WO2013008648A1 - デュアルクラッチ式変速機の制御方法とデュアルクラッチ式変速機とそれを搭載した車両 - Google Patents

デュアルクラッチ式変速機の制御方法とデュアルクラッチ式変速機とそれを搭載した車両 Download PDF

Info

Publication number
WO2013008648A1
WO2013008648A1 PCT/JP2012/066708 JP2012066708W WO2013008648A1 WO 2013008648 A1 WO2013008648 A1 WO 2013008648A1 JP 2012066708 W JP2012066708 W JP 2012066708W WO 2013008648 A1 WO2013008648 A1 WO 2013008648A1
Authority
WO
WIPO (PCT)
Prior art keywords
clutch
input shaft
stage
gear
transmission
Prior art date
Application number
PCT/JP2012/066708
Other languages
English (en)
French (fr)
Inventor
幸士 寺島
Original Assignee
いすゞ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by いすゞ自動車株式会社 filed Critical いすゞ自動車株式会社
Priority to EP12811048.3A priority Critical patent/EP2733393B1/en
Priority to US14/232,594 priority patent/US9353831B2/en
Priority to CN201280034118.5A priority patent/CN103649600B/zh
Publication of WO2013008648A1 publication Critical patent/WO2013008648A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/02Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion
    • F16H3/08Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/68Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings
    • F16H61/684Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings without interruption of drive
    • F16H61/688Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings without interruption of drive with two inputs, e.g. selection of one of two torque-flow paths by clutches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D21/00Systems comprising a plurality of actuated clutches
    • F16D21/02Systems comprising a plurality of actuated clutches for interconnecting three or more shafts or other transmission members in different ways
    • F16D21/06Systems comprising a plurality of actuated clutches for interconnecting three or more shafts or other transmission members in different ways at least two driving shafts or two driven shafts being concentric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D21/00Systems comprising a plurality of actuated clutches
    • F16D21/08Serially-arranged clutches interconnecting two shafts only when all the clutches are engaged
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D41/00Freewheels or freewheel clutches
    • F16D41/06Freewheels or freewheel clutches with intermediate wedging coupling members between an inner and an outer surface
    • F16D41/064Freewheels or freewheel clutches with intermediate wedging coupling members between an inner and an outer surface the intermediate members wedging by rolling and having a circular cross-section, e.g. balls
    • F16D41/066Freewheels or freewheel clutches with intermediate wedging coupling members between an inner and an outer surface the intermediate members wedging by rolling and having a circular cross-section, e.g. balls all members having the same size and only one of the two surfaces being cylindrical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/006Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion power being selectively transmitted by either one of the parallel flow paths
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/02Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion
    • F16H3/08Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts
    • F16H3/10Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts with one or more one-way clutches as an essential feature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D41/00Freewheels or freewheel clutches
    • F16D41/06Freewheels or freewheel clutches with intermediate wedging coupling members between an inner and an outer surface
    • F16D41/064Freewheels or freewheel clutches with intermediate wedging coupling members between an inner and an outer surface the intermediate members wedging by rolling and having a circular cross-section, e.g. balls
    • F16D41/066Freewheels or freewheel clutches with intermediate wedging coupling members between an inner and an outer surface the intermediate members wedging by rolling and having a circular cross-section, e.g. balls all members having the same size and only one of the two surfaces being cylindrical
    • F16D2041/0665Freewheels or freewheel clutches with intermediate wedging coupling members between an inner and an outer surface the intermediate members wedging by rolling and having a circular cross-section, e.g. balls all members having the same size and only one of the two surfaces being cylindrical characterised by there being no cage other than the inner and outer race for distributing the intermediate members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2312/00Driving activities
    • F16H2312/02Driving off
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2312/00Driving activities
    • F16H2312/02Driving off
    • F16H2312/022Preparing to drive off
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/19Gearing
    • Y10T74/19219Interchangeably locked
    • Y10T74/19228Multiple concentric clutch shafts

