WO2013008366A1 - アルカリ電池 - Google Patents

アルカリ電池 Download PDF

Info

Publication number
WO2013008366A1
WO2013008366A1 PCT/JP2012/002308 JP2012002308W WO2013008366A1 WO 2013008366 A1 WO2013008366 A1 WO 2013008366A1 JP 2012002308 W JP2012002308 W JP 2012002308W WO 2013008366 A1 WO2013008366 A1 WO 2013008366A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte
filter
battery
sealing plate
alkaline battery
Prior art date
Application number
PCT/JP2012/002308
Other languages
English (en)
French (fr)
Inventor
布目 潤
加藤 文生
文晴 阪下
勇 猿渡
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US13/703,538 priority Critical patent/US8790806B2/en
Priority to JP2012539122A priority patent/JP5530529B2/ja
Publication of WO2013008366A1 publication Critical patent/WO2013008366A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/28Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/166Lids or covers characterised by the methods of assembling casings with lids
    • H01M50/167Lids or covers characterised by the methods of assembling casings with lids by crimping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/166Lids or covers characterised by the methods of assembling casings with lids
    • H01M50/171Lids or covers characterised by the methods of assembling casings with lids using adhesives or sealing agents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/172Arrangements of electric connectors penetrating the casing
    • H01M50/174Arrangements of electric connectors penetrating the casing adapted for the shape of the cells
    • H01M50/182Arrangements of electric connectors penetrating the casing adapted for the shape of the cells for cells with a collector centrally disposed in the active mass, e.g. Leclanché cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • H01M50/3425Non-re-sealable arrangements in the form of rupturable membranes or weakened parts, e.g. pierced with the aid of a sharp member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/392Arrangements for facilitating escape of gases with means for neutralising or absorbing electrolyte; with means for preventing leakage of electrolyte through vent holes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/394Gas-pervious parts or elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an alkaline battery equipped with an explosion-proof valve.
  • an alkaline battery is provided with an explosion-proof valve that discharges gas generated in the battery to the outside when the pressure in the battery increases.
  • a thin part is provided in a part of the gasket that seals the opening of the battery case, and when the pressure in the battery rises, the thin part of the gasket is broken to release the gas generated in the battery to the outside.
  • a structure for discharging is known.
  • the explosion-proof valve when the explosion-proof valve is activated, not only the gas generated in the battery is discharged to the outside, but also the electrolyte may leak or scatter out of the battery at the same time. Since the electrolytic solution of the alkaline battery has strong alkalinity, if the electrolytic solution leaks out, there is a possibility that problems such as corrosion of used equipment may occur.
  • Patent Document 1 describes a technique for suppressing scattering of an electrolyte solution by installing a gas-permeable shielding filter inside a sealing plate in a sealed alkaline battery. Yes.
  • Patent Document 2 describes a technique for preventing leakage of an electrolyte by installing a non-liquid-permeable porous member having air permeability in a space defined by a gasket and a sealing plate. ing.
  • the shielding filter or the porous member described in Patent Document 1 or Patent Document 2 is effective in suppressing the scattering or leakage of the electrolytic solution, when the explosion-proof valve is activated, the pressure of the rapidly released gas is increased.
  • the shielding filter or the porous member may be broken by adding to the shielding filter or the porous member. Or even if it is not broken, the electrolyte mixed with the gas passes through the pores of the shielding filter or the porous member with a strong pressure, so that there is a possibility that it may be atomized and discharged to the outside.
  • the present invention has been made in view of such a point, and a main object thereof is to provide an alkaline battery in which an electrolyte does not leak to the outside when an explosion-proof valve is operated.
  • the alkaline battery according to the present invention is an alkaline battery in which an opening of a battery case in which a power generation element is accommodated is sealed with a sealing plate via a gasket, the sealing plate has an exhaust hole, and the gasket is An electrolyte filter made of a porous membrane is disposed in a space having an explosion-proof valve and defined by a sealing plate and a gasket, and the volume of the space defined by the sealing plate and the electrolyte solution is 0. and at 25 cm 3 or more, the electrolyte filters, tensile stress at the rate tensile elongation at least one direction parallel to the plane of the filter 100% is in the range of 60 ⁇ 4000N / m.
  • FIG. 1 is a partial cross-sectional view schematically showing the configuration of an alkaline battery in one embodiment of the present invention.
  • a positive electrode 2 and a negative electrode 3 are housed together with an electrolytic solution in a bottomed cylindrical battery case 1 via a separator 4.
  • the opening of the battery case 1 is sealed with a sealing unit in which the sealing plate 7, the negative electrode current collector 6, the gasket 5 and the electrolyte filter 9 are integrated.
  • the outer surface of the battery case 1 is covered with an exterior label 8.
  • the battery case 1 also serves as the positive terminal 1a
  • the sealing plate 7 also serves as the negative terminal.
  • the explosion-proof valve in the present embodiment is composed of a thin wall portion 5 a provided in a part of the annular gasket 5 and an exhaust hole 7 a provided in a part of the sealing plate 7.
  • An electrolyte filter 9 made of a porous film is disposed between the gasket 5 and the sealing plate 7.
  • the electrolyte solution filter 9 does not allow the electrolyte solution to pass but allows only the gas to pass therethrough, the electrolyte solution does not leak to the outside when the explosion-proof valve operates.
  • the electrolyte solution filter 9 has such an effect because the pores of the porous membrane constituting the electrolyte solution filter 9 prevent the liquid from permeating due to the surface tension with respect to the liquid such as the electrolyte solution. On the other hand, it has the characteristic that it is easy to permeate gas.
