WO2013008323A1 - 光源装置及び投写型表示装置 - Google Patents

光源装置及び投写型表示装置 Download PDF

Info

Publication number
WO2013008323A1
WO2013008323A1 PCT/JP2011/065981 JP2011065981W WO2013008323A1 WO 2013008323 A1 WO2013008323 A1 WO 2013008323A1 JP 2011065981 W JP2011065981 W JP 2011065981W WO 2013008323 A1 WO2013008323 A1 WO 2013008323A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
source device
laser light
light
diffusion plate
Prior art date
Application number
PCT/JP2011/065981
Other languages
English (en)
French (fr)
Inventor
紘子 千布
基恭 宇都宮
Original Assignee
Necディスプレイソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Necディスプレイソリューションズ株式会社 filed Critical Necディスプレイソリューションズ株式会社
Priority to US14/129,235 priority Critical patent/US9448416B2/en
Priority to PCT/JP2011/065981 priority patent/WO2013008323A1/ja
Publication of WO2013008323A1 publication Critical patent/WO2013008323A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/48Laser speckle optics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V13/00Producing particular characteristics or distribution of the light emitted by means of a combination of elements specified in two or more of main groups F21V1/00 - F21V11/00
    • F21V13/02Combinations of only two kinds of elements
    • F21V13/08Combinations of only two kinds of elements the elements being filters or photoluminescent elements and reflectors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1006Beam splitting or combining systems for splitting or combining different wavelengths
    • G02B27/102Beam splitting or combining systems for splitting or combining different wavelengths for generating a colour image from monochromatic image signal sources
    • G02B27/1026Beam splitting or combining systems for splitting or combining different wavelengths for generating a colour image from monochromatic image signal sources for use with reflective spatial light modulators
    • G02B27/1033Beam splitting or combining systems for splitting or combining different wavelengths for generating a colour image from monochromatic image signal sources for use with reflective spatial light modulators having a single light modulator for all colour channels
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/16Cooling; Preventing overheating
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2013Plural light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/208Homogenising, shaping of the illumination light
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B33/00Colour photography, other than mere exposure or projection of a colour film
    • G03B33/10Simultaneous recording or projection
    • G03B33/12Simultaneous recording or projection using beam-splitting or beam-combining systems, e.g. dichroic mirrors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3102Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators
    • H04N9/3111Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators for displaying the colours sequentially, e.g. by using sequentially activated light sources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3161Modulator illumination systems using laser light sources
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/12Beam splitting or combining systems operating by refraction only
    • G02B27/126The splitting element being a prism or prismatic array, including systems based on total internal reflection

Definitions

  • the present invention relates to a light source device including a phosphor excited by light from a laser light source, and more particularly to a light source device in which a fluorescent plate having a phosphor is rotated by a motor, and a projection display device.
  • Projection-type display devices that display an enlarged image are widely used in applications ranging from personal theaters to business presentations.
  • a light source using an ultra-high pressure mercury lamp has become mainstream.
  • a light source using an ultra-high pressure mercury lamp has a short life and has a problem that it has a great influence on the environment because it uses mercury.
  • the optical system becomes complicated because white light from the light source is separated into light of three primary colors, and the etendue is large, so it is difficult to reduce the size of the optical system. For this reason, an ultra-high pressure mercury lamp is not optimal as a light source for a projection display device that requires miniaturization.
  • a projection display device using a semiconductor laser as a light source has been proposed. Since the laser light source has excellent directivity, it has the advantages of high light utilization efficiency, low power consumption and long life.
  • LD laser diode
  • infrared light (1064 nm) of a light-pumped semiconductor laser is converted into green light (wavelength 532 nm) using a wavelength conversion element (second harmonic generation element; SHG: Second Harmonics Generator).
  • SHG Second Harmonics Generator
  • a circular substrate attached to a wheel motor has a first region in which a phosphor that emits red light is provided, a second region in which a phosphor that emits green light is provided, and blue light.
  • a configuration in which the third region that transmits the laser beam is divided and disclosed is disclosed.
  • the energy of the excitation laser focused on the phosphor is dispersed to prevent the phosphor from being thermally damaged at the same time.
  • Such a hybrid structure using a combination of a semiconductor laser and a phosphor is expected as a light source for use in a high-power, small projection display device.
  • FIG. 1A shows a schematic perspective view of a general configuration example of a projection display device including a hybrid light source in which a semiconductor laser and a phosphor are combined.
  • FIG. 1B shows a schematic plan view of a general configuration example of a projection display device including a hybrid light source.
  • the light source device 1 included in the projection display device includes laser light sources 2a to 2c corresponding to R, G, and B primary color signals, collimator lenses 3a to 3c, and optical members.
  • the dichroic prism 4, the circular substrate 6 coated with the phosphor 5, the wheel motor 7 that rotates the circular substrate 6, and the R, G, and B light combined by the dichroic prism 4 are converted into rectangular light beams.
  • An optical integrator 8a, a spatial light modulation element 9a that modulates the light from the optical integrator 8a, and a projection lens 10 for projecting the light from the spatial light modulation element 9a onto a projection plane are configured.
  • a condenser lens 11a, a mirror 12, and a TIR (Total Internal Reflection) prism 13 are arranged between the optical integrator 8a and the spatial light modulator 9a, and are shaped by the optical integrator 8a.
  • the rectangular light beam is configured to be guided to the spatial light modulator 9a.
  • a configuration using a dichroic prism 4, a DMD (Digital Micromirror Device) 14 as a spatial light modulator 9 a, and a pair of fly-eye lenses 15 a and 15 b as an optical integrator 8 a is used.
  • a dichroic mirror or a cross dichroic prism is used as an optical member
  • a liquid crystal panel is used as the spatial light modulator 9a
  • a rod-type optical integrator or light tunnel made of a transparent medium having a rectangular cross section is used as the optical integrator 8a.
  • the laser beams 16a to 16c emitted from the laser light sources 2a to 2c corresponding to the light beams of the three primary colors R, G, and B pass through the collimator lenses 3a to 3c and expand the beam diameter.
  • the light enters the dichroic prism 4 while becoming parallel light.
  • the dichroic prism 4 is formed in a prismatic shape, and a plurality of optical films that reflect light in a predetermined wavelength band from the laser light sources 2a to 2c and transmit light from the phosphor 5 are provided on the inner surface. ing.
  • the laser light incident on the dichroic prism 4 the laser light of the color that is used as the light of the light source as it is (laser beams 16 b and 16 c in the present configuration example) is reflected by the optical film in the dichroic prism 4, thereby dichroic. The light is emitted from the other end side of the prism 4.
  • the laser beam (laser beam 16a in the present configuration example) used to excite the phosphor 5 is similarly reflected by the optical film in the dichroic prism 4 so that the phosphor 5 is applied.
  • the circular substrate 6 is irradiated.
  • the phosphor 5 is excited by the laser light 16 a while being rotated by the wheel motor 7, emits the fluorescence 17, and the fluorescence 17 enters the dichroic prism 4 again.
  • the fluorescence 17 is emitted from the other end side of the dichroic prism 4 together with the other laser beams 16b and 16c described above.
  • the laser beams 16b and 16c and the fluorescence 17 are combined, enter the pair of fly-eye lenses 15a and 15b, and are converted into a rectangular light beam having a uniform illuminance distribution.
  • the rectangular light beam is then applied to the DMD 14 via the condenser lens 11a, the mirror 12, and the TIR prism 13, and is optically modulated according to the image signal.
  • the rectangular light beam is optically modulated by the DMD 14, then passes through the TIR prism 13 again, enters the projection lens 10, and is enlarged and projected from the projection lens 10 toward the projection surface.
  • highly coherent light such as laser light has irregularities larger than the wavelength of the coherent light, and is randomly scattered when irradiated on a rough surface such as a screen.
  • a glaring, bright and dark pattern appears. This is a random interference phenomenon that occurs when scattered waves of a single wavelength from each point on the rough surface overlap at each point on the observation surface.
  • a projection display apparatus that uses a laser light source with some or all of R, G, and B
  • the laser light diffuses on the projection surface of the screen.
