WO2013021607A1 - 液晶表示装置、および液晶表示装置の製造方法 - Google Patents

液晶表示装置、および液晶表示装置の製造方法 Download PDF

Info

Publication number
WO2013021607A1
WO2013021607A1 PCT/JP2012/004959 JP2012004959W WO2013021607A1 WO 2013021607 A1 WO2013021607 A1 WO 2013021607A1 JP 2012004959 W JP2012004959 W JP 2012004959W WO 2013021607 A1 WO2013021607 A1 WO 2013021607A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
display device
liquid crystal
crystal display
auxiliary capacitance
Prior art date
Application number
PCT/JP2012/004959
Other languages
English (en)
French (fr)
Inventor
誠一 内田
誠二 金子
小川 康行
山本 薫
耕平 田中
泰 高丸
森 重恭
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN201280037025.8A priority Critical patent/CN103765306B/zh
Priority to US14/234,450 priority patent/US9261746B2/en
Priority to JP2013527884A priority patent/JP5784732B2/ja
Publication of WO2013021607A1 publication Critical patent/WO2013021607A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136213Storage capacitors associated with the pixel electrode
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136227Through-hole connection of the pixel electrode to the active element through an insulation layer

Definitions

  • the present invention relates to an active matrix type liquid crystal display device, and more particularly to a liquid crystal display device provided with an auxiliary capacitance electrode.
  • an active matrix liquid crystal display device it is desirable to increase the aperture ratio in order to improve luminance and contrast. For this reason, a technique is known in which the aperture ratio is increased by superimposing the edge of the pixel electrode and the source line for applying the image signal voltage so that the effective pixel region is just before the source line. Yes.
  • the auxiliary capacitance electrode is formed not only in the portion where the pixel electrode and the source line overlap but also in a sufficient range around the auxiliary electrode. It is done.
  • the auxiliary capacitance electrode when the auxiliary capacitance electrode is formed in a wide range, the auxiliary capacitance increases. Therefore, when the image signal voltage is applied to the pixel electrode via the source line, it is difficult to sufficiently accumulate charges in the pixel electrode. Become.
  • the range in which the auxiliary capacitance electrode can be formed is limited. Therefore, in practice, the auxiliary capacitance electrode as described in Patent Document 1 is provided in a sufficiently wide range to reliably reduce crosstalk and flicker. There was a problem that it was difficult to do.
  • the present invention has been made in view of such a point, and an object of the present invention is to reduce flicker by reliably suppressing crosstalk between a pixel electrode and a source line.
  • the first invention is Gate lines and source lines provided in a lattice pattern; Pixel electrodes provided in a matrix corresponding to the intersection positions of the gate lines and the source lines; A transparent auxiliary capacitance electrode that forms an auxiliary capacitance with the pixel electrode; A switching element that applies an image signal voltage supplied from the source line to the pixel electrode in response to a scanning signal applied from the gate line; With The switching element is configured using an oxide semiconductor, The transparent auxiliary capacitance electrode is provided between the source line and the pixel electrode.
  • the transparent auxiliary capacitance electrode is provided between the source line and the pixel electrode, it acts as a transparent shield electrode, and it is possible to suppress crosstalk and reduce flicker.
  • the switching element since the switching element is configured using an oxide semiconductor, the switching element has a large driving capability, and it is easy to sufficiently accumulate charges in the pixel electrode. The degree of freedom increases. Therefore, it becomes possible to easily obtain a large shielding effect by forming a transparent auxiliary capacitance electrode in a wide range. Therefore, the parasitic capacitance can be significantly and reliably reduced, crosstalk can be reliably suppressed, and flicker can be reduced.
  • the second invention is A liquid crystal display device according to a first invention,
  • the transparent auxiliary capacitance electrode is provided over the entire area of each pixel area except for an area where the switching element is provided and an area where the switching element and the pixel electrode are connected.
  • the transparent auxiliary capacitance electrode is provided continuously over adjacent pixel regions vertically and horizontally.
  • the transparent auxiliary capacitance electrode is continuously provided over the pixel regions adjacent to each other in the vertical and horizontal directions, so that the load for driving the panel can be reduced.
  • the fourth invention is: A liquid crystal display device according to any one of the first to third inventions,
  • the transparent auxiliary capacitance electrode is formed by using a low-resistance oxide semiconductor.
  • the fifth invention is: A liquid crystal display device according to a fourth invention,
  • the transparent auxiliary capacitance electrode is formed in the same layer as the oxide semiconductor constituting the switching element.
  • the oxide semiconductor layer formed to form the switching element can also be used as a transparent auxiliary capacitance electrode, eliminating the need to form a separate conductor layer, and simplifying the structure and manufacturing process Can be easily achieved.
  • the sixth invention is: A liquid crystal display device according to a fifth invention,
  • the switching element further includes a gate insulating film and a gate electrode, and the oxide semiconductor, the gate insulating film, and the gate electrode constituting the switching element are sequentially stacked on the substrate. It is characterized by that.
  • the oxide semiconductor constituting the transparent auxiliary capacitance electrode is formed by subjecting a region not masked by the gate electrode of the switching element to a resistance reduction treatment.
  • the number of manufacturing steps and the number of masks can be reduced, and accuracy can be improved to reduce variations in characteristics.
  • the eighth invention A liquid crystal display device according to any one of the first to seventh inventions,
  • the pixel electrode has a plurality of slits parallel to each other.
  • liquid crystal display device having a display mode with excellent viewing angle characteristics such as an IPS (in-plane switching) system or an AFFS (advanced field switching) system can be easily configured.
  • IPS in-plane switching
  • AFFS advanced field switching
  • the ninth invention A liquid crystal display device according to any one of the first to eighth inventions,
  • the pixel electrode is provided so that an edge thereof overlaps the source line.
  • the tenth invention is Gate lines and source lines provided in a lattice pattern; Pixel electrodes provided in a matrix corresponding to the intersection positions of the gate lines and the source lines; An auxiliary capacitance electrode that forms an auxiliary capacitance with the pixel electrode; A switching element that applies an image signal voltage supplied from the source line to the pixel electrode in response to a scanning signal applied from the gate line; With The switching element is configured using an oxide semiconductor,
  • the auxiliary capacitance electrode is provided between the source line and the pixel electrode, and is a method of manufacturing a liquid crystal display device using a low-resistance oxide semiconductor, Forming a conductor layer on the substrate and patterning to form a source line; Forming an oxide semiconductor layer over the source line and patterning the source electrode, the drain electrode, and the channel region of the switching element, and the region of the auxiliary capacitance electrode; and On the oxide semiconductor layer, an insulating film layer and a conductor layer are sequentially formed and patterned to form a gate insulating film, a
  • the parasitic capacitance can be significantly and reliably reduced as described above, crosstalk can be reliably suppressed, flicker can be reduced, and a switching element is formed.
