JP2015046282A - リチウムイオン電池 - Google Patents

リチウムイオン電池 Download PDF

Info

Publication number
JP2015046282A
JP2015046282A JP2013176388A JP2013176388A JP2015046282A JP 2015046282 A JP2015046282 A JP 2015046282A JP 2013176388 A JP2013176388 A JP 2013176388A JP 2013176388 A JP2013176388 A JP 2013176388A JP 2015046282 A JP2015046282 A JP 2015046282A
Authority
JP
Japan
Prior art keywords
positive electrode
battery
lithium
less
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013176388A
Other languages
English (en)
Other versions
JP6315230B2 (ja
Inventor
奥村 壮文
Takefumi Okumura
壮文 奥村
英介 羽場
Eisuke Haba
英介 羽場
剛史 西山
Takashi Nishiyama
剛史 西山
龍一郎 福田
Ryuichiro Fukuda
龍一郎 福田
上方 康雄
Yasuo Kamigata
康雄 上方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2013176388A priority Critical patent/JP6315230B2/ja
Publication of JP2015046282A publication Critical patent/JP2015046282A/ja
Application granted granted Critical
Publication of JP6315230B2 publication Critical patent/JP6315230B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

【課題】安全性を担保しつつ、高入出力で、高体積エネルギー密度を有する高容量・長寿命の電池を提供する。
【解決する手段】本発明は、正極、負極およびセパレータを捲回した電極捲回群と電解液とを備える容量が30Ah以上110Ah未満のリチウムイオン電池であって、正極は幅が60mm以上400mm以下である正極用の集電体とその両面に塗布された正極合材とを有し、正極合材は層状型リチウム・ニッケル・マンガン・コバルト複合酸化物(NMC)とスピネル型リチウム・マンガン酸化物(sp−Mn)との混合活物質を含むとともに、片面塗布量が175g/m以上250g/m以下で、正極合材の厚みtと集電体の長手方向の長さLとが5×10−6<t/L<2×10−5の関係を満たす。また、前記正極合材において混合活物質の重量比(NMC/sp−Mn)は10/90以上60/40以下が好ましい。
【選択図】図1