  • random noise speckle noise
  • the observer sees the projected image on the screen and the speckle is imaged on the retina, it is recognized as a spot-like flicker with an unfocused spot. Therefore, the observer feels uncomfortable feeling and fatigue, and the image quality appears to be extremely deteriorated.
  • speckle noise reduction there are two methods for reducing speckle noise: “laser beam incoherent” and “apparent speckle noise reduction”.
  • the method of making laser light incoherent is a method of eliminating the coherence (coherence) of the laser light and converting it into incoherent light. “Wavelength broadening by high-frequency superposition of laser light”, “Multiplexing of laser light having a delay larger than the coherence distance”, or “Superposition of orthogonal polarized light” correspond to this method.
  • the technique of “reducing apparent speckle noise” is that the speckle pattern of an image is superimposed and integrated a plurality of times within a time period (20 ms or less) in which human eyes cannot judge, This is a technique that averages speckle noise to the extent that it is not noticed by human eyes to reduce the apparent speckle noise.
  • “Screen swing”, “optical component vibration”, and the like correspond to this method. Since these methods essentially do not change the nature of light itself, speckles are generated, but the illusion of the brain is used to prevent recognition by the human eye.
  • the screen swinging method has a large structure and restricts the screen, so it is only applied to some projection display devices such as a rear projector. Yes.
  • FIG. 2A shows a perspective view of a first configuration example in the first related technique for reducing speckle noise.
  • FIG. 2B shows a perspective view of a second configuration example in the first related technique for reducing speckle noise.
  • This first related technique is disclosed in Patent Document 2.
  • the laser light from the laser light source 2d irradiates the spatial light modulator 9d through the collimator lens 3d, the optical integrator 8b, and the condenser lens 11b. Is done.
  • the speckle pattern is temporally and spatially moved in the optical system by rotating the optical integrator 8b including the pair of fly-eye lenses 15c and 15d around the optical axis.
  • the speckle pattern formed on the retina of the observer is integrated, and the apparent speckle noise is reduced.
  • the laser light from the laser light source 2d passes through the collimator lens 3d, the condenser lens 24a, the optical integrator 8c, and the condenser lens 11b.
  • the spatial light modulation element 9d is irradiated.
  • the optical integrator 8c the same effect can be obtained by rotating the rod-type optical integrator 23a, which is a transparent medium such as glass having a rectangular cross section, around the optical axis as in the first configuration example. Is obtained.
  • FIG. 3A shows a plan view of a first configuration example in the second related technique for reducing speckle noise.
  • FIG. 3B shows a plan view of a second configuration example in the second related technique for reducing speckle noise.
  • This second related technique is disclosed in Patent Document 3.
  • the dynamic scattering medium is rotated by the motor 25 on the optical path between the pair of condenser lenses 24b and the collector lens 26a.
  • a diffusion plate 19f is arranged.
  • FIG. 3B in the second configuration example of the second related technology, as in the first configuration example, a signal is placed on the optical path between the pair of condenser lenses 24c and the collector lens 26b.
  • a diffuser plate 19g which is a dynamic scattering medium vibrated by the transducer 27 of the source 28, is disposed.
  • the diffuser plates 19f and 19g are arranged on the optical path, thereby changing the scattering state on the optical path and vibrating the speckle pattern temporally and spatially. Thereby, the speckle pattern imaged on the retina of the observer is integrated, and the apparent speckle noise is reduced.
  • FIG. 4A shows a plan view of a first configuration example in the third related technique for reducing speckle noise.
  • FIG. 4B is a plan view of a second configuration example in the third related technique for reducing speckle noise.
  • This third related technique is disclosed in Patent Document 4.
  • a pair of beam expanding optics 30 having a magnifying lens (collimator lens 3e) and a collimator lens 3f through which the laser light from the laser light source 2e passes are paired.
  • a diffusion plate 19h is disposed on the optical path between the fly-eye lenses 15e and 15f and the beam shaping optics 31 having the condenser lenses 11c and 11d, and the diffusion plate 19h is vibrated by the motion applying means 32a.
  • a diffusion plate 19i is also interposed between the beam shaping optics 31 and the spatial light modulation element 9d.
  • the effect of reducing speckle noise is enhanced by vibrating the two diffusion plates 19h and 19i by common or individual motion applying means 32a and 32b.
  • FIG. 5A shows a plan view of a first configuration example in the fourth related technique for reducing speckle noise.
  • FIG. 5B is a plan view of a second configuration example of the fourth related technique for reducing speckle noise.
  • This fourth related technique is disclosed in Patent Document 5.
  • the field lens 11f and the spatial light modulation element 9e through which the laser light from the laser light source 2f passes are provided.
  • a diffusing plate 19j is disposed on the optical path between the diffusing plate 19j and the diffusing plate 19j.
  • a pair of fly-eye lenses 15g and 15h is used as the optical integrator 8d.
  • JP 2010-237443 A Japanese Patent No. 3975514 JP 7-297111 A Japanese Patent No. 4303926 Japanese Patent No. 4158987 U.S. Pat.
  • the present invention solves the above-described problems, reduces the manufacturing cost and power consumption of the mechanism for vibrating the diffuser, reduces the size, and reduces speckle noise, and a projection display.
  • An object is to provide an apparatus.
  • a light source device includes a laser light source, a fluorescent plate having a phosphor that emits light from the laser light source as excitation light, a motor that rotates the fluorescent plate, and light from the laser light source. And an optical member that transmits light from the fluorescent plate, a diffusion plate that diffuses light from the laser light source, and an elastic member that connects the diffusion plate and the motor.
  • the solid propagation vibration of the motor is increased by the elasticity of the elastic member by connecting the motor for rotating the fluorescent plate having the phosphor and the diffusion plate via the elastic member. It becomes possible to vibrate the diffusion plate efficiently. As a result, speckle noise can be reduced.
  • the manufacturing cost and power consumption of the mechanism which vibrate a diffuser plate can be reduced, and it can reduce in size.
  • FIG. 1 is a perspective view schematically showing a projection display device of a first embodiment. It is a perspective view which shows the structure where the wheel motor and the diffuser plate were connected via the leaf
  • the configuration of the projection display apparatus using a hybrid light source combining a semiconductor laser and fluorescence has been described with reference to FIGS. 1A and 1B in the “Background Art” column.
  • the projection display device of the present embodiment has the technical features of the present invention based on the projection display device shown in FIGS. 1A and 1B. Therefore, for the sake of convenience, in this embodiment, the same reference numerals as those in FIGS. 1A and 1B are assigned to the same members as those in the projection display apparatus shown in FIGS. 1A and 1B, and the description thereof is omitted. Only components that are different from the configuration will be described.
  • FIG. 6A is a schematic perspective view of the projection display apparatus according to the first embodiment.
  • FIG. 6B shows a perspective view of a structure in which the wheel motor and the diffusion plate are connected via a leaf spring in the first embodiment.
  • FIG. 6C is a plan view of the projection display apparatus according to the first embodiment.
  • the light source device 18a included in the projection display device of the first embodiment is the same as the light source device 1 shown in FIGS. 1A and 1B, in which the diffusion plate 19a is a dichroic as an optical member. It arrange
  • the dichroic prism 4 has a plurality of optical films that reflect light from the laser light sources 2a to 2c and transmit light from the phosphor 5.
  • the optical integrator 8a uniformizes the illuminance distribution of the light diffused by the diffusion plate 19a and shapes it into a rectangular light beam.
  • the wheel motor 7 for rotating the diffusion plate 19a and the circular substrate 6 as the fluorescent plate coated with the phosphor 5 is connected through a plate spring 20a as an elastic member.
  • the rotation axis of the wheel motor 7 is fixed to the center of the circular substrate 6.
  • the leaf spring 20a is formed of a metal material or a resin material, and is formed in a belt shape extending from the wheel motor 7 to the diffusion plate 19a along the optical path.
  • the wheel motor 7 is disposed at one end of the leaf spring 20a in the extending direction.
  • the diffusion plate 19a is disposed at the other end portion in the extending direction of the leaf spring 20a.
  • the phosphor 5 that emits fluorescence when irradiated with a part of the laser light is applied.
  • the circular substrate 6 thus fixed is fixed to the rotating shaft of the wheel motor 7 and is always rotated at a high speed.
