WO2013018281A1 - 抵抗変化型不揮発性記憶装置およびその駆動方法 - Google Patents

抵抗変化型不揮発性記憶装置およびその駆動方法 Download PDF

Info

Publication number
WO2013018281A1
WO2013018281A1 PCT/JP2012/004348 JP2012004348W WO2013018281A1 WO 2013018281 A1 WO2013018281 A1 WO 2013018281A1 JP 2012004348 W JP2012004348 W JP 2012004348W WO 2013018281 A1 WO2013018281 A1 WO 2013018281A1
Authority
WO
WIPO (PCT)
Prior art keywords
memory cell
resistance
voltage
defective
current
Prior art date
Application number
PCT/JP2012/004348
Other languages
English (en)
French (fr)
Inventor
裕司 友谷
一彦 島川
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US13/698,154 priority Critical patent/US8699261B2/en
Priority to JP2012538011A priority patent/JP5128727B1/ja
Priority to CN201280001342.4A priority patent/CN103052990B/zh
Publication of WO2013018281A1 publication Critical patent/WO2013018281A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0007Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements comprising metal oxide memory material, e.g. perovskites
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0069Writing or programming circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C29/50Marginal testing, e.g. race, voltage or current testing
    • G11C29/50008Marginal testing, e.g. race, voltage or current testing of impedance
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/70Masking faults in memories by using spares or by reconfiguring
    • G11C29/76Masking faults in memories by using spares or by reconfiguring using address translation or modifications
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/30Resistive cell, memory material aspects
    • G11C2213/32Material having simple binary metal oxide structure
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/50Resistive cell structure aspects
    • G11C2213/56Structure including two electrodes, a memory active layer and a so called passive or source or reservoir layer which is NOT an electrode, wherein the passive or source or reservoir layer is a source of ions which migrate afterwards in the memory active layer to be only trapped there, to form conductive filaments there or to react with the material of the memory active layer in redox way
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/70Resistive array aspects
    • G11C2213/71Three dimensional array
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/70Resistive array aspects
    • G11C2213/72Array wherein the access device being a diode

