WO2013008475A1 - 非水電解質二次電池 - Google Patents

非水電解質二次電池 Download PDF

Info

Publication number
WO2013008475A1
WO2013008475A1 PCT/JP2012/004532 JP2012004532W WO2013008475A1 WO 2013008475 A1 WO2013008475 A1 WO 2013008475A1 JP 2012004532 W JP2012004532 W JP 2012004532W WO 2013008475 A1 WO2013008475 A1 WO 2013008475A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
positive electrode
electrode active
average particle
battery
Prior art date
Application number
PCT/JP2012/004532
Other languages
English (en)
French (fr)
Inventor
智也 土川
北野 真也
英史 長谷川
啓介 穴見
泰史 上坊
Original Assignee
株式会社Gsユアサ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Gsユアサ filed Critical 株式会社Gsユアサ
Priority to KR1020147000281A priority Critical patent/KR20140039264A/ko
Priority to JP2013523840A priority patent/JP5839034B2/ja
Priority to US14/232,225 priority patent/US20140141335A1/en
Priority to EP12811641.5A priority patent/EP2733776A4/en
Priority to CN201280033810.6A priority patent/CN103650218A/zh
Publication of WO2013008475A1 publication Critical patent/WO2013008475A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a non-aqueous electrolyte secondary battery.
  • Patent Document 1 discloses a positive electrode including a positive electrode active material composed of a mixture of LiMn 2 O 4 and LiNi 1/3 Co 1/3 Mn 1/3 O 2, and LiMn 2 O 4 and Li (Ni by mixing -Co-Mn) O 2, it has been shown to be possible to improve the energy density of the battery.
  • a battery using Li (Ni—Co—Mn) O 2 has a short-circuited portion around the battery due to a short-circuit current flowing in the short-circuited portion when the positive electrode and the negative electrode of the battery are internally short-circuited for some reason.
  • heat escape is likely to occur.
  • the present invention has been made to solve the above-described problems, and the object of the present invention is to sufficiently suppress the battery from falling into an abnormal state even when the battery causes an internal short circuit. It is to provide a non-aqueous electrolyte secondary battery that can be used.
  • the non-aqueous electrolyte secondary battery according to one aspect of the present invention has a general formula Li a Mn 2-b A b O 4 (A is the second in the periodic table of elements) having an average particle size of 12 ⁇ m or more and 30 ⁇ m or less.
  • the nonaqueous electrolyte secondary battery according to one aspect of the present invention can sufficiently suppress the battery from falling into an abnormal state even when the battery is short-circuited by the above configuration.
  • the negative electrode in addition to the negative electrode active material having an average particle size of 3 ⁇ m or more and 18 ⁇ m or less, the negative electrode includes a negative electrode active material having an average particle size larger than 18 ⁇ m. It is preferable to contain less than 50 mass% with respect to the total mass of a substance. If comprised in this way, in addition to being able to suppress that a battery falls into an abnormal state when the positive electrode and negative electrode of a battery are short-circuited inside, the lifetime improvement of a battery can be achieved.
  • the specific surface area of the second positive electrode active material is preferably 3.5 times or more the specific surface area of the first positive electrode active material. If comprised in this way, it can suppress more reliably that a battery falls into an abnormal state.
  • FIG. 1 is an exploded perspective view showing an overall configuration of a battery according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing the internal structure of the battery along the line 200-200 in FIG.
  • the battery 100 is an example of the “nonaqueous electrolyte secondary battery” in the present invention.
  • the battery 100 is a prismatic lithium ion battery. As shown in FIG. 1, the battery 100 includes a rectangular parallelepiped battery case 1 a having an open upper surface, a lid 1 b, and a power generation element 2. In the battery 100, the lid portion 1b is sealed by being welded circumferentially along the opening edge of the battery case 1a.
  • the two power generation elements 2 are arranged in parallel.
  • the battery 100 is provided with a positive electrode terminal 3 and a negative electrode terminal 4 protruding upward from the lid portion 1b.
  • the battery 100 also includes a positive current collector terminal 5 and a negative current collector terminal 6 that electrically connect the positive electrode terminal 3 and the negative electrode terminal 4 to the power generation element 2, respectively.
  • a safety valve 7 is provided at a substantially central portion of the lid portion 1b.
  • the safety valve 7 has a function of allowing the gas inside the battery case 1a to escape to the outside and reducing the internal pressure of the battery case 1a when the valve is opened when the internal pressure of the battery case 1a rises for some reason.
  • the positive electrode has the general formula Li a Mn 2-b A b O 4 (A is at least one selected from the group consisting of elements of Group 2 to Group 15 of the periodic table of elements)
  • a mixture of the active system active material ).
  • a in the general formula Li a Mn 2-b A b O 4 is at least one of Ti, V, Cr, Fe, Co, Ni, Cu, Zn, B, P, Mg, and Al. It is preferable that it is a kind.
  • M in the general formula Li d Ni x Co y Mn z M ⁇ O 2 is, Ti, V, Cr, Fe , Cu, Zn, B, P, Mg, Al, Ca, Zr, Mo and W It is preferable that it is at least any one of them.
  • the average particle diameter of the Mn-based active material is 12 ⁇ m or more and 30 ⁇ m or less, and the average particle diameter of the ternary active material is 0.5 ⁇ m or more and 7 ⁇ m or less. That is, the average particle diameter of the Mn-based active material is about 5 ⁇ m or more larger than the average particle diameter of the ternary active material.
  • the specific surface area of the Mn-based active material is about 0.4 m 2 / g or less, the specific surface area of the ternary active material is about 3.5 times or more the specific surface area of the Mn-based active material, and More preferably, it is about 5.0 m 2 / g or less.
  • the positive electrode mixture may contain a conductive agent and a binder.
  • a conductive agent an electron conductive material such as acetylene black is preferable.
  • the binder one or more kinds of polyvinylidene fluoride (PVDF), styrene butadiene rubber (SBR), carboxymethyl cellulose (CMC), and the like can be used.
  • the negative electrode contains at least 50% by mass or more of a negative electrode active material having an average particle diameter of 3 ⁇ m or more and 18 ⁇ m or less.
  • a negative electrode active material having an average particle diameter of 3 ⁇ m or more and 18 ⁇ m or less a mixture of two or more kinds can be used as long as it is within the range of the average particle diameter.
  • the average particle size of the negative electrode active material is more preferably about 5 ⁇ m or more and about 15 ⁇ m or less.
  • the negative electrode preferably contains less than about 50% by mass of a negative electrode active material having an average particle size greater than about 18 ⁇ m in addition to the negative electrode active material having an average particle size of 3 ⁇ m or more and 18 ⁇ m or less.
  • the negative electrode active material should just be able to occlude lithium ion.
  • a carbon material such as lithium composite oxide, silicon oxide, an alloy capable of inserting and extracting lithium, graphite, hard carbon, low-temperature fired carbon, and amorphous carbon.
  • graphite is preferably used as the negative electrode active material from the viewpoint of energy density.
  • a negative electrode mixture may contain a electrically conductive agent, a binder, etc. like a positive electrode mixture as needed.
  • a electrically conductive agent and a binder it is possible to use the material similar to an above-described positive electrode mixture.
  • a resin porous membrane, a nonwoven fabric, or the like may be used alone or in combination.
  • a porous film made of polyolefin such as polyethylene or polypropylene for the separator 23 from the viewpoint of easy processing and improved durability.
  • non-aqueous electrolyte an electrolyte salt dissolved in a non-aqueous solvent is used.
  • electrolyte salt an inorganic ion salt containing Li, such as LiClO 4 , LiBF 4 , LiPF 6, or the like can be used.
  • concentration of the electrolyte salt in the nonaqueous electrolyte is preferably about 0.1 mol / l or more and about 5 mol / l or less.
  • nonaqueous solvents for nonaqueous electrolytes include cyclic carbonates such as propylene carbonate (PC) and ethylene carbonate (EC), and chains such as dimethyl carbonate (DMC), diethyl carbonate (DEC), and ethyl methyl carbonate (EMC). Like carbonates can be used.
  • cyclic carbonates such as propylene carbonate (PC) and ethylene carbonate (EC)
  • chains such as dimethyl carbonate (DMC), diethyl carbonate (DEC), and ethyl methyl carbonate (EMC).
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • EMC ethyl methyl carbonate
  • Example 1-1 (Production of Mn-based active material) First, a Mn-based active material was produced. Specifically, a solution in which LiOH and MnO 2 were mixed at a predetermined ratio was dried using spray drying to obtain a precursor composed of a mixed salt of Li and Mn. By firing the precursor, a Mn-based active material made of LiMn 2 O 4 having a spinel crystal structure having an average particle diameter of 18 ⁇ m and a specific surface area of 0.2 m 2 / g was produced.
  • the measurement of the average particle diameter of Mn type active material was performed as follows. First, after fully kneading the produced Mn-based active material and an anionic surfactant, ion-exchanged water (water from which ions in water were removed using an ion-exchange resin) was added. After the Mn-based active material is dispersed in ion-exchanged water using ultrasonic waves, the average particle size of the Mn-based active material is measured using a laser diffraction / scattering particle size distribution measuring device (SALD-2000J, manufactured by Shimadzu Corporation). The diameter was measured.
  • SALD-2000J laser diffraction / scattering particle size distribution measuring device
  • the specific surface area of the Mn-based active material was measured as follows. First, the produced Mn-based active material was dried in a nitrogen gas atmosphere under a temperature condition of 150 ° C. Then, the specific surface area of the Mn-based active material based on the BET method was measured using a specific surface area measuring device (TRISTAR 3000, manufactured by Micromeritics).