Definitions

  • the present invention has a dual-clutch transmission that includes at least two input shafts and two clutches, and that facilitates speed change operations, reduces the burden on both clutches, suppresses wear, and increases durability.
  • the present invention relates to a control method of a dual clutch transmission, a dual clutch transmission and a vehicle equipped with the same.
  • DCT dual clutch transmission
  • AMT automatic transmission manual transmission
  • the DCT normally has clutches in each of the even and odd stages and switches between the two to change gears. Therefore, the shift operation of the odd (even) stage can be performed while the even (odd) stage is in use.
  • the DCT enables a quick shift without a shift time lag and transmits power by a clutch. Therefore, the DCT has a simple structure, less power loss, and excellent transmission efficiency, leading to improved fuel efficiency.
  • the DCT 1X includes the first input shaft 11, the second input shaft 12, the first clutch C1, the second clutch C2, the counter shaft 13, the gear stages G1 to G6, the gear stage GR, and the coupling sleeve S1.
  • S3 To S3 and a coupling sleeve SR.
  • the power of the engine (internal combustion engine) is received from the crankshaft 2 via the first clutch C1 or the second clutch C2, and the power is transmitted to the output shaft 3 by shifting at each gear stage.
  • the second input shaft 12 is formed in a hollow shape, and the first input shaft 11 is inserted so as to be coaxial with the second input shaft 12.
  • Gear stages G1, G3, G5, and GR are arranged on the first input shaft 11, and gear stages G2, G4, and G6 are arranged on the second input shaft.
  • the first clutch C1 is coupled to the first input shaft 11 or the second clutch C2 is coupled to the second input shaft, and the coupling sleeves S1 to SR provided on the countershaft 13 are synchronized with the gear stages G1 to GR. By combining, power can be transmitted.
  • the clutch C1 includes a flywheel C1a, a clutch cover C1b, a release bearing C1c, a diaphragm spring C1d, a pressure plate C1e, and a clutch disk C1f including a lining, a torsion damper, a thrust, and the like.
  • the clutch C2 has the same configuration.
  • the DCT 1X includes an ECU (control device) 20, a clutch operating mechanism 21 that operates the clutch C1 or the clutch C2, and a synchronous engagement mechanism 22 that operates the coupling sleeves S1 to SR.
  • ECU control device
  • a hydraulic piston or the like can be used for the clutch operation mechanism 21 and the synchronous engagement mechanism 22.
  • the DCT 1X uses the gear stage G1 as the starting stage DG1.
  • the ECU 20 releases the coupling of the first clutch C1 and the second clutch C2, and synchronously engages the coupling sleeve S1 with the start stage DG1.
  • the first clutch C ⁇ b> 1 is coupled to the first input shaft 11.
  • the arrows in FIG. 9 indicate power transmission at this time.
  • the coupling sleeve S2 is synchronously engaged with the gear stage G2.
  • the first clutch C1 is disengaged (hereinafter referred to as complete), and the second clutch C2 is coupled to the second input shaft 12 (hereinafter referred to as complete connection).
  • complete connection the second input shaft 12
  • the present invention has been made in view of the above problems, and its object is to reduce the burden on one clutch without changing the start feeling when the vehicle starts, and to reduce the load on only one clutch. It is an object of the present invention to provide a dual clutch transmission control method, a dual clutch transmission, and a vehicle equipped with the same, which can suppress wear and can prolong clutch replacement time. In addition, by using both clutches, a dual clutch transmission control method that prevents double meshing that occurs and does not reduce torque to the output shaft, a dual clutch transmission, and a vehicle equipped with the same are provided. It is to be.
  • a dual clutch transmission includes at least a first input shaft coupled to a first clutch and a second input shaft coupled to a second clutch, the first input shaft and the output shaft, And between the second input shaft and the output shaft, odd-numbered gear stages and even-numbered gear stages are arranged, respectively, and when starting transmission of power from a power source to the output shaft,
  • the first input An auxiliary stage disposed on a shaft and having a gear ratio different from that of the starting stage, wherein the starting stage is synchronously engaged with the second input shaft, and the auxiliary stage is synchronously engaged with the first input shaft.
  • 1 clutch and 2nd clutch simultaneously A rotational cutting mechanism is provided between the auxiliary stage and the first input shaft to idle the auxiliary stage when starting transmission of power from the power source to the output shaft in the coupled state.
  • both clutches When both clutches are used at the moment of starting the vehicle, wear of the starting stage clutch can be suppressed, so that the clutch replacement period can be extended. On the other hand, using both clutches may cause double meshing. Therefore, according to the above configuration, the rotation cutting mechanism that idles the auxiliary stage is provided so that rotation is not transmitted from the input shaft to the auxiliary stage when the rotational speed is lower than the gear speed of the auxiliary stage. As a result, even if both clutches are connected at the same time, the auxiliary stage rotates idly and does not transmit torque, so double engagement can be prevented. Therefore, it is possible to safely reduce the burden on both clutches and suppress wear.
  • either the first input shaft or the second input shaft is formed as a hollow shaft, and the other insertion shaft is inserted coaxially within the hollow shaft. And an input coupling mechanism that integrally rotates the hollow shaft and the insertion shaft when transmission of power from the power source to the output shaft starts.
  • the input coupling mechanism can couple both input shafts and rotate them together.
  • the auxiliary stage rotates idly because the input rotation speed is lower than the gear rotation speed and does not transmit torque, and the torque transmitted to both input shafts by both clutches is Since both input shafts rotate together by the input coupling mechanism, all can be transmitted to the starting stage. Therefore, even if both clutches are used, the torque to the output shaft is not reduced.
  • the rotation cutting mechanism is configured to cause the auxiliary stage to idle when the rotation speed of the first input shaft is lower than the rotation speed of the gear of the auxiliary stage. It consists of a clutch. According to this configuration, since the torque is not transmitted by the one-way clutch when the rotational speed of the input shaft is lower than that of the auxiliary stage, double meshing can be prevented.
  • a vehicle for achieving the above object is configured by mounting the dual clutch transmission described above. According to this configuration, it is possible to provide a vehicle that is easy to drive because the wear of the clutch is equalized and the start feeling does not change.
  • a control method for a dual clutch transmission for achieving the above object comprises at least a first input shaft coupled to a first clutch and a second input shaft coupled to a second clutch, wherein the first input shaft When an odd-numbered gear stage and an even-numbered gear stage are arranged between the output shaft and between the second input shaft and the output shaft, respectively, and when transmission of power from a power source to the output shaft is started,
  • a control method for a dual clutch transmission in which a starting stage, which is a starting gear stage, is synchronously engaged with the second input shaft, and transmission of power is started by coupling the second clutch to the second input shaft.
  • the starting stage is engaged with the second input shaft, and an auxiliary stage having a gear ratio different from that of the starting stage is synchronously engaged with the first input shaft, and the first clutch and the second clutch are connected to each other.
  • the power source When the transmission of power to the output shaft is started, the input coupling mechanism rotates the first input shaft and the second input shaft integrally, and the rotary cutting mechanism causes the auxiliary stage to idle. It is a method.
  • the present invention when the vehicle starts, it is possible to reduce the load applied to one clutch without changing the starting feeling, and to suppress wear of only one clutch, and to extend the clutch replacement time. can do. In addition, by using both clutches, the double meshing that occurs is prevented and the torque to the output shaft is not reduced.
  • FIG. 1 is a schematic diagram showing a dual clutch transmission according to a first embodiment of the present invention.
  • 2 is a cross-sectional view showing the one-way clutch, taken along line II-II in FIG. 1.
  • FIG. 2A shows the case where the rotational speed of the first input shaft is equal to or higher than the gear ratio rotational speed of the auxiliary stage, and
  • FIG. Shows the case where the rotational speed of the first input shaft is smaller than the gear ratio rotational speed of the auxiliary stage.
  • FIG. 3 is a diagram showing the input coupling mechanism of FIG.
  • FIG. 4 shows the starting operation of the dual clutch transmission according to the first embodiment of the present invention.
  • FIG. 4 (a) shows a state before starting the vehicle.
  • FIG. 4 (a) shows a state before starting the vehicle.
  • FIG. 5 is a schematic view showing a dual clutch transmission according to a second embodiment of the present invention.
  • FIG. 6 is a flowchart showing a control method of the dual clutch transmission according to the second embodiment of the present invention.
  • FIG. 7 is a schematic view showing a dual clutch transmission according to a third embodiment of the present invention.
  • FIG. 8 is a view showing a conventional dual clutch transmission.
  • FIG. 9 is a schematic view showing a conventional dual clutch transmission.
  • An engagement mechanism 22 is provided, and a configuration similar to that of the conventional DCT 1X shown in FIG. 8 is used. Then, as shown in FIG.
  • the gear stage G2 is set to the starting stage DG2
  • the gear stage G1 is set to the auxiliary stage SG1
  • the clutch operating mechanism 21 is configured to be able to operate both the clutches C1 and C2 simultaneously.
  • the addition of the one-way clutch (rotary cutting mechanism) 30 and the third clutch (input coupling mechanism) 40 is a configuration different from the conventional DCT 1X.
  • the DCT 1 is not limited to the above configuration as long as it is an automatic transmission manual transmission, and does not limit the arrangement of both input shafts, the number of input shafts and clutches mounted, the number of gear stages, and the like.
  • both input shafts are not arranged coaxially, but are arranged in parallel and a countershaft is arranged between both input shafts, and can also be applied to a triple clutch transmission having three clutches. it can.
  • the gear stage G2 having the above-described configuration is a start stage DG2, and the gear stage G1 that is synchronously engaged with the first input shaft 11 at a gear ratio (gear ratio) that is one stage lower than the start stage DG2 is an auxiliary stage SG1.
  • the gear stage G3 that is synchronously engaged with the first input shaft 11 at a gear ratio that is one step higher than the starting stage DG2 is defined as an acceleration stage AG3.
  • This starting stage may be set to any gear stage. For example, when the gear stage G3 is set as the start stage, the auxiliary stage is set to the gear stage G2, and the acceleration stage is set to the gear stage G4.
  • the ECU 20 is in charge of controlling the entire power plant including the transmission by an electric circuit.
  • the microcontroller also controls the engine and performs overall electrical control.
  • the ECU 20 stores the optimum control value in every driving state, detects the state at that time by a sensor, selects the optimum value from the stored data by the input signal from the sensor, and each mechanism Is controlling.
  • the ECU 20 performs the control to engage the first clutch C1 with the first input shaft 11 and the second clutch C2 with the second input shaft 12 independently and simultaneously.
