
  • a novel microalgae having a hydrocarbon-producing ability is provided.
  • hydrocarbons that can be used as industrial raw materials such as biofuels (biodiesel), lubricating oils, plastic 'synthetic fibers' paints, etc. that can replace existing fossil fuels.
  • hydrocarbon production using the microalgae of the present invention is carried out by photosynthesis, the amount of carbon dioxide emission causing global warming can be reduced and there is no environmental load.
  • Figure 1 shows a photomicrograph of the MBIC11204 strain (the black line represents 1 ⁇ m).
  • Fig. 2 shows an ultrathin section photograph of MBIC11204 strain (black line represents 1 im. C: chloroplast, V: vacuole).
  • Figure 3 shows an ultrathin section photograph of the MBIC11204 strain that reproduces by tetraspores (black line represents ⁇ ⁇ ⁇ ).
  • Figure 4 shows a photomicrograph of the MBIC11204 strain growing by bisection (black line represents 1 / m).
  • Fig. 5 shows fluorescence micrographs of the MBIC11204 strain (upper figure: bright field, lower figure: fluorescent field. Bright fluorescent coloration: intracellular oil color developed by Ni le Red, dim part: chloroplast autofluorescence )
  • Fig. 6 shows the fluorescence pattern (excitation wavelength 488 nm) of MBIC11204 strain stained with Nile Red.
  • Figure 7 shows the molecular phylogenetic tree (18S rDNA partial sequence, NJ method) in green plants.
  • FIG. 8 shows the molecular phylogenetic tree (ik £ L partial sequence, NJ method) of the whole green plant. Three strains of cyanobacteria were used as the outer group.
  • Figure 9 shows photomicrographs of MBIC11204 strain cells under sufficient nitrogen conditions (left) and under nitrogen deficiency conditions (right). Significant oil accumulation is observed under nitrogen deficient conditions.
  • Figure 10 shows the oil increase curve after transition to nitrogen deficient conditions.
  • the horizontal axis shows the elapsed time after the transition to nitrogen-deficient conditions, and the vertical axis shows the fluorescence intensity of Nile red per unit cell. Ni le red fluorescence is an indicator of oil content.
  • FIG. 11 shows a growth curve using the dry weight of MBIC11204 strain as an index.
  • Figure 12 shows the growth characteristics of MBIC11204 strain with respect to pH (open: growth, black: pH).
  • Fig. 13 shows fluorescence micrographs of the strains belonging to Choricyst is (SAG251-1 strain, SAG17.98 strain) (red: chloroplast autofluorescence, yellow grains: Ni le Red) Therefore, colored oil droplets).
  • Figure 14 shows the growth curves of MBIC11220 and MBIC11204 strains using the absorbance at 720 nm as an index (diamonds: MBIC11220 strain, squares: MBIC11204 strain).
  • Figure 15 shows an optical micrograph of MBIC11220 strain (black line represents 10 ⁇ m).
  • a novel microalgae pseudocollicystis having a hydrocarbon-producing ability Elseoidia (Pseudochoricystis ellipsoidea) is provided.
  • An example of such a microorganism is Pseudochoricystis ellipsoidea Sekigucni et Kurano gen. Et sp. Nov. MBIC11204.
  • Pseudochoricystis ellipsoidea Sekiguchi et Kuranogen. Et sp. Nov. MBIC11220 strain can be mentioned.
  • microalgae strain collects hot spring water from various parts of Japan, adds IMK medium (made by Nippon Pharmaceutical Co., Ltd.) having the composition shown in Table 1 below to 30 milliliters of fluorescent light.
  • IMK medium made by Nippon Pharmaceutical Co., Ltd.
  • Table 1 Table 1 below
  • Vitamin B 12 0.0015 mg
  • the algalological properties of MBIC11204 strain are as follows.
  • Vegetative cells are oval or slightly bent kidneys with rounded ends. The minor axis is 1 to 2 m and the major axis is 3 to 4 m (Fig. 1). Cells that do not have flagella and do not exhibit motility are agglomerated in cells.
  • the vegetative cell is surrounded by a cell wall and contains a nucleus and a chloroplast inside. In addition, mitochondria, Golgi apparatus, vacuole, oil droplets, etc. are observed. There are no pyrenoids in the chloroplast ( Figure 2).
  • Endospores are formed in vegetative cells (Fig. 3) and distributed evenly in the cells. Endospores have one nucleus and one chloroplast in the cell.
  • Culture solution It can grow in a culture solution made from fresh water.
  • Oil droplets present in the cells show orange fluorescence by fluorescent staining with Nile red (Fig. 5).
  • Figure 6 shows the typical neutral lipid fluorescence pattern of Nile red stained MBIC11204 strain.
  • MBIC 11204 strain has an elliptical shape or a slightly bent kidney shape, and contains chlorophyll and chlorophyll b as the main photosynthetic pigments. In addition, it does not have a stage of migrating cells, and it reproduces by the formation of bisection or tetraspores. In addition, it has chloroplasts that lack pyrenoids.
  • MBIC11204 is a morphologically known Trevoxia algae.
  • the base sequence of (rbcL) is shown in SEQ ID NO: 2 in the sequence listing. Choricystis in the same analysis
  • the genus makes a lump of clade, and MBIC11204 strain exists in a position far from the clade. It is also far from the Trevoxia algae type strain and Chlorel la genus.
  • the strain MBIC11204 was (i) morphologically similar to the genus Chor i cys tis but not belonging to the genus Choricy st is in the phylogenetic analysis of the 18S rDNA gene, and (ii) green in the phylogenetic analysis with the ⁇ L gene. Judgment to be a new species of microalgae, characterized by the fact that it is located at the root of the plant, and (iii) contains linear hydrocarbons. Nov.) Was named MBIC11204 strain.
  • Pseudochoricyst is ell ipsoidea Sekiguchi et Kuranogen. Et sp. Nov.
  • the genus name means that it is morphologically similar to the genus Choricyst is, and the species name is derived from the spheroid shape of the cell.
  • the MBIC11220 strain also had the same oval or slightly bent kidney shape as the MBIC11204 strain (Fig. 15), and other algaeological characteristics were also consistent.
  • the base sequence of the 18S r DNA gene of the MBIC11220 strain (SEQ ID NO: 3 in the sequence listing) and the base sequence of the Rubisco large subunit gene (rbcL) (SEQ ID NO: 4 in the sequence listing) were determined, and the 18S r DNA sequence was similarly determined.
  • MBIC11220 strain was also judged to be a new genus and new species of microalgae, and Pseudochoricyst is el l ipsoidea Sekiguchi et Kurano gen. Et sp. The strain was named.
  • MBIC11204 was deposited on February 15, 2005 at the National Institute of Advanced Industrial Science and Technology Patent Biology Depositary Center (IP0D) (1st East, 1st Street, Tsukuba City, Ibaraki Prefecture, 1st 6th) under the accession number FERM P-20401. As of January 18, 2006, it has been transferred to the International Deposit under the provisions of the Putabest Convention under the deposit number FERM BP-10484.
  • IP0D National Institute of Advanced Industrial Science and Technology Patent Biology Depositary Center
  • MBIC11204 strain was confirmed to produce nine types of hydrocarbons. All are aliphatic hydrocarbons, n-heptadecene (n-heptadecene; C 17 H 34 ), n-heptadecane (C 17 H, 6 ), n-octadecene (n-octadecene; C, 8 H 36 ), n-octadecane (C 18 H 38 ), n-nonadecene (C 19 H 38 , n-nonadecane; C 19 H 4n ), The remaining three species are n-eicosadiene (C 2Q H 38 ), and there are two double bonds, but the position of the double bond cannot be specified (Table ⁇ ).
  • ⁇ -heptadecene ( ⁇ -heptadecene; C 17 H 34 ), n-heptadecane, n- heptadecane; 17 H 36y ), n-nonacene (n one nonadecene; 19 H 38 ), n-nonacan (n- Nonadecane (C 19 H 4 )) was confirmed to produce four types of hydrocarbons (Table 6).
  • a hydrocarbon belonging to the genus Pseudochori cyst is, cultivating microalgae capable of producing hydrocarbons, and collecting hydrocarbons from the culture, A manufacturing method is provided.
  • the hydrocarbon in SAG17.98 strain is n-heptaacane (n -heptadecane; C 17 H, 6 ), n-nonacene, n-nonadecene; CH 38 , n-heneicosene ⁇ n-heneicosene; C 21 H 42 ) ⁇ n- ⁇ lycocene (n-tri cosene; C 23 H 46 ) (Table 6).
  • a method for producing hydrocarbons characterized by culturing microalgae belonging to the genus Choricyst is and having hydrocarbon-producing ability, and collecting hydrocarbons from the culture. Is done.
  • any of the hydrocarbons produced by the above method includes one or a mixture of two or more saturated or unsaturated aliphatic hydrocarbons having 10 to 25 carbon atoms. That is, in the conventional method using microalgae, only hydrocarbons having a carbon number equivalent to heavy oil were obtained, but according to the method using microalgae of the present invention, hydrocarbons having a carbon number equivalent to light oil are produced. It becomes possible.
  • the medium for culturing the microalgae may be a medium usually used for culturing microalgae.
  • a medium for known freshwater microalgae containing various nutrient salts, trace metal salts, vitamins, and the like Any medium for marine microalgae can be used.
  • Nutrient salts include, for example, nitrogen sources such as NaN 0 3 , KN 0 3 , NH 4 C 1, urea; phosphorus such as K 2 HP 0 4 , KH 2 P 0 4 , and sodium dalycerophosphate Sources are listed.
  • the trace metals include iron, magnesium, manganese, calcium, zinc, and the like, Ru include vitamin B 1 2, etc. There B vitamins as vitamins.
  • the culture method may be agitation with the supply of carbon dioxide under aeration conditions.
  • the cells are cultured with fluorescent light for 12 hours, light irradiation with a light / dark cycle such as a 12 hour drought condition, or continuous light irradiation.
  • the culture conditions are not particularly limited as long as they do not adversely affect the growth of microalgae.
  • the pH of the culture solution is preferably 7-9, and the culture temperature is 20-30 ° C. It is preferable to do.
  • the above hydrocarbons can be collected in about 6 to 8 days from the start of culture. More specifically, when culturing MBIC11204 strain, the culture solution contains
  • a solution of IMK medium (manufactured by Nippon Pharmaceutical Co., Ltd.) dissolved in demineralized water at a specified concentration can be sterilized with steam and added with various buffer solutions.
  • MBIC11204 strain can be inoculated into this culture solution and cultured by standing or shaking or aeration of air at 25 ° C under irradiation with fluorescent light (continuous illumination or light-dark cycle). Also, carbon dioxide in the air is 1 ⁇
  • Addition of about 5 % is preferable because it promotes increase. It is also possible to use a medium for known freshwater microalgae. '' In addition, a known medium for aquatic microalgae An agar plate medium prepared as a base can also be used.
  • the produced hydrocarbon can be collected from cultured algal cells. After disrupting the cells using a general method such as a French press or homogenizer and then extracting with an organic solvent such as n-hexane, or collecting the cells on a filter such as glass fiber and drying them. Extraction with an organic solvent or the like is possible. It is also possible to collect the cells by centrifugation, freeze-dry them into powder, and extract the powder with an organic solvent.
  • the target hydrocarbon can be obtained by evaporating the solvent after extraction under reduced pressure or normal pressure, or at warm or normal temperature.
  • A5 medium with the composition shown in Table 2 below was prepared using demineralized water, and this was placed in a flat glass flask (operating capacity 500 ml) and autoclaved.
  • the dry weight of the cells was measured over time as an index of growth of MBIC11204 strain. These results are shown in Figure 11.
  • the specific growth rate in the logarithmic growth phase was 0.079 h— 1 , and cells divided once every 8.8 hours. .
  • the cells were cultured for 3 days under the same conditions. This confirmed the accumulation of a significant amount of hydrocarbons under an optical microscope (Fig. 9).
  • the algal cells cultured in 300 ml obtained in Example 1 were collected by centrifugation and then lyophilized. Dry weight of algal cells, 721. 7 mg nitrogen-deficient conditions, was 884. 7m g with nitrogen-containing conditions.
  • 10 ml of the extract was concentrated to 1 ml or less with nitrogen gas. Prior to measurement, the volume was made up to 1 ml and used as a sample for GC-MS analysis.
  • DB_5 J & W, 30m x 0.25mm was used as the first-powered ram for GC-MS analysis.
  • GCMS-QP5000 Shiadzu Corporation was used as the measuring instrument.
  • an ionization method an electron ionization (EI) method and a chemical ionization (CI) method were used.
  • EI electron ionization
  • CI chemical ionization
  • Carrier gas Helium gas
  • Temperature increase conditions Hold at 50 ° C for 2 minutes from the start of analysis, heat up to 300 ° C at 6 ° C / min, then hold at 300 ° C for 18 minutes.
  • GC_MS (EI) analysis results from the fragment pattern, components contained in the sample, n- Heputadese emissions (n- heptadecene; C 17 H 34 ), n- -heptadec emissions (n- heptadecane; C 17 H 36 ), n - Okutatesen (n- octadecene; C 18 H 3 , n - Okutadekan, n- octadecane; teeth 18 H 38, n-Nonaasen (n_nonadecene; C 19 H.
  • buffer solutions 50 mM MES (pH 5.5), 50 mM M0PS (pH 7.0), 50 mM CHES (pH 9.0)
  • the cells were planted in a culture solution (autoclaved) and cultured in the same manner as in Example 1.
  • the effect of the culture solution pH on cell growth was evaluated. As shown in Fig. 12, growth at pH 7.0 was the best. Since the buffer concentration was set at 50 mM, the pH during culture was stable.
  • Vitamin B 12 0. 01 ag
  • Example 1 Prepare two culture vessels (with autoclaved) containing MC medium and C medium, and add air to one of the two and 3% C02 to the other. The mixture was aerated and cultured for 6 days under the same conditions as in Example 1.
  • Choricyst is minor SAG251— 1.
  • Choricyst is minor SAG17.
  • These oil droplets were analyzed by MS-GS under the same conditions as in Example 2. From the fragment pattern, the oil droplets in Choricyst is minor SAG251-1 were found to be n-heptadecane.
  • the present invention provides a novel microalgae having a hydrocarbon-producing ability, and the hydrocarbons produced from the microalgae can be used as an alternative fuel for diesel fuel (light oil). Therefore, the present invention is very useful as a hydrocarbon production system that does not emit carbon dioxide and has no environmental impact.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Biomedical Technology (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Botany (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