  • Ni—Co—Mn coprecipitation precursor was obtained by a coprecipitation method using manganese sulfate hydrate, nickel sulfate hydrate and cobalt sulfate hydrate as raw materials.
  • a predetermined amount of lithium hydroxide and a Ni—Mn—Co coprecipitation precursor were mixed.
  • a ternary component composed of LiNi 1/3 Co 1/3 Mn 1/3 O 2 having a layered rock salt type crystal structure having an average particle diameter of 4 ⁇ m and a specific surface area of 1.4 m 2 / g A system active material was prepared.
  • the measurement of the average particle diameter and specific surface area of a ternary system active material was measured using the measurement method similar to the measurement of the average particle diameter and specific surface area of the said Mn type active material.
  • the specific surface area of the ternary active material was 7 times (1.4 / 0.2) the specific surface area of the Mn active material.
  • both the Mn-based active material and the three-component active material are prepared by adjusting the firing temperature, firing time, etc. during firing and classifying the particles to obtain a positive electrode active material having a predetermined average particle diameter and specific surface area. It is possible to produce. In general, a positive electrode active material having a large average particle size and a small specific surface area can be produced by increasing the firing temperature and lengthening the firing time. On the other hand, by lowering the firing temperature and shortening the firing time, an active material having a small average particle size and a large specific surface area can be produced.
  • NMP N-methylpyrrolidone
  • the produced paste-form positive mix was apply
  • a negative electrode active material was produced. Specifically, by pulverizing and classifying graphite, first graphite (Gr1) having an average particle diameter of 5 ⁇ m and a specific surface area of 2.2 m 2 / g is produced as a first negative electrode active material. As the second negative electrode active material, a second graphite (Gr2) having an average particle size of 22 ⁇ m and a specific surface area of 0.8 m 2 / g was produced. In addition, the measurement similar to the measurement of the average particle diameter and specific surface area of the said Mn type positive electrode active material was used for the measurement of the average particle diameter and specific surface area of 1st graphite and 2nd graphite.
  • Example 1-2 to 1-8 and Comparative Examples 1-1 to 1--7 the average particle diameters and specific surface areas of LiNi 1/3 Co 1/3 Mn 1/3 O 2 and LiMn 2 O 4 A battery was fabricated in the same manner as in Example 1-1 except that the average particle diameter and specific surface area of graphite or the mixing ratio of the first graphite and the second graphite were as shown in Table 1.
  • an iron nail having a diameter of 5 mm from one side surface in the Y direction of the battery shown in FIG. 1 is 3 cm / sec.
  • the battery was forced to short-circuit the positive electrode 21 and the negative electrode 22 of the battery.
  • the nail penetration test is a battery evaluation test, and such an extreme short circuit does not occur in a normal use environment.
  • Table 1 shows the results of the nail penetration test for the batteries 100 of Examples 1-1 to 1-8 and the batteries of Comparative Examples 1-1 to 1-7.
  • Examples 1-1 to 1-8 by making the average particle diameter of the ternary active material that is likely to cause thermal escape sufficiently smaller than the average particle diameter of the Mn-based active material, It is considered that the ternary active material was able to receive lithium ions preferentially over the Mn active material. Further, by using 50% by mass or more of the first graphite having an average particle size of 3 ⁇ m or more and 18 ⁇ m or less, the first graphite and the non-aqueous electrolyte can be effectively contacted, and lithium ions from the first graphite can be brought into contact. It is thought that the release could be promoted.
  • the ternary active material was able to be quickly discharged to a charged state that does not cause thermal escape in the vicinity of the short-circuited portion, so that the battery could be sufficiently suppressed from falling into an abnormal state. It is done.
  • the reason why the abnormality was observed when the average particle diameter of the Mn-based active material was less than 12 ⁇ m is that the particle diameter of the Mn-based active material is smaller than that of the ternary active material. It is considered that the ternary active material could not receive electrons and lithium ions from the negative electrode side preferentially over the Mn active material because it was not sufficiently larger than the diameter.
  • the average particle size of the Mn-based active material is larger than 30 ⁇ m, the contact area between the Mn-based active material and the non-aqueous electrolyte becomes too small, and the discharge capacity during high rate discharge becomes small. Therefore, the average particle size of the Mn-based active material is preferably 12 ⁇ m or more and 30 ⁇ m or less.
  • the average particle diameter of the ternary active material is preferably 0.5 ⁇ m or more and 7 ⁇ m or less.
  • the average particle diameter of the first graphite is preferably 15 ⁇ m or less as in Examples 1-1 to 1-8. According to the inventor's consideration, if the average particle size of the first graphite is 18 ⁇ m or less, it is considered that the same effects as those of Examples 1-1 to 1-8 can be obtained.
  • the average particle diameter of the first graphite is preferably 3 ⁇ m or more and 18 ⁇ m or less.
  • the reason why the abnormality occurred is that when the amount of the first graphite is insufficient (less than 50% by mass), the negative electrode active material As a whole, it is considered that the reactivity with the nonaqueous electrolyte could not be sufficiently increased.
  • the battery falls into an abnormal state by ensuring a difference of 8 ⁇ m or more between the average particle diameter of the Mn-based active material and the average particle diameter of the ternary active material. It was found that could be sufficiently suppressed. In addition, according to the inventor's consideration, it is considered that if the difference in average particle diameter is secured to 5 ⁇ m or more, the battery can be sufficiently prevented from falling into an abnormal state.
  • the negative electrode active material contains less than 50% by mass of the second graphite having an average particle diameter larger than that of the first graphite. This is because the second graphite having an average particle size larger than that of the first graphite has a low reactivity with the non-aqueous electrolyte, so that it is considered that the battery life can be extended.
  • Example 2 (Examples 2-1 to 2-4 and Comparative Examples 2-1 to 2-2)
  • Examples 2-1 to 2-3 are the same as those of Example 1 except that the positive electrode active material was configured so that the mass ratio of the Mn-based active material to the ternary active material was 20:80 to 80:20.
  • a battery was produced in the same manner as in Example-1.
  • Example 2-4, Comparative Example 2-1 and Comparative Example 2-2 were carried out except that the average particle diameter and specific surface area of each active material and the mixing ratio of the positive electrode active material were as shown in Table 2.
  • a battery was produced in the same manner as in Example 1-1.
  • Table 2 shows the results of the nail penetration test for the batteries 100 of Examples 2-1 to 2-4 and the batteries of Comparative Examples 2-1 to 2-2.
  • Example 3 (Examples 3-1 to 3-3)
  • Examples 3-1 to 3-3 use the ternary active material shown in Table 3 and the mass ratio of the Mn active material to the ternary active material is 30:70.
  • a battery was fabricated in the same manner as in Example 1-1 except for the above.
  • Table 3 shows the results of the nail penetration test for the batteries of Examples 3-1 to 3-3.
  • Example 3-1 to 3-3 the result of “no abnormality” was obtained in the nail penetration test. This is considered to be because, in any of Examples 3-1 to 3-3, the composition of the ternary active material could be quickly discharged to a charged state that does not cause thermal escape in the vicinity of the short circuit portion. It is done.
  • the general formula Li d Ni x Co y Mn z M ⁇ O 2 (M is at least selected from the group consisting of a Group 2 to Group 15 element of the Periodic Table of the Elements 1
  • the kinds of elements, 0.9 ⁇ d ⁇ 1.3, x, y, z and ⁇ are 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 1, 0 ⁇ ⁇ ⁇ 0.3, x + y + z + ⁇ In 1), there is no significant difference in chemical reactivity and thermal stability, so it is considered that the same effect can be obtained.
  • Example 4 (Examples 4-1 to 4-3) Examples 4-1 to 4-3 except that LiMn 2 O 4 and LiNi 1/3 Co 1/3 Mn 1/3 O 2 having the average particle diameter and specific surface area shown in Table 4 were used. Produced a battery in the same manner as in Example 1-1. Table 4 shows the results of the nail penetration test for the batteries of Examples 4-1 to 4-3.
  • Example 4-1 the safety valve was not opened, and the weight reduction with respect to the total weight of the battery was less than 5%.
  • Example 4-2 and Example 4-3 although the safety valve was not opened, the mass reduction with respect to the total mass of the battery was 5% or more. This is considered to be due to the following reason.
  • Example 4-1 the contact area between the ternary active material and the non-aqueous electrolyte could be made sufficiently larger than the contact area between the Mn-based active material and the non-aqueous electrolyte.
  • the ternary active material was able to receive electrons and lithium ions from the negative electrode 22 side preferentially over the Mn active material.
  • Example 5 (Examples 5-1 to 5-7 and Comparative Examples 5-1 to 5-2)
  • the mass ratio of LiMn 2 O 4 to LiNi 1/3 Co 1/3 Mn 1/3 O 2 is 10:90 to 90 :
  • a battery was fabricated in the same manner as in Example 1-1 except that the positive electrode active material was configured to be 10.
  • Table 5 shows the measurement results of the battery capacities of the batteries of Examples 5-1 to 5-7 and Comparative Examples 5-1 to 5-2.
  • Examples 5-1 to 5-7 and Comparative Examples 5-1 to 5-2 it was confirmed that the battery capacity was increased by increasing the proportion of the ternary active material in the positive electrode.
  • Comparative Example 5-2 is most preferable, but Comparative Example 2-2 was “abnormal” in the nail penetration test.
  • Positive electrode 22 Negative electrode 100 Battery non-aqueous electrolyte secondary battery