  • the ECU 20 also performs control for synchronously engaging the gear stages G1 to GR with the first input shaft 11 or the second input shaft 12 via the coupling sleeves S1 to SR, respectively.
  • the odd-numbered stages G1, G3, and G5 can be synchronously engaged during use of the even-numbered stages G2, G4, and G6 so as to achieve a smooth speed change operation.
  • the clutch operating mechanism 21 is only required to operate the clutches C1, C2, and 40, and to couple the clutches C1, C2, and 40 to the first input shaft 11 and the second input shaft 12, and to operate them simultaneously.
  • electromagnetic actuators The synchronous engagement mechanism 22 includes a shift fork that swings each of the coupling sleeves S1 to SR, and may be configured to operate the shift fork.
  • the synchronous engagement mechanism 22 includes a hydraulic piston or an electromagnetic actuator.
  • the clutch operation mechanism 21 and the synchronous engagement mechanism 22 are not limited to the above-described configuration, and the clutch operation mechanism 21 only needs to operate the clutches C1 and C2, and the synchronous engagement mechanism 22 can operate the coupling sleeve S3.
  • the one-way clutch 30 is provided between the first input shaft and the auxiliary stage SG1, and when the rotation speed of the first input shaft 11 is lower than the gear rotation speed of the auxiliary stage SG1, the auxiliary stage SG1 can idle. it can.
  • the one-way clutch 30 will be described with reference to FIG. As shown in FIG. 2A, the one-way clutch 30 includes an outer ring 31, an inner ring 32, a gap 33, a roller 34, and a spring 35. Further, the gap portion 33 is provided with a meshing portion 33a and an idling portion 33b.
  • FIG. 2 (a) shows a case where the rotational speed of the first input shaft 11 is smaller than the gear rotational speed of the auxiliary stage SG1
  • FIG. 2 (b) shows that the rotational speed of the first input shaft 11 is the auxiliary stage SG1.
  • the case where it is more than the gear rotation number of SG1 is shown.
  • FIG. 2A when the rotational speed of the first input shaft 11 is small, the frictional force between the roller 34 and the inner ring 32 is larger than the urging force by which the spring 35 urges the roller 34. Therefore, the roller 34 is located in the idling portion 33b. Then, the rotation of the first input shaft 11 is not transmitted to the outer ring 31, and the outer ring 31 does not rotate.
  • the auxiliary stage SG1 idles.
  • the roller 34 is biased by the spring 35 and is positioned at the meshing portion 33a. Therefore, the outer ring 31 and the inner ring 32 rotate together via the roller 34. Therefore, the auxiliary stage SG1 also rotates.
  • the one-way clutch 30 is not limited to the above configuration as long as the auxiliary stage SG1 can idle when the rotational speed of the first input shaft 11 is smaller than the gear rotational speed of the auxiliary stage SG1.
  • a cam surface may be provided on the inner ring.
  • sprags that are movable teeth may be provided.
  • the starting stage may be set to any gear stage, but preferably the auxiliary stage is set to a stage with a low gear ratio among the gear stages, and more preferably the starting stage is set to the gear stage G2 (second speed stage) and the auxiliary stage.
  • the gear is set to the gear G1 (first gear).
  • the auxiliary stage SG1 is idled by the one-way clutch 30 when the rotation speed of the first input shaft 11 is smaller than its own gear rotation speed. Therefore, even if the vehicle is started using both clutches C1 and C2, double meshing can be suppressed.
  • the third clutch 40 is provided between the first input shaft 11 and the second input shaft 12, and can rotate the first input shaft 11 and the second input shaft 12 integrally.
  • the third clutch 40 will be described with reference to FIG.
  • the third clutch 40 is a wet multi-plate clutch and includes a plurality of outer disks 41, a plurality of inner disks 42, a release spring 43, a piston 44, a coil spring 45, a hydraulic chamber 46, a cylinder 47, and an oil pipe 48.
  • the second input shaft 12 is also provided with a thrust plate 12a.
  • the third clutch 40 increases the hydraulic pressure and sends the hydraulic oil to the hydraulic chamber 46, the piston 44 operates and pushes the outer disk 41. Thereby, the outer disk 41 and the inner disk 42 are pressure-bonded, and the third clutch 40 can be coupled.
  • the coil spring 45 pushes the piston 44 back. Thereby, the outer disk 41 and the inner disk 42 are separated by the release spring 43, and the third clutch 40 can be disconnected.
  • the third clutch 40 is not limited to the above configuration as long as the first input shaft 11 and the second input shaft 12 can be coupled and separated.
  • a dry clutch, an electromagnetic clutch, a powder clutch, or the like can be used.
  • a multi-plate clutch using a plurality of disks, an electromagnetic clutch, or the like is preferable.
  • the auxiliary stage SG1 idles and torque is not transmitted to the output shaft 3.
  • the first input shaft 11 and the second input shaft 12 are coupled by the third clutch 40 and can rotate together. Thereby, all the torque transmitted by both clutches C1 and C2 can be transmitted to start stage DG2.
  • DCT 1 when the vehicle starts, the ECU 20 synchronously engages the start stage DG2 with the second input shaft 12 and the auxiliary stage SG1 with the first input shaft 11, respectively.
  • the third clutch 40 couples the first input shaft 11 and the second input shaft so that they can rotate together.
  • arrows from left to right indicate engagement of each clutch
  • arrows from right to left indicate disconnection of each clutch.
  • the other arrows indicate the rotation of each input shaft and each gear stage.
  • the first clutch C1 is coupled to the first input shaft 11 and the second clutch C2 is coupled to the second input shaft 12. Since the rotation speed of the first input shaft 11 is lower than the gear rotation speed of the auxiliary stage SG1 at the time of starting, the one-way clutch 30 runs idle and does not transmit torque.
  • the one-way clutch 30 causes the auxiliary stage SG1 to run idle and torque is not transmitted to the auxiliary stage SG1, double engagement that may occur by using both clutches C1 and C2 can be suppressed.
  • first input shaft 11 and the second input shaft 12 can be coupled and rotated integrally by the third clutch 40.
  • the clutch is engaged with the acceleration stage AG3 in synchronism, thereby shifting the speed from the start stage DG2 and accelerating each clutch. Smooth acceleration can be achieved only by switching between C1 and C2.
  • the second clutch input rotational speed sensor 23 is a sensor that can detect the input rotational speed Nin of the second clutch C2, and the second clutch output rotational speed sensor 24 detects the output rotational speed Nout of the second clutch C2. It is a sensor that can do.
  • the input rotation speed Nin is the rotation speed of the crankshaft 2, and an existing crank angle sensor can be used.
  • the output rotation speed Nout is the rotation speed of the second input shaft 12 whose rotation speed is smaller than the input rotation speed Nin through the second clutch C2, and an existing speed sensor or the like can be used.
  • the second clutch output rotational speed sensor 24 can be provided on the output shaft 3 in consideration of the gear ratio of the starting stage DG2, in addition to the second input shaft 12.
  • step S1 for determining whether or not to stop the vehicle is performed. If it is determined that the vehicle is stopped, step S2 is performed in which the start stage DG2 and the auxiliary stage SG1 are synchronously engaged with the second input shaft 12 or the first input shaft 11, respectively.
  • step S2 the ECU 20 operates the shift operation mechanism 22 to swing the coupling sleeve S2 and the coupling sleeve S1, thereby synchronously engaging the starting stage DG2 and the auxiliary stage SG1.
  • Step S3 is performed to determine whether or not a vehicle start operation has been performed. If it is determined that the start operation of the vehicle has been performed, step S4 is then performed in which the first clutch C1 is half-clutched (half-coupled) to the first input shaft 11 and the second clutch C2 is half-coupled to the second input shaft 12, respectively.
  • step S4 at the moment of starting the vehicle, the power from the crankshaft 2 can be transmitted to the output shaft 3 by both clutches C1 and C2.
  • step S6 for completely engaging the third clutch is performed. Thereby, the 1st input shaft 11 and the 2nd input shaft 12 couple
  • step S7 for determining whether or not the second clutch C2 is completely connected to the second input shaft 12 is performed.
  • step S4 since the second clutch C2 is a half clutch, step S7 is performed to determine whether or not the next first clutch C1 is completely disconnected from the first input shaft 11. Again, since the first clutch C1 is a half-clutch in step S5, the process proceeds to the next step.
  • Step S9 is performed to calculate a rotational speed difference ⁇ N between the input rotational speed Nin of the second clutch C2 and the output rotational speed Nout.
  • step S10 for determining whether or not the rotational speed difference ⁇ N is smaller than a set value Nlim that is a predetermined threshold value is performed.
  • step S11 is performed to completely disconnect the first clutch C1 from the first input shaft 11.
  • step S11 is completed, the process returns to step S7.
  • the first clutch C1 is completely disconnected, the second clutch C2 is a half-clutch, the starting stage DG2 is synchronously engaged, and the auxiliary stage SG1 is synchronously engaged.
  • step S7 is no and the process proceeds to step S8. If it is determined in step S8 that the first clutch C1 is completely disconnected, then step S12 is performed to determine whether or not the synchronous engagement of the auxiliary stage SG1 is disengaged. Since the synchronous engagement of the auxiliary stage SG1 is not disengaged, step S13 for releasing the synchronous engagement of the next auxiliary stage SG1 is performed. When step S13 is completed, the process returns to step S7. At this time, the first clutch C1 is completely disconnected, the second clutch C2 is a half-clutch, the starting stage DG2 is in synchronous engagement, and the auxiliary stage SG1 is in a state in which synchronous engagement is released.
  • step S7 step S8, and step S12. If it is determined that the synchronous engagement of the auxiliary stage SG1 is disengaged, next, step S14 of synchronously engaging the acceleration stage AG3 is performed.
  • step S15 for completely connecting the second clutch C2 to the second input shaft 12 is performed.
  • step S15 the process returns to step S7.
  • the first clutch C1 is completely disconnected, the second clutch C2 is completely connected, the starting stage DG2 is synchronously engaged, the auxiliary stage SG1 is disengaged synchronously, and the acceleration stage AG2 is synchronously engaged.
  • step S7 If it is determined in step S7 that the second clutch C2 is fully engaged, then step S16 for completing the third clutch is performed, and this control method ends.
  • the dual clutch transmission 1 according to the second embodiment has a configuration in which the third clutch 40 in FIG. 1 is removed.
  • double engagement can be suppressed in the same manner as described above by releasing the synchronous engagement of the auxiliary stage SG1 at the time of starting, that is, in the neutral state.
  • a vehicle equipped with the DCT 1 described above can equalize the wear of both clutches C1 and C2 and make the replacement period of both clutches C1 and C2 longer than before. Moreover, since the above-described effects can be obtained without changing the starting feeling, a vehicle that is easy to drive can be provided.
  • the control method of the dual clutch transmission of the present invention it is possible to reduce the load of the clutch on the start stage side and suppress wear without changing the start feeling, so that the clutch replacement period is lengthened. be able to.
  • the shifting operation after starting can be made smooth. Therefore, it can be used for a large vehicle such as a truck equipped with a dual clutch transmission in order to realize low fuel consumption by a smooth shifting operation.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Structure Of Transmissions (AREA)
  • Control Of Transmission Device (AREA)

