RU2453829C2 - Способ дистанционного определения функционального состояния фотосинтетического аппарата растений - Google Patents

Способ дистанционного определения функционального состояния фотосинтетического аппарата растений Download PDF

Info

Publication number
RU2453829C2
RU2453829C2 RU2010139735/28A RU2010139735A RU2453829C2 RU 2453829 C2 RU2453829 C2 RU 2453829C2 RU 2010139735/28 A RU2010139735/28 A RU 2010139735/28A RU 2010139735 A RU2010139735 A RU 2010139735A RU 2453829 C2 RU2453829 C2 RU 2453829C2
Authority
RU
Russia
Prior art keywords
fluorescence
pulses
radiation
level
plant
Prior art date
Application number
RU2010139735/28A
Other languages
English (en)
Other versions
RU2010139735A (ru
Inventor
Владимир Владимирович Зуев (RU)
Владимир Владимирович Зуев
Нина Евгеньевна Зуева (RU)
Нина Евгеньевна Зуева
Владимир Лаврентьевич Правдин (RU)
Владимир Лаврентьевич Правдин
Original Assignee
Учреждение Российской академии наук Институт мониторинга климатических и экологических систем Сибирского отделения Российской академии наук (ИМКЭС СО РАН)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Учреждение Российской академии наук Институт мониторинга климатических и экологических систем Сибирского отделения Российской академии наук (ИМКЭС СО РАН) filed Critical Учреждение Российской академии наук Институт мониторинга климатических и экологических систем Сибирского отделения Российской академии наук (ИМКЭС СО РАН)
Priority to RU2010139735/28A priority Critical patent/RU2453829C2/ru
Publication of RU2010139735A publication Critical patent/RU2010139735A/ru
Application granted granted Critical
Publication of RU2453829C2 publication Critical patent/RU2453829C2/ru

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

Изобретение может быть использовано в экспериментальной биологии и лесном хозяйстве В способе импульсы излучения лазера посылают через коллиматор с малым углом расходимости луча, чем обеспечивают неизменную площадь засветки, причем на первом этапе для измерения уровня флуоресценции F0 посылают предварительно ослабленные лазерные импульсы длительностью 10 мкс с частотой 20 кГц, освещающие растение со световой плотностью не более 1 мкмоль/м2 с (≤ 240 мВт/м2), не активизируя в нем фотосинтез, а принятое излучение флуоресценции, без ослабления, подвергают селекции; через несколько секунд, на втором этапе посылают неослабленные лазерные импульсы длительностью 1 с со световой плотностью более 2000 мкмоль/м2 с (> 480 Вт/м2) для измерения уровня флуоресценции Fm, а принятое излучение флуоресценции ослабляют перед спектральной селекцией до уровня регистрации отдельных импульсов фототока. Регистрацию селективных сигналов, полученных на первом и втором этапах, осуществляют в режиме счета фотонов, и по измеренным в двух этапах уровням флуоресценции F0 и Fm на длине волны 685 нм определяют максимальный квантовый выход первичного разделения зарядов в фотосистеме ФСП. Технический результат - определение функционального состояния фотосинтетического аппарата растений. 1 ил.