  • the oxide semiconductor layer can also be used as a transparent auxiliary capacitance electrode, and it is not necessary to form a separate conductor layer. Therefore, the structure and the manufacturing process can be easily simplified, and the gate electrode can be used as a mask. By reducing the resistance of the oxide semiconductor layer and forming the source electrode, drain electrode, and auxiliary capacitance electrode of the switching element, the number of steps and the number of masks can be reduced, and the variation in characteristics is improved by improving the accuracy. It is easy to do.
  • flicker can be reduced by reliably suppressing crosstalk between the pixel electrode and the source line.
  • FIG. 3 is a plan view of an array substrate of the liquid crystal display device according to Embodiment 1.
  • FIG. 2 is a sectional view taken along line II-II in FIG.
  • FIG. 3 is a sectional view taken along line III-III in FIG. 1.
  • FIG. 4 is a sectional view taken along line IV-IV in FIG. 1.
  • 3 is a graph illustrating characteristics of the switching element according to the first embodiment. It is a graph which shows the difference in the parasitic capacitance according to the presence or absence of a shield electrode. It is a graph which shows the electric current which flows into the source driver at the time of high-speed write drive. It is a graph which shows the electric current which flows into the source driver at the time of normal write drive.
  • FIG. 6 is a plan view of an array substrate of a liquid crystal display device of Embodiment 2.
  • FIG. 10 is a sectional view taken along line XX in FIG. 9.
  • 6 is a plan view of an array substrate of a liquid crystal display device of Embodiment 3.
  • FIG. 12 is a cross-sectional view taken along line XII-XII in FIG. 11.
  • 6 is a plan view of an array substrate of a liquid crystal display device according to Embodiment 4.
  • FIG. It is the XIV-XIV sectional view taken on the line of FIG.
  • FIG. 14 is a sectional view taken along line XV-XV in FIG. 13.
  • 10 is a plan view showing a first manufacturing process of the liquid crystal display device of Embodiment 4.
  • FIG. 10 is a plan view showing a first manufacturing process of the liquid crystal display device of Embodiment 4.
  • FIG. 10 It is the XVII-XVII sectional view taken on the line of FIG. 10 is a plan view showing a second manufacturing process of the liquid crystal display device of Embodiment 4.
  • FIG. 19 is a sectional view taken along line XIX-XIX in FIG. 12 is a plan view showing a third manufacturing process of the liquid crystal display device of Embodiment 4.
  • FIG. 21 is a sectional view taken along line XXI-XXI in FIG. 20. It is a top view which shows the 4th manufacturing process of the liquid crystal display device of Embodiment 4.
  • FIG. 23 is a sectional view taken along line XXIII-XXIII in FIG. 22.
  • Embodiment 1 (Configuration of liquid crystal display device) As shown in FIGS. 1 to 4, for example, an array substrate that constitutes a liquid crystal display device by enclosing liquid crystal between a counter substrate and A transparent substrate 101; A plurality of gate lines 102 provided on the transparent substrate 101 so as to extend in parallel with each other; A gate insulating film 103 provided so as to cover each gate line 102; A plurality of source lines 105 provided on the gate insulating film 103 so as to extend in parallel to each other in a direction orthogonal to the gate lines 102; An oxide provided in an island shape on the gate insulating film 103 so as to overlap a part of the gate line 102 at each intersection of each gate line 102 and each source line 105, that is, for each subpixel.
  • each insulating layer is omitted from the drawing (the same applies hereinafter).
  • the switching element 121 includes a part of the gate line 102 that acts as a gate electrode, a gate insulating film 103, an oxide semiconductor layer 104, a source electrode 105a, and a drain electrode 106a.
  • the oxide semiconductor layer 104 is made of, for example, IGZO containing indium, gallium, zinc, and oxygen as main components.
  • the source electrode 105 a includes a portion where each source line 105 protrudes laterally for each subpixel and overlaps the oxide semiconductor layer 104.
  • the drain electrode 106 a is configured by one end portion that overlaps with the oxide semiconductor layer 104 in each drain wiring 106.
  • the connecting portion 106b at the other end of the drain wiring 106 and the connecting portion 111a of the pixel electrode 111 are connected through contact holes formed in the interlayer insulating film 107, the planarizing film 108, and the capacitor insulating film 110. Yes.
  • the transparent auxiliary capacitance electrode 109 extends over the entire pixel region, that is, vertically and horizontally except for the region where the switching element 121 is provided and the junction region between the connection part 106b of the drain wiring 106 and the connection part 111a of the pixel electrode 111. It is provided continuously over adjacent pixel regions.
  • the transparent auxiliary capacitance electrode 109 constitutes an auxiliary capacitance for each sub-pixel by facing the pixel electrode 111 with the capacitance insulating film 110 interposed therebetween. Further, the transparent auxiliary capacitance electrode 109 is provided between the source line 105 and the pixel electrode 111, thereby functioning as a transparent shield electrode.
  • the array substrate as described above and a counter substrate in which a transparent black substrate, a color filter layer, and a counter electrode are formed, for example, are bonded to each other with a spacer between them.
  • a nematic liquid crystal or the like having electro-optical characteristics is enclosed.
  • the switching element 121 having the oxide semiconductor layer 104 formed of IGZO or the like is used.
  • the switching element 121 has a larger driving capability than a switching element using amorphous silicon. If this characteristic is used, it becomes easy to sufficiently accumulate charges in the pixel electrode 111, so that the degree of freedom in the shape and size of the transparent auxiliary capacitance electrode 109 is increased. Therefore, as described above, the transparent auxiliary capacitance electrode 109 is provided in each pixel region excluding the region where the switching element 121 is provided and the junction region between the connection portion 106b of the drain wiring 106 and the connection portion 111a of the pixel electrode 111. It is possible to easily provide a large shielding effect by providing the entire area of the film.
  • the parasitic capacitance generated between the pixel electrode 111 and the source line 105 is significantly and surely reduced (for example, two orders of magnitude or more compared to the case where there is no shielding effect). Can do. Therefore, it is possible to reliably suppress the crosstalk between the pixel electrode 111 and the source line 105 and reduce flicker.
  • the transparent auxiliary capacitance electrode 109 is provided over a wide range, the auxiliary capacitance formed between the pixel electrode 111 is increased. Therefore, since the influence of the parasitic capacitance between the pixel electrode 111 and the source line 105 is reduced, the flicker is further suppressed.
  • the switching element 121 as described above has a small off-leakage current as shown in FIG. 5 (for example, 1/10 or less as compared with an element using amorphous silicon). For this reason, the leakage of the charge accumulated in the pixel electrode 111 is greatly reduced, so that flicker is also suppressed in combination with the increase in the auxiliary capacitance.
  • a light shielding film for example, Ti is 200 nm
  • an insulating film for example, SiO 2 (200 nm)
  • a transparent electrode for example, ITO of 100 nm
  • a conductive film for example, a laminated structure of Ti (100 nm) / Al (200 nm) / Ti (30 nm)
  • a transparent substrate 101 such as a glass substrate
  • a conductive film is desired by a photolithography process.
  • an insulating film for example, a laminated structure of SiO 2 (50 nm) / SiNx (325 nm) is formed (this becomes the gate insulating film 103).
  • an IGZO film for example, 50 nm
  • the IGZO film is processed into a desired shape by a photolithography process (oxide semiconductor layer 104).
  • a conductive film for example, a laminated structure of Ti (100 nm) / Al (200 nm) / Ti (30 nm)
  • an insulating film for example, SiO 2 (300 nm)
  • a photosensitive organic film is applied to flatten the surface (interlayer insulating film 107, flattening film 108), and by a photolithography process.
  • a contact hole is formed at a desired position.
  • a transparent electrode for example, ITO or IZO of 100 nm
  • the transparent electrode is processed into a desired shape by a photolithography process (this becomes the transparent auxiliary capacitance electrode 109).