Abstract

 発進段側のクラッチの負担を低減して、摩耗を抑制することができ、クラッチの交換期間を長くするために、両クラッチを用いることで発生する2重噛み合いを防止すると共に、両クラッチからのトルクを全て発進段へ伝えるデュアルクラッチ式変速機の変速装置とデュアルクラッチ式変速機とそれを搭載する車両を提供する。第1クラッチC1と結合する第1入力軸11、第2クラッチC2と結合する第2入力軸12、第1入力軸11及び第2入力軸12と、出力軸3との間にそれぞれ奇数段G1、G3、G5と偶数段G2、G4、G6のギア段を一段おきに配置し、ギア段G2を発進段DG2に、また、ギア段G1を補助段SG1に設定し、発進段DG2を第2入力軸12に、及び補助段SG1を第1入力軸11に同期係合させると共に、第1クラッチC1及び第2クラッチC2を同時に結合状態にして、車両を発進するときに、補助段SG1を空転させるワンウェイクラッチ30を補助段SG1と第1入力軸11との間に備えると共に、第1入力軸11と第2入力軸12とを結合して一体に回転させる第3クラッチ40を備えて構成される。

Description

デュアルクラッチ式変速機の制御方法とデュアルクラッチ式変速機とそれを搭載した車両
 本発明は、少なくとも2本の入力軸と2つのクラッチを備え、変速操作を円滑にしたデュアルクラッチ式変速機において、両クラッチの負担を低減すると共に、摩耗を抑制して、耐久性を高めたデュアルクラッチ式変速機の制御方法とデュアルクラッチ式変速機とそれを搭載した車両に関する。
 従来、自動変速マニュアルトランスミッション(以下、AMTという)の変速時間改善のため、クラッチを2系統もつデュアルクラッチトランスミッション(以下、DCTという)が存在する。DCTは通常、偶数段と奇数段それぞれにクラッチを持ち、両者を切り換えて変速していくため偶数段(奇数段)の使用中に奇数段(偶数段)の変速操作を行うことができる。このDCTは変速タイムラグの無い素早い変速を可能とすると共に、クラッチで動力を伝達するため、構造がシンプルで動力損失も少なく伝達効率に優れているため、燃費の向上にもつながる。
 ここで、従来のDCTについて図8及び図9を参照しながら説明する。図8に示すように、DCT1Xは、第1入力軸11、第2入力軸12、第1クラッチC1、第2クラッチC2、カウンターシャフト13、歯車段G1~G6、歯車段GR、カップリングスリーブS1~S3、及びカップリングスリーブSRを備える。
 クランクシャフト2からエンジン(内燃機関)の動力を第1クラッチC1又は第2クラッチC2を介して受け取り、各ギア段で変速して出力軸3へとその動力を伝達している。
 第2入力軸12を中空状に形成し、第1入力軸11を第2入力軸12内の同軸上になるように挿通する。ギア段G1、G3、G5、及びGRを第1入力軸11に配置し、ギア段G2、G4、及びG6を第2入力軸に配置する。第1クラッチC1を第1入力軸11に、又は第2クラッチC2を第2入力軸に結合すると共に、カウンターシャフト13に設けた各カップリングスリーブS1~SRが各ギア段G1~GRと同期係合することで、動力を伝達することができる。
 クラッチC1は、フライホイールC1a、クラッチカバーC1b、レリーズベアリングC1c、ダイヤフラムスプリングC1d、プレッシャープレートC1e、及びライニング、トーションダンパー、スラストなどからなるクラッチディスクC1fを備える。クラッチC2も同様の構成になる。
 また、上記のDCT1Xは、図8に示すように、ECU(制御装置)20、クラッチC1又はクラッチC2を動作させるクラッチ動作機構21、及びカップリングスリーブS1~SRを動作させる同期係合機構22を備える。クラッチ動作機構21及び同期係合機構22には油圧ピストンなどを用いることができる。
 次に、このDCT1Xの発進動作を説明する。このDCT1Xはギア段G1を発進段DG1とする。車両が止まり、エンジンが停止すると、ECU20は、第1クラッチC1及び第2クラッチC2の結合を解除すると共に、カップリングスリーブS1を発進段DG1に同期係合する。車両を発進するときには、第1クラッチC1を第1入力軸11と結合する。図9の矢印がこのときの動力の伝達を示している。
 次に、加速を円滑に行うために、カップリングスリーブS2をギア段G2に同期係合しておく。これにより、発進段DG1からギア段G2へ変更する場合は、第1クラッチC1の結合を解除(以下、完断という)し、第2クラッチC2を第2入力軸12と結合(以下、完接という)する。このように、交互に切り換えることができるため、変速操作を円滑にすることができる。
 しかし、上記のように、DCTにおいては、通常、発進は1速もしくは2速といった、決まったギア段が使用されるため、発進に用いられるクラッチは奇数段用か偶数段用のどちらか一方となる。発進時の係合はクラッチにとって負荷が高く摩耗が進む状況である。従って奇数段又は偶数段のどちらか一方のクラッチのみ摩耗が進行してしまう。
 このクラッチの摩耗を防ぐために、十分な容量のクラッチを用いればよいが、狭いスペースに2組のクラッチを収めているDCTでは、十分な容量をとることが難しい。また、クラッチの摩耗状況や発進条件などにより発進段を使い分ける方法を採用した装置がある(例えば、特許文献1及び特許文献2参照)。これらの装置はクラッチの摩耗状況により発進段を適宜選択することで摩耗を均等化できる。しかし、一方で発進フィーリングの変化により運転しづらい車両となるという問題がある。
特開2006-132562号公報 特開2008-309325号公報
 本発明は、上記の問題を鑑みてなされたものであり、その目的は、車両の発進時に、発進フィーリングを変化させずに、一方のクラッチにかかる負担を低減して、一方のクラッチのみの摩耗を抑制することができ、クラッチの交換時期を長くすることができるデュアルクラッチ式変速機の制御方法とデュアルクラッチ式変速機とそれを搭載する車両を提供することである。加えて、両方のクラッチを用いることで、発生する二重噛み合いを防ぐと共に、出力軸へのトルクを低減させないデュアルクラッチ式変速機の制御方法とデュアルクラッチ式変速機とそれを搭載する車両を提供することである。
 上記の目的を達成するためのデュアルクラッチ式変速機は、少なくとも第1クラッチと結合する第1入力軸と第2クラッチと結合する第2入力軸とを備え、前記第1入力軸と出力軸との間、及び前記第2入力軸と出力軸との間に、それぞれ奇数段と偶数段の歯車段を配置し、動力源から前記出力軸への動力の伝達を開始するときに、発進用の歯車段である発進段を前記第2入力軸に同期係合させると共に、前記第2入力軸に前記第2クラッチを結合させて動力の伝達を開始するデュアルクラッチ式変速機において、前記第1入力軸に配置され、前記発進段と異なる歯車比を有する補助段を備え、前記発進段を前記第2入力軸に、及び前記補助段を前記第1入力軸に同期係合させると共に、前記前記第1クラッチ及び前記第2クラッチを同時に結合状態にして、前記動力源から前記出力軸への動力の伝達を開始するときに、前記補助段を空転させる回転切断機構を前記補助段と前記第1入力軸との間に備えて構成される。
 車両の発進の瞬間に両クラッチを用いると、発進段のクラッチの摩耗を抑制することができるので、クラッチの交換期間を長くすることができる。一方、両クラッチを用いることで、2重噛み合いを引き起こす可能性がある。そこで、上記の構成によれば、補助段の歯車回転数よりも低い回転数のときは、入力軸から補助段へ回転を伝達しないように、補助段を空転させる回転切断機構を設ける。これにより、両クラッチを同時に結合させても、補助段が空転しトルクを伝達しないため、2重噛み合いを防ぐことができる。そのため、安全に両クラッチの負担を低減して、摩耗を抑制することができる。
 また、上記のデュアルクラッチ式変速機において、前記第1入力軸又は前記第2入力軸のどちらか一方を中空軸で形成し、もう一方の挿設軸を前記中空軸の内の同軸上に挿設し、前記動力源から前記出力軸への動力の伝達が開始するときに、前記中空軸と前記挿設軸とを一体回転する入力結合機構を備える。
 この構成によれば、入力結合機構が両入力軸を結合して、一体に回転させることができる。これにより、両方のクラッチを同時につないだときに、補助段は入力回転数がギア回転数より低いため空転して、トルクを伝達しないと共に、両方のクラッチにより両入力軸に伝達されたトルクは、入力結合機構によって両入力軸が一体回転しているため、全て発進段に伝えることができる。そのため、両クラッチを用いても、出力軸へのトルクを低減させることがない。
 加えて、上記のデュアルクラッチ式変速機において、前記回転切断機構を、前記第1入力軸の回転数が、前記補助段の歯車回転数より低い回転数のときに、前記補助段を空転させるワンウェイクラッチで構成する。この構成によれば、ワンウェイクラッチにより、入力軸の回転数が補助段よりも低回転数の場合はトルク伝達しないため、2重噛み合いを防ぐことができる。
 上記の目的を達成するための車両は、上記に記載のデュアルクラッチ式変速機を搭載して構成される。この構成によれば、クラッチの摩耗を均等化すると共に、発進フィーリングが変化しないため、運転し易い車両を提供することができる。