Description

Изобретение относится к исследованию материалов с помощью оптических средств и может быть использовано в экспериментальной биологии и лесном хозяйстве.
Известен способ дистанционного определения физиологического состояния растения, основанный на лазерном возбуждении флуоресценции хлорофилла растения и регистрации сигналов на смещенных частотах в красной области спектра на длинах волн 685, 715 и 730 нм, по соотношению которых обнаруживают стрессовое состояние и патологию хлопчатника (Авторское свидетельство SU №1276963 А1).
Из-за сильных различий индуцированных лазером спектров флуоресценции хлорофилла у разных видов растений и неоднозначности стрессового отклика этот способ неприменим в условиях видового разнообразия лесных экосистем. Кроме того, в этом способе отсутствует нормировка на опорный канал возбуждающего лазерного излучения, что лишает его возможности раздельного анализа поведения флуоресценции второй и первой фотосистем растения (ФС II и ФСI соответственно).
Известны способы, основанные на регистрации флуоресценции хлорофилла, которые используются для оценки фотосинтетической активности.
Наиболее близким к заявляемому является способ дистанционного исследования фотосинтетического аппарата растений с помощью флуоресцентного лидара, описанный в статье (Воробьева Н.А. и др. Применение эффекта лазерно-индуцированной флуоресценции для дистанционного исследования фотосинтетического аппарата растений // Оптика атмосферы и океана - 2000. - Т. 13 - №5 - С.539-542). Способ заключается в том, что лазер посылает импульсы излучения на длине волны 532 нм в темное время суток, возбуждая тем самым флуоресценцию хлорофилла в дальней красной и ближней ИК областях спектра, излучение которой, попадающее в поле зрения приемного телескопа, принимается и подвергается спектральной селекции на длинах волн 532, 685 и 740 нм, после чего регистрируется и подвергается предварительной компьютерной обработке и записи.
Недостатком этого способа так же является неоднозначность спектров флуоресценции разных видов растений и их флуоресцентного отклика на стрессовые воздействия. Кроме того, получаемая информация о содержании хлорофилла столь же неоднозначно характеризует функциональное состояние фотосинтетического аппарата растения. Например, при увеличении содержания хлорофилла может происходить как увеличение фотосинтетической активности, так и ее снижение при перераспределении энергии на усиление адаптационных механизмов на стрессовое воздействие. Наиболее объективным критерием функционального состояния фотосинтетического аппарата растения независимо от видовой принадлежности является его фотосинтетическая активность. Этот параметр не измеряется.
Предлагаемый способ кроме дистанционного определения содержания хлорофилла дополнительно решает задачу дистанционного определения фотосинтетической активности растения.
Поставленная задача решается за счет того, что посылают лазерные импульсы излучения в темное время суток, возбуждающие флуоресценцию хлорофилла, принимают часть излучения флуоресценции, которое попадает в поле зрения приемного телескопа, подвергают ее спектральной селекции на трех длинах волн, включая длины волн б85 нм и 740 нм, регистрируют полученную информацию и подвергают ее компьютерной обработке и записи.
В отличие от известного способа, в предлагаемом техническом решении используется:
1) в качестве источника возбуждающего флуоресценцию света используется диодный лазер с управляемой амплитудной модуляцией импульсов генерации;
2) излучение лазера посылается через коллиматор с малым углом расходимости луча, обеспечивающим практически неизменную поперечную площадь засветки на расстоянии до сотен метров;
3) регистрация осуществляется в режиме счета отдельных фотонов;
4) на первом этапе посылаются слабые лазерные импульсы длительностью 10 мкс с частотой 20 кГц, дополнительно ослабленные ослабителем, который освещает объект световой плотностью не более 1 мкмоль/м2 с (≤ 240 мВт/м2), не активизируя фотосинтез в адаптированном к темноте листовом аппарате, сигналы флуоресценции без ослабления подвергаются спектральной селекции и регистрируются в режиме отдельных импульсов фототока ФЭУ с помощью счетчика фотонов;
