WO2017098816A1 - 微細藻類に含まれる脂質の検出装置及び微細藻類に含まれる脂質の検出方法 - Google Patents

微細藻類に含まれる脂質の検出装置及び微細藻類に含まれる脂質の検出方法 Download PDF

Info

Publication number
WO2017098816A1
WO2017098816A1 PCT/JP2016/081109 JP2016081109W WO2017098816A1 WO 2017098816 A1 WO2017098816 A1 WO 2017098816A1 JP 2016081109 W JP2016081109 W JP 2016081109W WO 2017098816 A1 WO2017098816 A1 WO 2017098816A1
Authority
WO
WIPO (PCT)
Prior art keywords
microalgae
intensity
autofluorescence
light
lipids
Prior art date
Application number
PCT/JP2016/081109
Other languages
English (en)
French (fr)
Inventor
香成美 入江
Original Assignee
アズビル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アズビル株式会社 filed Critical アズビル株式会社
Priority to US16/060,254 priority Critical patent/US20180364171A1/en
Priority to KR1020187016142A priority patent/KR20180081120A/ko
Priority to CN201680072190.5A priority patent/CN108369188A/zh
Publication of WO2017098816A1 publication Critical patent/WO2017098816A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/05Flow-through cuvettes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • G01N21/53Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6486Measuring fluorescence of biological material, e.g. DNA, RNA, cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N2021/6482Sample cells, cuvettes