  • an insulating film for example, SiO 2 (400 nm)
  • a transparent electrode for example, ITO or IZO is 100 nm
  • the electrode is processed into a desired shape (this becomes the pixel electrode 111).
  • a photo spacer is arranged on the array substrate.
  • the counter substrate and the array substrate manufactured as described above are bonded together, liquid crystal is injected, the substrate is divided, and a liquid crystal display device (liquid crystal panel) is completed.
  • the analog current flowing through the source driver always flows large in the case of 120 Hz driving shown in FIG. 8, whereas in the case of the low frequency driving (5 Hz) shown in FIG. In the 1H period, the period during which the driver is driven and the period during which the driver is stopped are significantly reduced.
  • the pixel electrode 111 is not limited to be formed in a continuous shape in the pixel region as shown in the first embodiment (FIG. 1), and for example, a plurality of slits 111b as shown in FIGS. You may form in the shape etc. in which the opening parts, such as, were formed. That is, even when such a pixel electrode 111 is used to form a display mode liquid crystal display device with excellent viewing angle characteristics, such as an IPS (in plane switching) method or an AFFS (advanced fringe field switching) method.
  • IPS in plane switching
  • AFFS advanced fringe field switching
  • Embodiment 3 If the transparent auxiliary capacitance electrode 109 is provided over a region where the source line 105 and the pixel electrode 111 overlap or a sufficiently wide range in the vicinity thereof, the transparent auxiliary capacitance electrode 109 has a rectangular shape as shown in FIGS.
  • the opening 109a may be formed so that the auxiliary capacity does not become too large. That is, even if the opening 109a is formed at a position sufficiently away from the source line 105, if the shielding effect of the transparent auxiliary capacitance electrode 109 is sufficiently obtained in the vicinity of the source line 105, the pixel electrode 111, the source line 105, and The crosstalk between the two can be reliably suppressed and flicker can be reduced.
  • Embodiment 4 An example of a liquid crystal display device in which a transparent auxiliary capacitance electrode is formed by an oxide semiconductor layer subjected to a resistance reduction process will be described.
  • an oxide semiconductor layer is used, and the switching element and the transparent auxiliary capacitance electrode are formed in the same layer. That is, the oxide semiconductor layer is formed on the source line, and then the resistance of a part of the oxide semiconductor layer is reduced, so that the source region and the drain region of the switching element and the transparent auxiliary capacitance electrode which is a transparent shield electrode On the other hand, the channel region of the switching element is formed by the portion where the resistance is not reduced. This will be specifically described below.
  • the array substrate constituting the liquid crystal display device of Embodiment 4 is as follows.
  • a gate insulating film 205 provided over the channel region 204b in the oxide semiconductor layer 204;
  • a plurality of gate lines 207 provided to extend in parallel to each other in a direction orthogonal to each source line 202;
  • the switching element 221 (TFT: thin film transistor) includes a gate electrode 206, a gate insulating film 205, and a source region 204a, a channel region 204b, and a drain region 204c in the oxide semiconductor layer 204.
  • the oxide semiconductor layer 204 is made of, for example, IGZO containing indium, gallium, zinc, and oxygen as main components. A part of the oxide semiconductor layer 204 is used as it is as the channel region 204b of the switching element 221, and the resistance region is reduced as described later, whereby the source region 204a, the drain region 204c, and the transparent auxiliary capacitance electrode 204d is formed.
  • the transparent auxiliary capacitance electrode 204d is a region other than the region where the switching element 221 is provided and the junction region between the connection portion 204e continuous to the drain region 204c and the connection portion 210a of the pixel electrode 210. It is continuously provided over the entire pixel region, that is, over pixel regions adjacent in the vertical and horizontal directions.
  • the transparent auxiliary capacitance electrode 204d is opposed to the pixel electrode 210 via the interlayer insulating film 208 and the planarization film 209, thereby constituting an auxiliary capacitance for each subpixel. Further, the transparent auxiliary capacitance electrode 204d is provided between the source line 202 and the pixel electrode 210, thereby functioning as a transparent shield electrode.
  • the array substrate as described above and a counter substrate in which a transparent black substrate, a color filter layer, and a counter electrode are formed, for example, are bonded to each other with a spacer between them.
  • a nematic liquid crystal or the like having electro-optical characteristics is enclosed.
  • FIGS. 16 and 17 A conductive film is formed, and a source line 202 is formed by photolithography. Further, after the insulating film 203 is formed and a contact hole is formed at a predetermined position, the oxide semiconductor layer 204 ′ is formed and the shape is processed.
  • FIGGS. 18 and 19 After forming an insulating film, a conductive film is formed, and the shape is processed by photolithography (gate insulating film 205, gate electrode 206, gate line 207). At that time, the insulating film and the conductive film are collectively etched. (3) (FIGS.
  • the resistance of the oxide semiconductor layer 204 ′ other than the portion masked by the gate electrode 206 (channel region 204b) is reduced by exposure to reducing plasma (source) Region 204a, drain region 204c, transparent auxiliary capacitance electrode 204d, connecting portion 204e). More specifically, the resistance is reduced by exposing the formed oxide semiconductor layer 204 to plasma containing at least one element of fluorine, hydrogen, and boron. For example, by using a CVD method, a doping method, or the like, by exposing the upper surface of the substrate over which the oxide semiconductor layer 204 is formed in a plasma atmosphere for a predetermined time, the exposed portion of the oxide semiconductor layer 204 ′ is modified and reduced. Resisted. (4) (FIGS. 22 and 23) An interlayer insulating film 208 and a planarizing film 209 are formed, a contact hole is opened above the connection portion 204e of the switching element 221, and a pixel electrode 210 is formed.
  • the switching element 221 and the transparent auxiliary capacitance electrode 204d which is a transparent shield electrode, can be formed simultaneously, the number of steps and the number of masks can be reduced, and the process flow can be shortened. That is, in the case of Embodiment 1, gate line deposition / processing, gate insulating film deposition, oxide semiconductor layer deposition / processing, source line deposition / processing, protective insulating film deposition / processing, planarization A total of 8 masks are required for film deposition / processing, transparent auxiliary capacitance electrode (transparent shield electrode) deposition / processing, insulating film deposition / processing, pixel electrode deposition / processing, In this embodiment, source line deposition / processing, insulating film deposition / processing, oxide semiconductor layer deposition / processing, gate insulating film / gate line deposition / processing, oxide semiconductor layer resistance reduction, protective insulating film A total of seven masks can be used in the processes of film formation / processing, planarization film formation /
  • the source lines 105 and 202 and the pixel electrodes 111 and 210 overlap each other. However, even if they do not overlap, parasitic capacitance generated in the adjacent portions is suppressed. Therefore, the effect of reducing the flicker by reliably suppressing the crosstalk can be obtained.
  • the constituent elements described in the above embodiments may be variously combined within a logically consistent range.
  • the shapes of the pixel electrode 111 and the transparent auxiliary capacitance electrode 109 described in the second and third embodiments may be applied to the liquid crystal display device of the fourth embodiment.
  • the present invention is useful for an active matrix type liquid crystal display device.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