5) на втором этапе лазер посылает мощный насыщающий импульс длительностью 1 с со световой плотностью более 2000 мкмоль/м2 с (> 480 Вт/м2), переводящий все реакционные центры в закрытое состояние, собранный приемным телескопом оптический сигнал ослабляется перед блоком спектральной селекции до уровня регистрации отдельных импульсов фототока ФЭУ с помощью счетчика фотонов;
6) по измеренным в двух этапах уровням флуоресценции F0 и Fm на длине волны 685 нм определяется максимальный квантовый выход первичного разделения зарядов в ФСII:kPI=(Fm-F0)/Fm;
где: kPI - максимальный квантовый выход первичного разделения зарядов в фотосистеме ФСП;
F0 - уровень флуоресценции хлорофилла при максимально открытых реакционных центрах в условиях адаптации фотосинтетического аппарата растения к темноте, когда фотосинтеза нет и он не активизируется;
Fm - максимальный уровень флуоресценции хлорофилла при полностью закрытых реакционных центрах под действием насыщающего импульса света в условиях адаптации фотосинтетического аппарата растения к темноте, когда фотосинтеза нет.
На чертеже представлено устройство, реализующее способ.
Устройство содержит блок управления 1, амплитудно-модулируемый диодный лазер 2 (457 series DPSS blue laser) с мощностью излучения на длине волны 457 нм в диапазоне 0,01-7 Вт, сменные ослабители револьверного типа 3 и 3', коллиматор 4 с апертурой 10 см, приемный телескоп 5 с апертурой 30 см, блок спектральной селекции по длинам волн 457, 685 и 740 нм 6, ФЭУ 7, 8 и 9, счетчик фотонов 10, компьютер 11.
Устройство работает следующим образом.
Например, для оперативного и дистанционного определения фотосинтетической активности части лесного массива лазером 2 через коллиматор 4 на кроны деревьев на удалении нескольких десятков или сотен метров в темное время суток последовательно в два этапа посылается амплитудно-модулируемое излучение на длине волны 457 нм разной длительности и мощности. На первом этапе посылаются слабые лазерные импульсы длительностью 10 мкс с частотой 20 кГц, дополнительно ослабленные ослабителем 3 до значения световой плотности не более 1 мкмоль/м2 с (≤ 240 мВт/м2). Возбужденные слабые сигналы флуоресценции собираются приемным телескопом 5 и через блок спектральной селекции 6 направляются на ФЭУ 7, 8, 9, а затем регистрируются счетчиком фотонов 10 в режиме счета импульсов фототока. С помощью блока управления 1, на втором этапе подается команда на смену ослабителей 3 и 3', и лазером 2 без ослабления через коллиматор 4 посылается мощный насыщающий импульс длительностью 1 с со световой плотностью более 2000 мкмоль/м2 с (> 480 Вт/м2), а собранные приемным телескопом 5 мощные сигналы флуоресценции предварительно перед блоком спектральной селекции 6 ослабляются ослабителем 3' до уровня, обеспечивающего режим регистрации отдельных импульсов фототока ФЭУ 7, 8, 9 с помощью счетчика фотонов 10. Всю полученную информацию подвергают обработке и записи при помощи компьютера 11, который связан с блоком управления 1. Измеряют F0 и Rm на длине волны 685 нм, по которьм определяется максимальный квантовый выход первичного разделения зарядов в ФСП:
kPI=(Fm-F0)/Fm,
где ФС - 2-я фотосистема растения;
kPI - максимальный квантовый выход первичного разделения зарядов в фотосистеме ФСП;
F0 - уровень флуоресценции хлорофилла при максимально открытых реакционных центрах в условиях адаптации фотосинтетического аппарата растения к темноте, когда фотосинтеза нет и он не активизируется;
Fm - максимальный уровень флуоресценции хлорофилла при полностью закрытых реакционных центрах под действием насыщающего импульса света в условиях адаптации фотосинтетического аппарата растения к темноте, когда фотосинтеза нет.
Снижение kPI - это показатель уменьшения активности донорной стороны фотосистемы ФСII. Обнаружив нарушения фотосинтеза, можно еще на ранней стадии выявить заболевания растений, ухудшение состояния окружающей среды и своевременно помочь растениям, проведя соответствующие агротехнические мероприятия (увлажнение, подкормку, обработку против болезней и т.п.).