  • Table 1 is a table showing the result of the inventors examining the leakage of the electrolytic solution when the electrolytic solution filter 9 made of a porous membrane is disposed between the gasket 5 and the sealing plate 7. is there.
  • the fabricated batteries 1 to 3 are AA alkaline batteries having the structure shown in FIG. 1, and the porous membrane is a porous membrane made of polytetrafluoroethylene (with a tensile stress of 60 N at a tensile elongation of 100%). / M) was used.
  • the battery 1 is a battery in which the electrolyte filter 9 is not provided, and the battery 2 is sealed so as to close the exhaust hole 7 a of the sealing plate 7.
  • the battery 3 arranged in contact with the inside of the plate 7 is provided with a certain space A (volume 0.25 cm 3 ) between the sealing plate 7 and the electrolyte filter 9. Battery.
  • the leakage of the electrolytic solution was evaluated by over-discharging each of the produced batteries 1 to 3 at a constant voltage of ⁇ 3.4 V for 20 hours in an environment of room temperature (20 ° C.), and thereafter Store 10 batteries 1 to 3 in an environment of 33 ° C and relative humidity 85% (85RH%) for 5 days, and calculate the percentage of batteries with leakage of electrolyte (leakage rate%). I went.
  • the negative electrode of the battery which performed such overdischarge is in the state which generate
  • volume of the space A partitioned by the sealing plate 7 and the electrolyte filter 9 was calculated on the assumption that the exhaust hole 7a of the sealing plate 7 does not exist.
  • the reason for the large difference in the leakage rate depending on the position where the electrolyte solution filter 9 is disposed is considered as follows.
  • the volume of the space defined by the gasket 5 having the thin-walled portion 5a and the electrolyte filter 9 is as small as 1/10 or less compared to the volume of the space in the battery. Therefore, immediately after the operation of the explosion-proof valve (thin wall portion 5a), it is considered that a pressure slightly lower than the operating pressure of the explosion-proof valve (usually about 7 MPa) is applied to the electrolyte filter 9.
  • the electrolyte filter 9 extends even when a large pressure is applied to the electrolyte filter 9. Therefore, it is considered that the liquid A did not break and thus did not leak.
  • the buffer in which the electrolyte filter 9 swells under pressure is expanded. It can be used as a space. As a result, even when a large pressure is applied to the electrolyte filter 9, the electrolyte filter 9 can be prevented from breaking due to the expansion into the space A. As a result, the electrolyte solution can be prevented from leaking to the outside. be able to.
  • the volume of the space A defined by the sealing plate 7 and the electrolyte filter 9 is set to a certain range. There is a need.
  • Table 2 shows the results of producing batteries 4 to 9 having different volumes in the space A defined by the sealing plate 7 and the electrolyte filter 9, and evaluating the leakage of the electrolyte for each of the batteries 4 to 9. It is the table
  • the electrolyte solution filter 9 was the same as the porous membrane (tensile stress at a tensile elongation of 100% of 60 N / m) used in the batteries 1 to 3 shown in Table 1.
  • the evaluation of leakage of the electrolytic solution was performed using the same method as the evaluation performed in Table 1.
  • Table 2 also shows the liquid leakage rate when stored for 5 days in an environment of 45 ° C. and a relative humidity of 90% (90 RH%).
  • the battery 4 and the battery 6 in Table 2 are the same as the battery 2 and the battery 3 in Table 1.
  • the electrolyte filter 9 when the volume of the space A defined by the sealing plate 7 and the electrolyte filter 9 is 0.25 cm 3 or more, the electrolyte filter 9 is expanded at one end with the gas that is suddenly released from the inside of the battery. It can be considered that the liquid did not break, and as a result, the liquid leakage did not occur.
  • the volume of the space A defined by the sealing plate 7 and the electrolyte filter 9 is preferably in the range of 0.25 to 0.36 cm 3 .
  • the space A defined by the sealing plate 7 and the electrolyte filter 9 is used as a buffer space in which the electrolyte filter 9 swells under pressure.
  • the electrolyte filter 9 needs to have a certain tensile elongation and tensile stress that does not break even when swollen under a predetermined pressure.
  • Table 3 shows batteries 10 to 15 having different tensile stresses of the electrolyte filter 9 with the volume of the space A defined by the sealing plate 7 and the electrolyte filter 9 being constant (0.25 cm 3 ).
  • 10 is a table showing the results of evaluating leakage of electrolyte for batteries 10 to 15.
  • the electrolyte filter 9 was made of the same material (polytetrafluoroethylene) as the porous membrane used in the batteries 1 to 3 shown in Table 1.
  • size of the tensile stress was changed by adjusting the extending
  • the tensile stress is the magnitude of the tensile stress when the tensile elongation is 100% when the tensile test is performed in one direction parallel to the plane of the electrolyte filter. It is sufficient that the stress is in the range of 60 to 1000 N / m. The reason for this is that when pressure is applied to the electrolyte solution filter, it tends to stretch preferentially in the direction in which it tends to stretch. Moreover, the evaluation of leakage of the electrolytic solution was performed using the same method as the evaluation performed in Table 2. The battery 11 in Table 3 is the same as the battery 6 in Table 2.
  • the electrolyte filter 9 made of a porous film is disposed in the space partitioned by the sealing plate 7 and the gasket 5, it is partitioned by the sealing plate 7 and the electrolyte filter 9.
  • the volume of the space A is 0.25 cm 3 or more and making the tensile stress in the range of 60 to 4000 N / m when the tensile elongation rate in at least one direction of the electrolyte filter 9 is 100%.
  • the volume of the space A defined by the sealing plate 7 and the electrolyte filter 9 is preferably 0.36 cm 3 or less. Further, from the viewpoint of preventing leakage in a higher temperature and humidity environment, the tensile stress when the tensile elongation in at least one direction of the electrolyte filter 9 is 100% may be in the range of 60 to 1000 N / m. preferable.
  • the tensile stress in the present invention is the tensile stress when the tensile elongation in at least one direction parallel to the plane of the electrolyte filter 9 is 100%. This is because when the electrolyte filter 9 expands into the space A, the electrolyte filter 9 extends in a direction parallel to the plane.
  • the preferable range of the tensile stress of the electrolyte filter 9 is that the volume of the space A is predetermined. It is considered that there is almost no change if the size is greater than or equal to (0.25 cm 3 ).