 本発明は、ディーゼル燃料(軽油)の代替燃料として利用できる炭化水素を生産する新規な微細藻類を提供することを目的とする。 本発明は、炭化水素生産能を有する新規微細藻類シュードコリシスチス エリプソイディア(Pseudochoricystis ellipsoidea)、およびシュードコリシスチス(Pseudochoricystis)属またはコリシスチス(Choricystis)属に属し、炭化水素生産能を有する微細藻類を培養し、培養物から炭化水素を採取することを特徴とする炭化水素の製造方法に関する。

Description

新規微細藻類及び炭化水素の生産方法 技術分野
本発明は、 炭化水素生産能を有する新規微細藻類、 及び微細藻類を用いる炭化 水素の生産方法に関する。 明
背景技術
これまで炭化水素生産能を有する細菌についていくつかの報告がある。 例えば、 書
炭素源を基質として C14〜C22の n-アルカンを産生するビブリォ · フル-ッシー
(Vibrio furnissii) Ml (FERM P— 18382) (M.— 0. Park, M. Tanabe, K. Hirata,
K. Miyamoto, Isolation and characterization of a bacterium that produces hydrocarbons extracellulariy which are equivalent to light oil, Appl
Microbiol Biotechnol 56 (2001), 448-452;特開 2 0 0 3— 2 2 9号公報) 、 二酸化炭素を固定して n-テトラデカンや n_へキサデカン等を産生するシユードモ ナス · アナエロォレフイ ラ (Pseudomonas anaerooleophi la) HD— 1 (FERM P—
14035)などがある(特開平 7 _ 1 9 4 3 8 6号公報) 。 しかしながら、 これらの 菌株は、 炭化水素生産に有機物を必要としたり、 増殖能力や生産能力が満足でき るレベルではない。 また、 嫌気的条件下でアルカン類を分解又は二酸化炭素を固 定してアルカン類を生産するクレブシエラ アナエロォレオフイラ (Klebsiella anaerooleophila) TK- 122 (FERM P - 16920)も知られているが (特開 2 0 0 0— 1
25849号公報) 、 この菌株は、 分解と生産を同時に行うので、 炭化水素のネ ッ トの生産能力は低い。 また、 酸素のない条件でのみ炭化水素生産が認められて いるので、 通常の空気条件下において炭化水素を生産させるためには、 酸素を遮 断するための特殊な培養装置、 生産装置を必要とする。
一方、 微細藻類は、 C02 (無機炭素) と光エネルギーと水があれば光合成を行 い、 C02から炭化水素を含む有機物を生産することができる。 直鎖状炭化水素を 油滴として細胞内外に蓄積する株としては Botryococcus brauniiが知られている ( Metzger and し argeau, Botryococcus braunii: a rich source for hydrocarbons and related ether lipids, Appl. Microbiol. Biotechnol 66 (2005)) 。 Botryococcusの特徴は、 重油相当 (炭素数 3 0以上) か、 あるいはも つと長鎖の炭化水素を蓄積する点にある。 しかし、 これ以外の微細藻類で直鎖状 炭化水素を顕著に蓄積する例は知られていない。 発明の開示
そこで、 本発明の目的は、 C02を原料として炭化水素、 特には、 ディーゼル燃 料 (軽油) の代替燃料として利用できる、 炭素数 10〜25の範囲の炭化水素を生産 する新規な微細藻類を提供することにある。
発明者らは、 上記課題を解決すべく、 国内各地の淡水サンプルを収集し、 スク リーニングを行った結果、 炭化水素生産能を有する新規微細藻類を分離すること に成功し、 本発明を完成するに至った。
すなわち、 本発明は以下の発明を包含する。
(1) 炭化水素生産能を有する新規微細藻類シユードコリシスチス エリプソイデ イノ (Pseudochoric ;stis ell ipsoidea) 。
(2) 炭化水素生産能を有する新規微細藻類シユードコリシスチス エリプソイデ ィ ァ セ キ グチ エ ト ク ラ ノ ジェ ン エ ト エス ピー ノ ブ
^ seudochoricystis elliosoidea SeKiguchi et Kurano gen. et sp. nov. ) MBIC11204株。
(3) 炭化水素生産能を有する新規微細藻類シユードコリシスチス エリプソイデ ィ ァ セ キ グチ エ ト ク ラ ノ ジヱ ン エ ト エス ピー ノ ブ
Pseudochoricyst is elliDsoidea Sekiguchi et Kurano gen. et sp. nov. ) MBIC11220株。
(4) 炭化水素が、 炭素数 10〜25の飽和又は不飽和脂肪族炭化水素である、 (1)か ら(.3)のいずれかに記載の新規微細藻類。
(5) シユー ドコリ シスチス (Pseudochoricystis) 属に属し、 炭化水素生産能を 有する微細藻類を培養し、 培養物から炭化水素を採取することを特徴とする炭化 水素の製造方法。 (6) 微細藻類が、 シユードコリシスチス エリプソィディア セキグチ エト ク フ ノ ンェン エ ト エス ヒ 一 ノブ ( Pseudochor icyst i s el l ipsoidea Sekiguchi et Kurano gen. et sp. nov. ) MBIC11204株である、 (5)に記載の方法。
(7) 微細藻類が、 シユードコリシスチス エリプソィディア セキグチ エト クラノ シェン エ ト エス ピー ノブ (Pseudochor icyst i s el l ipsoidea Sekiguchi et Kurano gen. et sp. nov. ) MBIC11220株である、 (5)に記載の方法。
(8) コリ シスチス (Choricys t i s) 属に属し、 炭化水素生産能を有する微細藻類 を培養し、 培養物から炭化水素を採取することを特徴とする炭化水素の製造方法。
(9) 微細藻類が、 コリシスチス マイナー(Choricyst i s minor) SAG251-1株、 又 はコリシスチス マイナー (Choricyst is minor) SAG17. 98株である、 (8)に記載 の方法。
(10) 炭化水素が、 炭素数 10〜25の飽和又は不飽和脂肪族炭化水素である、 (5)か ら(9)のいずれかに記載の方法。
(11) 培養を窒素欠乏条件下で行う、 (5)から(10)のいずれかに記載の方法。
本発明によれば、 炭化水素生産能を有する新規微細藻類が提供される。 本発明 の微細藻類を用いることにより、 既存の化石燃料の代替となるバイオ燃料 (バイ ォディーゼル) 、 潤滑油、 プラスチック '合成繊維 '塗料などの工業原料として 使用できる炭化水素の生産が可能となる。 本発明の微細藻類を用いる炭化水素生 産は光合成によって行われるため、 地球温暖化の原因となっている二酸化炭素排 出量を軽減でき、 環境負荷がない。 図面の簡単な説明
図 1は、 MBIC11204株の光学顕微鏡写真を示す (黒い線は 1 μ mを表す) 。
図 2は、 MBIC11204株の超薄切片写真を示す (黒い線は 1 i mを表す。 C:葉緑体、 V:液胞) 。
図 3は、 四分胞子により生殖する MBIC11204株の超薄切片写真を示す (黒い線 は Ι μ ιτιを表す) 。
図 4は、 二分裂により増殖する MBIC11204株の光学顕微鏡写真を示す (黒い線 は 1 / mを表す) 。 図 5は、 MBIC11204株の蛍光顕微鏡写真を示す (上図 : 明視野、 下図 :蛍光視 野。 明るい蛍光発色: Ni le Redによって発色した細胞内の油滴、 薄暗い部分:葉 緑体の自家蛍光) 。
図 6は、 Ni le Red染色した MBIC11204株の蛍光パターン (励起波長 488nm) を示 す。
図 7は、 緑色植物における分子系統樹 (18S rDNA部分配列、 NJ法) を示す。 図 8は、 緑色植物全体の分子系統樹 (ik£L部分配列、 NJ法) を示す。 外群とし て三株のシァノバクテリァを用いた。
図 9は、 MBIC11204株の窒素十分条件 (左) と窒素欠乏条件 (右) の細胞の光 学顕微鏡写真を示す。 窒素欠乏条件で顕著な油分の蓄積が認められる。
図 1 0は、 窒素欠乏条件移行後の油分増加曲線を示す。 横軸は窒素欠乏条件移 行後の経過時間、 縦軸は単位細胞あたりの Nile redの蛍光強度を示す。 Ni le red 蛍光は油分含量の指標である。
図 1 1は、 MBIC11204株の乾燥重量を指標とした増殖曲線を示す。