  • the wheel motor 7 is connected to one end of the leaf spring 20a, and vibrates the leaf spring 20a by solid propagation vibration according to the rotation speed of the wheel motor 7.
  • the diffusion plate 19a provided on the other end of the leaf spring 20a and disposed on the optical path is also vibrated with the amplitude of the solid propagation vibration amplified.
  • the speckle patterns of the laser beams 16a to 16c passing through the oscillating diffusion plate 19a are superimposed and integrated several times, so that the speckle of the projection light is averaged. Speckle noise can be reduced.
  • the resonance frequency determined by the rigidity of the leaf spring 20a and the mass of the diffusion plate 19a is set to coincide with the solid propagation frequency of the wheel motor 7.
  • the amount of displacement of the speckle pattern coupled to the retina of the observer who sees the projected image is diffused so as to be equal to or greater than the average size of the speckle pattern.
  • the amplitude of the plate 19a can be amplified. As a result, speckle noise can be further effectively reduced.
  • the diffusing plate 19a can be vibrated using the kinetic energy of the wheel motor 7 for rotating the phosphor 5 during the projection operation. For this reason, speckle noise can be effectively removed without consuming drive power for vibrating the diffusion plate 19a. Moreover, speckle noise can be effectively removed without increasing the noise of a motor or the like as compared with a case where a mechanism for vibrating the diffusion plate is provided separately.
  • a mechanism that vibrates the diffusion plate 19a simply by mechanically connecting the wheel motor 7 and the diffusion plate 19a prepared as existing components by a simple plate spring 17a. Since a mechanism for reducing noise) is configured, it is possible to reduce the manufacturing cost of this mechanism and to save space and size.
  • FIG. 7A shows a schematic perspective view of the projection display device of the second embodiment.
  • FIG. 7B shows a perspective view of a structure in which a wheel motor and a diffusion plate are connected via a leaf spring in the projection display device of the second embodiment.
  • FIG. 7C shows a front view of the circular substrate in the second embodiment.
  • the circular substrate 6 coated with the phosphor 5 is the same as the light source device 18a of the first embodiment described above.
  • the rotating shaft of the wheel motor 7 is fixed at a position that is eccentric from the center by an eccentric amount ⁇ h with respect to the radial direction.
  • the wheel motor 7 and the diffusion plate 19b are coupled via the leaf spring 20b, as in the first embodiment described above.
  • the second embodiment is applied to the case where it is desired to further reduce speckle noise by setting the vibration amplitude of the diffuser plate to be larger and enhancing the integration effect of the speckle pattern in the first embodiment described above.
  • the resonance frequency of the leaf spring that connects the wheel motor and the diffusion plate is determined according to the design constraints such as the outer dimensions of the leaf spring and the rotation speed of the wheel motor. This is applied to the case where it is difficult to match the above and the case where it is necessary to use a diffusion plate having a small diffusion angle in order to suppress loss of light use efficiency.
  • the amplitude of the solid propagation vibration of the wheel motor 7 serving as the vibration generation source of the leaf spring 20b is set to be equal to that of the circular substrate 6. It can be set so as to increase according to the amount of eccentricity ⁇ h.
  • the response amplitude of the diffusion plate 19b at the resonance frequency of the leaf spring 20b can be further increased, and the leaf spring 20b cannot be vibrated at the resonance frequency of the leaf spring 20b. Even so, the vibration amplitude of the diffusion plate 19b can be sufficiently obtained. As a result, a sufficient speckle pattern integration effect can be obtained.
  • the integration effect of the speckle pattern can be sufficiently obtained by increasing the vibration amplitude of the diffusion plate.
  • a projection display device according to a third embodiment will be described in detail with reference to the drawings. Also in this embodiment, in order to simplify the description, only differences from the above-described first and second embodiments will be described, and description of components common to the above-described embodiments will be omitted.
  • FIG. 8A is a schematic perspective view of the projection display apparatus of the third embodiment.
  • FIG. 8B shows a perspective view of a structure in which a wheel motor and a diffusion plate are connected via a leaf spring in the projection display device of the third embodiment.
  • FIG. 8C shows a plan view of the projection display apparatus of the third embodiment.
  • the light source device 18c included in the projection display device according to the third embodiment is the same as the light source devices 18a and 18b in the first and second embodiments described above.
  • the laser light sources 2b and 2c other than the body excitation application it is arranged at a position between the collimator lens 3c and the dichroic prism 4 on the optical path of the laser light 2c having the highest visibility.
  • the wheel motor 7 and the diffusion plate 19c are connected by the leaf spring 20c.
  • the third embodiment is suitable for use when it is necessary to reduce speckle noise as much as possible while suppressing loss of light utilization efficiency affected by the transmittance of the diffusion plate of the optical system as much as possible. .
  • speckle is more visually recognized at wavelengths with high visibility.
  • speckle noise is conspicuously recognized in the order of G> R> B.
  • the transmittance of the diffusion plate is about 85% to 98%, although it depends on the material and the diffusion angle. For this reason, the loss of light arises by arrange
  • the diffusion plate 19c is disposed only in the optical path of the laser light 2c for green light, which is most effective for reducing speckle noise and has high visibility, for example,
  • the diffusion plate 19c is vibrated using the solid propagation vibration of the wheel motor 7. This minimizes the loss of brightness while minimizing speckle noise.
  • the diffusion plate 19c can be disposed at a position closer to the wheel motor 7, the leaf spring 20c is reduced, and the configuration including the leaf spring 20c can be further compacted.
  • the power consumption and noise of the mechanism for reducing speckle noise can be reduced, and the size can be reduced and the manufacturing cost can be reduced.
  • FIG. 9 shows a schematic plan view of the projection display device of the fourth embodiment.
  • the diffusion plate 19d in the light source device 18c in the third embodiment described above is a light source other than the phosphor excitation application. It is installed between the collimator lenses 3b, 3c and the dichroic prism 4 on the optical path of a certain laser light source 2b, 2c.
  • the diffusion plate 19d is provided across the optical paths of the two laser light sources 2b and 2c.
  • the diffusing plate 19d is connected to the wheel motor 7 via the leaf spring 20d.
  • the purpose is the same as that of the above-described third embodiment, but light loss is caused by disposing the diffusion plate 19d on the optical path of the laser light sources 2b and 2c. This is applied when there is a margin in the output of the laser light sources 2b and 2c.
  • the oscillating diffusion plate 19d is arranged on an optical path other than the fluorescent optical path where speckle noise does not occur. Therefore, compared to the third embodiment described above. The effect of reducing speckle noise can be further enhanced.
  • the power consumption and noise of the mechanism for reducing speckle noise can be reduced, and the size can be reduced and the manufacturing cost can be reduced.
  • FIG. 10A shows a schematic perspective view of the projection display apparatus of the fifth embodiment.
  • FIG. 10B shows a perspective view of a structure in which a wheel motor and a diffusion plate are connected via a leaf spring in the projection display device of the fifth embodiment.
  • FIG. 10C shows a plan view of the projection display apparatus of the fifth embodiment.
  • the fifth embodiment further reduces the size of the mechanism for reducing speckle noise and reduces the manufacturing cost, and also reduces power consumption and noise. It is an object.
  • the hub 22 of the cooling fan 21 that cools the laser light sources 2a to 2c is orthogonal to the rotation axis.
  • a circular substrate 26 containing a phosphor (not shown) is fixed to the hub surface 22a, which is a surface, by adhesion or the like.
  • the cooling fan 19 and the diffusion plate 19e are connected via a leaf spring 20e.
  • the circular substrate 26 is formed by mixing a phosphor and a base material, and functions in the same manner as the circular substrate 6 coated with the phosphor 5. Further, a phosphor may be mixed into the hub surface 22a of the hub 22 included in the cooling fan 21. Also in the above-described embodiment, a circular substrate 26 containing a phosphor may be used instead of the circular substrate 6.
  • the oscillation wavelength may shift to a higher wavelength side, the lifetime may be shortened, or the light output may be reduced.
  • forced air cooling using a cooling fan as a blower is performed, and the laser light source is cooled.
  • the laser light source performs cooling using a cooling fan as necessary.
  • the motor of the cooling fan 21 used for cooling the laser light sources 2a to 2c is also used as a wheel motor for rotating the circular substrate 26, and the diffusion plate is utilized using the solid propagation vibration of the motor. Speckle noise is reduced by vibrating 19e.
