WO2022009618A1 - 抵抗変化型不揮発性記憶装置およびその書き込み方法 - Google Patents

抵抗変化型不揮発性記憶装置およびその書き込み方法 Download PDF

Info

Publication number
WO2022009618A1
WO2022009618A1 PCT/JP2021/022553 JP2021022553W WO2022009618A1 WO 2022009618 A1 WO2022009618 A1 WO 2022009618A1 JP 2021022553 W JP2021022553 W JP 2021022553W WO 2022009618 A1 WO2022009618 A1 WO 2022009618A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistance
current
period
constant current
volatile storage
Prior art date
Application number
PCT/JP2021/022553
Other languages
English (en)
French (fr)
Inventor
賢 河合
幸治 片山
Original Assignee
ヌヴォトンテクノロジージャパン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヌヴォトンテクノロジージャパン株式会社 filed Critical ヌヴォトンテクノロジージャパン株式会社
Priority to CN202180043696.4A priority Critical patent/CN115917651A/zh
Priority to JP2022534981A priority patent/JPWO2022009618A1/ja
Publication of WO2022009618A1 publication Critical patent/WO2022009618A1/ja
Priority to US18/057,067 priority patent/US20230081445A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0069Writing or programming circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0007Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements comprising metal oxide memory material, e.g. perovskites
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0023Address circuits or decoders
    • G11C13/0026Bit-line or column circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0009RRAM elements whose operation depends upon chemical change
    • G11C13/0011RRAM elements whose operation depends upon chemical change comprising conductive bridging RAM [CBRAM] or programming metallization cells [PMCs]
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/003Cell access
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0069Writing or programming circuits or methods
    • G11C2013/0078Write using current through the cell
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0069Writing or programming circuits or methods
    • G11C2013/0083Write to perform initialising, forming process, electro forming or conditioning
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/30Resistive cell, memory material aspects
    • G11C2213/32Material having simple binary metal oxide structure
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/70Resistive array aspects
    • G11C2213/72Array wherein the access device being a diode
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/70Resistive array aspects
    • G11C2213/79Array wherein the access device being a transistor