図 1 2は、 MBIC11204株の pHに対する増殖特性を示す (白抜き : 増殖、 黒塗 り : pH) 。
図 1 3は、 コ リ シスチス(Choricyst is) に属する株 (SAG251- 1株、 SAG17. 98 株) の蛍光顕微鏡写真を示す (赤色:葉緑体の自家蛍光、 黄色の粒: Ni l e Redに よって発色した油滴) 。
図 1 4は、 720nmにおける吸光度を指標とした MBIC11220株と MBIC11204株の増 殖曲線を示す (菱形: MBIC11220株、 四角 : MBIC11204株) 。
図 1 5は、 MBIC11220株の光学顕微鏡写真を示す (黒い線は 10 μ mを表す) 。 以下、 本発明を詳細に説明する。 本願は、 2005年 4月 12日に出願された日本国 特許出願 2005- 114404号の優先権を主張するものであり、 該特許出願の明細書及 び Z又は図面に記載される内容を包含する。
1 . 炭化水素生産能を有する新規微細藻類
本発明によれば、 炭化水素生産能を有する新規微細藻類シユードコリシスチス エリプソィディア (Pseudochoricystis ellipsoidea) が提供される。 このような微生物の例としては、 本発明者らが淡水サンプルから分離したシュ —ドコリシスチス エリプソィディア セキグチ エト クラノ ジ工ン エト エスヒー ノプ (Pseudochoricystis ellipsoidea Sekigucni et Kurano gen. et sp. nov. ) MBIC11204株、 シユードコリシスチス エリプソィディア セキグ チ エ ト ク ラノ ジェン エ ト エスピー ノブ ( Pseudochoricystis ellipsoidea Sekiguchi et Kurano gen. et sp. nov. ) MBIC11220株を挙げるこ とができる。
上記の微細藻類株は、 日本国内の各地から温泉水を採取し、 その 30ミ リ リ ッ ト ルに、 下記表 1に示す組成を有する IMK培地 (日本製薬製) を添加し、 蛍光灯の 光照射下、 約 20°Cで静置培養したサンプルを顕微鏡下で観察することによって選 出した。
表 1
IMK培地組成
NaN03 200 mg
Na2HP04 1.4 mg
K2HP04 5 mg
NH4C1 2.68 mg
Thiamin - HC1 0.2 mg
Biotin 0.0015 mg
Vitamin B12 0.0015 mg
Mn-EDTA 0.332 mg
Fe-EDTA 5.2 mg
Na2-EDTA 37 mg
MnCl2 · 4H20 0.18 mg
ZnS04 · 7H20 0.024 mg
CoS04 · 7H20 0.012 mg
Na2Mo04 · 2H20 0.0072 mg
CuS04 · 5H20 0.0025 mg
Na2Se03 0.002 mg
脱 S水 1000 ml
pH 8.0
MBIC11204株の藻類学的性質は以下のとおりである。
A. 形態的性質
( 1 ) 栄養型細胞は、 楕円形又はやや曲がった腎臓形で両端は丸い。 短径 1〜2 m、 長径 3〜4 mである (図 1 ) 。 鞭毛を持たず運動性を示さない^アルカリ性で は細胞は凝集する。 (2) 栄養型細胞は外囲を細胞壁に囲まれ、 内部に核、 葉緑体が一個存在し、 そ の他、 ミ トコンドリア、 ゴルジ体、 液胞、 油滴等が認められる。 葉緑体内にピレ ノィ ドは認められない (図 2) 。
B. 生殖様式
( 1 ) 内生胞子は栄養細胞内に四個形成され (図 3) 、 細胞内に均等に分布する。 内生胞子はその細胞内に核、 葉緑体を一個有する。
(2) 二分裂による増殖も行う (図 4) 。
C . 生理学 ·生化学性状
( 1 ) 培養液:淡水を素にした培養液中で生育できる。
(2) 光合成能:光合成による光独立栄養生育ができる。
(3) 含有色素: クロロフィル a、 クロロフィル b、 及び他のカロチノィ ド類。
(4) 同化貯蔵物質:澱粉。
(5) 生育温度域: 15°C〜30°C (至適温度 25°C)。
(6) 生育 pH域: pH6.0〜10.0 (至適 pHは 7.0)。
( 7) 細胞内に存在する油滴は Nile redによる蛍光染色でオレンジ色の蛍光を示 す (図 5) 。 図 6は Nile red染色し MBIC11204株の典型的な中性脂質の蛍光パタ ーンを示す。
上記のとおり、 MBIC 11204株は楕円形又はやや曲がった腎臓形の形状を有し、 主要光合成色素として、 クロロフィルお、 クロロフィル bを含有している。 また、 遊走細胞のステージを持たず、 二分裂又は四分胞子の形成によって生殖を行う。 さらに、 ピレノイ ドを欠く葉緑体を有する。
以上の点から、 MBIC11204株は形態学的には既知の ト レボウクシァ藻綱の
Choricystis属によく一致し、 Choricystis属に属すると推察された。 ところ力
18S rDNA遺伝子を指標とした分子系統解析を行ったところ、 既知の Choricystis 属とは類縁関係を示さなかった。 (図 7) 。 一方、 Rubisco large subunit遺伝 子 (i^L)の部分配列を指標とした分子系統解析では、 MBIC11204株は緑色植物全 体の根元に位置することが明らかとなった (図 8) 。 MBIC11204 の 18S r DNA遺 伝子の塩基配列を配列表の配列番号 1に、 また、 Rubisco large subunit遺伝子
(rbcL)の塩基配列を配列表の配列番号 2に示す。 同じ解析において Choricystis 属はひとかたまりのクレードを作っており、 そのクレードとはかけ離れた位置に MBIC11204株は存在する。 また、 トレボウクシァ藻綱のタイプ株や Chlorel la属と も全くかけ離れている。
そこで MBIC11204株を、 (i) 形態的には Chor i cys t i s属に類似するが 18S rDNA遺 伝子の系統解析では Chor icy st i s属に属さない、 (i i) ^L遺伝子による系統解析 では緑色植物の根元に位置する、 (i i i) 直鎖状炭化水素を含有する、 ことを特徴 とする、 新属新種の微細藻類株と判断し、 シユードコリシスチス エリプソイデ ィ ァ セ キグチ エ ト ク ラ ノ ジェ ン エ ト エ ス ピー ノ ブ y Pseudochoricyst is e l l ipsoidea Sekiguchi et Kurano gen. et sp. nov. ) MBIC11204株と命名した。 属名は、 Choricyst is属と形態的に類似するという意味 で、 種名は、 細胞の形が回転楕円体であることに由来する。
一方、 MBIC11220株もまた MBIC11204株と同様の楕円形又はやや曲がった腎臓形 の形状を有し (図 1 5 ) 、 その他の藻類学的性質も一致した。 また、 MBIC11220 株の 18S r DNA遺伝子の塩基配列 (配列表の配列番号 3 ) 、 Rubi sco large subuni t遺伝子 (rbcL)の塩基配列 (配列表の配列番号 4 ) を決定し、 同様にして 18S r DNA遺伝子を指標とした分子系統解析、 及び Rubi sco large subuni t遺伝子
(!^L)の部分配列を指標とした分子系統解析を行った。 それらの分子系統解析 と直鎖状炭化水素の生産の点においても、 MBIC11204株の有する前記(i)〜 (i i i) の特徴と一致した。 そこで、 MBIC11220株もまた新属新種の微細藻類株と判断し、 シユー ドコリ シスチス エリプソィディア セキグチ エ ト クラノ ジェン ェ ト エスヒー ノフ (Pseudochoricyst i s el l ipsoidea Sekiguchi et Kurano gen. et sp. nov. ) MBIC11220株と命名した。
MBIC11204株は、 2005年 2月 15日付で独立行政法人産業技術総合研究所特許生物 寄託センター (IP0D) (茨城県つくば市東 1丁目 1番地 1中央第 6 ) に受託番号 FERM P-20401として寄託され、 2006年 1月 18日付でプタべスト条約の規定下で受 託番号 FERM BP - 10484として国際寄託に移管されている。
また、 MBIC11220株は、 2006年 1月 18日付で独立行政法人産業 術総合研究 所特許生物寄託センター (IP0D) (茨城県つくば巿東 1丁目 1番地 1中; ¾第 6 ) にプタべス ト条約の規定下で受託番号 FERM BP - 10485 として国際寄託されている。 2 . 微細藻類を用いる炭化水素の製造方法