Definitions

  • the present invention relates to a variable resistance nonvolatile memory device and a driving method thereof, and in particular, reversibly transitions between a low resistance state and a high resistance state having a higher resistance value than the low resistance state by application of a voltage pulse.
  • the present invention relates to a variable resistance nonvolatile memory device having a memory cell composed of a variable resistance element and a current control element represented by a diode element, and a driving method thereof.
  • the resistance change element refers to an element having a property that the resistance value reversibly changes by an electrical signal, and further capable of storing data corresponding to the resistance value in a nonvolatile manner.
  • nonvolatile memory device using a resistance change element As a nonvolatile memory device using a resistance change element, a so-called 1T1R type memory in which a MOS transistor and a resistance change element are connected in series at a position near the intersection of a bit line and a word line arranged orthogonally A nonvolatile memory device in which cells are arranged in a matrix is generally known.
  • a non-volatile memory device having a cross-point structure in which memory cells called 1D1R type using a diode that is a current control element instead of a transistor and arranged in a matrix is generally known (for example, a patent) References 1 and 2).
  • Patent Document 1 discloses a 1D1R type nonvolatile memory device using a variable resistance element having bidirectional resistance change characteristics as a memory cell.
  • Patent Document 2 discloses a method for detecting a defect of a nonlinear element in a 1D1R type memory cell using a unidirectional variable resistance element as a memory cell.
  • JP 2006-203098 A (FIG. 2) JP 2009-199695 A (FIG. 6)
  • an object of the present invention is to provide a highly reliable resistance change nonvolatile memory device capable of stable operation and a method of driving the resistance change nonvolatile memory device. .
  • a variable resistance nonvolatile memory device includes a variable resistance element that reversibly changes its resistance value in response to an applied write voltage pulse, and is connected in series with the variable resistance element.
  • a variable resistance element that reversibly changes its resistance value in response to an applied write voltage pulse, and is connected in series with the variable resistance element.
  • a memory cell selection circuit for selecting the memory cell, and applying a voltage pulse to the selected memory cell to thereby select the selected memory cell.
  • a first voltage higher than the threshold voltage or a second voltage lower than or equal to the threshold voltage is applied to the write circuit that rewrites the resistance value of the resistance change element of the cell and the current control element of the selected memory cell.
  • a read circuit that reads a state of the selected memory cell by applying a read voltage to the selected memory cell, and the write circuit has a first low resistance as the write voltage pulse
  • each of the resistance change elements of the selected memory cell among the plurality of memory cells is in a first low resistance state.
  • the first high resistance state is set, and the reading circuit is a memory cell in which the selected memory cell does not have a defect and
  • the resistance state of the variable resistance element of the selected memory cell is read by applying the first voltage to the selected memory cell, the first memory cell is selected if the selected memory cell is in the first low resistance state.
  • a current having a predetermined value of 1 is detected; if the current is in the first high resistance state, a current having a second predetermined value is detected; and the reading circuit is a resistance state of the resistance change element of the selected memory cell Is read, the selected memory cell has a current greater than the first predetermined value or the second predetermined value corresponding to the first low resistance state or the first high resistance state, respectively.
  • the selected memory cell is determined as a defective memory cell having a defect, and the write circuit is disposed on at least one of the same bit line and the same word line as the defective memory cell.
  • a second high-resistance element that exhibits a resistance value equal to or greater than a resistance value in the first low-resistance state of the resistance change element of the other memory cell with respect to other memory cells than the defective memory cell.
  • a second high-resistance pulse is applied so as to be in the state.
  • FIG. 1 is a schematic diagram showing a basic structure of a memory cell according to an embodiment of the present invention.
  • FIG. 2 is an equivalent circuit diagram of the memory cell according to the embodiment of the present invention.
  • FIG. 3A is a diagram illustrating the voltage-current characteristics of the memory cell.
  • FIG. 3B is a diagram illustrating a resistance voltage characteristic of the variable resistance element.
  • FIG. 4 is a diagram showing voltage-current characteristics of normal memory cells and defective memory cells.
  • FIG. 5 is a configuration diagram of a variable resistance nonvolatile memory device.
  • FIG. 6A is a diagram illustrating an example of an address conversion table.
  • FIG. 6B is a circuit diagram illustrating an example of a configuration of the reading circuit.
  • FIG. 7 is a circuit diagram for explaining a current path in the read mode.
  • FIG. 1 is a schematic diagram showing a basic structure of a memory cell according to an embodiment of the present invention.
  • FIG. 2 is an equivalent circuit diagram of the memory cell according to the embodiment of the
  • FIG. 8 is an equivalent circuit diagram of the circuit diagram of FIG.
  • FIG. 9 is a circuit diagram for explaining a current path in the read mode.
  • FIG. 10 is an equivalent circuit diagram of the circuit diagram of FIG.
  • FIG. 11 is a circuit diagram for explaining a current path in the cell characteristic determination mode.
  • 12 is an equivalent circuit diagram of the circuit diagram of FIG. FIG. 13 is a truth table for each mode.
  • FIG. 14A is an example of a determination flow in the current control element characteristic determination mode.
  • FIG. 14B is an example of a determination flow in the current control element characteristic determination mode.
  • FIG. 15 is an example of a determination flow in the resistance change element characteristic determination mode.
  • FIG. 16 is an example of a determination flow in the relief mode.
  • FIG. 17 is a circuit diagram showing an example of the configuration of the write circuit.
  • FIG. 17 is a circuit diagram showing an example of the configuration of the write circuit.
  • FIG. 18 is a diagram illustrating an example of voltage-current characteristics of the voltage applied to the selected bit line and the flowing current.
  • FIG. 19 is a circuit diagram showing an example of the configuration of the write circuit.
  • FIG. 20 is a configuration diagram of a variable resistance nonvolatile memory device.
  • FIG. 21 is an example of a determination flow in the relief mode.
  • FIG. 22A is a diagram showing an example of the arrangement of the main memory cell array and the redundant memory cell array.
  • FIG. 22B is a diagram showing an example of the arrangement of the main memory cell array and the redundant memory cell array.
  • FIG. 22C is a diagram showing an example of the arrangement of the main memory cell array and the redundant memory cell array.
  • FIG. 23 is an example of a determination flow in the relief mode.
  • FIG. 23 is an example of a determination flow in the relief mode.
  • FIG. 24 is an example of a determination flow in the relief mode.
  • FIG. 25 is a configuration diagram of a conventional nonvolatile memory cell.
  • FIG. 26 is a configuration diagram of a conventional nonvolatile memory cell array.
  • FIG. 27 is a model of a memory cell using a conventional unidirectional diode.
  • nonvolatile memory devices As described above, as a nonvolatile memory device using a resistance change element, there are generally known nonvolatile memory devices having a cross-point structure in which memory cells called 1T1R type and memory cells called 1D1R type are arranged in a matrix. It has been.
  • FIG. 25 is a configuration diagram of a conventional nonvolatile memory cell, and shows a 1D1R nonvolatile memory device using a variable resistance element having bidirectional resistance change characteristics as a memory cell (Patent Document 1). reference).
  • a memory cell 1280 in which a variable resistance element 1260 having a variable resistor 1230 sandwiched between an upper electrode 1240 and a lower electrode 1250 and a non-linear element 1270 are connected in series is an intersection of a bit line 1210 and a word line 1220.
  • 2 shows a memory cell array having a cross-point structure arranged at a portion where the cross-section is located.
  • variable resistance element 1260 is a variable resistance element having a bidirectional resistance change characteristic in which a resistance value reversibly transitions between a low resistance state and a high resistance state depending on the polarity of an applied voltage.
  • the non-linear element 1270 is constituted by, for example, a varistor for the purpose of reducing a so-called leakage current flowing through the non-selected cell.
  • a memory cell array having a cross-point structure can have a large capacity because memory cells can be arranged at a wiring pitch and the memory cell arrays can be stacked three-dimensionally.
  • FIG. 26 is a configuration diagram of a conventional nonvolatile memory cell array, and shows a defect detection method for a nonlinear element in a 1D1R type memory cell using a unidirectional variable resistance element as a memory cell (Patent Document 2). reference).
  • a memory cell in which a unidirectional variable resistance element and a unidirectional diode element having an anode and a cathode are connected in series are shown as bit lines BL1, BL2, BL3 and word lines WL1, WL2, WL3. It is placed at the intersection.
  • Patent Document 2 discloses that the bit line to which the defective diode element belongs is detected as a defective bit line.
  • FIG. 27 is a model of a memory cell using a conventional unidirectional diode.
  • the defect detection circuit 2053 includes a bit line power supply circuit 2054, a latch circuit 2531, and a switch circuit 2055, and is connected to a bit line connected to the bit line selection circuit 2024.
  • the unit 2052 a defective bit line to which a defective diode element is connected is detected, and a relief method is disclosed.
  • Patent Document 2 describes a method for detecting a defective bit line in a unidirectional memory cell array using a unidirectional diode element having an anode and a cathode. That is, it describes a method for detecting a defective bit line causing a leakage current abnormality by utilizing the fact that a current flows when a voltage is applied in the forward direction and no current flows when a voltage is applied in the reverse direction. .
  • By setting all the bit lines to the Vdd potential, all the word lines to the Vss potential, and setting the diode elements to the reverse bias state current does not flow if all the memory cells are normal, but leakage current abnormality occurs. If there is a defective memory cell, a leak current flows from the bit line including the defective memory cell to the word line. By determining this leakage current, it is possible to detect a defective bit line causing a leakage current abnormality.
  • a bidirectional memory cell array using a bidirectional current control element for example, an MSM diode or an MIM diode
  • a defective memory cell in which a leakage current abnormality occurs cannot be detected.
  • the defect detection circuit 2053 since the defect detection circuit 2053 is connected only to the bit line, it can detect the defective bit line causing the leakage current abnormality, but is connected to the defective bit line. Another problem is that it cannot be detected which memory cell is defective.
  • Memory cell defects include not only defects in which leakage current abnormality occurs because the current control element has caused a short circuit defect, but also the resistance state of the resistance change element is stuck in an ultra-low resistance state. There is also a defect that the resistance change element does not transition to a high resistance state or a low resistance state even when a voltage is applied to the resistor.
  • the resistance change element of the defective memory cell is increased in resistance, thereby suppressing the leakage current abnormality and the leakage current of the defective memory cell having the short circuit defect is normal. The influence on the memory cell can be suppressed.
  • variable resistance element has the above-described defect, it is difficult to increase the resistance of the variable resistance element stuck in the ultra-low resistance state, and the defective memory cell gives to another normal memory cell. The impact cannot be suppressed. Therefore, there is a possibility that the operation of other normal memory cells may become unstable due to a leak current flowing through the defective memory cell.
  • variable resistance nonvolatile memory device capable of stable operation and a driving method of the variable resistance nonvolatile memory device will be described.
  • a variable resistance nonvolatile memory device includes a variable resistance element that reversibly changes its resistance value in response to an applied write voltage pulse, and is connected in series with the variable resistance element.
  • a variable resistance element that reversibly changes its resistance value in response to an applied write voltage pulse, and is connected in series with the variable resistance element.
  • a memory cell selection circuit for selecting the memory cell, and applying a voltage pulse to the selected memory cell to thereby select the selected memory cell.
  • a first voltage higher than the threshold voltage or a second voltage lower than or equal to the threshold voltage is applied to the write circuit that rewrites the resistance value of the resistance change element of the cell and the current control element of the selected memory cell.
  • a read circuit that reads a state of the selected memory cell by applying a read voltage to the selected memory cell, and the write circuit has a first low resistance as the write voltage pulse
  • the write circuit has a first low resistance as the write voltage pulse
  • each of the resistance change elements of the selected memory cell among the plurality of memory cells is in a first low resistance state.
  • the first high resistance state is set, and the reading circuit is configured so that the selected memory cell has no defective memory cell (normal memory).
  • the selected memory cell is A first predetermined value current is detected in the resistance state, a second predetermined value current is detected in the first high resistance state, and the resistance of the variable resistance element of the selected memory cell is detected.
  • the selected memory cell has a current of the first predetermined value or the second predetermined value corresponding to the first low resistance state or the first high resistance state, respectively.
  • the selected memory cell is determined as a defective memory cell having a defect, and the write circuit is arranged on at least one of the same bit line and the same word line as the defective memory cell.
  • a second high-resistance element that exhibits a resistance value equal to or greater than a resistance value in the first low-resistance state of the resistance change element of the other memory cell with respect to other memory cells than the defective memory cell.
  • a second high-resistance pulse is applied so as to be in the state.
  • a memory cell including a current control element having a short defect or a defective memory cell having a defective resistance change element is provided. Identifies and puts the other memory cells arranged on the same bit line and word line as the defective memory cell into the second high resistance state, so that the defective memory cell can be relieved without increasing the resistance of the defective memory cell. can do. As a result, a highly reliable variable resistance nonvolatile memory device can be realized.
  • a memory cell current flowing in a normal memory cell when the variable resistance element is in the first low resistance state is referred to as a first predetermined value.
  • the memory cell current flowing in a normal memory cell when the variable resistance element is in the first high resistance state is referred to as a second predetermined value.
  • the write circuit may include the resistance change element of the other memory cell with respect to other memory cells other than the defective memory cell arranged on the same bit line and word line as the defective memory cell. It is preferable to apply the third high-resistance pulse so that the third high-resistance state showing a resistance value equal to or higher than the first high-resistance state is obtained.
  • the read circuit applies the second voltage to the selected memory cell, and when a current larger than the first predetermined value flows, the selected memory cell has a defective memory cell having a short circuit defect. It is preferable to determine that
  • the write circuit applies the first high-resistance pulse so as to bring the variable resistance element of the selected memory cell into the first high-resistance state, and the read circuit selects the selected high-resistance pulse.
  • the first voltage is applied to the memory cell to read the resistance state of the variable resistance element of the selected memory cell, and the current flowing through the selected memory cell is larger than the current of the second predetermined value, It is preferable to determine that the variable resistance element of the selected memory cell is defective.
  • the second voltage is applied to the selected memory cell, and is larger than the first predetermined value.
  • the selected memory cell is a defective memory cell having a short circuit defect.
  • variable resistance element since the failure of the current control element is detected after the variable resistance element is set to the first low resistance state, the defective memory cell can be detected more reliably. As a result, a highly reliable variable resistance nonvolatile memory device can be realized.
  • the write circuit causes the resistance change element to be in the defective memory cell so that the resistance change element of the defective memory cell is in a fourth high resistance state indicating a resistance value equal to or higher than the first low resistance state. It is preferable to apply a fourth high resistance pulse having an absolute value of a voltage equal to or higher than the absolute value of the pulse voltage at which the element starts to increase in resistance.
  • the memory cell array includes a main memory cell array having a plurality of memory cells for main storage, and the same memory cell as the defective memory cell when at least one of the memory cells in the main memory cell array is a defective memory cell. It is preferable to include a redundant memory cell array including a plurality of redundant memory cells to be used by replacing other memory cells arranged on at least one of the bit line and the word line.
  • the redundant memory cell since the redundant memory cell is provided, the redundant memory cell can be used instead of the memory cell with high resistance. As a result, a variable resistance nonvolatile memory device with higher reliability can be realized.
  • variable resistance nonvolatile memory device includes address information of another memory cell arranged on at least one of the same bit line or word line as the defective memory cell and address information of the redundant memory cell. It is preferable to provide a defective address storage circuit that stores the data in association with each other.
  • the defective address storage circuit replaces the address of the bit line having the defective memory cell with another memory cell other than the defective memory cell arranged on the same bit line as the defective memory cell. It is preferable to store the address of the bit line having the memory cell in association with each other.
  • the defective address storage circuit replaces the address of the word line having the defective memory cell with another memory cell other than the defective memory cell arranged on the same word line as the defective memory cell. It is preferable to store the address of the word line having the memory cell in association with each other.
  • Another memory cell arranged on the same word line as the defective memory cell can be replaced with a redundant memory cell.
  • a storage device can be realized.
  • a resistance change type nonvolatile memory device driving method including a resistance change element whose resistance value reversibly changes in accordance with an applied write voltage pulse, and the resistance change element in series.
  • Each of the plurality of memory cells is provided with a memory cell array, wherein the memory cell is selected from the plurality of memory cells by a write circuit.
  • a first voltage step higher than the threshold voltage is applied to the selected memory cell by a writing step for setting the first high resistance state and a read circuit, and the resistance change element of the selected memory cell is changed.
  • a current flowing through the selected memory cell when the selected memory cell is a memory cell having no defect and in the first high resistance state is a second predetermined value current
  • a failure detection step for determining that the selected memory cell is a defective memory cell when a current larger than the second predetermined current flows, and the write circuit With respect to other normal memory cells other than the defective memory cell arranged on at least one of the same bit line and word line as the defective memory cell, the resistance change element of the other memory cell is connected to the first memory cell. And a normal memory cell high resistance step of applying a second high resistance pulse so as to attain a second high resistance state showing a resistance value equal to or higher than the resistance value in the low resistance state.
  • a memory cell including a current control element having a short defect or a defective memory cell having a defective resistance change element is provided.
  • the other memory cells arranged on the same bit line and word line as the defective memory cell are set to the second high resistance state, so that the defective memory cell is identified without increasing the resistance of the defective memory cell. And can be remedied. As a result, a highly reliable variable resistance nonvolatile memory device can be realized.
  • the write circuit may include the resistance change element of the other memory cell with respect to other memory cells other than the defective memory cell arranged on the same bit line and word line as the defective memory cell. It is preferable to apply the third high-resistance pulse so that the third high-resistance state showing a resistance value equal to or higher than the first high-resistance state is obtained.
  • the read circuit applies the second voltage lower than the threshold voltage to the selected memory cell, and the selected circuit is selected when a current larger than the first predetermined value flows. It is preferable to determine that the memory cell is a defective memory cell having a short circuit defect.
  • the write circuit applies a first high-resistance pulse to the selected memory cell so that the variable resistance element of the selected memory cell is in the first high-resistance state.
  • the first resistance increasing pulse is applied so that the read circuit applies the first voltage to the selected memory cell to change the resistance state of the resistance change element of the selected memory cell. It is preferable that when the current larger than the second predetermined value flows through the selected memory cell, the resistance change element of the selected memory cell is determined to be defective.
  • the resistance change element of the defective memory cell is set to a fourth high resistance state having a resistance value higher than that of the first low resistance state with respect to the defective memory cell.
  • a step of increasing the resistance of a defective memory cell by applying a fourth resistance increasing pulse having an absolute value of a voltage equal to or higher than an absolute value of a pulse voltage at which the resistance change element starts increasing resistance by the write circuit is performed. Furthermore, it is preferable to include.
  • nonvolatile memory device variable resistance nonvolatile memory device
  • nonvolatile memory device variable resistance nonvolatile memory device
  • FIG. 1 shows a preferred specific example of the present invention.
  • the numerical values, shapes, materials, constituent elements, arrangement positions and connecting forms of the constituent elements, steps, order of steps, and the like shown in the following embodiments are merely examples, and are not intended to limit the present invention.
  • constituent elements that are not described in the independent claims indicating the highest concept of the present invention are described as optional constituent elements that constitute a more preferable embodiment.
  • FIG. 1 is an example of a configuration diagram of a memory cell according to the first embodiment of the present invention.
  • a memory cell 10 shown in FIG. 1 includes a current control element 20 and a resistance change element 30 connected in series.
  • the resistance change element 30 is connected to the current control element 20 via a contact 41, and the resistance change element 30 and the current control element 20 constitute a 1-bit 1D1R type memory cell 10.
  • One terminal of the memory cell 10 is connected to the lower wiring 50 through the contact 40, and the other terminal of the memory cell 10 is connected to the upper wiring 51 through the contact 42.
  • the memory cell 10 of FIG. 1 has a connection relationship in which the current control element 20 is on the bottom and the resistance change element 30 is on the top, but the connection relation is reversed and the current control element 20 is on the top.
  • the connection relationship may be such that the resistance change element 30 faces downward.
  • the current control element 20 includes a lower electrode (first electrode) 21, an upper electrode (second electrode) 23, and a current control layer 22 (semiconductor layer 22 or semiconductor electrode 22) sandwiched between the lower electrode 21 and the upper electrode 23. And an insulator layer 22).
  • the lower electrode 21 and the semiconductor layer 22 are in physical and electrical contact to form a Schottky junction
  • the upper electrode 23 and the semiconductor layer 22 are in physical and electrical contact to form a Schottky junction.
  • it has bidirectional rectification characteristics.
  • the insulator layer 22 is used instead of the semiconductor layer 22, the lower electrode 21, the insulator layer 22, and the upper electrode 23 constitute a tunnel diode and have bidirectional rectification characteristics.
  • the current control element 20 is an element in which a voltage applied to both ends of the current control element 20 and a current flowing through both ends of the current control element 20 exhibit nonlinear characteristics. This is a bidirectional diode in which the direction of the flowing current changes depending on the polarity of the applied voltage. That is, the current control element 20 has a threshold voltage (VF) in each of the positive applied voltage region and the negative applied voltage region, and the absolute value of the voltage applied to both ends of the current control element 20 is the threshold voltage (VF).
  • VF threshold voltage
  • the resistance value of the current control element 20 increases, and the absolute value of the flowing current is equal to or less than a predetermined threshold current, but the absolute value of the voltage applied to both ends of the current control element 20 is the threshold voltage (
  • VF threshold voltage
  • the resistance value of the current control element 20 decreases, and the absolute value of the flowing current has a characteristic that increases nonlinearly. That is, when the absolute value of the voltage applied to both ends of the current control element 20 is equal to or lower than the threshold voltage (VF), only the off-state current less than or equal to the predetermined threshold current flows through the current control element 20. 20 is turned off.
  • the current control element 20 When the absolute value of the voltage applied across the current control element 20 exceeds the threshold voltage (VF), a large on-current flows through the current control element 20 and the current control element 20 is turned on. That is, the current control element 20 has a function of a switch having an on state and an off state by a voltage applied to both ends of the current control element 20.
  • the current control element 20 has a vertically symmetrical structure (that is, when the two electrodes are made of the same material and the current control layer 22 is homogeneous in the vertical direction)
  • the voltage-current characteristics of the current control element 20 are positive and negative applied voltages.
  • it is almost point-symmetric. That is, the absolute values of the threshold voltages in the positive applied voltage region and the negative applied voltage region are substantially the same value.
  • the current control element 20 in the present embodiment includes, for example, a lower electrode 21 made of tantalum nitride, a semiconductor layer 22 made of a nitrogen-deficient silicon nitride film having a nitrogen content smaller than that of Si 3 N 4 , Further, it is configured as an MSM (Metal-Semiconductor-Metal) diode having an upper electrode 23 made of tantalum nitride.
  • the thickness of the semiconductor layer 22 can be set to 3 to 20 nm, for example.
  • the silicon nitride film can be formed to have semiconductor characteristics by reducing the nitrogen content, and a diode configured as an MSM diode can be manufactured by a simple manufacturing process.
  • a nitrogen-deficient silicon nitride film (SiN z : 0 ⁇ z ⁇ 0.85) can be formed, for example, by reactive sputtering in a nitrogen gas atmosphere using a Si target.
  • the chamber pressure may be 0.1 Pa to 1 Pa and the Ar / N 2 flow rate may be 18 sccm / 2 sccm at room temperature.
  • the current control element 20 in the present embodiment may be a MIM (Metal-Insulator-Metal) diode, PN diode, Schottky diode, or Zener diode.
  • MIM Metal-Insulator-Metal
  • an insulator layer 22 is provided between the lower electrode 21 and the upper electrode 23 instead of the semiconductor layer.
  • the current control element 20 may be a unidirectional current control element in which current flows only in one direction.
  • the resistance change element 30 includes a lower electrode (third electrode) 31, an upper electrode (fourth electrode) 34, and a resistance change layer 35 sandwiched between the lower electrode 31 and the upper electrode 34. .
  • the resistance change layer 35 includes a first transition metal oxide layer 32 made of an oxygen-deficient transition metal oxide, and a transition metal having a lower degree of oxygen deficiency than the first transition metal oxide layer 32.
  • a second transition metal oxide layer 33 made of an oxide is laminated.
  • a first oxygen-deficient tantalum oxide layer hereinafter referred to as a first Ta oxide layer
  • a second tantalum oxide layer hereinafter referred to as a second Ta oxidation layer.
  • Material layer is laminated.
  • the oxygen content of the second Ta oxide layer 33 is higher than the oxygen content of the first Ta oxide layer 32.
  • the oxygen deficiency of the second Ta oxide layer 33 is less than the oxygen deficiency of the first Ta oxide layer 32.
  • the degree of oxygen deficiency refers to the proportion of oxygen that is deficient with respect to the amount of oxygen constituting the oxide of the stoichiometric composition in each transition metal.
  • the transition metal is tantalum (Ta)
  • the stoichiometric oxide composition is Ta 2 O 5 , and thus can be expressed as TaO 2.5 .
  • the degree of oxygen deficiency of TaO 2.5 is 0%.
  • the metal constituting the resistance change layer 35 may be a transition metal other than tantalum.
  • the transition metal tantalum (Ta), titanium (Ti), hafnium (Hf), zirconium (Zr), niobium (Nb), tungsten (W), or the like can be used. Since transition metals can take a plurality of oxidation states, different resistance states can be realized by oxidation-reduction reactions.
  • the composition of the first hafnium oxide layer 32 is HfO x
  • x is 0.9 or more and 1.6 or less
  • the second hafnium oxide layer 33 It has been confirmed that when the composition is HfO y and y is larger than the value of x, the resistance value of the resistance change layer 35 is stably changed at high speed.
  • the thickness of the second hafnium oxide layer 33 is preferably 3 nm or more and 4 nm or less.
  • x is 0.9 or more and 1.4 or less when the composition of the first zirconium oxide layer 32 is ZrO x , and the second zirconium oxide layer 33 It has been confirmed that when the composition is ZrO y and y is larger than the value of x, the resistance value of the resistance change layer 35 is stably changed at high speed.
  • the thickness of the second zirconium oxide layer 33 is preferably 1 nm or more and 5 nm or less.
  • the second transition metal oxide layer 33 has a lower degree of oxygen deficiency than the first transition metal oxide layer 32, that is, has a higher resistance.
  • the standard electrode potential of the second transition metal is preferably lower than the standard electrode potential of the first transition metal.
  • the resistance change phenomenon is considered to occur because a redox reaction occurs in a minute filament (conductive path) formed in the second transition metal oxide layer 33 having a high resistance, and its resistance value changes. is there.
  • an oxygen-deficient tantalum oxide for the first transition metal oxide layer 32 and using titanium oxide (TiO 2 ) for the second transition metal oxide layer 33 stable resistance change operation is achieved. Is obtained.
  • the standard electrode potential represents a characteristic that the higher the value is, the more difficult it is to oxidize.
  • the resistance change phenomenon in the resistance change film having the laminated structure of each material described above is caused by an oxidation-reduction reaction occurring in a minute filament formed in the second transition metal oxide layer 33 having a high resistance. Changes and is thought to occur. That is, when a positive voltage with respect to the lower electrode 31 is applied to the upper electrode 34 on the second transition metal oxide layer 33 side, oxygen ions in the resistance change layer 35 are converted into the second transition metal oxide layer. It is considered that an oxidation reaction occurs in the fine filament formed in the second transition metal oxide layer 33 by being pulled toward the side 33, and the resistance of the fine filament is increased.
  • the oxygen ions in the second transition metal oxide layer 33 are the first It is considered that the resistance of the microfilament is reduced by causing a reduction reaction in the microfilament formed in the second transition metal oxide layer 33 by being pushed to the transition metal oxide layer 32 side.
  • the upper electrode 34 connected to the second transition metal oxide layer 33 having a lower oxygen deficiency constitutes the second transition metal oxide layer 33 such as platinum (Pt) or iridium (Ir).
  • the transition metal and the material constituting the lower electrode 31 are made of a material having a higher standard electrode potential.
  • the lower electrode 31 is made of an electrode material whose main component is a material having a lower standard electrode potential than the upper electrode 34 (for example, TaN (tantalum nitride)). Specifically, when tantalum oxide is used for the first transition metal oxide layer 32 and the second transition metal oxide layer 33, the lower electrode 31 is made of TaN, W, Ni, Ta, Ti, Al, etc.
  • the upper electrode 34 is preferably selected from the group consisting of Pt, Ir, Pd, Ag, Cu, Au, and the like.
  • a voltage satisfying a predetermined condition is applied between the lower electrode 31 and the upper electrode 34 by an external power source.
  • the current control element 20 in FIG. 1 and the resistance change element 30 may be connected in the reverse relationship, and the first transition metal oxide layer 32 and the second transition metal oxide layer may be connected.
  • the upper and lower connection relationships with the upper electrode 34 may be reversed, and the upper and lower connection relationships between the lower electrode 31 and the upper electrode 34 may be reversed.
  • FIG. 2 is an equivalent circuit diagram of the memory cell 10 in the present embodiment shown in FIG.
  • the memory cell 100 is an equivalent circuit diagram in which a current control element 101 and a resistance change element 102 are connected in series.
  • One terminal T1 of the memory cell 100 is connected to the current control element 101, and the memory cell
  • the other terminal T 2 of 100 is connected to the resistance change element 102.
  • the terminal T1 is connected to the lower wiring 50, and the terminal T2 is connected to the upper wiring 51.
  • Vdi is a voltage applied across the current control element 101
  • Vre is a voltage applied across the resistance change element 102.
  • the current control element 101 when the absolute value of the voltage Vdi applied to the current control element 101 exceeds the threshold voltage (VF), the current control element 101 is turned on, and the memory cell current Ice flows through the memory cell 100.
  • the absolute value of the voltage Vdi applied to the current control element 101 is equal to or lower than the threshold voltage (VF)
  • the current control element 101 is turned off, and only the off current Ioff that is a minute current flows through the memory cell 100. Absent. That is, the current control element 101 is turned on or off depending on the threshold voltage (VF) applied to the memory cell 100, whereby the memory cell 100 can be controlled to be in a selected state or a non-selected state. .
  • FIG. 3A is a diagram showing voltage-current characteristics of a normal memory cell 10 according to the present embodiment.
  • the polarity at which the upper wiring 51 is higher than the lower wiring 50 is a positive voltage
  • the polarity at which the lower wiring 50 is higher than the upper wiring 51 is a negative voltage.
  • a voltage is applied across the memory cell 10. The measured value of the relationship between the voltage and the current when the voltage is applied is shown.
  • the actual measurement data shown in FIG. 3A indicates that the voltage of the lower wiring 50 is the first low resistance write voltage Vwl1 (Vwl1 in FIG. 3A is the same as that of the memory cell 10 having the structure of FIG.
  • Vwl1 in FIG. 3A is the same as that of the memory cell 10 having the structure of FIG.
  • the voltage changes to the first low resistance state (point B).
  • point D Is a bidirectional resistance change characteristic that starts to change from the low resistance state to the high resistance state when the voltage of the upper wiring 51 becomes the high resistance start voltage Vwh0 (point D).
  • 3A indicates that the first low resistance write voltage Vwl1 and the high resistance start voltage Vwh0 are in a voltage and current relationship that is substantially symmetrical with respect to the origin of the actual measurement data. .
  • the first high resistance write voltage Vwh1 higher than the high resistance start voltage Vwh0 is applied, the first high resistance state (D ′ point) is obtained.
  • the resistance value at the point D ′ is larger than the resistance value at the point D.
  • the current control element 20 of the memory cell 10 is an element in which the current flowing by the applied voltage has a non-linear characteristic. Therefore, the absolute value of the voltage applied to the current control element 20 is the threshold voltage (VF) of the current control element 20. In the case of the following, almost no current flows, the current control element 20 is regarded as an off state, and almost no current flows in the memory cell 10.
  • the threshold voltage (VF) of the current control element 20 is a maximum voltage applied to the current control element 20 when only a current (maximum off current) that can be regarded as an off state flows.
  • the maximum off-state current of the current control element 20 is a current value smaller than the maximum current IHR that flows when at least the resistance change element 30 of the memory cell 10 is in the high resistance state.
  • the points A and C correspond to the threshold voltage (VF) of the current control element 20 and the total voltage applied to the resistance change element 30, and a plurality of memory cells 10 are arranged in an array.
  • VF threshold voltage
  • a voltage exceeding the voltage band from the point A to the point C is applied to the selected memory cell (selected memory cell) 10, and the memory cell not selected (unselected memory cell) ) Is configured such that a voltage is applied to the voltage range between the point A and the point C, thereby suppressing the leakage current to the non-selected cells and causing the current to flow through the selected memory cell 10.
  • the resistance state of the memory cell 10 can be determined by applying the read voltage Vread shown in FIG. 3A to the memory cell 10 and determining the current flowing at that time. .
  • the absolute value of Vread is larger than the absolute value of VF. That is, in the case of the characteristics shown in FIG. 3A, when the resistance change element 30 of the memory cell 10 is in the first low resistance state, the current control element 20 is turned on when the read voltage Vread is applied, and the memory cell 10 is read. A current Iread1 flows. However, when the resistance change element 30 of the memory cell 10 is in the first high resistance state, the read current Iread2 flows through the memory cell 10 when the read voltage Vread is applied. By determining the magnitude of the current value, the state of the memory cell 10 can be determined.
  • the read voltage Vread is applied to the memory cell 10 and the memory cell currents (Iread1 and Iread2) flowing at that time are applied.
  • the resistance state of the memory cell 10 can be determined.
  • the current control element 20 of the memory cell 10 is destroyed and a short circuit is defective, an excessive current flows through the memory cell 10.
  • the open is defective, almost no current flows and the resistance state of the memory cell 10 cannot be determined. Therefore, it is necessary to detect a defective memory cell (defective memory cell) and prevent an abnormal current from flowing through the defective memory cell.
  • FIG. 3B schematically shows a part of the voltage resistance characteristic of the variable resistance element 30 shown in FIG.
  • the horizontal axis is the voltage value applied between the lower electrode 31 and the upper electrode 34 of the resistance change element 30 with reference to the lower electrode, and the vertical axis is the resistance value of the resistance change element 30.
  • the resistance change element 30 When the voltage applied to the resistance change element 30 is gradually increased from the state O in the first low resistance state, the resistance change element 30 starts to increase in resistance at the voltage Vwh0 (A0). When the voltage applied to the resistance change element 30 is further increased, the resistance change element 30 enters the high resistance state B1 (limit high resistance state) having the maximum resistance value at the voltage Vwh4. Furthermore, even if the voltage applied to the resistance change element 30 is increased, the resistance value of the resistance change element 30 does not change (C1). Even if the voltage applied to the resistance change element 30 from C1 is gradually decreased, the resistance value does not decrease and the limit resistance state is maintained.
  • the voltage / resistance characteristics of the resistance change element 30 from the state A0 to the state B1 have a predetermined slope (actually nonlinear).
  • the corresponding first high resistance voltage Vwh1 is applied.
  • the corresponding second high resistance voltage Vwh2 is applied.
  • the corresponding third high resistance voltage Vwh3 is applied.
  • a limit high resistance state can be obtained.
  • FIG. 4 is a diagram illustrating the voltage-current characteristics of the memory cell 10 in which the current control element 20 has normal characteristics and the memory cell 10 in which the current control element 20 has defective characteristics (short circuit failure) in the present embodiment. is there.
  • the polarity at which the upper wiring 51 is higher than the lower wiring 50 is a positive voltage.
  • the positive voltage and current applied to the normal memory cell 10 having the first low resistance state are represented by the characteristic (1). As shown in FIG.
  • Vtest1 is a voltage at which the threshold voltage (VF) is applied to the current control element 20.
  • the memory cell 10 having a defective characteristic has a linear characteristic in terms of voltage and current characteristics as shown by the characteristic (2) in FIG. Show.
  • a voltage equal to or lower than the threshold voltage VF at which the current control element 20 is turned off is applied to both ends of the memory cell.
  • Vtest1 When a voltage of Vtest1 is applied, when current characteristics such as characteristic (1) are exhibited, almost no current flows as indicated by point E, but current control indicating characteristics of short-circuit failure such as characteristic (2). In the case of the memory cell 10 having the element 20, a larger current as indicated by the point F flows.
  • a voltage Vtest1 for detecting a defect is applied to the memory cell 10 so that a voltage equal to or lower than the threshold voltage is applied to the current control element 20 of the memory cell 10, and a difference in current flowing through the memory cell 10 at this time is detected. By doing so, it can be determined whether or not it is a defective memory cell.
  • Characteristic (3) and characteristic (4) in FIG. 4 are voltage-current characteristics when the threshold voltage of the current control element 20 is smaller than the threshold voltage VF of the current control element 20 of the normal memory cell 10, respectively.
  • Vtest1 When a voltage of Vtest1 is applied to both ends of the memory cell 10, the current control element 20 in the case of the characteristic (3) and the characteristic (4) has a defective characteristic.
  • the currents Ig and Ih flow through the memory cell 10, respectively.
  • the memory cell 10 having normal characteristics such as the characteristic (1) almost no current flows as indicated by the point E. Therefore, by detecting this difference in current, the characteristics of the defective memory cell are determined. You can investigate.
  • the characteristics of the current control element 20 of the memory cell 10 are selected by applying the voltage Vtest2 ( ⁇ Vtest1) for characteristic selection to the memory cell 10 in accordance with the threshold voltage of the current control element 20 of the memory cell 10. can do.
  • the memory cell 10 has a bad characteristic (open failure), even if the read voltage Vread is applied to the memory cell 10, almost no current flows through the memory cell 10.
  • the resistance value of the resistance change element 30 of the memory cell 10 is in the first low resistance state and the current control element 20 has a normal characteristic as in the characteristic (1).
  • the memory cell current Irk flows as indicated by the point K.
  • the open defect of the memory cell 10 can be determined by applying the read voltage Vread to the memory cell 10 after setting the variable resistance element 30 of the memory cell 10 to the first low resistance state.
  • FIG. 5 shows a configuration diagram of the variable resistance nonvolatile memory device 200 according to the first embodiment.
  • the variable resistance nonvolatile memory device 200 according to the present embodiment includes a memory main body 201 on a substrate.
  • the memory body 201 includes a memory cell array 202, a word line selection circuit 203, a bit line selection circuit 204, a write circuit 205 for writing data, a read circuit 206 for reading data, and a data And a signal input / output circuit 207.
  • the read circuit 206 includes a sense amplifier 300, a bit line control voltage switching circuit 400, and a bit line control voltage generation circuit 500 that generates a bit line control voltage. It is connected to a data signal input / output circuit 207 for outputting.
  • the variable resistance nonvolatile memory device 200 includes an address signal input circuit 208 that receives address information input from the outside of the variable resistance nonvolatile memory device 200 and an input from the outside of the variable resistance nonvolatile memory device 200. And a control circuit 209 for receiving a control signal to be transmitted.
  • a low-resistance power source 211 and a high-resistance power source 212 are provided as the write power source 210.
  • the output VL of the low-resistance power source 211 and the output VH of the high-resistance power source 212 are the memory main body. This is supplied to the writing circuit 205 of the unit 201.
  • the variable resistance nonvolatile memory device 200 includes a defective address storage circuit 213 that stores a defective address detected by the read circuit 206 and an address comparison circuit 214 that performs address comparison.
  • variable resistance nonvolatile memory device 200 determines, as operation modes, a write mode for writing data to the memory cell, a normal read mode for reading data from the memory cell, and characteristics of the memory cell.
  • a cell characteristic determination mode for determining whether or not the memory cell is defective, and a normal memory cell connected to the same bit line or word line as that of the defective memory cell has a second resistance value higher than that of the first low resistance state.
  • a repair mode for replacing a spare normal memory cell (redundant memory cell).
  • the cell characteristic determination mode further includes a current control element characteristic determination mode for determining the characteristic of the current control element and a resistance change element characteristic determination mode for determining the characteristic of the resistance change element.
  • the memory cell array 202 includes a main memory cell array 600 in which a plurality of memory cells 100 shown in FIG. 2 are arranged in a matrix in the row direction and the column direction, and a plurality of memory cells 100 shown in FIG.
  • the redundant memory cell array 610 is arranged.
  • the redundant memory cell array 610 is configured by arranging the same number of memory cells 100 in each row of the main memory cell array 600. As an example, in the redundant memory cell array 610 in FIG. 5, one memory cell 100 is arranged in each row of the main memory cell array 600 to form a redundant memory cell array 610 in one column.
  • the memory cell array 202 includes a plurality of word lines WL1, WL2, WL3,... And a plurality of bit lines BL1, BL2, BL3,. Are provided with at least one redundant bit line BLR1,... Arranged in parallel with the bit lines BL1, BL2, BL3,.
  • the plurality of word lines WL1, WL2, WL3,... are arranged in parallel to each other in the same plane (in the first plane) parallel to the main surface of the substrate.
  • the plurality of bit lines BL1, BL2, BL3,... are arranged in parallel to each other in the same plane parallel to the first plane (in a second plane parallel to the first plane).
  • the redundant bit lines BLR1,... are arranged in parallel with the bit lines BL1, BL2, BL3,.
  • the first plane and the second plane are arranged in parallel, and the plurality of word lines WL1, WL2, WL3,... And the plurality of bit lines BL1, BL2, BL3,.
  • the memory cells M11, M12, M13, M21, M22 are located at three-dimensionally intersecting positions of the word lines WL1, WL2, WL3,... And the bit lines BL1, BL2, BL3,. , M23, M31, M32, M33,... (Hereinafter referred to as “memory cells M11, M12, M13,...”) Are arranged, and in the redundant memory cell array 610, word lines WL1, WL2, Redundant memory cells MB1, MB2, MB3,... Are arranged at the positions where WL3,... And the redundant bit lines BLR1,. That is, the plurality of word lines WL1, WL2, WL3,... Are arranged in common to the main memory cell array 600 and the redundant memory cell array 610.
  • Memory cells M11, M12, M13,... Are current control elements D11, D12, D13, D21, D22, D23, D31, D32, D33, (hereinafter referred to as “current control elements D11, D12, D13,. ..)), And resistance change elements R11, R12, R13, R21, R22, R23, R31, R32, R33,... Connected in series with the current control elements D11, D12, D13,. (Hereinafter referred to as “resistance change elements R11, R12, R13,...”).
  • the redundancy memory cells MB1, MB2, MB3,... Have resistance changes connected in series with the current control elements DB1, DB2, DB3,... And the current control elements DB1, DB2, DB3,. It comprises elements RB1, RB2, RB3,.
  • one terminal of the resistance change elements R11, R21, R31,... In the main memory cell array 600 is connected to the current control elements D11, D21, D31,.
  • the other terminal is connected to the bit line BL1, and one terminal of the resistance change elements R12, R22, R32,... Is connected to the current control elements D12, D22, D32,.
  • the other terminal is connected to the bit line BL2, and one terminal of the resistance change elements R13, R23, R33,... Is connected to the current control elements D13, D23, D33,.
  • One terminal is connected to the bit line BL3.
  • one terminal of the resistance change elements RB1, RB2, RB3,... In the redundant memory cell array 610 is connected to the current control elements DB1, DB2, DB3, and the other terminal is the redundant bit line.
  • BLR1,... Are connected.
  • one terminal of the current control elements DB1, DB2, DB3,... Is connected to the resistance change elements RB1, RB2, RB3,...
  • the other terminal is the word lines WL1, WL2, WL3. , ... are connected.
  • a resistance change element is connected to the bit line side and a current control element is connected to the word line side.
  • a current control element is connected to the bit line side and resistance change is made to the word line side. Elements may be connected.
  • at least one redundant bit line BLR1,... Of the redundant memory cell array is required, and a plurality of redundant bit lines BLR1,... Are mounted according to the number of memory cells 100 arranged in the redundant memory cell array. It doesn't matter.
  • the word line selection circuit 203 receives the row address information output from the address signal input circuit 208, and a word selected from the plurality of word lines WL1, WL2, WL3,... According to the row address information. Whether a voltage supplied from the write circuit 205 is applied to the line, and a predetermined unselected row application voltage (a voltage of Vss to Vwl or a voltage of Vss to Vwh) is applied to the unselected word line Alternatively, it can be fixed to an inactive state, that is, a high impedance (Hi-Z) state.
  • Hi-Z high impedance
  • the bit line selection circuit 204 receives the column address information output from the address signal input circuit 208 and the address match determination signal from the address comparison circuit 214, and uses the column address information and the address match determination signal as the column address information. Accordingly, of the plurality of bit lines BL1, BL2, BL3,... And the redundant bit line BLR1,..., The voltage supplied from the write circuit 205 to the selected bit line or supplied from the read circuit 206. In addition, a predetermined unselected column application voltage (a voltage of Vss to Vwl, a voltage of Vss to Vwh, or a voltage of Vss to Vbl) is applied to unselected bit lines. Or can be fixed in a high impedance (Hi-Z) state.
  • Hi-Z high impedance
  • word line selection circuit 203 and the bit line selection circuit 204 correspond to the memory selection circuit in the present invention.
  • the write circuit 205 receives the write signal output from the control circuit 209 and applies a write voltage to the memory cell selected by the word line selection circuit 203 and the bit line selection circuit 204, so that the memory cell The state can be rewritten.
  • variable resistance nonvolatile memory device 200 when the first low resistance write voltage Vwl1 having a high potential is applied to WL1 with respect to BL1, for example, to a normal memory cell M11 in the write mode.
  • the resistance change element R11 changes to the first low resistance state.
  • a first high resistance write voltage Vwh1 that is a high potential is applied to BL1 with respect to WL1 with respect to a normal memory cell M11, the resistance change element R11 changes to the first high resistance state.
  • the read circuit 206 applies a read voltage Vblr between the word line selected by the word line selection circuit 203 and the bit line selected by the bit line selection circuit 204 in the normal read mode, and flows in the memory cell.
  • the state stored in the memory cell can be read by determining the cell current with the sense amplifier 300.
  • a cell characteristic determination voltage Vblt is applied between the word line selected by the word line selection circuit 203 and the bit line selected by the bit line selection circuit 204, and the memory cell By determining the memory cell current flowing in the memory cell by the sense amplifier 300, the current control element characteristic of the memory cell can be determined.
  • the readout circuit 206 performs the same operation as in the normal readout mode in the resistance change element characteristic determination mode, and thus description thereof is omitted.
  • the bit line control voltage generation circuit 500 sets the potential of the selected bit line selected by the bit line selection circuit 204 according to the respective modes in the normal read mode and the current control element characteristic determination mode.
  • a read clamp voltage Vcr and a cell characteristic determination clamp voltage Vct are generated.
  • the read clamp voltage Vcr When the read clamp voltage Vcr is applied to the memory cell, the current control element of the normal memory cell is turned on.
  • the cell characteristic determination clamp voltage Vct is applied to the memory cell, the current control element of the normal memory cell is turned off.
  • the read clamp voltage Vcr corresponds to the first voltage in the present invention
  • the cell characteristic determination clamp voltage Vct corresponds to the second voltage in the present invention.
  • the bit line control voltage switching circuit 400 supplies the read clamp voltage Vcr output from the bit line control voltage generation circuit 500 to the sense amplifier 300 in the normal read mode, and controls the bit line in the current control element characteristic determination mode.
  • the voltage supplied to the sense amplifier can be switched according to the normal read mode and the current control element characteristic determination mode so that the cell characteristic determination clamp voltage Vct output from the voltage generation circuit 500 is supplied to the sense amplifier 300.
  • the sense amplifier 300 sets the potential of the bit line according to the read clamp voltage Vcr or the cell characteristic determination clamp voltage Vct supplied from the bit line control voltage switching circuit 400 according to the normal read mode and the current control element characteristic determination mode.
  • the read voltage Vblr or the cell characteristic determination voltage Vblt is set.
  • the sense amplifier 300 determines whether the state of the resistance change element of the memory cell is the first low resistance state based on the memory cell current read through the bit line selection circuit 204. The high resistance state is read and the result is output to the outside via the data signal input / output circuit 207.
  • the memory cell current read through the bit line selection circuit 204 is read out to determine whether the memory cell is in a normal state or a defective state, and the result is a data signal. In addition to being output to the outside via the input / output circuit 207, it is also output to the defective address storage circuit 213.
  • the operation of the control circuit 209 is as follows.
  • a signal instructing application of a write voltage is output to the write circuit 205 in accordance with the input data Din input from the data signal input / output circuit 207.
  • a signal instructing application of a read voltage is output to the read circuit 206.
  • a signal instructing application of a cell determination voltage for determining the characteristic of the current control element is output to the reading circuit 206.
  • a signal for instructing application is output to the writing circuit 205, and a signal for performing relief processing is output to the memory main body 201.
  • the address signal input circuit 208 receives externally input address information, outputs row address information to the word line selection circuit 203 based on this address information, and outputs column address information to the bit line selection circuit 204.
  • the address information is information indicating the address of a specific memory cell in the memory cell array 202
  • the column address information is address information indicating a specific column in the memory cell array 202
  • the row address information is specific in the memory cell array 202. This is address information indicating the line.
  • the address signal input circuit 208 outputs address information (column address information, row address information) to the defective address storage circuit 213 and the address comparison circuit 214.
  • the defective address storage circuit 213 stores column address information input from the address signal input circuit 208 as a defective address when the selected memory cell is determined to be defective in the current control element characteristic determination mode of the read circuit 206. To do. Specifically, the defective address storage circuit 213 has an address conversion table 213a as shown in FIG. 6A.
  • FIG. 6A is a diagram illustrating an example of an address conversion table provided in the defective address storage circuit 213.
  • FIG. 6A shows a case where defective memory cells are repaired in units of bit lines.
  • the address conversion table 213a stores a defective bit line having a defective memory cell and a redundant bit line having a replacement redundant memory cell in association with each other.
  • a defective memory cell may be replaced not only in units of bit lines but also in units of word lines or memory cells.
  • a defective word line or defective memory cell having a defective memory cell and a replacement redundant word line or redundant to replace the defective word line or defective memory cell
  • the memory cell may be associated with and stored in the address conversion table 213a.
  • the address comparison circuit 214 compares the column address information input from the address signal input circuit 208 with the defective bit line address stored in the defective address storage circuit 213, and addresses match whether they match.
  • the determination signal is output to the bit line selection circuit 204.
  • the repair mode described later is shown in FIG. 6A.
  • a defective bit line for example, BL3
  • a redundant bit line for example, BLR1
  • the write power supply 210 includes a low resistance power supply 211 and a high resistance power supply 212, and outputs thereof are respectively supplied to the write circuit 205 of the memory main body 201.
  • FIG. 6B is a circuit diagram showing an example of the configuration of the readout circuit 206 in FIG.
  • the read circuit 206 includes a sense amplifier 300, a bit line control voltage switching circuit 400, and a bit line control voltage generation circuit 500.
  • the sense amplifier 300 includes a comparison circuit 310, a current mirror circuit 320, and a bit line voltage control transistor N1.
  • the current mirror circuit 320 includes a PMOS transistor P1, a PMOS transistor P2, a PMOS transistor P3, and a constant current circuit 330.
  • the source terminals of the PMOS transistor P1, the PMOS transistor P2, and the PMOS transistor P3 of the current mirror circuit 320 are connected to the power supply, the gate terminals are connected to each other, the drain terminal of the PMOS transistor P1, and the constant current It is connected to one terminal of the circuit 330.
  • the other terminal of the constant current circuit 330 is connected to the ground potential.
  • the drain terminal of the PMOS transistor P2 is connected to one input terminal (for example, + terminal) of the comparison circuit 310 and the drain terminal of the bit line voltage control transistor N1.
  • the drain terminal of the PMOS transistor P3 is connected to the bit line control voltage generation circuit 500.
  • the gate terminal of the bit line voltage control transistor N1 is connected to the output terminal of the bit line control voltage switching circuit 400, and the source terminal of the bit line voltage control transistor N1 is connected to the bit line selection circuit via the terminal BLIN of the read circuit 206. 204 is connected.
  • the other terminal (eg, ⁇ terminal) of the comparison circuit 310 is connected to the terminal SAREF of the readout circuit 206, and the output terminal of the comparison circuit 310 is connected to the data signal input / output circuit via the output terminal SAOUT of the readout circuit 206. It is connected to 207 and outputs data to the outside.
  • the clamp voltage (Vcr or Vct) output from the bit line control voltage switching circuit 400 is applied to the gate terminal of the bit line voltage control transistor N1, the source terminal (terminal BLIN) of the bit line voltage control transistor N1.
  • the clamp voltage (Vcr or Vct) output from the bit line control voltage switching circuit 400 is applied to the gate terminal of the bit line voltage control transistor N1, the source terminal (terminal BLIN) of the bit line voltage control transistor N1.
  • the potential of the drain terminal (terminal SAIN) of the bit line voltage control transistor N1 is applied to the + terminal of the comparison circuit 310, and the reference voltage Vref is applied to the ⁇ terminal of the comparison circuit 310 from the terminal SAREF.
  • the comparison circuit 310 compares the reference voltage Vref applied to the ⁇ terminal and the potential of the terminal SAIN applied to the + terminal.
  • the comparison circuit 310 outputs an L potential to the output terminal if the potential of the terminal SAIN is lower than the potential of the terminal SAREF, and outputs an H potential if the potential of the terminal SAIN is higher than the potential of the terminal SAREF.
  • the state of the memory cell 10 is output to the outside via the data signal input / output circuit 207.
  • the potential at the terminal SAIN changes from the H potential to the L potential quickly. If the current flowing through the memory cell 10 is small, the potential at the terminal SAIN is changed from the H potential to the L potential. Transition slowly or remain at H potential.
  • the potential of the terminal SAIN and the terminal SAREF is compared by the comparison circuit 310 at a predetermined output sense timing, if the potential of the terminal SAIN is lower, the L potential is output to the output terminal SAOUT, and the current flowing through the memory cell 10 is small. Is determined. Similarly, if the potential of the terminal SAIN is higher, the H potential is output to the output terminal SAOUT, and it is determined that the current flowing through the memory cell 10 is large.
  • the reference voltage Vref applied from the terminal SAREF may be generated inside the variable resistance nonvolatile memory device 200 or may be applied from an external terminal. .
  • the voltage applied to the gate terminal of the bit line voltage control transistor N1 is generated by the bit line control voltage generation circuit 500.
  • the bit line control voltage generation circuit 500 includes a reference current control element RD10, an NMOS transistor N10, and a reference resistance change element RE10.
  • One terminal of the reference current control element RD10 is connected to the drain terminal of the PMOS transistor P3 of the current mirror circuit 320 and is also connected to the output terminal OUT1 of the bit line control voltage generation circuit 500 to output the read clamp voltage Vcr. Output more.
  • the other terminal of the reference current control element RD10 is connected to the drain terminal and the gate terminal of the NMOS transistor N10 and to the output terminal OUT2, and outputs the cell characteristic determination clamp voltage Vct from the output terminal.
  • the source terminal of the NMOS transistor N10 is connected to one terminal of the reference resistance change element RE10, and the other terminal of the reference resistance change element RE10 is grounded.