  • Table 4 shows that batteries 16 to 21 having different tensile stresses of the electrolyte filter 9 were prepared by setting the volume of the space A partitioned by the sealing plate 7 and the electrolyte filter 9 to 0.36 cm 3.
  • 21 is a table showing the results of evaluating the leakage of the electrolyte with respect to 21.
  • batteries 16 to 21 were fabricated under the same conditions as the batteries 10 to 15 shown in Table 3 except for the volume of the space A.
  • Table 5 shows that batteries 22 to 29 having different materials for the electrolyte filter 9 were produced with the volume of the space A partitioned by the sealing plate 7 and the electrolyte filter 9 being constant (0.36 cm 3 ).
  • 22 is a table showing the results of evaluating the leakage of electrolyte for 22-29.
  • batteries 22 to 29 were fabricated under the same conditions as the batteries 10 to 15 shown in Table 3 except for the material of the electrolyte solution filter 9.
  • the electrolyte solution filter 9 allows gas to pass therethrough, the battery whose sealing property has been lost after the explosion-proof valve is actuated is in a state of being in contact with the outside air, and thus may be influenced by some reaction with the outside air.
  • the electrolyte solution may leak.
  • carbon dioxide enters the battery from the outside air, the electrolyte will be neutralized with carbon dioxide and deposited as a solid of potassium carbonate, closing the gap between the inside of the battery and the outside of the battery. Liquid leakage can be suppressed.
  • the Gurley number (air permeability) of the electrolyte filter 9 in the range of 100 to 500 seconds / 100 ml, leakage of the electrolyte can be suppressed even after the explosion-proof valve is activated.
  • the Gurley number is 100 seconds / 100 ml or more, the risk of leaking after a long time due to the permeation of moisture can be eliminated even when the external atmosphere is very humid after the operation of the explosion-proof valve.
  • the Gurley number is 500 seconds / 100 ml or less, carbon dioxide easily permeates from the outside air after the explosion-proof valve is activated, and the electrolyte inside the electrolyte filter is neutralized with carbon dioxide to become potassium carbonate. , Leakage of the electrolyte can be suppressed.
  • the Gurley number of the electrolyte filter 9 is more preferably set in the range of 200 to 350 seconds / 100 ml.
  • the Gurley number is the air permeability (air resistance) according to the Gurley tester method stipulated in Japanese Industrial Standard (JIS) P8117, and is a porous material having an area of 642 mm 2 at a temperature of 23 ° C. ⁇ 1 ° C. Expressed by the time (seconds / 100 ml) that 100 ml of air passes through the material.
  • the material of the electrolyte solution filter 9 is not particularly limited, but other than the above materials, for example, a porous material such as a non-woven fabric or a foamed material made of other materials to which polytetrafluoroethylene fine particles are attached is used. be able to. Also, a composite membrane in which a nonwoven fabric or mesh having a relatively large gap is bonded to or superimposed on the porous membrane as described above can be used. Polyamide, polyethylene, polypropylene, polyvinylidene chloride, or the like can be used as the material for the nonwoven fabric or mesh. As the nonwoven fabric, alkali-resistant cellulose fiber, lyocell (Tencel), vinylon, rayon, or the like can be used.
  • the alkaline battery is not limited to the battery having the configuration as shown in FIG. 1, and is applicable not only to a cylindrical battery but also to a square battery. Moreover, each member which comprises an alkaline battery can also be selected suitably according to the specification requested
  • the manufacturing method of the batteries 1 to 29 shown in Tables 1 to 5 is as follows.
  • Negative Electrode A gelling agent comprising sodium polyacrylate, an alkaline electrolyte comprising 34% by weight aqueous potassium hydroxide solution, and a negative electrode active material comprising zinc powder in a weight ratio of 1:33:66.
  • the gelled negative electrode 3 was obtained by mixing.
  • the zinc powder was an alloy containing a minute amount of bismuth, indium and aluminum, and a small amount of indium hydroxide and a surfactant were added to the electrolyte.
  • Two positive electrode pellets produced by the above method were inserted into the battery case 1, pressed with a pressure jig, and brought into close contact with the inner wall of the battery case 1 to place the positive electrode 2.
  • an alkaline electrolyte composed of a 34 wt% potassium hydroxide aqueous solution was injected into the separator 4.
  • the gelled negative electrode 3 produced by the above method was filled in the separator 4.
  • the separator 4 was a non-woven fabric mainly composed of vinylon fiber and rayon fiber.
  • the opening of the battery case 1 was sealed by placing a sealing unit and crimping the battery case 1.
  • a sealing unit an assembly in which an electrolyte filter 9 was sandwiched between a sealing plate 7 to which a negative electrode current collector 6 was welded and a gasket 5 was used in advance.
  • the sealing plate 7 was provided with two exhaust holes 7a having a hole diameter of ⁇ 1.5 mm so as to be equally spaced on the circumference.
  • the gasket 5 made of nylon was provided with an annular thin portion 5a having a thickness of 0.2 mm.
  • an alkali-resistant adhesive was applied and sealed to a portion where the gasket 5 and the electrolyte solution filter 9 were in contact with each other so that the electrolyte solution did not leak from the space A defined by the gasket 5 and the electrolyte solution filter 9.
  • it when inserted into the sealing unit and assembled, it was cut into a circular shape of ⁇ 10.5 mm, and a small hole having the same size as the diameter of the negative electrode current collector was formed in the center of the circular shape.
  • the battery of the example and the battery of the comparative example have spaces in the battery volume, that is, gas other than the power generation element such as the positive electrode, the negative electrode, the electrolytic solution, and the separator.
  • the positive electrode, the gel negative electrode, and the electrolytic solution were uniformly increased so that the volume of the space was 0.15 cm 3 .
  • the present invention is useful as an alkaline battery excellent in safety in which an electrolyte does not leak even when an explosion-proof valve is operated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Gas Exhaust Devices For Batteries (AREA)
  • Primary Cells (AREA)