MBIC11204株は、 ガスクロマ トグラフィー質量分析(GC- MS)の結果、 9種類の炭 化水素を生産することが確認された。 いずれも脂肪族炭化水素で、 n-ヘプタデセ ン (n-heptadecene ; C17H34) 、 n -ヘプタケカン (n-heptadecane; C17H,6) 、 n—ォク タァセン (n-octadecene ; C,8H36) 、 n -ォクタテカン (n-octadecane; C18H38) 、 n - ノナテセン (n-nonadecene ; C19H38 、 nーノナデフソ ン (n-nonadecane; C19H4n) の 6 種と、 残り 3種は n-エイコサジェン (n- eicosadiene ; C2QH38) で、 二重結合が 2 ケ所存在するが、 いずれも二重結合の位置は特定できない (表 β ) 。 また、 MBIC11220株は、 η -ヘプタデセン (η - heptadecene ; C17H34) 、 n-ヘプタデカン 、n— heptadecane;し 17H36y) 、 n—ノナァセン (n一 nonadecene;し 19H38)、 n—ノナ "カン (n-nonadecane ; C19H4。) の 4種類の炭化水素を生産することが確認された (表 6 ) 。
また、 図 9に示すように MBIC11204株の炭化水素油滴の含有量は窒素欠乏条件 で著しく増大する。 さらに、 細胞を Ni le redで染色してその蛍光強度を測ると窒 素欠乏条件移行後、 単位細胞あたりの蛍光強度が増大していた (図 1 0 ) 。 この Ni l e red蛍光は細胞の炭化水素含有量を反映しているので、 MBIC11204株による 炭化水素生産の収量増大の手段として、 窒素欠乏条件が有効であるといえる。 以上から、 本発明によれば、 シユードコリシスチス (Pseudochori cyst i s) 属 に属し、 炭化水素生産能を有する微細藻類を培養し、 培養物から炭化水素を採取 することを特徴とする炭化水素の製造方法が提供される。
また、 同じく微細藻類コリシスチス(Chor i cyst i s)に属する株の培養細胞中に も、 同様な炭化水素油滴が確認された (図 1 3 ) 。 この炭化水素油滴を分析した ところ、 コリシスチス マイナー(Choricystis minor) SAG251- 1株における炭ィ匕 水素は、 n -へプタデカ ン ( n-heptadecane ; C17H36 ) 、 n-ノ ナデセン ( n - nonadecene ; C19H38) 、 n -ヘンエイコセン (n-hene icosene; C21H42) の 3種、 コリ シ スチス マイナー (Choricyst i s minor) SAG17. 98株における炭化水素は、 n-へ プタアカン (n-heptadecane; C17H,6) 、 n-ノナァセン 、n - nonadecene ; C H38ノ 、 n - ヘンエイ コセ ン ^ n-heneicosene ; C21H42 ) ゝ n - 卜 リ コセン ( n-tri cosene; C23H46) の 4種であった (表 6 ) 。
従って、 本発明によれば、 コリシスチス (Choricyst i s) 属に属し、 炭化水素 生産能を有する微細藻類を培養し、 培養物から炭化水素を採取することを特徴と する炭化水素の製造方法もまた提供される。
上記方法にて製造される炭化水素には、 いずれも炭素数 10〜25の飽和又は不飽 和脂肪族炭化水素の 1種または 2種以上の混合物が含まれる。 すなわち、 従来の微 細藻類を用いる方法では、 重油相当の炭素数の炭化水素しか得られなかったが、 本願発明の微細藻類を用いる方法によれば、 軽油相当の炭素数の炭化水素を製造 することが可能となる。
上記微細藻類の培養するための培地としては、 微細藻類の培養に通常使用され ているものでよく、 例えば、 各種栄養塩、 微量金属塩、 ビタミン等を含む公知の 淡水産微細藻類用の培地、 海産微細藻類用の培地のいずれも使用可能である。 栄 養塩と しては、 例えば、 N a N 0 3 、 K N 0 3、 N H 4 C 1 、 尿素などの窒素 源; K 2 H P 0 4 、 K H 2 P 0 4 、 ダリセロリン酸ナトリ ウムなどのリン源が挙 げられる。 また、 微量金属としては、 鉄、 マグネシウム、 マンガン、 カルシウム 亜鉛等が挙げられ、 ビタミンとしてはビタミン Bい ビタミン B 1 2等が挙げられ る。 培養方法は、 通気条件で二酸化炭素の供給とともに攪拌を行えばよい。 その 際、 蛍光灯で 12時間の光照射、 12時間の喑条件などの明暗サイクルをつけた光照 射、 又は、 連続光照射して培養する。 また培養条件も微細藻類の増殖に悪影響を 与えない範囲内であれば特に制限はされないが、 例えば培養液の pHは 7〜 9とす ることが好ましく、 培養温度は、 20〜30°Cにすることが好ましい。 以上のような 条件で培養すると、 培養開始から 6〜8日程度で、 上記の炭化水素が採取できる。 より具体的には、 MBIC11204株の培養をする場合は、 培養液には、 前記市販の
IMK培地 (日本製薬製) を脱塩水に規定濃度溶解したものを蒸気滅菌し、 各種の 緩衝溶液を添加したものを用いることができる。 この培養液に、 MBIC11204株を 植菌し、 25°C、 蛍光灯の光照射下 (連続照明下又は明暗周期下) で静置又は振盪 又は空気通気を行うことによって培養できる。 また、 空気中へ二酸化炭素を 1〜
5%程度付加すると、 増^!が促進され、 好ましい。 また、 既知の淡水産微細藻類 用の培地も用いることが可能である。' さらに、 既知の 水産微細藻類用の培地を ベースに作成した寒天平板培地も利用可能である。
生産された炭化水素は培養藻体から採取できる。 フレンチプレスやホモジナイ ザ一などの一般的な方法により細胞を破砕してから n-へキサンなどの有機溶媒に よって抽出する方法や、 細胞をガラス繊維等のフィルター上に回収し、 乾燥させ てから、 有機溶媒などによって抽出する方法が可能である。 また、 細胞を遠心分 離で回収し、 凍結乾燥して粉末化し、 その粉末から有機溶媒で抽出することも可 能である。 抽出後の溶媒を、 減圧又は常圧下で、 また加温又は常温で揮散させる ことにより 目的の炭化水素が得られる。 発明を実施するための最良の形態
以下、 実施例によって本発明を更に具体的に説明するが、 これらの実施例は本 発明を限定するものでない。
(実施例 1 )
脱塩水を用いて下記表 2に示す組成の A5培地を作り、 これを扁平なガラスフラ スコ (稼働容量 500ml) に入れ加圧滅菌した。
表 2
A5培地組成
NaN03 150 mg
MgS04 · 7H,0 10 mg
ΚΗ,Ρ04 3. 5 mg
K2HP04 4. 5 mg
CaCl2 · 2Η20 0. 9 mg
Fe-EDTA 1. 2 ml
金属混液 0. 1 ml
脱塩水 99. 8 ml
PH 7. 5
金属混液
H3B03 7 mg
MnS04 · 7H20 15 mg
ZnS04 · 7H20 30 mg
CuS04 · 5H20 30 mg
Na2Mo04 0. 3 mg
CoCl2 7 mg
脱塩水 100 ml 上記 A5培地にシユードコリシスチス エリプソィディア セキグチ ェト ク フソ シェ ン ェ 卜' エス ピー ノ フ ( Pseudochoricyst is el l ipsoidea Sekiguchi et Kurano gen. et sp. nov. ) MBIC11204株 (以下、 MBIC11204株とい う) を植菌し、 通気性のある栓をし、 3%の C02を付加した空気を通気すると同時 にフラスコ内の培養液を攪拌した。 このときフラスコの周囲から白色蛍光ランプ により光を照射し、 恒温水槽に浸けて温度を 28°C付近に調節した。 細胞の乾燥重 量を MBIC11204株の生育の指標として経時的に測定した。 これらの結果を図 1 1 に示す。 対数増殖期の比増殖速度は 0. 079 h— 1で、 8. 8時間に 1回細胞分裂した。 . 得られた培養液 400ml中の細胞を遠心分離し (15, 000rpm、 10分間) 、 上記 A5培 地から NaN03を除いた窒素欠乏培地で 2回洗浄し、 さらに該窒素欠乏培地を用いて 同じ条件で 3日間培養した。 このことにより著量の炭化水素の蓄積が光学顕微鏡 下で確認された (図 9 ) 。
(実施例 2 )
実施例 1で得られた、 300mlで培養された藻体を遠心分離で回収した後、 凍結 乾燥した。 藻体の乾燥重量は、 窒素欠損条件で 721. 7mg、 窒素含有条件で 884. 7mgだった。 次に、 乾燥藻体 200mgに対し、 10mlの n-へキサンで脂溶性化合物 を粗抽出した後、 10mlの抽出液を窒素ガスで lml以下に濃縮した。 測定前に、 1ml にメスアップし、 これを GC-MS分析用の試料とした。