Description

本発明は、リチウムイオン電池に関するものである。
リチウムイオン電池は、高エネルギー密度の二次電池であり、その特性を活かして、ノートパソコンや携帯電話等のポータブル機器の電源に使用されている。リチウムイオン電池の形状には種々のものがあるが、円筒形リチウムイオン電池は、正極、負極およびセパレータの捲回式構造を採用している。例えば、2枚の帯状の金属箔に正極材料および負極材料をそれぞれ塗着し、その間にセパレータを挟み込み、これらの積層体を渦巻状に捲回することで捲回群を形成する。この捲回群を、電池容器となる円筒形の電池缶内に収納し、電解液を注液後、封口することで、円筒形リチウムイオン電池が形成される。
円筒形リチウムイオン電池としては、18650型リチウムイオン電池が、民生用リチウムイオン電池として広く普及している。18650型リチウムイオン電池の外径寸法は、直径18mmで、高さ65mm程度の小型である。18650型リチウムイオン電池の正極活物質には、高容量、長寿命を特徴とするコバルト酸リチウムが主として用いられており、電池容量は、おおむね1.0Ah〜2.0Ah(3.7Wh〜7.4Wh)程度である。
近年、リチウムイオン電池は、ポータブル機器用等の民生用途にとどまらず、太陽光や風力発電といった自然エネルギー向け大規模蓄電システム用途への展開が期待されている。大規模蓄電システムにおいては、システムあたりの電力量が数MWhのオーダーで必要となる。
例えば、下記特許文献1には、円筒形電池容器に正極、負極およびセパレータを捲回した電極捲回群を有する円筒形リチウムイオン電池が開示されている。この電池は、放電容量77.04Ah以上であり、集電体の両面にリチウムマンガン複合酸化物を含む活物質合剤が所定量塗布された正極が用いられている。
また、下記特許文献2には、円筒形電池容器に正極、負極およびセパレータを捲回した電極捲回群を有する円筒形リチウムイオン電池が開示されている。この電池は、電池容量が3Ah以上で、かつ出力400W以上である。また、正極には、リチウムマンガン複合酸化物を含む正極活物質合剤が用いられ、負極には、非晶質炭素を含む負極活物質合剤が用いられ、電解液の溶媒としては、エチレンカーボネート、ジメチルカーボネートおよびジエチルカーボネートを含む混合溶媒が用いられている。
特許第3541723号公報 特許第3433695号公報
しかしながら、前述したような大規模蓄電システム用に上記18650型リチウムイオン電池を用いた場合には、100万本程度の電池が必要となる。
通常、リチウムイオン電池は、1本の電池毎にセルコントローラーを取り付け、電池の状態を検知している。そのため、多数の電池を用いたシステムでは、必要なセルコントローラー数も増加し、コストの大幅な増加を招く。
そこで、電池1本あたりの容量を大きくして、システムとして必要な電池本数およびセルコントローラー数を低減することが望まれる。
このように、電池の容量を大きくした場合、電池に蓄えられるエネルギーが高くなるため、非定常時の安全性の担保が課題となる。例えば、単に上記18650型リチウムイオン電池を大型化することで電池容量を確保するだけでは、安全性を確保できるとは限らず、正極、負極およびセパレータを含む電池の構成材料などを含めた総合的な検討が必要である。
また、大規模蓄電システムにおいては、長寿命かつ高速な負荷変動にも対応できる必要があり、長寿命・高入出力特性を満たすリチウムイオン電池が望まれる。
そこで、本発明の目的は、安全性を担保しつつ、高入出力で、高容量・長寿命のリチウムイオン電池を提供することにある。
本発明の前記ならびにその他の目的と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。
正極、負極およびセパレータを捲回した電極捲回群と、電解液と、を電池容器内に備え、放電容量Xが30Ah以上110Ah未満のリチウムイオン電池において、前記正極は、幅が60mm以上400mm以下である正極用の集電体と前記集電体の両面に塗布された正極合材とを有し、前記正極合材は、層状型リチウム・ニッケル・マンガン・コバルト複合酸化物(NMC)とスピネル型リチウム・マンガン酸化物(sp−Mn)との混合活物質を含み、前記正極合材の片面塗布量は175g/m以上250g/m以下であり、前記正極合材の厚みtと前記集電体長手方向の長さLとが以下の関係式1
5×10−6<t/L<2×10−5・・・(関係式1)
を満たす。ここで、前記tは、 [正極の厚み−正極集電体の厚み]/2を表す。
正極、負極およびセパレータを捲回した電極捲回群と、電解液と、を電池容器内に備え、放電容量が、30Ah以上のリチウムイオン電池において、集電体とその両面に塗布された正極合材とを有する正極の正極合材を次の構成とする。また、前記正極合材は、層状型リチウム・ニッケル・マンガン・コバルト複合酸化物(NMC)とスピネル型リチウム・マンガン酸化物(sp−Mn)との混合活物質を含み、また、前記正極合材は、層状型リチウム・ニッケル・マンガン・コバルト複合酸化物(NMC)とスピネル型リチウム・マンガン酸化物(sp−Mn)との重量比(NMC/sp−Mn)が10/90以上60/40以下である。
また、上記混合活物質は、以下の組成式(化1)で表される層状型リチウム・ニッケル・マンガン・コバルト複合酸化物と、以下の組成式(化2)で表されるスピネル型リチウム・マンガン酸化物と、の混合物よりなる。
Li(1+δ)MnNiCo(1−x−y−z)…(化1)
(Mは、Ti、Zr、Nb、Mo、W、Al、Si、Ga、GeおよびSnよりなる群から選択される少なくとも1種の元素であり、−0.15<δ<0.15、0.1<x≦0.5、0.6<x+y+z≦1.0、0≦z≦0.1である。)
Li(1+η)Mn(2−λ)M’λ…(化2)
(M’は、Mg、Ca、Sr、Al、Ga、ZnおよびCuよりなる群から選択される少なくとも1種の元素であり、0≦η≦0.2、0≦λ≦0.1である。)
上記組成式(化2)において、上記M’はMgおよびAlよりなる群から選択される少なくとも1種の元素である。
本願において開示される発明のうち、代表的なものによって得られる効果を簡単に説明すれば以下のとおりである。
本発明によれば、安全性を担保しつつ、高入出力で、高容量・長寿命のリチウムイオン電池を提供することができる。
本実施の形態のリチウムイオン電池の断面図である。
以下の実施の形態においてA〜Bとして範囲を示す場合には、特に明示した場合を除き、A以上B以下を示すものとする。
(実施の形態)
まず、リチウムイオン電池の概要について簡単に説明する。リチウムイオン電池は、電池容器内に、正極、負極、セパレータおよび電解液を有している。正極と負極との間にはセパレータが配置されている。
リチウムイオン電池を充電する際には、正極と負極との間に充電器を接続する。充電時においては、正極活物質内に挿入されているリチウムイオンが脱離し、電解液中に放出される。電解液中に放出されたリチウムイオンは、電解液中を移動し、微多孔質膜からなるセパレータを通過して、負極に到達する。この負極に到達したリチウムイオンは、負極を構成する負極活物質内に挿入される。
放電する際には、正極と負極の間に外部負荷を接続する。放電時においては、負極活物質内に挿入されていたリチウムイオンが脱離して電解液中に放出される。このとき、負極から電子が放出される。そして、電解液中に放出されたリチウムイオンは、電解液中を移動し、微多孔質膜からなるセパレータを通過して、正極に到達する。この正極に到達したリチウムイオンは、正極を構成する正極活物質内に挿入される。このとき、正極活物質にリチウムイオンが挿入することにより、正極に電子が流れ込む。このようにして、負極から正極に電子が移動することにより放電が行われる。
このように、リチウムイオンを正極活物質と負極活物質との間で挿入・脱離することにより、充放電することができる。なお、実際のリチウムイオン電池の構成例については、後述する(例えば、図1参照)。
次いで、本実施の形態のリチウムイオン電池の構成要素である正極、負極、電解液、セパレータおよびその他の構成部材に関し順次説明する。
1.正極
本実施の形態においては、高容量で高入出力のリチウムイオン電池に適用可能な以下に示す正極を有する。本実施の形態の正極(正極板)は、集電体およびその上部に形成された正極合材(正極合剤)よりなる。正極合材は、集電体の上部に設けられた少なくとも正極活物質を含む層であり、本実施の形態においては、層状型リチウム・ニッケル・マンガン・コバルト複合酸化物(NMC)とスピネル型リチウム・マンガン酸化物(スピネル型リチウム・マンガン複合酸化物、sp−Mn)との混合活物質を含む。この正極合材は、例えば、集電体の両面に形成(塗布)される。
リチウムイオン電池では、〈1〉充電制御システムの不具合に起因する過充電時、〈2〉想定外の衝撃などに起因する電池のクラッシュ時、〈3〉異物の突き刺し時または〈4〉外部短絡時等の異常状態において、大電流充電状態または大電流放電状態が継続する場合がある。このような場合に、電解液と正極中の活物質との急激かつ継続的な化学反応によりガスを発生し電池容器の内圧を上昇させることがある。
一般に、円筒形リチウムイオン電池では、電池容器内の内圧の上昇を防止するために、所定の内圧に到達した場合にガスを容器外へ放出する安全弁や開裂弁等の内圧低減機構を有している。しかしながら、上記急激かつ継続的な化学反応が生じた場合には、内圧低減機構を有する場合であっても電池容器の破損(亀裂、膨張、発火を含む)が生じ得る。
これに対して、本実施の形態においては、層状型リチウム・ニッケル・マンガン・コバルト複合酸化物(NMC)とスピネル型リチウム・マンガン酸化物(sp−Mn)とを含有する正極合材を用い、前記正極合材の正極合材の正極集電体への片面塗布量は175g/m以上250g/m以下であり、前記正極合材の厚みtと前記集電体長手方向の長さLとが以下の関係式1
5×10−6<t/L<2×10−5・・・(関係式1)
を満たす。ここで、前記tは、[正極の厚み−正極集電体の厚み]/2を表す。
また、層状型リチウム・ニッケル・マンガン・コバルト複合酸化物(NMC)とスピネル型リチウム・マンガン酸化物(sp−Mn)との重量比(混合比)であるNMC/sp−Mnを10/90以上60/40以下とすることにより、異常状態でも安全性を担保しつつ、電池の高容量化や長寿命・高入出力化を図ることができる。なお、上記重量比を単に“活物質の重量比”という場合がある。
本発明において、正極合材の正極集電体への片面塗布量が175g/m未満では、充放電に寄与する活物質の量が低下し、電池のエネルギー密度が低下する可能性がある。一方、正極合材の正極集電体への片面塗布量が250g/mを超えると正極合材の抵抗が高くなり、入出力特性が低下する可能性がある。上記のような観点から、正極合材の正極集電体への片面塗布量は、180g/m以上230g/m以下であることが好ましく、185g/m以上220g/m以下であることがより好ましい。
また、本発明では正極合体の密度は、2.4g/cm以上2.7g/cm以下が好ましい。正極合材密度が2.4g/cm未満では正極の抵抗が高くなり、入出力特性が低下する可能性がある。一方、正極合材密度が2.7g/cmを超えると安全性の低下が懸念され、他の安全対策の強化が必要となる可能性がある。このような観点から、正極合材密度は、2.45g/cm以上2.6g/cm以下がより好ましい。
正極合材の厚みtと前記集電体長手方向の長さLの比(t/L)は、本発明のリチウムイオン電池において放電容量30Ah以上の高容量を達成するための重要なパラメータである。正極電極用の集電体の幅は、電池サイズから所定の範囲(60mm以上400mm以下)に制約されるため、前記のt/Lを規定することによって、高容量化とともに、安全性、高入出力化及び長寿命化を図ることができる。前記のt/Lが5×10−6未満では、電池作製時、特に捲回時に巻きずれ等の不具合を生じやすくなり、電池生産性が低下する可能性がある。また、電池の安全性を担保するために活物質の重量比(NMC/sp−Mn)を調整する場合、前記のt/Lが5×10−6未満では寿命の低下がみられるため、安全性の向上と長寿命化の両立が困難となる可能性がある。一方、前記のt/Lが2×10−5を越えると集電体を経由した放熱性が悪化し、熱劣化由来で電池寿命が低下する可能性がある。さらに、電池の安全性及び出力特性の大幅な低下が予想される。上記のような観点から、6×10−6<t/L<1.3×10−5が好ましく、8×10−6<t/L<1.2×10−5がより好ましい。
上記したような正極合材の正極集電体への片面塗布量及び正極合材密度を考慮すると、前記t([正極の厚み−正極集電体の厚み]/2)は、60〜100μmであることが好ましく、65〜95μmがより好ましく、70〜90μmが更に好ましい。
また、Lは、3〜20mであることが好ましく、5〜16mであることがより好ましく、6〜12mであることが更に好ましく、7〜10mであることが特に好ましい。
なお、前記のt/Lを規定したときに得られる効果については、後述の実施例で詳細に説明する。
また、活物質の重量比(NMC/sp−Mn)が10/90未満では、電池のエネルギー密度が低下する可能性がある。一方、活物質の重量比(NMC/sp−Mn)が60/40を超えると、安全性の低下が懸念され、他の安全対策の強化が必要となる恐れがある。
このように、正極合材において、正極合材密度、正極合材塗布量、正極合材厚みtと前記集電体長手方向の長さLの比(t/L)および活物質の重量比(NMC/sp−Mn)を上記範囲とすることで、放電容量30Ah以上の高容量のリチウムイオン電池においても、安全性を担保しつつ、高入出力で、高エネルギー密度・長寿命の電池を実現することができる。
また、層状型リチウム・ニッケル・マンガン・コバルト複合酸化物(NMC)としては、以下の組成式(化1)で表されるものを用いることが好ましい。
Li(1+δ)MnNiCo(1−x−y−z)…(化1)
上記組成式(化1)において、(1+δ)はLi(リチウム)の組成比、xはMn(マンガン)の組成比、yはNi(ニッケル)の組成比、(1−x−y−z)はCo(コバルト)の組成比を示す。zは、元素Mの組成比を示す。O(酸素)の組成比は2である。
元素Mは、Ti(チタン)、Zr(ジルコニウム)、Nb(ニオブ)、Mo(モリブデン)、W(タングステン)、Al(アルミニウム)、Si(シリコン)、Ga(ガリウム)、Ge(ゲルマニウム)およびSn(錫)よりなる群から選択される少なくとも1種の元素である。
−0.15<δ<0.15、0.1<x≦0.5、0.6<x+y+z≦1.0、0≦z≦0.1である。
また、スピネル型リチウム・マンガン酸化物(sp−Mn)として、以下の組成式(化2)で表されるものを用いることが好ましい。
Li(1+η)Mn(2−λ)M’λ…(化2)
上記組成式(化2)において、(1+η)はLiの組成比、(2−λ)はMnの組成比、λは元素M’の組成比を示す。O(酸素)の組成比は4である。
元素M’は、Mg(マグネシウム)、Ca(カルシウム)、Sr(ストロンチウム)、Al、Ga、Zn(亜鉛)、およびCu(銅)よりなる群から選択される少なくとも1種の元素である。
0≦η≦0.2、0≦λ≦0.1である。