Abstract

 発電要素が収容された電池ケース1の開口部が、ガスケット5を介して封口板7で封口されてなるアルカリ電池であって、封口板7は、排気孔7aを有し、ガスケット5は、防爆弁5aを有し、封口板7とガスケット5で区画された空間内に、多孔質膜からなる電解液フィルター9が配設され、封口板7と電解液フィルター9とで区画された空間Aの体積は、0.25cm以上であり、電解液フィルター9の少なくとも一方向における引張り伸び率が100%の時の引張り応力が60~4000N/mの範囲にある。

Description

アルカリ電池
 本発明は、防爆弁を備えたアルカリ電池に関する。
 密閉されたアルカリ電池では、誤って充電や過放電がなされたとき、電池内部でガスが発生し、電池内の圧力が上昇して電池が破裂するおそれがある。そこで、一般に、アルカリ電池では、電池内の圧力が上昇したとき、電池内で発生したガスを外部に排出する防爆弁が設けられている。
 防爆弁としては、電池ケースの開口部を封口するガスケットの一部に薄肉部を設け、電池内の圧力が上昇したとき、ガスケットの薄肉部を破断させて、電池内で発生したガスを外部へ排出させる構造が知られている。
 ところで、防爆弁が作動した際、電池内に発生したガスが外部に排出されるだけでなく、電解液も同時に電池外に漏出または飛散する場合がある。アルカリ電池の電解液は強アルカリ性を有するため、電解液が漏出すると使用機器を腐食する等の問題が生じるおそれがある。
 このような問題に対して、特許文献1には、密閉されたアルカリ電池において、封口板の内側にガス透過性の遮蔽フィルターを設置することにより、電解液の飛散を抑制する技術が記載されている。
 また、特許文献2には、ガスケットと封口板で区画された空間内に、空気透過性を有する非透液性の多孔質部材を設置することにより、電解液の漏出を防止する技術が記載されている。
特開2001-118557号公報 特開2010-61972号公報
 特許文献1または特許文献2に記載された遮蔽フィルターまたは多孔質部材は、電解液の飛散または漏出の抑制には効果があるものの、防爆弁が作動した際、急激に放出されたガスの圧力が、遮蔽フィルターまたは多孔質部材に加わることによって、遮蔽フィルターまたは多孔質部材が破断されるおそれがある。あるいは、破断されなくても、遮蔽フィルターまたは多孔質部材の細孔に、ガスと混じった電解液が強い圧力で通過するため、霧状となって外部に放出されるおそれがある。
 本発明は、かかる点に鑑みてなされたものであり、その主な目的は、防爆弁が作動した際に、電解液が外部に漏出することのないアルカリ電池を提供することにある。
 本発明に係るアルカリ電池は、発電要素が収容された電池ケースの開口部が、ガスケットを介して封口板で封口されてなるアルカリ電池であって、封口板は、排気孔を有し、ガスケットは、防爆弁を有し、封口板とガスケットで区画された空間内に、多孔質膜からなる電解液フィルターが配設され、封口板と電解液フィルターとで区画された空間の体積は、0.25cm以上であり、電解液フィルターは、フィルターの平面に平行な少なくとも一方向における引張り伸び率が100%の時の引張り応力が60~4000N/mの範囲にある。
 本発明によれば、防爆弁が作動した際に、電解液が外部に漏出することのないアルカリ電池を提供することができる。
本発明の一実施形態におけるアルカリ電池の構成を示した部分断面図である。
 以下に、本発明の実施形態について、図面を参照しながら説明する。なお、本発明は以下の実施形態に限定されない。また、本発明の効果を奏する範囲を逸脱しない範囲で、適宜変更は可能である。さらに、他の実施形態との組み合わせも可能である。
 図1は、本発明の一実施形態におけるアルカリ電池の構成を模式的に示した部分断面図である。図1に示すように、有底円筒状の電池ケース1内に、セパレータ4を介して正極2と負極3が、電解液とともに収納されている。そして、電池ケース1の開口部は、封口板7、負極集電体6、ガスケット5および電解液フィルター9が一体化された封口ユニットで封口されている。電池ケース1の外表面は、外装ラベル8により被覆されている。本実施形態では、電池ケース1は正極端子1aを兼ね、封口板7は負極端子を兼ねている。
 本実施形態における防爆弁は、環状のガスケット5の一部に設けられた薄肉部5a、及び封口板7の一部に設けられた排気孔7aとで構成されている。そして、ガスケット5と封口板7との間に、多孔質膜からなる電解液フィルター9が配設されている。電池内で発生したガスの圧力が、所定の値に達したとき、薄肉部5aが破断され、電池内のガスは、電解液フィルター9、排気孔7aを通って、電池外部に排出される。
 なお、電解液フィルター9は、電解液を通過させず、ガスのみを通過させるため、防爆弁が作動した際に、電解液が外部に漏出することはない。電解液フィルター9がこのような作用を奏するのは、電解液フィルター9を構成する多孔質膜の細孔が、電解液のような液体に対しては、表面張力により、液体の透過を阻止する一方、気体に対しては、透過が容易である、という特性を有しているからである。
 表1は、本発明者等が、ガスケット5と封口板7との間に、多孔質膜からなる電解液フィルター9を配設した場合の、電解液の漏出について検討した結果を示した表である。作製した電池1~3は、図1に示したような構成の単3形アルカリ電池で、多孔質膜は、ポリテトラフルオロエチレン製の多孔質膜(引張伸び率100%時の引張り応力が60N/m)を用いた。
Figure JPOXMLDOC01-appb-T000001
 ここで、作製した電池1~3のうち、電池1は、電解液フィルター9を配設していない電池、電池2は、電解液フィルター9を封口板7の排気孔7aを塞ぐように、封口板7の内側に当接させて配設した電池、電池3は、図1に示すように、封口板7と電解液フィルター9との間に一定の空間A(体積0.25cm)を設けて配設した電池である。
 なお、電解液の漏出の評価は、作製した各電池1~3を、室温(20℃)の環境下で、-3.4Vの定電圧で、20時間、過放電を行い、その後、開回路状態で各電池1~3を10個、33℃、相対湿度85%(85RH%)の環境下で、5日間保存し、電解液の漏出の発生した電池の割合(漏液率%)を求めて行った。なお、このような過放電を行った電池の負極は、通常使用に比べて多量の水素ガスを発生する状態となっている。
 また、封口板7と電解液フィルター9とで区画された空間Aの体積は、封口板7の排気孔7aが存在しないものとして算出した。
 表1に示すように、電解液フィルター9を配設していない電池1では、10個の電池全て漏液が発生した(漏液率100%)。また、電解液フィルター9を配設した電池2では、漏液率が若干低下したものの、依然高い漏液率80%を示した。これに対して、封口板7と電解液フィルター9との間に一定の空間Aを設けて配設した電池3では、漏液率は0%であった。
 このように、電解液フィルター9を配設する位置によって、漏液率に大きな差が出た理由は、次のように考えられる。
 通常、円筒形アルカリ電池の場合、薄肉部5aを有するガスケット5と電解液フィルター9とで区画される空間の体積は、電池内の空間の体積に比べて、1/10以下と非常に小さい。そのため、防爆弁(薄肉部5a)の作動直後に、電解液フィルター9には、防爆弁の作動圧(通常、7MPa程度)より僅かに低い圧力が加わると考えられる。
 電解液フィルター9を封口板7の内側に当接させて配設した電池2では、封口板7と電解液フィルター9との間に一定の空間Aがない。そのため、電解液フィルター9に大きな圧力が加わると、電解液フィルター9の一部が、排気孔7aに食い込んで破断し、これにより、漏液に至ったものと考えられる。