GC- MS分析用キヤビラリ一力ラムは DB_5 (J&W、 30m X 0. 25mm)を使用した。 測 定機器は、 GCMS- QP5000 (島津製作所)を用いた。 イオン化法として、 電子イオン 化(EI)法と、 化学イオン化(CI)法を用いた。 成分の同定には、 GLサイエンスの直 鎖状飽和炭化水素混合物(Cl l, C13, C15, C17, C19, C20, C22, C24, C26, C28, C30)標準試料を用いた。
GC/MS条件は以下の通りである。
インジェクター温度 : 280°C
試料注入量 \ ιχ \
注入方法 : スプリ ッ トレスモード
ィンターフェース温度 : 300°C
サンプリング時間 : 0: 5分
カラム入り口圧: 100 kPa ガス流量: 50.0 ml/min
キヤリァーガス : ヘリ ゥムガス
昇温条件:分析開始より 50°Cで 2分保持、 6°C/minで 300°Cまで昇温後、 300°Cで 18分保持。
イオン化電圧(EI) : 70eV
反応ガス(CI) : メタン
スキャン範囲 : m/z 50〜500
GC_MS(EI)分析の結果、 そのフラグメントパターンから、 試料に含まれる成分 は、 n-ヘプタデセ ン ( n- heptadecene ; C17H34 ) 、 n-ヘプタデカ ン ( n- heptadecane;C17H36) 、 n -ォクタテセン (n- octadecene; C18H3 、 n -ォクタデカン 、n— octadecane; し 18H38 、 n—ノナァセン (n_nonadecene;C19H。8) ヽ nーノナアカン ( n-nonadecane; C19H40 ) の 6種と 、 残 り 3種は n-エイ コサジェ ン ( n- eicosadiene; C20H38) であると推定された。 しかし、 n-エイコサジェンの二重結 合の位置は特定できなかった (表 6) 。
また、 MBIC11204株を MC培地 (後記表 4) で 7日間培養後、 MC培地から KN03を除 去した培地に移した。 適当な時間間隔で培養液を採取し、 ジメチルスルフォキシ ド (DMS0) を終濃度 20%になるように添加して撹拌し、 5分後に Nile red溶液 (終濃度 5 g/ml) を加えて撹拌しさらに 5分放置した後蛍光強度を測定した (excitation 488 nm、 emission 580 nm) 。 単位細胞あたりの蛍光強度の増加パ ターンを図 1 0に示す。 この蛍光強度は Nile redによって染色される物質の量、 すなわち細胞内の炭化水素量を反映しているので、 蛍光強度の増加は炭化水素量 の増加を意味している。 窒素欠乏条件へ以降後、 速やかな炭化水素量の増加が示 された。
(実施例 3 )
MBIC11204株を、 下記表 3に示す組成を有する C培地に 3種の緩衝溶液 (50mM MES(pH5.5)、 50mM M0PS(pH7.0) , 50mM CHES (pH9.0)) をそれぞれ^加した培養液 (加圧滅菌済み) に植蓐し、 実施例 1 と同様の培養を行い、 培養液の pHが細胞の 増殖に及ぼす影響を評価した。 図 1 2に示すように pH7. 0における増殖がもっとも良好であった。 緩衝液の濃 度を 50mMに設定したので、 培養中の pHは安定であった。
表 3
C培地組成
Ca (N03) 2 - 4H20 15 mg
KN03 10 mg
MgSO, · 7H20 4 mg
i3 -グリセロリン酸ナトリ ウム 5 mg
ビタミン 1
ビタミン B12 0. 01 a g
ビォチン 0. 01 μ g
トリス緩衝剤 50 mg
PIV金属混液 0. 3 ml
脱塩水 99. 7 ml
PIV金属混液
FeCl3 · 6H20 19. 6 mg
MnCl2 . 4H20 0. o mg
ZnCL 1. 05 mg
CoCl2 · 6H20 0. 4 mg
Na2Mo04 . 2H20 0. 25 mg
Na,EDTA . 2H20 100 mg
脱 水 100 ml
(実施例 4 )
下記表 4に示す組成を有する MC培地と、 実施例 3で用いた C培地のどちらが MBIC11204株の培養に適しているかを調べるための実験を行った。 同時に、 空気 に C02を付加する効果についても確認を行った。
MC培地と C培地を入れた培養容器 (加圧滅菌済み) を二本ずつ用意し、 二本の 内の一本には空気を、 残る一本には空気に 3%の C02を付加した混合ガスを通気し て、 実施例 1 と同様の条件で 6日間培養した。
表 4
MC培地組成
漏 125 mg
MgS04 · 7H20 125 mg
KH。P04 125 mg
Fe混 ffi 0. 1 ml
A5金属混液 0. 1 ml
脱塩水 99. 8 ml
PH 6. 0
Fe混液
Figure imgf000015_0001
A5金属混液
H3B03 286 mg
MnS04 · 7H20 250 mg
ZnS04 · 7H20 22. 2 mg
CuS04 . 5H20 7. 9 mg
Na,Mo04 2. 1 mg
脱 S水 100 ml
結果を表 5に示す。 もっとも増殖がよい条件は、 MC培地を用いて 3°/。 C02を付加 条件であった (クロロフィル濃度が 34. 8倍) 。 MC培地の場合には C02付加にはプ ラスの効果が認められたが、 C培地の場合は空気のみでも同様の増殖であった。
表 5
MBIC11204株の培地種類 · C02濃度による生育の違い 培地 通気 クロ口フィノレ濃度(mg ク口口フィル /1) 増殖倍率
Day 0 Day 6
C co2 0. 8 27. 8 34, 8
MC Air 0. 8 14. 5 18. 1
C co2 0. 8 20. 4 25. 5
C Air 0. 8 20. 1 25. 1
(実施例 5 )
し ul ture し ol l ect ion or Algae (SAG) at the Uni vers i ty of Gottingen -gf 託された微細藻類について、 直接細胞を Ni le redにて染色して観察した結果、 Choricyst i s minor SAG251— 1、 Choricyst i s minor SAG17. 98はオレンジ色の蛍光 を発し、 顕著な油滴の存在が確認された (図 1 3 ) 。 これらの油滴を実施例 2と同様の条件にて MS- GS分析したところ、 そのフラグ メントパターンから、 コリシスチス マイナー(Choricyst is minor) SAG251- 1株 における油滴は、 n-ヘプタデカン (n- heptadecane ; C17H36) n-ノナデセン (n_ nonadecene ; C19H38) · η -ヘンエイコセン (n-henei cosene; C21H42) の 3¾、 コリ シ スチス マイナー (Choricystis minor) SAG17. 98株における油滴は、 n-ヘプタ アカン 、n— heptadecane ; C17H36) n—ノナアセノ (n— nonadecene ;し 19H38) n ノ エイコセン (n-heneicosene ; C21H42) n-卜リ コセン (n-tricosene; C23H46) の 4 種であると推定された (表 6 )
(実施例 6 )
MBIC11220株を、 前記表 2に示す組成を有する A5培地で実施例 1 と同じ培養条 件で培養した結果を図 1 4に示す。 720nmにおける吸光度を細胞濃度の指標とし て経時的に測定し、 増殖曲線を描いた。 図 1 4には同じ条件で培養した MBIC11204株の増殖も表示した。 両方の株はこの実験条件ではよく似た増殖を示 した。
この培養によって得られた MBIC11220株の細胞から、 実施例 2と同じ方法で炭 化水素を抽出し、 分析したところ、 n -へプタデセン (n- heptadecene ; C17H34) n -ヘプタテカン (n-heptadecane; C17IU6) n-ノナァセノ 、n_nonadecene ; C19H38) n -ノナデカン (n- nonadecane ; C19H40) の 4種であると推定された。 上記の実施例で確認、された MBIC1 1204株、 MBIC11220株、 SAG251- 1株、 SAG17. 98 株の培養により生産される炭化水素を下記表 6にまとめる。
表 6
17: 1 17:0 18: 1 18:0 19: 1 19:0 20:2 21: 1 23: 1
P. ellipsoidea
MBIC11204 + + + + + + +
MBIC11220 + + + +
C. minor
SAG251 1 + + +
C. minor
SAG 17.98 + + + +
本明細書で引用した全ての刊行物、 特許及び特許出願をそのまま参考として本 明細書に組み入れるものとする。 産業上の利用可能性
本発明は、 炭化水素生産能を有する新規微細藻類を提供するものであり、 該微 細藻類より生産される炭化水素はディーゼル燃料 (軽油) の代替燃料として利用 できる。 従って、 本発明は、 二酸化炭素を排出せず、 環境負荷のない炭化水素生 産システムとして非常に有用である。