このように、正極用の活物質(正極活物質)として、層状型リチウム・ニッケル・マンガン・コバルト複合酸化物(NMC)とスピネル型リチウム・マンガン酸化物(sp−Mn)との混合物を用いることで、高容量化しても、充電時の正極の安定性を高め、発熱を抑制することができる。その結果、安全性に優れた電池を提供することができる。また、充放電サイクル特性や貯蔵特性も優れたものとすることができる。
上記組成式(化2)における元素M’としては、MgまたはAlを用いることが好ましい。MgやAlを用いることにより、電池の長寿命化を図ることができる。また、電池の安全性の向上を図ることができる。
正極活物質としてスピネル型リチウム・マンガン酸化物(sp−Mn)を用いた場合、充電状態において化合物中のMnが安定であるため、充電反応による発熱を抑制できる。これにより、電池の安全性を向上させることができる。すなわち、正極における発熱を抑制でき、電池の安全性を高めることができる。本発明においては、正極における発熱による電池表面の温度上昇を4℃未満に抑えることが好ましい。電池表面の温度上昇が4℃以上になると熱暴走を誘発する可能性が高くなるためである。
さらに、元素M’を加えることで、Mnの溶出を低減できるため、貯蔵特性や充放電サイクル特性を向上させることができる。
このように、スピネル型リチウム・マンガン酸化物(sp−Mn)は有用な特性を有するが、スピネル型リチウム・マンガン酸化物(sp−Mn)自体は理論容量が小さく、さらに密度も小さい。よって、スピネル型リチウム・マンガン酸化物(sp−Mn)のみを正極活物質として用い、電池を構成した場合には、電池容量(放電容量)を増加させることが困難である。他方、層状型リチウム・ニッケル・マンガン・コバルト複合酸化物(NMC)は理論容量が大きく、リチウムイオン電池の正極活物質として汎用されているLiCoOと同等の理論容量を有している。
そこで、本実施の形態では、層状型リチウム・ニッケル・マンガン・コバルト複合酸化物(NMC)とスピネル型リチウム・マンガン酸化物(sp−Mn)とを併用し、さらに、正極合材の密度を高めることにより、高容量であり、かつ安全性にも優れた電池の提供を可能とした。また、貯蔵特性や充放電サイクル特性も優れた電池の提供を可能とした。
以下に、正極合材および正極用の集電体について詳細に説明する。正極合材は、正極活物質や結着材等を含有し、前記集電体上に形成される。その形成方法に制限はないが例えば次のように形成される。正極活物質、結着材、および必要に応じて用いられる導電材や増粘材などの他の材料を乾式で混合してシート状にし、これを集電体に圧着する(乾式法)。また、正極活物質、結着材、および必要に応じて用いられる導電材や増粘材などの他の材料を分散溶媒に溶解または分散させてスラリーとし、これを集電体に塗布し、乾燥する(湿式法)。
正極活物質としては、前述したように、層状型リチウム・ニッケル・マンガン・コバルト複合酸化物(NMC)およびスピネル型リチウム・マンガン酸化物(sp−Mn)が用いられる。これらは粉状(粒状)で用いられ、混合される。
この正極活物質の表面に、主体となる正極活物質を構成する物質とは異なる組成の物質を付着させてもよい。表面付着物質としては、酸化アルミニウム、酸化ケイ素、酸化チタン、酸化ジルコニウム、酸化マグネシウム、酸化カルシウム、酸化ホウ素、酸化アンチモン、酸化ビスマス等の酸化物、硫酸リチウム、硫酸ナトリウム、硫酸カリウム、硫酸マグネシウム、硫酸カルシウム、硫酸アルミニウム等の硫酸塩、炭酸リチウム、炭酸カルシウム、炭酸マグネシウム等の炭酸塩、炭素等が挙げられる。
表面付着物質の付着方法としては、次の方法がある。例えば、表面付着物質を溶媒に溶解または懸濁させた液体に正極活物質を添加することにより、正極活物質に表面付着物質を含浸添加する。この後、表面付着物質を含浸した正極活物質を乾燥する。また、表面付着物質の前駆体を溶媒に溶解または懸濁させた液体に正極活物質を添加することにより、正極活物質に表面付着物質の前駆体を含浸添加する。この後、表面付着物質の前駆体を含浸した正極活物質を加熱する。また、表面付着物質の前駆体および正極活物質の前駆体を溶媒に溶解または懸濁させた液体を焼成する。これらの方法により正極活物質の表面に表面付着物質を付着させることができる。
表面付着物質の量については、正極活物質の重量に対し次の範囲とすることが好ましい。範囲の下限は、好ましくは0.1ppm以上、より好ましくは1ppm以上、さらに好ましくは10ppm以上である。上限は、好ましくは20%以下、より好ましくは10%以下、さらに好ましくは5%以下である。
表面付着物質により、正極活物質の表面での非水系電解液の酸化反応を抑制することができ、電池寿命を向上させることができる。但し、その付着量が、少なすぎる場合には、上記効果が充分に発現せず、多すぎる場合には、リチウムイオンの出入りを阻害するため抵抗が増加する場合がある。よって、上記の範囲とすることが好ましい。
層状型リチウム・ニッケル・マンガン・コバルト複合酸化物(NMC)およびスピネル型リチウム・マンガン酸化物(sp−Mn)の正極活物質の粒子としては、形状が、塊状、多面体状、球状、楕円球状、板状、針状、柱状等のものを用いることができる。また、粒子の平均粒径は、層状型リチウム・ニッケル・マンガン・コバルト複合酸化物(NMC)の平均粒径(DNMC)とスピネル型リチウム・マンガン酸化物(sp−Mn)の平均粒径(Dsp−Mn)の比Dsp−Mn/DNMCが1<Dsp−Mn/DNMC<3であることが好ましい。
中でも、一次粒子が凝集して、二次粒子を形成して成り、その二次粒子の形状が球状ないし楕円球状であるものが好ましい。この場合、二次粒子の平均粒径も前述の1<Dsp−Mn/DNMC<3の関係式を満たすことが好ましい。
電池のような電気化学素子においては、その充放電に伴い、電極中の活物質が膨張収縮をするため、そのストレスによる活物質の破壊や導電パスの切断等の劣化が生じやすい。そのため一次粒子のみの単一粒子を用いるよりも、一次粒子が凝集して、二次粒子を形成したものを用いる方が、膨張収縮のストレスを緩和し、上記劣化を防ぐことができるため好ましい。また、板状等の軸配向性の粒子よりも球状ないし楕円球状の粒子を用いる方が、電極内における配向が少なくなるため、充放電時の電極の膨張収縮が小さくなり好ましい。また、電極の形成時において、導電材等の他の材料とも均一に混合されやすいため好ましい。
前述の関係式1を満たす限りにおいて、層状型リチウム・ニッケル・マンガン・コバルト複合酸化物(NMC)とスピネル型リチウム・マンガン酸化物(sp−Mn)の正極活物質の粒子のメジアン径d50(一次粒子が凝集して二次粒子を形成している場合には二次粒子のメジアン径d50)は、次の範囲で調整可能である。範囲の下限は、1μm以上、好ましくは3μm以上、より好ましくは5μm以上であり、上限は、30μm以下、好ましくは25μm以下、より好ましくは15μm以下である。
上記下限未満では、タップ密度(充填性)が低下し、所望のタップ密度が得られなくなる恐れがあり、上記上限を超えると粒子内のリチウムイオンの拡散に時間がかかるため、電池性能の低下を招く恐れがある。また、上記上限を超えると、電極の形成時において、結着材や導電材等の他の材料との混合性が低下する恐れがある。よって、この混合物をスラリー化し塗布する際に、均一に塗布できず、スジを引く等の問題を生ずる場合がある。なお、メジアン径d50は、レーザー回折・散乱法により求めた粒度分布から求めることができる。
一次粒子が凝集して二次粒子を形成している場合における一次粒子の平均粒径について、その範囲は次のとおりである。範囲の下限は、0.01μm以上、好ましくは0.05μm以上、さらに好ましくは0.08μm以上、特に好ましくは0.1μm以上であり、上限は、3μm以下、好ましくは2μm以下、さらに好ましくは1μm以下、特に好ましくは0.6μm以下である。上記上限を超えると球状の二次粒子が形成し難くなり、タップ密度(充填性)の低下や、比表面積の低下により、出力特性等の電池性能が低下する恐れがある。また、上記下限未満では、結晶性の低下により、充放電の可逆性が劣化する等の問題を生ずる恐れがある。
層状型リチウム・ニッケル・マンガン・コバルト複合酸化物(NMC)やスピネル型リチウム・マンガン酸化物(sp−Mn)の正極活物質の粒子のBET比表面積について、その範囲は次のとおりである。範囲の下限は、0.2m/g以上、好ましくは0.3m/g以上、さらに好ましくは0.4m/g以上であり、上限は、4.0m/g以下、好ましくは2.5m/g以下、さらに好ましくは1.5m/g以下である。上記下限未満では、電池性能が低下する恐れがある。上記上限を超えるとタップ密度が上がりにくくなり、結着材や導電材等の他の材料との混合性が低下する恐れがある。よって、この混合物をスラリー化し塗布する際の塗布性が劣化する恐れがある。BET比表面積は、BET法により求められた比表面積(単位gあたりの面積)である。
正極用の導電材としては、例えば、銅、ニッケル等の金属材料;天然黒鉛、人造黒鉛等の黒鉛(グラファイト);アセチレンブラック等のカーボンブラック;ニードルコークス等の無定形炭素等の炭素質材料等が挙げられる。なお、これらのうち、1種を単独で用いてもよく、2種以上のものを組み合わせて用いてもよい。
導電材の含有量(添加量、割合、量)について、正極合材の重量に対する導電材の含有量の範囲は次のとおりである。範囲の下限は、0.01重量%以上、好ましくは0.1重量%以上、より好ましくは1重量%以上であり、上限は、50重量%以下、好ましくは30重量%以下、より好ましくは15重量%以下である。上記下限未満では、導電性が不充分となる恐れがある。また、上記上限を超えると、電池容量が低下する恐れがある。
正極活物質の結着材としては、特に限定されず、塗布法により正極合材を形成する場合には、分散溶媒に対する溶解性や分散性が良好な材料が選択される。具体例としては、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリメチルメタクリレート、ポリイミド、芳香族ポリアミド、セルロース、ニトロセルロース等の樹脂系高分子;SBR(スチレン−ブタジエンゴム)、NBR(アクリロニトリル−ブタジエンゴム)、フッ素ゴム、イソプレンゴム、ブタジエンゴム、エチレン−プロピレンゴム等のゴム状高分子;スチレン・ブタジエン・スチレンブロック共重合体またはその水素添加物、EPDM(エチレン・プロピレン・ジエン三元共重合体)、スチレン・エチレン・ブタジエン・エチレン共重合体、スチレン・イソプレン・スチレンブロック共重合体またはその水素添加物等の熱可塑性エラストマー状高分子;シンジオタクチック−1,2−ポリブタジエン、ポリ酢酸ビニル、エチレン・酢酸ビニル共重合体、プロピレン・α−オレフィン共重合体等の軟質樹脂状高分子;ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン、フッ素化ポリフッ化ビニリデン、ポリテトラフルオロエチレン・エチレン共重合体、ポリテトラフルオロエチレン・フッ化ビニリデン共重合体等のフッ素系高分子;アルカリ金属イオン(特にリチウムイオン)のイオン伝導性を有する高分子組成物等が挙げられる。なお、これらのうち、1種を単独で用いてもよく、2種以上のものを組み合わせて用いてもよい。正極の安定性の観点から、ポリフッ化ビニリデン(PVdF)やポリテトラフルオロエチレン・フッ化ビニリデン共重合体等のフッ素系高分子を用いることが好ましい。
結着材の含有量(添加量、割合、量)について、正極合材の重量に対する結着材の含有量の範囲は次のとおりである。範囲の下限は、0.1重量%以上、好ましくは1重量%以上、さらに好ましくは3重量%以上であり、上限は、80重量%以下、好ましくは60重量%以下、さらに好ましくは40重量%以下、特に好ましくは10重量%以下である。結着材の含有量が低すぎると、正極活物質を充分に結着できず、正極の機械的強度が不足し、サイクル特性等の電池性能を劣化させてしまう恐れがある。逆に、高すぎると、電池容量や導電性が低下する恐れがある。
上記湿式法や乾式法を用いて集電体上に形成された層は、正極活物質の充填密度を向上させるため、ハンドプレスやローラープレス等により圧密化することが好ましい。
正極用の集電体の材質としては特に制限はなく、具体例としては、アルミニウム、ステンレス鋼、ニッケルメッキ、チタン、タンタル等の金属材料;カーボンクロス、カーボンペーパー等の炭素質材料が挙げられる。中でも金属材料、特にアルミニウムが好ましい。
集電体の形状としては特に制限はなく、種々の形状に加工された材料を用いることができる。具体例としては、金属材料については、金属箔、金属円柱、金属コイル、金属板、金属薄膜、エキスパンドメタル、パンチメタル、発泡メタル等が挙げられ、炭素質材料については、炭素板、炭素薄膜、炭素円柱等が挙げられる。中でも、金属薄膜を用いることが好ましい。なお、薄膜は適宜メッシュ状に形成してもよい。薄膜の厚さは任意であるが、その範囲は次のとおりである。範囲の下限は、1μm以上、好ましくは3μm以上、より好ましくは5μm以上であり、上限は、1mm以下、好ましくは100μm以下、より好ましくは50μm以下である。上記下限未満では、集電体として必要な強度が不足する場合がある。また、上記上限を超えると可撓性が低下し、加工性が劣化する恐れがある。
2.負極
本実施の形態においては、高容量で高入出力のリチウムイオン電池に適用可能な以下に示す負極を有する。本実施の形態の負極(負極板)は、集電体およびその両面に形成された負極合材(負極合剤)よりなる。負極合材は、電気化学的にリチウムイオンを吸蔵・放出可能な負極活物質を含有する。
負極活物質としては、炭素質材料、酸化錫や酸化ケイ素等の金属酸化物、金属複合酸化物、リチウム単体やリチウムアルミニウム合金等のリチウム合金や、SnやSi等のリチウムと合金形成可能な金属等が挙げられる。これらは、1種を単独で用いてもよく、2種以上のものを組み合わせて用いてもよい。中でも、炭素質材料またはリチウム複合酸化物が安全性の観点から好ましい。
金属複合酸化物としては、リチウムを吸蔵、放出可能なものであれば特に制限はないが、Ti(チタン)、Li(リチウム)またはTiおよびLiの双方を含有するものが、高電流密度充放電特性の観点で好ましい。
炭素質材料としては、非晶質炭素、天然黒鉛、天然黒鉛に乾式のCVD(Chemical Vapor Deposition)法や湿式のスプレイ法で形成される被膜を形成した複合炭素質材料、エポキシやフェノール等の樹脂原料もしくは石油や石炭から得られるピッチ系材料を原料として焼成して得られる人造黒鉛、非晶質炭素材料などの炭素質材料を用いることができる。
また、リチウムと化合物を形成することでリチウムを吸蔵放出できるリチウム金属、リチウムと化合物を形成し、結晶間隙に挿入されることでリチウムを吸蔵放出できる珪素、ゲルマニウム、錫など第四族元素の酸化物もしくは窒化物を用いてもよい。
特に、炭素質材料は、導電性が高く、低温特性、サイクル安定性の面から優れた材料である。炭素質材料の中では、炭素網面層間(d002)の広い材料が、急速充放電や低温特性に優れ、好適である。しかしながら、炭素網面層間(d002)が広い材料は、充電の初期において容量や充放電効率が低いことがあるので、炭素網面層間(d002)が0.39nm以下の材料を選択することが好ましい。