 上記の目的を達成するためのデュアルクラッチ式変速機の制御方法は、少なくとも第1クラッチと結合する第1入力軸と第2クラッチと結合する第2入力軸とを備え、前記第1入力軸と出力軸との間、及び前記第2入力軸と出力軸との間に、それぞれ奇数段と偶数段の歯車段を配置し、動力源から前記出力軸への動力の伝達を開始するときに、発進用の歯車段である発進段を前記第2入力軸に同期係合させると共に、前記第2入力軸に前記第2クラッチを結合させて動力の伝達を開始するデュアルクラッチ式変速機の制御方法において、前記発進段を前記第2入力軸に、及び、前記発進段と異なる歯車比を有する補助段を前記第1入力軸に同期係合すると共に、前記第1クラッチと前記第2クラッチとを同時に結合状態にして、前記動力源から前記出力軸への動力の伝達を開始するときに、入力結合機構が前記第1入力軸と前記第2入力軸とを一体回転させると共に、回転切断機構が前記補助段を空転させることを特徴とする方法である。
 この方法によれば、クラッチの負荷を低減して、摩耗を抑制するために、両クラッチを用いて車両を発進させても、2重噛み合いを防ぐと共に、両クラッチに伝達されたトルクを無駄なく発進段に伝達することができる。
 本発明によれば、車両の発進時に、発進フィーリングを変化させずに、一方のクラッチにかかる負担を低減して、一方のクラッチのみの摩耗を抑制することができ、クラッチの交換時期を長くすることができる。加えて、両方のクラッチを用いることで、発生する二重噛み合いを防ぐと共に、出力軸へのトルクを低減させない。
図1は本発明に係る第1の実施の形態のデュアルクラッチ式変速機を示した概略図である。 図2は図1のII-IIを示し、ワンウェイクラッチを示した断面図であり、(a)に第1入力軸の回転数が補助段のギア比回転数以上の場合を示し、(b)に第1入力軸の回転数が補助段のギア比回転数よりも小さい場合を示す。 図3は図1の入力結合機構を示した図である。 図4は本発明に係る第1の実施の形態のデュアルクラッチ式変速機の発進動作を示し、(a)に車両の発進前の状態を示し、(b)に両クラッチが結合し、ワンウェイクラッチが補助段を空転させ、両入力軸が一体に回転した状態を示し、(c)に第2クラッチが完接し、第3クラッチが完断した状態を示し、(d)に加速時の状態を示した図である。 図5は本発明に係る第2の実施の形態のデュアルクラッチ式変速機を示した概略図である。 図6は本発明に係る第2の実施の形態のデュアルクラッチ式変速機の制御方法を示したフローチャートである。 図7は本発明に係る第3の実施の形態のデュアルクラッチ式変速機を示した概略図である。 図8は従来のデュアルクラッチ式変速機を示した図である。 図9は従来のデュアルクラッチ式変速機を示した概略図である。
 以下、本発明に係る第1、第2及び第3の実施の形態のデュアルクラッチ式変速機の制御方法とデュアルクラッチ式変速機とそれを搭載する車両について、図面を参照しながら説明する。なお、図8及び図9に示した従来のデュアルクラッチトランスミッション(DCT)1Xと同一の構成及び動作については同一の符号を用いて、その説明を省略する。また、本発明に係る第1、第2及び第3の実施の形態では6速のDCTを例にして説明するが、本発明のDCTは、例えば8速などでもよく、変速段の段数には限定しない。
 本発明に係る第1の実施の形態のデュアルクラッチトランスミッション(デュアルクラッチ式変速機、以下DCTという)1は、図1に示すように、DCT1は、第1入力軸11、第2入力軸12、第1クラッチC1、第2クラッチC2、カウンターシャフト13、ギア段G1~G6、ギア段GR、カップリングスリーブS1~S3、カップリングスリーブSR、ECU(制御装置)20、クラッチ動作機構21、及び同期係合機構22を備え、図8に示す従来のDCT1Xと同様の構成を用いている。そして、図1に示すように、ギア段G2を発進段DG2、ギア段G1を補助段SG1とすること、クラッチ動作機構21が両クラッチC1及びC2を同時に動作させることができる構成にすること、及びワンウェイクラッチ(回転切断機構)30と第3クラッチ(入力結合機構)40とを追加することが、従来のDCT1Xと相違する構成である。
 このDCT1は、自動変速マニュアルトランスミッションであれば、上記の構成に限らず、両入力軸の配置や、入力軸とクラッチの搭載数、及びギア段の数などを限定しない。例えば、両入力軸を同軸上に配置せずに、平行に配置し、両入力軸の間にカウンターシャフトを配置する構成や、また、クラッチを3つ備えたトリプルクラッチトランスミッションにも適用することができる。
 上記の構成のギア段G2を発進段DG2とし、発進段DG2よりも一段低いギア比(歯車比)で、第1入力軸11と同期係合するギア段G1を補助段SG1とする。また、発進段DG2よりも一段高いギア比で、第1入力軸11と同期係合するギア段G3を加速段AG3とする。この発進段は、どのギア段に設定してもよい。例えば、ギア段G3を発進段とする場合は、補助段をギア段G2に設定し、加速段をギア段G4に設定する。
 ECU20は、電気回路によってトランスミッションを含むパワープラント全体の制御を担当している。またエンジンもコントロールしており、電気的な制御を総合的に行うマイクロコントローラである。オートマチック車においては、ECU20にあらゆる運転状態における最適制御値を記憶させ、その時々の状態をセンサで検出し、センサからの入力信号により、記憶しているデータの中から最適値を選出し各機構を制御している。
 このECU20は、第1クラッチC1を第1入力軸11に、また、第2クラッチC2を第2入力軸12に係合させる制御を、独立、且つ同時に行う。また、ECU20は、各ギア段G1~GRをそれぞれ第1入力軸11又は第2入力軸12に各カップリングスリーブS1~SRを介して同期係合させる制御も行う。この制御は、円滑な変速動作となるように、例えば、偶数段G2、G4、及びG6の使用中に奇数段G1、G3、及びG5の同期係合を行うことができる。
 クラッチ動作機構21は、各クラッチC1、C2及び40を動作させ、それぞれを第1入力軸11と第2入力軸12とに結合することができ、且つ同時に動作させることができればよく、例えば油圧ピストンや電磁アクチュエータなどで構成する。同期係合機構22は、各カップリングスリーブS1~SRを揺動させるシフトフォークを含み、そのシフトフォークを動作させることができればよく、例えば油圧ピストンや電磁アクチュエータなどで構成する。クラッチ動作機構21と同期係合機構22は上記の構成に限らず、クラッチ動作機構21は各クラッチC1及びC2を、同期係合機構22はカップリングスリーブS3をそれぞれ動作することができればよい。
 ワンウェイクラッチ30は、第1入力軸と補助段SG1との間に設け、第1入力軸11の回転数が、補助段SG1のギア回転数よりも低い場合に、補助段SG1を空転させることができる。このワンウェイクラッチ30について、図2を参照しながら説明する。図2の(a)に示すように、ワンウェイクラッチ30は、外輪31、内輪32、間隙部33、ローラー34、及びバネ35を備える。また、間隙部33には、噛み合い部33aと空転部33bを設ける。
 図2の(a)に第1入力軸11の回転数が、補助段SG1のギア回転数よりも小さい場合を示し、図2の(b)に第1入力軸11の回転数が、補助段SG1のギア回転数以上の場合を示す。図2の(a)に示すように、第1入力軸11の回転数が小さい場合は、ローラー34と内輪32との摩擦力が、バネ35がローラー34を付勢する付勢力よりも大きくなるため、ローラー34は空転部33bに位置する。すると外輪31に第1入力軸11の回転が伝達されず、外輪31は回転しない。そのため、補助段SG1は空転する。図2の(b)に示すように、第1入力軸11の回転数が大きい場合は、ローラー34はバネ35に付勢されて、噛み合い部33aに位置する。そのため、ローラー34を介して外輪31と内輪32とが一体に回転する。よって、補助段SG1も回転する。
 このワンウェイクラッチ30は、第1入力軸11の回転数が補助段SG1のギア回転数よりも小さいときに、補助段SG1を空転させることができれば、上記の構成に限定しない。例えば、内輪にカム面を設けてもよい。また、ローラー34に換えて、可動式の歯であるスプラグを設けてもよい。
 このワンウェイクラッチ30を、第1入力軸11と補助段SG1との間に介すと、エンジンブレーキが利かなくなる。発進段はどのギア段に設定してもよいが、好ましくは補助段をギア段のなかでもギア比が低い段に設定し、より好ましくは発進段をギア段G2(2速段)、及び補助段をギア段G1(1速段)に設定する。
 この構成によれば、補助段SG1は自身のギア回転数よりも第1入力軸11の回転数が小さいときに、ワンウェイクラッチ30により空転する。これにより、両クラッチC1及びC2を用いて、車両を発進させても、2重噛み合いを抑制することができる。
 第3クラッチ40は、第1入力軸11と第2入力軸12との間に設け、第1入力軸11と第2入力軸12とを一体に回転させることができる。この第3クラッチ40について、図3を参照しながら説明する。第3クラッチ40は、湿式多板クラッチであり、複数のアウターディスク41、複数のインナーディスク42、レリーズバネ43、ピストン44、コイルバネ45、油圧室46、シリンダ47、及びオイル管48を備える。また、第2入力軸12にスラストプレート12aも備える。
 この第3クラッチ40は、油圧を上げ、作動油を油圧室46へ送ると、ピストン44が動作し、アウターディスク41を押す。これにより、アウターディスク41とインナーディスク42とが圧着して、第3クラッチ40を結合することができる。一方、油圧を下げ、作動油を戻すと、コイルバネ45がピストン44を押し戻す。これにより、アウターディスク41とインナーディスク42とが、レリーズバネ43により分離して、第3クラッチ40を切り離すことができる。
 この第3クラッチ40は、第1入力軸11と第2入力軸12とを結合及び分離することができれば、上記の構成に限定しない。例えば、乾式クラッチ、電磁式クラッチ、及びパウダークラッチなどを用いることができる。しかし、第1入力軸11と第2入力軸12との間が狭く、充分なクラッチ容量をとることができないため、ディスクを複数枚使用する多板式のクラッチや、電磁式クラッチなどが好ましい。