  • the reference current control element RD10 and the reference resistance change element RE10 are current control elements D11, D12, D13,... And resistance change elements R11, R12, R13,. Consists of the same elements.
  • the reference resistance change element RE10 can be set to a high resistance state or a low resistance state similarly to the resistance change element included in the memory cell array 202, and at least a memory cell in the low resistance state is set. In order to detect, it is desirable to set the resistance value of the reference resistance change element RE10 to an average high resistance state resistance value of the memory cell array 202.
  • the read clamp voltage Vcr output from the output terminal OUT1 of the bit line control voltage generation circuit 500 and the cell characteristic determination clamp voltage Vct output from the output terminal OUT2 are voltages applied to the reference resistance change element RE10 by Vre (resistance Are substantially the same applied voltage as the change elements R11, R12, R13,...,
  • the threshold voltage of the NMOS transistor N10 is Vtn (substantially the same threshold voltage as the NMOS transistor N1), and the threshold voltage of the reference current control element RD10 is VF. Assuming that the threshold voltages are substantially the same as those of the elements D11, D12, D13,.
  • Vcr Vre + Vtn + VF (Formula 1)
  • Vct Vre + Vtn (Formula 2)
  • the NMOS transistor N10 is configured with the same transistor size as the bit line voltage control transistor N1 of the sense amplifier 300, and the PMOS transistor P3 of the sense amplifier 300 is configured with the same transistor size as the PMOS transistor P2.
  • the NMOS transistor N10 and the PMOS transistor P3 may be reduced in size while maintaining the size ratio of the control transistor N1 and the PMOS transistor P2.
  • the threshold voltage Vtn of the bit line voltage control transistor N1 is simulated based on the voltage from the output terminal OUT1 to the terminal BLIN of the read circuit 206 (that is, the bit line voltage when the memory cell is read). Higher voltage is output. Further, a voltage lower than the output terminal OUT1 by the threshold voltage VF ′ of the reference current control element RD10 (may be the same as the threshold voltage VF of the current control element of the memory cell) is output from the output terminal OUT2. Note that voltages output from the output terminal OUT1 and the output terminal OUT2 correspond to the first output and the second output in this embodiment, respectively.
  • the bit line control voltage switching circuit 400 is composed of switches SW1 and SW2. One terminal of the switch SW1 of the bit line control voltage switching circuit 400 is connected to the output terminal OUT1 of the bit line control voltage generation circuit 500, and one terminal of the switch SW2 is the output terminal OUT2 of the bit line control voltage generation circuit 500. Connected with. The other terminals of the switches SW1 and SW2 are connected to each other and connected to the gate terminal of the bit line voltage control transistor N1 of the sense amplifier 300. In the normal read mode of the sense amplifier 300, the bit line control voltage switching circuit 400 sets the read clamp voltage Vcr of the output terminal OUT1 of the bit line control voltage generation circuit 500 to a transistor by turning SW1 on and SW2 off. Output to the gate terminal of N1. In the current control element characteristic determination mode, SW1 is turned off and SW2 is turned on, so that the cell characteristic determination clamp voltage Vct of the output terminal OUT2 of the bit line control voltage generation circuit 500 is output to the gate terminal of the transistor N1. To do.
  • the voltage applied to the bit line does not exceed a voltage lower than the voltage applied to the gate terminal of the bit line voltage control transistor N1 by the threshold voltage Vtn of the transistor N1.
  • the read voltage Vblr applied to the line and the cell characteristic determination voltage Vblt applied to the bit line in the current control element characteristic determination mode can be expressed by (Expression 3) and (Expression 4), respectively.
  • FIG. 7 is a circuit diagram for explaining a current path in the main memory cell array 600.
  • FIG. 8 is an equivalent circuit diagram of FIG.
  • the reading of the resistance state of the memory cell M22 will be described as an example of the reading of the resistance state of the memory cell when all the memory cells of the main memory cell array 601 in FIG. 7 are normal memory cells.
  • a Vss potential is applied to the word line WL2 selected by the word line selection circuit 203, and the bit line BL2 selected by the bit line selection circuit 204 is given by (Equation 3)
  • the memory cell M22 is selected by fixing the unselected bit lines BL1 and BL3 and the unselected word lines WL1 and WL3 to the high impedance state (Hi-Z).
  • the non-selected bit lines BL1 and BL3 and the non-selected word lines WL1 and WL3 are fixed in a high impedance state, but are not more than the voltage applied between the selected bit line BL2 and the selected word line WL2. You may set to the voltage value.
  • the unselected memory cells M11, M12, M13, M21, M23, M31, M32, and M33 in the unselected memory cell array 602 are connected in series in three stages. This is equivalent to the memory cell being connected in parallel to the memory cell M22. That is, the total unselected memory cell current ⁇ Inselr flowing in the unselected memory cell array 602 is a plurality of currents via at least three or more stages of unselected memory cells in the shortest current path from the selected bit line BL2 to the selected word line WL2. Current flows through the path. A plurality of non-selected memory cells are connected in parallel to each stage.
  • the first stage is a non-selected memory cell M12, M32 connected to the selected bit line BL2, and the second stage is a non-selected bit line BL1 or BL3.
  • the non-selected memory cells M11, M13, M31, M33 connected to the non-selected word line WL1 or WL3 are connected to the non-selected memory cells M21, M23 connected to the selected word line WL2 in the third stage. Yes.
  • the voltage applied to the non-selected memory cells is divided by the impedance ratio of the non-selected memory cells M12, M32, M21, and M23 arranged in the first and second stages.
  • a voltage of about 1 ⁇ 2 or less of the read voltage Vblr applied between the selected bit line BL2 and the selected word line WL2 is 1st stage Applied to the non-selected memory cells M12, M32, M21 and M23 arranged in the second stage.
  • non-selected memory cells M11, M12, M13, M21, M23, M31, M32, and M33 are normal memory cells indicated by the characteristic (1) in FIG. 4, the non-selected memory cells M11, M12, respectively. , M13, M21, M23, M31, M32, and M33 current control elements D11, D12, D13, D21, D23, D31, D32, and D33 are turned off because a voltage equal to or lower than the threshold voltage VF is applied. Therefore, the sum ⁇ Insel of the unselected cell currents flowing in each of the unselected memory cells M11, M12, M13, M21, M23, M31, M32, and M33 flows only an off current smaller than 1 ⁇ A.
  • the selected bit line current Iblr that flows in the selected bit line BL2 that flows when the resistance state of the memory cell M22 is read is the sum of the selected cell current Iselr and the all unselected cell current ⁇ Inselr as shown in (Equation 5).
  • the selected bit line current Iblr flowing through the selected bit line BL2 can be approximated as in (Equation 6). Therefore, the memory cell current of the selected memory cell M22 can be read via the selected bit line BL2, and it can be read whether the resistance change element R22 of the selected memory cell M22 is in the first high resistance state or the low resistance state. .
  • Iblr Iselr + ⁇ Inselr (Formula 5) Iblr ⁇ Iselr (Formula 6)
  • the non-selected current path flowing from the selected bit line BL2 to the selected word line WL2 via the three stages of non-selected memory cells is at least the following (a) to ( There are four paths d). Therefore, the total unselected memory cell current ⁇ Inselr is expressed by (Equation 7).
  • the current control element D22 of the selected memory cell M22 when the current control element D22 of the selected memory cell M22 is broken and short-circuited, the current control element D22 can be regarded as a conductive state, and all the bit line voltage Vblr is applied to the resistance change element R22. Applied. Therefore, the selected bit line current Iblr is larger than the memory cell current that flows in a normal memory cell regardless of whether the resistance change element R22 of the memory cell M22 is in the first low resistance state or the first high resistance state. Therefore, since the current according to the resistance state of the resistance change element R22 of the memory cell M22 cannot be read accurately, the resistance state of the memory cell M22 cannot be detected.
  • the memory cell current flowing in the normal memory cell when the resistance change element R22 is in the first low resistance state is referred to as a first predetermined value.
  • the memory cell current flowing in the normal memory cell when the resistance change element R22 is in the first high resistance state is referred to as a second predetermined value.
  • FIG. 9 is a circuit diagram for explaining a current path when one of the non-selected memory cells in the main memory cell array 601, for example, the memory cell M 23 has a short circuit defect.
  • the memory cell M22 is selected and the memory cell M23 has a short circuit defect. An example is shown.
  • FIG. 10 is an equivalent circuit diagram of FIG.
  • the Vss potential is applied to the word line WL2 selected by the word line selection circuit 203, and the bit line BL2 selected by the bit line selection circuit 204 is applied.
  • the read voltage Vblr shown in (Equation 3) is applied, and the non-selected bit lines BL1 and BL3 and the non-selected word lines WL1 and WL3 are fixed to the high impedance state (Hi-Z) to select the memory cell M22. .
  • the non-selected bit lines BL1 and BL3 and the non-selected word lines WL1 and WL3 are fixed in a high impedance state, but are not more than the voltage applied between the selected bit line BL2 and the selected word line WL2. You may set to the voltage value.
  • the memory cell M23 in the non-selected memory cell array 602 when the non-selected memory cell M23 in the non-selected memory cell array 602 has a short circuit defect, the memory cell M23 can be regarded as being almost in a conductive state, and the non-selected current as previously described. Since the resistance value becomes low and abnormal current flows in the plurality of current paths (b) and (d) of the path, the value of the all unselected memory cell current ⁇ Inselr shown in (Equation 7) becomes a large value and is selected. The memory cell current flowing through the memory cell M22 cannot be normally read out.
  • FIG. 11 is a circuit diagram for explaining a current path in the memory cell array 202 of the present embodiment.
  • FIG. 12 is an equivalent circuit diagram of FIG.
  • a Vss potential is applied to the word line WL2 selected by the word line selection circuit 203 to select a bit line.
  • a cell characteristic determination voltage Vblt (second voltage) shown in (Equation 4) is applied to the bit line BL2 selected by the circuit 204, and the non-selected bit lines BL1 and BL3 and the non-selected word lines WL1 and WL3 are high.
  • the memory cell M22 is selected while being fixed to the impedance state (Hi-Z).
  • bit line voltage Vblt that is lower than the bit line voltage Vblr in the normal read mode by the threshold voltage VF ′ of the reference current control element RD10 (substantially the same threshold voltage as the current control element D22) is applied to the bit line BL2.
  • the non-selected bit lines BL1 and BL3 and the non-selected word lines WL1 and WL3 are fixed in a high impedance state, but are applied between the selected bit line BL2 and the selected word line WL2. You may set to the voltage value below a voltage.
  • the selected bit line current Iblt that flows through the selected bit line is the selected memory cell current Iselt that flows through the selected memory cell M22 and all the current that flows through the unselected memory cell array 602. This is the sum of the unselected memory cell current ⁇ Inselt.
  • the cell characteristic determination voltage Vblt applied between the selected bit line BL2 and the selected word line WL2 is applied to the memory cell M22, and the selected memory cell current Iselt flows according to the cell characteristic state of the memory cell M22.
  • the cell characteristic determination voltage Vblt applied between the selected bit line BL2 and the selected word line WL2 is applied to the unselected memory cell array 602.
  • the cell characteristic determination voltage Vblt applied to the selected bit line BL2 is determined by the unselected memory cells M11, M12, M13, M21, M23, M31, The voltage is divided and applied according to the respective impedances of M32 and M33. Therefore, when the non-selected memory cells M11, M12, M13, M21, M23, M31, M32, and M33 in the non-selected memory cell array 602 are normal memory cells, each current control element has only a voltage equal to or lower than the threshold voltage VF. Since no voltage is applied, each current control element is turned off, and almost no current flows through all the unselected memory cell currents ⁇ Inselt of the unselected memory cell array 602.
  • the selected bit line current Iblt is almost the same as the selected memory cell current Iselt, and the cell characteristic state of the selected memory cell M22 can be read.
  • the cell characteristic determination voltage Vblt applied between the selected bit line BL2 and the selected word line WL2 is lower than the threshold voltage VF of the current control element D22.
  • each current control element has a voltage equal to or lower than the threshold voltage VF. Only applied. Therefore, each current control element is turned off, and almost no current flows through all the unselected memory cell currents ⁇ Inselt of the unselected memory cell array 602. That is, the selected bit line current Iblt is almost the same as the selected memory cell current Iselt. Therefore, the cell characteristic state of the selected memory cell M22 can be read by detecting the selected bit line current Iblt.
  • the selected bit line current Iblt flowing in the selected bit line BL2 flowing when reading the state of the memory cell M22 is the sum of the selected cell current Iselt and the all unselected cell current ⁇ Inselt as shown in (Equation 8).
  • the value of the total unselected cell current ⁇ Inselt is small enough to be ignored. Therefore, the selected bit line current Iblt flowing through the selected bit line BL2 can be approximated as shown in (Equation 9), and the memory cell current of the selected memory cell M22 can be read out via the selected bit line BL2. It is possible to read out whether the state is normal or short-circuit failure.
  • Iblt Iselt + ⁇ Inselt (Formula 8) Iblt ⁇ Iselt (Formula 9)
  • the current control element D22 When the selected memory cell M22 is a normal memory cell, when the bit line voltage Vblt shown in (Equation 4) is applied to the memory cell M22, the current control element D22 has a voltage equal to or lower than the threshold voltage VF. Is applied, the current control element D22 is turned off. Thereby, almost no current flows through the selected bit line current Iblt regardless of the resistance state of the resistance change element R22.
  • the current control element D22 of the memory cell M22 when the current control element D22 of the memory cell M22 is short-circuited, the current control element D22 has a lower resistance value than the normal conduction state, and all the bit line voltage Vblt is applied to the resistance change element R22.
  • the resistance change element R22 when the resistance change element R22 is in the first low resistance state, the selected bit line current Iblt flows in accordance with the resistance value of the resistance change element R22. It can be determined that M22 is short-circuited.
  • the read circuit 206 applies, for example, a threshold voltage (first voltage) at which the normal current control element starts to turn on to the first variable resistance element in the low resistance state and the normal current control element.
  • the normal current control element can be regarded as an off state (maximum off-current flows)
  • the maximum off-current first predetermined value
  • the readout circuit 206 turns on the normal current control element to the resistance change element in the first high resistance state and the normal current control element, for example.
  • a normal current control element can be regarded as an off state (maximum off current flows) when a threshold voltage (second voltage) that starts is applied, a normal current is supplied to the current control element D22 that is short-circuited.
  • a current larger than the maximum off-current (second predetermined value) flowing through the control element flows it may be determined that “the memory cell M22 is destroyed”.
  • the resistance change element R22 of the selected memory cell M22 is the first in the current control element characteristic determination mode.
  • the low resistance state it can be determined whether the state of the current control element D22 of the selected memory cell M22 is a normal state or a short breakdown state, and the address of the defective memory cell can be specified.
  • the resistance change element R22 of the selected memory cell M22 is in the first high resistance state, it is difficult to correctly determine the state (normal state or short breakdown state) of the current control element D22 of the selected memory cell M22.
  • the state of the current control element D22 of the selected memory cell M22 is in the normal state by performing the current control element characteristic determination mode after setting the resistance change element R22 of the selected memory cell M22 to the first low resistance state. It can be determined whether it is in a destructive state.
  • the address of the defective memory cell can be specified by determining the selected bit line current Iblt flowing through the selected bit line BL2. For example, even if there are defective memory cells exceeding 2 bits such as M12, M11, and M23, there are only defective memory cells of 2 bits or less on the leakage current paths of (a) to (d).
  • the non-selected memory cell array current War hardly flows, and the address of the defective memory cell can be specified similarly. If all three bits on the same leakage current path are defective memory cells, most of the memory cells in the memory cell array 202 have the same defect. It is possible to find a cell.
  • FIG. 13 is a table (mode-specific truth table) showing each setting state in the normal read mode and the current control element characteristic determination mode, and the state of the output terminal SAOUT of the read circuit 206 shown in FIG. 6B. .
  • “L” is a first logic output in the present embodiment, and indicates that the sense amplifier 300 outputs an L potential when the resistance state of the memory cell is the first low resistance state.
  • “H” is the second logic output in the present embodiment, and indicates that the output of the sense amplifier 300 outputs the H potential when the resistance state of the memory cell is the first high resistance state. Yes.
  • the current control element of the memory cell is turned on, and the memory cell current flowing through the memory cell is determined by the resistance state of the resistance change element of the memory cell.
  • the potential of the terminal SAIN of the sense amplifier 300 of the read circuit 206 changes from the H potential to the L potential via the bit line BL and the bit line selection circuit 204.
  • the resistance change element of the memory cell is in the first low resistance state, the memory cell current increases, the potential of the terminal SAIN quickly changes to the L potential, and the resistance change element of the memory cell changes to the first resistance change element.
  • the memory cell current becomes small, and the potential of the terminal SAIN is slowly changed to the L potential or is maintained at the H potential.
  • the comparison circuit 310 when the potential of the terminal SAIN and the terminal SAREF is compared by the comparison circuit 310 at a predetermined output timing, if the potential of the terminal SAIN is lower, it is determined that the L potential is output to the output terminal SAOUT and the current flowing through the memory cell is small. If the potential at the terminal SAIN is higher, the H potential is output to the output terminal SAOUT and it is determined that the current flowing through the memory cell is large. That is, if the sense amplifier 300 outputs the L potential, the state of the memory cell indicates the first low resistance state, and if the output of the sense amplifier 300 outputs the H potential, the state of the memory cell indicates the first high resistance state. Indicates the state.
  • the current control element of the selected memory cell is a destroyed cell
  • most of the voltage applied to the memory cell is applied to the resistance change element, so that the resistance change element is in the first high resistance state. Even then, a large amount of memory cell current may flow.
  • the output of the sense amplifier 300 is at the L potential, and the state of the memory cell indicates the first low resistance state, but the variable resistance element is in the first high resistance state. In the resistance state, the output of the sense amplifier 300 is at the L potential or the H potential, so that the resistance state of the memory cell cannot be accurately determined.
  • the resistance state of the memory cell can be determined by the output potential of the sense amplifier 300.
  • the resistance state of the memory cell cannot be determined.
  • the sense amplifier 300 shown in FIG. 6B is used.
  • the voltage is set to a voltage equal to or lower than (Vre) which is lowered by the threshold voltage Vtn of the control transistor N1.
  • the current control element of the memory cell is turned off, so that almost no memory cell current flows through the memory cell regardless of the resistance state of the resistance change element of the memory cell. Not flowing.
  • this memory cell current is determined by the sense amplifier 300 of the read circuit 206 via the bit line BL and the bit line selection circuit 204, the output of the sense amplifier 300 becomes the H potential regardless of the resistance state of the resistance change element. Output.
  • the current control element of the selected memory cell is a destroyed cell
  • most of the voltage applied to the memory cell is applied to the resistance change element, so that the resistance change element is in the first high resistance state. Even so, a large amount of current may flow through the memory cell. That is, if the variable resistance element is in the first low resistance state, the output of the sense amplifier 300 becomes the L potential, and it can be determined that the current control element is destroyed.
  • the output of the sense amplifier 300 becomes L potential or H potential depending on the resistance value of the resistance change element, so that the cell characteristic state of the memory cell cannot be accurately determined.
  • the current control element characteristic determination mode is performed after the resistance change element is set in the first low resistance state in advance, so that the current control element of the memory cell It is possible to determine whether the state is normal or broken. It is possible to clearly determine that the current control element is normal when a current larger than the first predetermined value does not flow through the current control element when the resistance change element is in the first low resistance state in advance. is there.
  • the variable resistance element In order to set the variable resistance element to the first low resistance state, when the write circuit 205 applies a low resistance write voltage Vwl having a high potential to WL with reference to BL, the variable resistance element has the first low resistance state. Change to state.
  • the state of the current control element of the memory cell can be determined. That is, when the resistance change element is in the low resistance state and a current larger than the first predetermined value flows through the current control element, it can be determined that the current control element of the memory cell has a short circuit abnormality.
  • the first predetermined value may be a value of the maximum off-current of the current control element of the memory cell.
  • the state of the current control element of the memory cell cannot be accurately determined.
  • the resistance change element is set to the first low resistance state.
  • the current control element characteristic determination mode it is possible to determine whether the current control element of the memory cell is in a normal state or a breakdown state. A memory cell determined to have a current control element in a destroyed state may not be used, or may be subjected to a predetermined repair process or the like.
  • FIG. 14A is an example of a determination flow in the current control element characteristic determination mode that does not depend on the state of the resistance change element of the memory cell.
  • step S101 when the reading circuit 206 is set to the current control element characteristic determination mode (step S101), SW1 of the bit line control voltage switching circuit 400 is turned off and SW2 is turned on. As a result, the output terminal OUT2 of the bit line control voltage generation circuit 500 shown in FIG. 6B is selected, and the cell characteristic determination clamp voltage Vct is applied to the gate terminal of the bit line voltage control transistor N1 of the sense amplifier 300.
  • At least one memory cell of the memory cell array 202 is selected by the word line selected by the word line selection circuit 203 and the bit line selected by the bit line selection circuit 204 (step S102). Further, a read operation is performed on the selected memory cell (step S103).
  • step S104 the voltage output to the output terminal SAOUT of the sense amplifier 300 is determined (step S104), and if it is L potential, it is determined that the current control element of the memory cell is destroyed (step S105). If the potential is H, it is determined that the cell is a normal cell or a cell in which no breakdown of the current control element is detected (step S106). Then, after determining all memory cell regions (step S107), the current control element characteristic determination mode is terminated.
  • FIG. 14B is an example of a determination flow in the current control element characteristic determination mode after the state of the resistance change element of the memory cell is first set to the first low resistance state.
  • the first low resistance pulse is applied to the memory cell that is the target of current control element characteristic determination to set the first low resistance state (step S200), and then the read circuit 206 is set to the current control element characteristic.
  • the determination mode is set (step S201)
  • SW1 of the bit line control voltage switching circuit 400 is turned off and SW2 is turned on.
  • the output terminal OUT2 of the bit line control voltage generation circuit 500 shown in FIG. 6B is selected, and the cell characteristic determination clamp voltage Vct is applied to the gate terminal of the bit line voltage control transistor N1 of the sense amplifier 300.
  • At least one memory cell of the memory cell array 202 is selected by the word line selected by the word line selection circuit 203 and the bit line selected by the bit line selection circuit 204 (step S202).
  • the above-described current control element characteristic determination operation (current control element characteristic read operation) is performed on the selected memory cell (step S203).
  • step S204 the voltage output to the output terminal SAOUT of the sense amplifier 300 is determined (step S204), and if it is L potential, it is determined that the current control element of the memory cell is destroyed (step S205). If the potential is H, it is determined as a normal cell (step S206). Then, after determining all memory cell regions (step S207), the current control element characteristic determination mode is terminated.
  • FIG. 15 is an example of a determination flow in the resistance change element characteristic determination mode of the memory cell.
  • the resistance change element characteristic determination of the memory cell if normal writing is performed on the selected memory cell and then reading is performed, if the writing is successful, a normal memory cell and writing is successful. If not, it is determined as a destroyed memory cell.
  • the destroyed memory cell means, for example, a state in which the resistance change element is in a second low resistance state whose resistance value is lower than that in the first low resistance state, and the resistance does not change.
  • the resistance change nonvolatile memory device is set to the write mode (high resistance).
  • At least one memory cell of the memory cell array 202 is selected by the word line selected by the word line selection circuit 203 and the bit line selected by the bit line selection circuit 204 (step S302).
  • step S303 a high resistance write operation is performed on the selected memory cell.
  • the first high-resistance pulse is applied to the memory cell.
  • SW1 of the bit line control voltage switching circuit 400 is turned on and SW2 is turned off.
  • the output terminal OUT1 of the bit line control voltage generation circuit 500 shown in FIG. 6B is selected, and the read clamp voltage Vcr is applied to the gate terminal of the bit line voltage control transistor N1 of the sense amplifier 300.
  • a read operation is performed on the selected memory cell (step S304).
  • step S305 the voltage output to the output terminal SAOUT of the sense amplifier 300 is determined (step S305). If the potential is L potential, it is determined that the resistance change element of the memory cell is destroyed (step S306). If the potential is H, it is determined as a normal cell (step S307). Then, after determining all the memory cell regions (step S308), the resistance change element characteristic determination mode is ended.
  • the write voltage in the resistance change element characteristic determination mode is not limited to the first high-resistance pulse, and for example, an initial break voltage applied during the initial break of the resistance change element may be used.
  • FIG. 16 shows an example of a flowchart of a method for relieving a memory cell determined as a defective memory cell in the current control element characteristic determination mode.
  • the resistance change element of the memory cell is more resistant than the first low resistance state to a normal memory cell other than the defective memory cell on the same bit line as the defective memory cell in which the current control element is destroyed.
  • a second high resistance state having a high value (a state in which the resistance value is higher than the low resistance state for normal writing) is set.
  • all the memory cells arranged on the bit line or the word line on which the defective memory cell is arranged are not used.
  • the addresses of the memory cells before and after the substitution are associated.
  • variable resistance nonvolatile memory device is set to a write mode (high resistance) (step S401), and a word line selection circuit is set.
  • a high resistance write operation is performed by applying a second high resistance pulse (step S402).
  • the failure detection mode is set (step S403), and the sense amplifier 300 of the read circuit 206 determines whether or not the memory cells other than the failure memory cell on the same bit line as the failure memory cell are in the second high resistance state. (Step S404).
  • step S405 When memory cells other than the defective memory cell on the same bit line as the defective memory cell are in the second high resistance state, it is determined that the target memory cell has succeeded in increasing the resistance (step S405), and the target memory The cell address is stored in the defective address storage circuit 213 (step S406), and the process ends.
  • the mode setting is changed to the write mode (high resistance) again. It sets (step S407). Thereafter, it is determined whether another writing condition can be set (step S408). If another writing condition can be set, another writing condition is set (step S409), and the defective memory is again set. A high resistance write operation is performed on memory cells other than the defective memory cell on the same bit line as the cell (step S402). Another writing condition is changing the writing voltage, the writing pulse time, the driving capability of the writing driver, and the like.
  • the write voltage may be changed to a third write pulse for setting a third high resistance state having a higher resistance value than a first high resistance state described later. If it is determined in step S408 that another write condition cannot be set, it is determined that the resistance failure of the memory cell other than the defective memory cell on the same bit line as the target defective memory cell has failed (step S410). ),finish. In this case, since the defective memory cell cannot be relieved, it is treated as a defective circuit.
  • defective memory cell detection flow and relief flow may be performed every predetermined period or every recording write when the variable resistance nonvolatile memory device 200 is powered on.
  • FIG. 17 is a circuit diagram showing an example of the write circuit 205, the write power supply 210, and their connection relationship in the present embodiment.
  • the write circuit 205 includes an HR write circuit 700 that applies a voltage and a current to the memory cell to change the resistance state of the resistance change element of the memory cell to a high resistance state, and the resistance of the resistance change element.
  • the LR write circuit 800 applies a voltage and a current to the memory cell in order to change the state to the first low resistance state.
  • the HR write circuit 700 changes the resistance change element of the memory cell to the first high-resistance element.
  • the first high resistance write voltage Vwh1 is applied to the bit line BL selected by the bit line selection circuit 204 with reference to the word line WL selected by the word line selection circuit 203. Is a circuit for applying.
  • the HR write circuit 700 includes a PMOS 701, a PMOS 702, an NMOS 703, an NMOS 704, an inverter 705, and an inverter 706. Note that the descriptions simply “PMOS” and “NMOS” mean “PMOS transistor” and “NMOS transistor”, respectively.
  • the PMOS 701, the PMOS 702, the NMOS 703, and the NMOS 704 have their main terminals (one drain terminal and the other source terminal) connected in series in this order to form one current path.
  • the main terminal (source terminal) to which the PMOS 702 is not connected is connected to a power source (for example, the high resistance power source 212).
  • the main terminal (source terminal) that is not connected to the NMOS 703 is connected to the ground potential.
  • the HR write enable signal WEH output from the data signal input / output circuit 207 is input to the input terminal of the inverter 706 and the gate of the NMOS 703.
  • the HR write enable signal WEH input from the input terminal of the inverter 706 is an inverted signal.
  • the HR write pulse signal WPH output from the control circuit 209 is input to the input terminal of the inverter 705, and the signal input from the input terminal of the inverter 705 is input to the gates of the PMOS 701 and the NMOS 704 as inverted signals. .
  • One main terminal (drain terminal) of each of the PMOS 702 and the NMOS 703 is connected, output from the write circuit 205 through the output terminal WDH of the HR write circuit 700, and connected to the bit line selection circuit 204 and the word line selection circuit 203.
  • Vss first high resistance write voltage
  • the LR write circuit 800 changes the resistance change element of the memory cell to the first low-resistance element.
  • the first low resistance write voltage Vwl1 is applied to the word line WL selected by the word line selection circuit 203 with reference to the bit line BL selected by the bit line selection circuit 204. Is a circuit for applying.
  • the LR write circuit 800 includes a PMOS 801, a PMOS 802, an NMOS 803, an NMOS 804, an inverter 805, and an inverter 806.
  • the PMOS 801, the PMOS 802, the NMOS 803, and the NMOS 804 have their main terminals (drain terminal or source terminal) connected in series in this order to form one current path.
  • the main terminal (source terminal) to which the PMOS 802 is not connected is connected to a power source (for example, the power source 211 for reducing resistance).
  • the main terminal (source terminal) not connected to the NMOS 803 is connected to the ground potential.
  • the LR write enable signal WEL output from the data signal input / output circuit 207 is input to the input terminal of the inverter 806 and the gate of the NMOS 803, and the LR write enable signal WEL input from the input terminal of the inverter 806 is an inverted signal.
  • the LR write pulse signal WPL output from the control circuit 209 is input to the input terminal of the inverter 805, and the signal input from the input terminal of the inverter 805 is input to the gates of the PMOS 801 and the NMOS 804 as inverted signals. .
  • One main terminal (drain terminal) of each of the PMOS 802 and the NMOS 803 is connected, output from the write circuit 205 through the output terminal WDL of the LR write circuit 800, and connected to the word line selection circuit 203.
  • the memory cell other than the defective memory cell on the same bit line as the defective memory cell is set to the second high resistance state having a resistance value equal to or higher than the resistance value of the first low resistance state. Abnormal current can be reduced. After that, even if repair processing is performed by replacing the bit line or word line including the defective memory cell with a redundant bit line or redundant word line, no abnormal current flows through the defective memory cell. Even when the cell array 202 is not disconnected, an abnormal current does not flow to the memory cell array 202, and stable reading can be performed on the selected memory cell.
  • FIG. 18 is a diagram showing an example of the voltage-current characteristics of the voltage applied to the selected bit line and the current flowing through the selected bit line in the present embodiment.
  • all the memory cells 100 of the memory cell array 202 exhibit normal characteristics such as the characteristic (1) shown in FIG.
  • the voltage V applied to the selected bit line is plotted on the horizontal axis and the current I flowing on the selected bit line is plotted on the vertical axis as shown in FIG.
  • a characteristic like the characteristic (10) of the broken line of FIG. 18 is shown.
  • all the memory cells 100 of the memory cell array 202 exhibit normal characteristics such as the characteristic (1) shown in FIG. 4 and the resistance change elements 102 of all the memory cells 100 are the first In the case of the high resistance state, a characteristic such as the characteristic (11) of the thick solid line in FIG. 18 is shown.
  • the selected memory cell 100 in the memory cell array 202 of the variable resistance nonvolatile memory device 200 of FIG. 5 is set to the first high resistance state, and one of the non-selected memory cells is, for example, a memory cell as shown in FIG.
  • the current control element D23 is short-circuited like M23, and the resistance change element R23 of the defective memory cell M23 has a resistance value in the second low-resistance state lower than the resistance value in the first low-resistance state.
  • the memory cells M13, M33,... Connected to the same bit line as the defective memory cell M23 and different from the defective memory cell M23 are all higher in resistance than the first low resistance state.
  • the high resistance state is 2
  • the characteristic of the white triangle mark characteristic (20) in FIG. 18 is shown.
  • the selected memory cell 100 is connected to the same bit line as the defective memory cell M23 in the first high resistance state, and the memory cells M13, M33,.
  • the characteristic (20) when all are in the second high resistance state shows the characteristic that the selected memory cell 100 has a higher resistance value than the characteristic (10) in the first low resistance state. Therefore, all of the memory cells M13, M33,... Connected to the same bit line as the defective memory cell M23 and different from the defective memory cell M23 are higher than the resistance value in the first low resistance state.
  • all of the memory cells M13, M33,... Connected to the same bit line as the defective memory cell M23 and different from the defective memory cell M23 have a resistance value higher than that of the first high resistance state. It is better to have a high resistance state.
  • all of the memory cells M13, M33,... Connected to the same bit line as the defective memory cell M23 and different from the defective memory cell M23 are all set to have resistance values higher than those in the first high resistance state.
  • the third high resistance state having a resistance value about 10 times higher is shown, a characteristic such as the characteristic (21) of the white square in FIG. 18 is exhibited, and the resistance is higher (less current) than the characteristic (20). The characteristics are shown. Therefore, the state of the selected memory cell can be more accurately determined regardless of whether or not the memory cell in the unselected memory cell array is defective.
  • FIG. 19 is a circuit diagram showing a configuration different from the configuration described in the first embodiment of the write circuit 255, the write power supply 210, and their connection relationship according to the present embodiment.
  • the write circuit 255 includes an HR write circuit 750 that applies a voltage and a current to the memory cell to change the resistance state of the resistance change element of the memory cell to a high resistance state, and a resistance change.
  • the LR write circuit 850 applies a voltage and a current to the memory cell in order to change the resistance state of the element to the low resistance state.
  • the HR write circuit 750 includes a first HR write circuit 710 and a second write circuit 720, and the output terminal WDH1 of the first write circuit 710 and the output terminal WDH2 of the second write circuit 720 are connected to each other.
  • the first write circuit 710 sets the resistance change element of the memory cell to the first As a voltage for transition to the high resistance state, the first high resistance write voltage is applied to the bit line BL selected by the bit line selection circuit 204 with the word line WL selected by the word line selection circuit 203 as a reference. Vwh1 is applied. Further, the second high resistance write voltage Vwh2 is applied by changing the power supply voltage VH output from the high resistance power supply 212 of the write power supply 210.
  • the HR write circuit 750 includes the second write circuit 720, so that the first high resistance write current Iwh1 is output from the output terminal WDH1 of the first write circuit 710, and the second write circuit 720 is output from the output terminal WDH2.
  • the detailed configuration of the HR write circuit 750 is as follows.
  • the first HR write circuit 710 includes a PMOS 711, a PMOS 712, an NMOS 713, an NMOS 714, an inverter 715, and an inverter 716.
  • the PMOS 711, the PMOS 712, the NMOS 713, and the NMOS 714 have their main terminals (drain terminal or source terminal) connected in series in this order to form one current path.
  • the main terminal (source terminal) to which the PMOS 712 is not connected is connected to a power source (for example, the high resistance power source 212).
  • the main terminal (source terminal) not connected to the NMOS 713 is connected to the ground potential.
  • the first HR write enable signal WEH1 output from the data signal input / output circuit 207 is input to the input terminal of the inverter 716 and the gate of the NMOS 713, and the first HR write enable signal WEH1 input from the input terminal of the inverter 716 is an inverted signal. Is input to the gate of the PMOS 712.
  • the HR write pulse signal WPH output from the control circuit 209 is input to the input terminal of the inverter 715, and the signal input from the input terminal of the inverter 715 is input to the gates of the PMOS 711 and the NMOS 714 as an inverted signal. .
  • One main terminal (drain terminal) of each of the PMOS 712 and the NMOS 713 is connected, output from the write circuit 255 through the output terminal WDH of the HR write circuit 750, and connected to the bit line selection circuit 204.
  • the first HR write enable signal WEH1 is in the L state
  • the output of the first write circuit 710 outputs the Hi-Z state.
  • the second HR write circuit 720 includes a PMOS 721, a PMOS 722, an inverter 723, and an inverter 724.
  • the main terminals (one drain terminal and the other source terminal) of the PMOS 721 and the PMOS 722 are connected in series in this order to form one current path.
  • the main terminal (source terminal) to which the PMOS 722 is not connected is connected to a power source (for example, the high resistance power source 212).
  • the second HR write enable signal WEH2 output from the control circuit 209 is input to the gate of the input terminal of the inverter 724, and the second HR write enable signal WEH2 input from the input terminal of the inverter 724 is the inverted signal of the gate of the PMOS 722. Is input.
  • the HR write pulse signal WPH output from the control circuit 209 is input to the input terminal of the inverter 723, and the signal input from the input terminal of the inverter 723 is input to the gate of the PMOS 721 as an inverted signal.
  • One main terminal (drain terminal) of the PMOS 722 is output from the write circuit 255 through the output terminal WDH of the HR write circuit 750 and connected to the bit line selection circuit 204.
  • VH potential first high resistance write voltage Vwh1
  • IHH2 second high resistance write current Iwh2
  • the output of the second write circuit 720 outputs a Hi-Z state.
  • the first HR write enable signal WEH1 is set to an H state, that is, an enable state for a memory cell other than the defective memory cell on the same bit line as the defective memory cell, and the VHR potential is supplied by the first HR write circuit 710.
  • the memory cells other than the defective memory cell on the same bit line as the defective memory cell are brought into the second high resistance state showing a resistance value larger than the first low resistance state.
  • the abnormal current flowing in the defective memory cell can be reduced.
  • the second HR write enable signal WEH2 to the H state, that is, the enable state
  • the HR write circuit 750 in the following embodiment, a normal memory cell can be brought into a third high resistance state having a higher resistance value than the first high resistance state.
  • FIG. 20 is a block diagram of the variable resistance nonvolatile memory device 200 according to the first embodiment shown in FIG. 5 except that redundant memory cell arrays 620 having the same number of memory cells 100 in each column of the main memory cell array 600 are shown.
  • An example of the variable resistance nonvolatile memory device 900 is shown.
  • the redundant memory cell array 620 in FIG. 20 one memory cell 100 is arranged in each column of the main memory cell array 600, and one row of redundant memory cell arrays 620 is configured.
  • the redundant memory cell array 620 in FIG. 20 is arranged at the upper end of the main memory cell array 600, but may be arranged in the main memory cell array 600.
  • the variable resistance nonvolatile memory device 900 includes a memory main body 201 on a substrate.
  • the memory body 201 includes a memory cell array 202.
  • the memory cell array 202 is similar to the main memory cell array 600 in which a plurality of memory cells 100 shown in FIG. 2 are arranged in a matrix in the row direction and the column direction.
  • a redundant memory cell array 620 in which a plurality of memory cells 100 shown in FIG. 2 are arranged is provided. .. And a plurality of bit lines BL 1, BL 2, BL 3,... Arranged in such a manner as to intersect with each other, and further, the word lines WL 1, WL 2 are provided. , WL3,... And at least one redundant word line WLR1,.
  • the plurality of word lines WL1, WL2, WL3,... are arranged in parallel to each other in the same plane (in the first plane) parallel to the main surface of the substrate.
  • the plurality of bit lines BL1, BL2, BL3,... are arranged in parallel to each other in the same plane parallel to the first plane (in a second plane parallel to the first plane).
  • the redundant word lines WLR1,... are arranged in parallel with the word lines WL1, WL2, WL3,.
  • the first plane and the second plane are arranged in parallel, and the plurality of word lines WL1, WL2, WL3,... And the plurality of bit lines BL1, BL2, BL3,.
  • the memory cells M11, M12, M13, M21, M22 are located at three-dimensionally intersecting positions of the word lines WL1, WL2, WL3,... And the bit lines BL1, BL2, BL3,. , M23, M31, M32, M33,... (Hereinafter referred to as “memory cells M11, M12, M13,...”) Are arranged in the redundant memory cell array 620, and bit lines BL1, BL2, Redundant memory cells MW1, MW2, MW3,... Are arranged at the positions where BL3,... And redundant word lines WLR1,.
  • Memory cells M11, M12, M13,... Are current control elements D11, D12, D13, D21, D22, D23, D31, D32, D33, (hereinafter referred to as “current control elements D11, D12, D13,. ..)), And resistance change elements R11, R12, R13, R21, R22, R23, R31, R32, R33,... Connected in series with the current control elements D11, D12, D13,. (Hereinafter referred to as “resistance change elements R11, R12, R13,...”).
  • the redundancy memory cells MW1, MW2, MW3,... Have resistance changes connected in series with the current control elements DW1, DW2, DW3,... And the current control elements DW1, DW2, DW3,. It is composed of elements RW1, RW2, RW3,.
  • one terminal of the resistance change elements R11, R21, R31,... In the main memory cell array 600 is connected to the current control elements D11, D21, D31,.
  • the other terminal is connected to the bit line BL1, and one terminal of the resistance change elements R12, R22, R32,... Is connected to the current control elements D12, D22, D32,.
  • the other terminal is connected to the bit line BL2, and one terminal of the resistance change elements R13, R23, R33,... Is connected to the current control elements D13, D23, D33,.
  • One terminal is connected to the bit line BL3.
  • one terminal of the resistance change elements RW1, RW2, RW3,... In the redundant memory cell array 620 is connected to the current control elements DW1, DW2, DW3, and the other terminal is the redundant word line. WLR1,... Are connected. Further, one terminal of the current control elements DW1, DW2, DW3,... Is connected to the resistance change elements RW1, RW2, RW3,..., And the other terminal is the bit lines BL1, BL2, BL3. , ... are connected.
  • a resistance change element is connected to the bit line side and a current control element is connected to the word line side.
  • a current control element is connected to the bit line side and resistance change is made to the word line side.
  • Elements may be connected.
  • at least one redundant word line WLR1,... Of the redundant memory cell array 620 may be provided, and a plurality of redundant word lines WLR1,.
  • the word line selection circuit 203 receives the row address information signal output from the address signal input circuit 208 and the address coincidence determination signal from the address comparison circuit 214, and in response to the row address information and the address coincidence determination signal, .., And redundant word lines WLR1,..., A voltage supplied from the write circuit 205 is applied to the selected word line among the word lines WL1, WL2, WL3,. Further, a predetermined non-selected row application voltage (Vss to Vwl, or Vss to Vwh) is applied to the unselected word line, or the word line is fixed to a high impedance (Hi-Z) state.
  • the bit line selection circuit 204 receives the column address information output from the address signal input circuit 208 and the address match determination signal from the address comparison circuit 214, and uses the column address information and the address match determination signal as the column address information.
  • a voltage supplied from the write circuit 205 or a voltage supplied from the read circuit 206 is applied to the selected bit line among the plurality of bit lines BL1, BL2, BL3,.
  • a predetermined non-selected column applied voltage (voltage of Vss to Vwl, voltage of Vss to Vwh, or voltage of Vss to Vbl) is applied to the non-selected bit line, or high impedance (Hi-Z) Can be fixed to the state.
  • word line selection circuit 203 and the bit line selection circuit 204 correspond to the memory selection circuit in the present invention.
  • the defective address storage circuit 213 stores the row address information input from the address signal input circuit 208 as a defective address when the selected memory cell is determined to be defective in the current control element characteristic determination mode of the read circuit 206. . Specifically, as in the case of storing defective addresses in bit line units, the defective address storage circuit 213 has an address conversion table (not shown), a defective word line having defective memory cells, and a replacement destination. The redundant word lines having the redundant memory cells are stored in association with each other.
  • the address comparison circuit 214 compares the row address information input from the address signal input circuit 208 with the defective address stored in the defective address storage circuit 213, and addresses match whether they match. A determination signal is output to the word line selection circuit 203. If the row address information input from the address signal input circuit 208 matches the address of the defective word line stored in the defective address storage circuit 213, it is stored in the defective address storage circuit 213 in the relief mode. According to the address conversion table, the defective word line is replaced with the replacement redundant word line, and writing and reading of the record are performed.
  • FIG. 21 shows an example of a flowchart of a method for relieving a memory cell determined as a defective memory cell in the current control element characteristic determination mode.
  • the resistance change element of the memory cell has a resistance value higher than that of the first low resistance state with respect to a memory cell other than the defective memory cell on the same word line as the defective memory cell in which the current control element is destroyed.
  • the abnormal current flowing in the defective memory cell is cut by setting the second high resistance state to a high state (a state in which the resistance value is higher than the low resistance state for normal writing).
  • the addresses of the memory cells before and after the substitution are supported. Add and remember.
  • the variable resistance nonvolatile memory device is set to a write mode (high resistance) (step S501), and a word line selection circuit is set.
  • the memory cell other than the defective memory cell on the same word line as the at least one selected defective memory cell of the memory cell array 202 by the word line selected at 203 and the bit line selected by the bit line selection circuit 204 Thus, a high resistance write operation is performed (step S502).
  • the failure detection mode is set (step S503), and the sense amplifier 300 of the read circuit 206 determines whether or not the memory cells other than the failure memory cell on the same word line as the failure memory cell are in the second high resistance state. (Step S504).
  • step S505 If memory cells other than the defective memory cell on the same word line as the defective memory cell are in the second high resistance state, it is determined that the target memory cell has successfully increased the resistance (step S505), and the target memory The cell address is stored in the defective address storage circuit 213 (step S506), and the process ends.
  • step S504 the mode setting is changed to the write mode (high resistance) again. It sets (step S507). Thereafter, it is determined whether another writing condition can be set (step S508). If another writing condition can be set, another writing condition is set (step S509), and the defective memory is again set. A high resistance write operation is performed on memory cells other than the defective memory cell on the same word line as the cell (step S502). Another writing condition is changing the writing voltage, the writing pulse time, the driving capability of the writing driver, and the like.
  • the write voltage may be changed to a third write pulse for setting a third high resistance state having a higher resistance value than that of the first high resistance state. If another write condition cannot be set in step S508, it is determined that the resistance of the memory cell other than the defective memory cell on the same word line as the target defective memory cell has failed to be increased (step S510). ),finish. In this case, since the defective memory cell cannot be relieved, it is treated as a defective circuit.
  • defective memory cell detection flow and relief flow may be performed every predetermined period or every recording write when the variable resistance nonvolatile memory device 200 is powered on.
  • the arrangement of the redundant memory cell array 620 is not limited to the row direction as shown in FIG. As already described in the first embodiment, the arrangement in the column direction as shown in FIG. 5 is conceivable, and other arrangements are possible.
  • 22A, 22B, and 22C are diagrams showing other arrangement examples of the main memory cell array and the redundant memory cell array. 22A, 22B, and 22C, the hatched portion indicates the position of the redundant memory cell array in the memory cell array.
  • the main memory cell array 600 may be a memory cell array 232 including redundant memory cell arrays 630 and 640 in both the column direction and the row direction, or one of them.
  • the main memory cell array is divided into a plurality of main memory cell arrays 650a, 650b, 650c, and 650d, and each of the divided main memory cell arrays 650 has a column direction and a row direction.
  • the memory cell array 242 may include redundant memory cell arrays 660a, 660b, 660c, 660d, 670a, 670b, 670c, and 670d.
  • the main memory cell array is divided into a plurality of main memory cell arrays 680a, 680b, 680c, and 680d, and each of the divided main memory cell arrays 680 is arranged in the column direction and the row direction.
  • the memory cell array 252 may be provided with redundant memory cell arrays 690a, 690b, 700a, and 700b in both or one of them.
  • FIG. 23 shows an example of a flowchart of a method for relieving a memory cell determined as a defective memory cell in the current control element characteristic determination mode.
  • the resistance change element of the memory cell is changed from the first low resistance state to a memory cell other than the defective memory cell on the same bit line and the same word line as the defective memory cell in which the current control element is destroyed.
  • the abnormal current flowing in the defective memory cell is cut by setting the second high resistance state having a high resistance value (a state in which the resistance value is higher than the low resistance state for normal writing).
  • the addresses of the memory cells before and after the substitution are stored in the defective address storage circuit. Are stored in association with each other.
  • the variable resistance nonvolatile memory device is set to a write mode (high resistance) (step 6401), and a word line selection circuit is set.
  • a high resistance write operation is performed (step S402).
  • a high resistance write operation is performed on the other memory cells (step S603).
  • the failure detection mode is set (step S604), and whether the memory cells other than the failure memory cells on the same bit line and the same word line as the failure memory cells are in the second high resistance state is determined by the read circuit 206. The determination is made by the sense amplifier 300 (step S605).
  • step S606 If the memory cells other than the defective memory cell on the same bit line and the same word line as the defective memory cell are in the second high resistance state, it is determined that the target memory cell has succeeded in increasing the resistance (step S606). Then, the address of the target memory cell is stored in the defective address storage circuit 213 (step S607), and the process ends.
  • step S605 if the memory cells other than the defective memory cell on the same bit line and the same word line as the defective memory cell are not in the second high resistance state, the mode setting is again set to the write mode (high (Resistance) is set (step S608). Thereafter, it is determined whether another write condition can be set (step S609). If another write condition can be set, another write condition is set (step S610), and the defective memory is again set. A high resistance write operation is performed on memory cells other than the defective memory cells on the same bit line and the same word line as the cell (steps S602 and S603). Another writing condition is changing the writing voltage, the writing pulse time, the driving capability of the writing driver, and the like.
  • the write voltage may be changed to a third write pulse for setting a third high resistance state having a higher resistance value than that of the first high resistance state.
  • step S609 if another write condition cannot be set, it is determined that the resistance failure of the memory cell other than the defective memory cell on the same bit line and the same word line as the target defective memory cell has failed. (Step S611) and the process ends. In this case, since the defective memory cell cannot be relieved, it is treated as a defective circuit.
  • defective memory cell detection flow and relief flow may be performed every predetermined period or every recording write when the variable resistance nonvolatile memory device 200 is powered on.
  • variable resistance nonvolatile memory device (Fourth embodiment) Next, a variable resistance nonvolatile memory device according to a fourth embodiment of the present invention will be described.
  • FIG. 24 is a diagram showing an example of a repair flow for a defective memory cell in the present embodiment.
  • the first resistance change element of the memory cell is set to the first memory cell other than the defective memory cell on the same word line as the defective memory cell determined in the current control element characteristic determination mode.
  • the abnormal current flowing through the defective memory cell is cut by setting the second high resistance state (the resistance value is higher than the low resistance state for normal writing) having a higher resistance value than the low resistance state.
  • the defective address storage circuit is provided with before and after the substitution. The address of the defective memory cell is associated and stored.
  • variable resistance nonvolatile memory device 200 is set to a write mode (high resistance) (step S701), the word line selected by the word line selection circuit 203, and the bit selected by the bit line selection circuit 204.
  • a high resistance write operation (1) is performed on at least one selected defective memory cell of the memory cell array 202 by the line (step S702).
  • the failure detection mode is set (step S703), and the sense amplifier 300 of the read circuit 206 determines whether the defective memory cell is in the fourth high resistance state in which the resistance value is higher than that in the first low resistance state. (Step S704).
  • step S705 If it is in the fourth high resistance state, it is determined that the target defective memory cell has succeeded in increasing the resistance (step S705), and the address of the target defective memory cell is stored in the defective address storage circuit 213 (step S706). ),finish.
  • step S704 the mode setting is again set to the write mode (high resistance) (step S707). Thereafter, it is determined whether another write condition can be set (step S708). If another write condition can be set, another write condition is set (step S709), and the defective memory is again set. A high resistance write operation is performed on the cell (step S702).
  • Another writing condition is changing the writing voltage, the writing pulse time, the driving capability of the writing driver, and the like. For example, as another write condition, the write voltage may be changed to a third write pulse for setting a third high resistance state having a higher resistance value than that of the first high resistance state.
  • step S708 If another write condition cannot be set in step S708, it is connected to the same bit line, the same word line, or the same bit line and word line as the target defective memory cell.
  • the memory cells different from the defective memory cells are sequentially selected, and the high resistance write operation is performed (step S710).
  • the different memory cell may be a defective memory cell different from the above-described defective memory cell, or may be a normal memory cell.
  • the memory cell that performs the high-resistance write operation has, for example, a write voltage higher than the above-described Vwh0 so as to be in the second high-resistance state having a higher resistance value than the first low-resistance state.
  • a high resistance write voltage Vwh2 is applied. It is more preferable to set the third high resistance write voltage Vwh3 so that the resistance value in the second high resistance state is, for example, 10 times or more the resistance value in the first high resistance state.
  • the failure detection mode is set (step S711), and all the memory cells different from the failure memory cells connected to the same bit line or word line as the target failure memory cell are in the second high resistance state. Is determined by the sense amplifier 300 of the reading circuit 206 (step S712). When all the memory cells different from the defective memory cell connected to the same bit line or word line as the target defective memory cell are in the second high resistance state, the target defective memory cell The address is stored in the defective address storage circuit 213 (step S706), and the process ends. If all the memory cells that are connected to the same bit line or word line as the target defective memory cell and are different from the defective memory cell are not in a high resistance state, the resistance of the target defective memory cell is increased. It is determined as a failure (step S713), and the process ends. In this case, since it cannot be relieved, the memory cell array 202 is treated as a defective circuit.
  • the current control element and the resistance change element may be connected in the opposite upper and lower connection relation, or the upper and lower connection relation between the first resistance change layer and the second resistance change layer.
  • the upper and lower connection relationship between the lower electrode and the upper electrode may be reversed.
  • the bit line selection circuit and the word line selection circuit fix the unselected bit lines BL1 and BL3 and the unselected word lines WL1 and WL3 to the high impedance state, respectively.
  • the unselected bit lines BL1 and BL3 and the unselected word lines WL1 and WL3 may be set to voltage values equal to or lower than the voltage applied between the selected bit line BL2 and the selected word line WL2, respectively.
  • the materials of the upper electrode, the lower electrode, the first variable resistance layer, and the second variable resistance layer in the above embodiment are merely examples, and other materials may be used.
  • the metal oxide layer of the resistance change element has a laminated structure of tantalum oxide, the above-described effects of the present invention are manifested only when the metal oxide layer is tantalum oxide.
  • the variable resistance element may be of any other configuration or material as long as it is an element that reversibly transits at least two resistance values.
  • bidirectional current control element is described as the current control element in the above embodiment, a unidirectional diode may be used.
  • the current control element in the above embodiment may be a PN diode, a Schottky diode, or a Zener diode.
  • variable resistance nonvolatile memory device having a cross-point configuration detects an address of a defective memory cell of a memory cell using a current control element having bidirectional characteristics, and detects the defective memory. By performing cell relief, it is useful for realizing a highly reliable memory.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Semiconductor Memories (AREA)
  • For Increasing The Reliability Of Semiconductor Memories (AREA)
  • Read Only Memory (AREA)