さらに、負極活物質として、黒鉛質、非晶質、活性炭などの導電性の高い炭素質材料を混合して用いてもよい。上記非晶質の材料として、以下(1)〜(2)に示す特徴を有する材料を用いても良い。
(1)ラマン分光スペクトルで測定される1300〜1400cm−1の範囲にあるピーク強度(ID)とラマン分光スペクトルで測定される1580〜1620cm−1の範囲にあるピーク強度(IG)との強度比であるR値(ID/IG)が、0.5以上1.5以下である。
(2)c軸方向の結晶子サイズLc(002)が1以上10nm以下である。
このような条件の非晶質材料を負極活物質として用いることにより電池性能を向上させることができる。
負極合材は、集電体上に形成される。その形成方法に制限はないが正極合材と同様に乾式法や湿式法を用いて形成される。上記負極活物質は粉状(粒状)で用いられる。
炭素質材料の粒子のメジアン径d50について、その範囲は次のとおりである。範囲の下限は、1μm以上、好ましくは3μm以上、より好ましくは5μm以上、さらに好ましくは7μm以上であり、上限は、100μm以下、好ましくは50μm以下、より好ましくは40μm以下、さらに好ましくは30μm以下、特に好ましくは25μm以下である。上記下限未満では、不可逆容量が増大して、初期の電池容量の損失を招く恐れがある。また、上記上限を超えると電極の形成時に負極合材の塗布面が不均一となり、電極形成に支障をきたす恐れがある。
炭素質材料の粒子のBET比表面積について、その範囲は次のとおりである。範囲の下限は、0.1m/g以上、好ましくは0.7m/g以上、より好ましくは1.0m/g以上、さらに好ましくは1.5m/g以上である。上限は、100m/g以下、好ましくは25m/g以下、より好ましくは15m/g以下、さらに好ましくは10m/g以下である。上記下限未満では、充電時に負極におけるリチウムイオンの吸蔵性が低下しやすく、負極表面にリチウムが析出する恐れがある。また、上記上限を超えると非水系電解液との反応性が増加し、負極近傍での発生ガスが増加する恐れがある。
炭素質材料の粒子のタップ密度について、その範囲は次のとおりである。タップ密度の下限は、0.1g/cm以上であり、好ましくは0.2g/cm以上、さらに好ましくは0.3g/cm以上、特に好ましくは0.5g/cm以上である。上限は、好ましくは2g/cm以下、さらに好ましくは、1.5g/cm以下、特に好ましくは1.0g/cm以下である。上記下限未満では、負極合材中の負極活物質の充填密度が低下し、所定の電池容量を確保できない恐れがある。また、上記上限を超えると、負極合材中の負極活物質間の空隙が少なくなり、粒子間の導電性が確保され難くなる場合がある。
また、負極活物質として用いる第1炭素質材料に、これとは異なる性質の第2炭素質材料を導電材として添加してもよい。上記性質とは、X線回折パラメータ、メジアン径、アスペクト比、BET比表面積、配向比、ラマンR値、タップ密度、真密度、細孔分布、円形度、灰分量の一つ以上の特性を示す。
好ましい形態としては、第2炭素質材料(導電材)として、体積基準の粒度分布がメジアン径を中心としたときに左右対称とならない炭素質材料を用いる形態がある。また、第2炭素質材料(導電材)として、負極活物質として用いる第1炭素質材料とラマンR値が異なる炭素質材料を用いる形態や、負極活物質として用いる第1炭素質材料とX線パラメータが異なる炭素質材料を用いる形態等がある。
第2炭素質材料(導電材)としては、黒鉛質、非晶質、活性炭などの導電性の高い炭素質材料を用いることができる。具体的には、天然黒鉛、人造黒鉛等の黒鉛(グラファイト)、アセチレンブラック等のカーボンブラック、ニードルコークス等の無定形炭素等を用いることができる。これらは、1種を単独で用いてもよく、2種以上のものを組み合わせて用いてもよい。このように、第2炭素質材料(導電材)を添加することにより、電極の抵抗を低減するなどの効果を奏する。
第2炭素質材料(導電材)の含有量(添加量、割合、量)について、負極合材の重量に対する導電材の含有量の範囲は次のとおりである。範囲の下限は、1重量%以上、好ましくは2重量%以上、より好ましくは3重量%以上であり、上限は、45重量%以下、好ましくは40重量%以下である。上記下限未満では、導電性の向上効果が得にくく、また、上記上限を超えると、初期不可逆容量の増大を招く恐れがある。
負極用の集電体の材質としては特に制限はなく、具体例としては、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼等の金属材料が挙げられる。中でも、加工のし易さとコストの観点から銅が好ましい。
集電体の形状としては特に制限はなく、種々の形状に加工された材料を用いることができる。具体例としては、金属箔、金属円柱、金属コイル、金属板、金属薄膜、エキスパンドメタル、パンチメタル、発泡メタル等が挙げられる。中でも、金属薄膜が好ましく、銅箔がより好ましい。銅箔には、圧延法により形成された圧延銅箔と、電解法により形成された電解銅箔とがあり、どちらも集電体として用いて好適である。
集電体の厚さに制限はないが、厚さが25μm未満の場合、純銅よりも強銅合金(リン青銅、チタン銅、コルソン合金、Cu−Cr−Zr合金等)を用いることでその強度を向上させることができる。
負極活物質を用いて形成した負極合材の構成に特に制限はないが、負極合材密度の範囲は次のとおりである。負極合材密度の下限は、好ましくは0.7g/cm以上、より好ましくは0.8g/cm、さらに好ましくは0.9g/cm以上であり、上限は、2g/cm以下、好ましくは1.9g/cm以下、より好ましくは1.8g/cm以下、さらに好ましくは1.7g/cm以下である。
上記上限を超えると、負極活物質の粒子が破壊されやすくなり、初期の不可逆容量の増加や、集電体と負極活物質との界面付近への非水系電解液の浸透性の低下による高電流密度充放電特性の劣化を招く恐れがある。また、上記下限未満では、負極活物質間の導電性が低下するため電池抵抗が増大し、単位容積あたりの容量が低下する恐れがある。
負極活物質の結着材としては、非水系電解液や電極の形成時に用いる分散溶媒に対して安定な材料であれば、特に制限はない。具体的には、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリメチルメタクリレート、芳香族ポリアミド、セルロース、ニトロセルロース等の樹脂系高分子;SBR(スチレン−ブタジエンゴム)、イソプレンゴム、ブタジエンゴム、フッ素ゴム、NBR(アクリロニトリル− ブタジエンゴム)、エチレン−プロピレンゴム等のゴム状高分子;スチレン・ブタジエン・スチレンブロック共重合体またはその水素添加物;EPDM(エチレン・プロピレン・ジエン三元共重合体)、スチレン・エチレン・ブタジエン・スチレン共重合体、スチレン・イソプレン・スチレンブロック共重合体またはその水素添加物等の熱可塑性エラストマー状高分子; シンジオタクチック−1,2−ポリブタジエン、ポリ酢酸ビニル、エチレン・酢酸ビニル共重合体、プロピレン・α−オレフィン共重合体等の軟質樹脂状高分子;ポリフッ化ビニリデン、ポリテトラフルオロエチレン、フッ素化ポリフッ化ビニリデン、ポリテトラフルオロエチレン・エチレン共重合体等のフッ素系高分子;アルカリ金属イオン(特にリチウムイオン)のイオン伝導性を有する高分子組成物等が挙げられる。これらは、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
スラリーを形成するための分散溶媒としては、負極活物質、結着材、および必要に応じて用いられる導電材や増粘材などを溶解または分散することが可能な溶媒であれば、その種類に制限はなく、水系溶媒と有機系溶媒のどちらを用いてもよい。水系溶媒の例としては、水、アルコールと水との混合溶媒等が挙げられ、有機系溶媒の例としては、N−メチルピロリドン(NMP)、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、シクロヘキサノン、酢酸メチル、アクリル酸メチル、ジエチルトリアミン、N,N−ジメチルアミノプロピルアミン、テトラヒドロフラン(THF)、トルエン、アセトン、ジエチルエーテル、ジメチルアセトアミド、ヘキサメチルホスファルアミド、ジメチルスルフォキシド、ベンゼン、キシレン、キノリン、ピリジン、メチルナフタレン、ヘキサン等が挙げられる。特に水系溶媒を用いる場合、増粘材を用いることが好ましい。この増粘材に併せて分散材等を加え、SBR等のラテックスを用いてスラリー化する。なお、上記分散溶媒は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
結着材の含有量(添加量、割合、量)について、負極合材の重量に対する結着材の含有量の範囲は次のとおりである。範囲の下限は、好ましくは0.1重量%以上、より好ましくは0.5重量%以上、さらに好ましくは0.6重量%以上である。上限は、20重量%以下、好ましくは15重量%以下、より好ましくは10重量%以下、さらに好ましくは8重量%以下である。
上記上限を超えると、電池容量に寄与しない結着材の割合が増加し、電池容量の低下を招く恐れがある。また、上記下限未満では、負極合材の強度の低下を招く恐れがある。
特に、結着材として、SBRに代表されるゴム状高分子を主要成分として用いる場合の負極合材の重量に対する結着材の含有量の範囲は次のとおりである。範囲の下限は、0.1重量%以上、好ましくは0.5重量%以上、より好ましくは0.6重量%以上であり、上限は、5重量%以下、好ましくは3重量%以下、より好ましくは2重量%以下である。
また、結着材として、ポリフッ化ビニリデンに代表されるフッ素系高分子を主要成分として用いる場合の負極合材の重量に対する結着材の含有量の範囲は次のとおりである。範囲の下限は、1重量%以上、好ましくは2重量%以上、より好ましくは3重量%以上であり、上限は、15重量%以下、好ましくは10重量%以下、より好ましくは8重量%以下である。
増粘材は、スラリーの粘度を調製するために使用される。増粘材としては、特に制限はないが、具体的には、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ、カゼインおよびこれらの塩等が挙げられる。これらは、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
増粘材を用いる場合の負極合材の重量に対する増粘材の含有量の範囲は次のとおりである。範囲の下限は、0.1重量%以上、好ましくは0.5重量%以上、より好ましくは0.6重量%以上であり、上限は、5重量%以下、好ましくは3重量%以下、より好ましくは2重量%以下である。
上記下限未満では、スラリーの塗布性が低下する恐れがある。また、上記上限を超えると、負極合材に占める負極活物質の割合が低下し、電池容量の低下や負極活物質間の抵抗の上昇の恐れがある。
3.電解液
本実施の形態の電解液は、リチウム塩(電解質)と、これを溶解する非水系溶媒から構成される。必要に応じて、添加材を加えてもよい。
リチウム塩としては、リチウムイオン電池用の非水系電解液の電解質として使用可能なリチウム塩であれば特に制限はないが、例えば以下に示す無機リチウム塩、含フッ素有機リチウム塩やオキサラトボレート塩等が挙げられる。
無機リチウム塩としては、LiPF、LiBF、LiAsF、LiSbF等の無機フッ化物塩や、LiClO、LiBrO、LiIO等の過ハロゲン酸塩や、LiAlCl等の無機塩化物塩等が挙げられる。
含フッ素有機リチウム塩としては、LiCFSO等のパーフルオロアルカンスルホン酸塩;LiN(CFSO、LiN(CFCFSO、LiN(CFSO)(CSO)等のパーフルオロアルカンスルホニルイミド塩;LiC(CFSO等のパーフルオロアルカンスルホニルメチド塩;Li[PF(CFCFCF)]、Li[PF(CFCFCF]、Li[PF(CFCFCF]、Li[PF(CFCFCFCF)]、Li[PF(CFCFCFCF]、Li[PF(CFCFCFCF]等のフルオロアルキルフッ化リン酸塩等が挙げられる。
オキサラトボレート塩としては、リチウムビス(オキサラト)ボレート、リチウムジフルオロオキサラトボレート等が挙げられる。
これらのリチウム塩は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。中でも、溶媒に対する溶解性、二次電池とした場合の充放電特性、出力特性、サイクル特性等を総合的に判断すると、ヘキサフルオロリン酸リチウム(LiPF)が好ましい。
2種以上のリチウム塩を用いる場合の好ましい一例は、LiPFとLiBFとの併用である。この場合には、両者の合計に占めるLiBFの割合が、0.01重量%以上、20重量%以下であることが好ましく、0.1重量%以上、5重量%以下であることがより好ましい。また、他の好ましい一例は、無機フッ化物塩とパーフルオロアルカンスルホニルイミド塩との併用であり、この場合には、両者の合計に占める無機フッ化物塩の割合は、70重量%以上、99重量%以下であることが好ましく、80重量%以上、98重量%以下であることがより好ましい。上記2つの好ましい例によれば、高温保存による特性劣化を抑制することができる。
非水系電解液中の電解質の濃度に特に制限はないが、電解質の濃度範囲は次のとおりである。濃度の下限は、0.5mol/L以上、好ましくは0.6mol/L以上、より好ましくは0.7mol/L以上である。また、濃度の上限は、2mol/L以下、好ましくは1.8mol/L以下、より好ましくは1.7mol/L以下である。濃度が低すぎると、電解液の電気伝導率が不充分となる恐れがある。また、濃度が高すぎると、粘度が上昇するため電気伝導度が低下する恐れがある。このような電気伝導度の低下により、リチウムイオン電池の性能が低下する恐れがある。
非水系溶媒としては、リチウムイオン電池用の電解質の溶媒として使用可能な非水系溶媒であれば特に制限はないが、例えば次の環状カーボネート、鎖状カーボネート、鎖状エステル、環状エーテルおよび鎖状エーテル等が挙げられる。
環状カーボネートとしては、環状カーボネートを構成するアルキレン基の炭素数が2〜6のものが好ましく、2〜4のものがより好ましい。具体的には、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート等が挙げられる。中でも、エチレンカーボネート、プロピレンカーボネートが好ましい。
鎖状カーボネートとしては、ジアルキルカーボネートが好ましく、2つのアルキル基の炭素数が、それぞれ1〜5のものが好ましく、1〜4のものがより好ましい。具体的には、ジメチルカーボネート、ジエチルカーボネート、ジ−n−プロピルカーボネート等の対称鎖状カーボネート類;エチルメチルカーボネート、メチル−n−プロピルカーボネート、エチル−n−プロピルカーボネート等の非対称鎖状カーボネート類等が挙げられる。中でも、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネートが好ましい。