 この構成によれば、ワンウェイクラッチ30を設けることにより、補助段SG1が空転し、トルクを出力軸3に伝えない。一方、第3クラッチ40により、第1入力軸11と第2入力軸12とが結合し、一体に回転することができる。これにより、両クラッチC1及びC2により、伝達されるトルクを全て発進段DG2に伝えることができる。
 次にDCT1の動作について、図4を参照しながら説明する。図4の(a)に示すように、車両の発進時には、ECU20が、発進段DG2を第2入力軸12に、補助段SG1を第1入力軸11に、それぞれ同期係合する。また、第3クラッチ40により、第1入力軸11と第2入力軸とを結合して、一体回転できる状態にする。なお、図中の左から右に向かう矢印が各クラッチの結合を示し、右から左に向かう矢印が各クラッチの切断を示す。その他の矢印は各入力軸と各ギア段の回転を示す。
 そして図4の(b)に示すように、車両を発進するときに、第1クラッチC1を第1入力軸11に、及び第2クラッチC2を第2入力軸12に、結合していく。第1入力軸11の回転数は発進時には、補助段SG1のギア回転数より低いため、ワンウェイクラッチ30によって空転しトルクを伝達しない。
 次に、図4の(c)に示すように、第2クラッチC2が完接し、伝達中のトルクを十分に伝えられる状態となったら、補助段SG1側の第1クラッチC1を切断すると共に、第3クラッチ40も切断する。また、補助段SG1の同期係合を解除して、加速段AG3の同期係合を行う。発進段DG2から、加速段AG3へ変速するときは、図4の(d)に示すように、第2クラッチC2を切断し、第1クラッチC1を結合する。
 この動作によれば、発進時に両クラッチC1、C2を用いるため、発進段DG2側の第2クラッチC2の摩耗を抑制することができので、両クラッチC1及びC2の交換期間を長くすることができる。
 また、ワンウェイクラッチ30によって、補助段SG1を空転させて、補助段SG1へトルクを伝達しないため、両クラッチC1及びC2を用いることで発生する可能性がある2重噛み合いを抑制することができる。
 加えて、第3クラッチ40により、第1入力軸11と第2入力軸12とを結合して、一体に回転させることができる。これにより、伝達される全てのトルクを発進段DG2に伝達することができる。さらに、第2クラッチC2が完接し、伝達中のトルクを十分に伝えられる状態となったら、加速段AG3を同期係合することで、発進段DG2から変速して、加速するときに、各クラッチC1及びC2の切り換えだけでスムースに加速することができる。
 次に本発明の第2の実施の形態のデュアルクラッチ式変速機について、図5を参照しながら説明する。前述した図1と同じ構成に、図5に示すように、第2クラッチ入力回転数センサ23と第2クラッチ出力回転数センサ24を追加する。
 第2クラッチ入力回転数センサ23は、第2クラッチC2の入力回転数Ninを検出することができるセンサであり、第2クラッチ出力回転数センサ24は、第2クラッチC2の出力回転数Noutを検出することができるセンサである。入力回転数Ninは、クランクシャフト2の回転数のことであり、既存のクランク角センサを用いることができる。また、出力回転数Noutは、第2クラッチC2を介すことで、入力回転数Ninより回転数が小さくなる第2入力軸12の回転数であり、既存の速度センサなどを用いることができる。この第2クラッチ出力回転数センサ24は、第2入力軸12に設ける以外に、発進段DG2のギア比を考慮すれば、出力軸3に設けることもできる。
 次に、DCT1の制御方法について、図6を参照しながら説明する。まず、車両を停止するか否かを判断するステップS1を行う。車両が停止していると判断すると、発進段DG2と補助段SG1とをそれぞれ第2入力軸12又は第1入力軸11に同期係合するステップS2を行う。このステップS2ではECU20はシフト動作機構22を動作させて、カップリングスリーブS2とカップリングスリーブS1とを揺動して、発進段DG2と補助段SG1を同期係合する。
 次に、車両の発進操作が行われたか否かを判断するステップS3を行う。車両の発進操作が行われたと判断すると、次に第1クラッチC1を第1入力軸11に、及び第2クラッチC2を第2入力軸12にそれぞれ半クラッチ(半結合)するステップS4を行う。このステップS4により、車両を発進する瞬間に、クランク軸2からの動力を両クラッチC1及びC2で伝達して、出力軸3へと伝達することができる。
 次に、第1入力軸11の回転数は補助段SG1のギア比回転数よりも低いため、ワンウェイクラッチ30が図2の(b)の状態に動作して、補助段SG1が空転するステップS5を行う。次に、図5に示すように、第3クラッチを完接するステップS6を行う。これにより、第1入力軸11と第2入力軸12とが、結合して一体に回転する。
 次に、第2クラッチC2が第2入力軸12と完接しているか否かを判断するステップS7を行う。ステップS4で第2クラッチC2は、半クラッチのため、次の第1クラッチC1が第1入力軸11と完断しているか否かを判断するステップS7を行う。ここでもステップS5で第1クラッチC1は半クラッチになっているため、次のステップへと進む。
 次に、第2クラッチC2の入力回転数Ninと、出力回転数Noutとの回転数差ΔNを算出するステップS9を行う。次に、回転数差ΔNが予め定めた閾値である設定値Nlimよりも小さいか否かを判断するステップS10を行う。この回転数差ΔNの値が0になると第2クラッチ12を第2入力軸へと完接することができる。そこで、設定値Nlimを、好ましくは「設定値Nlim=回転数差ΔN>0」となるような値に設定する。このステップS10で回転数差ΔNが設定値Nlim以上の場合は、再度ステップS7に戻って、ステップS7からステップS10までを行う。
 次に、回転数差ΔNが設定値Nlimよりも小さいと判断されると第1クラッチC1を第1入力軸11から完断するステップS11を行う。ステップS11が完了すると次に、ステップS7に戻る。現時点では、第1クラッチC1は完断、第2クラッチC2は半クラッチ、発進段DG2は同期係合、及び補助段SG1は同期係合の状態である。
 よって、ステップS7は否であり、ステップS8に進む。ステップS8で、第1クラッチC1が完断していると判断されると、次に、補助段SG1の同期係合が外れているか否かを判断するステップS12を行う。補助段SG1の同期係合は外れていないため、次の補助段SG1の同期係合を外すステップS13を行う。ステップS13が完了するとステップS7に戻る。現時点では、第1クラッチC1は完断、第2クラッチC2は半クラッチ、発進段DG2は同期係合、補助段SG1は同期係合が解除の状態である。
 次に、ステップS7、ステップS8、そしてステップS12へと進み、補助段SG1の同期係合が外れていると判断されると、次に、加速段AG3を同期係合するステップS14を行う。ステップ14が完了すると第2クラッチC2を第2入力軸12に完接するステップS15を行う。ステップS15が完了するとステップS7へと戻る。現時点では、第1クラッチC1は完断、第2クラッチC2は完接、発進段DG2は同期係合、補助段SG1は同期係合が解除、加速段AG2は同期係合の状態である。
 ステップS7で第2クラッチC2が完接していると判断されると、次に第3クラッチを完断するステップS16を行って、この制御方法は終了する。
 この方法によれば、上記と同じ作用効果を得ることができる。また、第2クラッチC2の完接のタイミングを第2クラッチC2の回転数差ΔNから判断して、制御するため、スムースな発進制御をおこなうことができる。上記の制御方法は、第2クラッチ入力回転数センサ23と第2クラッチ出力回転数センサ24を追加するだけで行うことができる。
 次に、本発明に係る第3の実施の形態のデュアルクラッチ式変速機について、図7を参照しながら説明する。第2の実施の形態のデュアルクラッチ式変速機1は、前述の図1の第3クラッチ40を外した構成である。この構成の場合は、発進時に補助段SG1の同期係合を解除した状態、つまりニュートラルとすることで前述と同様に、2重噛み合いを抑制することができる。
 上記に記載のDCT1を搭載する車両は、両クラッチC1及びC2の摩耗を均等化して、両クラッチC1及びC2の交換期間を従来よりも長くすることができる。また、発進フィーリングが変化させずに上記の作用効果を得ることができるため、運転し易い車両を提供することができる。
 本発明のデュアルクラッチ式変速機の制御方法は、発進フィーリングを変化させることなく、発進段側のクラッチの負担を低減して、摩耗を抑制することができるので、クラッチの交換期間を長くすることができる。また、両クラッチを用いることで発生する2重噛み合いを防止すると共に、両クラッチに伝達されるトルクを全て発進段に伝えることができる。加えて、発進してからの変速操作も円滑にすることができる。そのため、スムースな変速操作によって低燃費を実現するためにデュアルクラッチ式変速機を搭載したトラックなどの大型車両に利用することができる。
1 DCT(デュアルクラッチ式変速機)
11 第1入力軸
12 第2入力軸
13 カウンターシャフト
C1 第1クラッチ
C2 第2クラッチ
DG2 発進段
SG1 補助段
AG3 加速段
G1、G4~G6、GR ギア段
S1~S3 カップリングスリーブ
20 ECU(制御装置)
21 クラッチ動作機構
22 同期係合動作機構
30 ワンウェイクラッチ
40 第3クラッチ