Definitions

  • the present disclosure relates to a resistance-changing non-volatile storage device including a memory cell composed of a resistance-changing non-volatile storage element whose resistance value changes reversibly based on an electric signal, and a writing method thereof.
  • the resistance change type non-volatile storage element has a property that the resistance value is reversibly changed by an electric signal or the like, and further, an element capable of non-volatilely storing data corresponding to this resistance value.
  • Examples of the resistance change type non-volatile storage device include ReRAM based on the change in the electric resistance value due to the oxidation-reduction reaction, MRAM based on the change in the magnetoresistance, and PCRAM based on the change in the electric resistance value due to the phase change.
  • resistance-changing non-volatile storage devices can control the resistance value and stabilize the operation by controlling the amount of current flowing through the resistance-changing non-volatile storage element and the applied voltage value in the rewriting operation. It has been known.
  • Such a resistance-changing non-volatile storage device is disclosed in, for example, Patent Document 1.
  • the write current for changing the resistance-changing element from the high-resistance state to the low-resistance state is increased. If it is reduced, there is a problem that the initial operation window cannot be sufficiently secured.
  • the operation window refers to the difference between the read current obtained in the high resistance state and the read current obtained in the low resistance state. If this difference is large enough, stable read operation is guaranteed. On the contrary, the smaller the difference, the greater the possibility that a read error will occur. Further, the operation window tends to be deteriorated by a high cycling operation, that is, a rewriting operation many times (for example, 100,000 times).
  • the initial operation window refers to an operation window at the time of the initial rewriting operation immediately after manufacturing (for example, about several tens or several hundred times from the first time).
  • an object of the present disclosure is to provide a resistance change type non-volatile storage device capable of expanding the initial operation window and suppressing deterioration of the operation window due to a large number of rewriting operations, and a writing method thereof.
  • the resistance-changing non-volatile storage device includes a resistance-changing element capable of reversibly changing between a high-resistance state and a low-resistance state, and for changing the high-resistance state to the low-resistance state.
  • a current supply circuit for energizing the resistance changing element with a low resistance current is provided, and the low resistance current has a downward stepped current waveform.
  • the initial operation window can be expanded, and deterioration of the operation window due to a large number of rewrite operations can be suppressed.
  • FIG. 1A is a diagram showing a configuration example of a main part of the resistance change type non-volatile storage device according to the embodiment.
  • FIG. 1B is a diagram showing an example of a current waveform of a low resistance current.
  • FIG. 2A is a diagram showing a more detailed configuration example of the main part of the resistance change type non-volatile storage device according to the embodiment.
  • FIG. 2B is a timing chart illustrating the operation of the constant current control circuit in the embodiment.
  • FIG. 3 is an explanatory diagram showing a circuit symbol and a cross section of the resistance change type non-volatile memory element according to the embodiment.
  • FIG. 4 is a diagram showing a processing flow for an experiment including a large number of rewriting processes.
  • FIG. 5 is a normal expected value plot diagram showing the cell current distribution of the 1T1R memory cell as the experimental result of the comparative example.
  • FIG. 6 is a normal expected value plot diagram showing the cell current distribution of the 1T1R memory cell in FIG. 2A in the embodiment.
  • FIG. 7 is a block diagram showing a configuration example of the resistance change type non-volatile storage device according to the embodiment.
  • FIG. 8 is a diagram showing an example of a writing circuit of the resistance change type non-volatile storage device according to the embodiment.
  • FIG. 9 is a diagram showing an example of a column selection circuit of the resistance change type non-volatile storage device according to the embodiment.
  • FIG. 10 is a row selection circuit diagram of the resistance change type non-volatile storage device according to the embodiment.
  • FIG. 11 is a timing chart of the resistance change type non-volatile storage device according to the embodiment.
  • FIG. 12 is a bias diagram of a memory cell of the resistance change type non-volatile storage device according to the embodiment.
  • FIG. 13 is a diagram showing a configuration of a resistance change type non-volatile storage device as a comparative example.
  • FIG. 14 is an explanatory diagram showing the rewriting characteristics described in Non-Patent Document 1.
  • FIG. 15 is a diagram showing driving conditions of the resistance change type non-volatile storage device according to the embodiment.
  • FIG. 16 is a diagram showing a modified example of the main part of the resistance change type non-volatile storage device according to the embodiment.
  • FIG. 17 is a diagram showing a modified example of the current waveform of the low resistance current in the embodiment.
  • FIG. 18 is a diagram showing another modification of the current waveform of the low resistance current in the modification of the embodiment.
  • Patent Document 1 in a storage device including a 1T1R memory cell in which a resistance change type non-volatile storage element and a transistor are connected, a drive circuit (pass transistor) suitable for parallel driving of low resistance operation and high resistance operation is driven.
  • the method is shown.
  • the resistance-changing non-volatile storage element is composed of an insulator film such as SiN, SiO2, Gd2O3, and a conductor film such as a metal film containing a metal element such as Cu, Ag, Zr, and Al, an alloy film, and a metal compound film. Has been done.
  • the resistance change type non-volatile memory element can be set to a desired low resistance value according to the driving current value. Further, by limiting the driving current so that an excessive current does not flow to the resistance change type non-volatile memory element, deterioration of the resistance change type non-volatile memory element can be suppressed.
  • ReRAM resistance-changing non-volatile storage devices
  • flash memory which is the mainstream of conventional non-volatile storage devices.
  • the number of rewrites of the flash memory which used to be about 100,000 times, has decreased to about several thousand times with the progress of miniaturization and large capacity, but it is said that it has high rewrite performance in this respect as well.
  • ReRAM is expected as a non-volatile storage device to replace the flash memory.
  • an excessive current is applied by a method of setting the resistance-changing non-volatile storage element to a desired resistance value or a rewriting operation of the resistance-changing non-volatile storage element.
  • the destruction and deterioration of the resistance-changing non-volatile memory element are suppressed.
  • the issue of achieving both the number of rewrites has not been disclosed and has not been overcome.
  • an object of the present disclosure is to provide a resistance change type non-volatile storage device capable of expanding the initial operation window and suppressing deterioration of the operation window due to a large number of rewriting operations, and a writing method thereof.
  • the resistance change type non-volatile storage device includes a resistance change element capable of reversibly changing between a high resistance state and a low resistance state, and the high resistance state to the above.
  • a current supply circuit for energizing the resistance changing element with a low resistance current for changing to a low resistance state is provided, and the low resistance current has a current waveform of the low resistance current on the time axis.
  • the current supply circuit 24 has one period and a second period following the first period, and the current supply circuit 24 applies the first current to the resistance changing element in the first period and is smaller than the first current in the second period.
  • a current is applied to the resistance changing element, the first current at the end of the first period is not zero, and the second current at the start of the second period is not zero.
  • the initial operation window can be enlarged, and deterioration of the operation window due to a large number of rewrite operations can be suppressed.
  • FIG. 1A is a diagram showing a configuration example of a main part of the resistance change type non-volatile storage device 2 according to the embodiment.
  • the figure shows a circuit related to a low resistance writing operation that changes a resistance change type non-volatile memory element from a high resistance state to a low resistance state as the main configuration of the present disclosure. Further, in the figure, the circuit related to the high resistance writing operation, which is not the main part of the present disclosure, is omitted.
  • the resistance change type non-volatile storage device 2 shown in the figure includes a memory cell 3, an LR BL selection switch 13, an LR SL selection switch 14, and a current waveform control circuit 24.
  • the memory cell 3 has a resistance change type non-volatile storage element RSE and a memory cell transistor 1 connected in series.
  • the memory cell 3 in the figure is shown as a representative of one memory cell in a memory array composed of a plurality of memory cells 3 arranged in a matrix.
  • the resistance-changing non-volatile storage element RSE may be simply referred to as a resistance-changing element RSE below.
  • the resistance changing element RSE is an element that can reversibly change between a high resistance state and a low resistance state, and as a readable and writable storage element by making the high resistance state and the low resistance state correspond to digital binary values. Function. One end of the resistance change type non-volatile storage element RSE is connected to the source S of the memory cell transistor 1, and the other end is connected to the bit line BL.
  • the memory cell transistor 1 has a drain D, a source S, and a gate G.
  • the drain D is connected to the source line SL.
  • the gate G is connected to the memory cell gate terminal MG.
  • the source S is connected to one end of the resistance changing element RSE.
  • the drain and source of the transistor may be on either side of the gate, but in the present specification, the side connected to the resistance change type non-volatile storage element RSE is defined as the source S.
  • the voltage VwL shown in the figure is applied to the memory cell gate MG during the period of the low resistance writing operation. As a result, the memory cell transistor 1 is turned on.
  • Both the LR BL selection switch 13 and the LR SL selection switch 14 are turned on during the low resistance write operation.
  • the current waveform control circuit 24 is a current supply circuit, and energizes the resistance changing element with a low resistance current LRIcell for changing from a high resistance state to a low resistance state.
  • the low resistance current LRIcell has a downward stepped current waveform.
  • the current waveform control circuit 24 drives the low resistance current LRIcell to reduce the constant current in the low resistance write operation in two steps by making the current waveform a downward step.
  • This drive is called a constant current two-step reduction drive. According to this drive, deterioration of the initial window can be suppressed in the writing operation of changing from the high resistance state to the low resistance state, and the deterioration of the operation window during high cycling (for example, when rewriting 100,000 times) is suppressed. can do. For example, even when miniaturized, a highly reliable and stable rewriting operation can be realized over a long period of time.
  • FIG. 1B is a diagram showing an example of a current waveform of a low resistance current.
  • the downstep current waveform has a first period and a second period following the first period.
  • the current supply circuit that is, the current waveform control circuit 24 energizes the resistance changing element RSE with the first constant current in the first period, and energizes the resistance changing element RSE with the second constant current smaller than the first constant current in the second period. ..
  • the current supply circuit that is, the current waveform control circuit 24 includes the LR conversion current limiting element 26 as the first constant current source and the LR conversion current limiting element 27 as the second constant current source.
  • the current waveform control circuit 24 generates the first constant current by superimposing the constant current from the first constant current source and the constant current from the second constant current source in the first period. Further, the current waveform control circuit 24 generates a constant current from either the first constant current source or the second constant current source as the second constant current in the second period.
  • the current supply circuit that is, the current waveform control circuit 24 has a first switch (that is, a constant current control switch 31) connected in series with the first constant current source and a second switch connected in series with the second constant current source. Includes a switch (ie, constant current control switch 32).
  • the current waveform control circuit 24 energizes the resistance changing element RSE with the first constant current by making both the first switch and the second switch conductive in the first period. Further, the current waveform control circuit 24 energizes the resistance changing element RSE with the second constant current by making one of the first switch and the second switch in the non-conducting state and the other in the conducting state in the second period. do.
  • the resistance changing element RSE is energized with a current value higher than that in the second period in the first period. Since the resistance changing element is energized with a current value lower than that of the first period in the second period, window deterioration during high cycling can be suppressed. Further, the operation of the first switch and the second switch can easily generate a downward stepped current waveform.
  • the first period is shorter than the second period.
  • the first period may be 10% or less of the second period.
  • the operation window is enlarged in the first period when the relatively high first constant current is energized, and the deterioration of the operation window due to the high cycling operation is suppressed in the second period when the relatively low second constant current is energized. can do.
  • the operation window can be sufficiently expanded. More specifically, the first period may be 5 n seconds or less, and the second period may be 50 n seconds or more. By doing so, the writing operation to the low resistance state can be performed at high speed.
  • the second constant current may be 60% or less of the first constant current. By doing so, it is possible to reduce the power consumption of the writing operation to the low resistance state. More specifically, the first constant current may be 125 ⁇ A or more, and the second constant current may be 75 ⁇ A or less. By doing so, it is possible to reduce the power consumption of the writing operation to the low resistance state.
  • FIG. 2A is a diagram showing a detailed configuration example of the resistance change type non-volatile storage device 2 according to the embodiment.
  • FIG. 2A the circuit related to the high resistance write operation omitted in FIG. 1A is also specified, and a specific example of the current waveform control circuit 24 and its peripheral circuits is shown.
  • the resistance change type non-volatile storage device 2 shown in FIG. 2A includes a memory cell 3, a bit line drive circuit 22b, and a source line drive circuit 23.
  • the bit line drive circuit 22b includes an LR BL selection switch 13 and an HR BL selection switch 16 and is connected to the memory cell 3 via the bit line BL.
  • the LR BL selection switch 13 is a switch that connects the ground and the bit line BL, and is turned on during the low resistance operation.
  • the HR conversion BL selection switch 16 is a switch that connects the HR conversion power supply terminal 17 and the bit line BL, and is turned on during the high resistance operation. That is, the HR BL selection switch 16 is a switch for supplying the memory cell 3 with a high resistance current pulse for increasing the resistance of the memory cell 3.
  • a voltage VdH for generating a pulse voltage for increasing resistance is applied to the power supply terminal 17 for HR conversion.
  • the source line drive circuit 23 includes an LR power supply terminal 11, an LR SL selection switch 14, an HR SL selection switch 18, a current waveform control circuit 24, and a write pulse width control terminal 33.
  • the source line drive circuit 23 is a circuit that energizes the resistance changing element RSE with a low resistance current.
  • the low resistance current has a downward stepped current waveform instead of a single rectangular pulse waveform.
  • a voltage VdL for generating a pulse current for lowering the resistance is applied to the power supply terminal 11 for LR.
  • the LR SL selection switch 14 connects the source line SL and the current supply terminal of the current waveform control circuit 24, and is turned on during the period of low resistance operation.
  • the current supply terminal of the current waveform control circuit 24 refers to a connection point between the constant current control switch 31 and the constant current control switch 32.
  • the HR SL selection switch 18 is a switch that connects the ground and the source line SL, and is turned on during the period of high resistance operation.
  • the current waveform control circuit 24 shows a more specific circuit example of the current supply circuit, that is, the current waveform control circuit 24 shown in FIG. 1A.
  • the current waveform control circuit 24 of FIG. 2A includes a constant current control circuit 25, an LR current limiting element 26, and an LR current limiting element 27.
  • the current waveform control circuit 24 is composed of a constant current control circuit 25 and LR current limiting elements 26 and 27 including a polyclonal transistor.
  • the constant current control circuit 25 is composed of a delay circuit 28 having a first delay time (for example, 5 ns), a NAND circuit 29, an inverter 30, and constant current control switches 31 and 32 including a polyclonal transistor.
  • the write pulse width control terminal 33 is connected to the input of the delay circuit 28, the input terminal of the inverter 30, and the gate terminal of the constant current control switch 32.
  • One input terminal of the NAND circuit 29 is connected to the output terminal of the delay circuit 28.
  • the other input terminal of the NAND circuit 29 is connected to the output of the inverter 30.
  • the output terminal of the NAND circuit 29 is connected to the gate terminal of the constant current control switch 31.
  • the source terminals of the LR current limiting elements 26 and 27 are both connected to the LR power supply terminal 11, and the drain terminals are connected to the source terminals of the constant current control switches 31 and 32, respectively.
  • the drain terminals of the current control switches 31 and 32 are both connected to the LR SL selection switch 14.
  • the LR current limiting element 26 is composed of a polyclonal transistor, and a clamp voltage Vc1 ( ⁇ VdL) is given to the gate terminal thereof. Further, the LR current limiting element 27 is composed of a polyclonal transistor, and a clamp voltage Vc2 ( ⁇ VdL) is given to the gate terminal thereof. Therefore, the LR current limiting elements 26 and 27 become substantially constant current sources due to the current saturation region characteristics of the LR current limiting elements 26 and 27, and the constant currents Set1 (for example, 100 ⁇ A) and Set2 (for example, for example), respectively. The current can be limited to 75 ⁇ A).
  • the transistor size and its gate voltage are set so that the output currents of the LR current limiting elements 26 and 27 can be limited to the constant currents Set1 and Set2.
  • the write pulse width control terminal 33 is a terminal for inputting a voltage Vi that specifies the timing of the low resistance current for low resistance and the pulse width (that is, the LR write pulse width).
  • the constant current control switch 31 is the LR current limiting element 26, that is, the first switch connected in series with the first current source, and is turned on for the first period according to the pulse voltage Vc.
  • the constant current control switch 32 is a second switch connected in series with the LR current limiting element 27, that is, the second current source, and is turned on for the second period according to the pulse voltage Vi.
  • the circuit including the delay circuit 28, the NAND circuit 29, and the inverter 30 is a control circuit that controls the continuity and non-conduction of the first switch, that is, the constant current control switch 31.
  • this circuit is a circuit for generating a negative logic pulse voltage Vc obtained by differentiating the head of the negative logic pulse voltage Vi input from the write pulse width control terminal 33.
  • the pulse width of the negative logic pulse voltage Vc determines the first period in which the constant current control switch 31 is turned on. Further, the pulse width of the pulse voltage Vi of the negative logic determines the second period in which the constant current control switch 32 is turned on.
  • the LR BL selection switch 13 and the LR SL selection switch 14 are controlled on for a predetermined period, and the HR BL selection switch 16 and the HR SL selection switch 18 are controlled off.
  • a negative logic voltage pulse Vi having a pulse width for a predetermined period for example, 100 ns
  • the output voltage Va of the delay circuit 28 becomes the voltage pulse Vi as shown in FIG. 2B.
  • the voltage pulse is delayed by 5 ns.
  • the output voltage Vb of the inverter 30 is a voltage pulse in which the voltage pulse Vi is logically inverted.
  • the output voltage Vc of the NAND circuit 29 is the result of NAND calculation between the output voltage Va and the output voltage Vb, and the pulse width is a negative logic voltage pulse having a first delay time (for example, 5 ns).
  • the constant current control switches 31 and 32 are both activated for 5 ns and turned on, and the LR write current is generated by both the LR current limiting elements 26 and 27. , Is limited to the sum of the constant current Issue1 (100 ⁇ A) and the constant current Issue2 (75 ⁇ A) (eg, 175 ⁇ A).
  • the constant current control switch 32 keeps on, and the constant current control switch 31 turns off. After that, during the remaining 95 ns period (t2 to t3), only the constant current control switch 31 is turned off, and the LR write current is reduced to the constant current Issue2 (75 ⁇ A) by the LR current limiting element 27.
  • the LR write current is flowed from the source line SL side to the bit line BL side while controlling the current reduction in two stages.
  • the current waveform control circuit 24 energizes the resistance changing element RSE with the low resistance current having the downward stepped current waveform shown in FIG. 2B as the low resistance operation.
  • the LR BL selection switch 13 and the LR SL selection switch 14 are turned off, the HR BL selection switch 16 and the HR SL selection switch 18 are turned on for a predetermined period, and the bit lined BL is used. A current is passed in the direction of the source line SL.
  • FIG. 3 is an explanatory diagram showing a circuit symbol and a cross-sectional structure of the resistance change type non-volatile memory element RSE in the embodiment.
  • the terminal on the side connected to the source S of the memory cell transistor 1 is connected to the terminal A and the bit line BL.
  • the terminal is the terminal B.
  • the resistance-changing non-volatile memory element 3000a shown in FIG. 3B shows the structure of the resistance-changing non-volatile storage element RSE after manufacturing and before forming.
  • the resistance change type non-volatile memory element 3000a includes a first electrode 81 (lower electrode) corresponding to the terminal A side, a second electrode 84 (upper electrode) corresponding to the terminal B side, and an oxygen-deficient transition metal oxide. It is provided with a resistance changing layer 85 composed of.
  • the resistance change layer 85 is a first transition metal oxide layer 82 composed of an oxygen-deficient transition metal oxide and a transition metal oxide having a smaller oxygen deficiency than the first transition metal oxide layer 82. It is configured by laminating the configured second transition metal oxide layer 83.