 画素電極、ソースライン間のクロストークを抑制してフリッカを低減するため、格子状に設けられたゲートライン(102)およびソースライン(105)と、これらの交差位置に対応してマトリクス状に設けられた画素電極(111)と、透明補助容量電極(109)と、ゲートライン(102)から与えられる走査信号に応じて、ソースライン(105)から供給される画像信号電圧を画素電極(111)に印加するスイッチング素子(121)とを備え、上記スイッチング素子(121)は酸化物半導体層(104)を用いて構成され、透明補助容量電極(109)はソースライン(105)と画素電極(111)との間に設けられる。

Description

液晶表示装置、および液晶表示装置の製造方法
 本発明は、アクティブマトリクス型の液晶表示装置に関し、特に、補助容量電極を備えた液晶表示装置に関するものである。
 アクティブマトリクス型の液晶表示装置においては、輝度やコントラストを向上させるためには開口率を高くすることが望ましい。そのため、画素電極のエッジと、画像信号電圧を印加するためのソースラインとを重ね合わせることにより、ソースラインの間際までが有効な画素領域となるようにして開口率を高くする技術が知られている。
 また、上記のように画素電極のエッジとソースラインとを重ね合わせると、クロストークによって画素電極の電位、したがって輝度が変動し、フリッカが生じやすくなる。そこで、画素電極とソースラインとが重なり合う部分で、これらの画素電極とソースラインとの間に補助容量電極を設けてシールドすることにより、クロストークを抑制してフリッカの低減を図る技術が知られている(例えば、特許文献1参照)。
特開2004-20687号公報
 画素電極とソースラインとの間のクロストークを確実に抑制するためには、補助容量電極を、画素電極とソースラインとが重なり合う部分だけでなく、その周囲の十分な範囲に形成することが考えられる。
 ところが、補助容量電極を広い範囲に形成すると、補助容量が増大するため、ソースラインを介して画像信号電圧が画素電極に印加される際に、画素電極に十分に電荷を蓄積することが困難になる。
 このため、補助容量電極を形成できる範囲には制約があり、したがって、実際には、特許文献1に記載されているような補助容量電極を十分広い範囲に設けてクロストークおよびフリッカを確実に低減することは困難であるという問題点があった。
 本発明は、かかる点に鑑みてなされたものであり、画素電極とソースラインとの間のクロストークを確実に抑制してフリッカを低減することを目的としている。
 第1の発明は、
 格子状に設けられたゲートラインおよびソースラインと、
 上記ゲートラインとソースラインとの交差位置に対応してマトリクス状に設けられた画素電極と、
 上記画素電極との間に補助容量を形成する透明補助容量電極と、
 上記ゲートラインから与えられる走査信号に応じて、上記ソースラインから供給される画像信号電圧を上記画素電極に印加するスイッチング素子と、
 を備え、
 上記スイッチング素子は、酸化物半導体を用いて構成されるとともに、
 上記透明補助容量電極は、上記ソースラインと上記画素電極との間に設けられていることを特徴とする。
 これにより、透明補助容量電極は、ソースラインと画素電極との間に設けられているので透明シールド電極として作用し、クロストークを抑制してフリッカを低減することが可能になる。この場合において、スイッチング素子は、酸化物半導体を用いて構成されているため大きな駆動能力を有し、画素電極に十分に電荷を蓄積することが容易になるので、透明補助容量電極の形状や大きさの自由度が大きくなる。そこで、透明補助容量電極を広い範囲に形成するなどして大きなシールド効果を得ることが容易に可能になる。したがって、寄生容量を大幅に、かつ、確実に低下させて、クロストークを確実に抑制し、フリッカを低減することが可能になる。
 第2の発明は、
 第1の発明の液晶表示装置であって、
 上記透明補助容量電極は、上記スイッチング素子が設けられている領域、および上記スイッチング素子と上記画素電極とが接続される領域を除く、各画素領域の全域にわたって設けられていることを特徴とする。
 また、第3の発明は、
 第1および第2の発明のうち何れか1つの液晶表示装置であって、
 上記透明補助容量電極は、縦横に隣り合う画素領域にわたって連続して設けられていることを特徴とする。
 これらにより、透明補助容量電極によってソースラインを十分に覆うことなどが容易にできるので、上記のように寄生容量を低下させてクロストークを確実に抑制し、フリッカを大幅に、かつ、確実に低減することが容易に可能になる。また、上記透明補助容量電極を縦横に隣り合う画素領域にわたって連続して設けることで、透明補助容量電極の配線抵抗を低減できるので、パネルの駆動にかかる負荷を低減することが可能になる。
 第4の発明は、
 第1から第3の発明のうち何れか1つの液晶表示装置であって、
 上記透明補助容量電極は、低抵抗化された酸化物半導体を用いて構成されていることを特徴とする。
 第5の発明は、
 第4の発明の液晶表示装置であって、
 上記透明補助容量電極は、上記スイッチング素子を構成する酸化物半導体と同一の層に形成されていることを特徴とする。
 これらにより、スイッチング素子を構成するために形成される酸化物半導体層を透明補助容量電極としても用いることができ、別途導電体層を形成する必要性をなくして、構成、および製造工程の簡素化を図ることが容易にできる。
 第6の発明は、
 第5の発明の液晶表示装置であって、
 上記スイッチング素子は、さらに、ゲート絶縁膜、およびゲート電極を有し、上記スイッチング素子を構成する酸化物半導体、上記ゲート絶縁膜、および上記ゲート電極が、基板上に順に積層されて構成されていることを特徴とする。
 また、第7の発明は、
 第6の発明の液晶表示装置であって、
 上記透明補助容量電極を構成する酸化物半導体は、上記スイッチング素子のゲート電極によってマスクされない領域が低抵抗化処理されることにより形成されていることを特徴とする。
 これらにより、製造時の工程数やマスク枚数を低減できるとともに、精度を向上させて特性のばらつきを低減することなども容易にできる。
 第8の発明は、
 第1から第7の発明のうち何れか1つの液晶表示装置であって、
 上記画素電極には、互いに平行な複数のスリットが形成されていることを特徴とする。
 これにより、IPS(in plane switching)方式やAFFS(advanced fringe field switching)方式など、視野角特性の優れた表示モードの液晶表示装置などを構成することも容易にできる。
 第9の発明は、
 第1から第8の発明のうち何れか1つの液晶表示装置であって、
 上記画素電極は、縁部が上記ソースラインと重なり合うように設けられていることを特徴とする。
 このように画素電極とソースラインとが重なり合っている場合でも、透明補助容量電極によって寄生容量が確実に低減されるので、クロストークを抑制してフリッカを低減することができる。
 第10の発明は、
 格子状に設けられたゲートラインおよびソースラインと、
 上記ゲートラインとソースラインとの交差位置に対応してマトリクス状に設けられた画素電極と、
 上記画素電極との間に補助容量を形成する補助容量電極と、
 上記ゲートラインから与えられる走査信号に応じて、上記ソースラインから供給される画像信号電圧を上記画素電極に印加するスイッチング素子と、
 を備え、
 上記スイッチング素子は、酸化物半導体を用いて構成されるとともに、
 上記補助容量電極は、上記ソースラインと上記画素電極との間に設けられ、低抵抗化された酸化物半導体を用いて構成された液晶表示装置の製造方法であって、
 基板上に導電体層を形成し、パターニングしてソースラインを形成する工程と、
 ソースラインの上層に酸化物半導体層を形成し、スイッチング素子のソース電極、ドレイン電極、およびチャネル領域となる領域、ならびに補助容量電極となる領域にパターニングする工程と、
 上記酸化物半導体層上に、絶縁膜層、および導電体層を順に形成し、パターニングして、ゲート絶縁膜、ゲートライン、およびゲート電極を形成する工程と、
 ゲート電極をマスクとして、上記酸化物半導体層を低抵抗化し、スイッチング素子のソース電極、ドレイン電極、および補助容量電極を形成する工程と、
 スイッチング素子のドレイン電極、および補助容量電極の上層に導電体層を形成し、パターニングして画素電極を形成する工程と、
 を有することを特徴とする。
 これにより、上記のように寄生容量を大幅に、かつ、確実に低下させて、クロストークを確実に抑制し、フリッカを低減することが可能になるとともに、スイッチング素子を構成するために形成される酸化物半導体層を透明補助容量電極としても用いることができ、別途導電体層を形成する必要がないので、構成、および製造工程の簡素化を図ることが容易にできるうえ、ゲート電極をマスクとして、酸化物半導体層を低抵抗化し、スイッチング素子のソース電極、ドレイン電極、および補助容量電極を形成することによって、工程数やマスク枚数を低減でき、また、精度を向上させて特性のばらつきを低減することなども容易にできる。
 本発明によれば、画素電極とソースラインとの間のクロストークを確実に抑制してフリッカを低減することができる。