Abstract

 安定した動作をすることができる信頼性の高い抵抗変化型不揮発性記憶装置および抵抗変化型不揮発性記憶装置の駆動方法を提供する。抵抗変化型不揮発性記憶装置(200)は、メモリセルアレイ(202)と、メモリセル選択回路(203、204)と、書き込み回路(205)と、読み出し回路(206)とを備え、書き込み回路(205)は、不良メモリセルと同一のビット線およびワード線の少なくともいずれかに配置されている不良メモリセル以外の他のメモリセルに対して、他のメモリセルの抵抗変化素子(30)を第1の低抵抗状態での抵抗値より大きい抵抗値を示す第2の高抵抗状態にするような第2の高抵抗化パルスを印加する。

Description

抵抗変化型不揮発性記憶装置およびその駆動方法
 本発明は、抵抗変化型不揮発性記憶装置およびその駆動方法に関し、特に、電圧パルスの印加により低抵抗状態と当該低抵抗状態よりも抵抗値が高い高抵抗状態との間を可逆的に遷移する抵抗変化素子と、ダイオード素子で代表される電流制御素子とで構成されたメモリセルを有する抵抗変化型不揮発性記憶装置およびその駆動方法に関するものである。
 近年、半導体微細加工技術の進歩に伴い、記憶装置(メモリ)の高密度化、大容量化が著しく進んでいる。不揮発性記憶装置の分野では、フラッシュメモリやEEPROMの技術的進歩(例えば、微細化)が目覚しく、コストも低減されつつあるが、フラッシュメモリの微細化は、限界に迫りつつあると言われている。かかる状況の下で、更なるセル面積の縮小やコスト低減を実現するという観点から、新規な不揮発性記憶装置が注目されている。
 新規な不揮発性記憶装置として、抵抗変化素子を用いて構成されたメモリセルを有する不揮発性記憶装置の研究開発が進んでいる。抵抗変化素子とは、電気的信号によって抵抗値が可逆的に変化する性質を有し、さらにはこの抵抗値に対応したデータを、不揮発的に記憶することが可能な素子をいう。
 抵抗変化素子を用いた不揮発性記憶装置として、直交するように配置されたビット線とワード線との交点近傍の位置に、MOSトランジスタと抵抗変化素子を直列に接続した、いわゆる1T1R型と呼ばれるメモリセルをマトリクス状にアレイ配置した不揮発性記憶装置が一般的に知られている。また、トランジスタに代えて電流制御素子であるダイオードを用いた、いわゆる1D1R型と呼ばれるメモリセルをマトリクス状にアレイ配置したクロスポイント構造の不揮発性記憶装置も一般的に知られている(例えば、特許文献1、2参照)。
 特許文献1では、双方向型の抵抗変化特性を有する可変抵抗素子をメモリセルとして用いた1D1R型の不揮発性記憶装置が示されている。また、特許文献2では、単方向の可変抵抗素子をメモリセルとして用いた1D1R型メモリセルにおける非線形素子の不良検知方法について示されている。
特開2006-203098号公報(図2) 特開2009-199695号公報(図6)
 メモリセルアレイを大容量化すると、メモリセル不良の発生が増加する傾向にある。例えば、1D1R型クロスポイントアレイ構造において、電流制御素子として用いられるダイオード素子がリーク電流異常を有する素子の場合、オフ電流よりも大きなリーク電流が流れ、このリーク電流異常のダイオード素子を含む不良セルを選択した場合に正常な読み出しができなくなる。また、双方向型の電流制御素子(例えばMSMダイオードやMIMダイオード等)を用いた双方向型のメモリセルアレイでは、メモリセルのどちらの方向に電圧を印加しても電流が流れるため、リーク電流異常が起こっている不良メモリセルを検出できないという課題を有している(特許文献2参照)。
 上記課題を解決するために、本発明は、安定した動作をすることができる信頼性の高い抵抗変化型不揮発性記憶装置および抵抗変化型不揮発性記憶装置の駆動方法を提供することを目的とする。
 本発明の一形態に係る抵抗変化型不揮発性記憶装置は、印加される書き込み電圧パルスに応じて可逆的に抵抗値が遷移する抵抗変化素子と、前記抵抗変化素子と直列に接続され、印加電圧が所定の閾値電圧を超えると導通状態とみなされる電流が流れる電流制御素子とで構成される複数のメモリセルを有し、複数のワード線と複数のビット線との立体交差点のそれぞれに、前記複数のメモリセルの1つが配置されたメモリセルアレイと、前記複数のワード線から少なくとも1つを選択し、前記複数のビット線から少なくとも1つを選択することにより、前記メモリセルアレイから少なくとも1つ以上の前記メモリセルを選択するメモリセル選択回路と、前記選択されたメモリセルに電圧パルスを印加することによって、前記選択されたメモリセルの前記抵抗変化素子の抵抗値を書き換える書き込み回路と、前記選択されたメモリセルの前記電流制御素子に前記閾値電圧より高い第1電圧、または、前記閾値電圧以下の第2電圧が印加されるように、前記選択されたメモリセルに読み出し電圧を印加することによって、前記選択されたメモリセルの状態を読み出す読み出し回路と、を備え、前記書き込み回路は、前記書き込み電圧パルスとして第1の低抵抗化パルス、または、第1の高抵抗化パルスを前記選択されたメモリセルに印加することにより、前記複数のメモリセルのうち選択されたメモリセルの前記抵抗変化素子をそれぞれ第1の低抵抗状態、または、第1の高抵抗状態にし、前記読み出し回路は、前記選択されたメモリセルが不良を有さないメモリセルでありかつ当該選択されたメモリセルに前記第1電圧を印加して前記選択されたメモリセルの前記抵抗変化素子の抵抗状態を読み出すとき、前記選択されたメモリセルが前記第1の低抵抗状態の場合は第1の所定値の電流を検出し、前記第1の高抵抗状態の場合は第2の所定値の電流を検出し、前記読み出し回路は、前記選択されたメモリセルの前記抵抗変化素子の抵抗状態を読み出すときに、前記選択されたメモリセルに、前記第1の低抵抗状態または前記第1の高抵抗状態に対応する前記第1の所定値または前記第2の所定値の電流よりもそれぞれ大きい電流が流れる場合、前記選択されたメモリセルが不良を有する不良メモリセルと判定し、前記書き込み回路は、前記不良メモリセルと同一のビット線および同一のワード線の少なくともいずれかに配置されている前記不良メモリセル以外の他のメモリセルに対して、前記他のメモリセルの前記抵抗変化素子を前記第1の低抵抗状態での抵抗値以上の抵抗値を示す第2の高抵抗状態にするように、第2の高抵抗化パルスを印加する。
 本発明によれば、安定した動作をすることができる信頼性の高い抵抗変化型不揮発性記憶装置および抵抗変化型不揮発性記憶装置の駆動方法を提供することができる。
図1は、本発明の実施の形態に係るメモリセルの基本構造を示す模式図である。 図2は、本発明の実施の形態に係るメモリセルの等価回路図である。 図3Aは、メモリセルの電圧電流特性を示す図である。 図3Bは、抵抗変化素子の抵抗電圧特性を示す図である。 図4は、正常なメモリセルと不良なメモリセルの電圧電流特性を示す図である。 図5は、抵抗変化型不揮発性記憶装置の構成図である。 図6Aは、アドレス変換表の一例を示す図である。 図6Bは、読み出し回路の構成の一例を示す回路図である。 図7は、読み出しモード時の電流パスを説明するための回路図である。 図8は、図7の回路図の等価回路図である。 図9は、読み出しモード時の電流パスを説明するための回路図である。 図10は、図9の回路図の等価回路図である。 図11は、セル特性判定モード時の電流パスを説明するための回路図である。 図12は、図11の回路図の等価回路図である。 図13は、モード別真理値表である。 図14Aは、電流制御素子特性判定モード時の判定フローの一例である。 図14Bは、電流制御素子特性判定モード時の判定フローの一例である。 図15は、抵抗変化素子特性判定モード時の判定フローの一例である。 図16は、救済モード時の判定フローの一例である。 図17は、書き込み回路の構成の一例を示す回路図である。 図18は、選択ビット線に印加される電圧と流れる電流の電圧電流特性の一例を示す図である。 図19は、書き込み回路の構成の一例を示す回路図である。 図20は、抵抗変化型不揮発性記憶装置の構成図である。 図21は、救済モード時の判定フローの一例である。 図22Aは、メインメモリセルアレイおよび冗長メモリセルアレイの配置の一例を示す図である。 図22Bは、メインメモリセルアレイおよび冗長メモリセルアレイの配置の一例を示す図である。 図22Cは、メインメモリセルアレイおよび冗長メモリセルアレイの配置の一例を示す図である。 図23は、救済モード時の判定フローの一例である。 図24は、救済モード時の判定フローの一例である。 図25は、従来の不揮発性メモリセルの構成図である。 図26は、従来の不揮発性メモリセルアレイの構成図である。 図27は、従来の単方向ダイオードを用いたメモリセルのモデルである。
 (本発明の基礎となった知見)
 以下、本発明の詳細を説明する前に、本発明の基礎となった知見について説明する。
 抵抗変化素子を用いた不揮発性記憶装置として、上記したように、1T1R型と呼ばれるメモリセルや1D1R型と呼ばれるメモリセルをマトリクス状にアレイ配置したクロスポイント構造の不揮発性記憶装置が一般的に知られている。
 図25は、従来の不揮発性メモリセルの構成図であり、双方向型の抵抗変化特性を有する可変抵抗素子をメモリセルとして用いた1D1R型の不揮発性記憶装置が示されている(特許文献1参照)。図25では、可変抵抗体1230を上部電極1240および下部電極1250の間に挟持した可変抵抗素子1260と、非線形素子1270とを直列に接続したメモリセル1280が、ビット線1210とワード線1220の交差している箇所に配置されたクロスポイント構造のメモリセルアレイを示している。ここで、可変抵抗素子1260は、印加される電圧の極性によって、抵抗値が低抵抗状態と高抵抗状態を可逆的に遷移する双方向型の抵抗変化特性を持った可変抵抗素子である。また、非線形素子1270は、非選択セルに流れるいわゆる漏れ電流を低減することを目的として、例えばバリスタにより構成されている。クロスポイント構造のメモリセルアレイは、配線ピッチでメモリセルを配置することができ、また三次元的にメモリセルアレイを積層することが可能であるため、大容量化することができる。
 また、図26は、従来の不揮発性メモリセルアレイの構成図であり、単方向の可変抵抗素子をメモリセルとして用いた1D1R型メモリセルにおける非線形素子の不良検知方法について示されている(特許文献2参照)。図26では、単方向の可変抵抗素子と、アノードとカソードを有する単方向のダイオード素子とを直列に接続したメモリセルが、ビット線BL1、BL2、BL3と、ワード線WL1、WL2、WL3とで交差している箇所に配置されている。正常なダイオード素子であれば、全てのビット線にVdd電位、全てのワード線にVss電位を印加することによって、逆方向バイアスされた状態では電流が流れないが、不良のダイオード素子があれば、逆方向バイアスされた状態でもDC電流が流れるため、不良のダイオード素子があるビット線の電位がVdd電位から電位降下する。
 特許文献2では、この不良のダイオード素子が属するビット線を不良ビット線であると検知することが開示されている。
 図27は、従来の単方向ダイオードを用いたメモリセルのモデルである。図27に示すように、不良検知回路2053は、ビット線電源回路2054と、ラッチ回路2531と、スイッチ回路2055とを備え、ビット線選択回路2024に接続されたビット線に接続されており、スタンバイユニット2052において不良のダイオード素子が接続された不良ビット線の検知を行い、救済方法について開示されている。
 ここで、メモリセルアレイを大容量化すると、メモリセル不良の発生が増加する傾向にある。1D1R型クロスポイントアレイ構造において、電流制御素子として用いられるダイオード素子は、正常な素子の場合、オン状態に流れる電流に対してオフ状態では少なくとも1桁以上少ないオフ電流しか流れない。しかしながら、リーク電流異常を有する素子の場合、オフ電流よりも大きなリーク電流が流れ、このリーク電流異常のダイオード素子を含む不良セルを選択した場合に正常な読み出しができなくなる。また、正常なメモリセルを選択した場合においても、不良メモリセルの影響を受けるため、不良メモリセルが1つであっても、当該不良メモリセルが接続されているビット線またはワード線の複数のメモリセルで不良が発生しているように誤検出され、不良メモリセルのアドレスを特定することができない。そのため、物理解析やFIB解析等で不良の原因を解析することが極めて困難であるという課題を有している。
 また、特許文献2で示される構成では、アノードとカソードを有する単方向ダイオード素子を用いた単方向メモリセルアレイにおける不良ビット線の検出方法について記載されている。つまり、順方向に電圧を印加すると電流が流れ、逆方向に電圧を印加すると電流が流れないことを利用して、リーク電流異常を起こしている不良ビット線の検出を行う方法について記載されている。全てのビット線をVdd電位、全てのワード線をVss電位にして、ダイオード素子を逆バイアス状態にすることで、全てのメモリセルが正常であれば電流は流れないが、リーク電流異常を起こしている不良メモリセルがあると、その不良メモリセルを含むビット線からワード線に対してリーク電流が流れる。このリーク電流を判定することで、リーク電流異常を起こしている不良ビット線の検出ができる。
 しかしながら、双方向型の電流制御素子(例えばMSMダイオードやMIMダイオード等)を用いた双方向型のメモリセルアレイでは、メモリセルのどちらの方向に電圧を印加しても電流が流れるため、特許文献2に記載の方法では、リーク電流異常が起こっている不良メモリセルを検出できないという課題を有している。また、図27で示されるように、不良検知回路2053は、ビット線にのみ接続されているため、リーク電流異常を起こしている不良ビット線の検出はできるが、その不良ビット線に接続されているどのメモリセルが不良を起こしているかは検出できないという課題も有している。
 メモリセルの不良には、電流制御素子がショート不良を起こしているためにリーク電流異常が起こる不良だけでなく、抵抗変化素子の抵抗状態が超低抵抗状態に張り付いているために、メモリセルに電圧を印加しても抵抗変化素子が高抵抗状態または低抵抗状態に遷移しないという不良もある。
 電流制御素子がショート不良である場合には、不良メモリセルの抵抗変化素子を高抵抗化することにより、リーク電流異常を抑制して、ショート不良を有する不良メモリセルのリーク電流が他の正常なメモリセルに与える影響を抑制することができる。
 しかし、抵抗変化素子が上記したような不良を有する場合には、超低抵抗状態に張り付いている抵抗変化素子を高抵抗化することは難しく、不良メモリセルが他の正常なメモリセルに与える影響を抑制することはできない。そのため、不良メモリセルに流れるリーク電流により、他の正常なメモリセルの動作が不安定なものとなるおそれがある。
 そこで、本実施の形態では、安定した動作をすることができる信頼性の高い抵抗変化型不揮発性記憶装置および抵抗変化型不揮発性記憶装置の駆動方法について説明する。
 本発明の一形態に係る抵抗変化型不揮発性記憶装置は、印加される書き込み電圧パルスに応じて可逆的に抵抗値が遷移する抵抗変化素子と、前記抵抗変化素子と直列に接続され、印加電圧が所定の閾値電圧を超えると導通状態とみなされる電流が流れる電流制御素子とで構成される複数のメモリセルを有し、複数のワード線と複数のビット線との立体交差点のそれぞれに、前記複数のメモリセルの1つが配置されたメモリセルアレイと、前記複数のワード線から少なくとも1つを選択し、前記複数のビット線から少なくとも1つを選択することにより、前記メモリセルアレイから少なくとも1つ以上の前記メモリセルを選択するメモリセル選択回路と、前記選択されたメモリセルに電圧パルスを印加することによって、前記選択されたメモリセルの前記抵抗変化素子の抵抗値を書き換える書き込み回路と、前記選択されたメモリセルの前記電流制御素子に前記閾値電圧より高い第1電圧、または、前記閾値電圧以下の第2電圧が印加されるように、前記選択されたメモリセルに読み出し電圧を印加することによって、前記選択されたメモリセルの状態を読み出す読み出し回路と、を備え、前記書き込み回路は、前記書き込み電圧パルスとして第1の低抵抗化パルス、または、第1の高抵抗化パルスを前記選択されたメモリセルに印加することにより、前記複数のメモリセルのうち選択されたメモリセルの前記抵抗変化素子をそれぞれ第1の低抵抗状態、または、第1の高抵抗状態にし、前記読み出し回路は、前記選択されたメモリセルが不良を有さないメモリセル(正常なメモリセル)でありかつ当該選択されたメモリセルに前記第1電圧を印加して前記選択されたメモリセルの前記抵抗変化素子の抵抗状態を読み出すとき、前記選択されたメモリセルが前記第1の低抵抗状態の場合は第1の所定値の電流を検出し、前記第1の高抵抗状態の場合は第2の所定値の電流を検出し、前記選択されたメモリセルの前記抵抗変化素子の抵抗状態を読み出すときに、前記選択されたメモリセルに、前記第1の低抵抗状態または前記第1の高抵抗状態に対応する前記第1の所定値または前記第2の所定値の電流よりもそれぞれ大きい電流が流れる場合、前記選択されたメモリセルが不良を有する不良メモリセルと判定し、前記書き込み回路は、前記不良メモリセルと同一のビット線および同一のワード線の少なくともいずれかに配置されている前記不良メモリセル以外の他のメモリセルに対して、前記他のメモリセルの前記抵抗変化素子を前記第1の低抵抗状態での抵抗値以上の抵抗値を示す第2の高抵抗状態にするように、第2の高抵抗化パルスを印加する。
 この構成によれば、双方向の電流制御素子を用いたクロスポイントアレイ構造のメモリセルにおいて、ショート不良を有する電流制御素子を備えたメモリセル、または、抵抗変化素子が不良である不良メモリセルを特定し、不良メモリセルと同一のビット線およびワード線に配置されている他のメモリセルを第2の高抵抗状態にするので、不良メモリセルを高抵抗化することなく、不良メモリセルを救済することができる。これにより、信頼性の高い抵抗変化型不揮発性記憶装置を実現することができる。なお、抵抗変化素子が第1の低抵抗状態の場合に正常なメモリセルに流れるメモリセル電流を、第1の所定値という。また、抵抗変化素子が第1の高抵抗状態の場合に正常なメモリセルに流れるメモリセル電流を、第2の所定値という。
 また、前記書き込み回路は、前記不良メモリセルと同一のビット線およびワード線に配置されている前記不良メモリセル以外の他のメモリセルに対して、前記他のメモリセルの前記抵抗変化素子を前記第1の高抵抗状態以上の抵抗値を示す第3の高抵抗状態にするように、第3の高抵抗化パルスを印加することが好ましい。
 この構成によれば、不良メモリセルと同一のビット線およびワード線に配置されている他のメモリセルを第3の高抵抗状態にするので、より信頼性の高い抵抗変化型不揮発性記憶装置を実現することができる。
 また、前記読み出し回路は、前記選択されたメモリセルに前記第2電圧を印加して、前記第1の所定値より大きい電流が流れるとき、前記選択されたメモリセルがショート不良を有する不良メモリセルであると判定することが好ましい。
 この構成によれば、閾値電圧より低い第2電圧を印加するので、ショート不良を有していないメモリセルには所定値以上の電流は流れず、ショート不良を有しているメモリセルのみ所定値以上の電流が流れる。したがって、この電流を検知することにより、不良のメモリセルを容易に判定することができる。
 また、前記書き込み回路は、選択されたメモリセルの前記抵抗変化素子を前記第1の高抵抗状態にするように前記第1の高抵抗化パルスを印加し、前記読み出し回路は、前記選択されたメモリセルに前記第1電圧を印加して前記選択されたメモリセルの前記抵抗変化素子の抵抗状態を読み出し、前記選択されたメモリセルに流れる電流が前記第2の所定値の電流より大きい場合、前記選択されたメモリセルの前記抵抗変化素子は不良であると判定することが好ましい。
 この構成によれば、抵抗変化素子が不良であるメモリセルを容易に判定することができる。
 また、前記書き込み回路により前記不良メモリセルに対して前記第1の低抵抗化パルスを印加した後、前記選択されたメモリセルに前記第2電圧を印加して、前記第1の所定値より大きい電流が流れるとき、前記選択されたメモリセルがショート不良を有する不良メモリセルであると判定することが好ましい。
 この構成によれば、抵抗変化素子を第1の低抵抗状態にした後、電流制御素子の不良を検出するので、不良メモリセルをより確実に検出することができる。これにより、信頼性の高い抵抗変化型不揮発性記憶装置を実現することができる。
 また、前記書き込み回路は、前記不良メモリセルの前記抵抗変化素子を前記第1の低抵抗状態以上の抵抗値を示す第4の高抵抗状態にするように、前記不良メモリセルに、前記抵抗変化素子が高抵抗化を開始するパルス電圧の絶対値以上の電圧の絶対値を有する第4の高抵抗化パルスを印加することが好ましい。
 この構成によれば、不良メモリセル、および、不良メモリセルと同一のビット線およびワード線の少なくともいずれかに配置された他のメモリセルを高抵抗化するので、より信頼性の高い抵抗変化型不揮発性記憶装置を実現することができる。
 また、前記メモリセルアレイは、主記憶用の前記メモリセルを複数備えたメインメモリセルアレイと、前記メインメモリセルアレイ中の少なくとも1つの前記メモリセルが不良メモリセルの場合に、前記不良メモリセルと同一のビット線またはワード線の少なくともいずれかに配置されている他のメモリセルと置換して使用するための冗長メモリセルを複数備えた冗長メモリセルアレイとを備えていることが好ましい。
 この構成によれば、冗長メモリセルを備えているため、高抵抗化したメモリセルに代えて冗長メモリセルを使用することができる。これにより、より信頼性の高い抵抗変化型不揮発性記憶装置を実現することができる。
 また、前記抵抗変化型不揮発性記憶装置は、前記不良メモリセルと同一のビット線またはワード線の少なくともいずれかに配置されている他のメモリセルのアドレス情報と前記冗長メモリセルのアドレス情報とを対応付けて記憶する不良アドレス記憶回路を備えることが好ましい。
 この構成によれば、不良アドレス記憶回路を備えているため、冗長メモリセルと置き換えた不良メモリセルと同一のビット線またはワード線上の他のメモリセルと、冗長メモリセルとを対応付けて記憶することができる。
 また、前記不良アドレス記憶回路は、前記不良メモリセルを有するビット線のアドレスと、前記不良メモリセルと同一のビット線に配置されている前記不良メモリセル以外の他のメモリセルと置換する前記冗長メモリセルを有するビット線のアドレスとを対応付けて記憶することが好ましい。
 この構成によれば、不良メモリセルと同一のビット線に配置されている他のメモリセルを冗長メモリセルに置き換えることができるので、不良メモリセルを救済して信頼性の高い抵抗変化型不揮発性記憶装置を実現することができる。
 また、前記不良アドレス記憶回路は、前記不良メモリセルを有するワード線のアドレスと、前記不良メモリセルと同一のワード線に配置されている前記不良メモリセル以外の他のメモリセルと置換する前記冗長メモリセルを有するワード線のアドレスとを対応付けて記憶することが好ましい。
 この構成によれば、不良メモリセルと同一のワード線に配置されている他のメモリセルを冗長メモリセルに置き換えることができるので、不良メモリセルを救済して信頼性の高い抵抗変化型不揮発性記憶装置を実現することができる。
 また、本発明の一形態に係る抵抗変化型不揮発性記憶装置の駆動方法は、印加される書き込み電圧パルスに応じて可逆的に抵抗値が遷移する抵抗変化素子と、前記抵抗変化素子と直列に接続され、印加電圧が所定の閾値電圧を超えると導通状態とみなされる電流が流れる電流制御素子とで構成される複数のメモリセルを有し、複数のワード線と複数のビット線との立体交差点のそれぞれに、前記複数のメモリセルの1つが配置されたメモリセルアレイを備えた抵抗変化型不揮発性記憶装置の駆動方法であって、書き込み回路により、前記複数のメモリセルのうち選択されたメモリセルに第1の低抵抗化パルス、または、第1の高抵抗化パルスを印加することで、前記選択されたメモリセルの前記抵抗変化素子をそれぞれ第1の低抵抗状態、または、第1の高抵抗状態にする書き込みステップと、読み出し回路により、前記選択されたメモリセルに前記閾値電圧より高い第1電圧を印加して前記選択されたメモリセルの前記抵抗変化素子の抵抗状態を読み出す読み出しステップと、前記選択されたメモリセルが不良を有さないメモリセルでありかつ前記第1の低抵抗状態の場合に前記選択されたメモリセルに流れる電流を第1の所定値の電流、前記選択されたメモリセルが不良を有さないメモリセルでありかつ前記第1の高抵抗状態の場合に前記選択されたメモリセルに流れる電流を第2の所定値の電流とすると、前記選択されたメモリセルの抵抗状態を読み出すときに、前記選択されたメモリセルに、前記第1の低抵抗状態または前記第1の高抵抗状態に対応する前記第1の所定値または前記第2の所定値の電流よりもそれぞれ大きい電流が流れる場合、前記選択されたメモリセルが不良を有している不良メモリセルであると判定する不良検知ステップと、前記書き込み回路により、前記不良メモリセルと同一のビット線およびワード線の少なくともいずれかに配置されている前記不良メモリセル以外の他の正常メモリセルに対して、前記他のメモリセルの前記抵抗変化素子を前記第1の低抵抗状態での抵抗値以上の抵抗値を示す第2の高抵抗状態にするように、第2の高抵抗化パルスを印加する正常メモリセル高抵抗化ステップとを含む。
 この構成によれば、双方向の電流制御素子を用いたクロスポイントアレイ構造のメモリセルにおいて、ショート不良を有する電流制御素子を備えたメモリセル、または、抵抗変化素子が不良である不良メモリセルを特定し、不良メモリセルと同一のビット線およびワード線に配置されている他のメモリセルを第2の高抵抗状態にするので、不良メモリセルを高抵抗化することなく、不良メモリセルを特定し、救済することができる。これにより、信頼性の高い抵抗変化型不揮発性記憶装置を実現することができる。
 また、前記書き込み回路は、前記不良メモリセルと同一のビット線およびワード線に配置されている前記不良メモリセル以外の他のメモリセルに対して、前記他のメモリセルの前記抵抗変化素子を前記第1の高抵抗状態以上の抵抗値を示す第3の高抵抗状態にするように、第3の高抵抗化パルスを印加することが好ましい。
 この構成によれば、不良メモリセルと同一のビット線およびワード線に配置されている他のメモリセルを第3の高抵抗状態にするので、より信頼性の高い抵抗変化型不揮発性記憶装置を実現することができる。
 また、前記不良検知ステップにおいて、前記読み出し回路は、前記選択されたメモリセルに前記閾値電圧より低い第2電圧を印加して、前記第1の所定値より大きい電流が流れるとき、前記選択されたメモリセルがショート不良を有する不良メモリセルであると判定することが好ましい。
 この構成によれば、閾値電圧より低い第2電圧を印加するので、ショート不良を有していないメモリセルには所定値以上の電流は流れず、ショート不良を有しているメモリセルのみ所定値以上の電流が流れる。したがって、この電流を検知することにより、不良のメモリセルを容易に判定することができる。
 また、前記不良検知ステップにおいて、前記書き込み回路は、選択されたメモリセルに第1の高抵抗化パルスを印加して前記選択されたメモリセルの前記抵抗変化素子を前記第1の高抵抗状態にするように前記第1の高抵抗化パルスを印加し、前記読み出し回路は、前記選択されたメモリセルに前記第1電圧を印加して前記選択されたメモリセルの前記抵抗変化素子の抵抗状態を読み出し、前記選択されたメモリセルに前記第2の所定値より大きい電流が流れるとき、前記選択されたメモリセルの前記抵抗変化素子は不良であると判定することが好ましい。
 この構成によれば、抵抗変化素子が不良である不良メモリセルを検出し、救済することができる。
 また、前記正常メモリセル高抵抗化ステップにおいて、前記不良メモリセルに対して、前記不良メモリセルの前記抵抗変化素子を前記第1の低抵抗状態よりも抵抗値の高い第4の高抵抗状態にするように、前記書き込み回路により前記抵抗変化素子が高抵抗化を開始するパルス電圧の絶対値以上の電圧の絶対値を有する第4の高抵抗化パルスを印加する不良メモリセル高抵抗化ステップをさらに含むことが好ましい。
 この構成によれば、不良メモリセルを第4の高抵抗状態にするように第4の高抵抗化パルス電圧を印加するので、不良メモリセル自体を救済することができる。これにより、信頼性の高い抵抗変化型不揮発性記憶装置を実現することができる。
 以下に、本発明の抵抗変化型不揮発性記憶装置(以下、単に「不揮発性記憶装置」ともいう。)の実施の形態について、図面を参照しながら説明する。なお、本発明について、以下の実施の形態および添付の図面を参照しながら説明を行うが、これは例示を目的としており、本発明がこれらに限定されることを意図しない。以下で説明する実施の形態は、いずれも本発明の好ましい一具体例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、本発明を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、本発明の最上位概念を示す独立請求項に記載されていない構成要素については、より好ましい形態を構成する任意の構成要素として説明される。
 (第1の実施の形態)
 [メモリセル]
 図1は、本発明の第1の実施の形態におけるメモリセルの構成図の一例である。図1に示すメモリセル10は、直列に接続された電流制御素子20と抵抗変化素子30とで構成されている。
 図1において、抵抗変化素子30は、コンタクト41を介して電流制御素子20と接続され、抵抗変化素子30と電流制御素子20により1ビットの1D1R型のメモリセル10が構成されている。メモリセル10の一方の端子は、コンタクト40を介して下部配線50と接続され、メモリセル10のもう一方の端子は、コンタクト42を介して上部配線51と接続されている。
 ここで、図1のメモリセル10は、電流制御素子20を下に、抵抗変化素子30を上にした接続関係になっているが、この接続関係を逆にして、電流制御素子20を上に、抵抗変化素子30を下にした接続関係でも構わない。
 電流制御素子20は、下部電極(第1の電極)21と、上部電極(第2の電極)23と、下部電極21と上部電極23との間に挟持した電流制御層22(半導体層22または絶縁体層22)とを備えている。下部電極21と半導体層22とは物理的かつ電気的に接触してショットキー接合を形成しており、上部電極23と半導体層22とは物理的かつ電気的に接触してショットキー接合を形成して、双方向の整流特性を有している。半導体層22の代わりに絶縁体層22を用いる場合、下部電極21、絶縁体層22、および上部電極23でトンネルダイオードを構成し、双方向の整流特性を有している。
 つまり、電流制御素子20は、ダイオード等に代表されるように、電流制御素子20の両端に印加される電圧と電流制御素子20の両端に流れる電流が、非線形の特性を示す素子であり、印加される電圧の極性によって流れる電流の方向が変わる双方向型のダイオードである。つまり、電流制御素子20は、正の印加電圧領域と負の印加電圧領域とにそれぞれ閾値電圧(VF)を有し、電流制御素子20の両端に印加される電圧の絶対値が閾値電圧(VF)以下の場合は、電流制御素子20の抵抗値が大きくなり、流れる電流の絶対値は所定の閾値電流以下となるが、電流制御素子20の両端に印加される電圧の絶対値が閾値電圧(VF)を超える場合は、電流制御素子20の抵抗値が小さくなり、流れる電流の絶対値が非線形的に増加する特性を有している。つまり、電流制御素子20の両端に印加される電圧の絶対値が閾値電圧(VF)以下であるときは、電流制御素子20には所定の閾値電流以下のオフ電流しか流れないため、電流制御素子20はオフ状態になる。また、電流制御素子20の両端に印加される電圧の絶対値が閾値電圧(VF)を超える場合は、電流制御素子20には大きなオン電流が流れ、電流制御素子20はオン状態になる。つまり、電流制御素子20の両端に印加される電圧によって、電流制御素子20はオン状態とオフ状態を持つスイッチの機能を有する。電流制御素子20が上下対称構造の場合(つまり、2つの電極が同じ材料で、電流制御層22が上下方向において均質な場合)、電流制御素子20の電圧-電流特性は、正負の印加電圧に対してほぼ点対称な特性を示す。すなわち、正の印加電圧領域と負の印加電圧領域の閾値電圧の絶対値はほぼ同じ値を示す。
 本実施の形態における電流制御素子20は、例えば、タンタル窒化物で構成される下部電極21と、Siより窒素含有率が小さい窒素不足型のシリコン窒化膜で構成される半導体層22と、タンタル窒化物で構成される上部電極23とを備えたMSM(Metal-Semiconductor-Metal)ダイオードとして構成される。半導体層22の厚みは例えば3~20nmとすることができる。シリコン窒化膜は、窒素含有率を小さくすることにより半導体特性を有するように形成することができ、MSMダイオードとして構成されるダイオードを簡単な製造プロセスにより作製することができる。例えば、窒素不足型のシリコン窒化膜(SiN:0<z≦0.85)は、例えばSiターゲットを用いた窒素ガス雰囲気中でのリアクティブスパッタリングにより形成することができる。このとき、室温条件で、チャンバーの圧力を0.1Pa~1Paとし、Ar/N流量を18sccm/2sccmとして作製すればよい。
 なお、本実施の形態における電流制御素子20は、MIM(Metal-Insulator-Metal)ダイオード、PNダイオード、ショットキーダイオード、ツェナーダイオードでも構わない。MIMダイオードの場合、下部電極21と上部電極23との間に、半導体層に代えて絶縁体層22を備える構成となる。また、電流制御素子20は一方向にしか電流が流れない単方向型の電流制御素子でも構わない。抵抗変化素子30は、下部電極(第3の電極)31と、上部電極(第4の電極)34と、下部電極31と上部電極34との間に挟持した抵抗変化層35とを備えている。ここで、抵抗変化層35は、酸素不足型の遷移金属酸化物で構成された第1の遷移金属酸化物層32と、第1の遷移金属酸化物層32よりも酸素不足度が小さい遷移金属酸化物で構成された第2の遷移金属酸化物層33とが積層されて構成されている。本実施形態においては、その一例として、第1の酸素不足型のタンタル酸化物層(以下、第1のTa酸化物層)32と、第2のタンタル酸化物層(以下、第2のTa酸化物層)33とが積層されて構成されている。ここで、第2のTa酸化物層33の酸素含有率は、第1のTa酸化物層32の酸素含有率よりも高くなっている。言い換えると、第2のTa酸化物層33の酸素不足度は、第1のTa酸化物層32の酸素不足度よりも少ない。酸素不足度とは、それぞれの遷移金属において、その化学量論的組成の酸化物を構成する酸素の量に対し、不足している酸素の割合をいう。例えば、遷移金属がタンタル(Ta)の場合、化学量論的な酸化物の組成はTaであるので、TaO2.5と表現できる。TaO2.5の酸素不足度は0%である。例えばTaO1.5の組成の酸素不足型のタンタル酸化物の酸素不足度は、酸素不足度=(2.5-1.5)/2.5=40%となる。また、Taの酸素含有率は、総原子数に占める酸素原子の比率(O/(Ta+O))であり、5/7=71.4atm%となる。したがって、酸素不足型のタンタル酸化物は、酸素含有率は0より大きく、71.4atm%より小さいことになる。
 抵抗変化層35を構成する金属は、タンタル以外の遷移金属を用いてもよい。遷移金属としては、タンタル(Ta)、チタン(Ti)、ハフニウム(Hf)、ジルコニウム(Zr)、ニオブ(Nb)、タングステン(W)等を用いることができる。遷移金属は複数の酸化状態をとることができるため、異なる抵抗状態を酸化還元反応により実現することが可能である。例えば、ハフニウム酸化物を用いる場合、第1のハフニウム酸化物層32の組成をHfOとした場合にxが0.9以上1.6以下であり、且つ、第2のハフニウム酸化物層33の組成をHfOとした場合にyがxの値よりも大である場合に、抵抗変化層35の抵抗値を安定して高速に変化させることが確認できている。この場合、第2のハフニウム酸化物層33の膜厚は、3nm以上4nm以下が好ましい。また、ジルコニウム酸化物を用いる場合、第1のジルコニウム酸化物層32の組成をZrOとした場合にxが0.9以上1.4以下であり、且つ、第2のジルコニウム酸化物層33の組成をZrOとした場合にyがxの値よりも大である場合に、抵抗変化層35の抵抗値を安定して高速に変化させることが確認できている。この場合、第2のジルコニウム酸化物層33の膜厚は、1nm以上5nm以下が好ましい。
 なお、第1の遷移金属酸化物層32を構成する第1の遷移金属と、第2の遷移金属酸化物層33を構成する第2の遷移金属とは、異なる遷移金属を用いてもよい。この場合、第2の遷移金属酸化物層33は、第1の遷移金属酸化物層32よりも酸素不足度が小さい、つまり抵抗が高い方が好ましい。このような構成とすることにより、抵抗変化時に下部電極31および上部電極34間に印加された電圧は、第2の遷移金属酸化物層33に、より多くの電圧が分配され、第2の遷移金属酸化物層33中で発生する酸化還元反応をより起こしやすくすることができる。また、第1の遷移金属と第2の遷移金属とが互いに異なる材料を用いる場合、第2の遷移金属の標準電極電位は、第1の遷移金属の標準電極電位より低い方が好ましい。抵抗変化現象は、抵抗が高い第2の遷移金属酸化物層33中に形成された微小なフィラメント(導電パス)中で酸化還元反応が起こってその抵抗値が変化し、発生すると考えられるからである。例えば、第1の遷移金属酸化物層32に、酸素不足型のタンタル酸化物を用い、第2の遷移金属酸化物層33にチタン酸化物(TiO)を用いることにより、安定した抵抗変化動作が得られる。チタン(標準電極電位=-1.63eV)はタンタル(標準電極電位=-0.6eV)より標準電極電位が低い材料である。標準電極電位は、その値が高いほど酸化しにくい特性を表す。第2の遷移金属酸化物層33に第1の遷移金属酸化物層32より標準電極電位が低い金属の酸化物を配置することにより、第2の遷移金属酸化物層33中でより酸化還元反応が発生しやすくなる。
 上記の各材料の積層構造の抵抗変化膜における抵抗変化現象は、いずれも抵抗が高い第2の遷移金属酸化物層33中に形成された微小なフィラメント中で酸化還元反応が起こってその抵抗値が変化し、発生すると考えられる。つまり、第2の遷移金属酸化物層33側の上部電極34に、下部電極31を基準にして正の電圧を印加したとき、抵抗変化層35中の酸素イオンが第2の遷移金属酸化物層33側に引き寄せられて第2の遷移金属酸化物層33中に形成された微小なフィラメント中で酸化反応が発生して微小なフィラメントの抵抗が増大すると考えられる。逆に、第2の遷移金属酸化物層33側の上部電極34に、下部電極31を基準にして負の電圧を印加したとき、第2の遷移金属酸化物層33中の酸素イオンが第1の遷移金属酸化物層32側に押しやられて第2の遷移金属酸化物層33中に形成された微小なフィラメント中で還元反応が発生して微小なフィラメントの抵抗が減少すると考えられる。