Claims (1)

  1. Способ дистанционного определения функционального состояния фотосинтетического аппарата растений, заключающийся в том, что посылают лазерные импульсы излучения в темное время суток, возбуждая тем самым излучение флуоресценции хлорофилла, принимают часть излучения флуоресценции, попадающего в поле зрения приемного телескопа, подвергают их спектральной селекции на трех длинах волн, включая длины волн 685 нм и 740 нм, регистрируют полученную информацию, подвергая ее компьютерной обработке и записи, отличающийся тем, что для возбуждения излучения флуоресценции используют диодный лазер с длиной волны излучения в диапазоне 400-460 нм с управляемой амплитудно-временной модуляцией импульсов генерации, импульсы излучения которого посылают через коллиматор с малым углом расходимости луча, чем обеспечивают неизменную площадь засветки, причем на первом этапе для измерения уровня флуоресценции F0 посылают предварительно ослабленные лазерные импульсы длительностью 10 мкс с частотой 20 кГц, освещающие растение со световой плотностью не более 1 мкмоль/м2 с (≤240 мВт/м2), не активизируя в нем фотосинтез, а принятое излучение флуоресценции без ослабления подвергают селекции; через несколько секунд на втором этапе посылают неослабленные лазерные импульсы длительностью 1 с со световой плотностью более 2000 мкмоль/м2 с (>480 Вт/м2) для измерения уровня флуоресценции Fm, а принятое излучение флуоресценции ослабляют перед спектральной селекцией до уровня регистрации отдельных импульсов фототока, регистрацию селективных сигналов, полученных на первом и втором этапах, осуществляют в режиме счета фотонов, и по измеренным в двух этапах уровням флуоресценции F0 и Fm на длине волны 685 нм определяют максимальный квантовый выход первичного разделения зарядов в фотосистеме ФСП:
    kPI=(Fm-F0)/Fm,
    где kPI - максимальный квантовый выход первичного разделения зарядов в фотосистеме ФСП;
    F0 - уровень флуоресценции хлорофилла при максимально открытых реакционных центрах в условиях адаптации фотосинтетического аппарата растения к темноте, когда фотосинтеза нет и он не активизируется;
    Fm - максимальный уровень флуоресценции хлорофилла при полностью закрытых реакционных центрах под действием насыщающего импульса света в условиях адаптации фотосинтетического аппарата растения к темноте, когда фотосинтеза нет.
RU2010139735/28A 2010-09-27 2010-09-27 Способ дистанционного определения функционального состояния фотосинтетического аппарата растений RU2453829C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2010139735/28A RU2453829C2 (ru) 2010-09-27 2010-09-27 Способ дистанционного определения функционального состояния фотосинтетического аппарата растений

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2010139735/28A RU2453829C2 (ru) 2010-09-27 2010-09-27 Способ дистанционного определения функционального состояния фотосинтетического аппарата растений

Publications (2)

Publication Number Publication Date
RU2010139735A RU2010139735A (ru) 2012-04-10
RU2453829C2 true RU2453829C2 (ru) 2012-06-20

Family

ID=46031282

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010139735/28A RU2453829C2 (ru) 2010-09-27 2010-09-27 Способ дистанционного определения функционального состояния фотосинтетического аппарата растений

Country Status (1)

Country Link
RU (1) RU2453829C2 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2604302C2 (ru) * 2014-09-23 2016-12-10 федеральное государственное бюджетное образовательное учреждение высшего образования "Мичуринский государственный аграрный университет" (ФГБОУ ВО Мичуринский ГАУ) Способ оценки функционального состояния растений in vitro без нарушения стерильности
RU2610521C1 (ru) * 2015-11-02 2017-02-13 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный технический университет имени Н.Э. Баумана" (МГТУ им. Н.Э. Баумана) Способ дистанционного трассового обнаружения участков растительности в стрессовом состоянии
RU2646937C1 (ru) * 2016-12-21 2018-03-12 федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)" (МГТУ им. Н.Э. Баумана) Дистанционный способ обнаружения стрессовых состояний растений
RU2775493C1 (ru) * 2021-10-21 2022-07-01 Федеральное государственное бюджетное научное учреждение «Федеральный научный агроинженерный центр ВИМ» (ФГБНУ ФНАЦ ВИМ) Портативное устройство для мониторинга стрессовых состояний растений

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112304939A (zh) * 2019-08-02 2021-02-02 成都师范学院 一种森林郁闭度测定方法及其装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1276963A1 (ru) * 1984-11-22 1986-12-15 Ташкентский Ордена Дружбы Народов Политехнический Институт Им.А.Р.Бируни Способ дистанционного определени физиологического состо ни растени
RU2199730C2 (ru) * 1998-10-28 2003-02-27 Дойчес Центрум Фюр Люфт-Унд Раумфарт Е.Ф. Система детектирования флуоресценции для определения значимых параметров растительности