Claims (5)

  1.  少なくとも第1クラッチと結合する第1入力軸と第2クラッチと結合する第2入力軸とを備え、前記第1入力軸と出力軸との間、及び前記第2入力軸と出力軸との間に、それぞれ奇数段と偶数段の歯車段を配置し、
     動力源から前記出力軸への動力の伝達を開始するときに、発進用の歯車段である発進段を前記第2入力軸に同期係合させると共に、前記第2入力軸に前記第2クラッチを結合させて動力の伝達を開始するデュアルクラッチ式変速機において、
     前記第1入力軸に配置され、前記発進段と異なる歯車比を有する補助段を備え、
     前記発進段を前記第2入力軸に、及び前記補助段を前記第1入力軸に同期係合させると共に、前記前記第1クラッチ及び前記第2クラッチを同時に結合状態にして、前記動力源から前記出力軸への動力の伝達を開始するときに、
     前記補助段を空転させる回転切断機構を前記補助段と前記第1入力軸との間に備えることを特徴とするデュアルクラッチ式変速機。
  2.  前記第1入力軸又は前記第2入力軸のどちらか一方を中空軸で形成し、もう一方の挿設軸を前記中空軸の内の同軸上に挿設し、
     前記動力源から前記出力軸への動力の伝達が開始するときに、前記中空軸と前記挿設軸とを一体回転する入力結合機構を備えることを特徴とする請求項1に記載のデュアルクラッチ式変速機。
  3.  前記回転切断機構を、前記第1入力軸の回転数が、前記補助段の歯車回転数より低い回転数のときに、前記補助段を空転させるワンウェイクラッチで構成することを特徴とする請求項1又は2に記載のデュアルクラッチ式変速機。
  4.  請求項1~3のいずれか1項に記載のデュアルクラッチ式変速機を搭載した車両。
  5.  少なくとも第1クラッチと結合する第1入力軸と第2クラッチと結合する第2入力軸とを備え、前記第1入力軸と出力軸との間、及び前記第2入力軸と出力軸との間に、それぞれ奇数段と偶数段の歯車段を配置し、
     動力源から前記出力軸への動力の伝達を開始するときに、発進用の歯車段である発進段を前記第2入力軸に同期係合させると共に、前記第2入力軸に前記第2クラッチを結合させて動力の伝達を開始するデュアルクラッチ式変速機の制御方法において、
     前記発進段を前記第2入力軸に、及び、前記発進段と異なる歯車比を有する補助段を前記第1入力軸に同期係合すると共に、前記第1クラッチと前記第2クラッチとを同時に結合状態にして、前記動力源から前記出力軸への動力の伝達を開始するときに、
     入力結合機構が前記第1入力軸と前記第2入力軸とを一体回転させると共に、回転切断機構が前記補助段を空転させるデュアルクラッチ式変速機の制御方法。
PCT/JP2012/066708 2011-07-13 2012-06-29 デュアルクラッチ式変速機の制御方法とデュアルクラッチ式変速機とそれを搭載した車両 WO2013008648A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP12811048.3A EP2733393B1 (en) 2011-07-13 2012-06-29 Control method for dual clutch transmission, dual clutch transmission, and vehicle loaded with same
US14/232,594 US9353831B2 (en) 2011-07-13 2012-06-29 Control method for dual clutch transmission, dual clutch transmission, and vehicle loaded with same
CN201280034118.5A CN103649600B (zh) 2011-07-13 2012-06-29 双离合器式变速器的控制方法、双离合器式变速器及搭载其的车辆

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011155082A JP5861290B2 (ja) 2011-07-13 2011-07-13 デュアルクラッチ式変速機の制御方法とデュアルクラッチ式変速機とそれを搭載した車両
JP2011-155082 2011-07-13

Publications (1)

Publication Number Publication Date
WO2013008648A1 true WO2013008648A1 (ja) 2013-01-17

Family

ID=47505944

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/066708 WO2013008648A1 (ja) 2011-07-13 2012-06-29 デュアルクラッチ式変速機の制御方法とデュアルクラッチ式変速機とそれを搭載した車両

Country Status (5)