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本発明の非水電解質二次電池は、12μm以上30μm以下の平均粒径を有する、一般式LiMn2-bで表されるMn系正極活物質と、0.5μm以上7μm以下の平均粒径を有する、一般式LiNiCoMnαで表される三成分系正極活物質とを有する正極と、3μm以上18μm以下の平均粒径を有する負極活物質を50質量%以上含有する負極活物質を含む負極とを備え、Mn系正極活物質と三成分系正極活物質との質量混合比が、Mn系正極活物質の質量:三成分系正極活物質の質量=20:80~80:20を満たすことにより、電池が内部短絡を起こした場合にも、電池が異常な状態に陥ることを十分に抑制することが可能である。

Description

非水電解質二次電池
この発明は、非水電解質二次電池に関する。
従来、2種の正極活物質を混合した正極と、負極とを備える非水電解質二次電池が知られている。特許文献1には、LiMnとLiNi1/3Co1/3Mn1/3との混合からなる正極活物質を含む正極が開示されており、LiMnとLi(Ni-Co-Mn)Oとを混合することによって、電池のエネルギー密度を向上させることが可能であることが示されている。
特表2008-532221号公報
しかしながら、Li(Ni-Co-Mn)Oをもちいた電池は、何らかの原因により電池の正極と負極とが内部で短絡した場合に、短絡部分に流れる短絡電流に起因して電池の短絡部分周辺が発熱した際に、熱逸走に至りやすいという不都合がある。
本願発明者が検証した結果、上記特許文献1のように、LiMnと、Li(Ni-Co-Mn)Oとを混合することによって、ある程度は熱逸走を抑制する効果はあるものの、電池の異常を抑制するには不十分であった。
この発明は、上記のような課題を解決するためになされたものであり、この発明の目的は、電池が内部短絡を起こした場合にも、電池が異常な状態に陥ることを十分に抑制することが可能な非水電解質二次電池を提供することである。
課題を解決するための手段および発明の効果
本願発明者が鋭意検討した結果、特定の正極および負極を用いることで電池の異常を十分に抑制することが可能であることを見い出した。すなわち、この発明の一の局面による非水電解質二次電池は、12μm以上30μm以下の平均粒径を有する、一般式LiMn2-b(Aは、元素周期表の第2族~第15族の元素からなる群から選ばれた少なくとも1種類の元素、0.9≦a≦1.3、0≦b≦0.3)で表される第1正極活物質と、0.5μm以上7μm以下の平均粒径を有する、一般式LiNiCoMnα(Mは、元素周期表の第2族~第15族の元素からなる群から選ばれた少なくとも1種類の元素、0.9≦d≦1.3、x、y、zおよびαは、0<x<1、0<y<1、0<z<1、0≦α≦0.3、x+y+z+α=1)で表される第2正極活物質とを含む正極と、3μm以上18μm以下の平均粒径を有する負極活物質を負極活物質の総質量に対して50質量%以上含有する負極とを備え、第1正極活物質と第2正極活物質との質量混合比が、第1正極活物質の質量:第2正極活物質の質量=20:80~80:20を満たす。
この発明の一の局面による非水電解質二次電池は、上記の構成によって、電池が内部で短絡を起こした場合にも、電池が異常な状態に陥ることを十分に抑制することができる。
上記一の局面による非水電解質二次電池において、前記負極は、3μm以上18μm以下の平均粒径を有する前記負極活物質に加えて、18μmよりも大きい平均粒径を有する負極活物質を負極活物質の総質量に対して50質量%未満含有することが好ましい。このように構成すれば、電池の正極と負極とが内部で短絡した場合に電池が異常な状態に陥ることを抑制することができることに加えて、電池の長寿命化を図ることができる。
上記一の局面による非水電解質二次電池において、第2正極活物質の比表面積は、第1正極活物質の比表面積の3.5倍以上であることが好ましい。このように構成すれば、より確実に、電池が異常な状態に陥ることを抑制することができる。
本発明の一実施形態による電池の全体構成を示した分解斜視図である。 図1の200-200線に沿った電池の内部構造を示した断面図である。
以下、本発明を具体化した実施形態を図面に基づいて説明する。まず、図1および図2を参照して、本発明の一実施形態による電池100の構成について説明する。なお、電池100は、本発明の「非水電解質二次電池」の一例である。
本発明の一実施形態による電池100は、角形リチウムイオン電池である。この電池100は、図1に示すように、上面が開口した直方体の電池ケース1aと、蓋部1bと、発電要素2とを備えている。電池100では、蓋部1bが電池ケース1aの開口縁部に沿って周状に溶接されることによって封止されている。
また、図1および図2に示すように、2つの発電要素2は、並列接続して配置されている。また、電池100には、図1に示すように、蓋部1bから上方に突出する正極端子3および負極端子4が設けられている。また、電池100は、正極端子3および負極端子4をそれぞれ発電要素2に電気的に接続する正極集電端子5および負極集電端子6とを備えている。
また、蓋部1bの略中央部には、安全弁7が設けられている。安全弁7は、電池ケース1aの内圧が何らかの原因で上昇した場合に弁が開かれることによって、電池ケース1aの内部のガスなどを外部に逃がして、電池ケース1aの内圧を低下させる機能を有する。
ここで、本実施形態では、正極は、一般式LiMn2-b(Aは、元素周期表の第2族~第15族の元素からなる群から選ばれた少なくとも1種類の元素、0.9≦a≦1.3、0≦b≦0.3)で表わされる第1正極活物質(以下、「Mn系活物質」という)と、一般式LiNiCoMnα(Mは、元素周期表の第2族~第15族の元素からなる群から選ばれた少なくとも1種類の元素、0.9≦d≦1.3、x、y、zおよびαは、0<x<1、0<y<1、0<z<1、0≦α≦0.3、x+y+z+α=1)で表される第2正極活物質(以下、「三成分系活物質」という)とが混合された混合物を含む。
なお、上記一般式LiMn2-b中のAは、Ti、V、Cr、Fe、Co、Ni、Cu、Zn、B、P、MgおよびAlのうちの少なくともいずれか1種類であるのが好ましい。また、上記一般式LiNiCoMnα中のMは、Ti、V、Cr、Fe、Cu、Zn、B、P、Mg、Al、Ca、Zr、MoおよびWのうちの少なくともいずれか1種類であるのが好ましい。
また、正極は、Mn系活物質:三成分系活物質=20:80~80:20の質量比で、Mn系活物質と三成分系活物質とが混合されている。