Definitions

  • the present invention relates to an analysis technique, and relates to a detection device for lipid contained in microalgae and a method for detecting lipid contained in microalgae.
  • a method for evaluating the amount of lipid in the microalgae a method has been proposed in which the microalgae lipid is stained with a fluorescent dye and the microalgae are observed with a fluorescence microscope. It has also been proposed to determine the lipid content of microalgae from the color of a suspension containing a large number of microalgae (see Non-Patent Document 3, for example).
  • an object of the present invention is to provide a detection device for lipids contained in microalgae and a method for detecting lipids contained in microalgae, which can detect lipids contained in microalgae easily and accurately. .
  • the present inventor has found that, after intensive research, when the microalgae are irradiated with excitation light, the lipid contained in the microalgae emits autofluorescence.
  • a flow cell in which a fluid containing microalgae is flowed, (b) an excitation light source that irradiates the flow cell with excitation light, and (c) lipids of microalgae irradiated with the excitation light
  • a first fluorescence detector for detecting autofluorescence generated in step (1), a device for detecting lipids contained in microalgae is provided.
  • the autofluorescence generated by the lipid can be yellow light.
  • the apparatus for detecting lipids contained in the above-mentioned microalgae includes a scattered light detector that detects scattered light generated in microalgae irradiated with excitation light, the intensity of scattered light, and the intensity of autofluorescence generated in lipids. And a comparison unit that compares the two.
  • the apparatus for detecting lipids contained in the above-mentioned microalgae includes a second fluorescence detector that detects autofluorescence generated in the chloroplasts of microalgae irradiated with excitation light, and autofluorescence generated in the chloroplasts.
  • a comparison unit that compares the strength with the strength of autofluorescence generated by lipids may be further provided.
  • the apparatus for detecting lipids contained in the above-mentioned microalgae is generated by a scattered light detector for detecting scattered light generated by microalgae irradiated with excitation light and a chloroplast of microalgae irradiated by excitation light.
  • the lipid detection device contained in the above-mentioned microalgae may further include a size calculating unit that calculates the size of the lipid based on the intensity of autofluorescence generated by the lipid.
  • the apparatus for detecting lipids contained in the above-mentioned microalgae may further include a size calculating unit that calculates the size of the microalgae based on the intensity of scattered light generated by the microalgae.
  • the apparatus for detecting lipids contained in the above-mentioned microalgae may further include a size calculating unit that calculates the size of the chloroplast based on the intensity of autofluorescence generated in the chloroplast.
  • the microalgae can be a unicellular organism. Also, microalgae can produce hydrocarbons.
  • a method for detecting lipids contained in microalgae comprising: detecting autofluorescence produced by lipids. Autofluorescence generated by lipids can be yellow light.
  • the method for detecting lipids contained in the above microalgae detects the scattered light produced by the microalgae irradiated with excitation light, and compares the intensity of the scattered light with the intensity of autofluorescence produced by the lipid. And may be further provided.
  • the method for detecting lipids contained in the microalgae described above detects the autofluorescence generated in the chloroplasts of the microalgae irradiated with excitation light, the intensity of autofluorescence generated in the chloroplasts, and the lipids. Comparing the intensity of the generated autofluorescence may be further provided.
  • the method for detecting lipids contained in the microalgae described above detects scattered light generated in microalgae irradiated with excitation light and autofluorescence generated in chloroplasts of microalgae irradiated with excitation light. It may further comprise detecting, comparing the intensity of scattered light, the intensity of autofluorescence generated by lipids, and the intensity of autofluorescence generated by chloroplasts.
  • the above-described method for detecting lipid contained in microalgae may further include calculating the size of lipid based on the intensity of autofluorescence generated in lipid.
  • the method for detecting lipids contained in the microalgae may further include calculating the size of the microalgae based on the intensity of scattered light generated in the microalgae.
  • the method for detecting lipids contained in the above-mentioned microalgae may further comprise calculating the size of the chloroplast based on the intensity of autofluorescence generated in the chloroplast.
  • the microalgae can be a unicellular organism. Also, microalgae can produce hydrocarbons.
  • the present invention it is possible to provide a device for detecting lipids contained in microalgae and a method for detecting lipids contained in microalgae that can detect lipids contained in microalgae easily and accurately.
  • the apparatus for detecting lipids contained in microalgae includes a flow cell 40 through which a fluid containing microalgae flows, an excitation light source 10 that irradiates the flow cell 40 with excitation light, and excitation.
  • Lipids contained in microalgae are also called oil bodies.
  • the fluid flowing in the flow cell 40 may be a liquid or a gas.
  • the fluid is a liquid will be described.
  • the excitation light source 10 emits broadband wavelength excitation light toward the liquid flowing in the flow cell 40.
  • a light emitting diode (LED) and a laser can be used as the excitation light source 10.
  • the excitation light is, for example, blue light having a wavelength of 450 nm to 495 nm. However, the wavelength and color of the excitation light are not limited to these. Visible light other than blue light, such as violet light, or ultraviolet light may be used.
  • the wavelength band of the excitation light may be set by a filter such as a band pass filter. For example, the excitation light is focused in the flow cell 40.
  • a light source driving power source 11 that supplies power to the excitation light source 10 is connected to the excitation light source 10.
  • a power source control device 12 that controls the power supplied to the excitation light source 10 is connected to the light source driving power source 11.
  • the flow cell 40 is transparent to excitation light and is made of, for example, quartz.
  • the flow cell 40 has an inner diameter that allows microalgae to flow approximately one by one.
  • the flow cell 40 has, for example, a round tube shape or a square tube shape. The liquid flowing inside the flow cell 40 crosses the excitation light.
  • microalgae are algae that are unicellular organisms having a size of several ⁇ m to several tens of ⁇ m, for example.
  • Microalgae are sometimes called phytoplankton.
  • microalgae produce hydrocarbons.
  • examples of microalgae include Botryococcus braunii, Aurantiochytrium, Pseudochoristisella lipsoidea, Icadamo, D. , Spirulina, Spirulina, Euglena, Nannochloropsis, Haematococcus, and Microcystis aeruginosa.
  • the lipids of the microalgae irradiated with the excitation light generally emit autofluorescence that is yellow light with a wavelength of 540 nm to 620 nm.
  • the wavelength peak of the autofluorescence of lipid is approximately 570 nm to 590 nm.
  • the intensity of autofluorescence emitted by lipids reflects the size of lipids contained in microalgae.
  • the chloroplasts of microalgae irradiated with excitation light generally emit autofluorescence that is red light having a wavelength of 650 nm to 730 nm.
  • the wavelength peak of autofluorescence of the chloroplast is generally from 680 nm to 700 nm.
  • the intensity of autofluorescence emitted from chloroplasts reflects the size of chloroplasts contained in microalgae.
  • the excitation wavelength of lipid autofluorescence and the excitation wavelength of chloroplast autofluorescence may be the same.
  • scattered light is generated by Mie scattering.
  • the intensity of scattered light reflects the overall size of one microalgae.
  • size is, for example, a diameter, an area, or a volume.
  • size may be a particle size.
  • the wavelength of said autofluorescence is a value when the wavelength band of excitation light is 460 nm to 495 nm, and it passes through an absorption filter that absorbs light having a wavelength of less than 510 nm and transmits light having a wavelength of 510 nm or more. Can change. However, the relationship that the wavelength range of lipid autofluorescence is shorter than the wavelength range of chloroplasts is maintained.
  • the first fluorescence detector 102A for detecting the autofluorescence generated by the lipid of the microalgae includes the first light receiving element 20A for receiving the autofluorescence generated by the lipid of the microalgae.
  • a filter that sets a wavelength band of light that can be received by the first light receiving element 20A such as an absorption filter, may be disposed in front of the first light receiving element 20A.
  • the first light receiving element 20A includes a solid-state imaging device such as a charge coupled device (CCD) image sensor, an internal photoelectric effect type (photovoltaic effect) photosensor such as a photodiode, and an external photoelectric effect such as a photomultiplier tube.
  • CCD charge coupled device
  • an internal photoelectric effect type photosensor such as a photodiode
  • an external photoelectric effect such as a photomultiplier tube.
  • a type optical sensor or the like can be used, and when it receives autofluorescence generated by lipids, it converts light energy into electrical energy.
  • An amplifier 21A that amplifies the current generated in the first light receiving element 20A is connected to the first light receiving element 20A.
  • An amplifier power supply 22A that supplies power to the amplifier 21A is connected to the amplifier 21A.
  • the amplifier 21A is connected to a light intensity calculation device 23A that receives the current amplified by the amplifier 21A and calculates the intensity of the autofluorescence generated by the lipid received by the first light receiving element 20A.
  • the light intensity calculation device 23A calculates the intensity of the autofluorescence generated by the lipid based on the detected area of the autofluorescence spectrum.
  • the light intensity calculation device 23A may calculate the intensity of autofluorescence generated by lipid by image analysis software.
  • the light intensity calculation device 23A may calculate the intensity of autofluorescence generated by lipid based on the magnitude of the electric signal generated by the first light receiving element 20A.
  • a light intensity storage device 24A Connected to the light intensity calculation device 23A is a light intensity storage device 24A that stores the intensity of autofluorescence generated by the lipid calculated by the light intensity calculation device 23A.
  • the apparatus for detecting lipids contained in microalgae may further include a second fluorescence detector 102B that detects autofluorescence generated in chloroplasts of microalgae.
  • the second fluorescence detector 102B includes a second light receiving element 20B that receives autofluorescence generated in the chloroplasts of microalgae.
  • a filter that sets the wavelength band of light that can be received by the second light receiving element 20B, such as an absorption filter, may be disposed in front of the second light receiving element 20B.
  • a solid-state imaging device such as a charge coupled device (CCD) image sensor, an internal photoelectric effect type (photovoltaic effect) photosensor such as a photodiode, or an external photoelectric effect such as a photomultiplier tube.
  • CCD charge coupled device
  • a type photosensor or the like can be used, and when it receives autofluorescence generated in a chloroplast, it converts light energy into electrical energy.
  • An amplifier 21B that amplifies the current generated in the second light receiving element 20B is connected to the second light receiving element 20B.
  • An amplifier power supply 22B that supplies power to the amplifier 21B is connected to the amplifier 21B.
  • the amplifier 21B is connected to a light intensity calculation device 23B that receives the current amplified by the amplifier 21B and calculates the intensity of the autofluorescence generated in the chloroplast received by the second light receiving element 20B.
  • the light intensity calculation device 23B calculates the intensity of the autofluorescence generated in the chloroplast based on the detected area of the autofluorescence spectrum.
  • the light intensity calculation device 23B may calculate the intensity of autofluorescence generated in the chloroplast by image analysis software.