  • the resistance change type non-volatile memory element RSE shown in FIG. 3 (c) shows the structure after forming.
  • a minute filament 86 serving as a conductive path is formed in the local region of the second transition metal oxide layer 83.
  • a redox reaction occurs in the minute filament 86, and the resistance value changes to cause a resistance change phenomenon.
  • the resistance change operation described in the present disclosure is due to the structure of the resistance change type non-volatile storage element RSE after this forming.
  • the same kind of transition metal is used for the first transition metal oxide layer 82 and the second transition metal oxide layer 83, and the oxygen-deficient type is used as the first transition metal oxide layer 82.
  • the first tantalum oxide layer (hereinafter referred to as the first Ta oxide layer) and the second tantalum oxide layer (hereinafter referred to as the second Ta oxide layer) as the second transition metal oxide layer 83.
  • the film thickness of the second Ta oxide layer is preferably 1 nm or more and 10 nm or less.
  • the first electrode 81 is configured by laminating titanium nitride (TiN) and tantalum nitride (TaN), and the second electrode 84 contains a noble metal material such as iridium (Ir). It is configured.
  • An oxygen-deficient transition metal oxide is an oxide having a lower oxygen content (atomic ratio: ratio of the number of oxygen atoms to the total number of atoms) than an oxide having a chemical quantitative composition. ..
  • Oxides with a stoichiometric composition usually have an insulator, or a very high resistance value.
  • the transition metal is Ta
  • the stoichiometric oxide composition is Ta2O5 and the ratio of the number of atoms of Ta to O (O / Ta) is 2.5. Therefore, in the oxygen-deficient Ta oxide, the atomic ratio of Ta and O is larger than 0 and smaller than 2.5.
  • the oxygen content of the second Ta oxide layer as the second transition metal oxide layer 83 is higher than the oxygen content of the first Ta oxide layer as the first transition metal oxide layer 82. Is also getting higher. In other words, the oxygen deficiency of the second Ta oxide layer is less than the oxygen deficiency of the first Ta oxide layer.
  • the degree of oxygen deficiency refers to the ratio of deficient oxygen to the amount of oxygen constituting the oxide of the stoichiometric composition in each transition metal. For example, when the transition metal is tantalum (Ta), the composition of the stoichiometric oxide is Ta2O5, so it can be expressed as TaO2.5. The oxygen deficiency of TaO2.5 is 0%.
  • the oxygen content is the ratio of the number of oxygen atoms contained to the total number of atoms constituting the transition metal oxide.
  • the oxygen content of Ta2O5 is the ratio of the number of oxygen atoms to the total number of atoms (O / (Ta + O)), which is 71.4 atm%. Therefore, the oxygen-deficient tantalum oxide has an oxygen content of more than 0 and less than 71.4 atm%.
  • a transition metal other than tantalum or a part of the metal may be used.
  • the transition metal tantalum (Ta), titanium (Ti), hafnium (Hf), zirconium (Zr), niobium (Nb), tungsten (W) and the like can be used, and as the metal, aluminum (Al) and the like can be used. .. Since the transition metal can take a plurality of oxidation states, it is possible to realize different resistance states by a redox reaction.
  • x is 0.9 or more and 1.6 or less and x is 0.9 or more and 1.6 or less when the composition of the first hafnium oxide layer as the first transition metal oxide layer 82 is HfOx.
  • the composition of the second hafnium oxide layer as the second transition metal oxide layer 83 is HfOy and y is larger than the value of x, the resistance value of the resistance changing layer 85 is stabilized. It has been confirmed that it changes at high speed.
  • the film thickness of the second hafnium oxide layer is preferably 3 nm or more and 4 nm or less.
  • x is 0.9 or more and 1.4 or less when the composition of the first zirconium oxide layer as the first transition metal oxide layer 82 is ZrOx, and
  • the composition of the second zirconium oxide layer as the second transition metal oxide layer 83 is ZrOy and y is larger than the value of x, the resistance value of the resistance changing layer 85 is stabilized. It has been confirmed that it changes at high speed.
  • the film thickness of the second zirconium oxide layer is preferably 1 nm or more and 5 nm or less.
  • the resistance changing layer 85 has a two-layer laminated structure, but it may be an oxygen-deficient transition metal oxide layer and may be composed of a single resistance changing layer.
  • the second electrode 84 connected to the second transition metal oxide layer 83 having a smaller oxygen deficiency is oxidized to a second transition metal such as platinum (Pt), iridium (Ir), palladium (Pd), and the like. It is composed of a transition metal constituting the material layer 83 and a material having a higher standard electrode potential than the material constituting the first electrode 81. With such a configuration, a redox reaction selectively occurs in the second transition metal oxide layer 83 near the interface between the second electrode 84 and the second transition metal oxide layer 83. , A stable resistance change phenomenon can be realized.
  • a second transition metal such as platinum (Pt), iridium (Ir), palladium (Pd), and the like. It is composed of a transition metal constituting the material layer 83 and a material having a higher standard electrode potential than the material constituting the first electrode 81.
  • a first transition metal oxide layer 82 composed of a first transition metal and a second transition metal composed of a second transition metal different from the first transition metal are used.
  • a laminated structure composed of the oxide layer 83 may be used.
  • the oxygen deficiency of the second transition metal oxide layer is smaller than the oxygen deficiency of the first transition metal oxide layer.
  • the resistance value of the second transition metal oxide layer 83 is higher than the resistance value of the first transition metal oxide layer 82.
  • the standard electrode potential of the second transition metal is smaller than the standard electrode potential of the first transition metal.
  • titanium oxide TiO2
  • the standard electrode potential of the second transition metal is smaller than the standard electrode potential of the first transition metal.
  • the resistance value of the second transition metal oxide layer 83 which has a higher resistance value than that of the first transition metal oxide layer 82, is formed to be, for example, about several hundred M ⁇ to 1 G ⁇ .
  • the resistance value of the filament 86 is about 100 k ⁇ to several M ⁇ even when it becomes a high resistance state due to the oxidation reaction.
  • the voltage applied between the first electrode 81 and the second electrode 84 is divided by the first transition metal oxide layer 82 and the second transition metal oxide layer 83, and the resistance value is higher.
  • the second transition metal oxide layer 83 is higher, but the associated current path is not uniform in the second transition metal oxide layer 83.
  • the current is concentrated in the region of the filament 86 having a lower resistance value in the second transition metal oxide layer 83. Therefore, control of the current and voltage that can stably and continuously perform the resistance change operation generated in the filament 86 is important in the case of the resistance change type non-volatile memory element that operates in the filament model.
  • FIG. 13 is a diagram showing a configuration of a resistance change type non-volatile storage device as a comparative example.
  • This comparative example is a circuit similar to the resistance change type non-volatile storage device of Patent Document 1, and shows a circuit of a 1T1R memory cell and its surroundings.
  • FIG. 13A shows a high resistance operation.
  • the thick downward arrow indicates the current HR cell energized in the resistance-changing non-volatile memory element RSE.
  • FIG. 13B shows a low resistance operation.
  • the thick arrow pointing upward indicates the current LRIcell energized in the resistance change type non-volatile memory element RSE.
  • the resistance change type non-volatile storage device of FIG. 13 is mainly different from FIG. 2A in that the source line drive circuit 22a is provided instead of the source line drive circuit 23.
  • the source line drive circuit 22a is a circuit that energizes the memory cell 3 with a single constant current square wave pulse in the low resistance operation.
  • the LR BL selection switch 13 and the LR SL selection switch 14 are controlled to be off, the HR BL selection switch 16 and the HR SL selection switch 18 are controlled to be ON for a predetermined period, and the source is controlled from the bit line BL.
  • a current HR cell is passed through the memory cell 3 in the direction of the line SL.
  • the LR BL selection switch 13 and the LR SL selection switch 14 are controlled on for a predetermined period, the HR BL selection switch 16 and the HR SL selection switch 18 are controlled off, and the source line SL is used.
  • a current LRIcell is passed through the memory cell 3 in the direction of the bit line BL.
  • the memory cell 3 can be evaluated in 1-bit units by applying a predetermined voltage to each terminal of the source line drive circuit 22a and the bit line drive circuit 22b.
  • the memory cell array is configured and evaluated. Is configured to share the source line drive circuit 22a and the bit line drive circuit 22b with a plurality of memory cells 3.
  • a plurality of memory cells can be selectively evaluated, and rewriting evaluation can be performed in units of 1 bit or in units of a plurality of bits of memory cell array.
  • the LR BL selection switch 13, the LR SL selection switch 14, the HR BL selection switch 16, and the HR SL selection switch 18 are general selection circuits composed of transistors, but the voltages at these points are used. The transistor size, transistor configuration, and gate voltage are set so that the drop is minimized and the current is not rate-determining.
  • the voltage VdL is connected to the LR power supply terminal 11
  • the voltage Vclamp ( ⁇ VdL) is connected to the LR clamp control terminal 12
  • the HR power supply terminal 17 is used.
  • the voltage VdH is constantly applied to.
  • a voltage VwH is applied to the memory cell gate terminal MG of the memory cell transistor 1, and the HR BL selection switch 16 and the HR SL selection switch 18 perform on control for a period of 100 ns.
  • the LR BL selection switch 13 and the LR SL selection switch 14 are set to off control.
  • a voltage VwL is applied to the memory cell gate terminal MG of the memory cell transistor 1 to make an LR BL selection switch.
  • the 13 and the LR SL selection switch 14 perform on control for a period of 100 ns.
  • the HR-based BL selection switch 16 and the HR-based SL selection switch 18 are set to off control.
  • the constant current source composed of the polyclonal current transistor 10 can limit the current to the constant current Iset, and the gate voltage is given so that the impedance of the memory cell transistor 1 operates sufficiently low. Therefore, the current Imos flowing in the memory cell transistor 1 and the current LRIcell flowing in the resistance change type non-volatile storage element RSE are limited to Set.
  • FIG. 4 is a diagram showing a processing flow for an experiment including a large number of rewriting processes.
  • the processing flow of FIG. 13 was performed for each of the resistance-changing non-volatile storage device of the comparative example of FIG. 13 and the resistance-changing non-volatile storage device 2 of FIG. 2A.
  • FIG. 4 first, the resistance reduction operation and the cell current measurement of a plurality of evaluation target bits (for example, about 1 kb) in the memory cell array are performed (S41, S42). Subsequently, the operation of increasing the resistance of the bit to be evaluated and the cell current measurement are performed (S43, S44). This resistance change operation is repeated 100,000 times to end (S45).
  • the cell current measurement confirms whether the memory cell 3 has been brought into a desired resistance state by the resistance change operation, and measures the current value by applying a low voltage at which the resistance change type non-volatile storage element RSE is not disturbed. It is a thing.
  • FIG. 15 is a diagram showing driving conditions of the resistance change type non-volatile storage device according to the embodiment. This driving condition was applied to the resistance-changing non-volatile storage device of the comparative example of FIG. 13 and the resistance-changing non-volatile storage device 2 of FIG. 2A.
  • the voltage VdL of the LR power supply terminal 11 is 2.8 V
  • the voltage V clamp of the LR clamp control terminal 12 is 1.73 V, which is an intermediate voltage.
  • the voltage VdH of the HR power supply terminal 17 is constantly applied to 1.7V.
  • 1.73 V is applied to the voltage Vclamp in order to configure a constant current source of 175 ⁇ A, but the set current value of the constant current source can be changed by changing the voltage Vclump.
  • the memory cell gate terminal MG of the memory cell transistor 1 applies 3.0 V at a voltage VwL, and the LR BL selection switch 13 and the LR SL selection switch 14 perform on control for a period of 100 ns.
  • the HR-based BL selection switch 16 and the HR-based SL selection switch 18 are set to off control.
  • the memory cell gate terminal MG of the memory cell transistor 1 applies 1.8 V at a voltage VwH, and the HR BL selection switch 16 and the HR SL selection switch 18 perform on control for a period of 100 ns.
  • the LR BL selection switch 13 and the LR SL selection switch 14 are set to off control.
  • both Vc1 and Vc2 gave 1.73V.
  • the photodiode transistor lengths of the LR current limiting elements 26 and 27 are the same, and the ratio of the transistor widths of the LR current limiting element 26 and the LR current limiting element 27 is set to 4: 3.
  • the LR conversion current limiting element 26 produces a first constant current value of 100 ⁇ A
  • the LR conversion current limiting element 27 produces a second constant current value of 75 ⁇ A.
  • FIG. 5 is a normal expected value plot diagram showing the cell current distribution of the 1T1R memory cell of the comparative example of FIG. 13 as an experimental result.
  • FIG. 5A is a plot of the normal expected values of the high resistance state (HR) and the low resistance state (LR) in the initial state in which the post-forming operation is stable when the set current value of the constant current source is set to 75 ⁇ A.
  • the cell current distribution (about 1 kb).
  • the white squares indicate the cell current in the high resistance state, and the white circles indicate the cell current in the low resistance state.
  • FIG. 5B is a plot of the normal expected values of the high resistance state (HR) and the low resistance state (LR) in the initial state in which the post-forming operation is stable when the set current value of the constant current source is set to 175 ⁇ A.
  • the cell current distribution (about 1 kb).
  • the white squares indicate the cell current in the high resistance state, and the white circles indicate the cell current in the low resistance state.
  • FIG. 5C shows an initial state in which the operation after forming is stable when the set current value of the constant current source is set to 175 ⁇ A, and a high resistance state (HR) and a low resistance state (LR) after rewriting 100,000 times. It is a transition of the cell current distribution (about 1 kb) plotted with the normal expected value of.
  • the white squares indicate the high resistance state in the initial state
  • the white circles indicate the low resistance state in the initial state
  • the black diamonds indicate the low resistance state after 100,000 times
  • the black triangles indicate the cell current in the high resistance state after 100,000 times. ..
  • the written low resistance state or high resistance state is read out by the sense amplifier circuit, and the operation of determining whether the data is "1" or "0" is performed. conduct. For that purpose, a difference (operation window) of a predetermined value or more is required between the minimum cell current value in the low resistance state and the maximum cell current value in the high resistance state.
  • the LR write current when the LR write current is set to a low current of 75 ⁇ A, the LR cell current decreases, the operation window becomes less than the predetermined value, and it is very small, and it is stable in the sense amplifier circuit. Data discrimination becomes difficult.
  • FIG. 6 is a normal expected value plot diagram showing the cell current distribution of the 1T1R memory cell in FIG. 2A according to the embodiment of the present disclosure.
  • the white squares indicate the high resistance state in the initial state
  • the white circles indicate the low resistance state in the initial state
  • the black diamonds indicate the low resistance state after 100,000 times
  • the black triangles indicate the cell current in the high resistance state after 100,000 times. ..
  • the pulse width is shorter than that of the conventional write current pulse (constant current 175 ⁇ A, pulse width 100 ns).
  • the filament 86 is annealed by applying a low current by a low current pulse (constant current 75 ⁇ A, 95 ns) in two periods, and the voids (defects) formed by the movement of oxygen ions in the filament 86 are uniformly and stabilized, and the number of rewrites is increased. Deterioration of resistance change operation due to increase (increased variation in cell current distribution) can be significantly reduced, and stable and continuous operation of rewriting is possible.
  • FIG. 7 is a block diagram showing a configuration example of the resistance change type non-volatile storage device according to the embodiment of the present disclosure.
  • the resistance change type non-volatile storage device 4000 includes a memory main body 300 on a semiconductor substrate, and the memory main body 300 includes a memory array 301, a column selection circuit 302, and a row selection circuit.
  • the peripheral circuit unit 306 includes a voltage generation circuit 308, a word line voltage switching circuit 316, an address input circuit 317, and an input / output circuit 318, and is a memory main unit 300 and a peripheral circuit unit 306 based on a control signal input from the outside. It is provided with a control circuit 307 that controls the operation of the above.
  • the voltage generation circuit 308 includes a word line power supply 309 for low resistance, a word line power supply 310 for high resistance, a word line power supply 311 for reading, a power supply 312 for a low resistance clamp, and a pulse power supply 313 for low resistance. It also includes a pulse power supply 314 for increasing resistance and a precharge power supply 315.
  • These power supplies use the external power supply VDD as an input and generate a predetermined set voltage value shown in FIG.
  • the values shown here are based on the voltage values in the constant current two-step reduction type drive in the low resistance described with reference to FIG. 1A.
  • the output VwL of the low resistance word line power supply 309, the output VwH of the high resistance word line power supply 310, and the output Vr of the read word line power supply 311 are supplied to the word line voltage switching circuit 316.
  • the output VwL is selected by the low resistance write instruction signal WEL
  • the output VwH is selected by the high resistance write instruction signal WEH
  • the output Vr is selected by the read instruction signal RE. It is supplied to 303.
  • the output Vc1 / Vc2 of the low resistance clamp power supply 312, the output VdL of the low resistance pulse power supply 313, and the output VdH of the high resistance pulse power supply 314 are supplied to the write circuit 304.
  • the output VPR of the precharge power supply 315 is supplied to the column selection circuit 302 and the write circuit 304.
  • Each power supply circuit is composed of a general step-down circuit that steps down the external power supply VDD to generate a predetermined voltage, and detailed description thereof will be omitted.
  • each power supply circuit has a trimming function that is generally used so that the output voltage value can be finely adjusted in order to reflect manufacturing variations and set the optimum operating point.
  • any or all of these power supply circuits may be configured to be generated by boosting the voltage from the external power supply VDD.
  • any or all of these power supply circuits do not necessarily have to be provided in the resistance change type non-volatile storage device 4000, and may be configured to provide a predetermined voltage as an external power supply.
  • the address input circuit 317 receives an address signal input from the outside and instructs the designated memory cell 3 of the memory array 301.
  • the input / output circuit 318 receives the data input signal Din input to the DQ terminal from the outside and supplies it to the memory main body 300 as a write signal, or receives the read output signal from the memory main body 300 and outputs the output signal Dout to the outside. Output via the DQ terminal.
  • the memory cells 3 described above as the basic data of the present disclosure are arranged in a matrix with m rows and n columns.
  • the upper left is M11, and M11, M21, ..., Mm1 in the row direction and M11, M12, ..., M1n in the column direction represent each memory cell.
  • a plurality of word lines WL1, WL2, ..., WLm output in the row direction from the row selection circuit 303 are connected to the memory cell gate terminal MG of each memory cell 3.
  • the plurality of bit lines BL1, BL2, ..., BLn and the plurality of source lines SL1, SL2, ..., SLn output in the column direction from the column selection circuit 302 are alternately arranged in parallel, and each memory cell 3 It is connected to the bit line BL and the source line SL.
  • the column selection circuit 302 and the write circuit 304 are arranged on the upper side and the lower side of the memory array 301, and control the writing from both ends of the bit lines BL1, BL2, ..., BLn and the source lines SL1, SL2, ..., SLn. It is composed.
  • This is arranged on both sides for the purpose of reducing the influence of IR drop caused by the wiring resistance of the bit line and the source line, but it depends on the number of memory cells 3 arranged and the wiring resistance value of the applied manufacturing process. Therefore, if the influence of IR drop is small, for example, an arrangement of only the lower side may be used.
  • the write operation to the memory cell 3 is the same as in the case of the description of the basic data of the present disclosure.
  • the bit line BL is set to a low potential and the source line SL is set to a high potential, the resistance is lowered and the bit line BL is set to a high potential.
  • the source line SL is set to a low potential, the resistance is increased.
  • FIG. 8 is a diagram showing a circuit example of the writing circuit 304.
  • the output VdL of the low resistance pulse power supply 313 is connected to the LR power supply terminal 11, and the output Vc1 / Vc2 of the low resistance clamp power supply 312 is the LR current limiting elements 26 and 27.
  • the current waveform control circuit 24 in which the voltage pulse Vi for reducing resistance output from the control circuit 307 is input to the write pulse width control terminal 33 to the gate terminal, and the constant current control switches 31 and 32 inside the current waveform control circuit 24. It is connected in series with the converted drain terminal and is connected to the source line input terminal SLin via a epitaxial transistor 333 whose gate input is the output of the inverter 332 which is connected in series with the low resistance write instruction signal WEL.
  • the source line input terminal SLin uses the high resistance write instruction signal WEH as the gate input, the SOI transistor 334 whose source is ground, the output VPR of the precharge power supply 315 as the source input, and the precharge instruction signal NPR as the gate input.
  • the epitaxial transistor 335 is connected to the OFDM transistor 342 whose source is ground with the read instruction signal RE as the gate input.
  • bit line writing circuit 336 the output VdH of the pulse power supply 314 for increasing resistance is connected to the source input, the output of the inverter 337 having the high resistance writing instruction signal WEH as input is connected to the gate input, and the bit line input terminal BLin is connected to the drain.
  • the polyclonal transistor 338 and the bit line input terminal BLin are used for the drain input, the low resistance write instruction signal WEL is used for the gate input, the nanotube transistor 339 for which the source is connected to the ground, and the precharge instruction signal NPR are used for the gate input.
  • the output VPR of the precharge power supply 315 is connected to the source input, the voltage line input terminal BLin is connected to the drain input, and the readout instruction signal RE is connected to the gate input, and the bit line input terminal BLin is connected to the drain input.