また、本実施形態では、Mn系活物質の平均粒径は、12μm以上30μm以下であり、三成分系活物質の平均粒径は、0.5μm以上7μm以下である。つまり、Mn系活物質の平均粒径は、三成分系活物質の平均粒径よりも約5μm以上大きい。また、Mn系活物質の比表面積は、約0.4m/g以下であるとともに、三成分系活物質の比表面積は、Mn系活物質の比表面積の約3.5倍以上で、かつ、約5.0m/g以下であることがより好ましい。
また、正極合剤に導電剤および結着剤などを含有させてもよい。導電剤としては、アセチレンブラックなどの電子伝導性材料が好ましい。また、結着剤としては、ポリフッ化ビニリデン(PVDF)、スチレンブタジエンゴム(SBR)および、カルボキシメチルセルロース(CMC)などを1種類または2種類以上用いることが可能である。
また、本実施形態では、負極は、平均粒径が3μm以上18μm以下である負極活物質を少なくとも50質量%以上含んでいる。平均粒径が3μm以上18μm以下である負極活物質は、平均粒径の範囲内であれば2種以上が混合されたものをもちいることができる。なお、負極活物質の平均粒径は、約5μm以上約15μm以下であるのがより好ましい。さらに、負極は、平均粒径が3μm以上18μm以下である負極活物質に加えて、平均粒径が約18μmよりも大きい負極活物質を約50質量%未満含んでいるのが好ましい。
また、負極活物質は、リチウムイオンを吸蔵することが可能であればよい。たとえば、リチウム複合酸化物、酸化ケイ素、リチウムを吸蔵・放出可能な合金、グラファイト、ハードカーボン、低温焼成炭素および非晶質カーボンなどの炭素材料を用いることが可能である。なお、負極活物質には、エネルギー密度の観点からグラファイトをもちいることが好ましい。
また、必要に応じて、正極合剤と同様に、負極合剤に導電剤および結着剤などを含有させてもよい。なお、導電剤および結着剤については、上記した正極合剤と同様の材料を用いることが可能である。
発電要素2のセパレータ23としては、樹脂製多孔膜や不織布などを、単独で用いてもよいし併用してもよい。なお、加工の容易さおよび耐久性向上の観点から、セパレータ23にはポリエチレンやポリプロピレンなどのポリオレフィン製の多孔膜を用いることがより好ましい。
また、非水電解質として、電解質塩を非水溶媒に溶解させたものが用いられる。電解質塩としては、LiClO、LiBF、LiPFなどのLiを含む無機イオン塩を用いることが可能である。また、非水電解質における電解質塩の濃度は、約0.1mol/l以上約5mol/l以下であるのが好ましい。
非水電解質の非水溶媒としては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)などの環状炭酸エステル類や、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)およびエチルメチルカーボネート(EMC)などの鎖状カーボネート類を用いることが可能である。
上記実施形態の電池100の作製および評価試験の方法は、以下の実施例1~5で説明する。
[実施例1]
(実施例1-1)
(Mn系活物質の作製)
まず、Mn系活物質を作製した。具体的には、LiOHとMnOとを所定の割合で混合した溶液をスプレードライを用いて乾燥し、LiおよびMnの混合塩からなる前駆体を得た。前駆体を焼成することによって、18μmの平均粒径と0.2m/gの比表面積とを有するスピネル型結晶構造のLiMnからなるMn系活物質を作製した。
なお、Mn系活物質の平均粒径の測定は以下のように行った。まず、作製したMn系活物質とアニオン系界面活性剤とを十分に混練した後に、イオン交換水(イオン交換樹脂を用いて水中のイオンを除去した水)を加えた。そして、超音波を用いてMn系活物質をイオン交換水に分散させた後に、レーザ回折・散乱式の粒度分布測定装置(SALD-2000J、島津製作所製)を用いてMn系活物質の平均粒径を測定した。
また、Mn系活物質の比表面積の測定は以下のように行った。まず、作製したMn系活物質を150℃の温度条件下の窒素ガス雰囲気中で乾燥させた。そして、BET法に基づくMn系活物質の比表面積を、比表面積測定装置(TRISTAR3000、Micromeritics社製)を用いて測定した。
(三成分系活物質の作製)
硫酸マンガン水和物、硫酸ニッケル水和物および硫酸コバルト水和物を原料として、共沈法によりNi-Co-Mn共沈前駆体を得た。
その後、所定の量の水酸化リチウムとNi-Mn-Co共沈前駆体とを混合した。その混合物を焼成することにより、4μmの平均粒径と1.4m/gの比表面積とを有する層状岩塩型結晶構造のLiNi1/3Co1/3Mn1/3からなる三成分系活物質を作製した。なお、三成分系活物質の平均粒径および比表面積の測定は、上記Mn系活物質の平均粒径および比表面積の測定と同様の測定方法を用いて測定した。この結果、三成分系活物質の比表面積は、Mn系活物質の比表面積の7倍(1.4/0.2)になった。
なお、Mn系活物質および三成分系活物質ともに、焼成時の焼成温度、焼成時間などを調整することおよび粒子の分級を行うことによって、所定の平均粒径および比表面積を有する正極活物質を作製することが可能である。一般的には、焼成温度を高くするとともに焼成時間を長くすることによって、平均粒径が大きく、比表面積が小さい正極活物質を作製可能である。一方、焼成温度を低くするとともに焼成時間を短くすることによって、平均粒径が小さく、比表面積が大きい活物質を作製可能である。
(正極の作製)
上記のMn系活物質と三成分系活物質とを用いて正極合剤を作製した。具体的には、70:30の質量比でLiMnとLiNi1/3Co1/3Mn1/3とを混合した混合物からなる正極活物質と、アセチレンブラック(AB)からなる導電剤と、ポリフッ化ビニリデン(PVDF)からなる増粘剤とを混合した。この際、正極活物質:AB:PVDF=88:6:6の質量比とした。この混合物に、N-メチルピロリドン(NMP)を適量加えて、ペースト状の正極合剤を作製した。
そして、図2に示すように、作製したペースト状の正極合剤を約20μmの厚みを有するアルミニウム箔からなる正極集電体21aに塗布し、乾燥した。その後、正極集電体21aの端部周辺に正極集電端子5(図1参照)を接続した。
(負極活物質の作製)
次に、負極活物質を作製した。具体的には、グラファイトを粉砕および分級することによって、第1の負極活物質として、5μmの平均粒径と2.2m/gの比表面積とを有する第1グラファイト(Gr1)を作製するとともに、第2の負極活物質として、22μmの平均粒径と0.8m/gの比表面積とを有する第2グラファイト(Gr2)を作製した。なお、第1グラファイトと、第2グラファイトの平均粒径および比表面積の測定は、共に上記Mn系正極活物質の平均粒径および比表面積の測定と同様の方法を用いた。
(負極の作製)