  • the light intensity calculation device 23B may calculate the intensity of autofluorescence generated in the chloroplast based on the magnitude of the electrical signal generated in the second light receiving element 20B.
  • a light intensity storage device 24B Connected to the light intensity calculation device 23B is a light intensity storage device 24B that stores the intensity of autofluorescence generated in the chloroplast calculated by the light intensity calculation device 23B.
  • the apparatus for detecting lipids contained in microalgae may further include a scattered light detector 105 that receives scattered light generated by microalgae irradiated with excitation light.
  • the scattered light detector 105 includes a scattered light receiving element 50 that receives scattered light.
  • a solid-state imaging device such as a charge coupled device (CCD) image sensor, an internal photoelectric effect (photovoltaic effect) type photosensor such as a photodiode, or an external photoelectric effect type such as a photomultiplier tube.
  • An optical sensor or the like can be used, and when light is received, the light energy is converted into electrical energy.
  • An amplifier 51 that amplifies the current generated in the scattered light receiving element 50 is connected to the scattered light receiving element 50.
  • An amplifier power supply 52 that supplies power to the amplifier 51 is connected to the amplifier 51.
  • the amplifier 51 is connected to a light intensity calculation device 53 that receives the current amplified by the amplifier 51 and calculates the intensity of scattered light received by the scattered light receiving element 50.
  • the light intensity calculation device 53 calculates the intensity of the scattered light based on the area of the spectrum of the detected scattered light.
  • the light intensity calculation device 53 may calculate the intensity of scattered light using image analysis software.
  • the light intensity calculation device 53 may calculate the intensity of the scattered light based on the magnitude of the electrical signal generated by the scattered light receiving element 50.
  • a light intensity storage device 54 that stores the intensity of scattered light calculated by the light intensity calculation device 53 is connected to the light intensity calculation device 53.
  • the excitation light source 10 emits excitation light
  • the first and second fluorescence detectors 102A and 102B each have the intensity of the autofluorescence emitted from the lipids of the microalgae and the fine fluorescence.
  • the intensity of autofluorescence emitted from algal chloroplasts is measured and stored in the light intensity storage devices 24A and 24B in a time series.
  • the scattered light detector 105 measures the scattered light generated by the microalgae, and stores the light intensity of the scattered light in the light intensity storage device 54 in time series.
  • the autofluorescence and scattered light of the two wavelength bands detected at the same time can be regarded as originating from microalgae of the same individual.
  • the apparatus for detecting lipids contained in microalgae further includes a central processing unit (CPU) 300.
  • the CPU 300 includes a comparison unit 301 that compares the intensity of scattered light detected at the same time, the intensity of autofluorescence generated by lipids, and the intensity of autofluorescence generated by chloroplasts.
  • the comparison unit 301 reads the intensity of the autofluorescence emitted from the lipids of the microalgae and the intensity of the autofluorescence emitted from the chloroplasts of the microalgae from the light intensity storage devices 24A and 24B. Further, the comparison unit 301 reads the intensity of the scattered light generated by the microalgae from the light intensity storage device 54.
  • the comparison unit 301 calculates, for example, the ratio of the intensity of autofluorescence emitted by microalgae lipid to the intensity of scattered light.
  • the comparison unit 301 may normalize the value of scattered light intensity to 100 or the like, and calculate the ratio of the intensity of autofluorescence emitted by microalgae lipids to the normalized scattered light intensity.
  • the comparison unit 301 calculates, for example, the ratio of the intensity of autofluorescence emitted from the chloroplasts of microalga to the intensity of scattered light.
  • the comparison unit 301 may calculate the ratio of the intensity of autofluorescence emitted from the chloroplasts of microalga to the normalized intensity of scattered light.
  • the CPU 300 may further include an evaluation unit 302.
  • the evaluation unit 302 evaluates the state of the microalgae from the result of comparing the intensity of the scattered light generated in the microalgae, the intensity of the autofluorescence generated in the lipid, and the intensity of the autofluorescence generated in the chloroplast. To do.
  • the ratio of the intensity of autofluorescence emitted by lipids of microalgae to the intensity of scattered light generated by microalgae is smaller than a predetermined discriminant value, the ratio of lipids in the microalgae is as shown in FIG. Assess small.
  • the ratio of the intensity of the autofluorescence emitted by the lipids of the microalgae to the intensity of the scattered light generated by the microalgae is larger than a predetermined discriminant value, the ratio of the lipids in the microalgae is as shown in FIG. Evaluate as large.
  • the ratio of the intensity of the autofluorescence emitted from the chloroplast of the microalga to the intensity of the scattered light generated by the microalga is smaller than a predetermined discriminant value, as shown in FIG. Assess that the percentage of chloroplasts is small.
  • the ratio of the intensity of autofluorescence emitted from the chloroplast of the microalga to the intensity of the scattered light generated by the microalgae is greater than a predetermined discriminant value, as shown in FIG. Assess that the body proportion is large.
  • the size calculator 303 calculates the size of the microalgae based on the intensity of the scattered light generated by the microalgae.
  • the size calculation unit 303 may calculate the size of the microalgae based on the relationship between the intensity of scattered light and the size of the microalgae acquired in advance.
  • the size calculation unit 303 calculates the size of the lipid in the microalgae based on the intensity of autofluorescence generated by the lipid.
  • the size calculation unit 303 may calculate the size of the lipid based on the relationship between the lipid autofluorescence intensity and the lipid size acquired in advance.
  • the size calculation unit 303 calculates the size of the chloroplast in the microalgae based on the intensity of autofluorescence generated in the chloroplast.
  • the size calculation unit 303 may calculate the size of the lipid based on the relationship between the intensity of the autofluorescence of the chloroplast and the size of the chloroplast that is acquired in advance.
  • the comparison unit 301 may compare the size of the microalgae calculated by the size calculation unit 303, the size of the lipid, and the size of the chloroplast.
  • the output device 401 is connected to the CPU 300.
  • the output device 401 outputs the calculation result of the CPU 300.
  • a display, a speaker, a printer, and the like can be used as the output device 401.
  • the apparatus for detecting lipids contained in microalgae according to the embodiment described above can detect lipids contained in individual microalgae without fluorescent staining in advance. For example, when a large amount of microalgae is cultured, it is not easy to fluorescently stain all the microalgae. On the other hand, if the apparatus for detecting lipids contained in the microalgae according to the embodiment is used, the lipid contained in each microalgae can be optically rapidly circulated by continuously flowing a plurality of microalgae through the flow cell. It becomes possible to detect.
  • the apparatus for detecting lipids contained in microalgae evaluates the state of each microalgae by comparing the intensity of scattered light and the intensity of autofluorescence generated by lipids. It is also possible to do.
  • lipids contained in microalgae As biofuels, pharmaceuticals, cosmetics, and supplements.
  • the amount of lipid contained in microalgae varies depending on culture conditions, other environmental conditions, and the like, and the ratio of the size of lipid to the total size of one microalgae is not constant.
  • the ratio of the size of lipids in the total size of one microalgae is large.
  • the lipid detection device included in the microalgae according to the embodiment by comparing the intensity of scattered light and the intensity of autofluorescence generated by the lipid, one microalgae as a whole It becomes possible to grasp the ratio of the size of lipids to the size of. Therefore, it is possible to screen for culture conditions and other environmental conditions in which microalgae with a large amount of lipid are likely to be generated. It is also possible to screen microalgae with a large amount of lipid from a plurality of microalgae.
  • a chlorella (Chlorella vulgaris Beijerinck, NIES-2170) was sold from the National Institute for Environmental Studies, Microbial System Storage Facility. Thereafter, chlorella was cultured in a liquid C medium in a constant temperature bath at 25 ° C. During the culture, the test tube containing chlorella and liquid C medium was shaken at 100 rpm. Further, during the culture, the lighting of the daylight fluorescent lamp was repeated for 10 hours and turned off for 14 hours in accordance with the recommended culture conditions of the distribution agency.
  • a fluorescence microscope image shown in FIG. 6 of chlorella not fluorescently stained was taken with the same microscope.
  • broadband (WIB) excitation light is emitted from the excitation light source, the wavelength band of the excitation light is changed from 460 nm to 495 nm by a bandpass filter (BP 460-495), and fluorescent staining is not performed through the objective lens.
  • Chlorella was irradiated with excitation light.
  • BODIPY (registered trademark) 493/503 which is a lipid-labeled fluorescent dye having a peak wavelength of 503 nm, was prepared and diluted in ethanol to prepare a 1 mg / mL fluorescent reagent solution. Next, 0.1 ⁇ L of a fluorescent reagent solution was added to 100 ⁇ L of liquid C medium containing chlorella cultured as in Reference Example 1, and chlorella was stained with BODIPY (registered trademark).
  • a fluorescence microscope image shown in FIG. 10 of chlorella stained with BODIPY (registered trademark) was taken with the same microscope. Specifically, broadband (WIB) excitation light was emitted, the wavelength band of the excitation light was changed from 460 nm to 495 nm by a bandpass filter (BP 460-495), and stained with BODIPY (registered trademark) through the objective lens. Chlorella was irradiated with excitation light.
  • WIB broadband
  • Fluorescence generated by chlorella stained with BODIPY (registered trademark) irradiated with excitation light is absorbed through an objective lens and an absorption filter (BA510IF) that absorbs light having a wavelength of less than 510 nm and transmits light having a wavelength of 510 nm or more. Taken with the camera.
  • the irradiation time of the excitation light (Chlorella exposure time) was 0.5 seconds. Note that an ND filter having an average transmittance (Tav) of 25% with respect to the excitation light was used.
  • Nile red which is a lipid-labeled fluorescent dye having a peak wavelength of 637 nm, was prepared and diluted in acetone to prepare a 1 mg / mL fluorescent reagent solution. Next, 1.0 ⁇ L of a fluorescent reagent solution was added to 200 ⁇ L of liquid C medium containing chlorella cultured as in Reference Example 3, and chlorella was stained with Nile Red.
  • the fluorescence microscope image shown in FIG. 18 of chlorella stained with Nile red was taken with the same microscope without moving the slide glass. Specifically, it emits broadband (WIG) excitation light, the wavelength band of the excitation light is changed from 530 nm to 550 nm by a bandpass filter (BP 530-550), and is excited by a Nile red stained chlorella through an objective lens. Irradiated with light. Fluorescence generated by chlorella stained with Nile Red irradiated with excitation light is reflected by the camera through an objective lens and an absorption filter (BA575IF) that absorbs light having a wavelength of less than 575 nm and transmits light having a wavelength of 575 nm or more. I took a picture.
  • WIG broadband
  • BP 530-550 bandpass filter
  • BA575IF absorption filter
  • the irradiation time of the excitation light was 1.0 second.
  • an ND filter having an average transmittance (Tav) of 25% and an ND filter having an average transmittance (Tav) of 6% were used.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Optical Measuring Cells (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