  • the number of drive motors (cooling fan motor, circular substrate wheel motor having phosphor, and diffusion plate vibration motor) mounted on the projection display device is integrated into one. Can be reduced.
  • the fifth embodiment similarly provides the effect of reducing speckle noise as compared with the first embodiment described above, and further reduces the size and manufacturing cost, and consumes power. Electric power and noise can be reduced.
  • the motor of the cooling fan 19 for sending the air that cools the laser light sources 2a to 2c is applied as the wheel motor for rotating the circular substrate 26.
  • a motor of another blower such as an exhaust fan that exhausts the air in the figure) to the outside of the housing may be applied.
  • FIG. 11A shows a schematic perspective view of the projection display apparatus of the sixth embodiment.
  • FIG. 11B shows a perspective view of a structure in which a wheel motor and a diffusion plate are connected via a leaf spring in the projection display device of the sixth embodiment.
  • FIG. 11C shows a plan view of the projection display apparatus of the sixth embodiment.
  • the light source device 18 f included in the projection display device of the sixth embodiment corresponds to the optical paths of the laser light sources 2 b and 2 c which are light sources other than those for exciting the phosphor 5.
  • the first and second diffusion plates 19k and 19m, and the first and second plate springs that individually connect the first and second diffusion plates 19k and 19m to the hall motor 7 are provided.
  • the first diffusion plate 19k is disposed between the collimator lens 3b and the incident end side of the dichroic prism 4 on the optical path of the laser light source 2b.
  • the second diffusion plate 19m is installed between the collimator lens 3c and the incident end side of the dichroic prism 4 on the optical path of the laser light source 2c.
  • the first diffusion plate 19k is connected to the wheel motor 7 via the first plate spring 20f.
  • the second diffusion plate 19m is connected to the wheel motor 7 via the second plate spring 20g.
  • the solid-state propagation frequency of the wheel motor 7 is matched with the resonance frequency of at least one of the first and second leaf springs 20f and 20g, and the first and second diffusion plates. At least one of 19k and 19m is vibrated effectively.
  • the first and second diffusion plates 19k and 19m are provided with the first and second leaf springs 20f and 20g that individually connect the wheel motor 7, respectively. The diffusion plates 19k and 19m can be vibrated efficiently.
  • any one of the first and second leaf springs 20f and 20g is used.
  • One resonance frequency can be matched with the solid-state propagation frequency of the wheel motor 7. Therefore, according to this embodiment, the freedom degree of design of a leaf
  • the optical integrator 8a is not limited to the fly-eye lenses 15a and 15b, but a rod-type optical integrator or a light tunnel may be used.
  • the optical member is not limited to the dichroic prism 4, and a dichroic mirror or a cross dichroic prism may be used.
  • the spatial light modulator 9a is not limited to the DMD 14, and a reflective liquid crystal panel or a transmissive liquid crystal panel may be used.
  • the above-described embodiment is applied to the configuration including the three laser light sources 2a to 2c, but is not limited to this configuration, and is applied to the configuration including, for example, one laser light source that emits blue light. May be.
  • a first region having a phosphor that emits red light, a second region having a phosphor that emits green light, and a third region that transmits blue laser light are divided.
  • red fluorescence, green fluorescence, and blue laser light are generated in a time-sharing manner.

Abstract

 本発明は、レーザ光源と、レーザ光源からの光を励起光として発光する蛍光体(5)を有する円形基板(6)と、円形基板(6)を回転させるホイールモータ(7)と、レーザ光源からの光を反射し、蛍光体(5)からの光を透過するダイクロイックプリズムと、レーザ光源からの光を拡散する拡散板(19a)と、拡散板(19a)とホイールモータ(7)とを連結する板バネ(20a)と、を備える。

Description

光源装置及び投写型表示装置