Country Link
US (1) US9353831B2 (ja)
EP (1) EP2733393B1 (ja)
JP (1) JP5861290B2 (ja)
CN (1) CN103649600B (ja)
WO (1) WO2013008648A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106704408A (zh) * 2016-12-28 2017-05-24 四川省机械研究设计院 可控型机械式软启动系统及方法
CN109469688A (zh) * 2018-11-27 2019-03-15 常州金坛群英机械有限公司 一种离合器装置

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010041303A1 (de) * 2010-09-24 2012-03-29 Zf Friedrichshafen Ag Verfahren zur Kennlinienadaption von Kupplungen in einem Teildoppelkupplungsgetriebe eines Fahrzeugs
JP2014211219A (ja) * 2013-04-19 2014-11-13 株式会社ユニバンス 変速装置
CN103332102B (zh) * 2013-07-04 2016-08-10 重庆大学 基于双离合器自动变速器的单电机混合动力驱动系统
DE102014206149A1 (de) * 2014-04-01 2015-10-01 Volkswagen Aktiengesellschaft Verfahren zur Schaltung eines Kraftfahrzeuggetriebes
CN104074931B (zh) * 2014-07-07 2016-08-17 安徽江淮汽车股份有限公司 一种多离合器变速器传动装置
JP6365200B2 (ja) * 2014-10-06 2018-08-01 いすゞ自動車株式会社 デュアルクラッチ式変速機の制御装置及び制御方法
US10221921B2 (en) 2014-11-21 2019-03-05 Avl Powertrain Engineering, Inc. Torque split dual-clutch transmission
US10830313B2 (en) 2014-11-21 2020-11-10 Avl Powertrain Engineering, Inc. Dual-clutch transmission with planetary gearset and multiple first gears
US9897165B2 (en) 2014-11-21 2018-02-20 Avl Power Train Engineering, Inc. Dual-clutch transmission with multiple first gears
EP3259496B1 (de) 2015-02-19 2018-12-12 Audi AG Doppelkupplungsgetriebe für ein kraftfahrzeug
KR101755799B1 (ko) * 2015-07-01 2017-07-10 현대자동차주식회사 차량용 변속기
JP6575313B2 (ja) * 2015-11-12 2019-09-18 いすゞ自動車株式会社 デュアルクラッチ式変速機
US20180128351A1 (en) * 2016-11-04 2018-05-10 Gregory Mordukhovich Split torque dual clutch transmission for concentric input shafts
CN107246445A (zh) * 2017-06-24 2017-10-13 重庆隆旺机电有限责任公司 半离合式双离合器
CN108343714A (zh) * 2018-02-02 2018-07-31 才亚民 汽车变速器及其控制方法
CN111075856B (zh) * 2019-12-25 2023-11-28 泰安晟泰汽车零部件有限公司 一种车用离合器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61274146A (ja) * 1985-05-28 1986-12-04 Mazda Motor Corp 歯車式変速装置
JP2006132562A (ja) 2004-11-02 2006-05-25 Nissan Motor Co Ltd ツインクラッチ式マニュアルトランスミッションのクラッチ偏摩耗時変速制御装置
JP2006153048A (ja) * 2004-11-25 2006-06-15 Exedy Corp 複式クラッチ装置を用いた変速装置
JP2008309325A (ja) 2007-05-15 2008-12-25 Kanzaki Kokyukoki Mfg Co Ltd デュアルクラッチ式変速装置
JP2010223415A (ja) * 2009-03-25 2010-10-07 Mitsubishi Motors Corp ダブルクラッチ変速機
JP2011112174A (ja) * 2009-11-27 2011-06-09 Mitsubishi Fuso Truck & Bus Corp 車両用変速機制御装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2282591A (en) * 1938-02-14 1942-05-12 Borg Warner Transmission
US4461188A (en) * 1981-12-23 1984-07-24 Ford Motor Company Dual clutch multiple countershaft transmission
DE3812327A1 (de) * 1987-12-19 1989-06-29 Getrag Getriebe Zahnrad Verfahren zum einstellen eines doppelkupplungsgetriebes und doppelkupplungsgetriebe
DE59805014D1 (de) * 1998-08-25 2002-09-05 Ford Global Tech Inc Wechselgetriebe in 3-Wellenbauweise, insbesondere für Kraftfahrzeuge
WO2006086704A2 (en) * 2005-02-10 2006-08-17 Borgwarner Inc. Power flow configuration for dual clutch transmission mechanism
US7665376B2 (en) 2006-03-31 2010-02-23 Magna Powertrain Usa, Inc. Dual clutch powershift transmission
CN101815886B (zh) * 2007-09-26 2014-05-07 麦格纳动力系有限公司 具有后置变矩器的变速器
JP5262210B2 (ja) * 2008-03-18 2013-08-14 いすゞ自動車株式会社 車両用デュアルクラッチ式変速機の発進制御装置
US8116951B2 (en) * 2008-07-28 2012-02-14 GM Global Technology Operations LLC Transmission with substantially identical gear sets for torque load sharing
US8434380B2 (en) * 2009-01-23 2013-05-07 GM Global Technology Operations LLC Dual clutch multi-speed transmission

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61274146A (ja) * 1985-05-28 1986-12-04 Mazda Motor Corp 歯車式変速装置
JP2006132562A (ja) 2004-11-02 2006-05-25 Nissan Motor Co Ltd ツインクラッチ式マニュアルトランスミッションのクラッチ偏摩耗時変速制御装置
JP2006153048A (ja) * 2004-11-25 2006-06-15 Exedy Corp 複式クラッチ装置を用いた変速装置
JP2008309325A (ja) 2007-05-15 2008-12-25 Kanzaki Kokyukoki Mfg Co Ltd デュアルクラッチ式変速装置
JP2010223415A (ja) * 2009-03-25 2010-10-07 Mitsubishi Motors Corp ダブルクラッチ変速機
JP2011112174A (ja) * 2009-11-27 2011-06-09 Mitsubishi Fuso Truck & Bus Corp 車両用変速機制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2733393A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106704408A (zh) * 2016-12-28 2017-05-24 四川省机械研究设计院 可控型机械式软启动系统及方法
CN106704408B (zh) * 2016-12-28 2023-07-21 四川省机械研究设计院(集团)有限公司 可控型机械式软启动系统及方法
CN109469688A (zh) * 2018-11-27 2019-03-15 常州金坛群英机械有限公司 一种离合器装置

Also Published As

Publication number Publication date
EP2733393A1 (en) 2014-05-21
JP2013019514A (ja) 2013-01-31
EP2733393B1 (en) 2019-09-18
JP5861290B2 (ja) 2016-02-16
CN103649600A (zh) 2014-03-19
US20140150584A1 (en) 2014-06-05
EP2733393A4 (en) 2016-08-17
CN103649600B (zh) 2015-09-30
US9353831B2 (en) 2016-05-31

Similar Documents

Publication Publication Date Title
JP5861290B2 (ja) デュアルクラッチ式変速機の制御方法とデュアルクラッチ式変速機とそれを搭載した車両
JP5899682B2 (ja) デュアルクラッチ式変速機の制御方法とデュアルクラッチ式変速機とそれを搭載した車両
JP6205106B2 (ja) デュアルクラッチ式変速機の制御方法とデュアルクラッチ式変速機とそれを搭載した車両
KR100962866B1 (ko) 트윈 클러치식 변속 장치
JP4822891B2 (ja) 歯車変速装置
JP4552568B2 (ja) 二重クラッチ変速機
JP4189695B1 (ja) 車両の制御装置
JP5924774B2 (ja) 車両用デュアルクラッチ式変速機
JP2009156305A (ja) 複数クラッチ式変速機
JP2008309332A (ja) ツインクラッチ式変速機
WO2013005674A1 (ja) デュアルクラッチ式変速機の制御方法とデュアルクラッチ式変速機とそれを搭載した車両
JP2013047532A (ja) デュアルクラッチ式自動変速機
JP2013083330A (ja) 自動変速機
JP5140533B2 (ja) 変速制御装置
JP2009257465A (ja) デュアルクラッチ式自動変速装置
JP2010078118A (ja) 変速制御装置
JP6379147B2 (ja) 変速機のギヤ操作機構
JP6759781B2 (ja) デュアルクラッチ式変速機
JP2019031998A (ja) 変速制御装置
JP2012159093A (ja) デュアルクラッチ式変速機及びその変速方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12811048

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14232594

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012811048

Country of ref document: EP