微細藻類を含む流体が流されるフローセル40と、フローセル40に励起光を照射する励起光光源10と、励起光を照射された微細藻類の脂質で生じた自家蛍光を検出する第1の蛍光検出器102Aと、を備える微細藻類に含まれる脂質の検出装置。微細藻類に含まれる脂質は、オイルボディとも呼ばれる。微細藻類に含まれる脂質の検出装置は、励起光を照射された微細藻類で生じた散乱光を検出する散乱光検出器105と、散乱光の強さと、脂質で生じた自家蛍光の強さと、を比較する比較部301と、をさらに備えていてもよい。

Description

微細藻類に含まれる脂質の検出装置及び微細藻類に含まれる脂質の検出方法
 本発明は分析技術に関し、微細藻類に含まれる脂質の検出装置及び微細藻類に含まれる脂質の検出方法に関する。
 微細藻類が内部に蓄積する脂質をバイオ燃料として利用することに関心が集まっている(例えば、特許文献1及び非特許文献1参照。)。微細藻類からバイオ燃料を製造する際には、微細藻類を培養し、微細藻類内部に蓄積された脂質の量が十分になったら、溶媒等を用いて、微細藻類から脂質を抽出する。藻類においては、葉緑素、フィコエリトリン、及びフィコシアンが自家蛍光を発するとの報告はあるものの(例えば、非特許文献2参照。)、脂質が自家蛍光を発するとの報告はない。そのため、微細藻類内の脂質の量を評価する方法としては、微細藻類の脂質を蛍光色素で染色して、蛍光顕微鏡で微細藻類を観察する方法が提案されている。また、多数の微細藻類を含有する懸濁液の色合いから、微細藻類の脂質の含有量を判断することも提案されている(例えば、非特許文献3参照。)。
特開2014-174034号公報
WANG, et al., "Characterization of a green microalga UTEX 2219-4: Effects of photosynthesis and osmotic stress on oil body formation," Botanical Studies (2011) 53: 305-312 斉藤ら、「2波長の蛍光成分同時検出による藍藻のin situ粒径解析計測法の開発」、レーザー研究、第24巻、第4号、59-66ページ Su et al., "Simultaneous Estimation of Chlorophyll a and Lipid Contents in Microalgae by Three-Color Analysis," Biotechnology and Bioengineering, Vol. 99, No. 4, March 1, 2008
 個々の微細藻類の脂質を蛍光色素で染色するのは手間がかかる。また、蛍光色素は、安全面で取扱に注意が必要であり、かつ高価である。また、微細藻類を含有する懸濁液の色合いから脂質の含有量を判断する方法では、個々の微細藻類の脂質の含有量を正確に判断できない。そこで、本発明は、簡易かつ正確に、微細藻類に含まれる脂質を検出可能な微細藻類に含まれる脂質の検出装置及び微細藻類に含まれる脂質の検出方法を提供することを目的の一つとする。
 本発明者は、鋭意研究の末、微細藻類に励起光を照射すると、微細藻類に含まれる脂質が自家蛍光を発することを見出した。
 本発明の態様によれば、(a)微細藻類を含む流体が流されるフローセルと、(b)フローセルに励起光を照射する励起光光源と、(c)励起光を照射された微細藻類の脂質で生じた自家蛍光を検出する第1の蛍光検出器と、を備える、微細藻類に含まれる脂質の検出装置が提供される。脂質で生じた自家蛍光は、黄色光でありうる。
 上記の微細藻類に含まれる脂質の検出装置が、励起光を照射された微細藻類で生じた散乱光を検出する散乱光検出器と、散乱光の強さと、脂質で生じた自家蛍光の強さと、を比較する比較部と、をさらに備えていてもよい。
 上記の微細藻類に含まれる脂質の検出装置が、励起光を照射された微細藻類の葉緑体で生じた自家蛍光を検出する第2の蛍光検出器と、葉緑体で生じた自家蛍光の強さと、脂質で生じた自家蛍光の強さと、を比較する比較部と、をさらに備えていてもよい。
 上記の微細藻類に含まれる脂質の検出装置が、励起光を照射された微細藻類で生じた散乱光を検出する散乱光検出器と、励起光を照射された微細藻類の葉緑体で生じた自家蛍光を検出する第2の蛍光検出器と、散乱光の強さと、脂質で生じた自家蛍光の強さと、葉緑体で生じた自家蛍光の強さと、を比較する比較部と、をさらに備えていてもよい。
 上記の微細藻類に含まれる脂質の検出装置が、脂質で生じた自家蛍光の強度に基づき、脂質の大きさを算出する大きさ算出部をさらに備えていてもよい。上記の微細藻類に含まれる脂質の検出装置が、微細藻類で生じた散乱光の強度に基づき、微細藻類の大きさを算出する大きさ算出部をさらに備えていてもよい。上記の微細藻類に含まれる脂質の検出装置が、葉緑体で生じた自家蛍光の強度に基づき、葉緑体の大きさを算出する大きさ算出部をさらに備えていてもよい。
 上記の微細藻類に含まれる脂質の検出装置において、微細藻類が単細胞生物でありうる。また、微細藻類が炭化水素を産生しうる。
 また、本発明の態様によれば、(a)微細藻類を含む流体をフローセルに流すことと、(b)フローセルに励起光を照射することと、(c)励起光を照射された微細藻類の脂質で生じた自家蛍光を検出することと、を備える、微細藻類に含まれる脂質の検出方法が提供される。脂質で生じた自家蛍光が黄色光でありうる。
 上記の微細藻類に含まれる脂質の検出方法が、励起光を照射された微細藻類で生じた散乱光を検出することと、散乱光の強さと、脂質で生じた自家蛍光の強さと、を比較することと、をさらに備えていてもよい。
 上記の微細藻類に含まれる脂質の検出方法が、励起光を照射された微細藻類の葉緑体で生じた自家蛍光を検出することと、葉緑体で生じた自家蛍光の強さと、脂質で生じた自家蛍光の強さと、を比較することと、をさらに備えていてもよい。
 上記の微細藻類に含まれる脂質の検出方法が、励起光を照射された微細藻類で生じた散乱光を検出することと、励起光を照射された微細藻類の葉緑体で生じた自家蛍光を検出することと、散乱光の強さと、脂質で生じた自家蛍光の強さと、葉緑体で生じた自家蛍光の強さと、を比較することと、をさらに備えていてもよい。
 上記の微細藻類に含まれる脂質の検出方法が、脂質で生じた自家蛍光の強度に基づき、脂質の大きさを算出することをさらに備えていてもよい。上記の微細藻類に含まれる脂質の検出方法が、微細藻類で生じた散乱光の強度に基づき、微細藻類の大きさを算出することをさらに備えていてもよい。上記の微細藻類に含まれる脂質の検出方法が、葉緑体で生じた自家蛍光の強度に基づき、葉緑体の大きさを算出することをさらに備えていてもよい。
 上記の微細藻類に含まれる脂質の検出方法において、微細藻類が単細胞生物でありうる。また、微細藻類が炭化水素を産生しうる。
 本発明によれば、簡易かつ正確に、微細藻類に含まれる脂質を検出可能な微細藻類に含まれる脂質の検出装置及び微細藻類に含まれる脂質の検出方法を提供可能である。
本発明の実施の形態に係る微細藻類に含まれる脂質の検出装置の模式図である。 脂質及び葉緑体を内部に含む微細藻類の模式図である。 脂質及び葉緑体を内部に含む微細藻類の模式図である。 脂質及び葉緑体を内部に含む微細藻類の模式図である。 本発明の参考例1に係る蛍光染色されていないクロレラの顕微鏡画像である。 本発明の参考例1に係る蛍光染色されていないクロレラの自家蛍光の顕微鏡画像である。 本発明の参考例1に係る蛍光染色されていないクロレラの自家蛍光の顕微鏡画像と、自家蛍光の抽出画像である。 本発明の参考例1に係る蛍光染色されていないクロレラの顕微鏡画像に、自家蛍光の抽出画像を重ねた画像である。 本発明の参考例2に係る蛍光染色されたクロレラの顕微鏡画像である。 本発明の参考例2に係る蛍光染色されたクロレラの蛍光の顕微鏡画像である。 本発明の参考例2に係る蛍光染色されたクロレラの蛍光の顕微鏡画像と、自家蛍光の抽出画像である。 本発明の参考例2に係る蛍光染色されたクロレラの顕微鏡画像に、蛍光の抽出画像を重ねた画像である。 本発明の参考例3に係る蛍光染色されていないクロレラの顕微鏡画像である。 本発明の参考例3に係る蛍光染色されていないクロレラの自家蛍光の顕微鏡画像である。 本発明の参考例3に係る蛍光染色されていないクロレラの自家蛍光の顕微鏡画像と、自家蛍光の抽出画像である。 本発明の参考例3に係る蛍光染色されていないクロレラの顕微鏡画像に、自家蛍光の抽出画像を重ねた画像である。 本発明の参考例4に係る蛍光染色されたクロレラの顕微鏡画像である。 本発明の参考例4に係る蛍光染色されたクロレラの蛍光の顕微鏡画像である。 本発明の参考例4に係る蛍光染色されたクロレラの蛍光の顕微鏡画像と、蛍光の抽出画像である。 本発明の参考例4に係る蛍光染色されたクロレラの顕微鏡画像に、蛍光の抽出画像を重ねた画像である。
 以下に本発明の実施の形態を説明する。ただし、本開示の一部をなす記述及び図面は、本発明を限定するものであると理解するべきではない。本開示から当業者には様々な代替技術及び運用技術が明らかになるはずであり、本発明はここでは記載していない様々な実施の形態等を包含するということを理解すべきである。
 実施の形態に係る微細藻類に含まれる脂質の検出装置は、図1に示すように、微細藻類を含む流体が流されるフローセル40と、フローセル40に励起光を照射する励起光光源10と、励起光を照射された微細藻類の脂質で生じた自家蛍光を検出する第1の蛍光検出器102Aと、を備える。微細藻類に含まれる脂質は、オイルボディとも呼ばれる。フローセル40内を流れる流体は、液体であっても、気体であってもよい。以下においては、流体が液体である例を説明する。
 励起光光源10は、フローセル40中を流れる液体に向けて、広帯域波長の励起光を照射する。励起光光源10としては、例えば、発光ダイオード(LED)及びレーザーが使用可能である。励起光は、例えば、波長が450nmから495nmの青色光である。ただし、励起光の波長及び色は、これらに限定されない。紫色光のように、青色光以外の可視光線であってもよいし、紫外線であってもよい。励起光の波長帯域は、バンドパスフィルター等のフィルターによって設定されてもよい。励起光は、例えば、フローセル40内において、焦点を結ぶ。励起光光源10には、励起光光源10に電力を供給する光源駆動電源11が接続されている。光源駆動電源11には、励起光光源10に供給される電力を制御する電源制御装置12が接続されている。
 フローセル40は、励起光に対して透明であり、例えば石英等からなる。フローセル40は、微細藻類が概ね1個ずつ内部を流れる程度の内径を有する。フローセル40は、例えば丸管形状、あるいは角管形状を有する。フローセル40内部を流れる液体は、励起光を横切る。