実施形態1の液晶表示装置のアレイ基板の平面図である。 図1のII-II線断面図である。 図1のIII-III線断面図である。 図1のIV-IV線断面図である。 実施形態1のスイッチング素子の特性を示すグラフである。 シールド電極の有無に応じた寄生容量の相違を示すグラフである。 高速書き込み駆動時のソースドライバに流れる電流を示すグラフである。 通常書き込み駆動時のソースドライバに流れる電流を示すグラフである。 実施形態2の液晶表示装置のアレイ基板の平面図である。 図9のX-X線断面図である。 実施形態3の液晶表示装置のアレイ基板の平面図である。 図11のXII-XII線断面図である。 実施形態4の液晶表示装置のアレイ基板の平面図である。 図13のXIV-XIV線断面図である。 図13のXV-XV線断面図である。 実施形態4の液晶表示装置の第1の製造工程を示す平面図である。 図16のXVII-XVII線断面図である。 実施形態4の液晶表示装置の第2の製造工程を示す平面図である。 図18のXIX-XIX線断面図である。 実施形態4の液晶表示装置の第3の製造工程を示す平面図である。 図20のXXI-XXI線断面図である。 実施形態4の液晶表示装置の第4の製造工程を示す平面図である。 図22のXXIII-XXIII線断面図である。
 以下、本発明の実施形態を図面に基づいて詳細に説明する。なお、以下の各実施形態において、他の実施形態と同様の機能を有する構成要素については同一の符号を付して説明を省略する。
 《実施形態1》
 (液晶表示装置の構成)
 対向基板との間に液晶が封入されることによって液晶表示装置を構成するアレイ基板は、例えば図1~図4に示すように、
 透明基板101と、
 透明基板101上に互いに平行に延びるよう設けられた複数のゲートライン102と、
 各ゲートライン102を覆うように設けられたゲート絶縁膜103と、
 ゲート絶縁膜103上に各ゲートライン102と直交する方向に互いに平行に延びるように設けられた複数のソースライン105と、
 各ゲートライン102と各ソースライン105との交差部分ごと、すなわち、各副画素ごとに対応して、それぞれゲート絶縁膜103上にゲートライン102の一部に重なるように島状に設けられた酸化物半導体層104と、
 一端が酸化物半導体層104の一部に重なるように設けられたドレイン配線106と、
 各酸化物半導体層104、各ソースライン105、および各ドレイン配線106を覆うように設けられた層間絶縁膜107および平坦化膜108と、
 平坦化膜108上に設けられた透明補助容量電極109と、
 透明補助容量電極109を覆うように設けられた容量絶縁膜110と、
 容量絶縁膜110上にマトリクス状に設けられ、各ドレイン配線106にそれぞれ接続された複数の画素電極111と、
 各画素電極111を覆うように設けられた配向膜(不図示)とを備えている。
 ここで、図1では、便宜上、各絶縁層については省略して描かれている(以下、同様。)。
 スイッチング素子121(TFT:薄膜トランジスタ)は、ゲート電極として作用する上記ゲートライン102の一部と、ゲート絶縁膜103と、酸化物半導体層104と、ソース電極105aと、ドレイン電極106aとで構成されている。上記酸化物半導体層104は、例えばインジウム、ガリウム、亜鉛および酸素を主成分とするIGZOによって形成されている。ソース電極105aは、各ソースライン105が各副画素ごとに側方に突出して酸化物半導体層104に重なり合う部分によって構成されている。ドレイン電極106aは、各ドレイン配線106における酸化物半導体層104に重なり合う一端部分によって構成されている。ドレイン配線106の他端部分の接続部106bと、画素電極111の接続部111aとは、層間絶縁膜107、平坦化膜108、および容量絶縁膜110に形成されたコンタクトホールを介して接続されている。
 透明補助容量電極109は、スイッチング素子121が設けられている領域、およびドレイン配線106の接続部106bと画素電極111の接続部111aとの接合領域を除く、各画素領域の全域にわたって、すなわち縦横に隣り合う画素領域にわたって連続して、設けられている。この透明補助容量電極109は、容量絶縁膜110を介して画素電極111に対向することにより、各副画素ごとに補助容量を構成している。また、この透明補助容量電極109は、ソースライン105と画素電極111との間に設けられていることにより、透明シールド電極として作用するようになっている。
 液晶表示装置は、上記のようなアレイ基板と、例えば透明基板に格子状のブラックマトリクス、カラーフィルタ層、および対向電極が形成された対向基板とが、スペーサを介して貼り合わされ、間の空間に電気光学特性を有するネマティック液晶などが封入されて構成されている。
 上記のように構成された液晶表示装置では、IGZOなどから形成された酸化物半導体層104を有するスイッチング素子121が用いられている。このスイッチング素子121は、アモルファスシリコンが用いられたスイッチング素子に比べて、例えば図5に示すように大きな駆動能力を有している。この特性を利用すれば、画素電極111に十分に電荷を蓄積することが容易になるため、透明補助容量電極109の形状や大きさの自由度が増す。そこで、上記のように、透明補助容量電極109を、スイッチング素子121が設けられている領域、およびドレイン配線106の接続部106bと画素電極111の接続部111aとの接合領域を除く、各画素領域の全域にわたって設け、大きなシールド効果を得ることが容易に可能になる。
 それゆえ、例えば図6に示すように、画素電極111とソースライン105との間に生じる寄生容量を大幅に、かつ、確実に(例えばシールド効果がない場合に比べて2桁以上)低下させることができる。したがって、画素電極111とソースライン105との間のクロストークを確実に抑制してフリッカを低減することが可能になる。
 さらに、透明補助容量電極109が広い範囲にわたって設けられることにより、画素電極111との間に形成される補助容量が大きくなる。それゆえ、画素電極111とソースライン105との間の寄生容量の影響が小さくなるので、フリッカは一層小さく抑えられる。
 しかも、上記のようなスイッチング素子121は、図5に併せて示すように小さなオフリーク電流を有している(例えばアモルファスシリコンを用いた素子に比べて1/10以下。)。そのため、画素電極111に蓄積された電荷のリークが大幅に減少するので、上記補助容量の増大と相まって、やはり、フリッカが抑制される。
 (液晶表示装置の製造方法)
 次に、上記のような液晶表示装置の製造方法について説明する。
 まず、対向基板の製造方法を説明する。
(1)ガラス基板上に遮光膜(例えばTiを200nm)を成膜し、フォトリソグラフィ工程により所望の形状に加工する。
(2)その後、絶縁膜(例えばSiO2(200nm))を成膜する。
(3)さらに透明電極(例えばITOを100nm)をスパッタ法により成膜し、対向基板の完成となる。
 次に、アレイ基板の製造方法を説明する。
(1)ガラス基板等の透明基板101上に導電性膜(例えば、Ti(100nm)/Al (200nm) /Ti (30nm)の積層構造)を成膜し、フォトリソグラフィ工程により導電性膜を所望の形状に加工する(これがゲートライン102となる。)。
(2)次に絶縁膜(例えば、SiO2(50nm)/SiNx(325nm)の積層構造)を成膜する(これがゲート絶縁膜103となる。)。
(3)次にIGZO膜(例えば、50nm)を成膜し、フォトリソグラフィ工程によりIGZO膜を所望の形状に加工する(酸化物半導体層104)。
(4)次に導電性膜(例えば、Ti(100nm)/Al (200nm) /Ti (30nm)の積層構造)を成膜し、フォトリソグラフィ工程により導電性膜を所望の形状に加工する(これがソースライン105、ドレイン配線106となる。)。
(5)次に絶縁膜(例えば、SiO2(300nm))を成膜し、さらに感光性有機膜を塗布して表面を平坦化し(層間絶縁膜107、平坦化膜108)、フォトリソグラフィ工程により所望の位置にコンタクトホールを形成する。
(6)次に透明電極(例えばITOやIZOを100nm)をスパッタ法により成膜し、フォトリソグラフィ工程により透明電極を所望の形状に加工する(これが透明補助容量電極109となる。)。
(7)次に絶縁膜(例えば、SiO2(400nm))を成膜し(容量絶縁膜110)、透明電極(例えばITOやIZOを100nm)をスパッタ法により成膜し、フォトリソグラフィ工程により透明電極を所望の形状に加工する(これが画素電極111となる。)。
(8)次に例えばフォトスペーサーをアレイ基板上に配置する。
 上記のようにして製造された対向基板とアレイ基板とを貼り合せて液晶を注入し、基板を分断して、液晶表示装置(液晶パネル)の完成となる。
 (その他の事項)
 上記液晶表示装置の駆動について説明する。上記のように酸化物半導体層104を用いて構成された大きな駆動能力を有するスイッチング素子121が用いられているので、画素電極111への電荷の蓄積時間を容易に短縮でき、高速書き込みを容易に実現できる。また、スイッチング素子121のオフリーク電流が小さいので、例えば図7に示すように休止期間を設ける低周波駆動を行っても、画素電極111に蓄積された電荷のリークに起因するフリッカを小さく抑えることができる。
 上記のような高速書き込みや低周波駆動を行うことで、大幅な消費電力低減が実現できる。具体的には、例えば、ソースドライバに流れるアナログ電流は、図8に示す120Hz駆動の場合に常に大きな電流が流れているのに対して、図7に示す低周波駆動(5Hz)の場合には、1H期間の中でドライバを駆動する期間と休止する期間が設けられていることによって大幅に削減される。