 酸素不足度がより小さい第2の遷移金属酸化物層33に接続されている上部電極34は、例えば、白金(Pt)、イリジウム(Ir)など、第2の遷移金属酸化物層33を構成する遷移金属および下部電極31を構成する材料と比べて標準電極電位がより高い材料で構成する。また、下部電極31は、上部電極34より標準電極電位が低い材料(例えばTaN(タンタルナイトライド)等)を主成分とする電極材料で構成する。具体的には、第1の遷移金属酸化物層32や第2の遷移金属酸化物層33にタンタル酸化物を用いた場合、下部電極31は、TaN、W、Ni、Ta、Ti、Al等で構成される群から選択され、上部電極34は、Pt、Ir、Pd、Ag、Cu、Au等で構成される群から選択されて構成されることが望ましい。このような構成とすることにより、上部電極34と第2の遷移金属酸化物層33の界面近傍の第2の遷移金属酸化物層33中において、選択的に酸化還元反応が発生し、安定した抵抗変化現象が得られる。
 以上のように構成された抵抗変化素子30を駆動する場合は、外部の電源によって所定の条件を満たす電圧を下部電極31と上部電極34との間に印加する。
 なお、図1の電流制御素子20と、抵抗変化素子30との上下の接続関係を逆にして接続しても構わないし、第1の遷移金属酸化物層32と第2の遷移金属酸化物層33との上下の接続関係を逆にし、下部電極31と上部電極34との上下の接続関係を逆にしても構わない。
 図2は、図1に示した本実施の形態におけるメモリセル10の等価回路図である。図2では、メモリセル100は、電流制御素子101と抵抗変化素子102を直列に接続した等価回路図を示しており、メモリセル100の一方の端子T1は電流制御素子101に接続され、メモリセル100のもう一方の端子T2は抵抗変化素子102に接続されている。また、端子T1は下部配線50に接続され、端子T2は上部配線51に接続されている。
 図2において、メモリセル100の2つの端子T1とT2間に電圧Vceが印加されると、印加電圧Vceは電流制御素子101と抵抗変化素子102のそれぞれのインピーダンスによって、分圧されるため、Vce=Vdi+Vreとなる。ここで、Vdiは電流制御素子101の両端に印加される電圧で、Vreは抵抗変化素子102の両端に印加される電圧である。
 ここで、電流制御素子101に印加される電圧Vdiの絶対値が閾値電圧(VF)を超えると、電流制御素子101はオン状態になり、メモリセル100にメモリセル電流Iceが流れる。一方、電流制御素子101に印加される電圧Vdiの絶対値が閾値電圧(VF)以下だと、電流制御素子101はオフ状態になり、メモリセル100には微小な電流であるオフ電流Ioffしか流れない。つまり、メモリセル100に印加する電圧の閾値電圧(VF)に対する高低によって、電流制御素子101がオン状態またはオフ状態になることで、メモリセル100を選択状態または非選択状態に制御することができる。
 図3Aは、本実施の形態における正常なメモリセル10の電圧電流特性を示す図である。図1の構造を持つメモリセル10に対し、下部配線50よりも上部配線51が高い電圧となる極性を正の電圧とし、上部配線51よりも下部配線50が高い電圧となる極性を負の電圧とし、上部配線51から下部配線50に流れる電流の向きを正の電流方向とし、下部配線50から上部配線51に流れる電流の向きを負の電流方向としたときに、メモリセル10の両端に電圧を印加した場合の電圧と電流の関係の実測値を示している。
 メモリセル10に対し、上部配線51よりも下部配線50が高い電位となるように、電圧を印加していく、つまり、図3Aにおいて負極性の電圧を印加していくと、A点付近から電流が流れ出し、Vwl1を超える辺りで抵抗変化素子30は高抵抗状態から第1の低抵抗状態へと変化を開始する。さらに、B点まで印加すると、印加電圧の絶対値に応じて電流の絶対値は大きくなり、徐々に抵抗値は低くなっている。つまり、メモリセル10に印加する電圧(あるいは電流)に応じて、低抵抗状態の任意の抵抗値を設定することができる。
 一方、メモリセル10に対し、下部配線50よりも上部配線51が高い電位となるように、電圧を印加していく、つまり、図3Aにおいて正極性の電圧を印加していくと、C点付近から電流が流れ出し、第1の低抵抗状態への変化電圧と概ね対称であるD点で、抵抗変化素子30は第1の低抵抗状態から第1の高抵抗状態へと変化を開始し、メモリセル10に流れる電流は減少する。さらに、D’点まで電圧を印加すると印加電圧に応じて電流が増加するが、印加電圧を下げていくと、印加電圧を上げるときと比較して電流が小さくなっているため、より高抵抗な状態に変化していることがわかる。
 すなわち、図3Aに示す実測データは、図1の構造を持つメモリセル10について、上部配線51の電圧を基準として下部配線50の電圧が第1の低抵抗化書き込み電圧Vwl1(図3AではVwl1は負電圧を示しており、上部配線51の電位が、下部配線50の電位よりもVwl1だけ低い)になったときに第1の低抵抗状態(B点)に変化をし、下部配線50の電圧を基準として上部配線51の電圧が高抵抗化開始電圧Vwh0になったときに低抵抗状態から高抵抗状態に変化し始める(D点)双方向型の抵抗変化特性を示している。また、図3Aに示す実測データは、第1の低抵抗化書き込み電圧Vwl1と高抵抗化開始電圧Vwh0とが、実測データの原点に対して概ね対称な電圧、電流関係にあることを示している。高抵抗化開始電圧Vwh0よりもさらに高い第1の高抵抗化書き込み電圧Vwh1を印加すると、第1の高抵抗状態(D’点)となる。ここで、D’点における抵抗値は、D点における抵抗値よりも大きい。
 また、メモリセル10に電圧を印加しても、A点からC点で示す電圧区間は顕著には電流が流れない電圧帯がある。これは、メモリセル10の電流制御素子20がオフ状態になっているために、メモリセル10にはほとんど電流が流れない。つまり、メモリセル10の電流制御素子20は、印加電圧により流れる電流が非線形の特性を有する素子であるため、電流制御素子20に印加される電圧の絶対値が電流制御素子20の閾値電圧(VF)以下であると電流はほとんど流れず、電流制御素子20はオフ状態とみなされ、メモリセル10にはほとんど電流が流れない。ここで、電流制御素子20の閾値電圧(VF)とは、電流制御素子20がオフ状態とみなせるような電流(最大オフ電流)しか流れないときに電流制御素子20に印加される最大電圧である。また、電流制御素子20の最大オフ電流とは、少なくともメモリセル10の抵抗変化素子30が高抵抗状態のときに流れる最大電流IHRよりも小さい電流値である。
 また、A点やC点は、電流制御素子20の閾値電圧(VF)と、抵抗変化素子30に印加される電圧の合計電圧に対応しており、アレイ状に複数のメモリセル10が配置されたメモリセルアレイ(クロスポイントアレイ)においては、選択したメモリセル(選択メモリセル)10にはこのA点からC点の電圧帯を超える電圧を印加し、選択されなかったメモリセル(非選択メモリセル)はこのA点からC点の間の電圧範囲に電圧が印加されるようにすることで、非選択セルへのリーク電流を抑制して、選択したメモリセル10に電流が流れるような動作がなされる。
 メモリセル10の抵抗状態を読み出す場合は、例えば、メモリセル10に図3Aに示す読み出し電圧Vreadを印加し、そのときに流れる電流を判定することでメモリセル10の抵抗状態を判別することができる。このとき、Vreadの絶対値は、VFの絶対値より大きい。つまり、図3Aに示す特性の場合、メモリセル10の抵抗変化素子30が第1の低抵抗状態であると、読み出し電圧Vreadを印加したとき、電流制御素子20がオンし、メモリセル10に読み出し電流Iread1が流れる。しかし、メモリセル10の抵抗変化素子30が第1の高抵抗状態であると、読み出し電圧Vreadを印加したときにメモリセル10に読み出し電流Iread2が流れる。この電流値の大小を判定することによって、メモリセル10の状態を判別することができる。
 このようにして、メモリセル10の電圧電流特性が図3Aに示すような正常な特性であれば、メモリセル10に読み出し電圧Vreadを印加し、そのときに流れるメモリセル電流(Iread1及びIread2)を判定することで、メモリセル10の抵抗状態を判別できる。しかしながら、例えば、メモリセル10の電流制御素子20が破壊され、ショート不良であるとメモリセル10に過剰な電流が流れる。またオープン不良であるとほとんど電流が流れなくなりメモリセル10の抵抗状態を判別することができなくなる。そのため、不良のメモリセル(不良メモリセル)を検出し、不良メモリセルに異常電流を流さないようにする必要がある。
 図3Bは、図1に示す抵抗変化素子30の電圧抵抗特性の一部を模式化して示したものである。横軸は、抵抗変化素子30の下部電極31と上部電極34間に、下部電極を基準にして印加される電圧値であり、縦軸は、抵抗変化素子30の抵抗値である。
 第1の低抵抗状態にある状態Oから抵抗変化素子30に印加される電圧を徐々に増加していくと、抵抗変化素子30は電圧Vwh0(A0)で高抵抗化し始める。抵抗変化素子30に印加される電圧をさらに増加させると、抵抗変化素子30は電圧Vwh4で最大の抵抗値を有する高抵抗状態B1(限界高抵抗状態)となる。さらに抵抗変化素子30に印加される電圧を増加させても、抵抗変化素子30の抵抗値は変化しない(C1)。C1から抵抗変化素子30に印加される電圧を徐々に減少させても抵抗値は下がらず、限界抵抗状態が維持される。
 状態A0から状態B1にかけての抵抗変化素子30の電圧・抵抗特性は、所定の傾き(実際は非線形)を有している。通常の高抵抗状態A1(第1の高抵抗状態)にするには、対応する第1の高抵抗化電圧Vwh1を印加する。第1の低抵抗状態より抵抗値が高い第2の高抵抗状態A2にするには、対応する第2の高抵抗化電圧Vwh2を印加する。第1の高抵抗状態より抵抗値が高い第3の高抵抗状態A3にするには、対応する第3の高抵抗化電圧Vwh3を印加する。また、Vwh4以上の電圧を印加すると、限界高抵抗状態にすることができる。
 [不良メモリセルの特性]
 図4は、本実施の形態において、電流制御素子20が正常な特性を持つメモリセル10と、電流制御素子20が不良な特性(ショート不良)を持つメモリセル10の電圧電流特性を示す図である。図1の下部配線50と上部配線51によって選択されたメモリセル10に対し、下部配線50よりも上部配線51が高い電圧となる極性を正の電圧とする。上部配線51から下部配線50に流れる電流の向きを正の電流方向としたときに、第1の低抵抗状態を持つ正常なメモリセル10に印加される正の電圧と電流は、特性(1)で示されるように、メモリセル10に印加される電圧の絶対値がVtest1以下では、メモリセル10にはほとんど電流が流れないが、Vtest1を超えると、メモリセル10に電流が流れ、印加される電圧の増加とともに流れる電流は非線形的に増加する。つまり、Vtest1は電流制御素子20に閾値電圧(VF)が印加されるような電圧である。
 一方、電流制御素子20が完全に破壊され、ショート状態になった不良のメモリセル10の場合、抵抗変化素子30の特性が支配的になる。そのため、抵抗変化素子30の抵抗値が低抵抗の場合、不良の特性を持ったメモリセル10は、破線で示す図4の特性(2)のように、電圧と電流の特性は線形の特性を示す。
 ここで、例えば、メモリセル10の両端にVtest1を印加した場合、図4の特性(1)で示されるような正常な特性を持つメモリセル10の場合は、メモリセル10には数μA程度しか電流は流れない。一方、特性(2)で示されるような完全にショート破壊された特性を持つメモリセル10の場合は、同じようにVtest1を印加すると、F点で示されるように、メモリセル10にIleakの電流が流れる。
 つまり、下部配線50と上部配線51によって選択されたメモリセル10に対し、電流制御素子20がオフ状態になる閾値電圧VF以下の電圧が電流制御素子20に印加されるようにメモリセルの両端にVtest1の電圧を印加すると、特性(1)のような正常な特性を示す場合は、E点に示すようにほとんど電流が流れないが、特性(2)のようなショート不良の特性を示す電流制御素子20を有するメモリセル10の場合は、F点に示すようなより大きな電流が流れる。したがって、メモリセル10の電流制御素子20に閾値電圧以下の電圧が印加されるようにメモリセル10に不良検出のための電圧Vtest1を印加し、このときにメモリセル10に流れる電流の違いを検出することにより、不良メモリセルであるか否かを判定することができる。
 以上、電流制御素子20が完全に破壊されショート状態になっている特性(2)の場合について記載したが、電流制御素子20が完全に破壊されてはいないが中間的なショート状態である場合、例えば、電流制御素子20の閾値電圧が正常なメモリセル10の電流制御素子20よりも低くなっている不良の特性の場合でも同様に判定することができる。
 図4の特性(3)、特性(4)は、電流制御素子20の閾値電圧が、それぞれ正常なメモリセル10の電流制御素子20の閾値電圧VFよりも小さいときの電圧電流特性である。メモリセル10の両端にVtest1の電圧を印加すると、特性(3)と特性(4)の場合の電流制御素子20は不良の特性を有しているため、G点とH点で示されるように、メモリセル10にはそれぞれ電流IgおよびIhが流れる。一方、特性(1)のような正常な特性を示すメモリセル10の場合は、E点に示すようにほとんど電流が流れないため、この電流の違いを検出することにより、不良メモリセルの特性を調べることができる。
 また、メモリセル10の両端にVtest2の電圧を印加した場合、特性(1)と特性(4)の特性を持ったメモリセル10にはほとんど電流は流れないが、特性(2)と特性(3)の特性を持ったメモリセル10には、I点とJ点で示されるように、それぞれ電流IiおよびIjが流れる。つまり、メモリセル10の電流制御素子20の閾値電圧に合わせて、メモリセル10に特性選別のための電圧Vtest2(<Vtest1)を印加することによって、メモリセル10の電流制御素子20の特性を選別することができる。
 次に、メモリセル10が不良な特性(オープン不良)を持つ場合は、メモリセル10に読み出し電圧Vreadを印加しても、メモリセル10にはほとんど電流は流れない。本実施の形態において、読み出し電圧Vreadを印加した場合、特性(1)のようにメモリセル10の抵抗変化素子30の抵抗値が第1の低抵抗状態で、電流制御素子20が正常な特性を示すメモリセル10の場合は、K点で示されるようにメモリセル電流Irkが流れるが、オープン不良を持つメモリセル10の場合はIrkより小さいメモリセル電流(図では示していない)しか流れない。つまり、メモリセル10の抵抗変化素子30を第1の低抵抗状態にした後に、メモリセル10に読み出し電圧Vreadを印加することによって、メモリセル10のオープン不良を判定することができる。
 また、オープン不良を判定する場合には、ショート不良のメモリセル10に対して実施すると、メモリセル10に過剰な電流が流れ、抵抗変化素子30の抵抗値が変化する、または、抵抗変化素子30が破壊されるため、ショート不良のメモリセル10の検出を行った後に、ショート不良のメモリセル10以外のメモリセル10に対して、オープン不良の判定を実施するほうが望ましい。
 [抵抗変化型不揮発性記憶装置]
 図5は、第1の実施の形態における抵抗変化型不揮発性記憶装置200の構成図を示すものである。図5に示すように、本実施の形態に係る抵抗変化型不揮発性記憶装置200は、基板上にメモリ本体部201を備えている。メモリ本体部201は、メモリセルアレイ202と、ワード線選択回路203と、ビット線選択回路204と、データの書き込みを行うための書き込み回路205と、データの読み出しを行うための読み出し回路206と、データ信号入出力回路207とを備えている。
 読み出し回路206は、センスアンプ300と、ビット線制御電圧切り替え回路400と、ビット線制御電圧を発生するビット線制御電圧発生回路500とで構成されており、外部から入出力されるデータ信号の入出力を行うためのデータ信号入出力回路207に接続されている。
 また、この抵抗変化型不揮発性記憶装置200は、抵抗変化型不揮発性記憶装置200の外部から入力されるアドレス情報を受け取るアドレス信号入力回路208と、抵抗変化型不揮発性記憶装置200の外部から入力される制御信号を受け取る制御回路209とを備えている。
 さらには、書き込み用電源210として、低抵抗化用電源211と高抵抗化用電源212を備え、低抵抗化用電源211の出力VLと、高抵抗化用電源212の出力VHとは、メモリ本体部201の書き込み回路205に供給される。
 また、この抵抗変化型不揮発性記憶装置200は、読み出し回路206で検出した不良アドレスを記憶する不良アドレス記憶回路213と、アドレス比較を行うアドレス比較回路214とを備えている。
 また、本実施の形態に係る抵抗変化型不揮発性記憶装置200は、動作モードとして、メモリセルにデータを書き込む書き込みモードと、メモリセルのデータを読み出す通常読み出しモードと、メモリセルの特性を判定してメモリセルが不良かどうか判定するセル特性判定モードと、不良のメモリセルと同一のビット線またはワード線に接続された正常なメモリセルを第1の低抵抗状態よりも抵抗値の高い第2の高抵抗状態にし、予備の正常なメモリセル(冗長メモリセル)と置き換える救済モードとを備えている。また、不良のメモリセルを第1の低抵抗状態よりも抵抗値の高い第4の高抵抗状態にするモードも備えている。
 セル特性判定モードは、さらに、電流制御素子の特性を判定する電流制御素子特性判定モードと、抵抗変化素子の特性を判定する抵抗変化素子特性判定モードとを備えている。
 メモリセルアレイ202は、図2で示した複数個のメモリセル100が行方向と列方向にマトリクス状に配置されたメインメモリセルアレイ600と、同じく図2で示した複数個のメモリセル100が複数個配置された冗長メモリセルアレイ610とを備えている。冗長メモリセルアレイ610は、メインメモリセルアレイ600の各行に同数個ずつメモリセル100が配置されて構成されている。一例として、図5における冗長メモリセルアレイ610には、メインメモリセルアレイ600の各行に1つずつメモリセル100が配置され、一列の冗長メモリセルアレイ610が構成されている。
 また、メモリセルアレイ202は、互いに交差するように配列された複数のワード線WL1、WL2、WL3、・・・と、複数のビット線BL1、BL2、BL3、・・・を備えており、さらに、ビット線BL1、BL2、BL3、・・・と平行に配置された少なくとも1本以上の冗長ビット線BLR1、・・・を備えている。
 図5に示すように、複数のワード線WL1、WL2、WL3、・・・は、基板の主面に平行な同一の平面内(第1の平面内)において互いに平行に配置されている。同様に、複数のビット線BL1、BL2、BL3、・・・は、第1の平面に平行な同一の平面内(第1の平面に平行な第2の平面内)において互いに平行に配置されており、冗長ビット線BLR1、・・・は、第2の平面内において、ビット線BL1、BL2、BL3、・・・と平行に配置されている。
 また、上記した第1の平面と第2の平面は平行に配置され、複数のワード線WL1、WL2、WL3、・・・と複数のビット線BL1、BL2、BL3、・・・は立体交差するように配置されており、複数のワード線WL1、WL2、WL3、・・・と冗長ビット線BLR1、・・・も立体交差するように配置されている。
 メインメモリセルアレイ600内で、ワード線WL1、WL2、WL3、・・・とビット線BL1、BL2、BL3、・・・との立体交差した位置には、メモリセルM11、M12、M13、M21、M22、M23、M31、M32、M33、・・・(以下、「メモリセルM11、M12、M13、・・・」と表す)が配置されており、冗長メモリセルアレイ610内で、ワード線WL1、WL2、WL3、・・・と冗長ビット線BLR1、・・・との立体交差した位置には、冗長メモリセルMB1、MB2、MB3、・・・が配置されている。つまり、複数のワード線WL1、WL2、WL3、・・・は、メインメモリセルアレイ600と冗長メモリセルアレイ610に共通して配置されている。
 メモリセルM11、M12、M13、・・・は、電流制御素子D11、D12、D13、D21、D22、D23、D31、D32、D33、・・・(以下、「電流制御素子D11、D12、D13、・・・」と表す)と、電流制御素子D11、D12、D13、・・・と直列接続された抵抗変化素子R11、R12、R13、R21、R22、R23、R31、R32、R33、・・・(以下、「抵抗変化素子R11、R12、R13、・・・」と表す)とで構成されている。同様に、冗長メモリセルMB1、MB2、MB3、・・・は、電流制御素子DB1、DB2、DB3、・・・と、電流制御素子DB1、DB2、DB3、・・・と直列接続された抵抗変化素子RB1、RB2、RB3、・・・とで構成されている。
 つまり、図5に示すように、メインメモリセルアレイ600内の抵抗変化素子R11、R21、R31、・・・の一方の端子は、電流制御素子D11、D21、D31、・・・と接続しており、もう一方の端子は、ビット線BL1と接続され、抵抗変化素子R12、R22、R32、・・・の一方の端子は、電流制御素子D12、D22、D32、・・・と接続しており、もう一方の端子は、ビット線BL2と接続され、抵抗変化素子R13、R23、R33、・・・の一方の端子は、電流制御素子D13、D23、D33、・・・と接続しており、もう一方の端子は、ビット線BL3と接続されている。また、電流制御素子D11、D12、D13、・・・の一方の端子は、抵抗変化素子R11、R12、R13、・・・と接続されており、もう一方の端子は、ワード線WL1と接続され、電流制御素子D21、D22、D23、・・・の一方の端子は、抵抗変化素子R21、R22、R23、・・・と接続されており、もう一方の端子は、ワード線WL2と接続され、電流制御素子D31、D32、D33、・・・の一方の端子は、抵抗変化素子R31、R32、R33、・・・と接続されており、もう一方の端子は、ワード線WL3と接続されている。
 同様に、冗長メモリセルアレイ610内の抵抗変化素子RB1、RB2、RB3、・・・の一方の端子は、電流制御素子DB1、DB2、DB3と接続しており、もう一方の端子は、冗長ビット線BLR1、・・・と接続されている。また電流制御素子DB1、DB2、DB3、・・・の一方の端子は、抵抗変化素子RB1、RB2、RB3、・・・と接続されており、もう一方の端子は、ワード線WL1、WL2、WL3、・・・と接続されている。
 なお、本実施の形態では、ビット線側に抵抗変化素子を接続し、ワード線側に電流制御素子を接続しているが、ビット線側に電流制御素子を接続し、ワード線側に抵抗変化素子を接続しても構わない。また、本実施の形態では、冗長メモリセルアレイの冗長ビット線BLR1、・・・は少なくとも1本であればよく、冗長メモリセルアレイに配置されたメモリセル100の列数に応じて複数本搭載しても構わない。
 ワード線選択回路203は、アドレス信号入力回路208から出力された行アドレス情報を受け取り、この行アドレス情報に応じて、複数のワード線WL1、WL2、WL3、・・・のうち、選択されたワード線に書き込み回路205から供給される電圧を印加するとともに、選択されていないワード線には所定の非選択行印加電圧(Vss以上Vwl以下の電圧、またはVss以上Vwh以下の電圧)を印加するか、または、不活性状態つまりハイインピーダンス(Hi-Z)状態に固定することができる。
 また、同様に、ビット線選択回路204は、アドレス信号入力回路208から出力された列アドレス情報と、アドレス比較回路214からのアドレス一致判定信号とを受け取り、この列アドレス情報とアドレス一致判定信号に応じて、複数のビット線BL1、BL2、BL3、・・・、および冗長ビット線BLR1、・・・のうち、選択されたビット線に書き込み回路205から供給される電圧、または読み出し回路206から供給される電圧を印加するとともに、選択されていないビット線には所定の非選択列印加電圧(Vss以上Vwl以下の電圧、またはVss以上Vwh以下の電圧、またはVss以上Vbl以下の電圧)を印加するか、またはハイインピーダンス(Hi-Z)状態に固定することができる。
 なお、ワード線選択回路203およびビット線選択回路204は、本発明におけるメモリ選択回路に相当する。
 書き込み回路205は、制御回路209から出力された書き込み信号を受け取り、ワード線選択回路203とビット線選択回路204とで選択されたメモリセルに対して、書き込み電圧を印加することで、メモリセルの状態を書き換えることができる。
 図5に示す抵抗変化型不揮発性記憶装置200において、書き込みモード時に例えば正常なメモリセルM11に対して、BL1を基準にしてWL1に高い電位となる第1の低抵抗化書き込み電圧Vwl1を印加すると、抵抗変化素子R11が第1の低抵抗状態に変化する。また、同様に正常なメモリセルM11に対して、WL1を基準にしてBL1に高い電位となる第1の高抵抗化書き込み電圧Vwh1を印加すると、抵抗変化素子R11が第1の高抵抗状態に変化する。
 読み出し回路206は、通常読み出しモード時において、ワード線選択回路203で選択されたワード線と、ビット線選択回路204で選択されたビット線間に、読み出し電圧Vblrを印加し、メモリセルに流れるメモリセル電流をセンスアンプ300で判定することで、メモリセルに記憶されている状態を読み出すことができる。また、電流制御素子特性判定モード時においては、ワード線選択回路203で選択されたワード線と、ビット線選択回路204で選択されたビット線間に、セル特性判定電圧Vbltを印加し、メモリセルに流れるメモリセル電流をセンスアンプ300で判定することで、メモリセルの電流制御素子特性を判定することができる。なお、読み出し回路206は、抵抗変化素子特性判定モード時においては、通常読み出しモード時と同様の動作を行うので、説明を省略する。
 ここで、ビット線制御電圧発生回路500は、通常読み出しモード時および電流制御素子特性判定モード時のそれぞれのモードに応じて、ビット線選択回路204によって選択した選択ビット線の電位を設定するため、読み出しクランプ電圧Vcrと、セル特性判定クランプ電圧Vctを発生する。読み出しクランプ電圧Vcrがメモリセルに印加された時、正常なメモリセルの電流制御素子はオンし、セル特性判定クランプ電圧Vctがメモリセルに印加された時、正常なメモリセルの電流制御素子はオフ状態である。ここで、読み出しクランプ電圧Vcrは本発明における第1電圧、セル特性判定クランプ電圧Vctは本発明における第2電圧に相当する。
 また、ビット線制御電圧切り替え回路400は、通常読み出しモード時には、ビット線制御電圧発生回路500から出力された読み出しクランプ電圧Vcrをセンスアンプ300に供給し、電流制御素子特性判定モード時には、ビット線制御電圧発生回路500から出力されたセル特性判定クランプ電圧Vctをセンスアンプ300に供給するように、通常読み出しモードと電流制御素子特性判定モードに応じて、センスアンプに供給する電圧を切り替えることができる。
 センスアンプ300は、通常読み出しモード時および電流制御素子特性判定モード時に応じて、ビット線制御電圧切り替え回路400から供給された読み出しクランプ電圧Vcrまたはセル特性判定クランプ電圧Vctによって、ビット線の電位をそれぞれ読み出し電圧Vblr、またはセル特性判定電圧Vbltに設定する。
 さらに、センスアンプ300は、通常読み出しモード時において、ビット線選択回路204を介して読み出されたメモリセル電流から、メモリセルの抵抗変化素子の状態が第1の低抵抗状態か、第1の高抵抗状態かを読み出し、その結果がデータ信号入出力回路207を介して外部へ出力される。また、電流制御素子特性判定モード時において、ビット線選択回路204を介して読み出されたメモリセル電流から、メモリセルの状態が正常な状態か、不良の状態かを読み出し、その結果がデータ信号入出力回路207を介して外部へ出力されるとともに、不良アドレス記憶回路213にも出力される。
 制御回路209の動作は以下の通りである。書き込みモードにおいては、データ信号入出力回路207から入力された入力データDinに応じて、書き込み用電圧の印加を指示する信号を書き込み回路205へ出力する。通常読み出しモードおよび抵抗変化素子特性判定モードにおいては、読み出し用電圧の印加を指示する信号を読み出し回路206に出力する。電流制御素子特性判定モードにおいては、電流制御素子の特性を判定するためのセル判定用電圧の印加を指示する信号を読み出し回路206に出力する。救済モードにおいては、不良のメモリセルと同一のビット線またはワード線に接続された正常なメモリセルを第1の低抵抗状態よりも抵抗値の高い第2の高抵抗状態にする書き込み用電圧の印加を指示する信号を書き込み回路205へ出力し、救済処理を行う信号をメモリ本体部201に出力する。
 アドレス信号入力回路208は、外部から入力されるアドレス情報を受け取り、このアドレス情報に基づいて行アドレス情報をワード線選択回路203へ出力するとともに、列アドレス情報をビット線選択回路204へ出力する。ここで、アドレス情報とは、メモリセルアレイ202内の特定のメモリセルのアドレスを示す情報、列アドレス情報はメモリセルアレイ202内の特定の列を示すアドレス情報、行アドレス情報はメモリセルアレイ202内の特定の行を示すアドレス情報である。また、アドレス信号入力回路208は、不良アドレス記憶回路213やアドレス比較回路214にアドレス情報(列アドレス情報、行アドレス情報)を出力する。
 不良アドレス記憶回路213は、読み出し回路206の電流制御素子特性判定モード時において、選択されたメモリセルが不良と判定されたとき、アドレス信号入力回路208から入力された列アドレス情報を不良アドレスとして記憶する。具体的には、不良アドレス記憶回路213は、図6Aに示すようなアドレス変換表213aを有している。図6Aは、不良アドレス記憶回路213が備えるアドレス変換表の一例を示す図である。図6Aでは、ビット線単位で不良メモリセルの救済を行う場合を示している。図6Aに示すように、アドレス変換表213aは、不良メモリセルを有する不良ビット線と、置換先の冗長メモリセルを有する冗長ビット線とを対応付けて記憶する。なお、不良メモリセルは、ビット線単位で置き換えるだけでなく、ワード線単位、または、メモリセル単位で行ってもよい。ワード線単位、または、メモリセル単位で不良メモリセルの救済を行う場合、不良メモリセルを有する不良ワード線または不良メモリセルと、不良ワード線または不良メモリセルを置き換える置換先の冗長ワード線または冗長メモリセルとを対応付けてアドレス変換表213aに記憶してもよい。
 アドレス比較回路214は、アドレス信号入力回路208から入力された列アドレス情報と不良アドレス記憶回路213で記憶している不良ビット線アドレスとを比較し、一致しているか一致していないかのアドレス一致判定信号をビット線選択回路204に出力する。アドレス信号入力回路208から入力された列アドレス情報と不良アドレス記憶回路213で記憶している不良ビット線のアドレスとが一致していた場合には、後に説明する救済モードにおいて、図6Aに示したアドレス変換表213aにより、不良ビット線(例えば、BL3)を置換先の冗長ビット線(例えば、BLR1)に置き換えて記録の書き込みおよび読み出しを行う。
 書き込み用電源210は、低抵抗化用電源211と高抵抗化用電源212より構成され、その出力はそれぞれ、メモリ本体部201の書き込み回路205に供給されている。
 図6Bは、図5における読み出し回路206の構成の一例を示す回路図である。
 読み出し回路206は、センスアンプ300と、ビット線制御電圧切り替え回路400と、ビット線制御電圧発生回路500と、を備えている。
 センスアンプ300は、比較回路310と、カレントミラー回路320と、ビット線電圧制御トランジスタN1とで構成されている。カレントミラー回路320は、PMOSトランジスタP1と、PMOSトランジスタP2と、PMOSトランジスタP3と、定電流回路330とで構成されている。カレントミラー回路320のPMOSトランジスタP1と、PMOSトランジスタP2と、PMOSトランジスタP3のそれぞれのソース端子は電源に接続され、それぞれのゲート端子は互いに接続されるとともに、PMOSトランジスタP1のドレイン端子と、定電流回路330の一方の端子とに接続されている。定電流回路330のもう一方の端子は、接地電位に接続されている。PMOSトランジスタP2のドレイン端子は、比較回路310の一方の入力端子(例えば、+端子)と、ビット線電圧制御トランジスタN1のドレイン端子に接続されている。PMOSトランジスタP3のドレイン端子は、ビット線制御電圧発生回路500に接続されている。ビット線電圧制御トランジスタN1のゲート端子は、ビット線制御電圧切り替え回路400の出力端子と接続され、ビット線電圧制御トランジスタN1のソース端子は、読み出し回路206の端子BLINを介して、ビット線選択回路204と接続されている。比較回路310のもう一方の端子(例えば、-端子)は、読み出し回路206の端子SAREFと接続され、比較回路310の出力端子は、読み出し回路206の出力端子SAOUTを介して、データ信号入出力回路207と接続され、外部にデータを出力する。
 ここで、PMOSトランジスタP1とPMOSトランジスタP2のそれぞれのサイズ比で決まるミラー比M2(=P2/P1)によって、定電流回路330に流れる基準電流Irefが増幅(または減衰)されて、PMOSトランジスタP2の負荷電流Ild2(=Iref×ミラー比M2)が決まる。また、PMOSトランジスタP1とPMOSトランジスタP3のそれぞれのサイズ比で決まるミラー比M3(=P3/P1)によって、定電流回路330に流れる基準電流Irefが増幅(または減衰)されて、PMOSトランジスタP3の負荷電流Ild3(=Iref×ミラー比M3)が決まる。PMOSトランジスタP2とPMOSトランジスタP3を同じサイズにすることで、負荷電流は同じ電流値(Ild2=Ild3)に設定することができる。
 一方、ビット線電圧制御トランジスタN1のゲート端子には、ビット線制御電圧切り替え回路400から出力されるクランプ電圧(VcrまたはVct)が印加されるため、ビット線電圧制御トランジスタN1のソース端子(端子BLIN)には、ビット線制御電圧切り替え回路400から出力されるクランプ電圧(VcrまたはVct)からビット線電圧制御トランジスタN1の閾値電圧Vtn分が降下した電圧が印加され、ビット線選択回路204を介して、選択されたビット線に印加される。
 また、ビット線電圧制御トランジスタN1のドレイン端子(端子SAIN)の電位は、比較回路310の+端子に印加され、比較回路310の-端子には、端子SAREFから基準電圧Vrefが印加されている。比較回路310は、-端子に印加された基準電圧Vrefと+端子に印加された端子SAINの電位を比較する。比較回路310は、出力端子に、端子SAINの電位のほうが端子SAREFの電位よりも低ければL電位を出力し、端子SAINの電位のほうが端子SAREFの電位よりも高ければH電位を出力することで、メモリセル10の状態を、データ信号入出力回路207を介して外部に出力する。
 つまり、メモリセル10に流れる電流が大きければ、端子SAINの電位はH電位からL電位へと早く変移し、メモリセル10に流れる電流が小さければ、端子SAINの電位はH電位からL電位へと遅く変移するか、またはH電位のまま維持される。そして、所定の出力センスタイミングで端子SAINと端子SAREFの電位を比較回路310で比較すると、端子SAINの電位のほうが低ければ、出力端子SAOUTにL電位を出力し、メモリセル10に流れる電流が小さいと判定する。また、同様に端子SAINの電位のほうが高ければ、出力端子SAOUTにH電位を出力し、メモリセル10に流れる電流が大きいと判定する。なお、図6Bには示していないが、端子SAREFから印加される基準電圧Vrefは、抵抗変化型不揮発性記憶装置200内部で発生させても良いし、または、外部端子から印加しても構わない。
 ビット線電圧制御トランジスタN1のゲート端子に印加される電圧は、ビット線制御電圧発生回路500で生成される。ビット線制御電圧発生回路500は、リファレンス電流制御素子RD10と、NMOSトランジスタN10と、リファレンス抵抗変化素子RE10とで構成されている。
 リファレンス電流制御素子RD10の一方の端子は、カレントミラー回路320のPMOSトランジスタP3のドレイン端子と接続されるとともに、ビット線制御電圧発生回路500の出力端子OUT1と接続され、読み出しクランプ電圧Vcrを出力端子より出力する。リファレンス電流制御素子RD10のもう一方の端子は、NMOSトランジスタN10のドレイン端子とゲート端子に接続されるとともに、出力端子OUT2と接続され、セル特性判定クランプ電圧Vctを出力端子より出力する。
 NMOSトランジスタN10のソース端子は、リファレンス抵抗変化素子RE10の一方の端子と接続され、リファレンス抵抗変化素子RE10の他方の端子は、接地されている。
 ここで、リファレンス電流制御素子RD10、および、リファレンス抵抗変化素子RE10は、メモリセルアレイ202に含まれる電流制御素子D11、D12、D13、・・・や抵抗変化素子R11、R12、R13、・・・と同じ素子で構成される。ここでは明記していないが、リファレンス抵抗変化素子RE10は、メモリセルアレイ202に含まれる抵抗変化素子と同様に高抵抗状態、または低抵抗状態に設定することができ、少なくとも低抵抗状態のメモリセルを検出するためには、リファレンス抵抗変化素子RE10の抵抗値は、メモリセルアレイ202の平均的な高抵抗状態の抵抗値に設定することが望ましい。
 ビット線制御電圧発生回路500の出力端子OUT1から出力される読み出しクランプ電圧Vcr、および出力端子OUT2から出力されるセル特性判定クランプ電圧Vctは、リファレンス抵抗変化素子RE10に印加される電圧をVre(抵抗変化素子R11、R12、R13、・・・とほぼ同じ印加電圧)、NMOSトランジスタN10の閾値電圧をVtn(NMOSトランジスタN1とほぼ同じ閾値電圧)、リファレンス電流制御素子RD10の閾値電圧をVF(電流制御素子D11、D12、D13、・・・とほぼ同じ閾値電圧)とすると、それぞれ、(式1)、(式2)で表される。
 Vcr = Vre + Vtn + VF     ・・・(式1)
 Vct = Vre + Vtn          ・・・(式2)
 NMOSトランジスタN10は、センスアンプ300のビット線電圧制御トランジスタN1と同一のトランジスタサイズで構成され、センスアンプ300のPMOSトランジスタP3はPMOSトランジスタP2と同一のトランジスタサイズで構成されているが、ビット線電圧制御トランジスタN1とPMOSトランジスタP2のサイズ比を保って、NMOSトランジスタN10とPMOSトランジスタP3を縮小したサイズで構成してもよい。