 微細藻類は、例えば大きさが数μmから数十μmの単細胞生物である藻類である。微細藻類は、植物プランクトンとも呼ばれることがある。また、例えば、微細藻類は、炭化水素を産生する。微細藻類の例としては、ボトリオコッカス・ブラウニー(Botryococcus braunii)、オーランチオキトリウム(Aurantiochytrium)、シュードコリシスティス(Pseudochoricystis ellipsoidea)、イカダモ(Scenedesmus,Desmodesmus)、クロレラ(Chlorella)、ドナリエラ(Dunaliella)、スピルリナ(Arthrospira,Spirulina)、ユーグレナ(Euglena)、ナンノクロロプシス(Nannochloropsis)、ヘマトコッカス(Haematococcus)、及びMicrocystis aeruginosa等が挙げられる。
 フローセル40の中を流れる液体に微細藻類が含まれると、励起光を照射された微細藻類の脂質は、概ね、波長540nmから620nmの黄色光である自家蛍光を発する。脂質の自家蛍光の波長ピークは、概ね、570nmから590nmである。図2に示すように、脂質が発した自家蛍光の強さは、微細藻類に含まれる脂質の大きさを反映している。また、励起光を照射された微細藻類の葉緑体は、概ね、波長650nmから730nmの赤色光である自家蛍光を発する。葉緑体の自家蛍光の波長ピークは、概ね、680nmから700nmである。葉緑体が発した自家蛍光の強さは、微細藻類に含まれる葉緑体の大きさを反映している。なお、脂質の自家蛍光の励起波長と、葉緑体の自家蛍光の励起波長と、は同じであってもよい。さらに、励起光を照射された微細藻類において、ミー散乱により、散乱光が生じる。散乱光の強さは、1個の微細藻類全体の大きさを反映している。
 ここで、「大きさ」とは、例えば直径、面積、又は体積である。例えば、微細藻類、微細藻類内の脂質からなる領域、及び葉緑体のそれぞれの形状が粒子に近似できる場合は、「大きさ」とは、粒径であってもよい。
 なお、上記の自家蛍光の波長は、励起光の波長帯域が460nmから495nmであり、波長510nm未満の光を吸収し510nm以上の光を透過させる吸収フィルターを介したときの値であり、条件によっては変わりうる。しかし、脂質の自家蛍光の波長帯域は、葉緑体の波長帯域より短いという関係は維持される。
 図1に示すように、微細藻類の脂質で生じた自家蛍光を検出する第1の蛍光検出器102Aは、微細藻類の脂質で生じた自家蛍光を受光する第1の受光素子20Aを備える。第1の受光素子20Aの前には、吸収フィルター等の、第1の受光素子20Aで受光可能な光の波長帯域を設定するフィルターを配置してもよい。第1の受光素子20Aとしては、電荷結合素子(CCD)イメージセンサ等の固体撮像素子及びフォトダイオード等の内部光電効果型(光起電力効果)光センサや、光電子増倍管等の外部光電効果型光センサ等が使用可能であり、脂質で生じた自家蛍光を受光すると、光エネルギーを電気エネルギーに変換する。第1の受光素子20Aには、第1の受光素子20Aで生じた電流を増幅する増幅器21Aが接続されている。増幅器21Aには、増幅器21Aに電力を供給する増幅器電源22Aが接続されている。
 また、増幅器21Aには、増幅器21Aで増幅された電流を受け取り、第1の受光素子20Aが受光した脂質で生じた自家蛍光の強度を算出する光強度算出装置23Aが接続されている。光強度算出装置23Aは、例えば、検出した自家蛍光のスペクトルの面積に基づいて、脂質で生じた自家蛍光の強度を算出する。光強度算出装置23Aは、画像解析ソフトウェアによって、脂質で生じた自家蛍光の強度を算出してもよい。またあるいは、光強度算出装置23Aは、第1の受光素子20Aで生じた電気信号の大きさに基づき、脂質で生じた自家蛍光の強度を算出してもよい。光強度算出装置23Aには、光強度算出装置23Aが算出した脂質で生じた自家蛍光の強度を保存する光強度記憶装置24Aが接続されている。
 実施の形態に係る微細藻類に含まれる脂質の検出装置は、微細藻類の葉緑体で生じた自家蛍光を検出する第2の蛍光検出器102Bをさらに備えていてもよい。第2の蛍光検出器102Bは、微細藻類の葉緑体で生じた自家蛍光を受光する第2の受光素子20Bを備える。第2の受光素子20Bの前には、吸収フィルター等の、第2の受光素子20Bで受光可能な光の波長帯域を設定するフィルターを配置してもよい。第2の受光素子20Bとしては、電荷結合素子(CCD)イメージセンサ等の固体撮像素子及びフォトダイオード等の内部光電効果型(光起電力効果)光センサや、光電子増倍管等の外部光電効果型光センサ等が使用可能であり、葉緑体で生じた自家蛍光を受光すると、光エネルギーを電気エネルギーに変換する。第2の受光素子20Bには、第2の受光素子20Bで生じた電流を増幅する増幅器21Bが接続されている。増幅器21Bには、増幅器21Bに電力を供給する増幅器電源22Bが接続されている。
 また、増幅器21Bには、増幅器21Bで増幅された電流を受け取り、第2の受光素子20Bが受光した葉緑体で生じた自家蛍光の強度を算出する光強度算出装置23Bが接続されている。光強度算出装置23Bは、例えば、検出した自家蛍光のスペクトルの面積に基づいて、葉緑体で生じた自家蛍光の強度を算出する。光強度算出装置23Bは、画像解析ソフトウェアによって、葉緑体で生じた自家蛍光の強度を算出してもよい。またあるいは、光強度算出装置23Bは、第2の受光素子20Bで生じた電気信号の大きさに基づき、葉緑体で生じた自家蛍光の強度を算出してもよい。光強度算出装置23Bには、光強度算出装置23Bが算出した葉緑体で生じた自家蛍光の強度を保存する光強度記憶装置24Bが接続されている。
 実施の形態に係る微細藻類に含まれる脂質の検出装置は、励起光を照射された微細藻類で生じた散乱光を受光する散乱光検出器105をさらに備えていてもよい。散乱光検出器105は、散乱光を受光する散乱光受光素子50を備える。散乱光受光素子50としては、電荷結合素子(CCD)イメージセンサ等の固体撮像素子及びフォトダイオード等の内部光電効果(光起電力効果)型光センサや、光電子増倍管等の外部光電効果型光センサ等が使用可能であり、光を受光すると、光エネルギーを電気エネルギーに変換する。散乱光受光素子50には、散乱光受光素子50で生じた電流を増幅する増幅器51が接続されている。増幅器51には、増幅器51に電力を供給する増幅器電源52が接続されている。
 また、増幅器51には、増幅器51で増幅された電流を受け取り、散乱光受光素子50が受光した散乱光の強度を算出する光強度算出装置53が接続されている。光強度算出装置53は、例えば、検出した散乱光のスペクトルの面積に基づいて、散乱光の強度を算出する。光強度算出装置53は、画像解析ソフトウェアによって、散乱光の強度を算出してもよい。またあるいは、光強度算出装置53は、散乱光受光素子50で生じた電気信号の大きさに基づき、散乱光の強度を算出してもよい。光強度算出装置53には、光強度算出装置53が算出した散乱光の強度を保存する光強度記憶装置54が接続されている。
 フローセル40内を液体が流れると、励起光光源10が励起光を照射し、第1及び第2の蛍光検出器102A、102Bが、それぞれ、微細藻類の脂質が発した自家蛍光の強度と、微細藻類の葉緑体が発した自家蛍光の強度と、を測定し、時系列的に光強度記憶装置24A、24Bに保存する。また、散乱光検出器105が、微細藻類で生じた散乱光を測定し、散乱光の光強度を時系列的に光強度記憶装置54に保存する。同時に検出された2つの波長帯域の自家蛍光と、散乱光と、は、同一個体の微細藻類由来とみなしうる。
 実施の形態に係る微細藻類に含まれる脂質の検出装置は、中央演算処理装置(CPU)300をさらに備える。CPU300は、同時に検出された散乱光の強さと、脂質で生じた自家蛍光の強さと、葉緑体で生じた自家蛍光の強さと、を比較する比較部301を備える。
 比較部301は、微細藻類の脂質が発した自家蛍光の強度と、微細藻類の葉緑体が発した自家蛍光の強度と、を光強度記憶装置24A、24Bから読み出す。また、比較部301は、微細藻類で生じた散乱光の強度を、光強度記憶装置54から読み出す。
 さらに、比較部301は、例えば、散乱光の強度に対する、微細藻類の脂質が発した自家蛍光の強度の比を算出する。比較部301は、散乱光の強度の値を100等に正規化し、正規化された散乱光の強度に対する、微細藻類の脂質が発した自家蛍光の強度の比を算出してもよい。
 また、比較部301は、例えば、散乱光の強度に対する、微細藻類の葉緑体が発した自家蛍光の強度の比を算出する。比較部301は、正規化された散乱光の強度に対する、微細藻類の葉緑体が発した自家蛍光の強度の比を算出してもよい。
 CPU300は、評価部302をさらに備えていてもよい。評価部302は、微細藻類で生じた散乱光の強さと、脂質で生じた自家蛍光の強さと、葉緑体で生じた自家蛍光の強さと、を比較した結果から、微細藻類の状態を評価する。
 例えば、微細藻類で生じた散乱光の強度に対する、微細藻類の脂質が発した自家蛍光の強度の比が所定の判別値より小さい場合、図3に示すように、当該微細藻類における脂質の割合が小さいと評価する。また、微細藻類で生じた散乱光の強度に対する、微細藻類の脂質が発した自家蛍光の強度の比が所定の判別値より大きい場合、図4に示すように、当該微細藻類における脂質の割合が大きいと評価する。
 さらに、例えば、微細藻類で生じた散乱光の強度に対する、微細藻類の葉緑体が発した自家蛍光の強度の比が所定の判別値より小さい場合、図4に示すように、当該微細藻類における葉緑体の割合が小さいと評価する。また、微細藻類で生じた散乱光の強度に対する、微細藻類の葉緑体が発した自家蛍光の強度の比が所定の判別値より大きい場合、図3に示すように、当該微細藻類における葉緑体の割合が大きいと評価する。
 図1に示すCPU300は、大きさ算出部303をさらに備えていてもよい。大きさ算出部303は、微細藻類で生じた散乱光の強度に基づき、微細藻類の大きさを算出する。大きさ算出部303は、予め取得した、散乱光の強度と、微細藻類の大きさと、の関係に基づき、微細藻類の大きさを算出してもよい。
 また、大きさ算出部303は、脂質で生じた自家蛍光の強度に基づき、微細藻類内の脂質の大きさを算出する。大きさ算出部303は、予め取得した、脂質の自家蛍光の強度と、脂質の大きさと、の関係に基づき、脂質の大きさを算出してもよい。
 さらに、大きさ算出部303は、葉緑体で生じた自家蛍光の強度に基づき、微細藻類内の葉緑体の大きさを算出する。大きさ算出部303は、予め取得した、葉緑体の自家蛍光の強度と、葉緑体の大きさと、の関係に基づき、脂質の大きさを算出してもよい。
 比較部301は、大きさ算出部303が算出した微細藻類の大きさと、脂質の大きさと、葉緑体の大きさと、を比較してもよい。
 CPU300には、出力装置401が接続されている。出力装置401は、CPU300の算出結果を出力する。出力装置401としては、ディスプレイ、スピーカ、及びプリンタ等が使用可能である。