Claims

請求の
1. 炭化水素生産能を有する新規微細藻類シユードコリシスチス エリプソイデ ィァ (Pseudochoricystis ell losoidea) 0
2. 炭化水素生産能を有する新規微細藻類シユードコリシスチス エリプソイデ ィ ァ セ キ グチ エ ト ク ラ ノ ジヱ ン エ ト エス ピー ノ ブ
(Pseudochoricystis eiliqsoidea Sekiguchi et Kurano gen. et sp. nov. ) MBIC11204株。
3. 炭化水素生産能を有する新規微細藻類シユードコリシスチス エリプソイデ ィ ァ セ キ グチ エ ト ク ラ ノ ジェ ン エ ト エス ピー ノ ブ
( Pseudochoricystis eilipsoidea Sekiguchi et Kurano gen. et sp. nov. ) MBIC11220株。
4. 炭化水素が、 炭素数 10〜25の飽和又は不飽和脂肪族炭化水素である、 請求項 1から 3のいずれかに記載の新規微細藻類。
5. シユー ドコ リ シスチス (Pseudochoricystis) 属に属し、 炭化水素生産能を 有する微細藻類を培養し、 培養物から炭化水素を採取することを特徴とする炭化 水素の製造方法。
6. 微細藻類が、 シユードコリシスチス エリプソィディア セキグチ エト ク フ ノ ンェ ン エ ト エス ピー ノ フ、、 Pseudochoricystis ellipsoidea Sekiguchi et Kurano gen. et sp. nov. ) MBIC11204株である、 請求項 5に記載 の方法。
7. 微細藻類が、 シユードコ リ シスチス エリプソィディア セキグチ エ ト ク フ ノ ンェ ン ェ 卜 エス ヒ 一 ノ フ (Pseudochoricystis elli soidea Sekiguchi et Kurano gen. et sp. nov. ) MBIC11220株である、 請求項 5に記載 の方法。
8. コリ シスチス (Choricystis) 属に属し、 炭化水素生産能を有する微細藻類 を培養し、 培養物から炭化水素を採取することを特徴とする炭化本素の製造方法。
9 - 微細藻類が、 コリシスチス マイナー(Choricystis minor) SAG251-1株、 又 はコリシスチス マイナー (Choricystis minor) SAG17.98株である、 請求項 8 に記載の方法。
1 0. 炭化水素が、 炭素数 10〜25の飽和又は不飽和脂肪族炭化水素である、 請求 項 5から 9のいずれかに記載の方法。
1 1. 培養を窒素欠乏条件下で行う、 請求項 5から 1 0のいずれかに記載の方法。
PCT/JP2006/306785 2005-04-12 2006-03-24 新規微細藻類及び炭化水素の生産方法 WO2006109588A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP06730733.0A EP1873233B1 (en) 2005-04-12 2006-03-24 Microalgae and process for producing hydrocarbon
JP2007512903A JP4748154B2 (ja) 2005-04-12 2006-03-24 新規微細藻類及び炭化水素の生産方法
US11/918,374 US7981648B2 (en) 2005-04-12 2006-03-24 Microalga and process for producing hydrocarbon

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005114404 2005-04-12
JP2005-114404 2005-04-12

Publications (1)

Publication Number Publication Date
WO2006109588A1 true WO2006109588A1 (ja) 2006-10-19

Family

ID=37086868

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/306785 WO2006109588A1 (ja) 2005-04-12 2006-03-24 新規微細藻類及び炭化水素の生産方法

Country Status (5)