 《実施形態2》
 画素電極111は、上記実施形態1(図1)で示したように画素領域内で連続的な形状に形成されるのに限らず、例えば、図9、図10に示すように複数のスリット111b等の開口部が形成された形状などに形成してもよい。すなわち、このような画素電極111を用いて、IPS(in plane switching)方式やAFFS(advanced fringe field switching)方式など、視野角特性の優れた表示モードの液晶表示装置を構成した場合でも、同様に、画素電極111とソースライン105との間に生じる寄生容量を低下させて、画素電極111とソースライン105との間のクロストークを確実に抑制し、フリッカを低減することが可能になる。
 《実施形態3》
 透明補助容量電極109は、ソースライン105と画素電極111とが重なり合う領域や、その近傍の十分に広い範囲にわたって設けられれば、例えば図11、図12に示すような長方形状、または他の形状の開口部109aを形成して、補助容量が大きくなりすぎないようにしてもよい。すなわち、ソースライン105から十分離れた位置で開口部109aが形成されていても、ソースライン105の近傍で透明補助容量電極109のシールド効果が十分に得られれば、画素電極111とソースライン105との間のクロストークを確実に抑制してフリッカを低減することができる。
 《実施形態4》
 透明補助容量電極が、低抵抗化処理された酸化物半導体層によって形成された液晶表示装置の例について説明する。
 この液晶表示装置では、酸化物半導体層が用いられてスイッチング素子と透明補助容量電極とが同一レイヤーに形成されている。すなわち、酸化物半導体層をソースライン上に形成し、その後、酸化物半導体層の一部を低抵抗化することにより、スイッチング素子のソース領域やドレイン領域、および透明シールド電極である透明補助容量電極が形成される一方、低抵抗化されなかった部分により、スイッチング素子のチャネル領域が形成されている。以下、具体的に説明する。
 (液晶表示装置の構成)
 実施形態4の液晶表示装置を構成するアレイ基板は、例えば図13~図15に示すように、
 透明基板201と、
 透明基板201上に互いに平行に延びるよう設けられた複数のソースライン202と、
 各ソースライン202を覆うように設けられた絶縁膜203と、
 絶縁膜203上に設けられたソース領域204a、チャネル領域204b、ドレイン領域204c、透明補助容量電極204d、および接続部204eである酸化物半導体層204と、
 酸化物半導体層204におけるチャネル領域204b上に設けられたゲート絶縁膜205と、
 各ソースライン202と直交する方向に互いに平行に延びるように設けられた複数のゲートライン207と、
 ゲートライン207から突出した部分によって形成され、ゲート絶縁膜205を覆うように設けられたゲート電極206と、
 各酸化物半導体層204、各ゲート電極206、およびゲートライン207を覆うように設けられた層間絶縁膜208および平坦化膜209と、
 平坦化膜209上にマトリクス状に設けられ、各酸化物半導体層204のドレイン領域204cに連続する接続部204eにそれぞれ接続された複数の画素電極210と、
 各画素電極210を覆うように設けられた配向膜(不図示)とを備えている。
 スイッチング素子221(TFT:薄膜トランジスタ)は、ゲート電極206と、ゲート絶縁膜205と、酸化物半導体層204におけるソース領域204a、チャネル領域204b、およびドレイン領域204cとで構成されている。上記酸化物半導体層204は、例えばインジウム、ガリウム、亜鉛および酸素を主成分とするIGZOによって形成されている。この酸化物半導体層204の一部は、そのままスイッチング素子221のチャネル領域204bとされる一方、後述するように低抵抗化処理されることによって、ソース領域204a、ドレイン領域204c、および透明補助容量電極204dが形成されている。
 透明補助容量電極204dは、実施形態1と同様に、スイッチング素子221が設けられている領域、およびドレイン領域204cに連続する接続部204eと画素電極210の接続部210aとの接合領域を除く、各画素領域の全域にわたって、すなわち縦横に隣り合う画素領域にわたって連続して設けられている。この透明補助容量電極204dは、層間絶縁膜208、および平坦化膜209を介して画素電極210に対向することにより、各副画素ごとに補助容量を構成している。また、この透明補助容量電極204dは、ソースライン202と画素電極210との間に設けられていることにより、透明シールド電極として作用するようになっている。
 液晶表示装置は、上記のようなアレイ基板と、例えば透明基板に格子状のブラックマトリクス、カラーフィルタ層、および対向電極が形成された対向基板とが、スペーサを介して貼り合わされ、間の空間に電気光学特性を有するネマティック液晶などが封入されて構成されている。
 (液晶表示装置の製造方法)
 次に、上記のような液晶表示装置のアレイ基板の製造方法について説明する。
(1)(図16、図17)導電性膜を成膜し、フォトリソグラフィによりソースライン202を形成する。また、絶縁膜203を成膜し、所定の位置にコンタクトホールを空けた後、酸化物半導体層204’を成膜し、形状を加工する。
(2)(図18、図19)絶縁膜を成膜した後、導電性膜を成膜し、フォトリソグラフィにより形状を加工する(ゲート絶縁膜205、ゲート電極206、ゲートライン207)。その際、絶縁膜と導電性膜を一括でエッチング加工する。
(3)(図20、図21)還元性プラズマに曝すなどして、酸化物半導体層204’における、ゲート電極206によってマスクされる部分(チャネル領域204b)以外の部分を低抵抗化する(ソース領域204a、ドレイン領域204c、透明補助容量電極204d、接続部204e)。より詳しくは、形成した酸化物半導体層204をフッ素、水素、ホウ素の少なくともいずれか1つの元素を含むプラズマに曝すことにより低抵抗化する。例えば、CVD法やドーピング法などを用い、酸化物半導体層204が形成された基板の上面をプラズマ雰囲気下に所定時間曝すことで、露出する部分の酸化物半導体層204’が改質され、低抵抗化される。
(4)(図22、図23)層間絶縁膜208、平坦化膜209を成膜し、スイッチング素子221の接続部204eの上部にコンタクトホールを開け、画素電極210を形成する。
 上記のように、スイッチング素子221部と、透明シールド電極である透明補助容量電極204dとを同時に形成することができるため、工程数、マスク枚数を低減して、プロセスフローを短縮できる。すなわち、実施形態1の場合であれば、ゲートライン成膜・加工、ゲート絶縁膜成膜、酸化物半導体層成膜・加工、ソースライン成膜・加工、保護絶縁膜成膜・加工、平坦化膜成膜・加工、透明補助容量電極(透明シールド電極)成膜・加工、絶縁膜成膜・加工、画素電極成膜・加工の工程で合計8枚のマスクが必要とされるのに対し、本実施形態では、ソースライン成膜・加工、絶縁膜成膜・加工、酸化物半導体層成膜・加工、ゲート絶縁膜・ゲートライン成膜・加工、酸化物半導体層低抵抗化、保護絶縁膜成膜・加工、平坦化膜成膜・加工、画素電極成膜・加工の工程で合計7枚のマスクですむ。それゆえ、工程数やマスク枚数を低減できるとともに、精度を向上させて特性のばらつきを低減することなども容易にできる。
 なお、上記の例では、ソースライン105・202と画素電極111・210とがオーバラップしている例を示したが、オーバラップしていない場合でも、これらの近接部分で発生する寄生容量を抑制できるので、やはり、クロストークを確実に抑制してフリッカを低減する効果は得られる。
 また、上記各実施形態で説明した構成要素は、論理的に矛盾しない範囲で種々組み合わせてもよい。具体的には、例えば実施形態2、3で説明したような画素電極111や透明補助容量電極109の形状を実施形態4の液晶表示装置に適用したりしてもよい。
 以上説明したように、本発明は、アクティブマトリクス型の液晶表示装置について有用である。
    101   透明基板
    102   ゲートライン
    103   ゲート絶縁膜
    104   酸化物半導体層
    105   ソースライン
    105a  ソース電極
    106   ドレイン配線
    106a  ドレイン電極
    106b  接続部
    107   層間絶縁膜
    108   平坦化膜
    109   透明補助容量電極
    109a  開口部
    110   容量絶縁膜
    111   画素電極
    111a  接続部
    111b  スリット
    121   スイッチング素子
    201   透明基板
    202   ソースライン
    203   絶縁膜
    204   酸化物半導体層
    204’  酸化物半導体層
    204a  ソース領域
    204b  チャネル領域
    204c  ドレイン領域
    204d  透明補助容量電極
    204e  接続部
    205   ゲート絶縁膜
    206   ゲート電極
    207   ゲートライン
    208   層間絶縁膜
    209   平坦化膜
    210   画素電極
    210a  接続部
    221   スイッチング素子