 本発明は、レーザ光源からの光によって励起される蛍光体を備える光源装置に関し、特に、蛍光体を有する蛍光板が、モータによって回転される光源装置、及び投写型表示装置に関する。
 映像を拡大表示する投写型表示装置は、パーソナルシアターでの用途から、業務用プレゼンテーションでの用途まで幅広く利用されている。このような投写型表示装置の光源としては、超高圧水銀ランプを用いたものが主流になっている。しかし、超高圧水銀ランプを用いた光源は、寿命が短く、水銀を使用するので環境への影響が大きいことが問題になっている。また、光源として超高圧水銀ランプを用いた場合、光源からの白色光を3原色の光に分離するために光学系が複雑になり、エテンデュも大きいので、光学系を小型化することが難しい。このため、小型化が求められる投写型表示装置の光源として、超高圧水銀ランプは最適なものとは言えない。
 これらの問題の対策として、光源として半導体レーザを用いた投写型表示装置が提案されている。レーザ光源は、指向性が優れているので、光利用効率が高く、低消費電力で長寿命といった利点を有する。
 投写型表示装置に用いられるR(赤色)、G(緑色)、B(青色)の3原色の光のうち、赤色光と青色光については高出力の半導体レーザが実用化されている。しかし、緑色光の半導体レーザについては、ディスプレイ用途に耐えられる十分な出力のものが未だ得られていない。そのため、LD(レーザダイオード)励起固体レーザや、光励起半導体レーザの赤外光(1064nm)を、波長変換素子(第二高調波発生素子;SHG:Second Harmonics Generator)を用いて緑色光(波長532nm)に変換するSHGレーザなどが代用されていた。
 しかし、波長変換素子を用いて緑色光に変換する場合、半導体レーザに比べ、光源が大きくなると共に、光電変換効率の低下に伴う消費電力の増加や、温度管理が厳しく要求されるといった問題が生じる。そのため、小型の投写型表示装置で使う光源としての制約が多くなってしまう。
 そこで、最近では、半導体レーザの青色光や紫外光などの光を励起光として利用して、蛍光体を発光させることで、必要な色光を得る方法が提案されている。
 特許文献1には、ホイールモータに取り付けられた円形基板に、赤色光を発光する蛍光体が設けられた第1領域と、緑色光を発光する蛍光体が設けられた第2領域と、青色光のレーザ光を透過させる第3領域とが分割して配置される構成が開示されている。このホイールモータを回転させることによって、赤色の蛍光と、緑色の蛍光と、青色のレーザ光とを時分割で発生させて、投写型表示装置の光源として利用している。
 また、蛍光体をホイールモータで回転させることによって、蛍光体に集光される励起用レーザのエネルギーを分散させて、蛍光体が熱的に損傷することを防ぐという効果も同時に得ている。
 このような、半導体レーザと蛍光体とを組み合わせて用いるハイブリッド構造は、高出力な小型の投写型表示装置に利用する光源として期待されている。
 図1Aに、半導体レーザと蛍光体とを組み合わせたハイブリット光源を備える投写型表示装置の一般的な構成例の模式的な斜視図を示す。図1Bに、ハイブリット光源を備える投写型表示装置の一般的な構成例の模式的な平面図を示す。
 図1A及び図1Bに示すように、投写型表示装置が備える光源装置1は、R、G、Bの各原色信号に対応したレーザ光源2a~2cと、コリメータレンズ3a~3cと、光学部材としてのダイクロイックプリズム4と、蛍光体5が塗布された円形基板6と、円形基板6を回転させるホイールモータ7と、ダイクロイックプリズム4によって結合されたR、G、B光を矩形光束に変換するための光インテグレータ8aと、光インテグレータ8aからの光を変調する空間光変調素子9aと、空間光変調素子9aからの光を投写面に投写するための投写レンズ10と、を備えて構成されている。また、光インテグレータ8aと空間光変調素子9aとの間には、コンデンサレンズ11a、ミラー12、及びTIR(Total Internal Reflection:内部全反射)プリズム13が配置されており、光インテグレータ8aで整形された矩形光束を、空間光変調素子9aへ導光するように構成されている。
 ここでは、理解を容易にするために、ダイクロイックプリズム4を用い、空間光変調素子9aとしてDMD(Digital Micromirror Device)14を用い、光インテグレータ8aとして一対のフライアイレンズ15a,15bを用いた構成について説明する。しかし、光学部材としてダイクロイックミラーやクロスダイクロイックプリズムを用い、空間光変調素子9aとして液晶パネルを用い、光インテグレータ8aとして、矩形状断面を有する透明媒体からなるロッド型光インテグレータやライトトンネルなどを用いた構成もある。
 次に、投写型表示装置の投写動作について、図1Bを参照して説明する。図1Bに示すように、R、G、Bの3原色の光に対応した各レーザ光源2a~2cから出射されたレーザ光16a~16cは、コリメータレンズ3a~3cを通過し、ビーム径を拡大し、かつ平行光になりながらダイクロイックプリズム4へ入射する。
 このダイクロイックプリズム4は、角柱状に形成されており、レーザ光源2a~2cからの所定の波長帯域の光を反射し、蛍光体5からの光を透過させる複数の光学膜が、内面に設けられている。ダイクロイックプリズム4に入射したレーザ光のうちで、そのまま光源の光として用いる色のレーザ光(本構成例におけるレーザ光16b、16c)は、ダイクロイックプリズム4内の光学膜で反射されることによって、ダイクロイックプリズム4の他端側から出射される。
 一方、蛍光体5を励起するために用いられるレーザ光(本構成例におけるレーザ光16a)の方は、同様にダイクロイックプリズム4内の光学膜で反射されることによって、蛍光体5が塗布された円形基板6に照射される。このとき、蛍光体5は、ホイールモータ7で回転されながら、レーザ光16aによって励起され、蛍光17を発光し、その蛍光17が再びダイクロイックプリズム4へ入射する。蛍光17は、上述した他のレーザ光16b,16cと一緒に、ダイクロイックプリズム4の他端側から出射される。このとき、レーザ光16b,16c、及び蛍光17は合波されて、一対のフライアイレンズ15a,15bに入射し、照度分布が均一化された矩形光束に変換される。その矩形光束は、その後、コンデンサレンズ11a、ミラー12、及びTIRプリズム13を介してDMD14に照射され、画像信号に応じて光変調される。矩形光束は、DMD14で光変調された後、再度、TIRプリズム13を透過して投写レンズ10に入射し、投写レンズ10から投写面へ向けて拡大投写される。
 ところで、レーザ光のような干渉性が高いコヒーレント光は、コヒーレント光の波長よりも大きな凹凸を有する、例えばスクリーンなどの粗面に照射されたときに、ランダムに散乱されて、スペックルと呼ばれる斑点状の、ギラギラした明暗模様が生じる。これは、粗面上の各点からの単一波長の散乱波が、観測面の各点で重ね合わさって生じるランダムな干渉現象である。
 したがって、レーザ光源をR、G、Bのうちの一部または全部の光源で用いた投写型表示装置において、スクリーンの投写面上に映像を投写した場合、レーザ光がスクリーンの投写面上で拡散されて、光強度のランダムノイズ(スペックルノイズ)を発生する。この場合、スクリーン上の投写映像を観察者が見て網膜上にスペックルが結像されたとき、焦点が定まらない斑点状のチラツキとして認識されるようになる。そのため、観察者は、不快感や疲労感を覚えると共に、画像品質が極度に劣化して見えるようになる。
 そこで、レーザ光を光源として利用する投写型表示装置では、このようなスペックルノイズを低減するための様々な方法が提案されている。
 一般にスペックルノイズを低減する方法としては、「レーザ光のインコヒーレント化」と、「見かけ上のスペックルノイズの低減」の2つの手法が考えられる。
 「レーザ光のインコヒーレント化」の手法は、レーザ光のコヒーレント性(可干渉性)を解消して、インコヒーレント(非干渉)な光に変換する方法である。「レーザ光の高周波重畳による波長幅のブロード化」や、「可干渉距離よりも大きな遅延を持つレーザ光の多重化」、あるいは「直交する偏光同士の重ね合わせ」などがこの手法に相当する。
 これらの方法は、本質的に、光の性質そのものを変化させてスペックルが発生しないようにすることを意図している。
 一方、「見かけ上のスペックルノイズの低減」の手法は、人間の眼が判断不可能な時間内(20ms以下)で、画像のスペックルパターンが複数回、重畳されて積分されることによって、人間の眼で気にならない程度までスペックルノイズを平均化して、見かけ上のスペックルノイズを低減する手法である。「スクリーンの揺動」や「光学部品の振動」などがこの手法に相当する。これらの手法では、本質的に光の性質そのものを変化させないので、スペックル自体が発生するが、脳の錯覚を利用して人間の眼では認識できないようにしている。
 前者のように、レーザ光をインコヒーレント化することでスペックルノイズを低減する場合、半導体レーザを構成する素子や駆動回路に直接手を加えたり、光学系を大幅に変更したりする必要がある。しかし、1つの方法だけで十分な効果を得ることは難しく、他の方法と複合的に組み合わせて用いられることが多い。
 一方、後者のように、見かけ上のスペックルノイズを低減する場合は、脳の錯覚を利用するので、効果が顕著に現れる。しかし、これらの方法のうちで、スクリーンの揺動による方法は、構造が大掛かりになり、スクリーンにも制約が生じるので、リアプロジェクタなどの一部の投写型表示装置で適用されるだけに止まっている。