鎖状エステルとしては、酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸メチル等が挙げられる。中でも、低温特性改善の観点から酢酸メチルを用いることが好ましい。
環状エーテルとしては、テトラヒドロフラン、2−メチルテトラヒドロフラン、テトラヒドロピラン等が挙げられる。中でも、入出力特性改善の観点からテトラヒドロフランを用いることが好ましい。
鎖状エーテルとしては、ジメトキシエタン、ジメトキシメタン等が挙げられる。
これらは単独で用いても、2種類以上を併用してもよいが、2種以上の化合物を併用した混合溶媒を用いることが好ましい。例えば、環状カーボネート類の高誘電率溶媒と、鎖状カーボネート類や鎖状エステル類等の低粘度溶媒とを併用するのが好ましい。好ましい組み合わせの一つは、環状カーボネート類と鎖状カーボネート類とを主体とする組み合わせである。中でも、非水系溶媒に占める環状カーボネート類と鎖状カーボネート類との合計が、80容量%以上、好ましくは85容量%以上、より好ましくは90容量%以上であり、かつ環状カーボネート類と鎖状カーボネート類との合計に対する環状カーボネート類の容量が次の範囲であるものが好ましい。環状カーボネート類の容量の下限は、5%以上、好ましくは10%以上、より好ましくは15%以上であり、上限は、50%以下、好ましくは35%以下、より好ましくは30%以下である。このような非水系溶媒の組み合わせを用いることで、電池のサイクル特性や高温保存特性(特に、高温保存後の残存容量および高負荷放電容量)が向上する。
環状カーボネート類と鎖状カーボネート類の好ましい組み合わせの具体例としては、エチレンカーボネートとジメチルカーボネート、エチレンカーボネートとジエチルカーボネート、エチレンカーボネートとエチルメチルカーボネート、エチレンカーボネートとジメチルカーボネートとジエチルカーボネート、エチレンカーボネートとジメチルカーボネートとエチルメチルカーボネート、エチレンカーボネートとジエチルカーボネートとエチルメチルカーボネート、エチレンカーボネートとジメチルカーボネートとジエチルカーボネートとエチルメチルカーボネート等が挙げられる。
これらのエチレンカーボネートと鎖状カーボネート類との組み合わせに、さらにプロピレンカーボネートを加えた組み合わせも、好ましい組み合わせとして挙げられる。プロピレンカーボネートを含有する場合には、エチレンカーボネートとプロピレンカーボネートの容量比は、99:1〜40:60が好ましく、95:5〜50:50がより好ましい。さらに、非水系溶媒に占めるプロピレンカーボネートの量について、その範囲は次のとおりである。プロピレンカーボネートの量の下限は、0.1容量%以上、好ましくは1容量%以上、より好ましくは2容量%以上であり、上限は、10容量%以下、好ましくは8容量%以下、より好ましくは5容量%以下である。このような組み合わせによれば、エチレンカーボネートと鎖状カーボネート類との組み合わせの特性を維持しつつ、さらに低温特性を向上させることができる。
これらの組み合わせの中で、鎖状カーボネート類として非対称鎖状カーボネート類を含有するものがさらに好ましい。具体例としては、エチレンカーボネートとジメチルカーボネートとエチルメチルカーボネート、エチレンカーボネートとジエチルカーボネートとエチルメチルカーボネート、エチレンカーボネートとジメチルカーボネートとジエチルカーボネートとエチルメチルカーボネートの組み合わせが挙げられる。このような、エチレンカーボネートと対称鎖状カーボネート類と非対称鎖状カーボネート類との組み合わせにより、サイクル特性や大電流放電特性を向上させることができる。中でも、非対称鎖状カーボネート類がエチルメチルカーボネートであるものが好ましく、また、ジアルキルカーボネートを構成するアルキル基の炭素数が1〜2であるものが好ましい。
好ましい混合溶媒の他の例は、鎖状エステルを含有するものである。特に、上記環状カーボネート類と鎖状カーボネート類との混合溶媒に、鎖状エステルを含有するものが、電池の低温特性向上の観点から好ましい。鎖状エステルとしては、酢酸メチル、酢酸エチルが特に好ましい。非水系溶媒に占める鎖状エステルの容量の下限は、5%以上、好ましくは8%以上、より好ましくは15%以上であり、上限は、50%以下、好ましくは35%以下、より好ましくは30%以下、さらに好ましくは25%以下である。
他の好ましい非水系溶媒の例は、エチレンカーボネート、プロピレンカーボネートおよびブチレンカーボネートよりなる群から選ばれた1種の有機溶媒、またはこの群から選ばれた2種以上の有機溶媒からなる混合溶媒であり、この混合溶媒の非水系溶媒に占める容量を、60容量%以上とするものである。こうした混合溶媒は引火点が50℃以上となるように各種溶媒を選択して調整することが好ましく、中でも引火点が70℃以上となるように調整することがより好ましい。このような混合溶媒を用いた非水系電解液は、高温で使用しても溶媒の蒸発や液漏れが少なくなる。中でも、非水系溶媒に占めるエチレンカーボネートとプロピレンカーボネートとの合計が、80容量%以上、好ましくは90容量%以上であり、かつエチレンカーボネートとプロピレンカーボネートとの容量比が30:70〜60:40であるものを用いると、サイクル特性や大電流放電特性等を向上させることができる。
添加材としては、リチウムイオン電池の非水系電解液用の添加材であれば特に制限はないが、例えば、窒素、硫黄または窒素および硫黄を含有する複素環化合物、環状カルボン酸エステル、フッ素含有環状カーボネート、その他の分子内に不飽和結合を有する化合物が挙げられる。
窒素、硫黄または窒素および硫黄を含有する複素環化合物としては、特に限定はないが、1−メチル−2−ピロリジノン、1,3−ジメチル−2−ピロリジノン、1,5−ジメチル−2−ピロリジノン、1−エチル−2−ピロリジノン、1−シクロヘキシル−2−ピロリジノン等のピロリジノン類;3−メチル−2−オキサゾリジノン、3−エチル−2−オキサゾリジノン、3−シクロヘキシル−2−オキサゾリジノン等のオキサゾリジノン類;1−メチル−2−ピペリドン、1−エチル−2−ピペリドン等のピペリドン類;1,3−ジメチル−2−イミダゾリジノン、1,3−ジエチル−2−イミダゾリジノン等のイミダゾリジノン類;スルホラン、2−メチルスルホラン、3−メチルスルホラン等のスルホラン類;スルホレン;エチレンサルファイト、プロピレンサルファイト等のサルファイト類;1,3−プロパンスルトン、1−メチル−1,3−プロパンスルトン、3−メチル−1,3−プロパンスルトン、1,4−ブタンスルトン、1,3−プロペンスルトン、1,4−ブテンスルトン等のスルトン類等が挙げられる。中でも、1−メチル−2−ピロリジノン、1−メチル−2−ピペリドン、1,3−プロパンスルトン、1,4−ブタンスルトン、1,3−プロペンスルトン、1,4−ブテンスルトン等が電池の長寿命化の観点から特に好ましい。
環状カルボン酸エステルとしては、特に限定はないが、γ−ブチロラクトン、γ−バレロラクトン、γ−ヘキサラクトン、γ−ヘプタラクトン、γ−オクタラクトン、γ−ノナラクトン、γ−デカラクトン、γ−ウンデカラクトン、γ−ドデカラクトン、α−メチル-γ-ブチロラクトン、α−エチル-γ-ブチロラクトン、α−プロピル-γ-ブチロラクトン、α−メチル−γ−バレロラクトン、α−エチル−γ−バレロラクトン、α,α−ジメチル-γ-ブチロラクトン、α,α-ジメチル−γ−バレロラクトン、δ−バレロラクトン、δ−ヘキサラクトン、δ−オクタラクトン、δ−ノナラクトン、δ−デカラクトン、δ−ウンデカラクトン、δ−ドデカラクトン等が挙げられる。中でも、γ−ブチロラクトン、γ−バレロラクトン等が電池の長寿命化の観点から特に好ましい。
フッ素含有環状カーボネートとしては、特に限定はないが、フルオロエチレンカーボネート、ジフルオロエチレンカーボネート、トリフルオロエチレンカーボネート、テトラフルオロエチレンカーボネート、トリフルオロプロピレンカーボネート等が挙げられる。中でも、フルオロエチレンカーボネート等が電池の長寿命化の観点から特に好ましい。
その他の分子内に不飽和結合を有する化合物としては、ビニレンカーボネート、ビニルエチレンカーボネート、ジビニルエチレンカーボネート、メチルビニルカーボネート、エチルビニルカーボネート、プロピルビニルカーボネート、ジビニルカーボネート、アリルメチルカーボネート、アリルエチルカーボネート、アリルプロピルカーボネート、ジアリルカーボネート、ジメタリルカーボネート等のカーボネート類;酢酸ビニル、プロピオン酸ビニル、アクリル酸ビニル、クロトン酸ビニル、メタクリル酸ビニル、酢酸アリル、プロピオン酸アリル、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル等のエステル類;ジビニルスルホン、メチルビニルスルホン、エチルビニルスルホン、プロピルビニルスルホン、ジアリルスルホン、アリルメチルスルホン、アリルエチルスルホン、アリルプロピルスルホン等のスルホン類; ジビニルサルファイト、メチルビニルサルファイト、エチルビニルサルファイト、ジアリルサルファイト等のサルファイト類;ビニルメタンスルホネート、ビニルエタンスルホネート、アリルメタンスルホネート、アリルエタンスルホネート、メチルビニルスルホネート、エチルビニルスルホネート等のスルホネート類;ジビニルサルフェート、メチルビニルサルフェート、エチルビニルサルフェート、ジアリルサルフェート等のサルフェート類等が挙げられる。中でも、ビニレンカーボネート、ジメタリルカーボネート、ビニルエチレンカーボネート、ジビニルエチレンカーボネート、酢酸ビニル、プロピオン酸ビニル、アクリル酸ビニル、ジビニルスルホン、ビニルメタンスルホネート等が電池の長寿命化の観点から特に好ましい。
上記添加材以外に、求められる機能に応じて過充電防止材、負極皮膜形成材、正極保護材、高入出力材等の他の添加材を用いてもよい。
過充電防止材としては、ビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、シクロヘキシルベンゼン、t−ブチルベンゼン、t−アミルベンゼン、ジフェニルエーテル、ジベンゾフラン等の芳香族化合物;2−フルオロビフェニル、o−シクロヘキシルフルオロベンゼン、p−シクロヘキシルフルオロベンゼン等の上記芳香族化合物の部分フッ素化物;2,4−ジフルオロアニソール、2,5−ジフルオロアニソール、2,6−ジフルオロアニソール、3,5−ジフルオロアニソール等の含フッ素アニソール化合物等が挙げられる。中でも、ビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、シクロヘキシルベンゼン、t−ブチルベンゼン、t−アミルベンゼン、ジフェニルエーテル、ジベンゾフラン等の芳香族化合物が好ましい。これらの過充電防止材は、2種類以上併用して用いてもよい。2種以上併用する場合は、特に、シクロヘキシルベンゼンやターフェニル(またはその部分水素化体)と、t−ブチルベンゼンやt−アミルベンゼンとを併用するのが好ましい。
負極皮膜形成材としては、無水コハク酸、無水グルタル酸、無水マレイン酸、無水シトラコン酸、無水グルタコン酸、無水イタコン酸、シクロヘキサンジカルボン酸無水物等が挙げられる。中でも、無水コハク酸、無水マレイン酸が好ましい。これらの負極皮膜形成材は2種類以上併用して用いてもよい。
正極保護材としては、ジメチルスルホキシド、ジエチルスルホキシド、ジメチルサルファイト、ジエチルサルファイト、メタンスルホン酸メチル、ブスルファン、トルエンスルホン酸メチル、ジメチルサルフェート、ジエチルサルフェート、ジメチルスルホン、ジエチルスルホン、ジフェニルスルフィド、チオアニソール、ジフェニルジスルフィド等が挙げられる。中でも、メタンスルホン酸メチル、ブスルファン、ジメチルスルホンが好ましい。これらの正極保護材は2種類以上併用して用いてもよい。
高入出力材としては、パーフルオロアルキルスルホン酸、パーフルオロアルキルカルボン酸のアンモニウム塩、カリウム塩もしくはリチウム塩; パーフルオロアルキルポリオキシエチレンエーテル、フッ素化アルキルエステル等の界面活性剤が挙げられる。中でも、パーフルオロアルキルポリオキシエチレンエーテル、フッ素化アルキルエステルが好ましい。
非水系電解液中における添加材の割合に特に限定はないが、その範囲は次のとおりである。なお、複数の添加材を用いる場合は、それぞれの添加材の割合を意味する。非水系電解液に対する添加材の割合の下限は、好ましくは0.01重量%以上、より好ましくは0.1重量%以上、さらに好ましくは0.2重量%以上であり、上限は、好ましくは5重量%以下、より好ましくは3重量%以下、さらに好ましくは2重量%以下である。
上記他の添加剤により、過充電による異常時の急激な電極反応の抑制、高温保存後の容量維持特性やサイクル特性の向上、入出力特性の向上等を図ることができる。
4.セパレータ
セパレータは、正極および負極間を電子的には絶縁しつつもイオン透過性を有し、かつ、正極側における酸化性および負極側における還元性に対する耐性を備えるものであれば特に制限はない。このような特性を満たすセパレータの材料(材質)としては、樹脂、無機物、ガラス繊維等が用いられる。
樹脂としては、オレフィン系ポリマー、フッ素系ポリマー、セルロース系ポリマー、ポリイミド、ナイロン等が用いられる。具体的には、非水系電解液に対して安定で、保液性の優れた材料の中から選ぶのが好ましく、ポリエチレン、ポリプロピレン等のポリオレフィンを原料とする多孔性シートまたは不織布等を用いることが好ましい。
無機物としては、アルミナや二酸化珪素等の酸化物類、窒化アルミニウムや窒化珪素等の窒化物類、硫酸バリウムや硫酸カルシウム等の硫酸塩類が用いられる。例えば、繊維形状または粒子形状の上記無機物を、不織布、織布、微多孔性フィルム等の薄膜形状の基材に付着させたものをセパレータとして用いることができる。薄膜形状の基材としては、孔径が0.01〜1μm、厚さが5〜50μmのものが好適に用いられる。また、例えば、繊維形状または粒子形状の上記無機物を、樹脂等の結着材を用いて複合多孔層としたものをセパレータとして用いることができる。さらに、この複合多孔層を、正極または負極の表面に形成し、セパレータとしてもよい。例えば、90%粒径が1μm未満のアルミナ粒子をフッ素樹脂を結着材として結着させた複合多孔層を、正極の表面に形成してもよい。
5.その他の構成部材
リチウムイオン電池のその他の構成部材として、開裂弁を設けてもよい。開裂弁が開放することで、電池内部の圧力上昇を抑制でき、安全性を向上させることができる。
また、温度上昇に伴い不活性ガス(例えば、二酸化炭素など)を放出する構成部を設けてもよい。このような構成部を設けることで、電池内部の温度が上昇した場合に、不活性ガスの発生により速やかに開裂弁を開けることができ、安全性を向上させることができる。上記構成部に用いられる材料としては、炭酸リチウムやポリアルキレンカーボネート樹脂等が挙げられる。ポリアルキレンカーボネート樹脂としては、例えば、ポリエチレンカーボネート、ポリプロピレンカーボネート、ポリ(1,2−ジメチルエチレンカーボネート)、ポリブテンカーボネート、ポリイソブテンカーボネート、ポリペンテンカーボネート、ポリヘキセンカーボネート、ポリシクロペンテンカーボネート、ポリシクロヘキセンカーボネート、ポリシクロヘプテンカーボネート、ポリシクロオクテンカーボネート、ポリリモネンカーボネート等が挙げられる。上記構成部に用いられる材料としては、炭酸リチウム、ポリエチレンカーボネート、ポリプロピレンカーボネートが好ましい。