Claims (10)

  1.  格子状に設けられたゲートラインおよびソースラインと、
     上記ゲートラインとソースラインとの交差位置に対応してマトリクス状に設けられた画素電極と、
     上記画素電極との間に補助容量を形成する透明補助容量電極と、
     上記ゲートラインから与えられる走査信号に応じて、上記ソースラインから供給される画像信号電圧を上記画素電極に印加するスイッチング素子と、
     を備え、
     上記スイッチング素子は、酸化物半導体を用いて構成されるとともに、
     上記透明補助容量電極は、上記ソースラインと上記画素電極との間に設けられていることを特徴とする液晶表示装置。
  2.  請求項1の液晶表示装置であって、
     上記透明補助容量電極は、上記スイッチング素子が設けられている領域、および上記スイッチング素子と上記画素電極とが接続される領域を除く、各画素領域の全域にわたって設けられていることを特徴とする液晶表示装置。
  3.  請求項1および請求項2のうち何れか1項の液晶表示装置であって、
     上記透明補助容量電極は、縦横に隣り合う画素領域にわたって連続して設けられていることを特徴とする液晶表示装置。
  4.  請求項1から請求項3のうち何れか1項の液晶表示装置であって、
     上記透明補助容量電極は、低抵抗化された酸化物半導体を用いて構成されていることを特徴とする液晶表示装置。
  5.  請求項4の液晶表示装置であって、
     上記透明補助容量電極は、上記スイッチング素子を構成する酸化物半導体と同一の層に形成されていることを特徴とする液晶表示装置。
  6.  請求項5の液晶表示装置であって、
     上記スイッチング素子は、さらに、ゲート絶縁膜、およびゲート電極を有し、上記スイッチング素子を構成する酸化物半導体、上記ゲート絶縁膜、および上記ゲート電極が、基板上に順に積層されて構成されていることを特徴とする液晶表示装置。
  7.  請求項6の液晶表示装置であって、
     上記透明補助容量電極を構成する酸化物半導体は、上記スイッチング素子のゲート電極によってマスクされない領域が低抵抗化処理されることにより形成されていることを特徴とする液晶表示装置。
  8.  請求項1から請求項7のうち何れか1項の液晶表示装置であって、
     上記画素電極には、互いに平行な複数のスリットが形成されていることを特徴とする液晶表示装置。
  9.  請求項1から請求項8のうち何れか1項の液晶表示装置であって、
     上記画素電極は、縁部が上記ソースラインと重なり合うように設けられていることを特徴とする液晶表示装置。
  10.  格子状に設けられたゲートラインおよびソースラインと、
     上記ゲートラインとソースラインとの交差位置に対応してマトリクス状に設けられた画素電極と、
     上記画素電極との間に補助容量を形成する補助容量電極と、
     上記ゲートラインから与えられる走査信号に応じて、上記ソースラインから供給される画像信号電圧を上記画素電極に印加するスイッチング素子と、
     を備え、
     上記スイッチング素子は、酸化物半導体を用いて構成されるとともに、
     上記補助容量電極は、上記ソースラインと上記画素電極との間に設けられ、低抵抗化された酸化物半導体を用いて構成された液晶表示装置の製造方法であって、
     基板上に導電体層を形成し、パターニングしてソースラインを形成する工程と、
     ソースラインの上層に酸化物半導体層を形成し、スイッチング素子のソース電極、ドレイン電極、およびチャネル領域となる領域、ならびに補助容量電極となる領域にパターニングする工程と、
     上記酸化物半導体層上に、絶縁膜層、および導電体層を順に形成し、パターニングして、ゲート絶縁膜、ゲートライン、およびゲート電極を形成する工程と、
     ゲート電極をマスクとして、上記酸化物半導体層を低抵抗化し、スイッチング素子のソース電極、ドレイン電極、および補助容量電極を形成する工程と、
     スイッチング素子のドレイン電極、および補助容量電極の上層に導電体層を形成し、パターニングして画素電極を形成する工程と、
     を有することを特徴とする液晶表示装置の製造方法。
PCT/JP2012/004959 2011-08-10 2012-08-03 液晶表示装置、および液晶表示装置の製造方法 WO2013021607A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280037025.8A CN103765306B (zh) 2011-08-10 2012-08-03 液晶显示装置和液晶显示装置的制造方法
US14/234,450 US9261746B2 (en) 2011-08-10 2012-08-03 Liquid crystal display device and manufacturing method of liquid crystal display device
JP2013527884A JP5784732B2 (ja) 2011-08-10 2012-08-03 液晶表示装置、および液晶表示装置の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-174511 2011-08-10
JP2011174511 2011-08-10

Publications (1)

Publication Number Publication Date
WO2013021607A1 true WO2013021607A1 (ja) 2013-02-14

Family

ID=47668144

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/004959 WO2013021607A1 (ja) 2011-08-10 2012-08-03 液晶表示装置、および液晶表示装置の製造方法