 このような構成にすることで、擬似的に出力端子OUT1から読み出し回路206の端子BLINの電圧(即ち、メモリセルを読み出し動作するときのビット線電圧)よりビット線電圧制御トランジスタN1の閾値電圧Vtn分高い電圧が出力される。また、出力端子OUT2から、出力端子OUT1よりもリファレンス電流制御素子RD10の閾値電圧VF’(メモリセルの電流制御素子の閾値電圧VFと同じであってもよい)分低い電圧が出力される。なお、出力端子OUT1および出力端子OUT2から出力される電圧が、それぞれ本実施の形態における第1出力および第2出力に相当する。
 ビット線制御電圧切り替え回路400は、スイッチSW1とSW2とで構成されている。ビット線制御電圧切り替え回路400のスイッチSW1の一方の端子は、ビット線制御電圧発生回路500の出力端子OUT1と接続され、スイッチSW2の一方の端子は、ビット線制御電圧発生回路500の出力端子OUT2と接続されている。スイッチSW1とスイッチSW2のそれぞれのもう一方の端子は、互いに接続され、センスアンプ300のビット線電圧制御トランジスタN1のゲート端子に接続されている。ビット線制御電圧切り替え回路400は、センスアンプ300の通常読み出しモード時には、SW1をオン状態、SW2をオフ状態にすることで、ビット線制御電圧発生回路500の出力端子OUT1の読み出しクランプ電圧VcrをトランジスタN1のゲート端子に出力する。また、電流制御素子特性判定モード時には、SW1をオフ状態、SW2をオン状態にすることで、ビット線制御電圧発生回路500の出力端子OUT2のセル特性判定クランプ電圧VctをトランジスタN1のゲート端子に出力する。
 以上の構成によって、ビット線に印加される電圧は、ビット線電圧制御トランジスタN1のゲート端子に印加される電圧からトランジスタN1の閾値電圧Vtn分低い電圧を超えることはないため、通常読み出しモード時にビット線に印加される読み出し電圧Vblrと、電流制御素子特性判定モード時にビット線に印加されるセル特性判定電圧Vbltは、それぞれ、(式3)、(式4)で表すことができる。
 Vblr ≦ Vre + VF          ・・・(式3)
 Vblt ≦ Vre               ・・・(式4)
 次に、通常読み出しモード時においてのメモリセルの抵抗状態の読み出し動作について説明する。
 図7は、メインメモリセルアレイ600における電流パスを説明するための回路図である。説明を簡素化するために、前述した図5のメインメモリセルアレイ600を3×3に配置した場合の回路図で、メモリセルM22を選択する場合についての一例を示している。また、図8は、図7の等価回路図である。
 図7のメインメモリセルアレイ601の全メモリセルが正常なメモリセルの場合におけるメモリセルの抵抗状態の読み出しについて、メモリセルM22の抵抗状態の読み出しを例として説明をする。
 通常読み出しモードでメモリセルM22の抵抗状態を読み出す場合、ワード線選択回路203で選択されたワード線WL2にVss電位を与え、ビット線選択回路204で選択されたビット線BL2に、(式3)に示す読み出し電圧Vblrを印加し、非選択ビット線BL1、BL3、および非選択ワード線WL1、WL3を、ハイインピーダンス状態(Hi-Z)に固定してメモリセルM22を選択する。本実施の形態では、非選択ビット線BL1、BL3、および非選択ワード線WL1、WL3を、ハイインピーダンス状態に固定しているが、選択ビット線BL2と選択ワード線WL2間に印加される電圧以下の電圧値に設定しても構わない。
 メモリセルM22を選択した場合、図8に示すように、非選択メモリセルアレイ602中の非選択メモリセルM11、M12、M13、M21、M23、M31、M32、M33は、3段の直列接続されたメモリセルがメモリセルM22に対して並列に接続されているのと等価的に表される。つまり、非選択メモリセルアレイ602に流れる全非選択メモリセル電流ΣInselrは、選択ビット線BL2から選択ワード線WL2に至る最短の電流経路では少なくとも3段以上の非選択メモリセルを介して、複数の電流パスで電流が流れる。各段には複数の非選択メモリセルが並列に接続されており、1段目は選択ビット線BL2に接続されている非選択メモリセルM12、M32、2段目は非選択ビット線BL1またはBL3と、非選択ワード線WL1またはWL3に接続されている非選択メモリセルM11、M13、M31、M33、3段目は選択ワード線WL2に接続されている非選択メモリセルM21、M23が接続されている。メモリセルアレイの規模が大きくなるほど、2段目に接続される非選択メモリセルの並列接続数が大きくなり、インピーダンスが小さくなる。行方向にM(=100個)と列方向にN(=100個)のメモリセルが配置されていると、2段目にあるメモリセルは(M-1)×(N-1)個(約10000個近く)になるため、ほとんどインピーダンスが無視できるくらい小さくなる。
 そのため、非選択メモリセルに印加される電圧は、1段目と2段目に配置されている非選択メモリセルM12、M32、M21、M23のインピーダンス比によって分圧されるため、行方向と列方向のメモリセルが同数の場合、各メモリセルの抵抗状態が同じとすると、選択ビット線BL2と選択ワード線WL2間に印加される読み出し電圧Vblrの約1/2以下の電圧が、1段目と2段目に配置されている非選択メモリセルM12、M32、M21、M23に印加される。よって、非選択のメモリセルM11、M12、M13、M21、M23、M31、M32、M33が、それぞれ図4の特性(1)で示される正常なメモリセルであれば、非選択メモリセルM11、M12、M13、M21、M23、M31、M32、M33の電流制御素子D11、D12、D13、D21、D23、D31、D32、D33には閾値電圧VF以下の電圧が印加されるため、オフ状態になる。したがって、非選択メモリセルM11、M12、M13、M21、M23、M31、M32、M33のそれぞれに流れる非選択セル電流の和ΣInselは、1μAよりも少ないオフ電流しか流れない。
 つまり、メモリセルM22の抵抗状態を読み出す場合に流れる選択ビット線BL2に流れる選択ビット線電流Iblrは(式5)のように、選択セル電流Iselrと全非選択セル電流ΣInselrの和になる。しかし、全非選択セル電流ΣInselrの値がほとんど無視できるくらい小さいので、選択ビット線BL2に流れる選択ビット線電流Iblrは(式6)のように近似できる。よって、選択メモリセルM22のメモリセル電流は選択ビット線BL2を介して読み出すことができ、選択メモリセルM22の抵抗変化素子R22が第1の高抵抗状態か、低抵抗状態かを読み出すことができる。
 Iblr = Iselr + ΣInselr   ・・・(式5)
 Iblr ≒ Iselr             ・・・(式6)
 なお、図8に示した非選択メモリセルアレイ602では、3段の非選択メモリセルを介して、選択ビット線BL2から選択ワード線WL2に流れる非選択電流パスは、少なくとも以下の(a)~(d)の4つのパスがある。よって、全非選択メモリセル電流ΣInselrは、(式7)で示される。
 (a) Inselr(a):M12→M11→M21
 (b) Inselr(b):M12→M13→M23
 (c) Inselr(c):M32→M31→M21
 (d) Inselr(d):M32→M33→M23
 ΣInselr = Inselr(a) + Inselr(b)
          +Inselr(c) + Inselr(d)・・・(式7)
 ここで、選択されたメモリセルM22の電流制御素子D22が破壊してショートしているような場合、電流制御素子D22は導通状態とみなせる状態になり、ビット線電圧Vblrは全て抵抗変化素子R22に印加される。そのため、選択ビット線電流Iblrは、メモリセルM22の抵抗変化素子R22が第1の低抵抗状態でも第1の高抵抗状態でも、正常なメモリセルの場合に流れるメモリセル電流より大きい値となる。したがって、メモリセルM22の抵抗変化素子R22の抵抗状態に応じた電流を正確に読み出すことができないため、メモリセルM22の抵抗状態を検出することができない。
 ここで、抵抗変化素子R22が第1の低抵抗状態の場合に正常なメモリセルに流れるメモリセル電流を、第1の所定値という。また、抵抗変化素子R22が第1の高抵抗状態の場合に正常なメモリセルに流れるメモリセル電流を、第2の所定値という。
 このような電流制御素子がショート不良を起こしている不良メモリセルの判定方法および不良メモリセルの救済方法については後述する。
 また、メモリセルアレイ中の選択メモリセル以外に、ショート不良を起こしている電流制御素子を有する不良メモリセルが含まれている場合のメモリセルの読み出しについても説明をする。
 図9は、メインメモリセルアレイ601中の非選択メモリセルのひとつ、例えばメモリセルM23がショート不良を起こしている場合の電流パスを説明するための回路図である。説明を簡素化するために、前述した図5のメインメモリセルアレイ600を3行×3列に配置した場合の回路図で、メモリセルM22を選択し、メモリセルM23がショート不良を起こしている場合についての一例を示している。また、図10は、図9の等価回路図である。
 図9のメインメモリセルアレイ601中のメモリセルM22の抵抗状態を読み出しモードで読み出す場合について説明をする。通常読み出しモードでメモリセルM22の抵抗状態を読み出す場合、前述したように、ワード線選択回路203で選択されたワード線WL2にVss電位を与え、ビット線選択回路204で選択されたビット線BL2に、(式3)に示す読み出し電圧Vblrを印加し、非選択ビット線BL1、BL3、および非選択ワード線WL1、WL3は、ハイインピーダンス状態(Hi-Z)に固定してメモリセルM22を選択する。本実施の形態では、非選択ビット線BL1、BL3、および非選択ワード線WL1、WL3を、ハイインピーダンス状態に固定しているが、選択ビット線BL2と選択ワード線WL2間に印加される電圧以下の電圧値に設定しても構わない。
 ここで、例えば、メインメモリセルアレイ601の非選択メモリセルM23がショート不良を起こしている場合、メインメモリセルアレイ601には異常電流Ifail1やIfail2が流れることによって、メインメモリセルアレイ601全体に影響を及ぼし、選択メモリセルM22の抵抗状態を正確に検出することができない。
 詳細には、図10に示すように、非選択メモリセルアレイ602中の非選択メモリセルM23がショート不良を起こしていると、メモリセルM23はほぼ導通状態とみなせる状態になり、先ほどの非選択電流パスの(b)、および(d)の複数の電流パスで抵抗値が低くなり異常電流が流れるため、(式7)で示される全非選択メモリセル電流ΣInselrの値が大きな値になり、選択メモリセルM22に流れるメモリセル電流を正常に読み出すことができなくなる。つまり、不良メモリセルM23がメインメモリセルアレイ601に接続されている限り、不良メモリセルM23が非選択状態であっても、非選択メモリセルアレイ602に異常電流が流れ、メインメモリセルアレイ601全体に影響を及ぼすことになり、選択メモリセルM22の抵抗変化素子R22の抵抗状態を検出することが難しくなる。
 本願では、このようなショート不良を起こしている不良メモリセルを判定し、救済する方法について以下に示す。
 [不良メモリセルの判定方法]
 図11は、本実施の形態のメモリセルアレイ202における電流パスを説明するための回路図である。説明を簡素化するために、前述した図5のメインメモリセルアレイ600を3行×3列に配置した場合の回路図で、メモリセルM22を選択する場合についての一例を示している。また、図12は、図11の等価回路図である。
 まず、図11のメインメモリセルアレイ601中のメモリセルM22を電流制御素子特性判定モードで判定する場合について説明をする。電流制御素子特性判定モードでメモリセルM22が正常な状態か、ショート不良を起こしている状態かを判定する場合、ワード線選択回路203で選択されたワード線WL2にVss電位を与え、ビット線選択回路204で選択されたビット線BL2に、(式4)に示すセル特性判定電圧Vblt(第2電圧)を印加し、非選択ビット線BL1、BL3、および非選択ワード線WL1、WL3は、ハイインピーダンス状態(Hi-Z)に固定してメモリセルM22を選択する。すなわち、ビット線BL2に、通常読み出しモードにおけるビット線電圧Vblrよりも、リファレンス電流制御素子RD10の閾値電圧VF’(電流制御素子D22とほぼ同じ閾値電圧)だけ低いビット線電圧Vbltを印加する。なお、本実施の形態では、非選択ビット線BL1、BL3、および非選択ワード線WL1、WL3を、ハイインピーダンス状態に固定しているが、選択ビット線BL2と選択ワード線WL2間に印加される電圧以下の電圧値に設定しても構わない。
 図12に示すように、電流制御素子特性判定モードで、選択ビット線に流れる選択ビット線電流Ibltは、選択されたメモリセルM22に流れる選択メモリセル電流Iseltと、非選択メモリセルアレイ602に流れる全非選択メモリセル電流ΣInseltとの和になる。ここで、メモリセルM22には、選択ビット線BL2と選択ワード線WL2間に与えられたセル特性判定電圧Vbltが印加され、メモリセルM22のセル特性状態に応じて選択メモリセル電流Iseltが流れる。一方、非選択メモリセルアレイ602には、選択ビット線BL2と選択ワード線WL2間に与えられたセル特性判定電圧Vbltが印加される。いずれの組み合わせをとっても等価的に3段の直列接続になっているため、選択ビット線BL2に印加されたセル特性判定電圧Vbltは、非選択メモリセルM11、M12、M13、M21、M23、M31、M32、M33のそれぞれのインピーダンスに従って分圧されて印加される。そのため、非選択メモリセルアレイ602中の非選択メモリセルM11、M12、M13、M21、M23、M31、M32、M33が正常なメモリセルの場合、それぞれの電流制御素子には閾値電圧VF以下の電圧しか印加されないため、それぞれの電流制御素子はオフ状態になり、非選択メモリセルアレイ602の全非選択メモリセル電流ΣInseltはほとんど電流が流れない。つまり、選択ビット線電流Ibltは、選択メモリセル電流Iseltとほとんど同じになり、選択されたメモリセルM22のセル特性状態を読み出すことができる。また、非選択メモリセルアレイ602中の非選択メモリセルM11、M12、M13、M21、M23、M31、M32、M33の中のいずれか1つのメモリセルがショート不良を起こしている不良メモリセルの場合であっても、選択ビット線BL2と選択ワード線WL2間に与えられたセル特性判定電圧Vbltは電流制御素子D22の閾値電圧VFよりも低い。このため、3段の直列接続されたメモリセルのうちの1つがショート不良を起こしていても、他の2つのメモリセルが正常であれば、それぞれの電流制御素子には閾値電圧VF以下の電圧しか印加されない。したがって、それぞれの電流制御素子はオフ状態になり、非選択メモリセルアレイ602の全非選択メモリセル電流ΣInseltはほとんど電流が流れない。つまり、選択ビット線電流Ibltは、選択メモリセル電流Iseltとほとんど同じになる。したがって、選択ビット線電流Ibltを検出することによって、選択されたメモリセルM22のセル特性状態を読み出すことができる。
 つまり、メモリセルM22の状態を読み出す場合に流れる選択ビット線BL2に流れる選択ビット線電流Ibltは(式8)のように、選択セル電流Iseltと全非選択セル電流ΣInseltとの和になるが、全非選択セル電流ΣInseltの値がほとんど無視できるくらい小さい。このため、選択ビット線BL2に流れる選択ビット線電流Ibltは(式9)のように近似でき、選択メモリセルM22のメモリセル電流は選択ビット線BL2を介して読み出すことができ、メモリセルM22が正常な状態か、ショート不良の状態かを読み出すことができる。
 Iblt = Iselt + ΣInselt   ・・・(式8)
 Iblt ≒ Iselt             ・・・(式9)
 ここで、選択されたメモリセルM22が正常なメモリセルの場合は、(式4)に示すビット線電圧VbltがメモリセルM22に印加されると、電流制御素子D22には閾値電圧VF以下の電圧が印加されるため、電流制御素子D22はオフ状態になる。これにより、抵抗変化素子R22の抵抗状態に関わらず選択ビット線電流Ibltはほとんど電流が流れない。
 一方、メモリセルM22の電流制御素子D22がショート破壊している場合、電流制御素子D22は通常の導通状態よりも抵抗値が低い状態になり、ビット線電圧Vbltは全て抵抗変化素子R22に印加される。ここで、抵抗変化素子R22が第1の低抵抗状態のときは、抵抗変化素子R22の抵抗値に応じて選択ビット線電流Ibltが流れるため、読み出し回路206で電流を検出することで、メモリセルM22がショート破壊されていることを判定することができる。ここで、読み出し回路206は、例えば、第1の低抵抗状態の抵抗変化素子と正常な電流制御素子に、正常な電流制御素子がオンし始めるような閾値電圧(第1電圧)を印加したときに、正常な電流制御素子はオフ状態(最大オフ電流が流れる)とみなせる場合に、ショート破壊している電流制御素子D22に、正常な電流制御素子に流れる最大オフ電流(第1の所定値)より大きい電流が流れる場合、「メモリセルM22が破壊されている」と判定することとしてもよい。
 また、抵抗変化素子R22が第1の高抵抗状態のときは、読み出し回路206は、例えば、第1の高抵抗状態の抵抗変化素子と正常な電流制御素子に、正常な電流制御素子がオンし始めるような閾値電圧(第2電圧)を印加したときに、正常な電流制御素子はオフ状態(最大オフ電流が流れる)とみなせる場合に、ショート破壊している電流制御素子D22に、正常な電流制御素子に流れる最大オフ電流(第2の所定値)より大きい電流が流れる場合、「メモリセルM22が破壊されている」と判定することとしてもよい。
 ここで、抵抗変化素子R22が第1の高抵抗状態のときは、抵抗変化素子R22には選択ビット線電流Ibltがほとんど流れないために、電流制御素子D22が破壊しているかどうかは判定することが困難である場合がある。
 つまり、双方向型の電流制御素子を用いた本実施の形態における抵抗変化型不揮発性記憶装置200において、電流制御素子特性判定モードでは、少なくとも、選択メモリセルM22の抵抗変化素子R22が第1の低抵抗状態の場合は、選択メモリセルM22の電流制御素子D22の状態が正常状態か、ショート破壊状態かを判定することができ、不良メモリセルのアドレスの特定をすることができる。また、選択メモリセルM22の抵抗変化素子R22が第1の高抵抗状態の場合は、選択メモリセルM22の電流制御素子D22の状態(正常状態またはショート破壊状態)を正しく判定することが困難な場合があるが、選択メモリセルM22の抵抗変化素子R22を第1の低抵抗状態にしてから電流制御素子特性判定モードを実施することで、選択メモリセルM22の電流制御素子D22の状態が正常状態か、破壊状態かを判定することができる。
 また、非選択メモリセルアレイ602に流れる非選択電流パスにおいて、3段のメモリセルが直列に接続されているため、非選択メモリセルアレイ602中のリーク電流パス経路中の少なくとも2ビット以下のメモリセルが破壊されていても、残り1ビットが正常であれば全非選択メモリセルアレイ電流ΣInseltは流れない。このため、選択ビット線BL2に流れる選択ビット線電流Ibltを判定することで、不良メモリセルのアドレスの特定をすることができる。また、例えば、M12、M11、M23のように2ビットを超える不良メモリセルが存在しても、(a)~(d)のリーク電流パス上にいずれも2ビット以下の不良メモリセルしかないため非選択メモリセルアレイ電流Inselはほとんど流れず、同様に不良メモリセルのアドレスの特定をすることができる。また、同じリーク電流パス上の3ビット全てが不良メモリセルのような場合は、メモリセルアレイ202中の大部分のメモリセルも同様の不良を持っている場合であり、解析等で容易に不良メモリセルを見つけることは可能である。
 図13は、通常読み出しモード時と、電流制御素子特性判定モード時における各設定状態と、図6Bに示した読み出し回路206の出力端子SAOUTの状態を表した表(モード別真理値表)である。図13において、「L」は、本実施の形態における第1の論理出力であり、メモリセルの抵抗状態が第1の低抵抗状態のときにセンスアンプ300がL電位を出力することを示している。また、「H」は、本実施の形態における第2の論理出力であり、メモリセルの抵抗状態が第1の高抵抗状態のときにセンスアンプ300の出力がH電位を出力することを示している。
 通常読み出しモード時においては、図13に示すように、ビット線制御電圧切り替え回路400のSW1はオン状態、SW2はオフ状態になっているため、図6Bに示したセンスアンプ300のビット線制御電圧制御トランジスタN1のゲート端子(ノードCLMP)には、読み出しクランプ電圧Vcr(=Vre+Vtn+VF)が印加されている。そのため、ビット線選択回路204を介して端子BLINと接続されている選択ビット線BLの電圧は、センスアンプ300のビット線電圧制御トランジスタN1のゲート端子の読み出しクランプ電圧Vcrから、ビット線電圧制御トランジスタN1の閾値電圧Vtn分降下した(Vre+VF)以下の電圧に設定される。
 ここで、選択されたメモリセルが正常なセルのとき、メモリセルの電流制御素子はオン状態になり、メモリセルの抵抗変化素子の抵抗状態によって、メモリセルに流れるメモリセル電流が決まる。このメモリセル電流によって、ビット線BL、およびビット線選択回路204を介して、読み出し回路206のセンスアンプ300の端子SAINの電位がH電位からL電位へと変移する。ここで、メモリセルの抵抗変化素子が第1の低抵抗状態であれば、メモリセル電流が大きくなり、端子SAINの電位は早くL電位へと変移し、メモリセルの抵抗変化素子が第1の高抵抗状態であれば、メモリセル電流が小さくなり、端子SAINの電位は遅くL電位へと変移するか、もしくはH電位のまま維持される。そのため、所定の出力タイミングで端子SAINと端子SAREFの電位を比較回路310で比較すると、端子SAINの電位のほうが低ければ、出力端子SAOUTにL電位を出力してメモリセルに流れる電流が小さいと判定し、端子SAINの電位のほうが高ければ、出力端子SAOUTにH電位を出力してメモリセルに流れる電流が大きいと判定する。つまり、センスアンプ300がL電位を出力すれば、メモリセルの状態は第1の低抵抗状態を示し、センスアンプ300の出力がH電位を出力すれば、メモリセルの状態は第1の高抵抗状態を示す。
 一方、選択されたメモリセルの電流制御素子が破壊されたセルのとき、メモリセルに印加された電圧のほとんどが抵抗変化素子に印加されるため、抵抗変化素子が第1の高抵抗状態であったとしても、メモリセル電流が多く流れる場合がある。つまり、抵抗変化素子が第1の低抵抗状態であれば、センスアンプ300の出力はL電位になり、メモリセルの状態は第1の低抵抗状態を示すが、抵抗変化素子が第1の高抵抗状態の場合、センスアンプ300の出力は、L電位、またはH電位になるため、メモリセルの抵抗状態を正確に判別することができない。
 以上のように、通常読み出しモードにおいては、メモリセルが正常なセルの場合は、センスアンプ300の出力電位によって、メモリセルの抵抗状態を判定することができる。一方、メモリセルの電流制御素子が破壊されたセルの場合は、メモリセルの抵抗状態を判定することができない。
 また、電流制御素子特性判定モード時においては、図13に示すように、ビット線制御電圧切り替え回路400のSW1はオフ状態、SW2はオン状態になっているため、図6Bに示したセンスアンプ300のビット線電圧制御トランジスタN1のゲート端子(ノードCLMP)には、セル特性判定クランプ電圧Vct(=Vre+Vtn)が印加されている。そのため、ビット線選択回路204を介して端子BLINと接続されている選択ビット線BLの電圧は、センスアンプ300のビット線電圧制御トランジスタN1のゲート端子のセル特性判定クランプ電圧Vctから、ビット線電圧制御トランジスタN1の閾値電圧Vtn分降下した(Vre)以下の電圧に設定される。
 ここで、選択されたメモリセルが正常なセルのとき、メモリセルの電流制御素子はオフ状態になるため、メモリセルの抵抗変化素子の抵抗状態に関わらず、メモリセルに流れるメモリセル電流はほとんど流れない。このメモリセル電流を、ビット線BL、およびビット線選択回路204を介して、読み出し回路206のセンスアンプ300で判定すると、センスアンプ300の出力は、抵抗変化素子の抵抗状態に関わらずH電位を出力する。
 一方、選択されたメモリセルの電流制御素子が破壊されたセルのとき、メモリセルに印加された電圧のほとんどが抵抗変化素子に印加されるため、抵抗変化素子が第1の高抵抗状態であったとしても、メモリセルに電流が多く流れる場合がある。つまり、抵抗変化素子が第1の低抵抗状態であれば、センスアンプ300の出力は、L電位になり、電流制御素子が破壊されていることを判定することができるが、抵抗変化素子が第1の高抵抗状態の場合、センスアンプ300の出力は、抵抗変化素子の抵抗値によって、L電位、またはH電位になるため、メモリセルのセル特性状態を正確に判別することができない。
 メモリセルの抵抗変化素子が第1の高抵抗状態の場合は、あらかじめ抵抗変化素子を第1の低抵抗状態にしてから電流制御素子特性判定モードを実施することで、メモリセルの電流制御素子の状態が正常状態か、破壊状態かを判定することができる。あらかじめ抵抗変化素子を第1の低抵抗状態にした場合に、電流制御素子に第1の所定値よりも大きい電流が流れないとき、電流制御素子が正常であると明確に判断することが可能である。抵抗変化素子を第1の低抵抗状態にするには、書き込み回路205により、BLを基準にしてWLに高い電位となる低抵抗化書き込み電圧Vwlを印加すると、抵抗変化素子は第1の低抵抗状態に変化する。
 以上のように、電流制御素子特性判定モードにおいては、少なくとも、メモリセルの抵抗変化素子が第1の低抵抗状態の場合は、メモリセルの電流制御素子の状態を判定することができる。つまり、抵抗変化素子が低抵抗状態でありかつ電流制御素子に第1の所定値より大きい電流が流れるとき、メモリセルの電流制御素子が短絡異常を有していると判定することができる。なお、第1の所定値は、上記のメモリセルの電流制御素子の最大オフ電流の値としてもよい。
 また、メモリセルの抵抗変化素子が第1の高抵抗状態の場合は、メモリセルの電流制御素子の状態を正確に判定することができないが、抵抗変化素子を第1の低抵抗状態にしてから電流制御素子特性判定モードを実施することで、メモリセルの電流制御素子の状態が正常状態か、破壊状態かを判定することができる。破壊状態である電流制御素子を有すると判定されたメモリセルは、使用しないこととするか、または、所定のリペア処理等を行うこととしてもよい。
 次に、電流制御素子特性判定モード時の判定フローの一例について説明する。
 図14Aは、メモリセルの抵抗変化素子の状態に依存しない電流制御素子特性判定モード時の判定フローの一例である。
 初めに、読み出し回路206を電流制御素子特性判定モードに設定すると(ステップS101)、ビット線制御電圧切り替え回路400のSW1はオフ状態になり、SW2はオン状態になる。これにより、図6Bに示したビット線制御電圧発生回路500の出力端子OUT2が選択され、センスアンプ300のビット線電圧制御トランジスタN1のゲート端子には、セル特性判定クランプ電圧Vctが印加される。
 次に、ワード線選択回路203で選択されたワード線と、ビット線選択回路204で選択されたビット線とによってメモリセルアレイ202の少なくとも1つのメモリセルを選択する(ステップS102)。また、その選択されたメモリセルに対して読み出し動作を行う(ステップS103)。
 そして、センスアンプ300の出力端子SAOUTに出力される電圧を判定し(ステップS104)、L電位であればメモリセルの電流制御素子が破壊されたセルとして判定する(ステップS105)。H電位であれば正常セルか、もしくは電流制御素子の破壊が検出されなかったセルとして判定をする(ステップS106)。そして、全メモリセル領域を判定(ステップS107)した後、電流制御素子特性判定モードを終了する。
 つまり、図14Aの電流制御素子特性判定モード時の判定フローでは、センスアンプ300の出力端子SAOUTにL電位が出力されれば、メモリセルの電流制御素子が破壊されていると判定できる。
 図14Bは、メモリセルの抵抗変化素子の状態を最初に第1の低抵抗状態に設定した後の、電流制御素子特性判定モード時の判定フローの一例である。
 初めに、電流制御素子特性判定の対象となるメモリセルに第1の低抵抗化パルスを印加して第1の低抵抗状態に設定し(ステップS200)、その後、読み出し回路206を電流制御素子特性判定モードに設定すると(ステップS201)、ビット線制御電圧切り替え回路400のSW1はオフ状態になり、SW2はオン状態になる。これにより、図6Bに示したビット線制御電圧発生回路500の出力端子OUT2が選択され、センスアンプ300のビット線電圧制御トランジスタN1のゲート端子には、セル特性判定クランプ電圧Vctが印加される。
 次に、ワード線選択回路203で選択されたワード線と、ビット線選択回路204で選択されたビット線とによってメモリセルアレイ202の少なくとも1つのメモリセルを選択する(ステップS202)。また、その選択されたメモリセルに対して前述した電流制御素子特性判定動作(電流制御素子特性の読み出し動作)を行う(ステップS203)。
 そして、センスアンプ300の出力端子SAOUTに出力される電圧を判定し(ステップS204)、L電位であればメモリセルの電流制御素子が破壊されたセルとして判定する(ステップS205)。H電位であれば正常セルとして判定する(ステップS206)。そして、全メモリセル領域を判定(ステップS207)した後、電流制御素子特性判定モードを終了する。
 つまり、図14Bの電流制御素子特性判定モード時の判定フローでは、あらかじめメモリセルの抵抗変化素子の状態を第1の低抵抗状態に設定することで、メモリセルの電流制御素子が破壊されているかどうかを正確に判定することができる。
 次に、抵抗変化素子特性判定モード時の判定フローの一例について説明する。
 図15は、メモリセルの抵抗変化素子特性判定モード時の判定フローの一例である。メモリセルの抵抗変化素子特性判定は、選択されたメモリセルに対して通常の書き込みを行った後、読み出しを行うことにより、書き込みが成功していれば、正常なメモリセル、書き込みが成功していなければ、破壊されたメモリセルとして判定する。破壊されたメモリセルとは、例えば、抵抗変化素子が第1の低抵抗状態よりも抵抗値が低い第2の低抵抗状態になり、抵抗変化しない状態をいう。
 初めに、読み出し回路206を抵抗変化素子特性判定モードに設定すると(ステップS301)、抵抗変化型不揮発性記憶装置は、書き込みモード(高抵抗化)に設定される。
 次に、ワード線選択回路203で選択されたワード線と、ビット線選択回路204で選択されたビット線とによってメモリセルアレイ202の少なくとも1つのメモリセルを選択する(ステップS302)。
 続けて、その選択されたメモリセルに対して、高抵抗化書き込み動作を行う(ステップS303)。このとき、メモリセルには、第1の高抵抗化パルスを印加する。
 書き込み動作終了後、通常読み出しモードと同様、ビット線制御電圧切り替え回路400のSW1はオン状態になり、SW2はオフ状態になる。これにより、図6Bに示したビット線制御電圧発生回路500の出力端子OUT1が選択され、センスアンプ300のビット線電圧制御トランジスタN1のゲート端子には、読み出しクランプ電圧Vcrが印加される。その選択されたメモリセルに対して読み出し動作を行う(ステップS304)。
 そして、センスアンプ300の出力端子SAOUTに出力される電圧を判定し(ステップS305)、L電位であればメモリセルの抵抗変化素子が破壊されたセルとして判定する(ステップS306)。H電位であれば正常セルとして判定をする(ステップS307)。そして、全メモリセル領域を判定(ステップS308)した後、抵抗変化素子特性判定モードを終了する。
 つまり、図15の抵抗変化素子特性判定モード時の判定フローでは、センスアンプ300の出力端子SAOUTにL電位が出力されれば、メモリセルの抵抗変化素子が破壊されていると判定できる。
 なお、抵抗変化素子特性判定モード時の書き込み電圧は、上記した第1の高抵抗化パルスに限らず、例えば、抵抗変化素子の初期ブレイク時に印加される初期ブレイク電圧を利用してもよい。
 [不良メモリセルの救済方法]
 次に、本実施の形態における不良メモリセルの救済方法について述べる。
 図16は、電流制御素子特性判定モードで不良メモリセルと判定されたメモリセルの救済方法のフローチャートの一例を示している。詳細には、電流制御素子が破壊されている不良メモリセルと同一ビット線にある不良メモリセル以外の正常なメモリセルに対して、メモリセルの抵抗変化素子を第1の低抵抗状態よりも抵抗値の高い第2の高抵抗状態(通常書き込みの低抵抗状態よりも抵抗値が高い状態)にする。これにより、不良メモリセルが配置されたビット線またはワード線に配置された全てのメモリセルは、使用されないこととなる。さらに、冗長メモリセルを用いて不良メモリセルと同一ビット線にある不良メモリセル以外のメモリセルに代えて、他の正常なメモリセルを代用するために、代用前後のメモリセルのアドレスを対応付けて記憶する。
 図16に示すように、本実施の形態における不良メモリセルの救済方法では、初めに、抵抗変化型不揮発性記憶装置を書き込みモード(高抵抗化)に設定し(ステップS401)、ワード線選択回路203で選択されたワード線と、ビット線選択回路204で選択されたビット線とによってメモリセルアレイ202の少なくとも1つの選択された不良メモリセルと同一ビット線にある不良メモリセル以外の正常なメモリセルに対して、第2の高抵抗化パルスを印加して高抵抗化書き込み動作を行う(ステップS402)。その後、不良検知モードに設定し(ステップS403)、不良メモリセルと同一ビット線にある不良メモリセル以外のメモリセルが第2の高抵抗状態になっているかを、読み出し回路206のセンスアンプ300にて判定する(ステップS404)。
 不良メモリセルと同一ビット線にある不良メモリセル以外のメモリセルが第2の高抵抗状態になっている場合は、対象のメモリセルが高抵抗化成功と判断し(ステップS405)、対象のメモリセルのアドレスを不良アドレス記憶回路213に記憶し(ステップS406)、終了する。
 一方、ステップS404にて、不良メモリセルと同一ビット線にある不良メモリセル以外のメモリセルが第2の高抵抗状態になっていなかった場合は、モード設定を再び書き込みモード(高抵抗化)に設定する(ステップS407)。その後、別の書き込み条件を設定することができるか判定し(ステップS408)、別の書き込み条件を設定することができるようであれば別の書き込み条件に設定し(ステップS409)、再度、不良メモリセルと同一ビット線にある不良メモリセル以外のメモリセルに対して、高抵抗化書き込み動作を行う(ステップS402)。別の書き込み条件とは、書き込み電圧や、書き込みパルス時間、書き込みドライバーの駆動能力等を変えることである。例えば、別の書き込み条件として、書き込み電圧を、後に説明する第1の高抵抗状態よりもさらに抵抗値の高い第3の高抵抗状態にするための第3の書き込みパルスに変更してもよい。また、ステップS408で、別の書き込み条件を設定することができないようであれば、対象の不良メモリセルと同一ビット線にある不良メモリセル以外のメモリセルの高抵抗化失敗と判断し(ステップS410)、終了する。この場合は、不良メモリセルは救済できないため不良回路として扱われる。
 なお、上記の不良メモリセルの検知フローおよび救済フローは、抵抗変化型不揮発性記憶装置200の電源投入時、所定の周期毎、または、記録の書き込み毎に行うこととしてもよい。
 図17は、本実施の形態における書き込み回路205と書き込み用電源210とそれらの接続関係の一例を示す回路図である。
 図17に示すように、書き込み回路205は、メモリセルの抵抗変化素子の抵抗状態を高抵抗状態に変化させるためにメモリセルに電圧および電流を印加するHR書き込み回路700と、抵抗変化素子の抵抗状態を第1の低抵抗状態に変化させるためにメモリセルに電圧および電流を印加するLR書き込み回路800とで構成されている。
 HR書き込み回路700は、ワード線選択回路203およびビット線選択回路204で選択されたメモリセルに対して、当該メモリセルが正常なメモリセルの場合、当該メモリセルの抵抗変化素子を第1の高抵抗状態に遷移させるための電圧として、ワード線選択回路203で選択されたワード線WLを基準にして、ビット線選択回路204で選択されたビット線BLに、第1の高抵抗化書き込み電圧Vwh1を印加する回路である。
 HR書き込み回路700は、PMOS701と、PMOS702と、NMOS703と、NMOS704と、インバータ705と、インバータ706とで構成されている。なお、単に「PMOS」、「NMOS」との記載は、それぞれ、「PMOSトランジスタ」、「NMOSトランジスタ」を意味する。
 PMOS701と、PMOS702と、NMOS703と、NMOS704とは、この順に直列をなすように互いの主端子(一方のドレイン端子と他方のソース端子)同士が接続され、ひとつの電流経路を形成している。PMOS701の2つの主端子のうち、PMOS702の接続されていない方の主端子(ソース端子)は、電源(例えば、高抵抗化用電源212)に接続されている。また、NMOS704の2つの主端子のうち、NMOS703と接続されていない方の主端子(ソース端子)は、接地電位に接続されている。
 データ信号入出力回路207から出力されるHR書き込みイネーブル信号WEHは、インバータ706の入力端子とNMOS703のゲートに入力され、インバータ706の入力端子から入力されたHR書き込みイネーブル信号WEHは、反転信号として、PMOS702のゲートに入力される。また、制御回路209から出力されるHR書き込みパルス信号WPHは、インバータ705の入力端子に入力され、インバータ705の入力端子から入力された信号は、反転信号として、PMOS701とNMOS704のゲートに入力される。PMOS702とNMOS703のそれぞれの一方の主端子(ドレイン端子)は接続され、HR書き込み回路700の出力端子WDHを通して書き込み回路205から出力され、ビット線選択回路204およびワード線選択回路203に接続される。