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1276963A1 (ru) * 1984-11-22 1986-12-15 Ташкентский Ордена Дружбы Народов Политехнический Институт Им.А.Р.Бируни Способ дистанционного определени физиологического состо ни растени
RU2199730C2 (ru) * 1998-10-28 2003-02-27 Дойчес Центрум Фюр Люфт-Унд Раумфарт Е.Ф. Система детектирования флуоресценции для определения значимых параметров растительности

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2604302C2 (ru) * 2014-09-23 2016-12-10 федеральное государственное бюджетное образовательное учреждение высшего образования "Мичуринский государственный аграрный университет" (ФГБОУ ВО Мичуринский ГАУ) Способ оценки функционального состояния растений in vitro без нарушения стерильности
RU2610521C1 (ru) * 2015-11-02 2017-02-13 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный технический университет имени Н.Э. Баумана" (МГТУ им. Н.Э. Баумана) Способ дистанционного трассового обнаружения участков растительности в стрессовом состоянии
RU2646937C1 (ru) * 2016-12-21 2018-03-12 федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)" (МГТУ им. Н.Э. Баумана) Дистанционный способ обнаружения стрессовых состояний растений
RU2775493C1 (ru) * 2021-10-21 2022-07-01 Федеральное государственное бюджетное научное учреждение «Федеральный научный агроинженерный центр ВИМ» (ФГБНУ ФНАЦ ВИМ) Портативное устройство для мониторинга стрессовых состояний растений

Also Published As

Publication number Publication date
RU2010139735A (ru) 2012-04-10

Similar Documents

Publication Publication Date Title
US6563122B1 (en) Fluorescence detection assembly for determination of significant vegetation parameters
RU2354958C2 (ru) Способ флуорометрического определения параметров фотосинтеза фотоавтотрофных организмов, устройство для его осуществления и измерительная камера
Campbell et al. Contribution of chlorophyll fluorescence to the apparent vegetation reflectance
US8481974B1 (en) Apparatus and method for measuring single cell and sub-cellular photosynthetic efficiency
JP2019215373A5 (ru)
EP3084401B1 (en) Determination of a fungal infection of a plant by chlorophyll fluorescence induced by different excitation wavelengths
RU2453829C2 (ru) Способ дистанционного определения функционального состояния фотосинтетического аппарата растений
Richardson et al. Bioaerosol detection over Athens, Greece using the laser induced fluorescence technique
US11869191B2 (en) System and method for tissue viability screening
WO2017098815A1 (ja) 微細藻類のモニタリング装置及び微細藻類のモニタリング方法
WO2012166954A2 (en) Systems and methods for estimating photosynthetic carbon assimilation
US20160370228A1 (en) Raman spectroscopy systems and raman spectroscopy methods
Broess et al. Applying two-photon excitation fluorescence lifetime imaging microscopy to study photosynthesis in plant leaves
CN106680205A (zh) 一种可实时监测植物生长状态的led照明系统
Saito Laser-induced fluorescence spectroscopy/technique as a tool for field monitoring of physiological status of living plants
Chiu et al. Detecting cabbage seedling diseases by using chlorophyll fluorescence
Zubik‐Duda et al. The photoprotective dilemma of a chloroplast: to avoid high light or to quench the fire?
RU2592574C2 (ru) Оптический способ оценки функционального состояния растений
RU2199730C2 (ru) Система детектирования флуоресценции для определения значимых параметров растительности
US20180364171A1 (en) Detection device for lipids included in microalgae and detection method for lipids included in microalgae
RU2569241C2 (ru) Оптический способ оценки устойчивости фотосинтезирующих тканей растений к фотоингибированию и устройство для его осуществления
RU2604302C2 (ru) Способ оценки функционального состояния растений in vitro без нарушения стерильности
Luedeker et al. Laser-induced leaf fluorescence: a tool for vegetation status and stress monitoring and optical-aided agriculture
US20240219376A1 (en) Systems and methods for label-free sensing of neutrophil activation
Posudin et al. Application of portable fluorometer for estimation of plant tolerance to abiotic factors