また、上記のように作製した第1グラファイトと第2グラファイトとを用いて負極合剤を作製した。具体的には、60:40の質量比で第1グラファイトと第2グラファイトとを混合した混合物からなる負極活物質と、PVDFからなる結着剤とを混合した。この際、負極活物質:PVDF=95:5の質量比とした。そして、この混合物に、NMPを適量加えて、ペースト状の負極合剤を作製した。そして、約15μmの厚みを有する銅箔からなる負極集電体22aに、正極と同様の方法で負極合剤を塗布して、負極22を作製し、負極集電端子6と接続した。
(未注液電池の作製)
その後、正極21と負極22との間にセパレータ23を介在させた状態で、これらを巻回し、発電要素2(図2参照)を作製した。そして、図1に示すように、正極端子3と正極集電端子5とを接合し、負極端子4と負極集電端子6とを接合した。その後、レーザ溶接によって電池ケース1aと蓋部1bとの嵌合部分を溶接した。このようにして、非水電解質を注入する前の電池100を作製した。
(非水電解質の作製および注液)
また、1:1の体積比のエチレンカーボネート(EC)とジエチルカーボネート(DEC)とを混合して非水溶媒を作製した。そして、作製した非水溶媒に、電解質塩の濃度が1mol/LになるようにLiPFを溶解させて非水電解質を作製した。そして、作製した非水電解質を電池ケース1aの側面の図示しない注液口から注入した。最後に、注液口を封止することによって、図1に示す実施例1-1の電池100を作製した。
(実施例1-2~1-8および比較例1-1~1-7)
実施例1-2~1-8および比較例1-1~1-7は、LiNi1/3Co1/3Mn1/3およびLiMnの平均粒径および比表面積、第1グラファイトの平均粒径および比表面積、または第1グラファイトと第2グラファイトとの混合比率を表1に示すようにしたことを除いて、実施例1-1と同様に、電池を作製した。
(釘刺し試験)
作製した実施例1-1~1-8および比較例1-1~1-7による電池の各々に対して、50Aの充電電流で、4.1Vの電圧まで定電流定電圧充電をおこなった。ここで、充電時間の合計は3時間とした。
充電後の電池に対して、図1に示す電池のY方向(発電要素2内で正極21と負極22とが積層された方向)の一方側面から直径5mmの鉄釘を3cm/secの速度で貫通させて、強制的に電池の正極21と負極22とを短絡させた。なお、釘刺し試験は電池の評価試験であり、通常の使用環境では、このような極度の短絡が生じることはない。
そして、各々の電池に異常があったか否かを観察した。ここで、電池の安全弁7が開いて安全弁から白煙が噴出した場合や、電池ケース1aおよび蓋部1bが破損した場合などの明らかな異常が観察された場合に「異常あり」と判断した。また、安全弁7が開かない場合や、安全弁7が開いた場合であっても明らかな異常が観察されない場合に「異常なし」と判断した。さらに、安全弁7が開かず実際上は特に問題はないものの、電池ケース1aなどから液漏れが発生して、電池の総重量(総質量)に対する重量(質量)の減少率が5%以上となった場合には、「異常なし(開弁なし、5%以上の重量減少有)」のように判定した。
表1に、実施例1-1~1-8の電池100および比較例1-1~1-7の電池に対する釘刺し試験の結果を示す。
Figure JPOXMLDOC01-appb-T000001
上記表1に示すように、実施例1-1~1-8は、「異常なし」の結果が得られた。一方、比較例1-1~1-7では、「異常あり」の結果が得られた。
上記の結果について考察すると、実施例1-1~1-8では、熱逸走を起こしやすい三成分系活物質の平均粒径をMn系活物質の平均粒径よりも十分に小さくすることによって、三成分系活物質がMn系活物質よりも優先的にリチウムイオンを受け取ることができたものと考えられる。また、平均粒径が3μm以上18μm以下である第1グラファイトを50質量%以上用いることにより、第1グラファイトと非水電解質とを効果的に接触させることができ、第1グラファイトからのリチウムイオンの放出を促進させることができたと考えられる。
これにより、短絡部分周辺において、三成分系活物質が熱逸走を引き起こさない充電状態まで速やかに放電させることができたので、電池が異常な状態に陥ることを十分に抑制することができたと考えられる。
これに対して、Mn系活物質の平均粒径が12μm未満の場合(比較例1-4)に異常が観察された理由としては、Mn系活物質の粒径が三成分系活物質の粒径よりも十分に大きくなかったことによって、三成分系活物質がMn系活物質よりも優先的に負極側からの電子およびリチウムイオンを受け取ることができなかったと考えられる。また、Mn系活物質の平均粒径が30μmよりも大きい場合には、Mn系活物質と非水電解質との接触面積が小さくなり過ぎて高率放電時の放電容量が小さくなる。したがって、Mn系活物質の平均粒径は、12μm以上30μm以下が好ましい。
三成分系活物質の平均粒径が7μmよりも大きい場合(比較例1-1~1-3、および1-5)に異常が観察された理由としては、三成分系活物質の粒径が大き過ぎることによって、三成分系活物質を非水電解質に対して効率よく接触させることができなかったため、三成分系活物質がMn系活物質よりも優先的に負極側からの電子およびリチウムイオンを受け取ることができなかったと考えられる。また、三成分系活物質の平均粒径が0.5μm未満の場合には、三成分系活物質と非水電解質との反応性が高くなり、電池の寿命が低下するため、好ましくない。したがって、三成分系正極活物質の平均粒径は、0.5μm以上7μm以下が好ましい。
また、第1グラファイトが大きな平均粒径を有する場合(比較例1-1および1-7)に異常が生じた理由としては、第1グラファイトおよび第2グラファイトの粒径が共に大きいことに起因して、負極活物質全体と非水電解質との反応性が低くなり、リチウムイオンの放出を促進させることができなかったと考えられる。このことから、第1グラファイトの平均粒径は、実施例1-1~1-8のように15μm以下であるのが好ましい。なお、本願発明者の考察によると、第1グラファイトの平均粒径が18μm以下であれば、実施例1-1~1-8と同様の効果が得られると考えている。また、第1グラファイトが3μm未満の平均粒径を有する場合には、第1グラファイトが小さくなり過ぎて、第1グラファイトと非水電解質との反応性が高くなり過ぎ、電池の寿命が低下するため、好ましくない。したがって、第1グラファイトの平均粒径は、3μm以上18μm以下が好ましい。
第1グラファイトを50質量%未満含有する場合(比較例1-6)に異常が生じた理由としては、第1グラファイトの量が不十分(50質量%未満)である場合には、負極活物質全体としては非水電解質との反応性を十分に高めることができなかったと考えられる。