(リチウムイオン二次電池の電池容量)
以上の構成要素からなる本発明のリチウムイオン二次電池の電池容量(0.2Cにおける放電容量)は、30Ah以上であるが、安全性を担保しつつ、高入出力で、高エネルギー密度という観点からは、30Ah以上110Ah未満であることが好ましく、50Ah以上95Ah未満であることがより好ましく、60Ah以上90Ah未満であることが更に好ましい。
以下、実施例に基づき本実施の形態をさらに詳細に説明する。なお、本発明は以下の実施例によって限定されるものではない。
[正極板の作製]
正極板の作製を以下のように行った。正極活物質である層状型リチウム・ニッケル・マンガン・コバルト複合酸化物(NMC)とスピネル型リチウム・マンガン酸化物(sp−Mn)とを、所定の活物質の重量比(NMC/sp−Mn)で混合した。この正極活物質の混合物に、導電材として鱗片状の黒鉛(平均粒径:20μm)及びアセチレンブラックと、結着材としてポリフッ化ビニリデンとを順次添加し、混合することにより正極材料の混合物を得た。重量比は、活物質:導電材:結着材=90:5:5とした。さらに上記混合物に対し、分散溶媒であるN−メチル−2−ピロリドン(NMP)を添加し、混練することによりスラリーを形成した。このスラリーを正極用の集電体である厚さ20μmのアルミニウム箔の両面に実質的に均等かつ均質に塗布した。正極合材の片面塗布量は200g/mとした。その後、乾燥処理を施し、所定密度までプレスにより圧密化した。正極合材密度は2.5g/cm とした。このときの正極の厚さは180μmであった。よって、tは[180−20(集電体の厚み)]/2=80μmであった。ここで、正極合材の片面塗布量及びその密度は、それぞれ170g/m以上250g/m以下及び2.4g/cm以上2.7g/cmの範囲で調整することができる。アルミニウム箔は、片側の長辺に沿って50mmの幅の未塗布部を残した。その後、乾燥処理を施し、所定密度までプレスにより圧密化した。次いで、裁断により、幅(短辺)350mmもしくは60mmのアルミニウム集電体からなる正極板を得た。この際、上記未塗布部に切り欠きを入れ、切り欠き残部をリード片とした。リード片の幅は10mm、隣り合うリード片の間隔は20mmとした。
[負極板の作製]
負極板の作製を以下のように行った。負極活物質として非晶質炭素を用いた。この非晶質炭素に結着材としてポリフッ化ビニリデンを添加した。これらの重量比は、活物質:結着材=92:8とした。これに分散溶媒であるN−メチル−2−ピロリドン(NMP)を添加し、混練することによりスラリーを形成した。このスラリーを負極用の集電体である厚さ10μmの圧延銅箔の両面に実質的に均等かつ均質に所定量塗布した。圧延銅箔は、片側の長辺に沿って50mmの幅の未塗布部を残した。その後、乾燥処理を施し、所定密度までプレスにより圧密化した。負極合材密度は1.2g/cm とした。次いで、裁断により、幅(短辺)355mmもしくは62mmの圧延銅箔からなる負極板を得た。この際、上記未塗布部に切り欠きを入れ、切り欠き残部をリード片とした。リード片の幅は10mm、隣り合うリード片の間隔は20mmとした。
[電池の作製]
図1にリチウムイオン電池の断面図を示す。上記正極板と上記負極板とを、これらが直接接触しないように厚さ30μmのポリエチレン製のセパレータを挟んで捲回する。このとき、正極板のリード片と負極板のリード片とが、それぞれ捲回群の互いに反対側の両端面に位置するようにする。また、正極板、負極板、セパレータの長さを調整し、捲回群径40±0.1mmもしくは65±0.1mmもしくは150±0.5mmとした。
次いで、図1に示すように、正極板から導出されているリード片9を変形させ、その全てを正極側の鍔部7の底部付近に集合し、接触させる。正極側の鍔部7は、捲回群6の軸芯のほぼ延長線上にある極柱(正極外部端子1)の周囲から張り出すよう一体成形されており、底部と側部とを有する。その後、超音波溶接によりリード片9を鍔部7の底部に接続し固定する。負極板から導出されているリード片9と負極側の鍔部7の底部も同様に接続し固定する。この負極側の鍔部7は、捲回群6の軸芯のほぼ延長線上にある極柱(負極外部端子1’)周囲から張り出すよう一体成形されており、底部と側部とを有する。
その後、粘着テープを用い、正極外部端子1側の鍔部7の側部および負極外部端子1’の鍔部7の側部を覆い、絶縁被覆8を形成した。同様に、捲回群6の外周にも絶縁被覆8を形成した。例えば、この粘着テープを、正極外部端子1側の鍔部7の側部から捲回群6の外周面に亘って、さらに、捲回群6の外周面から負極外部端子1’側の鍔部7の側部に亘って、何重にも巻くことにより絶縁被覆8を形成する。絶縁被覆(粘着テープ)8としては、基材がポリイミドで、その片面にヘキサメタアクリレートからなる粘着材を塗布した粘着テープを用いた。捲回群6の最大径部がステンレス製の電池容器5内径よりも僅かに小さくなるように絶縁被覆8の厚さ(粘着テープの巻き数)を調整し、捲回群6を電池容器5内に挿入した。なお、電池容器5の外径は42mmもしくは67mmもしくは154mm、内径は41mmもしくは66mmもしくは152mmのものを用いた。
次いで、図1に示すように、セラミックワッシャ3’を、先端が正極外部端子1を構成する極柱および先端が負極外部端子1’を構成する極柱にそれぞれ嵌め込む。セラミックワッシャ3’は、アルミナ製であり、電池蓋4の裏面と当接する部分の厚さが2mm、内径16mm、外径25mmである。次いで、セラミックワッシャ3を電池蓋4に載置した状態で、正極外部端子1をセラミックワッシャ3に通し、また、他のセラミックワッシャ3を他の電池蓋4に載置した状態で、負極外部端子1’を他のセラミックワッシャ3に通す。セラミックワッシャ3は、アルミナ製であり、厚さ2mm、内径16mm、外径28mmの平板状、もしくは厚さ2mm、内径32mm、外径56mmの平板状である。
その後、電池蓋4の周端面を電池容器5の開口部に嵌合し、双方の接触部の全域をレーザー溶接する。このとき、正極外部端子1および負極外部端子1’は、それぞれ電池蓋4の中心にある穴(孔)を貫通して電池蓋4の外部に突出している。電池蓋4には、電池の内圧上昇に応じて開裂する開裂弁10が設けられている。なお、開裂弁10の開裂圧は、13〜18kgf/cmとした。
次いで、図1に示すように、金属ワッシャ11を、正極外部端子1および負極外部端子1’にそれぞれ嵌め込む。これによりセラミックワッシャ3上に金属ワッシャ11が配置される。金属ワッシャ11は、ナット2の底面より平滑な材料よりなる。
次いで、金属製のナット2を正極外部端子1および負極外部端子1’にそれぞれ螺着し、セラミックワッシャ3、金属ワッシャ11、セラミックワッシャ3’を介して電池蓋4を鍔部7とナット2と間で締め付けることにより固定する。このときの締め付けトルク値は70kgf・cmとした。なお、締め付け作業が終了するまで金属ワッシャ11は回転しなかった。この状態では、電池蓋4の裏面と鍔部7との間に介在させたゴム(EPDM)製のOリング12の圧縮により電池容器5の内部の発電要素は外気から遮断されている。
その後、電池蓋4に設けられた注液口13から電解液を所定量電池容器5内に注入し、その後、注液口13を封止することにより円筒形リチウムイオン電池20を完成させた。
電解液としては、エチレンカーボネートとジメチルカーボネートとエチルメチルカーボネートを、それぞれの体積比2:3:2で混合した混合溶液中へ、6フッ化リン酸リチウム(LiPF)を1.2mol/L溶解したものを用いた。なお、本実施例で作製した円筒形リチウムイオン電池20には、電池容器5の内圧の上昇に応じて電流を遮断するように作動する電流遮断機構は設けられていない。
[電池特性(放電容量・出力特性・安全性(釘刺し試験・外部短絡試験)・寿命試験)の評価]
このように作製したリチウムイオン電池の電池特性を、以下に示す方法で評価した。
作製したリチウムイオン電池について、正極合材の厚みtと集電体長手方向の長さLとの比(t/L)、および層状型リチウム・ニッケル・マンガン・コバルト複合酸化物(NMC)とスピネル型リチウム・マンガン酸化物(sp−Mn)との重量比(NMC/sp−Mn)を変化させた電池の放電特性、安全性および寿命特性を評価した。
放電容量は、まず、25℃の環境下において4.2〜2.7Vの電圧範囲で、0.5Cの電流値による充放電サイクルを2回繰り返した。さらに、0.5Cの電流値で4.2Vまで電池を充電後、0.5Cの各電流値で終止電圧2.7Vの定電流放電による放電を行い、この放電時の容量を放電容量(0.5Cにおける放電容量)とした。
出力特性は、上記放電容量を測定後、0.5Cの電流値で4.2Vまで電池を充電し、3Cの電流値で終止電圧2.7Vの定電流放電を行い、この放電時の容量を電流値3Cにおける放電容量とし、以下の式により出力特性を算出した。
出力特性=電流値3Cにおける放電容量/電流値0.5Cにおける放電容量
また、安全性は、釘刺し試験および外部短絡試験により確認した。
釘刺し試験では、まず、25℃の環境下において4.2〜2.7Vの電圧範囲で、0.5Cの電流値による充放電サイクルを2回繰り返した。さらに、4.2Vまで電池を充電後、直径5mmの釘を、速度1.6mm/秒で電池(セル)の中央部に刺し込み、電池容器の内部において正極と負極とを短絡させた。この際の電池の外観の変化を確認した。
外部短絡試験では、まず、25℃の環境下において4.2〜2.7Vの電圧範囲で、0.5Cの電流値による充放電サイクルを2回繰り返した。さらに、4.2Vまで電池を充電後、正極外部端子と負極外部端子を30mΩの抵抗につないだ。この際の電池の表面温度の変化および電池の外観の変化を確認した。
寿命試験では、25℃の環境下において、0.5Cの電流値で4.2Vまで電池を充電後、35℃の環境下において1ヵ月放置し、25℃の環境下において放置後の放電容量を計測し、放置前後の放電容量比を評価した。
(実施例1〜12)
表1に示すように、正極合材の厚みtと集電体長手方向の長さLとの比(t/L)および活物質の重量比(NMC/sp−Mn)を変化させた正極合材を作製し、捲回群径40mm、外径42mm、内径41mmの電池を作製した。各電流値(0.5Cおよび3C)における放電容量、出力特性(電流値3Cにおける放電容量/電流値0.5Cにおける放電容量)、安全性(釘刺し試験及び外部短絡試験)および寿命を評価した。具体的には、電池容器の破損の有無を確認した。電池容器の破損には、亀裂、膨張や発火を含むものとする。
結果を表1に示す。釘刺し試験の結果は、電池容器の破損がないもの(釘打ち部を除く)については“OK(良)”とし、電池容器の破損が生じたものについては“NG(否)”とした。また、外部短絡試験の結果は、電池容器の破損がないものについては“OK”とし、電池容器の破損が生じたものについては“NG”とした。表中の“○”は、釘刺し試験および外部短絡試験において双方とも“OK”であったものである。また、表中の“×”は、釘刺し試験および外部短絡試験において双方とも“NG”であったものである。さらに、外部短絡試験において、電池の表面温度を測定し、温度上昇が4℃未満のものを“○”、4℃以上8℃未満を“△”、及び8℃以上を“×”で示した。本発明においては、電池表面の上昇温度が4℃以上になると熱暴走を誘発する可能性が高くなることから、4℃以上が電池の安全性を評価するときの重要な指標となる。また、温度上昇が8℃以上の場合は、熱暴走の制御ができなくなる状態に近づいていることを意味する。これらの表記については、他の表についても同様である。
(実施例13〜24)
表2に示すように、正極合材厚みtと集電体長手方向の長さLとの比(t/L)および活物質の重量比(NMC/sp−Mn)を変化させた正極合材を作製し、捲回群径65mm、外径67mm、内径66mmの電池を作製した。各電流値(0.5Cおよび3C)における放電容量、出力特性(電流値3Cにおける放電容量/電流値0.5Cにおける放電容量)、安全性(釘刺し試験及び外部短絡試験)および寿命を評価した。具体的には、電池容器の破損の有無を確認した。電池容器の破損には、亀裂、膨張や発火を含むものとする。結果を表2に示す。
(実施例25〜27)
表3に示すように、正極合材の厚みtと集電体長手方向の長さLとの比(t/L)を変化させた正極合材を作製し、捲回群径150mm、外径154mm、内径152mmの電池を作製した。各電流値(0.5Cおよび3C)における放電容量、出力特性(電流値3Cにおける放電容量/電流値0.5Cにおける放電容量)、安全性(釘刺し試験及び外部短絡試験)および寿命を評価した。具体的には、電池容器の破損の有無を確認した。電池容器の破損には、亀裂、膨張や発火を含むものとする。結果を表3に示す。
(比較例1〜4)
表4に示すように、正極合材の厚みtと集電体長手方向の長さLとの比(t/L)および活物質の重量比(NMC/sp−Mn)を変化させた正極合材を作製し、捲回群径40mm、外径42mm、内径41mmの電池を作製した。各電流値(0.5Cおよび3C)における放電容量、電流値0.5Cにおける体積エネルギー密度、出力特性(電流値3Cにおける放電容量/電流値0.5Cにおける放電容量)、安全性(釘刺し試験及び外部短絡試験)および寿命を評価した。結果を表4に示す。
(比較例5〜8)
表5に示すように、正極合材厚みtと集電体長手方向の長さLとの比(t/L)および活物質の重量比(NMC/sp−Mn)を変化させた正極合材を作製し、捲回群径65mm、外径67mm、内径66mmの電池を作製した。各電流値(0.5Cおよび3C)における放電容量、電流値0.5Cにおける体積エネルギー密度、出力特性(電流値3Cにおける放電容量/電流値0.5Cにおける放電容量)、安全性(釘刺し試験及び外部短絡試験)および寿命を評価した。結果を表5に示す。
(参考例1、2)
表6に示すように、正極合材の厚みtと集電体長手方向の長さLとの比(t/L)が5×10−6において活物質の重量比(NMC/sp−Mn)を変化させた正極合材を作製し、捲回群径40mm、外径42mm、内径41mmの電池を作製した。各電流値(0.5Cおよび3C)における放電容量、電流値0.5Cにおける体積エネルギー密度、出力特性(電流値3Cにおける放電容量/電流値0.5Cにおける放電容量)、安全性(釘刺し試験及び外部短絡試験)および寿命を評価した。結果を表6に示す。
(参考例3、4)
表7に示すように、正極合材の厚みtと集電体長手方向の長さLとの比(t/L)が5×10−6において活物質の重量比(NMC/sp−Mn)を変化させた正極合材を作製し、捲回群径65mm、外径67mm、内径66mmの電池を作製した。各電流値(0.5Cおよび3C)における放電容量、電流値0.5Cにおける体積エネルギー密度、出力特性(電流値3Cにおける放電容量/電流値0.5Cにおける放電容量)、安全性(釘刺し試験及び外部短絡試験)および寿命を評価した。結果を表7に示す。