  • the line output signal BLout is composed of an nanotube transistor 341 connected to the source.
  • the bit line output signal BLout is connected to the read circuit 305.
  • the LR SL selection switch 14 corresponds to the polyclonal transistor 333
  • the LR BL selection switch 13 corresponds to the MIMO transistor 339
  • the HR BL selection switch 16 corresponds to the polyclonal transistor 338.
  • the HR-ized SL selection switch 18 corresponds to the MIMO transistor 334.
  • FIG. 9 shows a diagram showing a circuit example of the column selection circuit 302.
  • bit line selection circuit 350 and the source line selection circuit 353 are arranged alternately.
  • bit line BLi and source line SLi are connected to the bit line input terminal BLin and source line input terminal SLin, and the remaining non-selected bit line BLi and source line SLi are precharged to the VPR.
  • FIG. 10 is a diagram showing a circuit example of the row selection circuit 303.
  • the row selection circuit 303 includes a decode circuit 370 that generates a decode signal that specifies a select row based on the address selection instruction signal generated by the address input circuit 317, and a word line driver 371 that is connected to the decode signal. There is.
  • cycle T1 writes low resistance to memory cell M11
  • cycle T2 writes high resistance to memory cell M12
  • cycle T3 reads low resistance state of memory cell M11
  • cycle T4 is high of memory cell M12. An operation example of reading the resistance state is shown.
  • the precharge instruction signal NPR is a negative logic signal, and the precharge instruction is given at 0V.
  • the precharge instruction is given at 0V.
  • the input / output DQ terminal is set to a high level as data "1" writing.
  • the precharge instruction signal NPR is set to a high level, and the precharge state of the bit line input terminal BLin and the source line input terminal SLin is released.
  • the WL1 which is the selection word line and the column selection signal CL1 which is the selection column are set to the high level. At this time, the voltage of the word line WL1 becomes VwL for low resistance writing. Further, the bit line BL1 and the source line SL1 which are the selection columns are decharged and connected to the bit line input terminal BLin and the source line input terminal SLin. On the other hand, the precharge is maintained for the other non-selected bit lines and non-selected source lines.
  • the low resistance write instruction signal WEL is set to the high level and the negative logic voltage pulse Vi is set to the low level for a period of 100 ns, and the source line receives this.
  • the input terminal SLin is driven to the high potential side and the bit line input terminal BLin is driven to the low potential side, and the constant current two-step reduction low resistance write operation described in detail as the basic data of the present disclosure is performed on the selected memory cell M11. Will be.
  • the selection word line WL1 and the selection column selection signal CL1 are set to 0V, the memory cell M11 is in the non-selection state, and the bit lines BL1 and the source line SL1 are precharged. Is started.
  • the precharge instruction signal NPR is set to 0V, the precharge of the bit line input terminal BLin and the source line input terminal SLin is started, and the low resistance write cycle ends.
  • the input / output DQ terminal is set to a low level as data "0" writing.
  • the precharge instruction signal NPR is set to a high level, and the precharge state of the bit line input terminal BLin and the source line input terminal SLin is released.
  • the selection word line WL1 and the selection column column selection signal CL2 are set to high levels. At this time, the voltage of the word line WL1 becomes VwH for high resistance writing. Further, the bit line BL2 and the source line SL2, which are the selection columns, are decharged and connected to the bit line input terminal BLin and the source line input terminal SLin. On the other hand, the precharge is maintained for the other non-selected bit lines and non-selected source lines.
  • the high resistance write instruction signal WEH is set to a high level for a period of 100 ns in response to the data "0" write instruction of the input / output DQ terminal, and in response to this, the source line input terminal SLin is set to the low potential side and the bit.
  • the line input terminal BLin is driven to the high potential side, and the high anti-writing operation described in detail as the basic data of the present disclosure is performed on the selected memory cell M12.
  • the cell current in this timing chart shows the absolute value, and the flow direction is opposite to that of the cycle T1.
  • the selection word line WL1 and the selection column selection signal CL2 are set to 0V, the memory cell M12 is in the non-selection state, and the bit lines BL2 and the source line SL2 are precharged. Is started.
  • the precharge instruction signal NPR is set to 0V, the precharge of the bit line input terminal BLin and the source line input terminal SLin is started, and the high resistance write cycle ends.
  • the precharge instruction signal NPR is set to a high level, and the precharge state of the bit line input terminal BLin and the source line input terminal SLin is released.
  • the WL1 which is the selection word line and the column selection signal CL1 which is the selection column are set to the high level.
  • the voltage of the word line WL1 becomes Vr for reading.
  • the precharge of the bit line BL1 and the source line SL1 which are the selection columns is released, and the components are connected to the bit line input terminal BLin and the source line input terminal SLin.
  • the precharge is maintained for the other non-selected bit lines and non-selected source lines.
  • the read instruction signal RE is set to a high level during the read operation period (here, set to 150 ns), the NOTE transistor 342 is turned on, and the selected source line SL1 is driven to the low potential side via the source line input terminal SLin.
  • the NOTE transistor 341 is turned on, and the selected bit line BL1 is connected to the bit line output signal BLout via the bit line input terminal BLin.
  • the bit line output signal BLout is connected to the read circuit 305, and data “1” or data “0” is discriminated by the magnitude of the amount of current flowing from the bit line BL side to the source line SL side.
  • a low resistance state is written in the memory cell M11, a larger current flows than in the high resistance state, the read circuit 305 determines that the data is "1", and a high level is output from the input / output DQ terminals. ..
  • the selection word line WL1 and the selection column selection signal CL1 are set to 0V, the memory cell M11 is in the non-selection state, and the precharge of the bit line BL1 and the source line SL1 starts. Will be done.
  • the precharge instruction signal NPR is set to 0V, the precharge of the bit line input terminal BLin and the source line input terminal SLin is started, and the read operation cycle ends.
  • the read operation of the memory cell M12 in the cycle T4 in the high resistance state has a different selection column from the cycle T3, and the selected memory cell M12 is written in the high resistance state, so that the current is higher than in the case of the low resistance state. Since it is the same except that the read circuit 305 determines that the data is "0" and outputs a low level from the input / output DQ terminals, detailed description thereof will be omitted.
  • FIG. 12 is a bias diagram of a memory cell of the resistance change type non-volatile storage device according to the embodiment.
  • the memory cell state shown in FIG. 12 (a) is an example of the state of the selected memory cell in which low resistance writing is performed described as the present embodiment in a schematic cross-sectional view, and is in the cycle T1 described in FIG.
  • the state of the selected memory cell M11 corresponds to this.
  • the memory cell transistor 402 is composed of a gate electrode 404 which is also a word line, a gate oxide film 405, a drain 406 of an N-type diffusion layer connected to a source line SL, and a source 407 of an N-type diffusion layer on a semiconductor substrate 401.
  • the source 407 and the lower electrode of the resistance change type non-volatile memory element RSE are connected, and the bit wire BL and the upper electrode are connected.
  • the source line SL is set to approximately the voltage VdL- ⁇ ( ⁇ represents the voltage drop due to the LR current limiting elements 26 and 27), the bit line is set to a low voltage of 0V, and the word line is set to a low voltage of 0V.
  • the voltage VwL is given.
  • the memory cell transistor 402 is turned on, a channel 408 is formed, and a current flows from the drain 406 to the source 407.
  • the memory cells As the manufacturing process becomes finer, the memory cells also become finer, which enables higher integration. In that case, the plane size of the memory cell transistor 402 is reduced and the gate oxide film 405 is thinned, so that the maximum voltage that can be applied to the gate electrode 404 decreases as the miniaturization progresses.
  • the channel 408 is formed in the selected memory cell 400, an electric field between the gate electrode 404 and the channel 408 is substantially applied to the gate oxide film 405.
  • the electric field applied to the gate oxide film 405 is highest in the channel 408 near the source 407, which has a lower voltage.
  • the bit line BL is 0V
  • the potential of the source 407 is the voltage between terminals of the resistance change type non-volatile memory element RSE (about 1 to 1.2V).
  • the potential difference between the gate electrode 404 and the channel 408 can be substantially relaxed to about 1.8V to 2.0V.
  • the memory cell state shown in FIG. 12B is a schematic cross-sectional view illustrating the state of the non-selected memory cell in the same row as the selected memory cell in which the low resistance write is performed described as the present embodiment.
  • the state of the non-selected memory cell M12 and the like in the cycle T1 described with reference to FIG. 11 corresponds to this.
  • the source line SL and the bit line BL of the non-selected column are precharged to the voltage VPR (1.1V). Since the resistance-changing non-volatile memory element RSE has conductivity, the voltage of the source 407 of the N-type diffusion layer as well as the drain 406 of the N-type diffusion layer becomes VPR.
  • the gate electrode 404 has a voltage VwL, and both the gate-source potential and the gate-drain potential are equal to or higher than the threshold voltage of the memory cell transistor 402, the memory cell transistor 402 is turned on, and the channel 411 is formed.
  • the voltage of this channel 411 has the same VPR as the bit line BL and the source line SL. Therefore, the potential difference between the gate electrode 404 and the channel 411 can be relaxed to 1.9V.
  • the bit line BL and the source line SL of the non-selected memory cell in the same row as the selected memory cell in which the low resistance write is performed are conventionally generally performed.
  • the voltage of the channel 421 is 0V, which is the same as that of the bit line BL and the source line SL.
  • the potential difference between the gate electrode 404 and the channel 421 is 3.0 V, which is more than 1 V higher than the memory cell state of FIG. 12 (b), which is less desirable when applying a finer process.
  • the memory cell state of FIG. 12 (d) is the opposite of the memory cell state of FIG. 12 (c), and the bit line of the non-selected memory cell in the same row as the selected memory cell in which the low resistance write is performed.
  • the state when BL and the source line SL are precharged to the same voltage as the voltage VwL of the gate electrode 404 is illustrated. In this case, the memory cell transistor 402 is turned off and no channel is formed. Therefore, an electric field is applied to the gate oxide film 405 between the gate electrode 404 and the semiconductor substrate 401. Since 0 V is generally set for the semiconductor substrate 401, the electric field of the gate oxide film 405 in the memory cell state of FIG. 12 (c) is substantially 3.0 V, and a finer process is applied. It is not very desirable if you do.
  • the precharge voltage VPR of the source line SL and the bit line BL of the memory cell of the non-selected column is subtracted from the voltage VwL of the selected word line by the threshold voltage Vtss of the memory cell transistor 402 so that the channel is formed. It may be applied to a finer process by setting the relationship of a predetermined voltage lower than the voltage and higher than 0V. That is, the precharge voltage VPR may be set as follows.
  • the precharge voltage VPR it is desirable to set the precharge voltage VPR to a voltage lower than VwL-Vtuns and a higher voltage in terms of lowering the electric field of the gate oxide film 405, but on the other hand, all non-selective bit lines and non-selective bit lines and non-selective bit wires. Precharging the selected source line to a predetermined voltage also leads to the contradictory problem of increased power consumption.
  • VPR (VwL-Vtuns) / 2.
  • the current waveform control circuit 24 is provided on the LR power supply terminal 11 side in order to reduce the low resistance write current by two steps of constant current, but the current waveform control circuit having the same function is GND. Needless to say, it may be provided on the terminal side.
  • the memory cell transistor is used as the switch element, but in order to reduce the cell area, a bidirectional diode may be used.
  • tantalum oxide is used as the resistance changing layer 85, but the same effect can be obtained by using tantalum aluminum oxide (TaAlO) in which aluminum (Al) is added to the tantalum oxide. Can be done.
  • TaAlO tantalum aluminum oxide
  • FIG. 16 is a diagram showing a modified example of the main part of the resistance change type non-volatile storage device according to the embodiment.
  • the resistance change type non-volatile storage device 2 in the figure is different from FIG. 1A in that it includes a current waveform control circuit 24a instead of the current waveform control circuit 24.
  • a current waveform control circuit 24a instead of the current waveform control circuit 24.
  • the current waveform control circuit 24a includes a waveform generation unit 35, a DAC 36, and a transistor 37.
  • the waveform generation unit 35 generates waveform data Ctl, which is a digital signal showing a current waveform of a low resistance current.
  • the waveform generation unit 35 is composed of, for example, a ROM for storing time-series sample values showing waveform data Ctl, or a dedicated circuit.
  • the DAC 36 is a digital-to-analog conversion circuit that converts the waveform data Ctrl from the waveform generation unit 35 into an analog signal.
  • the DAC 36 supplies the converted analog signal as a gate voltage Vgp to the gate of the transistor 37.
  • the transistor 37 is a pMOS transistor as a current source that supplies a low resistance current having a waveform corresponding to the gate voltage Vgp to the memory cell 3 via the LR SL selection switch 14.
  • FIG. 17 is a diagram showing a modified example of the current waveform of the low resistance current in the embodiment.
  • (A) of the figure shows the gate voltage Vgp output from the DAC 36 to the gate of the transistor 37.
  • the current in (b) in the figure indicates a low resistance current output from the transistor 37. Since the transistor 37 is a pMOS transistor, the low resistance current has a waveform inverted with respect to a change in the gate voltage Vgp.
  • the current waveform of the low resistance current has once in the first period and the second period following the first period on the time axis.
  • the portion of the low resistance current corresponding to the first period is called the first current.
  • the portion of the low resistance current corresponding to the second period is called the second current.
  • the first current is a triangular wave and has a first peak current Ip1.
  • the second current is a substantially constant current and has a current value Ip2 smaller than the first peak current Ip1.
  • the first current at time t2 at the end of the first period is not 0, and the second current Ip2 at time t2 at the start of the second period is not 0. That is, the first current does not drop from the peak to zero within the first period, and the second current is a non-zero value at the start of the second period.
  • FIG. 18 is a diagram showing another modification of the current waveform of the low resistance current in the modification of the embodiment.
  • the low resistance current has a current waveform having the shape of a sawtooth wave having a steep fall in the first period.
  • the time width of the first period, the time width of the second period, the peak value Ip1 of the first current, and the second current Ip2 may be the same as those in FIG. 1B.
  • the low resistance current has a current waveform having the shape of a sawtooth wave having a steep rise in the first period.
  • the low resistance current has a triangular wave current shape in the first period, and has a current waveform in which the second current is stepwise reduced in the second period.
  • the low resistance current has two or more pairs of a first period and a second period as shown in (c) of the figure.
  • the time width of the first period, the time width of the second period, the peak value Ip1 of the first current, and the second current Ip2 do not have to be the same as those in FIG. 1B.
  • the resistance change type non-volatile storage device 2 includes a resistance change element (RSE) capable of reversibly changing between a high resistance state and a low resistance state, and the high resistance.
  • a current waveform control circuit 24a as a current supply circuit for energizing the resistance changing element with a low resistance current for changing from a state to the low resistance state is provided, and the current waveform of the low resistance current is a time axis.
  • the current supply circuit 24a has a first period and a second period following the first period, and the current supply circuit 24a applies the first current to the resistance changing element in the first period, and from the first current in the second period.
  • a small second current is applied to the resistance changing element, the first current at the end of the first period is not zero, and the second current at the beginning of the second period is not zero.
  • deterioration of the initial window can be suppressed in writing that changes from a high resistance state to a low resistance state, and deterioration of the operation window during high cycling (for example, when rewriting 100,000 times) is suppressed. be able to. For example, even when miniaturized, a highly reliable and stable rewriting operation can be realized over a long period of time.
  • the first current may be a constant current.
  • the first current may have a peak value larger than that of the second current.
  • the current waveform control circuit 24a can use a waveform that is not a constant current as the first current.
  • the low resistance current may have a downward stepped current waveform.
  • the current waveform control circuit 24a generates the first current and the second current as a downward stepped current waveform. This also suppresses the deterioration of the initial window, and also suppresses the deterioration of the operation window during high cycling (for example, when rewriting 100,000 times).
  • the current waveform control circuit 24a as the current supply circuit energizes the resistance changing element with the first constant current in the first period, and the second constant current smaller than the first constant current in the second period. May be energized in the resistance changing element.
  • a drive that reduces the constant current in two stages is performed.
  • This drive is called a constant current two-step reduction drive.
  • This drive is suitable for generating the downstep current waveform described above.
  • the period of energization is not limited to having only the first period and the second period, and may have the third, fourth, ... n periods separately.
  • the current waveform control circuit 24 as the current supply circuit includes an LR current limiting element 26 as a first constant current source and an LR current limiting element 27 as a second constant current source.
  • the current supply circuit generates the first constant current by superimposing the constant current from the first constant current source and the constant current from the second constant current source in the first period, and the first constant current is generated.
  • a constant current from either the first constant current source or the second constant current source may be generated as the second constant current in two periods.
  • the resistance changing element is energized with a current value higher than that in the second period in the first period, a sufficient initial window can be secured. Since the resistance changing element is energized with a current value lower than that of the first period in the second period, window deterioration during high cycling can be suppressed.
  • the current waveform control circuit 24 as the current supply circuit is further connected in series with the constant current control switch 31 as the first switch connected in series with the first constant current source and the second constant current source.
  • a constant current control switch 32 as a second switch connected to the current supply circuit is provided by making both the first switch and the second switch conductive in the first period.
  • the second constant current is applied to the resistance changing element to make one of the first switch and the second switch in a non-conducting state and the other in a conducting state in the second period.
  • a current may be applied to the resistance changing element.
  • the first period may be shorter than the second period.
  • the operation window is enlarged in the first period when the relatively high first constant current is energized, and the deterioration of the operation window due to the high cycling operation is caused in the second period when the relatively low second constant current is energized. It can be suppressed.
  • the first period may be 10% or less of the second period.
  • the operation window can be enlarged in the first period of 10% or less of the second period.
  • the first period may be 5 n seconds or less, and the second period may be 50 n seconds or more.
  • the writing operation to the low resistance state can be performed at high speed.
  • the second constant current may be 60% or less of the first constant current.
  • the first constant current may be 125 ⁇ A or more, and the second constant current may be 75 ⁇ A or less.
  • the resistance changing element RSE is interposed between the first electrode 81, the second electrode 84 formed facing the first electrode, and the first electrode 81 and the second electrode 84.
  • the resistance changing layer 85 may have a resistance changing layer 85, and the resistance changing layer 85 may include a transition metal oxide.
  • the transition metal oxide may contain at least one oxide of tantalum and hafnium.
  • the resistance changing element may be formed on a semiconductor substrate, and the second electrode 84 may be formed on the semiconductor substrate at a distance from the first electrode 81.
  • the resistance-changing non-volatile storage device includes a plurality of memory cells arranged in a matrix, and the memory cells include a switch element and the resistance-changing element connected in series with the switch element. You may have.
  • the switch element may be an IGMP transistor or a bidirectional diode.
  • the writing method of the resistance-changing non-volatile storage device is a resistance-changing non-volatile storage device having a resistance-changing element RSE that can reversibly change between a high-resistance state and a low-resistance state as a memory cell.
  • a first constant current is applied to the resistance changing element in the first period, and the second period succeeds the first period.
  • a second constant current smaller than the first constant current is applied to the resistance changing element in two periods.
  • a resistance-changing non-volatile storage device realized by making various modifications that can be conceived by those skilled in the art or by arbitrarily combining the components in the embodiment, and a writing method thereof, without departing from the gist of the present disclosure. Is also included in this disclosure.
  • a resistance change type non-volatile storage device having a memory cell composed of a resistance change element whose resistance value changes reversibly based on an electric signal and a switch element such as a transistor. It is useful for realizing a highly reliable memory because the number of rewritable times can be improved easily with a practical write control method and a circuit area without significantly increasing the array area.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Semiconductor Memories (AREA)