 これに対して、封口板7と電解液フィルター9との間に一定の空間Aを設けて配設した電池3では、電解液フィルター9に大きな圧力が加わっても、電解液フィルター9が伸びることによって、空間Aに膨らむため、破断せず、これにより、漏液に至らなかったものと考えられる。
 すなわち、封口板7と電解液フィルター9との間に一定の空間Aを設けることによって、防爆弁(薄肉部5a)が作動したとき、空間Aを、電解液フィルター9が圧力を受けて膨らむバファー空間として利用することができる。これにより、電解液フィルター9に大きな圧力が加わっても、電解液フィルター9が空間Aに膨らむことによって、破断するのを防止することができ、その結果、電解液が外部に漏出するのを防ぐことができる。
 上記の考察から、防爆弁が作動した際、電解液フィルター9が破断しない効果を得るためには、封口板7と電解液フィルター9とで区画された空間Aの体積を、一定の範囲に定める必要がある。
 表2は、封口板7と電解液フィルター9とで区画された空間Aの体積の異なる電池4~9を作製し、各電池4~9に対して、電解液の漏出の評価を行った結果を示した表である。ここで、電解液フィルター9は、表1に示した各電池1~3で用いた多孔質膜(引張伸び率100%時の引張り応力が60N/m)と同じものを用いた。また、電解液の漏出の評価は、表1で行った評価と同じ方法を用いて行った。なお、表2には、45℃、相対湿度90%(90RH%)の環境下で、5日間保存したときの漏液率も併せ示している。また、表2の電池4と電池6は、表1の電池2と電池3と同一のものである。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、封口板7と電解液フィルター9とで区画された空間Aの体積が0.12cm以下の電池4、5では、漏液が生じたのに対し、封口板7と電解液フィルター9とで区画された空間Aの体積が0.25cm以上の電池6~9では、漏液は生じなかった。
 これは、封口板7と電解液フィルター9とで区画された空間Aの体積が0.12cm以下の場合、電池内からガスが急激に開放されると、空間Aのほぼ全体に電解液フィルター9が膨らんでそれ以上膨らめないために、排気孔7aに電解液フィルター9が食い込んで穴が開き、その結果、漏液に至ったものと考えられる。
 これに対して、封口板7と電解液フィルター9とで区画された空間Aの体積が0.25cm以上の場合、電池内から急激に開放されるガスを、一端、電解液フィルター9が伸びて受け止めることができるため、破断せず、その結果、漏液に至らなかったものと考えられる。
 なお、封口板7と電解液フィルター9とで区画された空間Aの体積を必要以上に大きくすると、電池のエネルギー密度の低下を招くため、実用上、好ましくない。そのため、封口板7と電解液フィルター9とで区画された空間Aの体積は、0.25~0.36cmの範囲が好ましい。
 上述したように、封口板7と電解液フィルター9とで区画された空間Aは、電解液フィルター9が圧力を受けて膨らむバファー空間として利用される。そのためには、電解液フィルター9は、所定の圧力を受けて膨らんでも破断しない、一定の引張り伸び率、及び引張り応力を有する必要がある。
 表3は、封口板7と電解液フィルター9とで区画された空間Aの体積を一定(0.25cm)にして、電解液フィルター9の引張り応力が異なる電池10~15を作製し、各電池10~15に対して、電解液の漏出の評価を行った結果を示した表である。ここで、電解液フィルター9は、表1に示した各電池1~3で用いた多孔質膜と同じ材料(ポリテトラフルオロエチレン)のものを用いた。また、引張り応力は、多孔膜を延伸し作製する段階での延伸度合いを調節することにより、その大きさを変えた。なお、引張り応力は、電解液フィルターの平面に平行な方向のいずれかの一方向に引っ張り試験を行った時の、引張り伸び率が100%のときの引張り応力の大きさとし、いずれかの方向での応力が60~1000N/mの範囲にあればよい。この理由は、電解液フィルターに圧力が加わって伸びようとする場合、伸びやすい方向に優先的に伸びるため、いずれかの方向の強度が適正範囲であれば効果が得られたと考えられる。
また、電解液の漏出の評価は、表2で行った評価と同じ方法を用いて行った。なお、表3の電池11は、表2の電池6と同一のものである。
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、引張り応力が30N/mの電池10、及び引張り応力が5000N/mの電池15では、漏液が生じたのに対し、引張り応力が60~4000N/mの範囲の電池11~電池14では、漏液は生じなかった。
 これは、引張り応力が30N/mの電池10では、電解液フィルター9自身の強度が不足し、防爆弁が作動した際、急激に放出されたガスの圧力によってフィルターが破断したため、漏液に至ったものと考えられる。一方、引張り応力が60~4000N/mの範囲の電池11~電池14では、電解液フィルター9に大きな圧力が加わっても、電解液フィルター9が伸びることによって、空間Aに膨らむため、破断せず、その結果、漏液に至らなかったものと考えられる。また、引張り応力が5000N/mの電池15では、電解液フィルター9が空間Aに膨らむ途中で破断し、その結果、漏液が生じたものと考えられる。
 なお、表3に示すように、引張り応力が4000N/mの電池14では、より高温、多湿の環境下(45℃、90RH%)での評価で、若干の漏液が生じた。これは、電解液フィルター9の破断は生じなかったものの、電池外部の多量の水蒸気が長時間のうちに徐々に電池内部に侵入し、電解液としての体積がセル内の空間を超過し溢れ出たために、漏液に至ったものと考えられる。
 以上の評価結果から、封口板7とガスケット5とで区画された空間内に、多孔質膜からなる電解液フィルター9が配設されたアルカリ電池において、封口板7と電解液フィルター9とで区画された空間Aの体積を0.25cm以上にし、かつ、電解液フィルター9の少なくとも一方向における引張り伸び率が100%の時の引張り応力を60~4000N/mの範囲にすることによって、防爆弁(薄肉部5a)が作動した際に、電解液が外部に漏出するのを防止することができる。なお、電池のエネルギー密度の観点から、封口板7と電解液フィルター9とで区画された空間Aの体積は、0.36cm以下であることが好ましい。また、より高温、多湿の環境下における漏液防止の観点から、電解液フィルター9の少なくとも一方向における引張り伸び率が100%の時の引張り応力を、60~1000N/mの範囲にすることが好ましい。
 なお、本発明における引張り応力は、電解液フィルター9の平面に平行な少なくとも一方向における引張り伸び率が100%の時の引張り応力とする。これは、電解液フィルター9が空間Aに膨らむとき、電解液フィルター9は、平面に平行な方向に伸びるためである。
 なお、漏液防止の効果が、電解液フィルター9が空間Aに膨らむことに依るものであることを考慮すれば、電解液フィルター9の引張り応力の好適な範囲は、空間Aの体積が、所定の大きさ(0.25cm)以上であれば、ほとんど変わらないものと考えられる。
 表4は、封口板7と電解液フィルター9とで区画された空間Aの体積を0.36cmにして、電解液フィルター9の引張り応力が異なる電池16~21を作製し、各電池16~21に対して、電解液の漏出の評価を行った結果を示した表である。ここで、空間Aの体積以外は、表3に示した電池10~15と全て同じ条件で、電池16~21を作製した。