 HR書き込み回路700は、HR書き込みイネーブル信号WEHがH状態のときに、書き込みパルス信号WPHに従って、高抵抗化用電源212から供給されるVH電位(=第1の高抵抗化書き込み電圧Vwh1)と接地電位(Vss)のいずれかを出力し、HR書き込みイネーブル信号WEHがL状態のときには、Hi-Z状態を出力端子WDHから出力する。
 LR書き込み回路800は、ワード線選択回路203およびビット線選択回路204で選択されたメモリセルに対して、当該メモリセルが正常なメモリセルの場合、当該メモリセルの抵抗変化素子を第1の低抵抗状態に遷移させるための電圧として、ビット線選択回路204で選択されたビット線BLを基準にして、ワード線選択回路203で選択されたワード線WLに、第1の低抵抗化書き込み電圧Vwl1を印加する回路である。
 LR書き込み回路800は、PMOS801と、PMOS802と、NMOS803と、NMOS804と、インバータ805と、インバータ806とで構成されている。
 PMOS801と、PMOS802と、NMOS803と、NMOS804とは、この順に直列をなすように主端子(ドレイン端子、またはソース端子)同士が接続され、ひとつの電流経路を形成している。PMOS801の2つの主端子のうち、PMOS802の接続されていない方の主端子(ソース端子)は電源(例えば、低抵抗化用電源211)に接続されている。また、NMOS804の2つの主端子のうち、NMOS803と接続されていない方の主端子(ソース端子)は、接地電位に接続されている。
 データ信号入出力回路207から出力されるLR書き込みイネーブル信号WELは、インバータ806の入力端子とNMOS803のゲートに入力され、インバータ806の入力端子から入力されたLR書き込みイネーブル信号WELは、反転信号として、PMOS802のゲートに入力される。また、制御回路209から出力されるLR書き込みパルス信号WPLは、インバータ805の入力端子に入力され、インバータ805の入力端子から入力された信号は、反転信号として、PMOS801とNMOS804のゲートに入力される。PMOS802とNMOS803のそれぞれの一方の主端子(ドレイン端子)は接続され、LR書き込み回路800の出力端子WDLを通して書き込み回路205から出力され、ワード線選択回路203に接続される。
 LR書き込み回路800は、LR書き込みイネーブル信号WELがH状態のときに、LR書き込みパルス信号WPLに従って、低抵抗化用電源211から供給されるVL電位(=第1低抵抗化書き込み電圧Vwl1)と接地電位(Vss)のいずれかを出力し、LR書き込みイネーブル信号WELがL状態のときには、Hi-Z状態を出力端子WDLから出力する。
 不良メモリセルと同一ビット線にある不良メモリセル以外のメモリセルを第1の低抵抗状態の抵抗値以上の抵抗値を持つ第2の高抵抗状態にすることで、不良メモリセルに流れていた異常電流を削減することができる。その後、不良メモリセルを含むビット線、またはワード線を冗長ビット線、または冗長ワード線と置き換えることで救済処理を行っても、不良メモリセルには異常電流が流れないため、不良メモリセルがメモリセルアレイ202と切断されていない状態であっても異常電流はメモリセルアレイ202には流れず、選択メモリセルに対して、安定した読み出しを行うことができる。
 図18は、本実施の形態における選択ビット線に印加される電圧と選択ビット線に流れる電流の電圧電流特性の一例を示す図である。図5の抵抗変化型不揮発性記憶装置200において、メモリセルアレイ202の全てのメモリセル100が、例えば、図4に示した特性(1)のような正常な特性を示し、かつ、全てのメモリセル100の抵抗変化素子102が第1の低抵抗状態である場合、図18に示すように横軸に選択ビット線に印加される電圧V、縦軸に選択ビット線に流れる電流Iをとると、図18の破線の特性(10)のような特性を示す。同様に、メモリセルアレイ202の全てのメモリセル100が、例えば、図4に示した特性(1)のような正常な特性を示し、かつ、全てのメモリセル100の抵抗変化素子102が第1の高抵抗状態である場合、図18の太実線の特性(11)のような特性を示す。
 一方、図5の抵抗変化型不揮発性記憶装置200のメモリセルアレイ202中の選択メモリセル100を第1の高抵抗状態にし、非選択メモリセルの1つが、例えば図9で示したようなメモリセルM23のように電流制御素子D23がショート不良を起こし、かつ不良のメモリセルM23の抵抗変化素子R23が第1の低抵抗状態の抵抗値よりも低い第2の低抵抗状態の抵抗値である場合、不良のメモリセルM23と同一のビット線に接続されている、不良のメモリセルM23とは別のメモリセルM13、M33、・・・を全て第1の低抵抗状態よりも抵抗値の高い第2の高抵抗状態にすると、図18の白三角印の特性(20)の特性を示す。
 つまり、選択メモリセル100が第1の高抵抗状態で、不良のメモリセルM23と同一のビット線に接続されている、不良のメモリセルM23とは別のメモリセルM13、M33、・・・を全て第2の高抵抗状態にしたときの特性(20)は、選択メモリセル100が第1の低抵抗状態の特性(10)よりも高い抵抗値である特性を示している。そのため、不良のメモリセルM23と同一のビット線に接続されている、不良のメモリセルM23とは別のメモリセルM13、M33、・・・を全て第1の低抵抗状態の抵抗値よりも高い第2の高抵抗状態の抵抗値にすることで、非選択メモリセルアレイ中のメモリセルの不良の有無に関わらず、選択メモリセルの状態を判定することができる。
 また、不良のメモリセルM23と同一のビット線に接続されている、不良のメモリセルM23とは別のメモリセルM13、M33、・・・を全て、第1の高抵抗状態よりも抵抗値が高い抵抗状態にしたほうがよりよい。例えば、不良のメモリセルM23と同一のビット線に接続されている、不良のメモリセルM23とは別のメモリセルM13、M33、・・・を全て、第1の高抵抗状態の抵抗値よりも約10倍程度抵抗値が高い第3の高抵抗状態にすると、図18の白四角印の特性(21)のような特性を示し、特性(20)よりもより高抵抗の(電流が少ない)特性を示している。そのため、非選択メモリセルアレイ中のメモリセルの不良の有無に関わらず、選択メモリセルの状態をより正確に判定することができる。
 (第1の実施の形態の変形例)
 次に、本発明の第2の実施の形態における抵抗変化型不揮発性記憶装置について説明をする。
 図19は、本実施の形態にかかる書き込み回路255と書き込み用電源210とそれらの接続関係の、第1の実施の形態に記載の構成と異なる構成を示す回路図である。
 図19に示すように、書き込みモード時に書き込み回路255は、メモリセルの抵抗変化素子の抵抗状態を高抵抗状態に変化させるためにメモリセルに電圧および電流を印加するHR書き込み回路750と、抵抗変化素子の抵抗状態を低抵抗状態に変化させるためにメモリセルに電圧および電流を印加するLR書き込み回路850とで構成されている。
 HR書き込み回路750は、第1HR書き込み回路710と第2書き込み回路720とで構成され、第1書き込み回路710の出力端子WDH1と、第2書き込み回路720の出力端子WDH2とは互いに接続されている。第1書き込み回路710は、ワード線選択回路203およびビット線選択回路204で選択されたメモリセルに対して、当該メモリセルが正常なメモリセルの場合、当該メモリセルの抵抗変化素子を第1の高抵抗状態に遷移させるための電圧として、ワード線選択回路203で選択されたワード線WLを基準にして、ビット線選択回路204で選択されたビット線BLに、第1の高抵抗化書き込み電圧Vwh1を印加する。また、書き込み用電源210の高抵抗化用電源212から出力される電源電圧VHを変えることにより、第2の高抵抗化書き込み電圧Vwh2を印加する。
 さらに、HR書き込み回路750は、第2書き込み回路720を備えることで、第1書き込み回路710の出力端子WDH1から第1の高抵抗化書き込み電流Iwh1と、第2書き込み回路720の出力端子WDH2から第2の高抵抗化書き込み電流Iwh2と、それぞれの出力電流を合わせた第3の高抵抗化書き込み電流Iwh3を出力することができる。つまり、HR書き込み回路750の出力端子WDHからは、第1の高抵抗化書き込み電流Iwh1、第2の高抵抗化書き込み電流Iwh2、第3の高抵抗化書き込み電流Iwh3が出力される。
 HR書き込み回路750の詳細な構成は、以下の通りである。
 第1HR書き込み回路710は、PMOS711と、PMOS712と、NMOS713と、NMOS714と、インバータ715と、インバータ716とで構成されている。
 PMOS711と、PMOS712と、NMOS713と、NMOS714とは、この順に直列をなすように主端子(ドレイン端子、またはソース端子)同士が接続され、ひとつの電流経路を形成している。PMOS711の2つの主端子のうち、PMOS712の接続されていない方の主端子(ソース端子)は電源(例えば、高抵抗化用電源212)に接続されている。また、NMOS714の2つの主端子のうち、NMOS713と接続されていない方の主端子(ソース端子)は、接地電位に接続されている。
 データ信号入出力回路207から出力される第1HR書き込みイネーブル信号WEH1は、インバータ716の入力端子とNMOS713のゲートに入力され、インバータ716の入力端子から入力された第1HR書き込みイネーブル信号WEH1は、反転信号として、PMOS712のゲートに入力される。また、制御回路209から出力されるHR書き込みパルス信号WPHは、インバータ715の入力端子に入力され、インバータ715の入力端子から入力された信号は、反転信号として、PMOS711とNMOS714のゲートに入力される。PMOS712とNMOS713のそれぞれの一方の主端子(ドレイン端子)は接続され、HR書き込み回路750の出力端子WDHを通して書き込み回路255から出力され、ビット線選択回路204に接続される。
 第1HR書き込み回路710は、第1HR書き込みイネーブル信号WEH1がH状態のときに、書き込みパルス信号WPHに従って、高抵抗化用電源212から供給されるVH電位(=第1の高抵抗化書き込み電圧Vwh1)および接地電位(Vss)のいずれかを出力し、第1HR書き込み回路710の出力がVH電位および接地電位のときにそれぞれ電流IHH1(=第1の高抵抗化書き込み電流Iwh1)および電流IHL1が流れる。また、第1HR書き込みイネーブル信号WEH1がL状態のときには、第1書き込み回路710の出力は、Hi-Z状態を出力する。
 次に、第2HR書き込み回路720は、PMOS721と、PMOS722と、インバータ723と、インバータ724とで構成されている。
 PMOS721と、PMOS722とは、この順に直列をなすように主端子(一方のドレイン端子及び他方のソース端子)同士が接続され、ひとつの電流経路を形成している。PMOS721の2つの主端子のうち、PMOS722の接続されていない方の主端子(ソース端子)は電源(例えば、高抵抗化用電源212)に接続されている。
 制御回路209から出力される第2HR書き込みイネーブル信号WEH2は、インバータ724の入力端子のゲートに入力され、インバータ724の入力端子から入力された第2HR書き込みイネーブル信号WEH2は、反転信号として、PMOS722のゲートに入力される。また、制御回路209から出力されるHR書き込みパルス信号WPHは、インバータ723の入力端子に入力され、インバータ723の入力端子から入力された信号は、反転信号として、PMOS721のゲートに入力される。PMOS722の一方の主端子(ドレイン端子)は、HR書き込み回路750の出力端子WDHを通して書き込み回路255から出力され、ビット線選択回路204に接続される。
 第2HR書き込み回路720は、第2HR書き込みイネーブル信号WEH2がH状態のときに、書き込みパルス信号WPHに従って、高抵抗化用電源212から供給されるVH電位(=第1の高抵抗化書き込み電圧Vwh1)を出力し、第2HR書き込み回路720の出力がVH電位のときにIHH2(=第2の高抵抗化書き込み電流Iwh2)の出力電流が流れる。また、第2HR書き込みイネーブル信号WEH2がL状態のときには、第2書き込み回路720の出力は、Hi-Z状態を出力する。
 LR書き込み回路850については、前述しているのでここでは説明を省略する。
 不良メモリセルと同一ビット線にある不良メモリセル以外のメモリセルに対して、例えば、第1HR書き込みイネーブル信号WEH1をH状態、つまりイネーブル状態にし、第1HR書き込み回路710によって、VH電位を供給するとともに、電流IHH1の出力電流が流れることで、不良メモリセルと同一ビット線にある不良メモリセル以外のメモリセルを第1の低抵抗状態より大きい抵抗値を示す第2の高抵抗状態にすることで、不良メモリセルに流れていた異常電流を削減することができる。さらに、第2HR書き込みイネーブル信号WEH2をH状態、つまりイネーブル状態にすることで、HR書き込み回路750の駆動能力(=出力電流)を上げることによって、VH電位を供給するとともに、電流IHH2の出力電流をさらに流す(増加する)ことで、不良メモリセルと同一ビット線にある不良メモリセル以外のメモリセルを第2の高抵抗状態、またはそれ以上の抵抗値とすることができる。また、HR書き込み回路750を用いることにより、以下の実施の形態において、正常なメモリセルを第1の高抵抗状態よりもさらに抵抗値の高い第3の高抵抗状態にすることができる。
 (第2の実施の形態)
 次に第2の実施の形態について説明する。
 図20は、図5の第1の実施の形態における抵抗変化型不揮発性記憶装置200の構成図に対して、メインメモリセルアレイ600の各列に同数個ずつメモリセル100を有する冗長メモリセルアレイ620を配置した抵抗変化型不揮発性記憶装置900の一例を示すものである。一例として、図20における冗長メモリセルアレイ620には、メインメモリセルアレイ600の各列に1つずつメモリセル100が配置され、一行の冗長メモリセルアレイ620が構成されている。なお、図20の冗長メモリセルアレイ620は、メインメモリセルアレイ600の上端部に配置しているが、メインメモリセルアレイ600中に配置しても構わない。
 以下の説明において、図5と同じ構成の箇所については説明を省く。
 図20において、本実施の形態に係る抵抗変化型不揮発性記憶装置900は、基板上にメモリ本体部201を備えている。メモリ本体部201は、メモリセルアレイ202を備えており、メモリセルアレイ202は、図2で示した複数個のメモリセル100が行方向と列方向にマトリクス状に配置されたメインメモリセルアレイ600と、同じく図2で示した複数個のメモリセル100が複数個配置された冗長メモリセルアレイ620とを備えている。また、互いに交差するように配列された複数のワード線WL1、WL2、WL3、・・・と、複数のビット線BL1、BL2、BL3、・・・を備えており、さらに、ワード線WL1、WL2、WL3、・・・と平行に配置された少なくとも1本以上の冗長ワード線WLR1、・・・を備えている。
 図20に示すように、複数のワード線WL1、WL2、WL3、・・・は、基板の主面に平行な同一の平面内(第1の平面内)において互いに平行に配置されている。同様に、複数のビット線BL1、BL2、BL3、・・・は、第1の平面に平行な同一の平面内(第1の平面に平行な第2の平面内)において互いに平行に配置されており、冗長ワード線WLR1、・・・は、第2の平面内において、ワード線WL1、WL2、WL3、・・・と平行に配置されている。
 また、上記した第1の平面と第2の平面は平行に配置され、複数のワード線WL1、WL2、WL3、・・・と複数のビット線BL1、BL2、BL3、・・・は立体交差するように配置されており、複数のビット線BL1、BL2、BL3、・・・と冗長ワード線WLR1、・・・も立体交差するように配置されている。
 メインメモリセルアレイ600内で、ワード線WL1、WL2、WL3、・・・とビット線BL1、BL2、BL3、・・・との立体交差した位置には、メモリセルM11、M12、M13、M21、M22、M23、M31、M32、M33、・・・(以下、「メモリセルM11、M12、M13、・・・」と表す)が配置されており、冗長メモリセルアレイ620内で、ビット線BL1、BL2、BL3、・・・と冗長ワード線WLR1、・・・との立体交差した位置には、冗長メモリセルMW1、MW2、MW3、・・・が配置されている。
 メモリセルM11、M12、M13、・・・は、電流制御素子D11、D12、D13、D21、D22、D23、D31、D32、D33、・・・(以下、「電流制御素子D11、D12、D13、・・・」と表す)と、電流制御素子D11、D12、D13、・・・と直列接続された抵抗変化素子R11、R12、R13、R21、R22、R23、R31、R32、R33、・・・(以下、「抵抗変化素子R11、R12、R13、・・・」と表す)とで構成されている。同様に、冗長メモリセルMW1、MW2、MW3、・・・は、電流制御素子DW1、DW2、DW3、・・・と、電流制御素子DW1、DW2、DW3、・・・と直列接続された抵抗変化素子RW1、RW2、RW3、・・・とで構成されている。
 つまり、図20に示すように、メインメモリセルアレイ600内の抵抗変化素子R11、R21、R31、・・・の一方の端子は、電流制御素子D11、D21、D31、・・・と接続しており、もう一方の端子は、ビット線BL1と接続され、抵抗変化素子R12、R22、R32、・・・の一方の端子は、電流制御素子D12、D22、D32、・・・と接続しており、もう一方の端子は、ビット線BL2と接続され、抵抗変化素子R13、R23、R33、・・・の一方の端子は、電流制御素子D13、D23、D33、・・・と接続しており、もう一方の端子は、ビット線BL3と接続されている。また、電流制御素子D11、D12、D13、・・・の一方の端子は、抵抗変化素子R11、R12、R13、・・・と接続されており、もう一方の端子は、ワード線WL1と接続され、電流制御素子D21、D22、D23、・・・の一方の端子は、抵抗変化素子R21、R22、R23、・・・と接続されており、もう一方の端子は、ワード線WL2と接続され、電流制御素子D31、D32、D33、・・・の一方の端子は、抵抗変化素子R31、R32、R33、・・・と接続されており、もう一方の端子は、ワード線WL3と接続されている。
 同様に、冗長メモリセルアレイ620内の抵抗変化素子RW1、RW2、RW3、・・・の一方の端子は、電流制御素子DW1、DW2、DW3と接続しており、もう一方の端子は、冗長ワード線WLR1、・・・と接続されている。また電流制御素子DW1、DW2、DW3、・・・の一方の端子は、抵抗変化素子RW1、RW2、RW3、・・・と接続されており、もう一方の端子は、ビット線BL1、BL2、BL3、・・・と接続されている。
 なお、本実施の形態では、ビット線側に抵抗変化素子を接続し、ワード線側に電流制御素子を接続しているが、ビット線側に電流制御素子を接続し、ワード線側に抵抗変化素子を接続しても構わない。また、本実施の形態では、冗長メモリセルアレイ620の冗長ワード線WLR1、・・・は少なくとも1本あればよく、複数本搭載しても構わない。
 ワード線選択回路203は、アドレス信号入力回路208から出力された行アドレス情報信号と、アドレス比較回路214からのアドレス一致判定信号とを受け取り、この行アドレス情報とアドレス一致判定信号に応じて、複数のワード線WL1、WL2、WL3、・・・、および冗長ワード線WLR1、・・・のうち、選択されたワード線に書き込み回路205から供給される電圧を印加する。また、選択されていないワード線には所定の非選択行印加電圧(Vss~Vwl、またはVss~Vwh)を印加するか、またはハイインピーダンス(Hi-Z)状態に固定する。
 また、同様に、ビット線選択回路204は、アドレス信号入力回路208から出力された列アドレス情報と、アドレス比較回路214からのアドレス一致判定信号とを受け取り、この列アドレス情報とアドレス一致判定信号に応じて、複数のビット線BL1、BL2、BL3、・・・のうち、選択されたビット線に書き込み回路205から供給される電圧、または読み出し回路206から供給される電圧を印加するとともに、選択されていないビット線には所定の非選択列印加電圧(Vss以上Vwl以下の電圧、またはVss以上Vwh以下の電圧、またはVss以上Vbl以下の電圧)を印加するか、またはハイインピーダンス(Hi-Z)状態に固定することができる。
 なお、ワード線選択回路203およびビット線選択回路204は、本発明におけるメモリ選択回路に相当する。
 不良アドレス記憶回路213は、読み出し回路206の電流制御素子特性判定モードにおいて、選択されたメモリセルが不良と判定されたとき、アドレス信号入力回路208から入力された行アドレス情報を不良アドレスとして記憶する。具体的には、ビット線単位で不良アドレスを記憶する場合と同様に、不良アドレス記憶回路213は、アドレス変換表(図示せず)を有し、不良メモリセルを有する不良ワード線と、置換先の冗長メモリセルを有する冗長ワード線とを対応付けて記憶する。
 また、アドレス比較回路214は、アドレス信号入力回路208から入力された行アドレス情報と不良アドレス記憶回路213で記憶している不良アドレスとを比較し、一致しているか一致していないかのアドレス一致判定信号をワード線選択回路203に出力する。アドレス信号入力回路208から入力された行アドレス情報と不良アドレス記憶回路213で記憶している不良ワード線のアドレスとが一致していた場合には、救済モードにおいて、不良アドレス記憶回路213に記憶されたアドレス変換表により、不良ワード線を置換先の冗長ワード線に置き換えて記録の書き込みおよび読み出しを行う。
 次に、本実施の形態における不良メモリセルの救済方法について述べる。
 図21は、電流制御素子特性判定モードで不良メモリセルと判定されたメモリセルの救済方法のフローチャートの一例を示している。詳細には、電流制御素子が破壊されている不良メモリセルと同一ワード線にある不良メモリセル以外のメモリセルに対して、メモリセルの抵抗変化素子を第1の低抵抗状態よりも抵抗値の高い第2の高抵抗状態(通常書き込みの低抵抗状態よりも抵抗値が高い状態)にすることで、不良メモリセルに流れる異常電流をカットする。さらに、冗長メモリセルを用いて不良メモリセルと同一ビット線にある不良メモリセル以外のメモリセルに代えて、他の正常なメモリセルを代用するために、その代用前後のメモリセルのアドレスを対応付けて記憶する。
 図21に示すように、本実施の形態における不良メモリセルの救済方法では、初めに、抵抗変化型不揮発性記憶装置を書き込みモード(高抵抗化)に設定し(ステップS501)、ワード線選択回路203で選択されたワード線と、ビット線選択回路204で選択されたビット線とによってメモリセルアレイ202の少なくとも1つの選択された不良メモリセルと同一ワード線にある不良メモリセル以外のメモリセルに対して、高抵抗化書き込み動作を行う(ステップS502)。その後、不良検知モードに設定し(ステップS503)、不良メモリセルと同一ワード線にある不良メモリセル以外のメモリセルが第2の高抵抗状態になっているかを、読み出し回路206のセンスアンプ300にて判定する(ステップS504)。
 不良メモリセルと同一ワード線にある不良メモリセル以外のメモリセルが第2の高抵抗状態になっている場合は、対象のメモリセルが高抵抗化成功と判断し(ステップS505)、対象のメモリセルのアドレスを不良アドレス記憶回路213に記憶し(ステップS506)、終了する。
 一方、ステップS504にて、不良メモリセルと同一ワード線にある不良メモリセル以外のメモリセルが第2の高抵抗状態になっていなかった場合は、モード設定を再び書き込みモード(高抵抗化)に設定する(ステップS507)。その後、別の書き込み条件を設定することができるか判定し(ステップS508)、別の書き込み条件を設定することができるようであれば別の書き込み条件に設定し(ステップS509)、再度、不良メモリセルと同一ワード線にある不良メモリセル以外のメモリセルに対して、高抵抗化書き込み動作を行う(ステップS502)。別の書き込み条件とは、書き込み電圧や、書き込みパルス時間、書き込みドライバーの駆動能力等を変えることである。例えば、別の書き込み条件として、書き込み電圧を、第1の高抵抗状態よりもさらに抵抗値の高い第3の高抵抗状態にするための第3の書き込みパルスに変更してもよい。また、ステップS508で、別の書き込み条件を設定することができないようであれば、対象の不良メモリセルと同一ワード線にある不良メモリセル以外のメモリセルの高抵抗化失敗と判断し(ステップS510)、終了する。この場合は、不良メモリセルは救済できないため不良回路として扱われる。
 なお、上記の不良メモリセルの検知フローおよび救済フローは、抵抗変化型不揮発性記憶装置200の電源投入時、所定の周期毎、または、記録の書き込み毎に行うこととしてもよい。
 なお、冗長メモリセルアレイ620の配置は、図20に示したように、行方向に限られるものではない。既に第1の実施の形態で述べたように、図5の如く、列方向に配置する構成も考えられるし、その他の配置も有りえる。図22A、図22Bおよび図22Cは、メインメモリセルアレイおよび冗長メモリセルアレイの他の配置例を示す図である。図22A、図22Bおよび図22Cにおいて、斜線で示す部分がメモリセルアレイにおける冗長メモリセルアレイの位置を示している。
 図22Aに示すように、メインメモリセルアレイ600に対して、列方向および行方向の両方、またはどちらか一方に冗長メモリセルアレイ630、640を備えたメモリセルアレイ232としてもよい。
 また、図22Bに示すように、メインメモリセルアレイを複数のメインメモリセルアレイ650a、650b、650c、650dに分割し、これらの分割した複数のメインメモリセルアレイ650に対して、各々の列方向および行方向の両方、またはどちらか一方に冗長メモリセルアレイ660a、660b、660c、660d、670a、670b、670c、670d、を備えたメモリセルアレイ242としてもよい。
 また、図22Cに示すように、メインメモリセルアレイを複数のメインメモリセルアレイ680a、680b、680c、680dに分割し、これらの分割した複数のメインメモリセルアレイ680に対して、各々の列方向および行方向の両方、またはどちらか一方に冗長メモリセルアレイ690a、690b、700a、700bを備えたメモリセルアレイ252としてもよい。
 (第3の実施の形態)
 次に、本実施の形態における不良メモリセルの救済方法について述べる。
 図23は、電流制御素子特性判定モードで不良メモリセルと判定されたメモリセルの救済方法のフローチャートの一例を示している。詳細には、電流制御素子が破壊されている不良メモリセルと同一ビット線および同一ワード線にある不良メモリセル以外のメモリセルに対して、メモリセルの抵抗変化素子を第1の低抵抗状態よりも抵抗値の高い第2の高抵抗状態(通常書き込みの低抵抗状態よりも抵抗値が高い状態)にすることで、不良メモリセルに流れる異常電流をカットする。さらに、冗長メモリセルと同一ビット線およびワード線にある不良メモリセル以外のメモリセルに代えて、他の正常なメモリセルを代用するために、不良アドレス記憶回路に、代用前後のメモリセルのアドレスを対応付けて記憶する。
 図23に示すように、本実施の形態における不良メモリセルの救済方法では、初めに、抵抗変化型不揮発性記憶装置を書き込みモード(高抵抗化)に設定し(ステップ6401)、ワード線選択回路203で選択されたワード線と、ビット線選択回路204で選択されたビット線とによってメモリセルアレイ202の少なくとも1つの選択された不良メモリセルと同一ビット線にある不良メモリセル以外のメモリセルに対して、高抵抗化書き込み動作を行う(ステップS402)。また、ワード線選択回路203で選択されたワード線と、ビット線選択回路204で選択されたビット線とによってメモリセルアレイ202の少なくとも1つの選択された不良メモリセルと同一ワード線にある不良メモリセル以外のメモリセルに対して、高抵抗化書き込み動作を行う(ステップS603)。
 その後、不良検知モードに設定し(ステップS604)、不良メモリセルと同一ビット線および同一ワード線にある不良メモリセル以外のメモリセルが第2の高抵抗状態になっているかを、読み出し回路206のセンスアンプ300にて判定する(ステップS605)。
 不良メモリセルと同一ビット線および同一ワード線にある不良メモリセル以外のメモリセルが第2の高抵抗状態になっている場合は、対象のメモリセルが高抵抗化成功と判断し(ステップS606)、対象のメモリセルのアドレスを不良アドレス記憶回路213に記憶し(ステップS607)、終了する。
 一方、ステップS605にて、不良メモリセルと同一ビット線および同一ワード線にある不良メモリセル以外のメモリセルが第2の高抵抗状態になっていなかった場合は、モード設定を再び書き込みモード(高抵抗化)に設定する(ステップS608)。その後、別の書き込み条件を設定することができるか判定し(ステップS609)、別の書き込み条件を設定することができるようであれば別の書き込み条件に設定し(ステップS610)、再度、不良メモリセルと同一ビット線および同一ワード線にある不良メモリセル以外のメモリセルに対して、高抵抗化書き込み動作を行う(ステップS602、S603)。別の書き込み条件とは、書き込み電圧や、書き込みパルス時間、書き込みドライバーの駆動能力等を変えることである。例えば、別の書き込み条件として、書き込み電圧を、第1の高抵抗状態よりもさらに抵抗値の高い第3の高抵抗状態にするための第3の書き込みパルスに変更してもよい。また、ステップS609で、別の書き込み条件を設定することができないようであれば、対象の不良メモリセルと同一ビット線および同一ワード線にある不良メモリセル以外のメモリセルの高抵抗化失敗と判断し(ステップS611)、終了する。この場合は、不良メモリセルは救済できないため不良回路として扱われる。
 なお、上記の不良メモリセルの検知フローおよび救済フローは、抵抗変化型不揮発性記憶装置200の電源投入時、所定の周期毎、または、記録の書き込み毎に行うこととしてもよい。
 (第4の実施の形態)
 次に、本発明の第4の実施の形態における抵抗変化型不揮発性記憶装置について説明をする。
 図24は、本実施の形態における不良メモリセルの救済フローの一例を示す図である。本実施の形態では、電流制御素子特性判定モードで不良メモリセルと判定されたメモリセルと同一ワード線にある、不良メモリセル以外のメモリセルに対して、メモリセルの抵抗変化素子を第1の低抵抗状態よりも抵抗値が高い第2の高抵抗状態(通常書き込みの低抵抗状態よりも抵抗値が高い状態)にすることで、不良メモリセルに流れる異常電流をカットする。さらに、冗長メモリセルを用いて、不良メモリセルと同一ビット線にある不良メモリセル以外のメモリセルに代えて、他の正常なメモリセルを代用するために、不良アドレス記憶回路に、代用前後の不良メモリセルのアドレスを対応付けて記憶する。
 初めに、抵抗変化型不揮発性記憶装置200を書き込みモード(高抵抗化)に設定し(ステップS701)、ワード線選択回路203で選択されたワード線と、ビット線選択回路204で選択されたビット線とによってメモリセルアレイ202の少なくとも1つの選択された不良メモリセルに対して、高抵抗化書き込み動作(1)を行う(ステップS702)。その後、不良検知モードに設定し(ステップS703)、不良メモリセルが第1の低抵抗状態よりも抵抗値が高い第4の高抵抗状態になっているかを読み出し回路206のセンスアンプ300にて判定する(ステップS704)。
 第4の高抵抗状態になっている場合は、対象の不良メモリセルが高抵抗化成功と判断し(ステップS705)、対象の不良メモリセルのアドレスを不良アドレス記憶回路213に記憶し(ステップS706)、終了する。
 一方、ステップS704にて、第4の高抵抗状態になっていなかった場合は、モード設定を再び書き込みモード(高抵抗化)に設定する(ステップS707)。その後、別の書き込み条件を設定することができるか判定し(ステップS708)、別の書き込み条件を設定することができるようであれば別の書き込み条件に設定し(ステップS709)、再度、不良メモリセルに対して、高抵抗化書き込み動作を行う(ステップS702)。別の書き込み条件とは、書き込み電圧や、書き込みパルス時間、書き込みドライバーの駆動能力等を変えることである。例えば、別の書き込み条件として、書き込み電圧を、第1の高抵抗状態よりもさらに抵抗値の高い第3の高抵抗状態にするための第3の書き込みパルスに変更してもよい。
 また、ステップS708で、別の書き込み条件を設定することができないようであれば、対象の不良メモリセルと同一のビット線、または、同一のワード線、もしくは、同一ビット線およびワード線に接続されている、不良メモリセルとは別のメモリセルを順次選択し、高抵抗化書き込み動作を行う(ステップS710)。別のメモリセルとは、上記した不良メモリセルとは別の不良メモリセルであってもよいし、正常なメモリセルであってもよい。このとき、高抵抗化書き込み動作を行うメモリセルには、第1の低抵抗状態よりも抵抗値の高い第2の高抵抗状態となるように、例えば、書き込み電圧として上記したVwh0よりも高い第2の高抵抗化書き込み電圧Vwh2を印加する。なお、第2の高抵抗状態の抵抗値は、例えば第1の高抵抗状態の抵抗値の10倍以上となるように第3の高抵抗化書き込み電圧Vwh3を設定するほうがなおよい。
 その後、不良検知モードに設定し(ステップS711)、対象の不良メモリセルと同一のビット線、またはワード線に接続されている、不良メモリセルとは別のメモリセルが全て第2の高抵抗状態になっているかを読み出し回路206のセンスアンプ300にて判定する(ステップS712)。対象の不良メモリセルと同一のビット線、またはワード線に接続されている、不良メモリセルとは別のメモリセルが全て第2の高抵抗状態になっている場合は、対象の不良メモリセルのアドレスを不良アドレス記憶回路213に記憶し(ステップS706)、終了する。対象の不良メモリセルと同一のビット線、またはワード線に接続されている、不良メモリセルとは別のメモリセルが全て高抵抗状態になっていない場合は、対象の不良メモリセルの高抵抗化失敗と判断し(ステップS713)、終了する。この場合は、救済できないためメモリセルアレイ202は不良回路として扱われる。
 なお、本発明は、上記した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内で種々の改良、変形を行ってもよい。
 例えば、メモリセルにおいて、電流制御素子と、抵抗変化素子との上下の接続関係を逆にして接続しても構わないし、第1の抵抗変化層と第2の抵抗変化層との上下の接続関係を逆にし、下部電極と上部電極との上下の接続関係を逆にしても構わない。
 また、上記した実施の形態では、ビット線選択回路およびワード線選択回路は、それぞれ、非選択ビット線BL1、BL3および非選択ワード線WL1、WL3を、ハイインピーダンス状態に固定しているが、これに限らず、非選択ビット線BL1、BL3および非選択ワード線WL1、WL3を、それぞれ、選択ビット線BL2および選択ワード線WL2間に印加される電圧以下の電圧値に設定しても構わない。
 また、上記の実施の形態における上部電極、下部電極、第1の抵抗変化層、第2の抵抗変化層の材料は一例であって、その他の材料を用いても構わない。例えば、抵抗変化素子の金属酸化物層はタンタル酸化物の積層構造で構成されるとして説明したが、本発明の上述した作用効果は、金属酸化物層がタンタル酸化物の場合に限って発現されるものではなく、抵抗変化素子は、可逆的に少なくとも2つ以上の抵抗値を遷移する素子であれば、他の構成や材料であっても構わないことは明白である。
 また、上記の実施の形態における電流制御素子は双方向型の電流制御素子について記載しているが、単方向ダイオードを用いても構わない。また、上記の実施の形態における電流制御素子は、PNダイオードやショットキーダイオード、ツェナーダイオードでも構わない。
 以上説明したように、本発明に係るクロスポイント構成の抵抗変化型不揮発性記憶装置は、双方向特性を有する電流制御素子を用いたメモリセルの不良メモリセルのアドレスの検出をし、その不良メモリセルの救済を行うことで、信頼性の高いメモリを実現するのに有用である。
 10、100  メモリセル
 20、101  電流制御素子
 21  電流制御素子の下部電極(第1の電極)
 22  電流制御素子の半導体層
 23  電流制御素子の上部電極(第2の電極)
 30、102  抵抗変化素子
 31  抵抗変化素子の下部電極(第3の電極)
 32  抵抗変化素子の第1の抵抗変化層
 33  抵抗変化素子の第2の抵抗変化層
 34  抵抗変化素子の上部電極(第4の電極)
 35  抵抗変化素子の抵抗変化層
 50  下部配線
 51  上部配線
 200  抵抗変化型不揮発性記憶装置
 201  メモリ本体部
 202、232、242、252  メモリセルアレイ
 203  ワード線選択回路(メモリセル選択回路)
 204  ビット線選択回路(メモリセル選択回路)
 205  書き込み回路
 206  読み出し回路
 207  データ信号入出力回路
 208  アドレス信号入力回路
 209  制御回路
 210  書き込み用電源
 211  低抵抗化用電源
 212  高抵抗化用電源
 213  不良アドレス記憶回路
 214  アドレス比較回路
 300  センスアンプ
 310  比較回路(検知回路)
 320  カレントミラー回路
 330  定電流回路
 400  ビット線制御電圧切り替え回路
 500  ビット線制御電圧発生回路
 600、601  メインメモリセルアレイ
 602  非選択メモリセルアレイ
 610、620、630、640  冗長メモリセルアレイ
 650a、650b、650c、650d  メインメモリセルアレイ
 660a、660b、660c、660d  冗長メモリセルアレイ
 670a、670b、670c、670d  冗長メモリセルアレイ
 680  ビット線電圧検知回路(電圧検知回路)
 680a、680b、680c、680d  メインメモリセルアレイ
 690a、690b、700a、700b  冗長メモリセルアレイ
 700  HR書き込み回路
 710  第1HR書き込み回路
 720  第2HR書き込み回路
 800  LR書き込み回路
 BL1、BL2、BL3  ビット線
 BLR1  冗長ビット線
 D11、D12、D13  電流制御素子
 D21、D22、D23  電流制御素子
 D31、D32、D33  電流制御素子
 M11、M12、M13  メモリセル
 M21、M22、M23  メモリセル
 M31、M32、M33  メモリセル
 R11、R12、R13  抵抗変化素子
 R21、R22、R23  抵抗変化素子
 R31、R32、R33  抵抗変化素子
 WL1、WL2、WL3  ワード線
 WLR1  冗長ワード線
 