Abstract

抵抗変化型不揮性発記憶装置は、高抵抗状態と低抵抗状態とを可逆的に変化可能な抵抗変化素子(RSE)と、高抵抗状態から低抵抗状態に変化させるための低抵抗化電流を抵抗変化素子に通電する電流供給回路(24)と、を備え、低抵抗化電流の電流波形は、時間軸において、第1期間と、第1期間に続く第2期間とを有し、低抵抗化電流は、第1期間において第1電流を抵抗変化素子に印加し、第2期間において第1電流より小さい第2電流を抵抗変化素子に印加し、第1期間の終了時における第1電流は0でなく、第2期間の開始時における第2電流は0でない。

Description

抵抗変化型不揮発性記憶装置およびその書き込み方法
 本開示は、電気的信号に基づいて可逆的に抵抗値が変化する抵抗変化型不揮発性記憶素子で構成されたメモリセルからなる抵抗変化型不揮発性記憶装置およびその書き込み方法に関する。
 近年、抵抗変化型不揮発性記憶素子を用いて構成されたメモリセルを有する抵抗変化型不揮発性記憶装置の研究開発が進んでいる。抵抗変化型不揮発性記憶素子とは、電気的信号などによって抵抗値が可逆的に変化する性質を有し、さらにはこの抵抗値に対応したデータを、不揮発的に記憶することが可能な素子を言う。抵抗変化型不揮発性記憶装置としては、酸化還元反応による電気抵抗値の変化に基づいたReRAM、磁気抵抗変化に基づいたMRAM、相変化による電気抵抗値の変化に基づいたPCRAMなどが相当する。
 これらの抵抗変化型不揮発性記憶装置は、その書き換え動作において抵抗変化型不揮発性記憶素子に流れる電流量や印加される電圧値を制御することで、抵抗値の制御や動作の安定化が図れることが知られている。このような抵抗変化型不揮発性記憶装置は、例えば、特許文献1に開示されている。
特開2012-27972号公報
 しかしながら、従来の抵抗変化型不揮発性記憶装置では、例えば、抵抗変化素子の微細化に伴って低電力化する場合に、抵抗変化素子を高抵抗状態から低抵抗状態に変化させるための書き込み電流を低減すると、初期の動作ウィンドウを十分に確保することができないという問題がある。ここで動作ウィンドウとは、高抵抗状態で得られる読み出し電流と、低抵抗状態で得られる読み出し電流との差分をいう。この差分が十分に大きければ安定した読み出し動作が保証される。逆に、この差分が小さい程読み出しエラーが生じる可能性が大きくなる。また、動作ウィンドウは、高サイクリング動作、つまり多数回(例えば10万回)の書き換え動作により劣化する傾向がある。ここで初期の動作ウィンドウというのは、製造直後の初期(例えば初回から数十回または数百回程度)の書き換え動作時の動作ウィンドウをいう。
 一方、上記の低抵抗化用の書き込み電流を増加させると初期の動作ウィンドウを確保できるけれども、高サイクリング動作よる動作ウィンドウの劣化が顕在化するという問題がある。
 そこで、本開示は、初期の動作ウィンドウを拡大可能で、かつ、多数回の書き換え動作による動作ウィンドウの劣化を抑制する抵抗変化型不揮発性記憶装置およびその書き込み方法を提供することを目的とする。
 本開示の一態様に係る抵抗変化型不揮発性記憶装置は、高抵抗状態と低抵抗状態とを可逆的に変化可能な抵抗変化素子と、前記高抵抗状態から前記低抵抗状態に変化させるための低抵抗化電流を前記抵抗変化素子に通電する電流供給回路と、を備え、前記低抵抗化電流は、下り階段状の電流波形を有する。
 本開示の抵抗変化型不揮発性記憶装置によれば、初期の動作ウィンドウを拡大可能で、かつ、多数回の書き換え動作による動作ウィンドウの劣化を抑制することができる。
図1Aは、実施の形態における抵抗変化型不揮発性記憶装置の主要部の構成例を示す図である。 図1Bは、低抵抗化電流の電流波形例を示す図である。 図2Aは、実施の形態における抵抗変化型不揮発性記憶装置の主要部のより詳細な構成例を示す図である。 図2Bは、実施形態における定電流制御回路の動作を説明するタイミングチャート図である。 図3は、実施の形態における抵抗変化型不揮発性記憶素子の回路記号および断面を示す説明図である。 図4は、多数回の書き換え処理を含む実験用の処理フローを示す図である。 図5は、比較例の実験結果として1T1Rメモリセルのセル電流分布を示す正規期待値プロット図である。 図6は、実施の形態における図2A中の1T1Rメモリセルのセル電流分布を示す正規期待値プロット図である。 図7は、実施の形態における抵抗変化型不揮発性記憶装置の構成例を示すブロック図である。 図8は、実施の形態における抵抗変化型不揮発性記憶装置の書き込み回路例を示す図である。 図9は、実施の形態における抵抗変化型不揮発性記憶装置の列選択回路例を示す図である。 図10は、実施の形態における抵抗変化型不揮発性記憶装置の行選択回路図である。 図11は、実施の形態における抵抗変化型不揮発性記憶装置のタイミングチャート図である。 図12は、実施の形態における抵抗変化型不揮発性記憶装置のメモリセルのバイアス図である。 図13は、比較例としての抵抗変化型不揮発性記憶装置の構成を示す図である。 図14は、非特許文献1に記載された書き換え特性を示す説明図である。 図15は、実施の形態における抵抗変化型不揮発性記憶装置の駆動条件を示す図である。 図16は、実施の形態における抵抗変化型不揮発性記憶装置の主要部の変形例を示す図である。 図17は、実施の形態における低抵抗化電流の電流波形の変形例を示す図である。 図18は、実施の形態の変形例における低抵抗化電流の電流波形の他の変形例を示す図である。
 (本発明の基礎となった知見)
 本発明者は、「背景技術」の欄において記載した抵抗変化型不揮発性記憶装置に関し、以下の問題が生じることを見出した。
 特許文献1では、抵抗変化型不揮発性記憶素子とトランジスタを接続した1T1Rメモリセルからなる記憶装置において、低抵抗化動作と、高抵抗化動作の並行駆動に好適な駆動回路(パストランジスタ)と駆動方法が示されている。抵抗変化型不揮発性記憶素子は、SiN,SiO2,Gd2O3等の絶縁体膜と、Cu,Ag,Zr、Alなどの金属元素を含有する金属膜、合金膜、金属化合物膜等の導体膜から構成されている。
 ここで、抵抗変化型不揮発性記憶素子は駆動する電流値に応じて所望の低抵抗値に設定できる。また駆動する電流を制限し過剰な電流を抵抗変化型不揮発性記憶素子に流さないようにすると、抵抗変化型不揮発性記憶素子の劣化を抑制できる。
 ところで、ReRAMなどの抵抗変化型不揮発性記憶装置の研究が、近年盛んに行われてきているのは、従来不揮発性記憶装置の主流であるフラッシュメモリに比べて、高速な書き換え動作や読み出し動作が行えることにある。さらにはフラッシュメモリの書き換え回数は、以前は10万回程度であったものが微細化や大容量化の進行とともに、数千回程度に低下してきているが、この点でも高い書き換え性能を有するとされているReRAMは、フラッシュメモリに代わる不揮発性記憶装置として期待されている。
 しかしながら、前記従来の抵抗変化型不揮発性記憶装置に関する開示は、抵抗変化型不揮発性記憶素子を所望の抵抗値に設定する方法や、抵抗変化型不揮発性記憶素子の書き換え動作によって過剰な電流が印加されないように電流制限することで、抵抗変化型不揮発性記憶素子の破壊や劣化を抑制するもので、安定動作を実現するための低抵抗状態と高抵抗状態間のセル電流の動作ウィンドウ拡大と高い書き換え回数を両立するという課題に関しては開示されていないし、克服もされていない。
 そこで、本開示は、初期の動作ウィンドウを拡大可能で、かつ、多数回の書き換え動作による動作ウィンドウの劣化を抑制する抵抗変化型不揮発性記憶装置およびその書き込み方法を提供することを目的とする。
 上記の課題を解決するために本開示の一態様に係る抵抗変化型不揮発性記憶装置は、高抵抗状態と低抵抗状態とを可逆的に変化可能な抵抗変化素子と、前記高抵抗状態から前記低抵抗状態に変化させるための低抵抗化電流を前記抵抗変化素子に通電する電流供給回路と、を備え、前記低抵抗化電流は、前記低抵抗化電流の電流波形は、時間軸において、第1期間と、前記第1期間に続く第2期間とを有し、電流供給回路24は、第1期間において第1電流を抵抗変化素子に印加し、第2期間において第1電流より小さい第2電流を抵抗変化素子に印加し、第1期間の終了時における第1電流は0でなく、第2期間の開始時における第2電流は0でない。
 これによれば、初期の動作ウィンドウを拡大可能で、かつ、多数回の書き換え動作による動作ウィンドウの劣化を抑制することができる。
 (実施の形態)
 以下、実施の形態について、図面を参照しながら具体的に説明する。
 なお、以下で説明する実施の形態は、いずれも包括的または具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、本開示を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、本開示の一形態に係る実現形態を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。本開示の実現形態は、現行の独立請求項に限定されるものではなく、他の独立請求項によっても表現され得る。
 [1.概略構成例]
 図1Aは、実施の形態における抵抗変化型不揮発性記憶装置2の主要部の構成例を示す図である。同図は、本開示の主要な構成として、抵抗変化型不揮発性記憶素子を高抵抗状態から低抵抗状態に変化させる低抵抗書き込み動作に関わる回路を示している。また、同図では本開示の主要な部分ではない高抵抗書き込み動作に関わる回路を省略してある。同図に示す抵抗変化型不揮発性記憶装置2は、メモリセル3、LR化BL選択スイッチ13、LR化SL選択スイッチ14および電流波形制御回路24を含む。
 メモリセル3は、直列に接続された抵抗変化型不揮発性記憶素子RSEとメモリセルトランジスタ1とを有する。なお、同図のメモリセル3は、行列状に配置される複数のメモリセル3で構成されるメモリアレイ中の1つのメモリセルを代表として図示してある。抵抗変化型不揮発性記憶素子RSEは、以下、単に抵抗変化素子RSEと呼ぶことがある。
 抵抗変化素子RSEは、高抵抗状態と低抵抗状態とを可逆的に変化可能な素子であり、高抵抗状態と低抵抗状態とをデジタルの二値に対応させることにより、読み書き可能な記憶素子として機能する。抵抗変化型不揮発性記憶素子RSEの一端はメモリセルトランジスタ1のソースSに接続され、他端がビット線BLに接続される。
 メモリセルトランジスタ1は、ドレインDとソースSとゲートGとを有する。ドレインDはソース線SLに接続される。ゲートGはメモリセルゲート端子MGに接続される。ソースSは、抵抗変化素子RSEの一端に接続される。なお、トランジスタのドレインおよびソースは、ゲートを挟んでどちら側でもよいが、本明細書では抵抗変化型不揮発性記憶素子RSEと接続される側をソースSと定義する。
 メモリセルゲートMGには、低抵抗書き込み動作の期間中、同図に示す電圧VwLが印加される。これによりメモリセルトランジスタ1はオン状態となる。
 LR化BL選択スイッチ13およびLR化SL選択スイッチ14は、低抵抗書き込み動作の期間中に共にオン状態になる。
 電流波形制御回路24は、電流供給回路であって、高抵抗状態から低抵抗状態に変化させるための低抵抗化電流LRIcellを抵抗変化素子に通電する。低抵抗化電流LRIcellは、下り階段状の電流波形を有する。電流波形制御回路24は、低抵抗化電流LRIcellを、下り階段状の電流波形にすることによって、低抵抗化書き込み動作における定電流を2段階で低減させる駆動を行う。この駆動を定電流2段階低減駆動と呼ぶ。この駆動よれば、高抵抗状態から低抵抗状態に変化させる書き込み動作において、初期ウィンドウの劣化を抑制することができ、かつ、高サイクリング時(例えば10万回の書き換え時)の動作ウィンドウ劣化を抑制することができる。例えば、微細化した場合でも、信頼性の高い安定した書き換え動作を長期間に渡って実現することができる。
 次に、低抵抗化電流の電流波形の具体例について説明する。
 図1Bは、低抵抗化電流の電流波形例を示す図である。図1Bに示すように、下り階段状の電流波形は、第1期間と、第1期間に後続する第2期間とを有する。電流供給回路つまり電流波形制御回路24は、第1期間において第1定電流を抵抗変化素子RSEに通電し、第2期間において第1定電流より小さい第2定電流を抵抗変化素子RSEに通電する。
 そのため、電流供給回路つまり電流波形制御回路24は、第1定電流源としてのLR化用電流制限素子26と、第2定電流源としてのLR化用電流制限素子27とを含む。電流波形制御回路24は、第1期間において第1定電流源からの定電流と第2定電流源からの定電流とを重畳することにより第1定電流を生成する。また、電流波形制御回路24は、第2期間において第1定電流源および第2定電流源の何れか一方からの定電流を第2定電流として生成する。
 さらに、電流供給回路つまり電流波形制御回路24は、第1定電流源と直列に接続された第1スイッチ(つまり定電流制御スイッチ31)と、第2定電流源と直列に接続された第2スイッチ(つまり定電流制御スイッチ32)と、を含む。電流波形制御回路24は、第1期間において第1スイッチおよび第2スイッチの両方を導通状態にすることにより、第1定電流を抵抗変化素子RSEに通電する。また、電流波形制御回路24は、第2期間において第1スイッチおよび第2スイッチの一方を非導通状態にし、かつ、他方を導通状態にすることにより、第2定電流を抵抗変化素子RSEに通電する。
 これによれば、第1期間において第2期間より高い電流値を抵抗変化素子RSEに通電するので、初期ウィンドウを十分に確保することができる。第2期間において第1期間より低い電流値を抵抗変化素子に通電するので、高サイクリング時におけるウィンドウ劣化を抑制することができる。また、第1スイッチおよび第2スイッチの動作により容易に下り階段状の電流波形を生成することができる。
 また、図1Bに示すように、第1期間は第2期間より短い。例えば、第1期間は第2期間の10%以下であってもよい。こうすれば、比較的高い第1定電流が通電される第1期間において動作ウィンドウを拡大し、比較的低い第2定電流が通電される第2期間において高サイクリング動作による動作ウィンドウの劣化を抑制することができる。また、第1期間が第2期間の10%以下の過渡現象的な期間であっても動作ウィンドウを十分に拡大することができる。より具体的には、第1期間は5n秒以下であり、第2期間は50n秒以上であってもよい。こうすれば、低抵抗化状態への書き込み動作を高速に行うことができる。
 また、第2定電流は第1定電流の60%以下であってもよい。こうすれば、低抵抗化状態への書き込み動作を低電力化することができる。より具体的には、第1定電流は125μA以上であり、第2定電流は75μA以下であってもよい。こうすれば、低抵抗化状態への書き込み動作を低電力化することができる。
 [1.1詳細構成例]
 次に、抵抗変化型不揮発性記憶装置2のより詳細な構成例について説明する。
 図2Aは、実施の形態における抵抗変化型不揮発性記憶装置2の詳細な構成例を示す図である。
 図2Aでは、図1Aで省略された高抵抗書き込み動作に関わる回路も明示してあり、また、電流波形制御回路24およびその周辺の回路の具体例を示している。
 図2Aに示す抵抗変化型不揮発性記憶装置2は、メモリセル3、ビット線駆動回路22b、および、ソース線駆動回路23を備える。
 メモリセル3は、既に説明した図1Aと同じであるので、ここでは説明を繰り返さない。
 ビット線駆動回路22bは、LR化BL選択スイッチ13、HR化BL選択スイッチ16を備え、メモリセル3とビット線BLを介して接続されている。
 LR化BL選択スイッチ13は、グランドとビット線BLとを接続するスイッチであり、低抵抗化動作中にオン状態になる。
 HR化BL選択スイッチ16は、HR化用電源端子17とビット線BLとを接続するスイッチであり、高抵抗化動作中にオン状態になる。つまり、HR化BL選択スイッチ16は、メモリセル3を高抵抗化するための高抵抗化用電流パルスをメモリセル3に供給するためのスイッチである。
 HR化用電源端子17には、高抵抗化用のパルス電圧生成用の電圧VdHが印加される。
 ソース線駆動回路23は、LR化用電源端子11、LR化SL選択スイッチ14、HR化SL選択スイッチ18、電流波形制御回路24、および、書き込みパルス幅制御端子33を備える。このソース線駆動回路23は、低抵抗化電流を抵抗変化素子RSEに通電する回路である。低抵抗化電流は、単発の矩形パルス波形ではなく、下り階段状の電流波形を有する。
 LR化用電源端子11には、低抵抗化用のパルス電流生成用の電圧VdLが印加される。
 LR化SL選択スイッチ14は、ソース線SLと電流波形制御回路24の電流供給端子とを接続し、低抵抗化動作の期間中オン状態になる。電流波形制御回路24の電流供給端子は、定電流制御スイッチ31および定電流制御スイッチ32との接続点をいう。
 HR化SL選択スイッチ18は、グランドとソース線SLとを接続するスイッチであり、高抵抗化動作の期間中オン状態になる。
 電流波形制御回路24は、図1Aに示した電流供給回路つまり電流波形制御回路24のより具体的な回路例を示す。図2Aの電流波形制御回路24は、定電流制御回路25、LR化用電流制限素子26およびLR化用電流制限素子27を有する。電流波形制御回路24は、定電流制御回路25とPMOSトランジスタからなるLR化用電流制限素子26、27から構成される。
 定電流制御回路25は、第1の遅延時間(例えば5ns)を有する遅延回路28とNAND回路29、インバータ30、及びPMOSトランジスタからなる定電流制御スイッチ31、32から構成される。
 書き込みパルス幅制御端子33は、遅延回路28の入力と、インバータ30の入力端子と、定電流制御スイッチ32のゲート端子とに接続される。NAND回路29の一方の入力端子は、遅延回路28の出力端子と接続される。NAND回路29の他方の入力端子は、インバータ30の出力と接続される。NAND回路29の出力端子は、定電流制御スイッチ31のゲート端子と接続される。また、LR化用電流制限素子26、27は、ソース端子が、共にLR化用電源端子11に接続され、ドレイン端子は、それぞれ定電流制御スイッチ31、32のソース端子と接続され、さらに、定電流制御スイッチ31、32のドレイン端子は、共にLR化SL選択スイッチ14に接続される。
 LR化用電流制限素子26は、PMOSトランジスタで構成され、そのゲート端子には、クランプ電圧Vc1(<VdL)が与えられている。またLR化用電流制限素子27は、PMOSトランジスタで構成され、そのゲート端子には、クランプ電圧Vc2(<VdL)が与えられている。このため、LR化用電流制限素子26、27は、各LR化用電流制限素子26、27の電流飽和領域特性によりほぼ定電流源となり、それぞれ定電流Iset1(例えば、100μA)、Iset2(例えば、75μA)に電流を制限することができる。つまり、LR化用電流制限素子26、27の出力電流が、定電流Iset1、Iset2に制限できるようにトランジスタサイズやそのゲート電圧が設定されている。例えば、LR化用電流制限素子26、27のPMOSトランジスタ長は、同一であり、LR化用電流制限素子26とLR化用電流制限素子27のトランジスタ幅の比は、4対3に設定されている。こうすれば、Vc1=Vc2のときに、Iset1対Iset2は4対3になる。
 書き込みパルス幅制御端子33は、低抵抗化のための低抵抗化電流のタイミングおよびパルス幅(つまりLR書き込みパルス幅)を指定する電圧Viを入力する端子である。
 定電流制御スイッチ31は、LR化用電流制限素子26つまり第1電流源と直列接続された第1スイッチであり、パルス電圧Vcに従って第1期間オン状態になる。
 定電流制御スイッチ32は、LR化用電流制限素子27つまり第2電流源と直列接続された第2スイッチであり、パルス電圧Viに従って第2期間オン状態になる。
 遅延回路28、NAND回路29およびインバータ30からなる回路は、第1スイッチつまり定電流制御スイッチ31の導通および非導通を制御する制御回路である。この回路は、図2Bに示すように、書き込みパルス幅制御端子33から入力される負論理のパルス電圧Viの先頭を微分した負論理のパルス電圧Vcを生成するための回路である。負論理のパルス電圧Vcのパルス幅は定電流制御スイッチ31をオン状態にする第1期間を決定付ける。また、負論理のパルス電圧Viのパルス幅は定電流制御スイッチ32をオン状態にする第2期間を決定付ける。
 メモリセル3を低抵抗化する場合は、LR化BL選択スイッチ13およびLR化SL選択スイッチ14を所定期間オン制御し、HR化BL選択スイッチ16およびHR化SL選択スイッチ18をオフ制御する。その後、書き込みパルス幅制御端子33に所定期間(例えば100ns)のパルス幅を有する負論理の電圧パルスViを印加すると、図2Bに示されるように、遅延回路28の出力電圧Vaは、電圧パルスViから5ns遅延された電圧パルスとなる。またインバータ30の出力電圧Vbは、電圧パルスViが論理反転された電圧パルスとなる。NAND回路29の出力電圧Vcは、出力電圧Vaと出力電圧VbとのNAND演算結果であり、パルス幅が第1の遅延時間(例えば5ns)の負論理の電圧パルスとなる。
 このため、時刻t1における低抵抗化開始時には、定電流制御スイッチ31、32が5nsの間、共に活性化され、オン状態となり、LR化用電流制限素子26、27の双方により、LR書き込み電流が、定電流Iset1(100μA)と定電流Iset2(75μA)の総和(例えば175μA)に制限される。時刻t2において定電流制御スイッチ32はオン状態を維持し、定電流制御スイッチ31はターンオフする。その後、残り95nsの期間(t2~t3)は、定電流制御スイッチ31のみがオフ状態となり、LR化用電流制限素子27により、LR書き込み電流が、定電流Iset2(75μA)に低減される。このように、ソース線SL側からビット線BL側の向きにLR書き込み電流を2段階に電流低減制御しながら流す。このようにして、電流波形制御回路24は、低抵抗化動作として、図2Bに示す下り階段状の電流波形を有する低抵抗化電流を抵抗変化素子RSEに通電する。
 高抵抗化する場合は、LR化BL選択スイッチ13およびLR化SL選択スイッチ14をオフ制御し、HR化BL選択スイッチ16およびHR化SL選択スイッチ18を所定期間オン制御し、ビット線化BLからソース線SLの向きに電流を流す。
 次に、抵抗変化型不揮発性記憶素子RSEの構成例について説明する。
 図3は、実施の形態における抵抗変化型不揮発性記憶素子RSEの回路記号および断面構造を示す説明図である。
 図3の(a)に示すように、回路記号で示す抵抗変化型不揮発性記憶素子RSEにおいて、メモリセルトランジスタ1のソースSと接続される側の端子を端子A、ビット線BLに接続される端子を端子Bとしている。
 図3の(b)に示す抵抗変化型不揮発性記憶素子3000aは、抵抗変化型不揮発性記憶素子RSEの製造後でフォーミング前の構造を示している。
 抵抗変化型不揮発性記憶素子3000aは、端子A側に対応する第1電極81(下部電極)と、端子B側に対応する第2電極84(上部電極)と、酸素不足型の遷移金属酸化物で構成される抵抗変化層85とを備えている。抵抗変化層85は、酸素不足型の遷移金属酸化物で構成された第1の遷移金属酸化物層82と、第1の遷移金属酸化物層82よりも酸素不足度が小さい遷移金属酸化物で構成された第2の遷移金属酸化物層83とが積層されて構成されている。
 図3の(c)に示す抵抗変化型不揮発性記憶素子RSEは、フォーミング後の構造を示している。フォーミング前の抵抗変化型不揮発性記憶素子3000aに対し電気的なストレスを加えることで、第2の遷移金属酸化物層83の局所領域に、導電パスとなる微小なフィラメント86が形成される。この微小なフィラメント86の中で酸化還元反応が起り、その抵抗値が変化することで抵抗変化現象が発現する。以降、本開示で説明する抵抗変化動作は、このフォーミング後の抵抗変化型不揮発性記憶素子RSEの構造によるものである。
 本実施形態においては、その一例として、第1の遷移金属酸化物層82と第2の遷移金属酸化物層83に同種の遷移金属を用い、第1の遷移金属酸化物層82として酸素不足型の第1のタンタル酸化物層(以下、第1のTa酸化物層)と、第2の遷移金属酸化物層83として第2のタンタル酸化物層(以下、第2のTa酸化物層)とが積層されて構成されている。第1のTa酸化物層をTaOx、第2のTa酸化物層をTaOyと表記したとき、x<yである。第2のTa酸化物層の膜厚は、1nm以上10nm以下が好ましい。また、本実施形態では、第1電極81はチタン窒化物(TiN)とタンタル窒化物(TaN)を積層して構成されており、第2電極84は貴金属材料、例えばイリジウム(Ir)を含んで構成されている。
 酸素不足型の遷移金属酸化物とは、化学量論的な組成を有する酸化物と比較して酸素の含有量(原子比:総原子数に占める酸素原子数の割合)が少ない酸化物をいう。通常、化学量論的な組成を有する酸化物は、絶縁体、あるいは非常に高い抵抗値を有する。例えば遷移金属がTaの場合、化学量論的な酸化物の組成はTa2O5であって、TaとOの原子数の比率(O/Ta)は2.5である。したがって、酸素不足型のTa酸化物において、TaとOの原子比は0より大きく、2.5より小さいことになる。
 ここで、第2の遷移金属酸化物層83としての第2のTa酸化物層の酸素含有率は、第1の遷移金属酸化物層82としての第1のTa酸化物層の酸素含有率よりも高くなっている。言い換えると、第2のTa酸化物層の酸素不足度は、第1のTa酸化物層の酸素不足度よりも少ない。酸素不足度とは、それぞれの遷移金属において、その化学量論的組成の酸化物を構成する酸素の量に対し、不足している酸素の割合をいう。例えば、遷移金属がタンタル(Ta)の場合、化学量論的な酸化物の組成はTa2O5であるので、TaO2.5と表現できる。TaO2.5の酸素不足度は0%である。例えばTaO1.5の組成の酸素不足型タンタル酸化物の酸素不足度は、酸素不足度=(2.5-1.5)/2.5=40%となる。また、酸素含有率とは、当該遷移金属酸化物を構成する総原子数に対する含有酸素原子数の比率である。Ta2O5の酸素含有率は、総原子数に占める酸素原子数の比率(O/(Ta+O))であり、71.4atm%となる。したがって、酸素不足型のタンタル酸化物は、酸素含有率は0より大きく、71.4atm%より小さいことになる。