Figure JPOXMLDOC01-appb-T000004
 表4に示すように、封口板7と電解液フィルター9とで区画された空間Aの体積を変えても、表3と同様の結果が得られた。
 表5は、封口板7と電解液フィルター9とで区画された空間Aの体積を一定(0.36cm)にして、電解液フィルター9の材質の異なる電池22~29を作製し、各電池22~29に対して、電解液の漏出の評価を行った結果を示した表である。なお、電解液フィルター9の各材質に対して、電解液フィルター9の少なくとも一方向における引張り応力が1500N/mと2000N/mの2種類の電池を用意した。ここで、電解液フィルター9の材質以外は、表3に示した電池10~15と全て同じ条件で、電池22~29を作製した。
Figure JPOXMLDOC01-appb-T000005
 表5に示すように、使用した全ての電解液フィルター9の材質(ポリテトラフルオロエチレン(PTFE)、ポリウレタン、ポリエチレン、ポリプロピレン)において、33℃、85RH%の環境下での評価では、漏液は発生しなかった。しかし、45℃、90RH%の環境下での評価では、PTFEが、他の材質(ポリウレタン、ポリエチレン、ポリプロピレン)に比べて、優位性が見られた。これは、PTFEからなる電解液フィルター9は、電解液を完全に透過させないが、他の材質からなる電解液フィルター9は、長時間のうちに、電解液を僅かに透過するためと考えられる。
 ところで、電解液フィルター9は、気体を透過するため、防爆弁が作動した後、密閉性が失われた電池は、外気に触れる状態となるため、外気と何らかの反応による影響を受けるおそれがある。
 例えば、外気が非常に多湿である場合には、電池内の電解液の水蒸気圧と外気の水蒸気圧が同等になるように外気から電池内に水分が侵入し、長時間が経過し、侵入した水の体積が電池内の空間体積を越える時点で、電解液が漏出するおそれがある。また、逆に、外気から二酸化炭素が電池内に侵入すると、電解液が二酸化炭素と中和して炭酸カリウムの固体となって析出し、電池内と電池外との隙間を閉塞するため、電解液の漏出を抑制できる。
 このような観点から、電解液フィルター9の透気度を、一定の範囲内に設定することによって、防爆弁が作動した後においても、電解液の漏出を抑制することができる。
 すなわち、電解液フィルター9のガーレー数(透気度)を、100~500秒/100mlの範囲に設定することによって、防爆弁が作動した後においても、電解液の漏出を抑制することができる。ガーレー数が100秒/100ml以上であると、防爆弁の作動後に、外部の大気が非常に多湿である場合にも、水分の透過により長時間の後に漏液に至るリスクをなくすることができる。また、ガーレー数が500秒/100ml以下であると、防爆弁の作動後に、外気から二酸化炭素が透過して入りやすく、電解液フィルターの内部の電解液が二酸化炭素と中和して炭酸カリウムとなり、電解液の漏出を抑制することができる。なお、電解液フィルター9のガーレー数は、200~350秒/100mlの範囲に設定することがより好ましい。
 ここで、ガーレー数とは、日本工業規格(JIS)P8117に規定されたガーレー試験機法による透気度(透気抵抗度)であり、23℃±1℃の温度で、面積642mmの多孔質部材を、空気100mlが通過する時間(秒/100ml)で表される。
 本発明において、電解液フィルター9の材質は、特に制限されないが、上記の材質の他に、例えば、ポリテトラフルオロエチレンの微粒子を付着させた他の材質の不織布、発泡体などの多孔体を用いることができる。また、上記のような多孔質膜に、比較的大きな隙間を持った不織布やメッシュなどを張り合わせたり、重ね合わせた複合膜も用いることができる。不織布やメッシュの材質は、ポリアミド、ポリエチレン、ポリプロピレン、ポリ塩化ビニリデン等を用いることができる。不織布には、耐アルカリ性セルロース繊維、リヨセル(テンセル)、ビニロン、レーヨン等を用いることができる。
 また、本発明において、アルカリ電池は、図1に示したような構成の電池に限定されず、例えば、円筒形の電池に限らず、角形電池にも適用できる。また、アルカリ電池を構成する各部材も、要求される仕様応じて、適宜選択しうる。
 なお、上記表1~5に示した電池1~29の製造方法は、以下の通りである。
 (1)正極の作製
 二酸化マンガン粉末と黒鉛粉末とを、93:7の重量比で十分に混合し、この混合物と、38重量%の水酸化カリウム水溶液からなるアルカリ電解液とを100:2の重量比で混合した後、圧縮成形し顆粒状の正極合剤とし、中空円筒状の正極ペレットを得た。
 (2)負極の作製
 ポリアクリル酸ナトリウムからなるゲル化剤と、34重量%の水酸化カリウム水溶液からなるアルカリ電解液と、亜鉛粉末からなる負極活物質とを1:33:66の重量比で混合し、ゲル状の負極3を得た。亜鉛の耐腐食性を高めるため、亜鉛粉末は、ビスマス、インジウム、アルミニウムを微小量含む合金とし、電解液中に水酸化インジウムと界面活性剤を微量添加した。
 (3)円筒形アルカリ電池の作製
 図1に示した構成の単3形アルカリ電池(LR6)を下記の手順により作製した。
 上記の方法で作製した正極ペレットを、電池ケース1内に2個挿入し、加圧治具により加圧し、電池ケース1の内壁に密着させて正極2を配置した。正極2の中央に有底円筒形のセパレータ4を配置した後、セパレータ4内に34重量%の水酸化カリウム水溶液からなるアルカリ電解液を注入した。所定時間経過した後、上記の方法で作製したゲル状負極3をセパレータ4内に充填した。なお、セパレータ4には、ビニロン繊維およびレーヨン繊維を主体とした不織布を用いた。
 電池ケース1の開口部は、封口ユニットを配置し、電池ケース1をかしめて封口した。封口ユニットは、予め、負極集電体6が溶接された封口板7と、ガスケット5との間に電解液フィルター9を挟みこんで組立てたものを用いた。封口板7には、孔径がφ1.5mmの排気孔7aを円周上で等間隔となるように2個設けた。また、ナイロンからなるガスケット5には、厚さ0.2mmの環状の薄肉部5aを設けた。
 なお、ガスケット5と電解液フィルター9で区画された空間Aから電解液が漏出しないように、ガスケット5と電解液フィルター9が接する部分には、耐アルカリ性の接着剤を塗布してシールした。また、封口ユニット内に挿入、組立てする際には、φ10.5mmの円形に切り抜き、さらに、円形の中央に、負極集電体の直径と同寸法の小孔を開けて使用した。
 なお、本発明の効果を明確に確認するために、実施例の電池及び比較例の電池は、電池内容積内に空間、すなわち正極、負極、電解液、セパレータなどの発電要素以外のガスが入る空間の体積が、0.15cmとなるように、正極、ゲル負極、電解液を均等に増量して作製した。
 以上、本発明を好適な実施形態により説明してきたが、こうした記述は限定事項ではなく、勿論、種々の改変が可能である。例えば、上記実施形態では、防爆弁として、環状のガスケットの一部に設けられた薄肉部5を用いたが、これに限定されず、他の構造のものを用いてもよい。
 本発明は、防爆弁が作動した際にも電解液が漏出しない、安全性に優れたアルカリ電池として有用である。
 1   電池ケース 
 1a  正極端子 
 2   正極 
 3   負極 
 4   セパレータ 
 5   ガスケット 
 5a  薄肉部 
 6   負極集電体 
 7   封口板 
 7a  排気孔 
 8   外装ラベル 
 9   電解液フィルター 