Figure 2015046282
Figure 2015046282
Figure 2015046282
Figure 2015046282
Figure 2015046282







Figure 2015046282
Figure 2015046282
表1〜表3に示す実施例1〜27について、表4および表5に示す比較例との対比において、電池特性が向上することが確認できた。以下に、詳細に説明する。
表1の実施例1および表4の比較例1を対比すると、活物質の重量比(NMC/sp−Mn)がそれぞれ同じ10/90であっても、正極合材の厚みtと集電体長手方向の長さLとの比(t/L)が30×10−6から5×10−6へ低下する事で、出力特性・安全性・寿命が改善することが分かる。また、表1の実施例1および表4の比較例2を対比すると、(t/L)が4×10−6から5×10−6へ増加する事で、電池作製時の巻きずれ等が減少し生産性が改善したばかりでなく、寿命も改善した。
同様に表2の実施例13および表5の比較例5を対比すると、活物質の重量比(NMC/sp−Mn)がそれぞれ同じ10/90であっても、正極合材の厚みtと集電体長手方向の長さLとの比(t/L)が30×10−6から5×10−6へ低下する事で、出力特性・安全性・寿命が改善することが分かる。また、表2の実施例13および表5の比較例6を対比すると、(t/L)が4×10−6から5×10−6へ増加する事で、電池作製時の巻きずれ等が減少し生産性が改善したばかりでなく、寿命も改善した。
さらに、正極合材の厚みtと集電体長手方向の長さLとの比(t/L)を同じにしたときに、活物質の重量比(NMC/sp−Mn)が電池特性に及ぼす影響について調べた。表1の実施例1および表6の参考例1、2を対比すると、(t/L)がそれぞれ5×10−6と同じであっても、活物質の重量比(NMC/sp−Mn)を70/30又は80/20から10/90にNMC比を下げることで温度上昇が4℃未満に抑制され安全性が十分に担保できることが分かる。同様に、表2の実施例13および表7の参考例3、4を対比すると、(t/L)がそれぞれ5×10−6で同じであっても、活物質の重量比(NMC/sp−Mn)を70/30又は80/20から10/90にNMC比を下げることで安全性を十分に担保できる。
以上の結果から、放電容量30Ah以上のリチウムイオン電池として、正極合材は、層状型リチウム・ニッケル・マンガン・コバルト複合酸化物(NMC)とスピネル型リチウム・マンガン酸化物(sp−Mn)との混合活物質を含み、前記正極合材の厚みtと前記集電体長手方向の長さLとが以下の関係式1
5×10−6<t/L<2×10−5・・・(関係式1)を満たし、さらに、混合活物質の重量比(NMC/sp−Mn)を10/90以上60/40以下とすることで、安全性を担保しつつ、高入出力で、長寿命・高容量なリチウムイオン電池を得られることが判明した。
以上、本発明者によってなされた発明をその実施の形態および実施例に基づき具体的に説明したが、本発明は上記実施の形態および実施例に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。
また、上記実施例および比較例においては、安全性の評価において電流遮断機構等を有するセルコントローラー等の他の安全装置を用いずに評価を行ったが、実製品においては、上記セルコントローラーを含むさらなる安全対策を施し、二重三重に安全性の強化が図られていることは言うまでもない。
以上のように、本発明のリチウムイオン電池は、安全性を十分に担保しつつ、高入出力で、高容量・長寿命とすることができる。そのため、自然エネルギー等の大規模蓄電システム用途だけでなく、安全性が高く、高入出力で、高容量・長寿命の二次電池が必要とされる他の用途への適用も可能であり、その有用性は極めて高い。
1 正極外部端子
1’ 負極外部端子
2 ナット
3 セラミックワッシャ
3’ セラミックワッシャ
4 電池蓋
5 電池容器
6 捲回群
7 鍔部
8 絶縁被覆
9 リード片
10 開裂弁
11 金属ワッシャ
12 Oリング
13 注液口
20 円筒形リチウムイオン電池