 抵抗変化層85を構成する金属は、タンタル以外の遷移金属、又は一部の金属を用いてもよい。遷移金属としては、タンタル(Ta)、チタン(Ti)、ハフニウム(Hf)、ジルコニウム(Zr)、ニオブ(Nb)、タングステン(W)等、金属としては、アルミニウム(Al)等を用いることができる。遷移金属は複数の酸化状態をとることができるため、異なる抵抗状態を酸化還元反応により実現することが可能である。例えば、ハフニウム酸化物を用いる場合、第1の遷移金属酸化物層82としての第1のハフニウム酸化物層の組成をHfOxとした場合にxが0.9以上1.6以下であり、且つ、第2の遷移金属酸化物層83としての第2のハフニウム酸化物層の組成をHfOyとした場合にyがxの値よりも大である場合に、抵抗変化層85の抵抗値を安定して高速に変化させることが確認できている。この場合、第2のハフニウム酸化物層の膜厚は、3nm以上4nm以下が好ましい。また、ジルコニウム酸化物を用いる場合、第1の遷移金属酸化物層82としての第1のジルコニウム酸化物層の組成をZrOxとした場合にxが0.9以上1.4以下であり、且つ、第2の遷移金属酸化物層83としての第2のジルコニウム酸化物層の組成をZrOyとした場合にyがxの値よりも大である場合に、抵抗変化層85の抵抗値を安定して高速に変化させることが確認できている。この場合、第2のジルコニウム酸化物層の膜厚は、1nm以上5nm以下が好ましい。
 なお、上述した例では、抵抗変化層85は2層の積層構造としたが、酸素不足型の遷移金属酸化物層にて、単層の抵抗変化層で構成してもかまわない。
 酸素不足度がより小さい第2の遷移金属酸化物層83に接続されている第2電極84は、例えば、白金(Pt)、イリジウム(Ir)、パラジウム(Pd)など、第2の遷移金属酸化物層83を構成する遷移金属及び第1電極81を構成する材料と比べて標準電極電位がより高い材料で構成する。このような構成とすることにより、第2電極84と第2の遷移金属酸化物層83の界面近傍の第2の遷移金属酸化物層83中において、選択的に酸化還元反応が発生することで、安定した抵抗変化現象が実現できる。
 また、抵抗変化層85として、第1の遷移金属で構成される第1の遷移金属酸化物層82と、第1の遷移金属とは異なる第2の遷移金属で構成される第2の遷移金属酸化物層83とで構成される積層構造を用いてもよい。第2の遷移金属酸化物層の酸素不足度は、第1の遷移金属酸化物層の酸素不足度よりも小さい。言い換えると、第2の遷移金属酸化物層83の抵抗値は、第1の遷移金属酸化物層82の抵抗値よりも高い。
 また、第1の遷移金属と第2の遷移金属とに互いに異なる材料を用いる場合、第2の遷移金属の標準電極電位は、第1の遷移金属の標準電極電位より小さい方が好ましい。例えば、第1の遷移金属酸化物層82に酸素不足型のタンタル酸化物を用い、第2の遷移金属酸化物層83にチタン酸化物(TiO2)を用いることにより、安定した抵抗変化動作を実現できる。チタン(標準電極電位=-1.63eV)はタンタル(標準電極電位=-0.6eV)より標準電極電位が低い材料である。第2の遷移金属酸化物層83に第1の遷移金属酸化物層82より標準電極電位が小さい金属の酸化物を配置することにより、第2の遷移金属酸化物層83中で、より酸化還元反応が発生しやすくなる。
 以上のような構造では、第1電極81を基準にして、第2電極84に正の電圧を印加したとき、第1の遷移金属酸化物層82に含まれる酸素イオンがフィラメント86の中に移動することで酸化反応が発生する。これにより、フィラメント86の抵抗が増大し高抵抗状態になると考えられる。
 逆に、第1電極81を基準にして、第2電極84に負の電圧を印加したとき、フィラメント86の中の酸素イオンが第1の遷移金属酸化物層82側に押しやられることでフィラメント86の中で還元反応が発生する。これにより、微小なフィラメント86の抵抗が減少し低抵抗状態になると考えられる。
 ところで、第1の遷移金属酸化物層82に比べより抵抗値が高い第2の遷移金属酸化物層83の抵抗値は、例えば数百MΩ~1GΩ程度に形成されている。一方フィラメント86の抵抗値は、酸化反応によって高抵抗状態になったときでも百kΩ前後~数MΩである。
 従って、第1電極81と、第2電極84の間に印加された電圧は、第1の遷移金属酸化物層82と第2の遷移金属酸化物層83で分圧され、より抵抗値が高い第2の遷移金属酸化物層83の方が高くなるが、それに伴う電流経路は第2の遷移金属酸化物層83の中では均一ではない。第2の遷移金属酸化物層83の中のより抵抗値の低いフィラメント86の領域に電流は集中する。そのため、フィラメント86の中で生じる抵抗変化動作を、安定に且つ継続的に行える電流や電圧の制御が、フィラメントモデルで動作する抵抗変化型不揮発性記憶素子の場合は重要となる。
 [2.評価用実験結果]
 次に、図2Aの抵抗変化型不揮発性記憶装置2を評価するために実験した結果について説明する。実験では、図2Aの抵抗変化型不揮発性記憶装置2に加えて、比較例として図13に示す抵抗変化型不揮発性記憶装置も実験対象とした。
 まず、比較例の抵抗変化型不揮発性記憶装置について説明する。
 図13は、比較例としての抵抗変化型不揮発性記憶装置の構成を示す図である。この比較例は、特許文献1の抵抗変化型不揮発性記憶装置と類似の回路であり、1T1Rメモリセルおよびその周辺の回路を示している。図13の(a)は高抵抗化動作を示す。下向きの太い矢線は、抵抗変化型不揮発性記憶素子RSEに通電される電流HRIcellを示す。また、図13の(b)は低抵抗化動作を示す。上向きの太い矢線は、抵抗変化型不揮発性記憶素子RSEに通電される電流LRIcellを示す。
 図13の抵抗変化型不揮発性記憶装置は、図2Aと比べて、ソース線駆動回路23の代わりにソース線駆動回路22aを備える点が主に異なっている。
 ソース線駆動回路22aは、低抵抗化動作において単発の定電流矩形波パルスをメモリセル3に通電する回路である。
 高抵抗化する場合は、LR化BL選択スイッチ13およびLR化SL選択スイッチ14をオフ制御し、HR化BL選択スイッチ16およびHR化SL選択スイッチ18を所定期間オン制御し、ビット線BLからソース線SLの向きにメモリセル3に電流HRIcellを流す。
 低抵抗化する場合は、LR化BL選択スイッチ13およびLR化SL選択スイッチ14を所定期間オン制御し、HR化BL選択スイッチ16およびHR化SL選択スイッチ18をオフに制御し、ソース線SLからビット線BLの向きにメモリセル3に電流LRIcellを流す。
 この評価用回路は、ソース線駆動回路22aおよびビット線駆動回路22bの各々の端子に所定の電圧を与えることで、メモリセル3を1ビット単位で評価できるが、メモリセルアレイを構成、評価する場合は、複数のメモリセル3に対してソース線駆動回路22aやビット線駆動回路22bを共有する形で構成する。本評価では、複数のメモリセルを選択的に評価できるようにし、1ビット単位、或いは、複数ビットのメモリセルアレイ単位での書き換え評価が可能である。
 また、LR化BL選択スイッチ13、LR化SL選択スイッチ14、HR化BL選択スイッチ16、HR化SL選択スイッチ18は、トランジスタで構成する一般的な選択回路であるが、これらの箇所での電圧降下を極力小さくし、また電流が律速されないようトランジスタサイズやトランジスタ構成、そのゲート電圧が設定されている。
 高抵抗化動作および低抵抗化動作とも共通に、LR化用電源端子11には、電圧VdLを、LR化用クランプ制御端子12には、電圧Vclamp(<VdL)を、HR化用電源端子17には、電圧VdHを定常的に与えている。
 高抵抗化動作では、メモリセルトランジスタ1のメモリセルゲート端子MGに電圧VwHを与え、HR化BL選択スイッチ16およびHR化SL選択スイッチ18は、100nsの期間オン制御を行う。この時、LR化BL選択スイッチ13およびLR化SL選択スイッチ14はオフ制御としておく。このような高抵抗化動作を行うことで、抵抗変化型不揮発性記憶素子RSEに電流HRIcellがビット線BL側からソース線SL側に流されることで高抵抗化の抵抗変化が行われる。
 低抵抗化動作では、抵抗変化型不揮発性記憶素子RSEとメモリセルトランジスタ1から構成される1T1Rメモリセル3において、メモリセルトランジスタ1のメモリセルゲート端子MGに電圧VwLを与え、LR化BL選択スイッチ13およびLR化SL選択スイッチ14は、100nsの期間オン制御を行う。この時、HR化BL選択スイッチ16およびHR化SL選択スイッチ18はオフ制御としておく。このような低抵抗化動作を行うことで、抵抗変化型不揮発性記憶素子RSEに電流LRIcellがソース線SL側からビット線BL側に流されることで低抵抗化の抵抗変化が行われる。このとき、PMOSトランジスタ10から成る定電流源は、定電流Isetに電流を制限することができ、メモリセルトランジスタ1のインピーダンスは十分低く動作するようにそのゲート電圧は与えられている。その為、メモリセルトランジスタ1に流れる電流Imosや、抵抗変化型不揮発性記憶素子RSEに流れる電流LRIcellは、Isetに制限されている。
 次に、実験で行った評価用の書き換え動作について説明する。
 図4は、多数回の書き換え処理を含む実験用の処理フローを示す図である。同図の処理フローは、図13の比較例の抵抗変化型不揮発性記憶装置および図2Aの抵抗変化型不揮発性記憶装置2のそれぞれに対して行った。
 図4において、先ず、メモリセルアレイ中の複数の評価対象ビット(例えば、約1kb)の低抵抗化動作とセル電流測定を行う(S41、S42)。引き続き、評価対象ビットの高抵抗化動作とセル電流測定を行う(S43、S44)。この抵抗変化動作を10万回繰り返して終了する(S45)。セル電流測定は抵抗変化動作によりメモリセル3を所望の抵抗状態にできたかを確認するもので、抵抗変化型不揮発性記憶素子RSEがディスターブを受けない低い電圧を印加して、電流値を測定するものである。 図15は、実施の形態における抵抗変化型不揮発性記憶装置の駆動条件を示す図である。この駆動条件は、図13の比較例の抵抗変化型不揮発性記憶装置および図2Aの抵抗変化型不揮発性記憶装置2に適用された。
 低抵抗化動作および高抵抗化動作とも共通に、LR化用電源端子11の電圧VdLには2.8Vを、LR化用クランプ制御端子12の電圧Vclampには1.73Vと中間的な電圧を、HR化用電源端子17の電圧VdHは1.7Vを定常的に与えている。ここでは、電圧Vclampに、175μAの定電流源を構成するために、1.73Vを与えているが、電圧Vclampを変更することで、定電流源の設定電流値を変更できる。
 例えば、図13において75μAの定電流源を構成したい場合には、電圧Vclampに1.86Vを与えれば良い。そして低抵抗化動作では、メモリセルトランジスタ1のメモリセルゲート端子MGは電圧VwLで3.0Vを与え、LR化BL選択スイッチ13およびLR化SL選択スイッチ14は、100nsの期間オン制御を行う。HR化BL選択スイッチ16およびHR化SL選択スイッチ18はオフ制御としておく。
 高抵抗化動作では、メモリセルトランジスタ1のメモリセルゲート端子MGは電圧VwHで1.8Vを与え、HR化BL選択スイッチ16およびHR化SL選択スイッチ18は、100nsの期間 オン制御を行う。LR化BL選択スイッチ13およびLR化SL選択スイッチ14はオフ制御としておく。
 また、図2Aにおける低抵抗化動作では、Vc1とVc2はともに1.73Vを与えた。LR化用電流制限素子26、27のPMOSトランジスタ長は、同一であり、LR化用電流制限素子26とLR化用電流制限素子27のトランジスタ幅の比は、4対3に設定されている。その結果、LR化用電流制限素子26は第1定電流値100μA、LR化用電流制限素子27は第2定電流値75μAを生成する。
 次に評価結果を説明する。
 最初に初期、10万回抵抗変化の一部の測定データを用いてその傾向を説明する。
 図5は、実験結果として、図13の比較例の1T1Rメモリセルのセル電流分布を示す正規期待値プロット図である。
 図5(a)は、定電流源の設定電流値を75μAに設定した場合のフォーミング後動作が安定した初期状態の高抵抗状態(HR)と低抵抗状態(LR)の正規期待値プロットされたセル電流分布(約1kb)である。白抜き四角が高抵抗状態、白丸が低抵抗状態のセル電流を示している。
 図5(b)は、定電流源の設定電流値を175μAに設定した場合のフォーミング後動作が安定した初期状態の高抵抗状態(HR)と低抵抗状態(LR)の正規期待値プロットされたセル電流分布(約1kb)である。白抜き四角が高抵抗状態、白丸が低抵抗状態のセル電流を示している。
 図5(c)は、定電流源の設定電流値を175μAに設定した場合のフォーミング後動作が安定した初期状態、及び10万回書き換え後の高抵抗状態(HR)と低抵抗状態(LR)の正規期待値プロットされたセル電流分布(約1kb)の推移である。白抜き四角は初期状態の高抵抗状態、白丸は初期状態の低抵抗状態、黒菱形は10万回後の低抵抗状態、黒三角は10万回後の高抵抗状態のセル電流を示している。
 抵抗変化型不揮発性記憶素子を用いた記憶装置では、書き込まれた低抵抗状態または高抵抗状態を、センスアンプ回路で読み出し、データの“1”または“0”の何れにあるかの判別動作を行う。そのためには、低抵抗状態の最小のセル電流値と高抵抗状態の最大のセル電流値に、所定以上の差(動作ウインドウ)が必要である。
 図5(a)に示されるように、LR書き込み電流を75μAと低電流に設定した場合には、LRセル電流が減少し、動作ウィンドウが所定未満となり非常に小さく、センスアンプ回路での安定したデータ判別が困難となる。
 図5(b)では、LR書き込み電流を175μAと増加させることで、LRセル電流を増加させ、その結果十分な動作ウィンドウを確保できている。
 しかしながら、図5(c)に示すように、書き換え回数を10万回まで増加させると、書き換えによる抵抗変化動作の劣化(セル電流分布のバラツキ増大)が顕在化し、高抵抗化不良ビットやLRセル電流分布裾の電流低下ビットが発生し、実質的に動作ウィンドウが消失する。
 図6は、本開示の実施の形態における図2A中の1T1Rメモリセルのセル電流分布を示す正規期待値プロット図である。定電流源の設定電流値をトータル175μA(電流印加時間5ns)から75μA(電流印加時間95ns)に低減してLR書き込みを行った場合の初期状態、及び10万回書き換え後の高抵抗状態(HR)と低抵抗状態(LR)の正規期待値プロットされたセル電流分布(約1kb)の推移である。白抜き四角は初期状態の高抵抗状態、白丸は初期状態の低抵抗状態、黒菱形は10万回後の低抵抗状態、黒三角は10万回後の高抵抗状態のセル電流を示している。
 第1期間における高電流短パルス(定電流175μA、5ns)により、従来の書き込み電流パルス(定電流175μA、パルス幅100ns)よりもパルス幅が短くなったことで、酸素イオンのフィラメント86内から第1の遷移金属酸化物層82としての第1のTa酸化物層への移動、すなわち還元反応が不十分になり、LRセル電流のメジアン値は低下するも、初期ウィンドウは確保でき、後の第2期間における低電流パルス(定電流75μA、95ns)により、フィラメント86が低電流印加でアニールされ、フィラメント86内の酸素イオンの移動により形成された空隙(欠陥)が均一・安定化され、書き換え回数増加による抵抗変化動作の劣化(セル電流分布のバラツキ増大)を顕著に低減でき、書き換えの安定持続動作が可能となっている。
 以上のように、本開示の定電流2段階低減書き込みを行うことにより、高電流短パルスによる初期ウィンドウの確保と低電流パルスによる書き換え劣化の抑制・安定化の両立を実現できる。
 [3.抵抗変化型不揮発性記憶装置のメモリアレイを含む構成例]
 次に、本開示の実施の形態として、上記で説明した抵抗変化素子RSEおよび本開示の定電流2段階低減型駆動を用いた1T1Rメモリセルが行列状に配置された抵抗変化型不揮発性記憶装置の全体の構成について説明する。
 (実施の形態1)
 図7は、本開示の実施の形態における抵抗変化型不揮発性記憶装置の構成例を示すブロック図である。
 本実施の形態に係る抵抗変化型不揮発性記憶装置4000は、半導体基板上に、メモリ本体部300を備えており、メモリ本体部300は、メモリアレイ301と、列選択回路302と、行選択回路303と、データの書き込みを行うための書き込み回路304と、選択ビット線に流れる電流量を検出し、記憶されているデータが「1」か、「0」か、を判定する読み出し回路305とを備える。
 周辺回路部306は、電圧生成回路308とワード線電圧切り替え回路316とアドレス入力回路317と入出力回路318を備え、外部から入力されるコントロール信号に基づいて、メモリ本体部300および周辺回路部306の動作を制御する制御回路307を備えている。
 電圧生成回路308は、低抵抗化用ワード線電源309と、高抵抗化用ワード線電源310と、読み出し用ワード線電源311と、低抵抗化クランプ用電源312と、低抵抗化用パルス電源313と、高抵抗化用パルス電源314と、プリチャージ電源315を備えている。
 これらの電源は、外部電源VDDを入力とし、図15に示す所定の設定電圧値を生成する。ここで示す値は、図1Aで説明した低抵抗化における定電流2段階低減型駆動における電圧値に基づいている。
 さらに、低抵抗化用ワード線電源309の出力VwLと、高抵抗化用ワード線電源310の出力VwHと、読み出し用ワード線電源311の出力Vrは、ワード線電圧切り替え回路316に供給される。出力VwLは低抵抗書き込み指示信号WELにより、出力VwHは高抵抗書き込み指示信号WEHにより、出力Vrは読み出し指示信号REにより、何れかが選択され、ワード線電圧切り替え回路316の出力VRDとして行選択回路303に供給される。
 低抵抗化クランプ用電源312の出力Vc1/Vc2と、低抵抗化用パルス電源313の出力VdLと、高抵抗化用パルス電源314の出力VdHは、書き込み回路304に供給される。プリチャージ電源315の出力VPRは、列選択回路302および書き込み回路304に供給される。各々の電源回路は、外部電源VDDを降圧して各々所定の電圧を生成する一般的な降圧回路で構成されており、詳細な説明は省略する。また各々の電源回路は、製造ばらつき等を反映したり、最適動作点に設定したりするため、その出力電圧値を微調整できるように、一般的に用いられているトリミング機能を備えている。
 なお、外部電源VDDの電圧値によっては、これらの電源回路の何れかまたは全ては、外部電源VDDから昇圧して生成する構成としてもよい。
 また、これらの電源回路の何れかまたは全ては、必ずしも抵抗変化型不揮発性記憶装置4000内に備える必要はなく、外部電源として所定の電圧を提供する構成にしてもよい。
 アドレス入力回路317は、外部から入力されるアドレス信号を受け取り、メモリアレイ301の指定メモリセル3を指示する。
 入出力回路318は、外部からDQ端子に入力されるデータ入力信号Dinを受け取り、書き込み信号としてメモリ本体部300に供給し、またはメモリ本体部300から読み出し出力信号を受け取り外部に出力信号Doutを、DQ端子を介して出力する。
 メモリアレイ301は、本開示の基礎データとして上記で説明したメモリセル3が、行列状にm行n列配列されている。ここでは左上をM11とし、行方向にM11、M21、・・・、Mm1、列方向にM11、M12、・・・、M1nと各々のメモリセルを表す。
 行選択回路303より行方向に出力される複数のワード線WL1、WL2、・・・、WLmは、各々のメモリセル3のメモリセルゲート端子MGに接続される。
 列選択回路302より列方向に出力される複数のビット線BL1、BL2、・・、BLnおよび、複数のソース線SL1、SL2、・・、SLnは、交互に平行配列され、各々のメモリセル3のビット線BLおよび、ソース線SLに接続される。
 列選択回路302および書き込み回路304は、メモリアレイ301の上辺側および下辺側に配列され、ビット線BL1、BL2、・・、BLnおよびソース線SL1、SL2、・・、SLnの両端からき書き込み制御する構成としている。
 これは、ビット線やソース線の配線抵抗に起因するIRドロップの影響を低減する目的で両辺に配置しているが、メモリセル3が配列される個数や適用される製造プロセスの配線抵抗値に依ってIRドロップの影響が小さい場合は、例えば下辺側のみの配列でもよい。
 メモリセル3への書き込み動作は、本開示の基礎データの説明の場合と同様で、ビット線BLを低電位、ソース線SLを高電位に設定した場合、低抵抗化し、ビット線BLを高電位、ソース線SLを低電位に設定した場合、高抵抗化する。
 図8は、書き込み回路304の回路例を示す図である。
 ソース線書き込み回路330とビット線書き込み回路336を備えている。
 ソース線書き込み回路330は、低抵抗化用パルス電源313の出力VdLがLR化用電源端子11に、低抵抗化クランプ用電源312の出力Vc1/Vc2がLR化用電流制限素子26、27の各ゲート端子に、制御回路307から出力される低抵抗化用の電圧パルスViが書き込みパルス幅制御端子33に入力される電流波形制御回路24と、その内部にある定電流制御スイッチ31、32の共通化されたドレイン端子と直列接続され低抵抗書き込み指示信号WELを入力とするインバータ332の出力をゲート入力とするPMOSトランジスタ333を介して、ソース線入力端子SLinに接続される。さらにソース線入力端子SLinは、高抵抗書き込み指示信号WEHをゲート入力に、ソースをグランドとするNMOSトランジスタ334と、プリチャージ電源315の出力VPRをソース入力に、プリチャージ指示信号NPRをゲート入力とするPMOSトランジスタ335と、読み出し指示信号REをゲート入力に、ソースをグランドとするNMOSトランジスタ342と接続される。
 ビット線書き込み回路336は、高抵抗化用パルス電源314の出力VdHがソース入力に、高抵抗書き込み指示信号WEHを入力とするインバータ337の出力がゲート入力に、ビット線入力端子BLinがドレインに接続されるPMOSトランジスタ338と、ビット線入力端子BLinがドレイン入力に、低抵抗書き込み指示信号WELがゲート入力に、ソースがグランドに接続されるNMOSトランジスタ339と、プリチャージ指示信号NPRがゲート入力に、プリチャージ電源315の出力VPRがソース入力に、ット線入力端子BLinがドレイン入力に接続されるPMOSトランジスタ340と、読み出し指示信号REがゲート入力に、ビット線入力端子BLinがドレイン入力に、ビット線出力信号BLoutがソースに接続されるNMOSトランジスタ341から構成される。
 ビット線出力信号BLoutは、読み出し回路305に接続される。
 なお図1Aの抵抗変化型不揮発性記憶装置における、LR化SL選択スイッチ14がPMOSトランジスタ333に、LR化BL選択スイッチ13がNMOSトランジスタ339に対応し、またHR化BL選択スイッチ16がPMOSトランジスタ338に、HR化SL選択スイッチ18がNMOSトランジスタ334に対応する。
 図9は、列選択回路302の回路例を示す図を示す。
 ビット線選択回路350は、ソース、ドレインの一方をビット線BLi(i=1~n)に、他方をビット線入力端子BLinに接続したNMOSトランジスタ351と、ソース、ドレインの一方を同じくビット線BLi(i=1~n)に他方をプリチャージ電源315の出力VPRに接続したPMOSトランジスタ352を備えている。両方のトランジスタのゲートは、同一の列選択信号CLi(i=1~n)に接続される。
 ソース線選択回路353は、ソース、ドレインの一方をビット線BLiと対を成すソース線SLi(i=1~n)に、他方をソース線入力端子SLinに接続したNMOSトランジスタ354と、ソース、ドレインの一方を同じくソース線SLi(i=1~n)に他方をプリチャージ電源315の出力VPRに接続したPMOSトランジスタ355を備えている。両方のトランジスタのゲートは、同一の列選択信号CLi(i=1~n)に接続される。
 そしてビット線選択回路350とソース線選択回路353は、交互に配列されている。
 n本の列選択信号CLi(i=1~n)は、選択される1本のみがハイレベル、他がロウレベルに設定される。選択されるビット線BLiおよびソース線SLiの一対のみがビット線入力端子BLinおよびソース線入力端子SLinと接続され、残りの非選択となるビット線BLiおよびソース線SLiはVPRにプリチャージされる。
 また、列選択信号CLi(i=1~n)のハイレベルは、外部電源VDDであるが、NMOSトランジスタ351およびNMOSトランジスタ354の閾値電圧の影響が表れないように、この信号の出力だけより高い電圧を与えることや、PMOSトランジスタと対の構成にしてもよい。
 図10は、行選択回路303の回路例を示す図である。
 行選択回路303は、アドレス入力回路317で生成されたアドレス選択指示信号を元に、選択行を指定するデコード信号を生成するデコード回路370と、デコード信号に接続されるワード線ドライバー371を備えている。ワード線ドライバー371は、ワード線電圧切り替え回路316の出力VRDをもう一つの入力とし、ワード線の本数分(m本)の個数を備えている。そして選択行に対応するワード線WLj(j=1~m)に、低抵抗書き込み時には電圧VwLを、高抵抗書き込み時には電圧VwHを、読み出し動作時には電圧Vrを指定期間出力する。
 以上の様に構成された抵抗変化型不揮発性記憶装置4000について、その動作を図11に示すタイミングチャートを参照しながら説明する。
 なお、ここでは、抵抗変化型不揮発性記憶素子が高抵抗状態の場合をデータ「0」に、低抵抗状態の場合をデータ「1」にそれぞれ割り当てると定義している。また、制御信号の振幅レベルは、電圧記号を付していないものは、ハイレベルが外部電源VDD、ロウレベルが0Vである。