Claims (9)

  1.  発電要素が収容された電池ケースの開口部が、ガスケットを介して封口板で封口されてなるアルカリ電池であって、
     前記封口板は、排気孔を有し、
     前記ガスケットは、防爆弁を有し、
     前記封口板と前記ガスケットで区画された空間内に、多孔質膜からなる電解液フィルターが配設され、
     前記封口板と前記電解液フィルターとで区画された空間の体積は、0.25cm以上であり、
     前記電解液フィルターの少なくとも一方向における引張り伸び率が100%の時の引張り応力が60~4000N/mの範囲にある、アルカリ電池。
  2.  前記封口板と前記電解液フィルターとで区画された空間の体積は、0.36cm以下である、請求項1に記載のアルカリ電池。
  3.  前記電解液フィルターの少なくとも一方向における引張り伸び率が100%の時の引張り応力が60~1000N/mの範囲にある、請求項1に記載のアルカリ電池。
  4.  前記電解液フィルターの引張り応力は、該電解液フィルターの平面に平行な方向における引張り伸び率が100%の時の引張り応力である、請求項1に記載のアルカリ電池。
  5.  前記電解液フィルターは、前記封口板の周縁端部と前記ガスケットの周縁端部とで挟持されている、請求項1に記載のアルカリ電池。
  6.  前記電解液フィルターを構成する多孔質膜は、ポリテトラフルオロエチレンからなる、請求項1に記載のアルカリ電池。
  7.  前記電解液フィルターのガーレー数は、100~500秒/100mlの範囲にある、請求項1に記載のアルカリ電池。
  8.  前記防爆弁は、前記ガスケットの薄肉部で構成されている、請求項1に記載のアルカリ電池。
  9.  前記アルカリ電池は、単三形アルカリ電池である、請求項1に記載のアルカリ電池。
PCT/JP2012/002308 2011-07-14 2012-04-03 アルカリ電池 WO2013008366A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/703,538 US8790806B2 (en) 2011-07-14 2012-04-03 Alkaline battery
JP2012539122A JP5530529B2 (ja) 2011-07-14 2012-04-03 アルカリ電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-155333 2011-07-14
JP2011155333 2011-07-14