 ここでは、特に、後者の「見かけ上のスペックルの低減」による手法のうち、「光学部品の振動によってスペックルノイズを低減する方法」について取り上げる。
 図2Aに、スペックルノイズを低減する第1の関連技術における第1の構成例の斜視図を示す。図2Bに、スペックルノイズを低減する第1の関連技術における第2の構成例の斜視図を示す。この第1の関連技術は、特許文献2に開示されている。図2Aに示すように、第1の関連技術の第1の構成例では、レーザ光源2dからのレーザ光が、コリメータレンズ3d、光インテグレータ8b、コンデンサレンズ11bを経て、空間光変調素子9dに照射される。第1の構成例では、一対のフライアイレンズ15c,15dからなる光インテグレータ8bを光軸回りに回転させることによって、スペックルパターンを光学系内で時間的、空間的に移動させている。これにより、観察者の網膜上に結像されるスペックルパターンが積分されて、見かけ上のスペックルノイズが低減されている。
 一方、図2Bに示すように、第1の関連技術の第2の構成例では、レーザ光源2dからのレーザ光が、コリメータレンズ3d、集光レンズ24a、光インテグレータ8c、コンデンサレンズ11bを経て、空間光変調素子9dに照射される。第2の構成例では、光インテグレータ8cとして、矩形断面を有するガラスなどの透明媒体であるロッド型光インテグレータ23aを、第1の構成例と同様に光軸回りに回転させることによって、同様の効果が得られている。
 図3Aに、スペックルノイズを低減する第2の関連技術における第1の構成例の平面図を示す。図3Bに、スペックルノイズを低減する第2の関連技術における第2の構成例の平面図を示す。この第2の関連技術は、特許文献3に開示されている。図3Aに示すように、第2の関連技術の第1の構成例では、一対の集光レンズ24bとコレクターレンズ26aとの間の光路上に、モータ25によって回転される動的散乱媒体である拡散板19fが配置されている。また、図3Bに示すように、第2の関連技術の第2の構成例では、第1の構成例と同様に、一対の集光レンズ24cとコレクターレンズ26bとの間の光路上に、信号源28のトランスデューサ27によって振動される動的散乱媒体である拡散板19gが配置されている。以上の構成のように、光路上に拡散板19f、19gが配置されることで、光路上の散乱状態を変化させて、スペックルパターンを時間的、空間的に振動させている。これにより、観察者の網膜上に結像されるスペックルパターンが積分され、見かけ上のスペックルノイズが低減されている。
 図4Aに、スペックルノイズを低減する第3の関連技術における第1の構成例の平面図を示す。図4Bに、スペックルノイズを低減する第3の関連技術における第2の構成例の平面図を示す。この第3の関連技術は、特許文献4に開示されている。図4Aに示すように、第3の関連技術の第1の構成例では、レーザ光源2eからのレーザ光が通る、拡大レンズ(コリメータレンズ3e)及びコリメータレンズ3fを有するビーム拡大オプティクス30と、一対のフライアイレンズ15e、15f及びコンデンサレンズ11c,11dを有するビーム整形オプティクス31との間の光路上に、拡散板19hが配置されており、運動付与手段32aによって拡散板19hを振動させている。これによって、スペックルパターンを時間的、空間的に振動させることで、観察者の網膜上に結像されるスペックルパターンが積分され、見かけ上のスペックルノイズが低減される。また、図4Bに示すように、第3の関連技術の第2の構成例では、第1の構成例に加えて、ビーム整形オプティクス31と空間光変調素子9dとの間にも、拡散板19iが同様に配置され、共通の、あるいは個別の運動付与手段32a,32bによって、2枚の拡散板19h,19iを振動させることで、スペックルノイズを低減する効果が高められている。
 図5Aに、スペックルノイズを低減する第4の関連技術における第1の構成例の平面図を示す。図5Bに、スペックルノイズを低減する第4の関連技術における第2の構成例の平面図を示す。この第4の関連技術は、特許文献5に開示されている。図5Aに示すように、第4の関連技術の第1の構成例では、上述した第3の関連技術と同様に、レーザ光源2fからのレーザ光が通る、フィールドレンズ11fと空間光変調素子9eとの間の光路上に、拡散板19jが配置されており、拡散板19jが拡散板揺動部36と連結されている。また、第1の構成例では、光インテグレータ8dとして、一対のフライアイレンズ15g、15hが用いられている。この第1の構成例では、拡散板19jの揺動速度をV(mm/s)、拡散板19jを構成する粒子サイズをd(mm)とすれば、「V>d×30」(1秒当たりの変位量)を満たすように揺動速度Vを設定することで、スペックルノイズを効果的に低減している。加えて、拡散板の拡散角を、照明光学系の開口数と、投写レンズの明るさとの関係で制限するように設定することで、拡散板によるレーザ光の光量の損失を抑えようとしている。また、図5Bに示すように、第4の関連技術の第2の構成例では、光インテグレータ8eとして、一対のフライアイレンズ15g、15hの代わりに、ロッド型光インテグレータ23bを用いた場合についても開示されている。
特開2010-237443号公報 特許第3975514号公報 特開平7-297111号公報 特許第4303926号公報 特許第4158987号公報 米国特許第4035068号
 上述したように、レーザ光の一部または全部を光源として利用する投写型表示装置においては、画像品質を劣化させるスペックルノイズを低減するために、光インテグレータや拡散物体などを揺動させて、観察者の網膜上に結像されるスペックルパターンが積分され、平均化されることで、見かけ上のスペックルノイズを低減させる方法が様々に提案されている。
 しかしながら、光インテグレータを光軸回りに回転させるような構成の場合、光インテグレータを回転させるための機構が大きくなり、製造コストの増加、及び実装容積の増加を招くと共に、消費電力が増える。
 ここで、消費電力に関して、補足して簡単に説明する。[背景技術]の欄で述べたたように、レーザ光をランプの代替光源として利用する投写型表示装置では、分離光学系が不要で光源自体も小さくなるので、光学系全体の小型化が容易になる。加えて、レーザ光源の消費電力は、ランプ光源と比べてかなり小さくなるので、バッテリー駆動を前提としたモバイル用途などの新規利用分野への利用が期待されている。その場合、装置全体の省電力化を図ることが要求されるので、スペックルノイズを低減する機構の駆動のために余分な電力を消費することは望ましくない。
 また、第2~第4の関連技術として挙げたように、光路上に配置された拡散板を、モータやトランスデューサ、その他の揺動手段によって揺動させてスペックルノイズを低減する方法は、1977年に交付された特許文献6などにも開示されている。しかし、特許文献6においても、上述した第1の関連技術と同様に、拡散板の揺動手段を備えることによって、製造コストの増加、実装容積の増加、及び消費電力の上昇を招くといった課題を有している。
 そこで、本発明は、上述した課題を解決し、拡散板を振動させる機構の製造コスト、消費電力を低減し、小型化を図り、スペックルノイズを低減することができる光源装置、及び投写型表示装置を提供することを目的とする。
 上述した目的を達成するため、本発明に係る光源装置は、レーザ光源と、レーザ光源からの光を励起光として発光する蛍光体を有する蛍光板と、蛍光板を回転させるモータと、レーザ光源からの光を反射し、蛍光板からの光を透過する光学部材と、レーザ光源からの光を拡散する拡散板と、拡散板とモータとを連結する弾性部材と、を備える。
 本発明によれば、蛍光体を有する蛍光板を回転させるモータと、拡散板とを弾性部材を介して連結することで、弾性部材の弾性によってモータの固体伝播振動が大きくされるので、弾性部材によって拡散板を効率的に振動させることが可能になる。その結果、スペックルノイズを低減することができる。これにより、本発明によれば、拡散板を振動させる機構の製造コスト、消費電力を減らし、小型化することができる。
レーザ光と蛍光とを組み合わせたハイブリッド光源を用いた投写型表示装置の構成例を模式的に示す斜視図である。 ハイブリッド光源を用いた投写型表示装置の構成例を模式的に示す平面図である。 スペックルノイズを低減する第1の関連技術における第1の構成例を示す斜視図である。 スペックルノイズを低減する第1の関連技術における第2の構成例を示す斜視図である。 スペックルノイズを低減する第2の関連技術における第1の構成例を示す平面図である。 スペックルノイズを低減する第2の関連技術における第2の構成例を示す平面図である。 スペックルノイズを低減する第3の関連技術における第1の構成例を示す平面図である。 スペックルノイズを低減する第3の関連技術における第2の構成例を示す平面図である。 スペックルノイズを低減する第4の関連技術における第1の構成例を示す平面図である。 スペックルノイズを低減する第4の関連技術における第2の構成例を示す平面図である。 第1の実施形態の投写型表示装置を模式的に示す斜視図である。 第1の実施形態の投写型表示装置が備える光源装置において、板バネを介してホイールモータと拡散板とが連結された構造を示す斜視図である。 第1の実施形態の投写型表示装置を示す平面図である。 第2の実施形態の投写型表示装置を模式的に示す斜視図である。 第2の実施形態の投写型表示装置が備える光源装置において、板バネを介してホイールモータと拡散板とが連結された構造を示す斜視図である。 第2の実施形態の投写型表示装置が備える光源装置における円形基板を示す正面図である。 第3の実施形態の投写型表示装置を模式的に示す斜視図である。 第3の実施形態の投写型表示装置が備える光源装置において、板バネを介してホイールモータと拡散板とが連結された構造を示す斜視図である。 第3の実施形態の投写型表示装置を示す平面図である。 第4の実施形態の投写型表示装置を模式的に示す平面図である。 第5の実施形態の投写型表示装置を模式的に示す斜視図である。 第5の実施形態の投写型表示装置が備える光源装置において、板バネを介してホイールモータと拡散板とが連結された構造を示す斜視図である。 第5の実施形態の投写型表示装置を示す平面図である。 第6の実施形態の投写型表示装置を模式的に示す斜視図である。 第6の実施形態の投写型表示装置が備える光源装置において、板バネを介してホイールモータと拡散板とが連結された構造を示す斜視図である。 第6の実施形態の投写型表示装置を示す平面図である。