 説明は4つのサイクルについて、サイクルT1はメモリセルM11に低抵抗書き込み、サイクルT2はメモリセルM12に高抵抗書き込み、サイクルT3はメモリセルM11の低抵抗状態の読み出し、サイクルT4はメモリセルM12の高抵抗状態の読み出し、の動作例を示す。
 まずサイクルT1のメモリセルM11への低抵抗書き込み動作について説明する。
 最初、全てのワード線WLj(j=1~m)、列選択信号CLi(i=1~n)は0Vで、何れのメモリセルも非選択状態にある。
 一方、プリチャージ指示信号NPRは負論理信号で、0Vでプリチャージ指示が行われている。その結果全てのビット線BLi、ソース線SLi(i=1~n)、およびビット線入力端子BLin、ソース線入力端子SLinは電圧VPRにプリチャージされている。
 そして、入出力DQ端子は、データ「1」書き込みとしてハイレベルが設定される。
 次に、プリチャージ指示信号NPRがハイレベルに設定され、ビット線入力端子BLinとソース線入力端子SLinのプリチャージ状態が解除される。
 次に、アドレス入力回路317の選択指示を受け、選択ワード線であるWL1および選択列である列選択信号CL1が、ハイレベルに設定される。このときワード線WL1の電圧は低抵抗書き込み用のVwLとなる。また選択列であるビット線BL1およびソース線SL1は、プリチャージが解除され、ビット線入力端子BLinおよびソース線入力端子SLinに接続される。一方、それ以外の非選択ビット線、非選択ソース線はプリチャージが維持される。
 次に、入出力DQ端子のデータ「1」書き込み指示に対応して、低抵抗書き込み指示信号WELがハイレベルに、負論理の電圧パルスViがロウレベルに100nsの期間設定され、これを受けソース線入力端子SLinが高電位側に、ビット線入力端子BLinが低電位側に駆動され、選択メモリセルM11へ、本開示の基礎データとして詳細に説明した定電流2段階低減低抵抗化書き込み動作が行われる。
 次に、低抵抗書き込み指示の終了を受けて選択ワード線WL1および選択列選択信号CL1が、0Vに設定され、メモリセルM11が非選択状態になるとともに、ビット線BL1およびソース線SL1のプリチャージが開始される。
 そして最後にプリチャージ指示信号NPRが0Vに設定され、ビット線入力端子BLinとソース線入力端子SLinのプリチャージが開始され、低抵抗書き込みサイクルが終了する。
 次にサイクルT2のメモリセルM12への高抵抗書き込み動作について説明する。
 最初、全てのワード線WLj(j=1~m)、列選択信号CLi(i=1~n)は0Vで、何れのメモリセルも非選択状態にある。
 一方、プリチャージ指示信号NPRは0Vでプリチャージ指示が行われ、ビット線BLi、ソース線SLi(i=1~n)、およびビット線入力端子BLin、ソース線入力端子SLinは電圧VPRにプリチャージされている。
 そして、入出力DQ端子は、データ「0」書き込みとしてロウレベルが設定される。
 次にプリチャージ指示信号NPRがハイレベルに設定され、ビット線入力端子BLinとソース線入力端子SLinのプリチャージ状態が解除される。
 次に、アドレス入力回路317の選択指示を受け、選択ワード線であるWL1および選択列である列選択信号CL2が、ハイレベルに設定される。このときワード線WL1の電圧は高抵抗書き込み用のVwHとなる。また選択列であるビット線BL2およびソース線SL2は、プリチャージが解除され、ビット線入力端子BLinおよびソース線入力端子SLinに接続される。一方、それ以外の非選択ビット線、非選択ソース線はプリチャージが維持される。
 次に、入出力DQ端子のデータ「0」書き込み指示に対応して、高抵抗書き込み指示信号WEHがハイレベルに100nsの期間設定され、これを受けソース線入力端子SLinが低電位側に、ビット線入力端子BLinが高電位側に駆動され、選択メモリセルM12へ、本開示の基礎データとして詳細に説明した高抗書き込み動作が行われる。
 なお、このタイミングチャートのセル電流は、その絶対値を示すもので、流れる向きはサイクルT1とは逆向きである。
 次に、高抵抗書き込み指示の終了を受けて選択ワード線WL1および選択列選択信号CL2が、0Vに設定され、メモリセルM12が非選択状態になるとともに、ビット線BL2およびソース線SL2のプリチャージが開始される。
 そして最後にプリチャージ指示信号NPRが0Vに設定され、ビット線入力端子BLinとソース線入力端子SLinのプリチャージが開始され、高抵抗書き込みサイクルが終了する。
 次にサイクルT3のメモリセルM11の低抵抗状態の読み出し動作について説明する。
 最初、全てのワード線WLj(j=1~m)、列選択信号CLi(i=1~n)は0Vで、何れのメモリセルも非選択状態にある。
 一方、プリチャージ指示信号NPRは0Vでプリチャージ指示が行われ、ビット線BLi、ソース線SLi(i=1~n)、およびビット線入力端子BLin、ソース線入力端子SLinは電圧VPRにプリチャージされている。
 次に、プリチャージ指示信号NPRがハイレベルに設定され、ビット線入力端子BLinとソース線入力端子SLinのプリチャージ状態が解除される。
 次に、アドレス入力回路317の選択指示を受け、選択ワード線であるWL1および選択列である列選択信号CL1が、ハイレベルに設定される。このときワード線WL1の電圧は読み出し用のVrとなる。また選択列であるビット線BL1およびソース線SL1のプリチャージが解除され、ビット線入力端子BLinおよびソース線入力端子SLinに接続される。一方、それ以外の非選択ビット線、非選択ソース線はプリチャージが維持される。
 次に、読み出し指示信号REが読み出し動作の期間(ここでは150nsに設定)ハイレベルに設定され、NMOSトランジスタ342がオンし、ソース線入力端子SLinを介して選択ソース線SL1が低電位側に駆動されるとともに、NMOSトランジスタ341がオンし、ビット線入力端子BLinを介して選択ビット線BL1がビット線出力信号BLoutと接続される。ビット線出力信号BLoutは、読み出し回路305と接続されており、ビット線BL側からソース線SL側へ流れる電流量の大小でデータ「1」またはデータ「0」を判別する。メモリセルM11は低抵抗状態が書き込まれており、高抵抗状態の場合に比べより多くの電流が流れ、読み出し回路305はデータ「1」と判定し、入出力DQ端子よりハイレベルが出力される。
 次に、読み出し指示の終了を受けて選択ワード線WL1および選択列選択信号CL1が、0Vに設定され、メモリセルM11が非選択状態になるとともに、ビット線BL1およびソース線SL1のプリチャージが開始される。
 そして最後にプリチャージ指示信号NPRが0Vに設定され、ビット線入力端子BLinとソース線入力端子SLinのプリチャージが開始され、読み出し動作サイクルが終了する。
 サイクルT4のメモリセルM12の高抵抗状態の読み出し動作は、サイクルT3と選択列が異なること、選択されるメモリセルM12が高抵抗状態に書き込まれており、低抵抗状態の場合に比べより電流が少なく、読み出し回路305は、データ「0」と判定し、入出力DQ端子よりロウレベルを出力すること以外は同じなので詳細な説明は省略する。
 以上が抵抗変化型不揮発性記憶装置4000の動作の説明であるが、非選択ビット線および非選択ソース線を所定の電圧VPRにプリチャージしていることに関して図12を用いてその効果を説明する。
 図12は、実施の形態における抵抗変化型不揮発性記憶装置のメモリセルのバイアス図である。
 図12の(a)に示すメモリセル状態は、本実施例として説明した低抵抗書き込みを行っている選択メモリセルの状態を、概略断面図で例示したもので、図11で説明したサイクルT1における選択メモリセルM11の状態がそれに該当する。
 メモリセルトランジスタ402は、半導体基板401上にワード線でもあるゲート電極404、ゲート酸化膜405、ソース線SLと接続されるN型拡散層のドレイン406、N型拡散層のソース407より構成され、ソース407と抵抗変化型不揮発性記憶素子RSEの下部電極が接続され、ビット線BLと上部電極が接続される。
 低抵抗書き込みは、ソース線SLは凡そ電圧VdL-α(αは、LR化用電流制限素子26、27による電圧降下分を表す)に、ビット線を0Vの低電圧に設定し、ワード線は電圧VwLが与えられる。メモリセルトランジスタ402はオンし、チャネル408が形成されドレイン406からソース407に電流が流れる。
 一般的に、製造プロセスの微細化が進むとメモリセルも微細化され、より高集積化が可能となる。その場合メモリセルトランジスタ402の平面サイズが縮小化されるとともに、ゲート酸化膜405の薄膜化も進むため、ゲート電極404に印加可能な最大電圧は微細化が進むとともに下る。
 そのため、メモリセルの高信頼性には、ゲート酸化膜405にかかる電界を緩和する制御が重要となる。
 本実施例では、選択メモリセル400ではチャネル408が形成されているため、実質的にはゲート電極404とチャネル408との間の電界が、ゲート酸化膜405にかかる。低抵抗書き込みの場合、ゲート酸化膜405に印加される電界が最も高くなるのは、より電圧の低いソース407付近のチャネル408である。ビット線BLは0Vだが、抵抗変化型不揮発性記憶素子RSEには電流が流れるため、ソース407の電位は、抵抗変化型不揮発性記憶素子RSEの端子間電圧分(凡そ1~1.2V程度)上昇し、実質的にはゲート電極404-チャネル408の間の電位差は、1.8V~2.0V程度に緩和することができる。
 図12の(b)に示すメモリセル状態は、本実施例として説明した低抵抗書き込みが行われている選択メモリセルと同一行の非選択メモリセルの状態を、概略断面図で例示したもので、図11で説明したサイクルT1における非選択メモリセルM12などの状態がそれに該当する。非選択列のソース線SLおよびビット線BLは、電圧VPR(1.1V)にプリチャージされている。抵抗変化型不揮発性記憶素子RSEは導電性を有しているため、N型拡散層のドレイン406とともにN型拡散層のソース407の電圧もVPRとなる。選択行のためゲート電極404は電圧VwLで、ゲート-ソース間電位、ゲート-ドレイン間電位ともメモリセルトランジスタ402の閾値電圧以上となり、メモリセルトランジスタ402はオンし、チャネル411が形成される。このチャネル411の電圧は、ビット線BLおよびソース線SLと同じVPRとなる。そのためゲート電極404-チャネル411の間の電位差は1.9Vに緩和できる。
 一方、図12の(c)に示すメモリセル状態は、低抵抗化書き込みが行われている選択メモリセルと同一行の非選択メモリセルのビット線BLとソース線SLを、従来一般的に行われる0Vにプリチャージした場合を例示したものである。この場合、チャネル421の電圧は、ビット線BLおよびソース線SLと同じ0Vとなる。ゲート電極404-チャネル421の間の電位差は3.0Vとなり、図12の(b)のメモリセル状態に比べ1V以上高くなり、より微細なプロセスを適用する場合にはあまり望ましくない。
 図12の(d)のメモリセル状態は、図12の(c)のメモリセル状態とは逆に、低抵抗化書き込みが行われている選択メモリセルと同一行の非選択メモリセルのビット線BLとソース線SLを、ゲート電極404の電圧VwLと同じ電圧にプリチャージした場合の状態を、例示したものである。この場合メモリセルトランジスタ402はオフし、チャネルは形成されない。その為ゲート酸化膜405には、ゲート電極404と半導体基板401との間の電界がかかる。半導体基板401は一般的に0Vが設定されるため、実質的には図12の(c)のメモリセル状態のゲート酸化膜405の電界という面では同じく3.0Vで、より微細なプロセスを適用する場合にはあまり望ましくない。
 以上より、非選択列のメモリセルのソース線SLおよびビット線BLのプリチャージ電圧VPRを、チャネルが形成されるように、選択ワード線の電圧VwLからメモリセルトランジスタ402の閾値電圧Vtns分を引いた電圧より低く、且つ0Vより高い所定電圧の関係に設定し、より微細なプロセスに適用すればよい。つまり、プリチャージ電圧VPRは次式のように設定すればよい。
 0V<VPR<VwL-Vtns
 この場合、プリチャージ電圧VPRは、VwL-Vtns未満の電圧で、より高い電圧に設定するのが、ゲート酸化膜405の電界を下げるという面では望ましいが、一方、全ての非選択ビット線や非選択ソース線を所定電圧までプリチャージすることは消費電力が増大するという背反する課題にも繋がる。
 両者のバランスを考慮し、例えば、VPR=(VwL-Vtns)/2など、最適なプリチャージ電圧VPRに設定されればよい。
 また、本実施形態では、低抵抗化書き込み電流を定電流2段階低減するため、電流波形制御回路24をLR化用電源端子11側に設けたが、同様の機能を有する電流波形制御回路をGND端子側に設けて良いのは言うまでもない。
 さらに、本実施形態では、メモリセルトランジスタをスイッチ素子として用いていたが、セル面積を削減するため、双方向ダイオードを用いても良い。
 また、本実施形態では、抵抗変化層85として、タンタル酸化物を用いたが、タンタル酸化物にアルミニウム(Al)を添加したタンタル・アルミニウム酸化物(TaAlO)を用いても同様の効果を奏することができる。
 [3.変形例]
 次に、実施の形態における抵抗変化型不揮発性記憶装置の主要部の変形例について説明する。
 図16は、実施の形態における抵抗変化型不揮発性記憶装置の主要部の変形例を示す図である。同図の抵抗変化型不揮発記憶装置2は、図1Aと比べて、電流波形制御回路24の代わりに電流波形制御回路24aを備える点が異なる。以下、同じ点については説明の重複を避けて、異なる点を中心に説明する。
 電流波形制御回路24aは、波形生成部35、DAC36およびトランジスタ37を備える。
 波形生成部35は、低抵抗化電流の電流波形を示すデジタル信号である波形データCtlを生成する。波形生成部35は、例えば、波形データCtlを示す時系列のサンプル値を記憶するROM、または、専用回路で構成される。
 DAC36は、波形生成部35からの波形データCtlをアナログ信号に変換するデジタル-アナログ変換回路である。DAC36は、変換したアナログ信号を、ゲート電圧Vgpとしてトランジスタ37のゲートに供給する。
 トランジスタ37は、ゲート電圧Vgpに応じた波形を有する低抵抗化電流を、LR化SL選択スイッチ14を介してメモリセル3に供給する電流源としてのpMOSトランジスタである。
 図17は、実施の形態における低抵抗化電流の電流波形の変形例を示す図である。同図の(a)は、DAC36からトランジスタ37のゲートに出力されるゲート電圧Vgpを示す。同図の(b)の電流は、トランジスタ37から出力される低抵抗化電流を示す。トランジスタ37がpMOSトランジスタであることから、低抵抗化電流は、ゲート電圧Vgpの変化に対して反転した波形を有する。
 低抵抗化電流の電流波形は、時間軸において、第1期間と、第1期間に続く第2期間と1回有する。低抵抗化電流のうち第1期間に対応する部分を第1電流と呼ぶ。低抵抗化電流のうち第2期間に対応する部分を第2電流と呼ぶ。同図の(b)において第1電流は、三角波であり、第1ピーク電流Ip1を有する。第2電流は、ほぼ定電流であり、第1ピーク電流Ip1より小さい電流値Ip2を有する。また、 第1期間の終了時の時刻t2における第1電流は0でなく、第2期間の開始時の時刻t2における第2電流Ip2は0でない。つまり、第1電流は、第1期間内でピークから0にまで落ちないで、第2電流は、第2期間の開始時で0でない値である。
 低抵抗化電流の電流波形が、図17の(b)のような波形であっても、図1Bと同じ効果を得ることができる。
 さらに、低抵抗化電流の電流波形の他の変形例について説明する。
 図18は、実施の形態の変形例における低抵抗化電流の電流波形の他の変形例を示す図である。
 同図の(a)の例では、低抵抗化電流は、第1期間において立ち下がりが急峻なのこぎり波の形状を有する電流波形を有する。第1期間の時間幅、第2期間の時間幅、第1電流のピーク値Ip1、および第2電流Ip2は、図1Bと同じでよい。
 同図の(b)の例では、低抵抗化電流は、第1期間において立ち上がりが急峻なのこぎり波の形状を有する電流波形を有する。
 同図の(c)の例は、図 17の(b)と同じである。
 同図の(d)の例では、低抵抗化電流は、第1期間において三角波の電流形状を有し、第2期間において第2電流が階段状に小さくなる電流波形を有する。
 同図の(e)の例では、低抵抗化電流は、同図の(c)のような第1期間と第2期間との組を2つ以上有する。第1期間の時間幅、第2期間の時間幅、第1電流のピーク値Ip1、および第2電流Ip2は、図1Bと同じでなくてもよい。
 以上説明してきたように実施の形態の一態様に係る抵抗変化型不揮発性記憶装置2は、高抵抗状態と低抵抗状態とを可逆的に変化可能な抵抗変化素子(RSE)と、前記高抵抗状態から前記低抵抗状態に変化させるための低抵抗化電流を前記抵抗変化素子に通電する電流供給回路としての電流波形制御回路24aと、を備え、前記低抵抗化電流の電流波形は、時間軸において、第1期間と、前記第1期間に続く第2期間とを有し、電流供給回路24aは、第1期間において第1電流を抵抗変化素子に印加し、第2期間において第1電流より小さい第2電流を抵抗変化素子に印加し、第1期間の終了時における第1電流は0でなく、第2期間の開始時における第2電流は0でない。
 これによれば、高抵抗状態から低抵抗状態に変化させる書き込みにおいて、初期ウィンドウの劣化を抑制することができ、かつ、高サイクリング時(例えば10万回の書き換え時)の動作ウィンドウ劣化を抑制することができる。例えば、微細化した場合でも、信頼性の高い安定した書き換え動作を長期間に渡って実現することができる。
 ここで、前記第1電流は、定電流であってもよい。
 これによれば、電流波形制御回路24aとして定電流源を用いることが可能である。
 ここで、前記第1電流は、第2電流よりも大きいピーク値を有していてもよい。
 これによれば、電流波形制御回路24aは、第1電流として定電流でない波形を用いることができる。
 ここで、前記低抵抗化電流は、下り階段状の電流波形を有していていもよい。
 これによれば、電流波形制御回路24aは、第1電流および第2電流を下り階段状の電流波形として生成する。これによっても、上記の初期ウィンドウの劣化を抑制することができ、かつ、高サイクリング時(例えば10万回の書き換え時)の動作ウィンドウ劣化を抑制することができる。
 ここで、前記電流供給回路としての電流波形制御回路24aは、前記第1期間において第1定電流を前記抵抗変化素子に通電し、前記第2期間において前記第1定電流より小さい第2定電流を前記抵抗変化素子に通電してもよい。
 これによれば、高抵抗状態から低抵抗状態に変化させる書き込みにおいて、定電流を2段階で低減させる駆動を行う。この駆動を定電流2段階低減駆動と呼ぶ。この駆動は上記の下り階段状の電流波形の生成に適している。なお、通電する期間は第1期間と第2期間のみ有することに限定されるわけではなく、第3、4・・・n期間を別途有していてもよい。
 ここで、前記電流供給回路としての電流波形制御回路24は、第1定電流源としてのLR化用電流制限素子26と、第2定電流源としてのLR化用電流制限素子27と、を備え、前記電流供給回路は、前記第1期間において前記第1定電流源からの定電流と前記第2定電流源からの定電流とを重畳することにより前記第1定電流を生成し、前記第2期間において前記第1定電流源および前記第2定電流源の何れか一方からの定電流を前記第2定電流として生成してもよい。
 これによれば、第1期間において第2期間より高い電流値を抵抗変化素子に通電するので、初期ウィンドウを十分に確保することができる。第2期間において第1期間より低い電流値を抵抗変化素子に通電するので、高サイクリング時におけるウィンドウ劣化を抑制することができる。
 ここで、前記電流供給回路としての電流波形制御回路24は、さらに、前記第1定電流源と直列に接続された第1スイッチとしての定電流制御スイッチ31と、前記第2定電流源と直列に接続された第2スイッチとしての定電流制御スイッチ32と、を備え、前記電流供給回路は、前記第1期間において前記第1スイッチおよび前記第2スイッチの両方を導通状態にすることにより、前記第1定電流を前記抵抗変化素子に通電し、前記第2期間において前記第1スイッチおよび前記第2スイッチの一方を非導通状態にし、かつ、他方を導通状態にすることにより、前記第2定電流を前記抵抗変化素子に通電してもよい。
 これによれば,第1スイッチおよび第2スイッチの動作により容易に下り階段状の電流波形を生成することができる。
 ここで、前記第1期間は前記第2期間より短くてもよい。
 これによれば、比較的高い第1定電流が通電される第1期間において動作ウィンドウを拡大し、比較的低い第2定電流が通電される第2期間において高サイクリング動作による動作ウィンドウの劣化を抑制することができる。
 ここで、前記第1期間は前記第2期間の10%以下であってもよい。
 これによれば、第2期間の10%以下の第1期間において動作ウィンドウを拡大することができる。
 ここで、前記第1期間は5n秒以下であり、前記第2期間は50n秒以上であってもよい。
 これによれば、低抵抗化状態への書き込み動作を高速に行うことができる。
 ここで、前記第2定電流は前記第1定電流の60%以下であってもよい。
 これによれば、低抵抗化状態への書き込み動作を低電力化することができる。
 ここで、記第1定電流は125μA以上であり、前記第2定電流は75μA以下であってもよい。
 これによれば、低抵抗化状態への書き込み動作を低電力化することができる。
 ここで、前記抵抗変化素子RSEは、第1電極81と、前記第1電極に対向して形成される第2電極84と、前記第1電極81と前記第2電極84との間に介在する抵抗変化層85と、を有し、前記抵抗変化層85は、遷移金属酸化物を含む構成であってもよい。
 ここで、前記遷移金属酸化物は、タンタル、ハフニウムの少なくとも1つの酸化物を含んでいてもよい。
 ここで、前記抵抗変化素子は、半導体基板上に形成され、前記第2電極84は、前記半導体基板に対し、前記第1電極81よりも離れて形成されていてもよい。
 ここで、前記抵抗変化型不揮発性記憶装置は、行列状に配置された複数のメモリセルを備え、前記メモリセルは、スイッチ素子と、前記スイッチ素子と直列に接続された前記抵抗変化素子とを有していてもよい。
 ここで、前記スイッチ素子は、NMOSトランジスタまたは双方向ダイオードであってもよい。
 また、実施の形態に係る抵抗変化型不揮発性記憶装置の書き込み方法は、高抵抗状態と低抵抗状態とを可逆的に変化可能な抵抗変化素子RSEをメモリセルとして有する抵抗変化型不揮発性記憶装置において、前記抵抗変化素子を前記高抵抗状態から前記低抵抗状態に変化させる書き込み方法であって、第1期間において第1定電流を前記抵抗変化素子に通電し、前記第1期間に後続する第2期間において前記第1定電流より小さい第2定電流を前記抵抗変化素子に通電する。
 これによれば、高抵抗状態から低抵抗状態への書き換えにおいて、初期ウィンドウの劣化を抑制することができ、かつ、高サイクリング時の動作ウィンドウ劣化を抑制することができる。よって、微細化に適している。
 なお、本開示の主旨を逸脱しない範囲で、当業者が思いつく各種変形を施したり、実施の形態における構成要素を任意に組み合わせたりして実現される抵抗変化型不揮発性記憶装置、及びその書き込み方法も、本開示に含まれる。
 以上説明したように、本開示では、電気的信号に基づいて可逆的に抵抗値が変化する抵抗変化素子とトランジスタ等のスイッチ素子とで構成されたメモリセルを有する抵抗変化型不揮発性記憶装置において、実用的な書き込み制御方法、回路面積で、簡便に、かつ、アレイ面積を顕著に増大させることなく、書き換え可能回数を向上できるので、高信頼性メモリを実現するのに有用である。
 1、402 メモリセルトランジスタ
 2 抵抗変化型不揮発性記憶装置
 3 メモリセル
 10、333、335、338、340、352、355 PMOSトランジスタ
 11 LR化用電源端子
 12 LR化用クランプ制御端子
 13 LR化BL選択スイッチ
 14 LR化SL選択スイッチ
 16 HR化BL選択スイッチ
 17 HR化用電源端子
 18 HR化SL選択スイッチ
 22a、23 ソース線駆動回路
 22b ビット線駆動回路
 24、24a 電流波形制御回路(電流供給回路)
 25 定電流制御回路
 26 LR化用電流制限素子(第1定電流源)
 27 LR化用電流制限素子(第2定電流源)
 28 遅延回路
 29 NAND回路
 30、332、337 インバータ
 31 定電流制御スイッチ(第1スイッチ)
 32 定電流制御スイッチ(第2スイッチ)
 33 書き込みパルス幅制御端子
 35 波形生成部
 36 DAC
 37 トランジスタ
 81 第1電極(下部電極)
 82 第1の遷移金属酸化物層
 83 第2の遷移金属酸化物層
 84 第2電極(上部電極)
 85 抵抗変化層
 86 フィラメント
 300 メモリ本体部
 301 メモリアレイ
 302 列選択回路
 303 行選択回路
 304 書き込み回路
 305 読み出し回路
 306 周辺回路部
 307 制御回路
 308 電圧生成回路
 309 低抵抗化用ワード線電源
 310 高抵抗化用ワード線電源
 311 読み出し用ワード線電源
 312 低抵抗化クランプ用電源
 313 低抵抗化用パルス電源
 314 高抵抗化用パルス電源
 315 プリチャージ電源
 316 ワード線電圧切り替え回路
 317 アドレス入力回路
 318 入出力回路
 330 ソース線書き込み回路
 334、342、339、341、351、354 NMOSトランジスタ
 336 ビット線書き込み回路
 350 ビット線選択回路
 353 ソース線選択回路
 370 デコード回路
 371 ワード線ドライバー
 400 選択メモリセル
 401 半導体基板
 404 ゲート電極
 405 ゲート酸化膜
 406 ドレイン
 407 ソース
 408、411、421 チャネル
 520 超高抵抗状態
 3000a 抵抗変化型不揮発性記憶素子
 4000 抵抗変化型不揮発性記憶装置
 RSE 抵抗変化型不揮発性記憶素子