Country Status (4)

Country Link
US (1) US9261746B2 (ja)
JP (1) JP5784732B2 (ja)
CN (1) CN103765306B (ja)
WO (1) WO2013021607A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140143094A (ko) * 2013-06-05 2014-12-15 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시 장치 및 전자 기기
JP2016031465A (ja) * 2014-07-29 2016-03-07 株式会社ジャパンディスプレイ 液晶表示装置
JP2016153885A (ja) * 2015-02-13 2016-08-25 株式会社半導体エネルギー研究所 半導体装置およびその作製方法
JP2018152581A (ja) * 2013-06-28 2018-09-27 株式会社半導体エネルギー研究所 半導体装置
JP2018205749A (ja) * 2013-09-13 2018-12-27 株式会社半導体エネルギー研究所 表示装置
US11201175B2 (en) 2018-11-21 2021-12-14 Sharp Kabushiki Kaisha Array substrate with capacitance forming portion to hold potential at electrode

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203941365U (zh) 2014-07-09 2014-11-12 京东方科技集团股份有限公司 阵列基板、显示面板及显示装置
KR102508446B1 (ko) 2015-12-31 2023-03-10 삼성디스플레이 주식회사 표시 장치 및 그 구동 방법
CN109791745A (zh) * 2016-09-27 2019-05-21 夏普株式会社 显示面板
WO2018100466A1 (en) * 2016-11-30 2018-06-07 Semiconductor Energy Laboratory Co., Ltd. Display device, display module, and electronic device
JP2022178523A (ja) * 2021-05-20 2022-12-02 シャープディスプレイテクノロジー株式会社 アクティブマトリクス基板および液晶表示装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010160308A (ja) * 2009-01-08 2010-07-22 Seiko Epson Corp 電気光学装置及び電子機器
JP2010230744A (ja) * 2009-03-26 2010-10-14 Videocon Global Ltd 液晶表示装置及びその製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW460731B (en) * 1999-09-03 2001-10-21 Ind Tech Res Inst Electrode structure and production method of wide viewing angle LCD
TWI247182B (en) * 2000-09-29 2006-01-11 Toshiba Corp Flat panel display device and method for manufacturing the same
JP4114409B2 (ja) * 2002-06-13 2008-07-09 カシオ計算機株式会社 表示装置
JP2006344849A (ja) * 2005-06-10 2006-12-21 Casio Comput Co Ltd 薄膜トランジスタ
JP2007115807A (ja) * 2005-10-19 2007-05-10 Toppan Printing Co Ltd トランジスタ
JP4572854B2 (ja) * 2006-03-29 2010-11-04 ソニー株式会社 液晶装置及び電子機器
JP5216204B2 (ja) * 2006-10-31 2013-06-19 株式会社半導体エネルギー研究所 液晶表示装置及びその作製方法
US10644163B2 (en) * 2008-08-27 2020-05-05 Idemitsu Kosan Co., Ltd. Semiconductor film comprising an oxide containing in atoms, Sn atoms and Zn atoms
TWI634642B (zh) * 2009-08-07 2018-09-01 半導體能源研究所股份有限公司 半導體裝置和其製造方法
KR101746198B1 (ko) * 2009-09-04 2017-06-12 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시장치 및 전자기기
KR102378013B1 (ko) * 2009-11-06 2022-03-24 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 반도체 장치의 제작 방법
WO2013099155A1 (ja) * 2011-12-26 2013-07-04 シャープ株式会社 アクティブマトリクス基板及びそれを備えた液晶表示パネル

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010160308A (ja) * 2009-01-08 2010-07-22 Seiko Epson Corp 電気光学装置及び電子機器
JP2010230744A (ja) * 2009-03-26 2010-10-14 Videocon Global Ltd 液晶表示装置及びその製造方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102249903B1 (ko) * 2013-06-05 2021-05-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시 장치 및 전자 기기
JP2015179235A (ja) * 2013-06-05 2015-10-08 株式会社半導体エネルギー研究所 表示装置及び電子機器
JP2018112766A (ja) * 2013-06-05 2018-07-19 株式会社半導体エネルギー研究所 表示装置
KR20140143094A (ko) * 2013-06-05 2014-12-15 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시 장치 및 전자 기기
JP2019168718A (ja) * 2013-06-05 2019-10-03 株式会社半導体エネルギー研究所 表示装置
US10503018B2 (en) 2013-06-05 2019-12-10 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
JP7261278B2 (ja) 2013-06-28 2023-04-19 株式会社半導体エネルギー研究所 液晶表示装置
JP2022020664A (ja) * 2013-06-28 2022-02-01 株式会社半導体エネルギー研究所 液晶表示装置
JP2018152581A (ja) * 2013-06-28 2018-09-27 株式会社半導体エネルギー研究所 半導体装置
JP2018205749A (ja) * 2013-09-13 2018-12-27 株式会社半導体エネルギー研究所 表示装置
JP2016031465A (ja) * 2014-07-29 2016-03-07 株式会社ジャパンディスプレイ 液晶表示装置
JP2016153885A (ja) * 2015-02-13 2016-08-25 株式会社半導体エネルギー研究所 半導体装置およびその作製方法
US11201175B2 (en) 2018-11-21 2021-12-14 Sharp Kabushiki Kaisha Array substrate with capacitance forming portion to hold potential at electrode

Also Published As

Publication number Publication date
CN103765306B (zh) 2016-08-31
CN103765306A (zh) 2014-04-30
US9261746B2 (en) 2016-02-16
US20140176845A1 (en) 2014-06-26
JP5784732B2 (ja) 2015-09-24
JPWO2013021607A1 (ja) 2015-03-05

Similar Documents

Publication Publication Date Title
JP5784732B2 (ja) 液晶表示装置、および液晶表示装置の製造方法
US8852975B2 (en) Array substrate for fringe field switching mode liquid crystal display device and method for fabricating the same
JP4385993B2 (ja) 液晶表示装置及びその製造方法
JP7085352B2 (ja) 表示装置
US9508750B2 (en) Thin film transistor substrate and method for manufacturing the same
JP2018074076A (ja) 表示装置
JP5379331B2 (ja) 半導体装置の製造方法
WO2020021938A1 (ja) 表示装置
WO2011151955A1 (ja) 半導体素子、薄膜トランジスタ基板及び表示装置
JP2020134674A (ja) 表示装置及び半導体装置
TWI584468B (zh) 主動矩陣基板及液晶顯示裝置
WO2018131649A1 (ja) アクティブマトリクス基板、液晶表示パネルおよび液晶表示パネルの製造方法
WO2013171989A1 (ja) アレイ基板及びそれを備えた液晶表示パネル
US9627412B2 (en) Liquid crystal display device
KR20160012082A (ko) 표시 장치
TWI490615B (zh) 用於邊緣電場切換模式液晶顯示裝置的陣列基板及其製造方法
JP6482256B2 (ja) 薄膜トランジスタ基板および液晶表示装置
US9064978B2 (en) Pixel structure and fabricating method thereof
KR101970550B1 (ko) 박막트랜지스터 기판 및 그 제조 방법
KR102271231B1 (ko) 액정표시장치 및 그 제조방법
WO2013014885A1 (ja) アクティブマトリクス基板及びそれを備えた液晶表示パネル
KR102219668B1 (ko) 박막트랜지스터 기판 및 이를 이용한 터치 장치
CN118284984A (zh) 有源矩阵基板及液晶显示装置
WO2018181142A1 (ja) アクティブマトリクス基板、液晶表示装置
JP2011108706A (ja) 表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12821788

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013527884

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14234450

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12821788

Country of ref document: EP

Kind code of ref document: A1