 以上説明した実施の形態に係る微細藻類に含まれる脂質の検出装置は、予め蛍光染色をすることなく、個々の微細藻類に含まれる脂質を検出することが可能である。例えば、大量の微細藻類を培養している場合、全ての微細藻類を蛍光染色することは容易ではない。これに対し、実施の形態に係る微細藻類に含まれる脂質の検出装置を用いれば、フローセルに複数の微細藻類を連続的に流すことにより、個々の微細藻類に含まれる脂質を光学的に迅速に検出することが可能となる。
 また、実施の形態に係る微細藻類に含まれる脂質の検出装置は、散乱光の強さと、脂質で生じた自家蛍光の強さと、を比較することにより、1個ずつの微細藻類の状態を評価することも可能である。
 近年、微細藻類に含まれる脂質をバイオ燃料、医薬品、化粧品、及びサプリメント等として利用する試みがなされている。微細藻類に含まれる脂質の量は、培養条件やその他の環境条件等によって変動し、1個の微細藻類全体の大きさに占める脂質の大きさの割合は、一定ではない。これに対し、微細藻類の脂質を利用する場合は、1個の微細藻類全体の大きさに占める脂質の大きさの割合が大きいことが好ましい。
 これに対し、実施の形態に係る微細藻類に含まれる脂質の検出装置によれば、散乱光の強さと、脂質で生じた自家蛍光の強さと、を比較することにより、1個の微細藻類全体の大きさに占める脂質の大きさの割合を把握することが可能となる。そのため、脂質の量が多い微細藻類が生じやすい培養条件やその他の環境条件をスクリーニングすることが可能となる。また、複数の微細藻類から、脂質の量が多い微細藻類をスクリーニングすることも可能となる。
 なお、従来、藻類においては、葉緑素、フィコエリトリン、及びフィコシアンが自家蛍光を発するとの報告はあるものの、脂質が自家蛍光を発するとの報告はない。これは、脂質は蛍光染色で調べることが一般化しており、脂質の自家蛍光に注目することがこれまではなく、脂質が自家蛍光を発することが知られていなかったためと考えられる。
 (参考例1)
 国立研究開発法人国立環境研究所微生物系統保存施設より、クロレラ(Chlorella vulgaris Beijerinck、NIES-2170)の分譲を受けた。その後、25℃の恒温槽内の液体C培地中で、クロレラを培養した。培養中、クロレラと液体C培地が入れられた試験管は、100rpmでシェーカーされていた。また、培養中、恒温槽内においては、分譲機関の推奨培養条件にしたがって、昼色光の蛍光灯の10時間の点灯と14時間の消灯が繰り返された。
 培養された蛍光染色されていないクロレラを含む10μLの液体C培地をスライドグラスに垂らし、カバーガラスをかけた。次に、オリンパス株式会社製のUIS搭載顕微鏡によって、蛍光染色していないクロレラの図5に示す透過顕微鏡画像を撮影した。
 その後、スライドグラスを移動することなく、同じ顕微鏡によって、蛍光染色していないクロレラの図6に示す蛍光顕微鏡画像を撮影した。具体的には、励起光光源から広帯域(WIB)励起光を発し、バンドパスフィルター(BP 460-495)によって、励起光の波長帯域を460nmから495nmにし、対物レンズを介して蛍光染色していないクロレラに励起光を照射した。励起光を照射された蛍光染色していないクロレラで生じた自家蛍光を、対物レンズ、及び波長510nm未満の光を吸収し510nm以上の光を透過させる吸収フィルター(BA510IF)を介して、カメラで撮影した。励起光の照射時間(クロレラの露出時間)は、1.0秒であった。なお、励起光に対して、減光(ND)フィルターは用いなかった。
 図7(a)に示すクロレラの蛍光顕微鏡画像において、線で囲まれた部分では、主に黄色の自家蛍光が観察された。その他の部分では、主に赤色の自家蛍光が観察された。図7(b)に示すように、画像解析ソフト(ImagePro)を用いて、クロレラの蛍光顕微鏡画像における黄色の自家蛍光が発せられた部分を、黒色で抽出し、その他の部分を白色にした、黄色の自家蛍光の抽出画像を作成した。図5に示す透過顕微鏡画像に、図7(b)に示す黄色の自家蛍光が発せられた部分の抽出画像を重ね合わせると、図8に示すように、透過顕微鏡画像で観察された細胞内組織の形状と、黄色の自家蛍光が発せられた部分の形状と、が一致した。
 (参考例2)
 ピーク波長が503nmの脂質標識蛍光色素であるBODIPY(登録商標)493/503を用意し、エタノール中に希釈して、1mg/mLの蛍光試薬溶液を調整した。次に、参考例1と同じく培養されたクロレラを含む100μLの液体C培地に、0.1μLの蛍光試薬溶液を添加して、クロレラをBODIPY(登録商標)で染色した。
 参考例1の顕微鏡観察と同日に、BODIPY(登録商標)で染色されたクロレラを含む10μLの液体C培地をスライドグラスに垂らし、カバーガラスをかけた。次に、オリンパス株式会社製のUIS搭載顕微鏡によって、BODIPY(登録商標)で染色されたクロレラの図9に示す透過顕微鏡画像を撮影した。
 その後、スライドグラスを移動することなく、同じ顕微鏡によって、BODIPY(登録商標)で染色されたクロレラの図10に示す蛍光顕微鏡画像を撮影した。具体的には、広帯域(WIB)励起光を発し、バンドパスフィルター(BP 460-495)によって、励起光の波長帯域を460nmから495nmにし、対物レンズを介してBODIPY(登録商標)で染色されたクロレラに励起光を照射した。励起光を照射されたBODIPY(登録商標)で染色されたクロレラで生じた蛍光を、対物レンズ、及び波長510nm未満の光を吸収し510nm以上の光を透過させる吸収フィルター(BA510IF)を介して、カメラで撮影した。励起光の照射時間(クロレラの露出時間)は、0.5秒であった。なお、励起光に対して、平均透過率(Tav)が25%のNDフィルターを用いた。
 図11(a)に示すクロレラの蛍光顕微鏡画像において、線で囲まれた部分では、主に緑色の蛍光が観察された。その他の部分では、主に赤色の蛍光が観察された。図11(b)に示すように、画像解析ソフト(ImagePro)を用いて、クロレラの蛍光顕微鏡画像における緑色の蛍光が発せられた部分を、黒色で抽出し、その他の部分を白色にした、緑色の蛍光の抽出画像を作成した。図9に示す透過顕微鏡画像に、図11(b)に示す緑色の蛍光が発せられた部分の抽出画像を重ね合わせると、図12に示すように、透過顕微鏡画像で観察された細胞内組織の形状と、緑色の蛍光が発せられた部分の形状と、が一致した。
 また、脂質を標識することが既知であるBODIPY(登録商標)で染色されたクロレラ内の蛍光が観察された部分の形状と、図8に示す蛍光染色されていないクロレラ内の黄色の自家蛍光が観察された部分の形状と、は、類似していた。このことからも、クロレラ内の脂質が、バンドパスフィルター(BP 460-495)及び吸収フィルター(BA510IF)を用いた場合に黄色で観察される自家蛍光を発することが確認された。
 (参考例3)
 参考例1と同様に培養された蛍光染色されていないクロレラを含む10μLの液体C培地をスライドグラスに垂らし、カバーガラスをかけた。次に、オリンパス株式会社製のUIS搭載顕微鏡によって、蛍光染色していないクロレラの図13に示す透過顕微鏡画像を撮影した。
 その後、スライドグラスを移動することなく、同じ顕微鏡によって、蛍光染色していないクロレラの図14に示す蛍光顕微鏡画像を撮影した。撮影条件は、参考例1の図6と同じである。
 図15(a)に示すクロレラの蛍光顕微鏡画像において、線で囲まれた部分では、主に黄色の自家蛍光が観察された。その他の部分では、主に赤色の自家蛍光が観察された。図15(b)に示すように、画像解析ソフト(ImagePro)を用いて、クロレラの蛍光顕微鏡画像における黄色の自家蛍光が発せられた部分を、黒色で抽出し、その他の部分を白色にした、自家蛍光の抽出画像を作成した。図13に示す透過顕微鏡画像に、図15(b)に示す黄色の自家蛍光が発せられた部分の抽出画像を重ね合わせると、図16に示すように、透過顕微鏡画像で観察された細胞内組織の形状と、黄色の自家蛍光が発せられた部分の形状と、が一致した。
 (参考例4)
 ピーク波長が637nmの脂質標識蛍光色素であるナイルレッドを用意し、アセトン中に希釈して、1mg/mLの蛍光試薬溶液を調整した。次に、参考例3と同じく培養されたクロレラを含む200μLの液体C培地に、1.0μLの蛍光試薬溶液を添加して、クロレラをナイルレッドで染色した。
 参考例3の顕微鏡観察と同日に、ナイルレッドで染色されたクロレラを含む10μLの液体C培地をスライドグラスに垂らし、カバーガラスをかけた。次に、オリンパス株式会社製のUIS搭載顕微鏡によって、ナイルレッドで染色されたクロレラの図17に示す透過顕微鏡画像を撮影した。
 その後、スライドグラスを移動することなく、同じ顕微鏡によって、ナイルレッドで染色されたクロレラの図18に示す蛍光顕微鏡画像を撮影した。具体的には、広帯域(WIG)励起光を発し、バンドパスフィルター(BP 530-550)によって、励起光の波長帯域を530nmから550nmにし、対物レンズを介してナイルレッドで染色されたクロレラに励起光を照射した。励起光を照射されたナイルレッドで染色されたクロレラで生じた蛍光を、対物レンズ、及び波長575nm未満の光を吸収し波長575nm以上の光を透過させる吸収フィルター(BA575IF)を介して、カメラで撮影した。励起光の照射時間(クロレラの露出時間)は、1.0秒であった。なお、励起光に対して、平均透過率(Tav)が25%のNDフィルターと、平均透過率(Tav)が6%のNDフィルターと、を用いた。
 図19(a)に示すクロレラの蛍光顕微鏡画像において、主に赤色の蛍光が観察された。図19(b)に示すように、画像解析ソフト(ImagePro)を用いて、クロレラの蛍光顕微鏡画像における赤色の蛍光が発せられた部分を、黒色で抽出し、その他の部分を白色にした、赤色の蛍光の抽出画像を作成した。図17に示す透過顕微鏡画像に、図19(b)に示す赤色の蛍光が発せられた部分の抽出画像を重ね合わせると、図20に示すように、透過顕微鏡画像で観察された細胞内組織の形状が観察された部分と、赤色の蛍光が発せられた部分の形状と、が一致した。
 また、脂質を標識することが既知であるナイルレッドで染色されたクロレラ内の蛍光が観察された部分の形状と、図16に示した蛍光染色されていないクロレラ内のバンドパスフィルター(BP 460-495)及び吸収フィルター(BA510IF)を用いた場合に黄色で観察される自家蛍光の部分の形状と、は、類似していた。
10   励起光光源
11   光源駆動電源
12   電源制御装置
20A 第1の受光素子
20B 第2の受光素子
21A、21B、51 増幅器
22A、22B、52 増幅器電源
23A、23B、53 光強度算出装置
24A、24B、54 光強度記憶装置
40   フローセル
50   散乱光受光素子
102A      第1の蛍光検出器
102B      第2の蛍光検出器
105 散乱光検出器
300 中央演算処理装置
301 比較部
302 評価部
303 大きさ算出部
401 出力装置