Claims (15)

  1.  印加される書き込み電圧パルスに応じて可逆的に抵抗値が遷移する抵抗変化素子と、前記抵抗変化素子と直列に接続され、印加電圧が所定の閾値電圧を超えると導通状態とみなされる電流が流れる電流制御素子とで構成される複数のメモリセルを有し、複数のワード線と複数のビット線との立体交差点のそれぞれに、前記複数のメモリセルの1つが配置されたメモリセルアレイと、
     前記複数のワード線から少なくとも1つを選択し、前記複数のビット線から少なくとも1つを選択することにより、前記メモリセルアレイから少なくとも1つ以上の前記メモリセルを選択するメモリセル選択回路と、
     前記選択されたメモリセルに電圧パルスを印加することによって、前記選択されたメモリセルの前記抵抗変化素子の抵抗値を書き換える書き込み回路と、
     前記選択されたメモリセルの前記電流制御素子に前記閾値電圧より高い第1電圧、または、前記閾値電圧以下の第2電圧が印加されるように、前記選択されたメモリセルに読み出し電圧を印加することによって、前記選択されたメモリセルの状態を読み出す読み出し回路と、を備え、
     前記書き込み回路は、前記書き込み電圧パルスとして第1の低抵抗化パルス、または、第1の高抵抗化パルスを前記選択されたメモリセルに印加することにより、前記複数のメモリセルのうち選択されたメモリセルの前記抵抗変化素子をそれぞれ第1の低抵抗状態、または、第1の高抵抗状態にし、
     前記読み出し回路は、前記選択されたメモリセルが不良を有さないメモリセルでありかつ当該選択されたメモリセルに前記第1電圧を印加して前記選択されたメモリセルの前記抵抗変化素子の抵抗状態を読み出すとき、前記選択されたメモリセルが前記第1の低抵抗状態の場合は第1の所定値の電流を検出し、前記第1の高抵抗状態の場合は第2の所定値の電流を検出し、前記選択されたメモリセルの前記抵抗変化素子の抵抗状態を読み出すときに、前記選択されたメモリセルに、前記第1の低抵抗状態または前記第1の高抵抗状態に対応する前記第1の所定値または前記第2の所定値の電流よりもそれぞれ大きい電流が流れる場合、前記選択されたメモリセルが不良を有する不良メモリセルと判定し、
     前記書き込み回路は、前記不良メモリセルと同一のビット線および同一のワード線の少なくともいずれかに配置されている前記不良メモリセル以外の他のメモリセルに対して、前記他のメモリセルの前記抵抗変化素子を前記第1の低抵抗状態での抵抗値以上の抵抗値を示す第2の高抵抗状態にするように、第2の高抵抗化パルスを印加する
    抵抗変化型不揮発性記憶装置。
  2.  前記書き込み回路は、前記不良メモリセルと同一のビット線およびワード線に配置されている前記不良メモリセル以外の他のメモリセルに対して、前記他のメモリセルの前記抵抗変化素子を前記第1の高抵抗状態以上の抵抗値を示す第3の高抵抗状態にするように、第3の高抵抗化パルスを印加する
    請求項1に記載の抵抗変化型不揮発性記憶装置。
  3.  前記読み出し回路は、前記選択されたメモリセルに前記第2電圧を印加して、前記第1の所定値より大きい電流が流れるとき、前記選択されたメモリセルがショート不良を有する不良メモリセルであると判定する
    請求項1または2に記載の抵抗変化型不揮発性記憶装置。
  4.  前記書き込み回路は、選択されたメモリセルの前記抵抗変化素子を前記第1の高抵抗状態にするように前記第1の高抵抗化パルスを印加し、
     前記読み出し回路は、前記選択されたメモリセルに前記第1電圧を印加して前記選択されたメモリセルの前記抵抗変化素子の抵抗状態を読み出し、
     前記選択されたメモリセルに流れる電流が前記第2の所定値の電流より大きい場合、前記選択されたメモリセルの前記抵抗変化素子は不良であると判定する
    請求項1または2に記載の抵抗変化型不揮発性記憶装置。
  5.  前記書き込み回路により前記不良メモリセルに対して前記第1の低抵抗化パルスを印加した後、前記選択されたメモリセルに前記第2電圧を印加して、前記第1の所定値より大きい電流が流れるとき、前記選択されたメモリセルがショート不良を有する不良メモリセルであると判定する
    請求項1または2に記載の抵抗変化型不揮発性記憶装置。
  6.  前記書き込み回路は、前記不良メモリセルの前記抵抗変化素子を前記第1の低抵抗状態以上の抵抗値を示す第4の高抵抗状態にするように、前記不良メモリセルに、前記抵抗変化素子が高抵抗化を開始するパルス電圧の絶対値以上の電圧の絶対値を有する第4の高抵抗化パルスを印加する
    請求項1~5のいずれか1項に記載の抵抗変化型不揮発性記憶装置。
  7.  前記メモリセルアレイは、
     主記憶用の前記メモリセルを複数備えたメインメモリセルアレイと、
     前記メインメモリセルアレイ中の少なくとも1つの前記メモリセルが不良メモリセルの場合に、前記不良メモリセルと同一のビット線またはワード線の少なくともいずれかに配置されている他のメモリセルと置換して使用するための冗長メモリセルを複数備えた冗長メモリセルアレイとを備えている
    請求項1~6のいずれか1項に記載の抵抗変化型不揮発性記憶装置。
  8.  前記抵抗変化型不揮発性記憶装置は、
     前記不良メモリセルと同一のビット線またはワード線の少なくともいずれかに配置されている他のメモリセルのアドレス情報と前記冗長メモリセルのアドレス情報とを対応付けて記憶する不良アドレス記憶回路を備える
    請求項7に記載の抵抗変化型不揮発性記憶装置。
  9.  前記不良アドレス記憶回路は、前記不良メモリセルを有するビット線のアドレスと、前記不良メモリセルと同一のビット線に配置されている前記不良メモリセル以外の他のメモリセルと置換する前記冗長メモリセルを有するビット線のアドレスとを対応付けて記憶する
    請求項8に記載の抵抗変化型不揮発性記憶装置。
  10.  前記不良アドレス記憶回路は、前記不良メモリセルを有するワード線のアドレスと、前記不良メモリセルと同一のワード線に配置されている前記不良メモリセル以外の他のメモリセルと置換する前記冗長メモリセルを有するワード線のアドレスとを対応付けて記憶する
    請求項8に記載の抵抗変化型不揮発性記憶装置。
  11.  印加される書き込み電圧パルスに応じて可逆的に抵抗値が遷移する抵抗変化素子と、前記抵抗変化素子と直列に接続され、印加電圧が所定の閾値電圧を超えると導通状態とみなされる電流が流れる電流制御素子とで構成される複数のメモリセルを有し、複数のワード線と複数のビット線との立体交差点のそれぞれに、前記複数のメモリセルの1つが配置されたメモリセルアレイを備えた抵抗変化型不揮発性記憶装置の駆動方法であって、
     書き込み回路により、前記複数のメモリセルのうち選択されたメモリセルに第1の低抵抗化パルス、または、第1の高抵抗化パルスを印加することで、前記選択されたメモリセルの前記抵抗変化素子をそれぞれ第1の低抵抗状態、または、第1の高抵抗状態にする書き込みステップと、
     読み出し回路により、前記選択されたメモリセルに前記閾値電圧より高い第1電圧を印加して前記選択されたメモリセルの前記抵抗変化素子の抵抗状態を読み出す読み出しステップと、
     前記選択されたメモリセルが不良を有さないメモリセルでありかつ前記第1の低抵抗状態の場合に前記選択されたメモリセルに流れる電流を第1の所定値の電流、前記選択されたメモリセルが不良を有さないメモリセルでありかつ前記第1の高抵抗状態の場合に前記選択されたメモリセルに流れる電流を第2の所定値の電流とすると、前記選択されたメモリセルの抵抗状態を読み出すときに、前記選択されたメモリセルに、前記第1の低抵抗状態または前記第1の高抵抗状態に対応する前記第1の所定値または前記第2の所定値の電流よりもそれぞれ大きい電流が流れる場合、前記選択されたメモリセルが不良を有している不良メモリセルであると判定する不良検知ステップと、
     前記書き込み回路により、前記不良メモリセルと同一のビット線およびワード線の少なくともいずれかに配置されている前記不良メモリセル以外の他の正常メモリセルに対して、前記他のメモリセルの前記抵抗変化素子を前記第1の低抵抗状態での抵抗値以上の抵抗値を示す第2の高抵抗状態にするように、第2の高抵抗化パルスを印加する正常メモリセル高抵抗化ステップとを含む
    抵抗変化型不揮発性記憶装置の駆動方法。
  12.  前記書き込み回路は、前記不良メモリセルと同一のビット線およびワード線に配置されている前記不良メモリセル以外の他のメモリセルに対して、前記他のメモリセルの前記抵抗変化素子を前記第1の高抵抗状態以上の抵抗値を示す第3の高抵抗状態にするように、第3の高抵抗化パルスを印加する
    請求項11に記載の抵抗変化型不揮発性記憶装置の駆動方法。
  13.  前記不良検知ステップにおいて、前記読み出し回路は、前記選択されたメモリセルに前記閾値電圧より低い第2電圧を印加して、前記第1の所定値より大きい電流が流れるとき、前記選択されたメモリセルがショート不良を有する不良メモリセルであると判定する
    請求項11または12に記載の抵抗変化型不揮発性記憶装置の駆動方法。
  14.  前記不良検知ステップにおいて、
     前記書き込み回路は、選択されたメモリセルに第1の高抵抗化パルスを印加して前記選択されたメモリセルの前記抵抗変化素子を前記第1の高抵抗状態にするように前記第1の高抵抗化パルスを印加し、
     前記読み出し回路は、前記選択されたメモリセルに前記第1電圧を印加して前記選択されたメモリセルの前記抵抗変化素子の抵抗状態を読み出し、
     前記選択されたメモリセルに前記第2の所定値より大きい電流が流れるとき、前記選択されたメモリセルの前記抵抗変化素子は不良であると判定する
    請求項11または12に記載の抵抗変化型不揮発性記憶装置の駆動方法。
  15.  前記正常メモリセル高抵抗化ステップにおいて、前記不良メモリセルに対して、前記不良メモリセルの前記抵抗変化素子を前記第1の低抵抗状態よりも抵抗値の高い第4の高抵抗状態にするように、前記書き込み回路により前記抵抗変化素子が高抵抗化を開始するパルス電圧の絶対値以上の電圧の絶対値を有する第4の高抵抗化パルスを印加する不良メモリセル高抵抗化ステップをさらに含む
    請求項11~14のいずれか1項に記載の抵抗変化型不揮発性記憶装置の駆動方法。
     
PCT/JP2012/004348 2011-08-02 2012-07-04 抵抗変化型不揮発性記憶装置およびその駆動方法 WO2013018281A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/698,154 US8699261B2 (en) 2011-08-02 2012-07-04 Variable resistance nonvolatile memory device and driving method thereof
JP2012538011A JP5128727B1 (ja) 2011-08-02 2012-07-04 抵抗変化型不揮発性記憶装置およびその駆動方法
CN201280001342.4A CN103052990B (zh) 2011-08-02 2012-07-04 电阻变化型非易失性存储装置及其驱动方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011169674 2011-08-02
JP2011-169674 2011-08-02

Publications (1)

Publication Number Publication Date
WO2013018281A1 true WO2013018281A1 (ja) 2013-02-07

Family

ID=47628834

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/004348 WO2013018281A1 (ja) 2011-08-02 2012-07-04 抵抗変化型不揮発性記憶装置およびその駆動方法

Country Status (4)

Country Link
US (1) US8699261B2 (ja)
JP (1) JP5128727B1 (ja)
CN (1) CN103052990B (ja)
WO (1) WO2013018281A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020511778A (ja) * 2017-02-16 2020-04-16 マイクロン テクノロジー,インク. 活性化境界キルトアーキテクチャのメモリ
US10896725B2 (en) 2017-02-16 2021-01-19 Micron Technology, Inc. Efficient utilization of memory die area

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012032775A1 (ja) * 2010-09-07 2012-03-15 パナソニック株式会社 抵抗変化型不揮発性記憶装置の検査方法および抵抗変化型不揮発性記憶装置
US8787068B2 (en) * 2011-04-07 2014-07-22 Elpida Memory, Inc. Semiconductor device
US8848422B2 (en) * 2011-04-25 2014-09-30 Panasonic Corporation Variable resistance nonvolatile memory device and driving method thereof
WO2013136731A1 (ja) * 2012-03-15 2013-09-19 パナソニック株式会社 抵抗変化型不揮発性記憶装置
JP6324945B2 (ja) * 2012-04-19 2018-05-16 カーネギー−メロン ユニバーシティCarnegie−Mellon University 金属−半導体−金属(msm)ヘテロジャンクションダイオード
KR102115427B1 (ko) * 2013-02-28 2020-05-28 에스케이하이닉스 주식회사 반도체 장치, 프로세서, 시스템 및 반도체 장치의 동작 방법
US9111611B2 (en) * 2013-09-05 2015-08-18 Kabushiki Kaisha Toshiba Memory system
KR102159258B1 (ko) 2014-04-04 2020-09-23 삼성전자 주식회사 메모리 장치 및 상기 메모리 장치의 동작 방법
TWI584283B (zh) * 2014-07-16 2017-05-21 東芝股份有限公司 非揮發性記憶裝置及其控制方法
KR102161748B1 (ko) 2014-08-05 2020-10-05 삼성전자 주식회사 저항성 메모리 장치 및 저항성 메모리 장치의 동작 방법
KR20180087801A (ko) * 2017-01-25 2018-08-02 에스케이하이닉스 주식회사 전도성 퓨즈 물질층을 구비하는 크로스 포인트 어레이 장치
CN110070899A (zh) * 2018-01-24 2019-07-30 上海磁宇信息科技有限公司 使用多重对称阵列参考单元的mram芯片及检测方法
JP2019169219A (ja) * 2018-03-23 2019-10-03 東芝メモリ株式会社 半導体記憶装置
KR102559577B1 (ko) * 2018-08-08 2023-07-26 삼성전자주식회사 저항성 메모리 장치

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009199695A (ja) * 2008-02-25 2009-09-03 Toshiba Corp 抵抗変化メモリ装置
JP2010020811A (ja) * 2008-07-08 2010-01-28 Toshiba Corp 半導体記憶装置
WO2011004448A1 (ja) * 2009-07-06 2011-01-13 株式会社日立製作所 半導体記憶装置およびその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3821066B2 (ja) 2002-07-04 2006-09-13 日本電気株式会社 磁気ランダムアクセスメモリ
KR100610014B1 (ko) 2004-09-06 2006-08-09 삼성전자주식회사 리키지 전류 보상 가능한 반도체 메모리 장치
JP2006203098A (ja) 2005-01-24 2006-08-03 Sharp Corp 不揮発性半導体記憶装置
JP4642942B2 (ja) * 2009-04-27 2011-03-02 パナソニック株式会社 抵抗変化型不揮発性記憶素子の書き込み方法及び抵抗変化型不揮発性記憶装置
CN102099863B (zh) * 2009-06-08 2014-04-02 松下电器产业株式会社 电阻变化型非易失性存储元件的写入方法及电阻变化型非易失性存储装置
US8787070B2 (en) 2011-04-13 2014-07-22 Panasonic Corporation Reference cell circuit and variable resistance nonvolatile memory device including the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009199695A (ja) * 2008-02-25 2009-09-03 Toshiba Corp 抵抗変化メモリ装置
JP2010020811A (ja) * 2008-07-08 2010-01-28 Toshiba Corp 半導体記憶装置
WO2011004448A1 (ja) * 2009-07-06 2011-01-13 株式会社日立製作所 半導体記憶装置およびその製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020511778A (ja) * 2017-02-16 2020-04-16 マイクロン テクノロジー,インク. 活性化境界キルトアーキテクチャのメモリ
US10896725B2 (en) 2017-02-16 2021-01-19 Micron Technology, Inc. Efficient utilization of memory die area
US11170850B2 (en) 2017-02-16 2021-11-09 Micron Technology, Inc. Efficient utilization of memory die area
US11355162B2 (en) 2017-02-16 2022-06-07 Micron Technology, Inc. Active boundary quilt architecture memory

Also Published As

Publication number Publication date
JP5128727B1 (ja) 2013-01-23
JPWO2013018281A1 (ja) 2015-03-05
US8699261B2 (en) 2014-04-15
CN103052990A (zh) 2013-04-17
US20130208529A1 (en) 2013-08-15
CN103052990B (zh) 2015-01-07

Similar Documents

Publication Publication Date Title
JP5128727B1 (ja) 抵抗変化型不揮発性記憶装置およびその駆動方法
JP5178969B2 (ja) 抵抗変化型不揮発性記憶装置およびその駆動方法
JP5128725B2 (ja) 抵抗変化型不揮発性記憶装置の検査方法および抵抗変化型不揮発性記憶装置
JP4252624B2 (ja) 抵抗変化型記憶装置
US7924639B2 (en) Nonvolatile memory device using resistance material
JP5271460B1 (ja) 抵抗変化型不揮発性記憶装置及びその書き込み方法
JP5390732B1 (ja) クロスポイント型不揮発性記憶装置とそのフォーミング方法
JP5655173B2 (ja) クロスポイント型不揮発性記憶装置とその駆動方法
US8451647B2 (en) Resistance control method for nonvolatile variable resistive element
JP2014211937A (ja) 抵抗変化型不揮発性記憶素子の書き込み方法および抵抗変化型不揮発性記憶装置
WO2014196142A1 (ja) 抵抗変化型不揮発性記憶装置
WO2012164926A1 (ja) 抵抗変化型不揮発性記憶装置
WO2012160821A1 (ja) 抵抗変化型不揮発性記憶装置および抵抗変化型不揮発性記憶装置の駆動方法
JP2015230736A (ja) 抵抗変化型不揮発性記憶装置およびその書き込み方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280001342.4

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2012538011

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13698154

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12819935

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12819935

Country of ref document: EP

Kind code of ref document: A1