Country Link
US (1) US7981648B2 (ja)
EP (2) EP2434006A3 (ja)
JP (1) JP4748154B2 (ja)
KR (1) KR100952805B1 (ja)
WO (1) WO2006109588A1 (ja)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010111865A (ja) * 2008-10-10 2010-05-20 Univ Of Tokyo 炭化水素の製造方法及び炭化水素製造システム
JP2010187645A (ja) * 2009-02-20 2010-09-02 Electric Power Dev Co Ltd セネデスムス属に属する微細藻類、該微細藻類を培養する工程を有する油分の製造方法、および該微細藻類から採取した油分
WO2010116611A1 (ja) 2009-04-10 2010-10-14 電源開発株式会社 ナビクラ属に属する微細藻類、該微細藻類の培養による油分の製造方法、および該微細藻類から採取した油分
JP2010539294A (ja) * 2007-09-11 2010-12-16 サファイア エナジー,インコーポレイティド 光合成生物を用いた有機製品の製造方法ならびにその製品および組成物
JP2011212624A (ja) * 2010-04-01 2011-10-27 Toyota Motor Corp 藻類の凝集分離方法
JP2011229439A (ja) * 2010-04-27 2011-11-17 Toyota Central R&D Labs Inc 微生物培養添加剤
WO2012002483A1 (ja) * 2010-06-30 2012-01-05 マイクロ波環境化学株式会社 油状物質の製造方法、及び油状物質の製造装置
US8198776B2 (en) 2007-08-28 2012-06-12 Brusa Elektronik Ag Current-energized synchronous motor, particularly for vehicle drives
JP2013013343A (ja) * 2011-06-30 2013-01-24 Aichi Steel Works Ltd 微細藻類の培養方法
JP2013056290A (ja) * 2011-09-07 2013-03-28 Denso Corp 貴金属吸着剤及び貴金属の回収方法
JP2013090598A (ja) * 2011-10-26 2013-05-16 Denso Corp 藻類の培養方法
JP2014503638A (ja) * 2010-12-13 2014-02-13 エクソンモービル リサーチ アンド エンジニアリング カンパニー 不均一触媒でのバイオマスの水熱処理
JP2014100121A (ja) * 2012-11-22 2014-06-05 Kurita Water Ind Ltd 炭化水素生産能を有する微細藻類の回収方法
JP2014117202A (ja) * 2012-12-14 2014-06-30 Denso Corp 微細藻類の培養方法及び培養システム
WO2014141811A1 (ja) * 2013-03-11 2014-09-18 栗田工業株式会社 微細藻類の脂溶性成分含量の判断方法および微細藻類の培養方法
EP2453004B1 (fr) * 2010-11-10 2014-11-05 Yves Bertrand Procédé et installation de méthanisation de matière organique à haute teneur en solides
JP2015015918A (ja) * 2013-07-10 2015-01-29 株式会社デンソー 新規微細藻類
JP2015027287A (ja) * 2013-07-05 2015-02-12 国立大学法人東京工業大学 微細藻類、培養物、及び油脂の製造方法
US9370762B2 (en) 2011-11-11 2016-06-21 Microwave Chemical Co., Ltd. Chemical reaction apparatus
US9573112B2 (en) 2011-11-11 2017-02-21 Microwave Chemical Co., Ltd. Chemical reaction apparatus
WO2017098815A1 (ja) * 2015-12-10 2017-06-15 アズビル株式会社 微細藻類のモニタリング装置及び微細藻類のモニタリング方法
WO2017098816A1 (ja) * 2015-12-10 2017-06-15 アズビル株式会社 微細藻類に含まれる脂質の検出装置及び微細藻類に含まれる脂質の検出方法
US10087496B2 (en) 2013-11-19 2018-10-02 Denso Corporation Green alga lipid-accumulating variant and use of the same
WO2019017406A1 (ja) * 2017-07-18 2019-01-24 国立研究開発法人海洋研究開発機構 微細藻類を用いた炭化水素の製造方法
WO2019073902A1 (ja) * 2017-10-11 2019-04-18 国立研究開発法人産業技術総合研究所 water-in-oilエマルション培養における蛍光を用いた細胞増殖検出方法
US10662443B2 (en) 2011-08-15 2020-05-26 Toyota Jidosha Kabushiki Kaisha Method for producing alkane and recombinant microorganism capable of synthesizing alkane
US11224852B2 (en) 2011-06-29 2022-01-18 Microwave Chemical Co., Ltd. Chemical reaction apparatus and chemical reaction method
US11229895B2 (en) 2011-11-11 2022-01-25 Microwave Chemical Co., Ltd. Chemical reaction method using chemical reaction apparatus

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100242345A1 (en) 2006-05-19 2010-09-30 LS9, Inc Production of fatty acids & derivatives thereof
US8110670B2 (en) 2006-05-19 2012-02-07 Ls9, Inc. Enhanced production of fatty acid derivatives
US8110093B2 (en) * 2007-03-14 2012-02-07 Ls9, Inc. Process for producing low molecular weight hydrocarbons from renewable resources
CA2759273C (en) 2009-04-27 2018-01-09 Ls9, Inc. Production of fatty acid esters
US8475660B2 (en) 2010-04-06 2013-07-02 Heliae Development, Llc Extraction of polar lipids by a two solvent method
US8313648B2 (en) 2010-04-06 2012-11-20 Heliae Development, Llc Methods of and systems for producing biofuels from algal oil
MX2012011558A (es) 2010-04-06 2013-02-21 Heliae Dev Llc Metodos y sistemas para producir biocombustible.
US8308951B1 (en) 2010-04-06 2012-11-13 Heliae Development, Llc Extraction of proteins by a two solvent method
US8273248B1 (en) 2010-04-06 2012-09-25 Heliae Development, Llc Extraction of neutral lipids by a two solvent method
US8115022B2 (en) 2010-04-06 2012-02-14 Heliae Development, Llc Methods of producing biofuels, chlorophylls and carotenoids
ITGE20110066A1 (it) * 2011-06-23 2012-12-24 Vevy Europ S P A Metodo per lo sviluppo in microcolture e/o macrocolture di organismi autotrofi unicellulari algali
JP2013102715A (ja) * 2011-11-11 2013-05-30 Denso Corp 新規微細藻類、炭化水素の製造方法、及びアシルグリセライドの製造方法
WO2013075116A2 (en) 2011-11-17 2013-05-23 Heliae Development, Llc Omega 7 rich compositions and methods of isolating omega 7 fatty acids
WO2013123032A1 (en) * 2012-02-13 2013-08-22 Heliae Development Llc Microalgae enriched with trace minerals
RU2508398C1 (ru) * 2012-10-09 2014-02-27 Федеральное государственное бюджетное учреждение науки Институт цитологии и генетики Сибирского отделения Российской академии наук ШТАММ МИКРОВОДОРОСЛИ Chlorella vulgaris ДЛЯ ПОЛУЧЕНИЯ ЛИПИДОВ В КАЧЕСТВЕ СЫРЬЯ ДЛЯ ПРОИЗВОДСТВА МОТОРНОГО ТОПЛИВА
JP6125962B2 (ja) * 2013-09-24 2017-05-10 株式会社デンソー 抗ウイルス剤

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07194386A (ja) 1993-12-29 1995-08-01 Nikko Bio Giken Kk シュードモナス属細菌を用いた炭化水素の生産方法及び新規シュードモナス属細菌
JP2981552B1 (ja) 1998-08-21 1999-11-22 大阪大学長 新規微生物
JP2003000229A (ja) 2001-06-22 2003-01-07 Kansai Electric Power Co Inc:The 微生物とこの微生物を用いた石油代替油の製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
FANG J.Y. ET AL.: "Fatty acids in Botryococcus braunii accelerate topical delivery of flurbiprofen into and across skin", INT. J. PHARM., vol. 276, 2004, pages 163 - 173, XP003004655 *
KURANO N. ET AL.: "Sorui no Noryoku to Tayona Seisanbutsu. (Availabillity of algae and diversity of their products)", ANNUAL MEETING OF THE MOLECULAR BIOLOGY SCIENTY OF JAPAN KOEN YOSHISHU, vol. 28, 25 November 2005 (2005-11-25), pages 54 (W1K-3), XP003004656 *
See also references of EP1873233A4 *