Claims (11)

  1.  微細藻類を含む流体が流されるフローセルと、
     前記フローセルに励起光を照射する励起光光源と、
     前記励起光を照射された前記微細藻類の脂質で生じた自家蛍光を検出する蛍光検出器と、
     を備える、微細藻類に含まれる脂質の検出装置。
  2.  前記脂質で生じた自家蛍光が黄色光である、請求項1に記載の微細藻類に含まれる脂質の検出装置。
  3.  前記励起光を照射された前記微細藻類で生じた散乱光を検出する散乱光検出器と、
     前記散乱光の強さと、前記脂質で生じた自家蛍光の強さと、を比較する比較部と、
     を更に備える、請求項1又は2に記載の微細藻類に含まれる脂質の検出装置。
  4.  前記励起光を照射された前記微細藻類の葉緑体で生じた自家蛍光を検出する蛍光検出器と、
     前記葉緑体で生じた自家蛍光の強さと、前記脂質で生じた自家蛍光の強さと、を比較する比較部と、
     を更に備える、請求項1又は2に記載の微細藻類に含まれる脂質の検出装置。
  5.  前記励起光を照射された前記微細藻類で生じた散乱光を検出する散乱光検出器と、
     前記励起光を照射された前記微細藻類の葉緑体で生じた自家蛍光を検出する蛍光検出器と、
     前記散乱光の強さと、前記脂質で生じた自家蛍光の強さと、前記葉緑体で生じた自家蛍光の強さと、を比較する比較部と、
     を更に備える、請求項1又は2に記載の微細藻類に含まれる脂質の検出装置。
  6.  前記脂質で生じた自家蛍光の強度に基づき、前記脂質の大きさを算出する大きさ算出部を更に備える、請求項1から5のいずれか1項に記載の微細藻類に含まれる脂質の検出装置。
  7.  前記微細藻類で生じた散乱光の強度に基づき、前記微細藻類の大きさを算出する大きさ算出部を更に備える、請求項3又は5に記載の微細藻類に含まれる脂質の検出装置。
  8.  前記葉緑体で生じた自家蛍光の強度に基づき、前記葉緑体の大きさを算出する大きさ算出部を更に備える、請求項4又は5に記載の微細藻類に含まれる脂質の検出装置。
  9.  前記微細藻類が単細胞生物である、請求項1から8のいずれか1項に記載の微細藻類に含まれる脂質の検出装置。
  10.  前記微細藻類が炭化水素を産生する、請求項1から9のいずれか1項に記載の微細藻類に含まれる脂質の検出装置。
  11.  微細藻類を含む流体をフローセルに流すことと、
     前記フローセルに励起光を照射することと、
     前記励起光を照射された前記微細藻類の脂質で生じた自家蛍光を検出することと、
     を備える、微細藻類に含まれる脂質の検出方法。
PCT/JP2016/081109 2015-12-10 2016-10-20 微細藻類に含まれる脂質の検出装置及び微細藻類に含まれる脂質の検出方法 WO2017098816A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/060,254 US20180364171A1 (en) 2015-12-10 2016-10-20 Detection device for lipids included in microalgae and detection method for lipids included in microalgae
KR1020187016142A KR20180081120A (ko) 2015-12-10 2016-10-20 미세 조류에 포함되는 지질의 검출 장치 및 미세 조류에 포함되는 지질의 검출 방법
CN201680072190.5A CN108369188A (zh) 2015-12-10 2016-10-20 微藻类中所含的脂质的检测装置以及微藻类中所含的脂质的检测方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-241441 2015-12-10
JP2015241441A JP2017106832A (ja) 2015-12-10 2015-12-10 微細藻類に含まれる脂質の検出装置及び微細藻類に含まれる脂質の検出方法