Publications (1)

Publication Number Publication Date
WO2013008366A1 true WO2013008366A1 (ja) 2013-01-17

Family

ID=47505679

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/002308 WO2013008366A1 (ja) 2011-07-14 2012-04-03 アルカリ電池

Country Status (3)

Country Link
US (1) US8790806B2 (ja)
JP (1) JP5530529B2 (ja)
WO (1) WO2013008366A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6986346B2 (ja) * 2016-12-19 2021-12-22 Fdk株式会社 円筒形アルカリ電池

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4026666Y1 (ja) * 1964-06-08 1965-09-10
JPS4324403Y1 (ja) * 1965-01-04 1968-10-15
JPS466664Y1 (ja) * 1966-10-26 1971-03-09
JPH02117063A (ja) * 1988-10-25 1990-05-01 Hitachi Maxell Ltd 筒形アルカリ電池
JPH05159765A (ja) * 1991-12-04 1993-06-25 Japan Gore Tex Inc 電池用電解液漏れ防止膜
JPH09330689A (ja) * 1996-06-11 1997-12-22 Shin Kobe Electric Mach Co Ltd 密閉型アルカリ蓄電池
JPH10302746A (ja) * 1997-04-28 1998-11-13 Mitsubishi Cable Ind Ltd 密閉型電池の液漏れ防止構造
JP2010061972A (ja) * 2008-09-03 2010-03-18 Panasonic Corp 密閉型電池

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61232558A (ja) 1985-04-06 1986-10-16 Sumitomo Electric Ind Ltd 充電式電池
EP0977290A4 (en) * 1997-12-18 2006-10-04 Matsushita Electric Ind Co Ltd DEVICE FOR CLOSING THE OPENINGS OF A CLOSED BATTERY
JP2001118557A (ja) 1999-10-20 2001-04-27 Toshiba Battery Co Ltd 円筒形アルカリ電池

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4026666Y1 (ja) * 1964-06-08 1965-09-10
JPS4324403Y1 (ja) * 1965-01-04 1968-10-15
JPS466664Y1 (ja) * 1966-10-26 1971-03-09
JPH02117063A (ja) * 1988-10-25 1990-05-01 Hitachi Maxell Ltd 筒形アルカリ電池
JPH05159765A (ja) * 1991-12-04 1993-06-25 Japan Gore Tex Inc 電池用電解液漏れ防止膜
JPH09330689A (ja) * 1996-06-11 1997-12-22 Shin Kobe Electric Mach Co Ltd 密閉型アルカリ蓄電池
JPH10302746A (ja) * 1997-04-28 1998-11-13 Mitsubishi Cable Ind Ltd 密閉型電池の液漏れ防止構造
JP2010061972A (ja) * 2008-09-03 2010-03-18 Panasonic Corp 密閉型電池

Also Published As

Publication number Publication date
JPWO2013008366A1 (ja) 2015-02-23
US8790806B2 (en) 2014-07-29
US20130209842A1 (en) 2013-08-15
JP5530529B2 (ja) 2014-06-25

Similar Documents

Publication Publication Date Title
JP5127258B2 (ja) ガス透過性安全弁および電気化学素子
WO2013146803A1 (ja) 安全弁および電気化学素子
JP5261908B2 (ja) 扁平型電気化学セル
JP4102184B2 (ja) アルミニウム負極電池
CA2563661A1 (en) Housing for a sealed electrochemical battery cell
JP2009530786A (ja) 亜鉛/空気電池
JP2009520335A (ja) 電池用の圧力逃がし弁
JP2006142275A (ja) 酸素透過膜、酸素透過シート、およびこれらを含む電池
CN102934260A (zh) 用于容器的改进的过压保护通气和排气装置
CN101432922A (zh) 直接液体燃料电池及防止直接液体燃料电池中燃料分解的方法
JP5530529B2 (ja) アルカリ電池
US7019960B2 (en) Electric double-layer capacitor
JP2004281061A (ja) 電池用防爆弁およびそれを備える電池
JP2008117534A (ja) 密閉型電池
JP2007141745A (ja) 空気電池
JP2010061972A (ja) 密閉型電池
US20090029238A1 (en) Electrochemical cell having polymeric moisture barrier
WO2020171112A1 (ja) アルカリ二次電池
JP2825868B2 (ja) 筒形アルカリ電池
JP2006210275A (ja) 筒形アルカリ電池
JP2782837B2 (ja) 電 池
JP2009212051A (ja) ボビン形リチウム電池
CN203760546U (zh) 一种碱性电池
JP2014082432A5 (ja)
JPH09306509A (ja) 酸素還元電極の製造方法およびこの電極を用いた電池

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012539122

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13703538

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12811834

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12811834

Country of ref document: EP

Kind code of ref document: A1