Claims (3)

  1. 正極、負極およびセパレータを捲回した電極捲回群と、電解液と、を電池容器内に備え、放電容量Xが30Ah以上110Ah未満のリチウムイオン電池であって、
    前記正極は、幅が60mm以上400mm以下である正極用の集電体と前記集電体の両面に塗布された正極合材とを有し、前記正極合材は、層状型リチウム・ニッケル・マンガン・コバルト複合酸化物(NMC)とスピネル型リチウム・マンガン酸化物(sp−Mn)との混合活物質を含み、前記正極合材の片面塗布量は175g/m以上250g/m以下であり、前記正極合材の厚みtと前記集電体長手方向の長さLとが以下の関係式1
    5×10−6<t/L<2×10−5・・・(関係式1)
    (ここで前記tは、[正極の厚み−正極集電体の厚み]/2を表す。)
    を満たすことを特徴とするリチウムイオン電池。
  2. 前記層状型リチウム・ニッケル・マンガン・コバルト複合酸化物(NMC)と前記スピネル型リチウム・マンガン酸化物(sp−Mn)との重量比(NMC/sp−Mn)が10/90以上60/40以下であることを特徴とする請求項1に記載のリチウムイオン電池。
  3. 前記混合活物質が、
    以下の組成式(化1)で表される層状型リチウム・ニッケル・マンガン・コバルト複合酸化物と、
    Li(1+δ)MnNiCo(1−x−y−z)…(化1)
    (Mは、Ti、Zr、Nb、Mo、W、Al、Si、Ga、GeおよびSnよりなる群から選択される少なくとも1種の元素であり、−0.15<δ<0.15、0.1<x≦0.5、0.6<x+y+z≦1.0、0≦z≦0.1である。)
    以下の組成式(化2)で表されるスピネル型リチウム・マンガン酸化物と、
    Li(1+η)Mn(2−λ)M’λ…(化2)
    (M’は、Mg、Ca、Sr、Al、Ga、Zn、およびCuよりなる群から選択される少なくとも1種の元素であり、0≦η≦0.2、0≦λ≦0.1である。)
    の混合物よりなることを特徴とする請求項1または2に記載のリチウムイオン電池。
JP2013176388A 2013-08-28 2013-08-28 リチウムイオン電池 Active JP6315230B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013176388A JP6315230B2 (ja) 2013-08-28 2013-08-28 リチウムイオン電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013176388A JP6315230B2 (ja) 2013-08-28 2013-08-28 リチウムイオン電池

Publications (2)

Publication Number Publication Date
JP2015046282A true JP2015046282A (ja) 2015-03-12
JP6315230B2 JP6315230B2 (ja) 2018-04-25

Family

ID=52671633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013176388A Active JP6315230B2 (ja) 2013-08-28 2013-08-28 リチウムイオン電池

Country Status (1)

Country Link
JP (1) JP6315230B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10193152B2 (en) 2015-09-09 2019-01-29 Samsung Electronics Co., Ltd. Cathode active material particles, lithium ion battery prepared by using the cathode active material particles, and method of preparing the cathode active material particles
CN110265627A (zh) * 2018-09-28 2019-09-20 宁德时代新能源科技股份有限公司 正极极片及锂离子二次电池

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11185798A (ja) * 1997-12-17 1999-07-09 Toray Ind Inc 非水電解液系二次電池
JP2000311676A (ja) * 1999-04-28 2000-11-07 Shin Kobe Electric Mach Co Ltd 円筒形リチウムイオン電池
JP2002198034A (ja) * 2000-12-26 2002-07-12 Shin Kobe Electric Mach Co Ltd 非水電解液二次電池
JP2003203630A (ja) * 2002-01-08 2003-07-18 Japan Storage Battery Co Ltd 非水系二次電池
JP2004134245A (ja) * 2002-10-10 2004-04-30 Sanyo Electric Co Ltd 非水電解質二次電池
JP2004335132A (ja) * 2003-04-30 2004-11-25 Matsushita Battery Industrial Co Ltd 非水電解液二次電池
JP2004342500A (ja) * 2003-05-16 2004-12-02 Matsushita Electric Ind Co Ltd 非水電解質二次電池および電池充放電システム
JP2006222072A (ja) * 2005-01-14 2006-08-24 Matsushita Electric Ind Co Ltd 非水電解質二次電池
US20070048597A1 (en) * 2005-08-16 2007-03-01 Ryu Ji H Cathode active material and lithium secondary battery containing the same
JP2008293988A (ja) * 2001-04-20 2008-12-04 Gs Yuasa Corporation:Kk 正極活物質およびその製造方法、非水電解質二次電池用正極、並びに、非水電解質二次電池
WO2013008475A1 (ja) * 2011-07-13 2013-01-17 株式会社Gsユアサ 非水電解質二次電池

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11185798A (ja) * 1997-12-17 1999-07-09 Toray Ind Inc 非水電解液系二次電池
JP2000311676A (ja) * 1999-04-28 2000-11-07 Shin Kobe Electric Mach Co Ltd 円筒形リチウムイオン電池
JP2002198034A (ja) * 2000-12-26 2002-07-12 Shin Kobe Electric Mach Co Ltd 非水電解液二次電池
JP2008293988A (ja) * 2001-04-20 2008-12-04 Gs Yuasa Corporation:Kk 正極活物質およびその製造方法、非水電解質二次電池用正極、並びに、非水電解質二次電池
JP2003203630A (ja) * 2002-01-08 2003-07-18 Japan Storage Battery Co Ltd 非水系二次電池
JP2004134245A (ja) * 2002-10-10 2004-04-30 Sanyo Electric Co Ltd 非水電解質二次電池
JP2004335132A (ja) * 2003-04-30 2004-11-25 Matsushita Battery Industrial Co Ltd 非水電解液二次電池
JP2004342500A (ja) * 2003-05-16 2004-12-02 Matsushita Electric Ind Co Ltd 非水電解質二次電池および電池充放電システム
JP2006222072A (ja) * 2005-01-14 2006-08-24 Matsushita Electric Ind Co Ltd 非水電解質二次電池
US20070048597A1 (en) * 2005-08-16 2007-03-01 Ryu Ji H Cathode active material and lithium secondary battery containing the same
WO2013008475A1 (ja) * 2011-07-13 2013-01-17 株式会社Gsユアサ 非水電解質二次電池

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10193152B2 (en) 2015-09-09 2019-01-29 Samsung Electronics Co., Ltd. Cathode active material particles, lithium ion battery prepared by using the cathode active material particles, and method of preparing the cathode active material particles
CN110265627A (zh) * 2018-09-28 2019-09-20 宁德时代新能源科技股份有限公司 正极极片及锂离子二次电池
WO2020063371A1 (zh) * 2018-09-28 2020-04-02 宁德时代新能源科技股份有限公司 正极极片及锂离子二次电池
CN110265627B (zh) * 2018-09-28 2020-09-29 宁德时代新能源科技股份有限公司 正极极片及锂离子二次电池
US11196041B2 (en) 2018-09-28 2021-12-07 Contemporary Amperex Technology Co., Limited Positive electrode plate and lithium-ion secondary battery

Also Published As

Publication number Publication date
JP6315230B2 (ja) 2018-04-25

Similar Documents

Publication Publication Date Title
JP6079736B2 (ja) リチウムイオン電池
JP6065901B2 (ja) リチウムイオン電池
JP5621933B2 (ja) リチウムイオン電池
WO2013128679A1 (ja) リチウムイオン電池
JP2014192143A (ja) リチウムイオン電池
JP6281638B2 (ja) リチウムイオン電池
WO2015005228A1 (ja) リチウムイオン電池およびその製造方法
JP2014192142A (ja) リチウムイオン電池
JP5626473B2 (ja) リチウムイオン電池
WO2016163282A1 (ja) リチウムイオン二次電池
JP2016152113A (ja) リチウムイオン二次電池
JP5637316B2 (ja) リチウムイオン電池
JP2015046283A (ja) リチウムイオン電池
JP2016076317A (ja) リチウムイオン二次電池
JP2015046295A (ja) リチウムイオン電池
JP6315230B2 (ja) リチウムイオン電池
JP2015046281A (ja) リチウムイオン電池
JP2015046237A (ja) リチウムイオン電池
JP2015056390A (ja) リチウムイオン電池およびその製造方法

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20160206

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180314

R151 Written notification of patent or utility model registration

Ref document number: 6315230

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250