実施例1-1~1-8の結果から、Mn系活物質の平均粒径と三成分系活物質の平均粒径との差を8μm以上確保することによって、電池が異常な状態に陥ることを十分に抑制できたことがわかった。なお、本願発明者の考察によると、平均粒径の差を5μm以上確保すれば、電池が異常な状態に陥ることを十分に抑制できると考えている。
また、実施例1-1~1-8のように、負極活物質が、第1グラファイトよりも平均粒径の大きい第2グラファイトを50質量%未満含有するように構成するのが好ましい。これは、平均粒径が第1グラファイトよりも大きい第2グラファイトは、非水電解質との反応性が低いため、電池の長寿命化を図ることができると考えられるからである。
[実施例2]
(実施例2-1~2-4および比較例2-1~2-2)
実施例2-1~2-3は、Mn系活物質と三成分系活物質との質量比が20:80~80:20となるように正極活物質を構成した点以外は、実施例1-1と同様にして、電池を作製した。実施例2-4、比較例2-1および比較例2-2は、各活物質の平均粒径および比表面積、正極活物質の混合比率を表2に示すようにした点を除いて、実施例1-1と同様に、電池を作製した。表2に、実施例2-1~2-4の電池100および比較例2-1~2-2の電池に対する釘刺し試験の結果を示す。
Figure JPOXMLDOC01-appb-T000002
実施例2-1~2-4では、「異常なし」の結果が得られた。一方、比較例2-2は、釘刺し試験において「異常あり」の結果が得られた。
比較例2-2のように、正極に三成分系活物質が過剰に含有される場合に異常が生じた理由としては、三成分系活物質が80質量%を超えて過剰に含有されることに起因して、釘刺し時に、短絡部分周辺の三成分系活物質が熱逸走を引き起こさない充電状態まで速やかに放電させることができなかったと考えられる。
また、比較例2-1のように、Mn系活物質の質量:三成分系活物質の質量=20:80~80:20を満たしている場合であっても、三成分系活物質の平均粒径が0.5μm以上7μm以下でなく、かつ、第1グラファイトの平均粒径も3μm以上18μm以下でない場合には、釘刺し試験において「異常あり」の結果が得られた。
[実施例3]
(実施例3-1~3-3)
実施例3-1~3-3は、表3に示した三成分系活物質を用いる点と、Mn系活物質と三成分系活物質との質量比が30:70となるようにした点とを除いては、実施例1-1と同様にして、電池を作製した。表3に、実施例3-1~3-3の電池に対する釘刺し試験の結果を示す。
Figure JPOXMLDOC01-appb-T000003
実施例3-1~3-3では、釘刺し試験において「異常なし」の結果が得られた。これは、三成分系活物質の組成が実施例3-1~3-3のいずれにおいても、短絡部分周辺において、熱逸走を引き起こさない充電状態まで速やかに放電させることができたからであると考えられる。なお、本願発明者の考察によると、一般式LiNiCoMnα(Mは、元素周期表の第2族~第15族の元素からなる群から選ばれた少なくとも1種類の元素、0.9≦d≦1.3、x、y、zおよびαは、0<x<1、0<y<1、0<z<1、0≦α≦0.3、x+y+z+α=1)においては、化学反応性や熱的安定性に大きな違いはないため、同様の効果が得られると考えている。
また、実験例は示してないが、Mn系活物質の組成を、Li1.1Mn1.9やLiMn1.9Al0.1とした場合においても、釘刺し試験において「異常なし」の結果が得られた。本願発明者の考察によると、一般式LiMn2-b(Aは、元素周期表の第2族~第15族の元素からなる群から選ばれた少なくとも1種類の元素、0.9≦a≦1.3、0≦b≦0.3)においては、化学反応性や熱的安定性に大きな違いはないため、同様の効果が得られると考えている。
[実施例4]
(実施例4-1~4-3)
実施例4-1~4-3は、表4に示した平均粒径および比表面積を有するLiMnおよびLiNi1/3Co1/3Mn1/3を用いた点を除いては、実施例1-1と同様にして、電池を作製した。表4に、実施例4-1~4-3の電池に対する釘刺し試験の結果を示す。
Figure JPOXMLDOC01-appb-T000004
実施例4-1では、安全弁の開弁はなく、かつ、電池の総重量に対する重量減少が5%未満であった。一方、実施例4-2および実施例4-3では、安全弁の開弁はないものの、電池の総質量に対する質量減少が5%以上であった。これは、以下の理由によるものと考えられる。
すなわち、実施例4-1では、三成分系活物質と非水電解質との接触面積を、Mn系活物質と非水電解質との接触面積よりも十分に大きくすることができたので、より確実に、三成分系活物質がMn系活物質よりも優先的に負極22側からの電子およびリチウムイオンを受け取ることができたと考えられる。この結果、三成分系活物質の比表面積をMn系活物質の比表面積の3.5倍以上にすることによって、異常の発生だけでなく液漏れが発生することも抑制することができることが判明した。
[実施例5]
(実施例5-1~5-7および比較例5-1~5-2)
実施例5-1~5-7および比較例5-1~5-2は、LiMnとLiNi1/3Co1/3Mn1/3との質量比が10:90~90:10となるように正極活物質を構成した点以外は、上記実施例1-1と同様にして電池を作製した。
(電池容量の測定)
実施例5-1~5-7および比較例5-1~5-2の電池を用いて、電池容量の測定を行った。具体的には、50Aの充電電流で、4.1Vの電圧まで定電流定電圧充電をおこなった。ここで、充電時間の合計は3時間とした。この電池を、50Aの放電電流で3.0Vの放電終止電圧まで放電させ放電容量を測定した。この放電容量に50A放電時の平均電圧を乗じたものを「電池容量」とした。
表5に、実施例5-1~5-7および比較例5-1~5-2の電池の電池容量の測定結果を示す。
Figure JPOXMLDOC01-appb-T000005
実施例5-1~5-7および比較例5-1~5-2では、正極における三成分系活物質の割合を増加させることによって、電池容量が大きくなることが確認できた。ここで、電池容量のみを考慮すると、比較例5-2が最も好ましいが、比較例2-2では、釘刺し試験において「異常あり」であった。また、比較例5-1のように、Mn系活物質が80質量%を超えて含有される場合には、放電容量が低下するため、好ましくないと考えられる。したがって、Mn系活物質と三成分系活物質との質量混合比は、Mn系活物質の質量:三成分系活物質の質量=20:80~80:20を満たすのが好ましいと考えられる。
なお、今回開示された実施形態および実施例は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態および実施例の説明ではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。
21  正極
22  負極
100  電池(非水電解質二次電池)