Claims (18)

  1.  高抵抗状態と低抵抗状態とを可逆的に変化可能な抵抗変化素子と、
    前記高抵抗状態から前記低抵抗状態に変化させるための低抵抗化電流を前記抵抗変化素子に通電する電流供給回路と、を備え、
     前記低抵抗化電流の電流波形は、時間軸において、第1期間と、前記第1期間に続く第2期間とを有し、
     前記電流供給回路は、前記第1期間において第1電流を前記抵抗変化素子に印加し、
    前記第2期間において前記第1電流より小さい第2電流を前記抵抗変化素子に印加し、
     前記第1期間の終了時における前記第1電流は0でなく、
     前記第2期間の開始時における前記第2電流は0でない
    抵抗変化型不揮発性記憶装置。
  2.  前記第1電流は、定電流である
    請求項1に記載の抵抗変化型不揮発性記憶装置。
  3.  前記第1電流は、前記第2電流より大きいピーク値を有する
    請求項1に記載の抵抗変化型不揮発性記憶装置。
  4.  前記低抵抗化電流は、下り階段状の電流波形を有する
    請求項1に記載の抵抗変化型不揮発性記憶装置。
  5.  前記電流供給回路は、
     前記第1期間において第1定電流を前記抵抗変化素子に通電し、
     前記第2期間において前記第1定電流より小さい第2定電流を前記抵抗変化素子に通電する
    請求項1、2または4に記載の抵抗変化型不揮発性記憶装置。
  6.  前記電流供給回路は、
     第1定電流源と、
     第2定電流源と、を備え、
     前記電流供給回路は、
     前記第1期間において前記第1定電流源からの定電流と前記第2定電流源からの定電流とを重畳することにより前記第1定電流を生成し、
     前記第2期間において前記第1定電流源および前記第2定電流源の何れか一方からの定電流を前記第2定電流として生成する
    請求項5記載の抵抗変化型不揮発性記憶装置。
  7.  前記電流供給回路は、
     前記第1定電流源と接続された第1スイッチと、
     前記第2定電流源と接続された第2スイッチと、を備え、
     前記電流供給回路は、
     前記第1期間において前記第1スイッチおよび前記第2スイッチの両方を導通状態にすることにより、前記第1定電流を前記抵抗変化素子に通電し、
     前記第2期間において前記第1スイッチおよび前記第2スイッチの一方を非導通状態にし、かつ、他方を導通状態にすることにより、前記第2定電流を前記抵抗変化素子に通電する
    請求項6記載の抵抗変化型不揮発性記憶装置。
  8.  前記第1期間は前記第2期間より短い
    請求項1から7の何れか1項に記載の抵抗変化型不揮発性記憶装置。
  9.  前記第1期間は前記第2期間の10%以下である
    請求項1から8の何れか1項に記載の抵抗変化型不揮発性記憶装置。
  10.  前記第1期間は5n秒以下であり、
     前記第2期間は50n秒以上である
    請求項1から8の何れか1項に記載の抵抗変化型不揮発性記憶装置。
  11.  前記第2定電流は前記第1定電流の60%以下である
    請求項5から7の何れか1項に記載の抵抗変化型不揮発性記憶装置。
  12.  前記第1定電流は125μA以上であり、
     前記第2定電流は75μA以下である
    請求項5から7の何れか1項に記載の抵抗変化型不揮発性記憶装置。
  13.  前記抵抗変化素子は、
     第1電極と、
     前記第1電極に対向して形成される第2電極と、
     前記第1電極と前記第2電極との間に介在する抵抗変化層と、を有し、
     前記抵抗変化層は、遷移金属酸化物を含む
    請求項1から12の何れか1項に記載の抵抗変化型不揮発性記憶装置。
  14.  前記遷移金属酸化物は、タンタル、ハフニウムの少なくとも1つの酸化物を含む
    請求項13に記載の抵抗変化型不揮発性記憶装置。
  15.  前記抵抗変化素子は、半導体基板上に形成され、
     前記第2電極は、前記半導体基板に対し、前記第1電極よりも離れて形成されている
    請求項13または14に記載の抵抗変化型不揮発性記憶装置。
  16.  前記抵抗変化型不揮発性記憶装置は、行列状に配置された複数のメモリセルを備え、
     前記メモリセルは、スイッチ素子と、前記スイッチ素子と直列に接続された前記抵抗変化素子とを有する
    請求項1から15の何れか1項に記載の抵抗変化型不揮発性記憶装置。
  17.  前記スイッチ素子は、NMOSトランジスタまたは双方向ダイオードである
    請求項16に記載の抵抗変化型不揮発性記憶装置。
  18.  高抵抗状態と低抵抗状態とを可逆的に変化可能な抵抗変化素子をメモリセルとして有する抵抗変化型不揮発性記憶装置において、前記抵抗変化素子を前記高抵抗状態から前記低抵抗状態に変化させる書き込み方法であって、
     第1期間において第1電流を前記抵抗変化素子に通電し、
     前記第1期間に後続する第2期間において前記第1電流より小さい第2電流を前記抵抗変化素子に通電し、
     前記第1期間の終了時における前記第1電流は0でなく、
     前記第2期間の開始時における前記第2電流は0でない
    抵抗変化型不揮発性記憶装置の書き込み方法。
PCT/JP2021/022553 2020-07-09 2021-06-14 抵抗変化型不揮発性記憶装置およびその書き込み方法 WO2022009618A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180043696.4A CN115917651A (zh) 2020-07-09 2021-06-14 电阻变化型非易失性存储装置及其写入方法
JP2022534981A JPWO2022009618A1 (ja) 2020-07-09 2021-06-14
US18/057,067 US20230081445A1 (en) 2020-07-09 2022-11-18 Variable resistance nonvolatile storage device and write method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-118177 2020-07-09
JP2020118177 2020-07-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/057,067 Continuation US20230081445A1 (en) 2020-07-09 2022-11-18 Variable resistance nonvolatile storage device and write method therefor

Publications (1)

Publication Number Publication Date
WO2022009618A1 true WO2022009618A1 (ja) 2022-01-13

Family

ID=79552915

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/022553 WO2022009618A1 (ja) 2020-07-09 2021-06-14 抵抗変化型不揮発性記憶装置およびその書き込み方法

Country Status (4)

Country Link
US (1) US20230081445A1 (ja)
JP (1) JPWO2022009618A1 (ja)
CN (1) CN115917651A (ja)
WO (1) WO2022009618A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120230080A1 (en) * 2011-03-11 2012-09-13 Samsung Electronics Co., Ltd. Variable Resistance Device, Semiconductor Device Including The Variable Resistance Device, And Method Of Operating The Semiconductor Device
US20130163349A1 (en) * 2011-12-22 2013-06-27 SK Hynix Inc. Programming pulse generation circuit and non-volatile memory apparatus having the same
WO2019131025A1 (ja) * 2017-12-29 2019-07-04 パナソニック株式会社 抵抗変化型不揮発性記憶装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120230080A1 (en) * 2011-03-11 2012-09-13 Samsung Electronics Co., Ltd. Variable Resistance Device, Semiconductor Device Including The Variable Resistance Device, And Method Of Operating The Semiconductor Device
US20130163349A1 (en) * 2011-12-22 2013-06-27 SK Hynix Inc. Programming pulse generation circuit and non-volatile memory apparatus having the same
WO2019131025A1 (ja) * 2017-12-29 2019-07-04 パナソニック株式会社 抵抗変化型不揮発性記憶装置

Also Published As

Publication number Publication date
US20230081445A1 (en) 2023-03-16
CN115917651A (zh) 2023-04-04
JPWO2022009618A1 (ja) 2022-01-13

Similar Documents

Publication Publication Date Title
JP5291248B2 (ja) 抵抗変化型不揮発性記憶素子のフォーミング方法及び抵抗変化型不揮発性記憶装置
JP4972238B2 (ja) 抵抗変化型不揮発性記憶素子のフォーミング方法
JP5250726B1 (ja) 抵抗変化型不揮発性記憶素子の書き込み方法および抵抗変化型不揮発性記憶装置
JP4252624B2 (ja) 抵抗変化型記憶装置
US9064573B2 (en) Writing method of variable resistance non-volatile memory element and variable resistance non-volatile memory device
JP5209151B1 (ja) 抵抗変化型不揮発性記憶素子の書き込み方法
JP4705202B2 (ja) 抵抗変化型不揮発性記憶素子のフォーミング方法および抵抗変化型不揮発性記憶装置
JP4189395B2 (ja) 不揮発性半導体記憶装置及び読み出し方法
JP5521612B2 (ja) 不揮発性半導体メモリデバイス
JP4705998B2 (ja) 抵抗変化型不揮発性記憶素子の書き込み方法および抵抗変化型不揮発性記憶装置
JP4940287B2 (ja) 不揮発性半導体記憶装置
US9336881B2 (en) Variable resistance nonvolatile memory device including a variable resistance layer that changes reversibly between a low resistance state and a high resistance state according to an applied electrical signal
JP5400253B1 (ja) 抵抗変化型不揮発性記憶素子の書き込み方法および抵抗変化型不揮発性記憶装置
WO2010125805A1 (ja) 抵抗変化型不揮発性記憶素子の書き込み方法及び抵抗変化型不揮発性記憶装置
JP5069339B2 (ja) 不揮発性可変抵抗素子の抵抗制御方法
JP2014032724A (ja) 半導体記憶装置
JP2010218603A (ja) 不揮発性可変抵抗素子のフォーミング処理の制御回路、並びにフォーミング処理の制御方法
JP2012128892A (ja) 記憶装置
JP6653488B2 (ja) 抵抗変化型不揮発性記憶素子のフォーミング方法および抵抗変化型不揮発性記憶装置
WO2022009618A1 (ja) 抵抗変化型不揮発性記憶装置およびその書き込み方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21836993

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022534981

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21836993

Country of ref document: EP

Kind code of ref document: A1