 以下、本発明の実施形態について、図面を参照しながら説明する。
 なお、半導体レーザと蛍光とを組み合わせたハイブリッド光源を用いる投写型表示装置の構成については、[背景技術]の欄において図1A、1Bを参照して説明した。本実施形態の投写型表示装置は、図1A、1Bに示した投写型表示装置を基本構成として、本発明の技術的特徴を有している。そのため、便宜上、本実施形態では、図1A、1Bに示した投写型表示装置と共通する構成部材に、図1A、1Bと同一の符号を付けて説明を省略し、図1A、1Bに示した構成と異なる構成部分についてのみ説明する。
 (第1の実施形態)
 図6Aに、第1の実施形態の投写型表示装置の模式的な斜視図を示す。図6Bに、第1の実施形態において、板バネを介してホイールモータと拡散板とが連結された構造の斜視図を示す。図6Cに、第1の実施形態の投写型表示装置の平面図を示す。
 図6A~6Cに示すように、第1の実施形態の投写型表示装置が備える光源装置18aは、図1A、1Bに示した関連する光源装置1において、拡散板19aが、光学部材としてのダイクロイックプリズム4と、光インテグレータ8aを構成するフライアイレンズ15aとの間の光路上に配置されている。ダイクロイックプリズム4は、レーザ光源2a~2cからの光を反射し、蛍光体5からの光を透過させる複数の光学膜を有している。光インテグレータ8aは、拡散板19aによって拡散された光の照度分布を均一化して矩形光束に整形する。
 拡散板19aと、蛍光体5が塗布された蛍光板としての円形基板6を回転させるホイールモータ7は、弾性部材としての板バネ20aを介して連結されている。円形基板6は、中心にホイールモータ7の回転軸が固定されている。板バネ20aは、図6B、6Cに示すように、金属材や樹脂材によって形成されており、ホイールモータ7から拡散板19aまで、光路に沿って延ばされた帯状に形成されている。ホイールモータ7は、板バネ20aの延在方向に関する一端部に配されている。拡散板19aは、板バネ20aの延在方向に関する他端部に配されている。
 次に、第1の実施形態の投写動作について説明する。
 [背景技術]の欄にて、図1A、1Bに示した関連技術の構成の説明で述べたように、投写動作中、レーザ光の一部が照射されて蛍光を発生する蛍光体5が塗布された円形基板6は、ホイールモータ7の回転軸に固定されており、常時、高速で回転されている。
 図6Bに示すように、ホイールモータ7は、板バネ20aの一端と連結されており、ホイールモータ7の回転数に応じた固体伝播振動によって、板バネ20aを振動させる。このとき、板バネ20aの他端に設けられ、光路上に配置された拡散板19aも、固体伝播振動の振幅が増幅されて振動される。
 これにより、図6Cに示すように、振動する拡散板19aを通過するレーザ光16a~16cのスペックルパターンが複数回、重畳されて積分されることになるので、投写光のスペックルが平均化され、スペックルノイズを低減することができる。
 また、板バネ20aの剛性と拡散板19aの質量とで決定される共振周波数が、ホイールモータ7の固体伝播周波数と一致するように設定することが好ましい。これによって、投写映像を見る観察者の網膜上に結合されるスペックルパターンの変位量(拡散板19aの振幅に依存する)が、スペックルパタ-ンの平均的な大きさ以上になるように、拡散板19aの振幅を増幅することができる。その結果、スペックルノイズを更に効果的に低減することが可能になる。
 例えば、ホイールモータ7の回転数を7200rpmとした場合、ホイールモータ7の固体伝播周波数fD(Hz)は、
  fD=7200/60=120(Hz) ・・・・・(1)
で求められ、拡散板19aの質量をm(kg)としたときに、板バネ17aの曲げ剛性K(N/m)が、
  K=m×(2πfD) ・・・・・(2)
を満たすように設定すれば、拡散板19aは、固体伝播周波数fDにおいて板バネ17aの応答振幅に相当する変位で共振することになる。
 このように、投写動作中、蛍光体5を回転させるためのホイールモータ7の運動エネルギーを利用して、拡散板19aを振動させることができる。このため、拡散板19aを振動させるための駆動電力を消費することなく、スペックルノイズを効果的に除去することができる。また、拡散板を振動させる機構を別に設ける場合と比較して、モータ等の騒音を増やすことなく、スペックルノイズを効果的に除去することができる。
 本実施形態によれば、簡素な板バネ17aによって、既存の構成部品として用意されているホイールモータ7と拡散板19aとを機械的に連結するだけで、拡散板19aを振動させる機構(スペックルノイズを低減するための機構)が構成されているので、この機構の製造コストの低減を図ると共に、省スペース化、小型化を図ることができる。
 (第2の実施形態)
 第2の実施形態の投写型表示装置について、図面を参照しながら詳細に説明する。第2の実施形態では、説明を簡単にするために、上述した第1の実施形態との相違点のみを述べ、上述した実施形態と共通する構成部分について説明を省略する。
 図7Aに、第2の実施形態の投写型表示装置の模式的な斜視図を示す。図7Bに、第2の実施形態の投写型表示装置において、板バネを介してホイールモータと拡散板とが連結された構造の斜視図を示す。図7Cに、第2の実施形態における円形基板の正面図を示す。
 図7A~7Cに示すように、第2の実施形態の投写型表示装置が備える光源装置18bでは、上述した第1の実施形態における光源装置18aにおいて、蛍光体5が塗布された円形基板6が、その中心から径方向に対して偏心量Δhだけ偏心された位置に、ホイールモータ7の回転軸が固定されて構成されていることを特徴とする。第2の実施形態においても、上述した第1の実施形態と同様に、板バネ20bを介して、ホイールモータ7と拡散板19bとが連結されている。
 第2の実施形態は、上述した第1の実施形態において、拡散板の振動振幅を更に大きく設定して、スペックルパターンの積分効果を高めて、スペックルノイズを更に低減したい場合に適用される。また、第2の実施形態は、板バネの外形寸法やホイールモータの回転数などの設計上の制約によって、ホイールモータと拡散板とを連結する板バネの共振周波数を、ホイールモータの固体伝播周波数と一致させることが難しい場合や、光利用効率の損失を抑えるために拡散角が小さい拡散板を利用する必要がある場合などに適用される。
 第2の実施形態では、蛍光体5が塗布された円形基板6が、偏心しながら回転するので、板バネ20bの振動発生源となるホイールモータ7の固体伝播振動の振幅を、円形基板6の偏心量Δhに応じて、大きくなるように設定することができる。
 このため、第2の実施形態では、板バネ20bの共振周波数における拡散板19bの応答振幅を更に大きくすることが可能になり、板バネ20bの共振周波数で板バネ20bを振動させることができない場合であっても拡散板19bの振動振幅が十分に得ることができる。その結果、スペックルパターンの積分効果を十分に得ることができる。また、本実施形態によれば、拡散角が小さい拡散板を用いた場合であっても、拡散板の振動振幅を大きくすることによって、スペックルパターンの積分効果を十分に得ることができる。
 第2の実施形態においても、第1の実施形態と同様に、スペックルノイズを低減するための機構の小型化を図り、消費電力、騒音、及び製造コストの低減を図ることができる。
 (第3の実施形態)
 第3の実施形態の投写型表示装置について、図面を参照しながら詳細に説明する。本実施形態においても、説明を簡単にするために、上述した第1及び第2の実施形態との相違点のみを説明し、上述した実施形態と共通する構成部分について説明を省略する。
 図8Aに、第3の実施形態の投写型表示装置の模式的な斜視図である。図8Bに、第3の実施形態の投写型表示装置において、板バネを介してホイールモータと拡散板とが連結された構造の斜視図を示す。図8Cに、第3の実施形態の投写型表示装置の平面図を示す。
 図8A~8Cに示すように、第3の実施形態の投写型表示装置が備える光源装置18cは、上述した第1及び第2の実施形態における光源装置18a,18bにおいて、拡散板19cが、蛍光体の励起用途以外のレーザ光源2b,2cのうちで、視感度が最も高い波長であるレーザ光2cの光路上の、コリメータレンズ3cとダイクロイックプリズム4との間の位置に配置されていることを特徴とする。本実施形態においても、ホイールモータ7と拡散板19cとは、板バネ20cによって連結されている。