Claims (3)

  1. 12μm以上30μm以下の平均粒径を有する、一般式LiMn2-b(Aは、元素周期表の第2族~第15族の元素からなる群から選ばれた少なくとも1種類の元素、0.9≦a≦1.3、0≦b≦0.3)で表される第1正極活物質と、0.5μm以上7μm以下の平均粒径を有する、一般式LiNiCoMnα(Mは、元素周期表の第2族~第15族の元素からなる群から選ばれた少なくとも1種類の元素、0.9≦d≦1.3、x、y、zおよびαは、0<x<1、0<y<1、0<z<1、0≦α≦0.3、x+y+z+α=1)で表される第2正極活物質とを含む正極と、
    3μm以上18μm以下の平均粒径を有する負極活物質を負極活物質の総質量に対して50質量%以上含有する負極とを備え、
    前記第1正極活物質と前記第2正極活物質との質量混合比が、前記第1正極活物質の質量:前記第2正極活物質の質量=20:80~80:20を満たす、非水電解質二次電池。
  2. 前記負極は、18μmよりも大きい平均粒径を有する負極活物質を負極活物質の総質量に対して50質量%未満含有する、請求項1に記載の非水電解質二次電池。
  3. 前記第2正極活物質の比表面積は、前記第1正極活物質の比表面積の3.5倍以上である、請求項1または2に記載の非水電解質二次電池。
PCT/JP2012/004532 2011-07-13 2012-07-12 非水電解質二次電池 WO2013008475A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020147000281A KR20140039264A (ko) 2011-07-13 2012-07-12 비수 전해질 2차 전지
JP2013523840A JP5839034B2 (ja) 2011-07-13 2012-07-12 非水電解質二次電池
US14/232,225 US20140141335A1 (en) 2011-07-13 2012-07-12 Nonaqueous electrolyte secondary battery
EP12811641.5A EP2733776A4 (en) 2011-07-13 2012-07-12 NONAQUEOUS ELECTROLYTE SECONDARY BATTERY
CN201280033810.6A CN103650218A (zh) 2011-07-13 2012-07-12 非水电解质二次电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-155124 2011-07-13
JP2011155124 2011-07-13

Publications (1)

Publication Number Publication Date
WO2013008475A1 true WO2013008475A1 (ja) 2013-01-17

Family

ID=47505778

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/004532 WO2013008475A1 (ja) 2011-07-13 2012-07-12 非水電解質二次電池

Country Status (6)

Country Link
US (1) US20140141335A1 (ja)
EP (1) EP2733776A4 (ja)
JP (1) JP5839034B2 (ja)
KR (1) KR20140039264A (ja)
CN (1) CN103650218A (ja)
WO (1) WO2013008475A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015046282A (ja) * 2013-08-28 2015-03-12 新神戸電機株式会社 リチウムイオン電池
JP2017004696A (ja) * 2015-06-08 2017-01-05 日産自動車株式会社 非水電解質二次電池用正極
JP2020514208A (ja) * 2016-12-16 2020-05-21 リオナノ インコーポレイテッド リチウムイオン電池および他の用途のための電気活性物質