Publications (1)

Publication Number Publication Date
WO2017098816A1 true WO2017098816A1 (ja) 2017-06-15

Family

ID=59013014

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/081109 WO2017098816A1 (ja) 2015-12-10 2016-10-20 微細藻類に含まれる脂質の検出装置及び微細藻類に含まれる脂質の検出方法

Country Status (5)

Country Link
US (1) US20180364171A1 (ja)
JP (1) JP2017106832A (ja)
KR (1) KR20180081120A (ja)
CN (1) CN108369188A (ja)
WO (1) WO2017098816A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7271374B2 (ja) * 2019-09-10 2023-05-11 株式会社東芝 分析方法、分析基体、分析キット及び分析装置。
JP2022016077A (ja) * 2020-07-10 2022-01-21 アズビル株式会社 微細藻類の脂質蓄積量の測定装置及び微細藻類の脂質蓄積量の測定方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05268993A (ja) * 1991-03-26 1993-10-19 Mitsubishi Heavy Ind Ltd 脂質含有藻類の識別方法
WO2006109588A1 (ja) * 2005-04-12 2006-10-19 Denso Corporation 新規微細藻類及び炭化水素の生産方法
US20130116459A1 (en) * 2011-10-13 2013-05-09 Los Alamos National Security, Llc Method and apparatus for acoustically manipulating biological particles
US20140291550A1 (en) * 2013-04-01 2014-10-02 National Institute Of Standards And Technology Flow cytometer systems and associated methods

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05268993A (ja) * 1991-03-26 1993-10-19 Mitsubishi Heavy Ind Ltd 脂質含有藻類の識別方法
WO2006109588A1 (ja) * 2005-04-12 2006-10-19 Denso Corporation 新規微細藻類及び炭化水素の生産方法
US20130116459A1 (en) * 2011-10-13 2013-05-09 Los Alamos National Security, Llc Method and apparatus for acoustically manipulating biological particles
US20140291550A1 (en) * 2013-04-01 2014-10-02 National Institute Of Standards And Technology Flow cytometer systems and associated methods

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ERICKSON R A ET AL.: "Microfluidic cytometer for high-throughput measurement of photosynthetic characteristics and lipid accumlation in individual algal cells", LAB ON A CHIP, vol. 13, no. 15, pages 2893 - 2901, XP055389747 *

Also Published As

Publication number Publication date
JP2017106832A (ja) 2017-06-15
KR20180081120A (ko) 2018-07-13
CN108369188A (zh) 2018-08-03
US20180364171A1 (en) 2018-12-20

Similar Documents

Publication Publication Date Title
WO2017098815A1 (ja) 微細藻類のモニタリング装置及び微細藻類のモニタリング方法
US8486371B2 (en) Quantitative two-photon flow cytometry
Trampe et al. Rapid assessment of different oxygenic phototrophs and single-cell photosynthesis with multicolour variable chlorophyll fluorescence imaging
Tamburic et al. Action spectra of oxygen production and chlorophyll a fluorescence in the green microalga Nannochloropsis oculata
Erickson et al. Microfluidic cytometer for high-throughput measurement of photosynthetic characteristics and lipid accumulation in individual algal cells
Petersen et al. Flow cytometric characterization of marine microbes
WO2017098816A1 (ja) 微細藻類に含まれる脂質の検出装置及び微細藻類に含まれる脂質の検出方法
JP2017209073A (ja) 粒子検出装置
St-Georges-Robillard et al. Fluorescence hyperspectral imaging for live monitoring of multiple spheroids in microfluidic chips
Teplicky et al. Fluorescence properties of Chlorella sp. algae
RU2453829C2 (ru) Способ дистанционного определения функционального состояния фотосинтетического аппарата растений
US20220010260A1 (en) Device of measuring amount of lipid accumulation in microalgae and method of measuring amount of lipid accumulation in microalgae
WO2022270009A1 (ja) 生体試料分析装置
US20150125899A1 (en) Fluorescence-assisted counting apparatus for qualitative and/or quantitative measurement of fluorescently tagged particles
CN112557353B (zh) 一种基于延迟发光光谱的细胞活力检测方法和装置
JP2010286381A (ja) フローサイトメーター
CN110023741A (zh) 生物粒子计数系统以及生物粒子计数方法
US20220228987A1 (en) Clipping-Assisted Dual-Fluorophore Sensing
KR20140093389A (ko) 광화학센서를 이용한 생태독성측정장치
JPH02281131A (ja) 微生物細胞の生死判別装置
Gerritsen et al. Combining two-photon excitation with fluorescence lifetime imaging
Raimondi et al. In vivo real-time recording of UV-induced changes in the autofluorescence of a melanin-containing fungus using a micro-spectrofluorimeter and a low-cost webcam
Xiang et al. Quantitative multiphoton imaging of cell metabolism, stromal fibers, and keratinization enables label-free discrimination of esophageal squamous cell carcinoma
JP2019219186A (ja) 微細藻類の栄養状態の判定装置及び微細藻類の栄養状態の判定方法
Deng et al. Monitoring the life cycle stages of Haematococcus pluvialis by using FLIM

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16872716

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187016142

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16872716

Country of ref document: EP

Kind code of ref document: A1