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8198776B2 (en) 2007-08-28 2012-06-12 Brusa Elektronik Ag Current-energized synchronous motor, particularly for vehicle drives
JP2014159595A (ja) * 2007-09-11 2014-09-04 Saphia Energy Inc 光合成生物を用いた有機製品の製造方法ならびにその製品および組成物
JP2010539294A (ja) * 2007-09-11 2010-12-16 サファイア エナジー,インコーポレイティド 光合成生物を用いた有機製品の製造方法ならびにその製品および組成物
KR101495380B1 (ko) 2007-09-11 2015-02-24 사파이어 에너지, 인크. 광합성 생물에 의한 유기 생산물을 얻는 방법 및 이들의 생산물 및 조성물
US9695372B2 (en) 2007-09-11 2017-07-04 Sapphire Energy, Inc. Methods of producing organic products with photosynthetic organisms
JP2010111865A (ja) * 2008-10-10 2010-05-20 Univ Of Tokyo 炭化水素の製造方法及び炭化水素製造システム
JP2010187645A (ja) * 2009-02-20 2010-09-02 Electric Power Dev Co Ltd セネデスムス属に属する微細藻類、該微細藻類を培養する工程を有する油分の製造方法、および該微細藻類から採取した油分
WO2010116611A1 (ja) 2009-04-10 2010-10-14 電源開発株式会社 ナビクラ属に属する微細藻類、該微細藻類の培養による油分の製造方法、および該微細藻類から採取した油分
US8927285B2 (en) 2009-04-10 2015-01-06 Electric Power Development Co., Ltd. Micro-alga belonging to genus Navicula, process for production of oil by culture of the micro-alga, and oil collected from the micro-alga
JP5608640B2 (ja) * 2009-04-10 2014-10-15 電源開発株式会社 ナビクラ属に属する微細藻類、該微細藻類の培養による油分の製造方法、該微細藻類の乾燥藻体、および該微細藻類を培養する工程を有する二酸化炭素固定方法
JP2011212624A (ja) * 2010-04-01 2011-10-27 Toyota Motor Corp 藻類の凝集分離方法
JP2011229439A (ja) * 2010-04-27 2011-11-17 Toyota Central R&D Labs Inc 微生物培養添加剤
US10457930B2 (en) 2010-06-30 2019-10-29 Microwave Chemical Co., Ltd. Oil-based material-producing method and oil-based material-producing apparatus
JP5901519B2 (ja) * 2010-06-30 2016-04-13 マイクロ波化学株式会社 油状物質の製造方法、及び油状物質の製造装置
WO2012002483A1 (ja) * 2010-06-30 2012-01-05 マイクロ波環境化学株式会社 油状物質の製造方法、及び油状物質の製造装置
EP2453004B1 (fr) * 2010-11-10 2014-11-05 Yves Bertrand Procédé et installation de méthanisation de matière organique à haute teneur en solides
JP2014503638A (ja) * 2010-12-13 2014-02-13 エクソンモービル リサーチ アンド エンジニアリング カンパニー 不均一触媒でのバイオマスの水熱処理
US11224852B2 (en) 2011-06-29 2022-01-18 Microwave Chemical Co., Ltd. Chemical reaction apparatus and chemical reaction method
JP2013013343A (ja) * 2011-06-30 2013-01-24 Aichi Steel Works Ltd 微細藻類の培養方法
US10662443B2 (en) 2011-08-15 2020-05-26 Toyota Jidosha Kabushiki Kaisha Method for producing alkane and recombinant microorganism capable of synthesizing alkane
JP2013056290A (ja) * 2011-09-07 2013-03-28 Denso Corp 貴金属吸着剤及び貴金属の回収方法
JP2013090598A (ja) * 2011-10-26 2013-05-16 Denso Corp 藻類の培養方法
US10464040B2 (en) 2011-11-11 2019-11-05 Microwave Chemical Co., Ltd. Chemical reaction method
US9370762B2 (en) 2011-11-11 2016-06-21 Microwave Chemical Co., Ltd. Chemical reaction apparatus
US9573112B2 (en) 2011-11-11 2017-02-21 Microwave Chemical Co., Ltd. Chemical reaction apparatus
US11229895B2 (en) 2011-11-11 2022-01-25 Microwave Chemical Co., Ltd. Chemical reaction method using chemical reaction apparatus
JP2014100121A (ja) * 2012-11-22 2014-06-05 Kurita Water Ind Ltd 炭化水素生産能を有する微細藻類の回収方法
JP2014117202A (ja) * 2012-12-14 2014-06-30 Denso Corp 微細藻類の培養方法及び培養システム
JP2014174034A (ja) * 2013-03-11 2014-09-22 Kurita Water Ind Ltd 微細藻類の脂溶性成分含量の判断方法および微細藻類の培養方法
WO2014141811A1 (ja) * 2013-03-11 2014-09-18 栗田工業株式会社 微細藻類の脂溶性成分含量の判断方法および微細藻類の培養方法
JP2015027287A (ja) * 2013-07-05 2015-02-12 国立大学法人東京工業大学 微細藻類、培養物、及び油脂の製造方法
JP2015015918A (ja) * 2013-07-10 2015-01-29 株式会社デンソー 新規微細藻類
US10087496B2 (en) 2013-11-19 2018-10-02 Denso Corporation Green alga lipid-accumulating variant and use of the same
WO2017098815A1 (ja) * 2015-12-10 2017-06-15 アズビル株式会社 微細藻類のモニタリング装置及び微細藻類のモニタリング方法
WO2017098816A1 (ja) * 2015-12-10 2017-06-15 アズビル株式会社 微細藻類に含まれる脂質の検出装置及び微細藻類に含まれる脂質の検出方法
WO2019017406A1 (ja) * 2017-07-18 2019-01-24 国立研究開発法人海洋研究開発機構 微細藻類を用いた炭化水素の製造方法
WO2019073902A1 (ja) * 2017-10-11 2019-04-18 国立研究開発法人産業技術総合研究所 water-in-oilエマルション培養における蛍光を用いた細胞増殖検出方法

Also Published As

Publication number Publication date
US20090215140A1 (en) 2009-08-27
KR100952805B1 (ko) 2010-04-14
EP2434006A3 (en) 2012-04-04
JPWO2006109588A1 (ja) 2008-10-30
KR20070121051A (ko) 2007-12-26
EP1873233B1 (en) 2013-09-25
EP2434006A2 (en) 2012-03-28
EP1873233A4 (en) 2009-09-09
JP4748154B2 (ja) 2011-08-17
EP1873233A1 (en) 2008-01-02
US7981648B2 (en) 2011-07-19

Similar Documents

Publication Publication Date Title
WO2006109588A1 (ja) 新規微細藻類及び炭化水素の生産方法
Muradov et al. Fungal-assisted algal flocculation: application in wastewater treatment and biofuel production
Tripathi et al. Characterization of microalga Scenedesmus sp. ISTGA1 for potential CO2 sequestration and biodiesel production
Ghayal et al. Microalgae biomass: a renewable source of energy
KR101615409B1 (ko) 나비큘라속에 속하는 미세 조류, 그 미세 조류의 배양에 의한 유분의 제조 방법, 및 그 미세 조류로부터 채취한 유분
JP6088375B2 (ja) 新規微細藻類
CN106467896B (zh) 一种耐受高ph的凯氏拟小球藻及其培养应用
Yang et al. Characterization and identification of freshwater microalgal strains toward biofuel production.
CN104388315A (zh) 一种高效处理典型生活污水的栅藻及其培养方法和应用
JP5777025B2 (ja) 緑藻イカダモ、該緑藻イカダモの培養工程を有する脂質の製造方法、及び該緑藻イカダモの乾燥藻体
Xu et al. Screening of freshwater oleaginous microalgae from South China and its cultivation characteristics in energy grass digestate
CN104328053A (zh) 一种高产油栅藻及其培养方法和应用
JP5481876B2 (ja) セネデスムス属に属する微細藻類、該微細藻類を培養する工程を有する油分の製造方法、および該微細藻類から採取した油分
Lakshmikandan et al. Efficient bioflocculation and biodiesel production of microalgae Asterococcus limneticus on streptomyces two-stage co-cultivation strategy
EL BAROTY Optimization cultivation of Chlamydomonas reinhardtii in a tubular photobioreactor (2000 Liter) for biomass and green bioenergy (biodiesel) production
JP6999128B2 (ja) 微細藻類を用いた炭化水素の製造方法
CN106467894B (zh) 一株高产淀粉和油脂的单针藻及其培养应用
TW201638327A (zh) 微藻及其用途
KR101398727B1 (ko) 호기/혐기 조건에서 수소 생산이 가능한 신균주 클로렐라 불가리스 ysl001
JP6603305B2 (ja) 混合液混合種培養によるバイオ燃料生産技術
KR102274119B1 (ko) 담수, 해수 및 기수에서 오일생산성이 높은 클로렐라 신균주
TW201739912A (zh) 柵藻(desmodesmus sp.)及其在合成油脂及生質燃料上之應用
Malaviya et al. Laboratory Scale Production of bio-oil from Oscillatoria algae and its Application in Production of biodiesel
Stevenson et al. Fungal-assisted algal flocculation: Application in wastewater treatment and biofuel production
Gupta et al. Development of biofuel from algae

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007512903

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006730733

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: RU

WWE Wipo information: entry into national phase

Ref document number: 1020077026214

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 11918374

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2006730733

Country of ref document: EP