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2975676B1 (en) * 2013-03-15 2018-10-03 Nissan Motor Co., Ltd Non-aqueous electrolyte secondary battery cathode, and non-aqueous electrolyte secondary battery using same
WO2014142283A1 (ja) 2013-03-15 2014-09-18 日産自動車株式会社 非水電解質二次電池用正極およびこれを用いた非水電解質二次電池
JP6466161B2 (ja) * 2014-12-18 2019-02-06 オートモーティブエナジーサプライ株式会社 リチウムイオン電池用負極材料
JP6518061B2 (ja) * 2014-12-18 2019-05-22 株式会社エンビジョンAescジャパン リチウムイオン二次電池
KR20160097677A (ko) * 2015-02-09 2016-08-18 삼성에스디아이 주식회사 리튬 이차 전지용 음극 활물질 및 이를 포함하는 리튬 이차 전지
JP6507218B1 (ja) * 2017-12-19 2019-04-24 住友化学株式会社 非水電解液二次電池
KR102359103B1 (ko) * 2018-02-01 2022-02-08 주식회사 엘지에너지솔루션 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
KR102453273B1 (ko) * 2018-05-23 2022-10-11 주식회사 엘지에너지솔루션 리튬 이차전지용 양극재, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
CN112993381A (zh) * 2021-02-06 2021-06-18 苏州精诚智造智能科技有限公司 一种高倍率锂离子电池的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000315503A (ja) * 1999-03-01 2000-11-14 Sanyo Electric Co Ltd 非水電解質二次電池
JP2002100358A (ja) * 2000-09-25 2002-04-05 Seimi Chem Co Ltd リチウム二次電池
JP2006278322A (ja) * 2005-03-02 2006-10-12 Hitachi Maxell Ltd 非水電解質二次電池
JP2007080583A (ja) * 2005-09-12 2007-03-29 Nissan Motor Co Ltd 二次電池用電極と二次電池
JP2008532221A (ja) 2005-02-23 2008-08-14 エルジー・ケム・リミテッド リチウムイオン移動度及び電池容量が改良された二次バッテリー
JP2011054371A (ja) * 2009-09-01 2011-03-17 Hitachi Vehicle Energy Ltd リチウムイオン二次電池
WO2012081518A2 (ja) * 2010-12-15 2012-06-21 三洋電機株式会社 非水電解質二次電池

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002100359A (ja) * 2000-09-26 2002-04-05 Petoca Ltd リチウム二次電池負極用黒鉛材およびその製造方法
JP4183374B2 (ja) * 2000-09-29 2008-11-19 三洋電機株式会社 非水電解質二次電池
EP1469539B1 (en) * 2002-03-27 2012-08-01 GS Yuasa International Ltd. Active substance of positive electrode and nonaqueous electrolyte battery containing the same
WO2007021087A1 (en) * 2005-08-16 2007-02-22 Lg Chem, Ltd. Cathode active material and lithium secondary battery containing the same
US8895187B2 (en) * 2005-08-16 2014-11-25 Lg Chem, Ltd. Cathode active material and lithium secondary battery containing the same
KR101498328B1 (ko) * 2008-07-17 2015-03-03 쥬오 덴끼 고교 가부시키가이샤 혼합 탄소 재료 및 비수계 2차 전지용 음극
JP5287520B2 (ja) * 2008-09-02 2013-09-11 住友化学株式会社 電極活物質、電極および非水電解質二次電池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000315503A (ja) * 1999-03-01 2000-11-14 Sanyo Electric Co Ltd 非水電解質二次電池
JP2002100358A (ja) * 2000-09-25 2002-04-05 Seimi Chem Co Ltd リチウム二次電池
JP2008532221A (ja) 2005-02-23 2008-08-14 エルジー・ケム・リミテッド リチウムイオン移動度及び電池容量が改良された二次バッテリー
JP2006278322A (ja) * 2005-03-02 2006-10-12 Hitachi Maxell Ltd 非水電解質二次電池
JP2007080583A (ja) * 2005-09-12 2007-03-29 Nissan Motor Co Ltd 二次電池用電極と二次電池
JP2011054371A (ja) * 2009-09-01 2011-03-17 Hitachi Vehicle Energy Ltd リチウムイオン二次電池
WO2012081518A2 (ja) * 2010-12-15 2012-06-21 三洋電機株式会社 非水電解質二次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2733776A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015046282A (ja) * 2013-08-28 2015-03-12 新神戸電機株式会社 リチウムイオン電池
JP2017004696A (ja) * 2015-06-08 2017-01-05 日産自動車株式会社 非水電解質二次電池用正極
JP2020514208A (ja) * 2016-12-16 2020-05-21 リオナノ インコーポレイテッド リチウムイオン電池および他の用途のための電気活性物質

Also Published As

Publication number Publication date
JP5839034B2 (ja) 2016-01-06
EP2733776A1 (en) 2014-05-21
KR20140039264A (ko) 2014-04-01
EP2733776A4 (en) 2015-03-18
JPWO2013008475A1 (ja) 2015-02-23
CN103650218A (zh) 2014-03-19
US20140141335A1 (en) 2014-05-22

Similar Documents

Publication Publication Date Title
JP5839034B2 (ja) 非水電解質二次電池
KR101477873B1 (ko) 비수전해액형 리튬 이온 2차 전지
US20190013543A1 (en) Nonaqueous electrolyte secondary battery
JP6219302B2 (ja) 非水電解質二次電池用電極板及びこれを用いた非水電解質二次電池並びにその製造方法
US20150243966A1 (en) Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP5709008B2 (ja) 非水電解質二次電池とその製造方法
JP6086259B2 (ja) 非水電解質二次電池用正極電極および非水電解質二次電池
JP6086241B2 (ja) 非水電解質二次電池
CN106233498A (zh) 非水电解液二次电池
JP2018092707A (ja) 正極板の製造方法及び非水電解質二次電池の製造方法、並びに非水電解質二次電池
JP2017091886A (ja) 非水電解液二次電池
KR101980422B1 (ko) 비수 전해액 이차 전지
JP6654667B2 (ja) リチウムイオン二次電池
JP2011181386A (ja) 非水電解質二次電池
JP6902206B2 (ja) リチウムイオン二次電池
JP6229333B2 (ja) 非水電解質二次電池
JP6008188B2 (ja) 非水電解液二次電池
JP2014067587A (ja) 非水電解質二次電池
CN104584279A (zh) 非水电解质二次电池
JP7037716B2 (ja) リチウムイオン二次電池
JP2014225327A (ja) 非水電解質二次電池
JP5890715B2 (ja) 非水電解質二次電池用正極及び非水電解質二次電池
JP6493766B2 (ja) リチウムイオン二次電池
JP2012009270A (ja) 非水電解質二次電池
JP6380630B2 (ja) 非水電解質二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12811641

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147000281

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14232225

Country of ref document: US

Ref document number: 2012811641

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2013523840

Country of ref document: JP

Kind code of ref document: A