 第3の実施形態は、光学系の、拡散板の透過率の影響を受ける光利用効率の損失を極力抑えつつ、スペックルノイズを可能な限り低減する必要がある場合に用いられて好適である。
 一般に、スペックルは、視感度が高い波長においてより一層、顕著に視認される。R、G、Bの3原色の光の場合には、G>R>Bの順番でスペックルノイズが目立って認識される。
 一方、拡散板の透過率は、材質や拡散角にも依存するが、85%~98%程度である。このため、拡散板を光路上に配置することで光の損失が生じる。
 そこで、第3の実施形態では、スペックルノイズを低減するために最も効果がある、視感度が高い、例えば緑光用のレーザ光2cの光路に限定して、拡散板19cが配置されており、ホイールモータ7の固体伝播振動を利用して拡散板19cを振動させている。これによって、明るさの損失を最小限に抑えつつ、スペックルノイズを極力目立たないようにしている。
 また、第3の実施形態の構成によれば、ホイールモータ7に更に近い位置に拡散板19cを配置できるので、板バネ20cが小さくなり、板バネ20cを含めた構成を更にコンパクトにできるという利点もある。第3の実施形態においても、上述した実施形態と同様に、スペックルノイズを低減するための機構の消費電力及び騒音の低減を図ると共に、小型化し、製造コストを低減することができる。
 (第4の実施形態)
 第4の実施形態の投写型表示装置について、図面を参照して詳細に説明する。本実施形態においても、説明を簡単にするために、上述した第3の実施形態との相違点のみを述べ、上述した実施形態と共通する構成部分について説明を省略する。
 図9に、第4の実施形態の投写型表示装置の模式的な平面図を示す。図9に示すように、第4の実施形態の投写型表示装置が備える光源装置18dは、上述した第3の実施形態における光源装置18cにおける拡散板19dが、蛍光体の励起用途以外の光源であるレーザ光源2b,2cの光路上の、コリメータレンズ3b、3cとダイクロイックプリズム4との間に設置されている。拡散板19dは、2つのレーザ光源2b,2cの光路上に跨って設けられている。本実施形態においても、拡散板19dは、板バネ20dを介してホイールモータ7に連結されている。
 第4の実施形態の構成においても、上述した第3の実施形態と目的が同様であるが、レーザ光源2b,2cの光路上に、拡散板19dを配置することで光の損失が生じるので、レーザ光源2b,2cの出力に余裕がある場合に適用される。本実施形態によれば、原理上、スペックルノイズが発生しない蛍光の光路以外の光路上に、振動される拡散板19dが配置される構成になるので、上述した第3の実施形態に比べて、スペックルノイズの低減の効果を更に高めることができる。
 第4の実施形態においても、上述した実施形態と同様に、スペックルノイズを低減するための機構の消費電力及び騒音の低減を図ると共に、小型化し、製造コストを低減することができる。
 (第5の実施形態)
 第5の実施形態の投写型表示装置について、図面を参照して詳細に説明する。本実施形態においても、説明を簡単にするために、上述した第4の実施形態との相違点のみを述べ、上述した実施形態と共通する構成部材について説明を省略する。
 図10Aに、第5の実施形態の投写型表示装置の模式的な斜視図を示す。図10Bに、第5の実施形態の投写型表示装置において、板バネを介してホイールモータと拡散板とが連結された構造の斜視図を示す。図10Cに、第5の実施形態の投写型表示装置の平面図を示す。
 第5の実施形態は、上述した第1の実施形態に比べて、スペックルノイズを低減するための機構の更なる小型化、及び製造コストの低減を図ると共に、消費電力及び騒音を低減することを目的としている。
 そのため、図10B、10Cに示すように、第5の実施形態の投写型表示装置が備える光源装置18eでは、レーザ光源2a~2cを冷却する冷却ファン21が有するハブ22の、回転軸に直交する面であるハブ面22aに、図示しない蛍光体を含有する円形基板26が、接着等によって固定されている。冷却ファン19と拡散板19eは、板バネ20eを介して連結されている。
 また、円形基板26は、蛍光体と、基材とが混ぜられて形成されており、蛍光体5が塗布された円形基板6と同様に機能する。また、冷却ファン21が有するハブ22のハブ面22aに、蛍光体を混入させてもよい。上述した実施形態においても、円形基板6の代わりに、蛍光体を含有する円形基板26が用いられてもよい。
 なお、本実施形態では、軸流ファンを用いた構成を示したが、シロッコファン等の他の送風機を用いた場合であっても、同様に、スペックルノイズを低減する効果が得られる。シロッコファンを用いる場合には、図示しないが、円筒状のファンの端面に、蛍光体を有する円形基板が配される。
 一般に、半導体レーザは、動作温度が高くなった場合に、発振波長が高波長側へシフトしたり、寿命が短くなったり、光出力が低下したりするおそれがある。これを避けるために、高出力の半導体レーザを有するレーザ光源では、送風機としての冷却ファンを用いた強制空冷が行われており、レーザ光源が冷却されている。上述した第1~第4の実施形態においても、図示しないが、レーザ光源は、必要に応じて冷却ファンを用いて冷却を行っている。
 第5の実施形態では、レーザ光源2a~2cを冷却するために用いられる冷却ファン21のモータを、円形基板26を回転させるホイールモータとして兼用して、モータの固体伝播振動を利用して拡散板19eを振動させることによって、スペックルノイズを低減している。
 したがって、第5の実施形態によれば、投写型表示装置に実装される駆動モータ(冷却ファンのモータ、蛍光体を有する円形基板のホイールモータ、拡散板の振動モータ)の個数を1つにまとめて削減することができる。このため、第5の実施形態は、上述した第1の実施形態と比べて、同様にスペックルノイズの低減の効果が得られると共に、更なる小型化、及び製造コストの低減を図ると共に、消費電力及び騒音の低減を図ることが可能になる。
 また、本実施形態では、円形基板26を回転させるホイールモータとして、レーザ光源2a~2cを冷却する空気を送るための冷却ファン19のモータが適用されたが、投写型表示装置の筐体(不図示)内の空気をこの筐体外に排気する排気ファン等の他の送風機のモータが適用されてもよい。
 (第6の実施形態)
 第6の実施形態の投写型表示装置について、図面を参照して詳細に説明する。本実施形態においても、説明を簡単にするために、上述した第4の実施形態との相違点のみを述べ、上述した実施形態と共通する構成部材について説明を省略する。
 図11Aに、第6の実施形態の投写型表示装置の模式的な斜視図を示す。図11Bに、第6の実施形態の投写型表示装置において、板バネを介してホイールモータと拡散板とが連結された構造の斜視図を示す。図11Cに、第6の実施形態の投写型表示装置の平面図を示す。
 図11B、11Cに示すように、第6の実施形態の投写型表示装置が備える光源装置18fは、蛍光体5の励起用途以外の光源であるレーザ光源2b、2cの各光路にそれぞれ対応する第1及び第2の拡散板19k,19mと、第1及び第2の拡散板19k,19mを各々個別にホールモータ7と連結する第1及び第2の板バネと、を備えている。
 第1の拡散板19kは、レーザ光源2bの光路上の、コリメータレンズ3bとダイクロイックプリズム4の入射端側との間に設置されている。第2の拡散板19mは、レーザ光源2cの光路上の、コリメータレンズ3cとダイクロイックプリズム4の入射端側との間に設置されている。
 本実施形態においても、第1の拡散板19kは、第1の板バネ20fを介してホイールモータ7に連結されている。第2の拡散板19mは、第2の板バネ20gを介してホイールモータ7に連結されている。
 また、本実施形態では、ホイールモータ7の固体伝播周波数が、第1及び第2の板バネ20f,20gの少なくとも一方の板バネの共振周波数と一致されており、第1及び第2の拡散板19k,19mの少なくとも一方が効果的に振動される。本実施形態によれば、第1及び第2の拡散板19k,19mを各々個別にホイールモータ7を連結する第1及び第2の板バネ20f,20gを備えることで、第1及び第2の拡散板19k,19mを効率的に振動させることができる。
 加えて、本実施形態によれば、板バネの共振周波数を、ホイールモータ7の固体伝播周波数と一致させることが難しい場合であっても、第1及び第2の板バネ20f,20gのいずれか一方の共振周波数を、ホイールモータ7の固体伝播周波数と一致させることが可能になる。したがって、本実施形態によれば、板バネの設計の自由度を向上し、上述した実施形態と同様に、スペックルノイズの低減の効果が得られる。また、本実施形態においても、スペックルノイズを低減するための機構の小型化、及び製造コストの低減を図ると共に、消費電力及び騒音の低減を図ることができる。
 なお、上述した実施形態において、光インテグレータ8aとしては、フライアイレンズ15a,15bに限定されるものではなく、ロッド型光インテグレータ、ライトトンネルが用いられてもよい。また、光学部材としては、ダイクロイックプリズム4に限定されるものではなく、ダイクロイックミラー、クロスダイクロイックプリズムが用いられてもよい。また、空間光変調素子9aとしては、DMD14に限定されるものではなく、反射型液晶パネル、透過型液晶パネルが用いられてもよい。
 また、上述した実施形態は、3つのレーザ光源2a~2cを備える構成に適用されたが、この構成に限定されるものではなく、例えば青色光を出射する1つのレーザ光源を備える構成に適用されてもよい。この構成の場合には、赤色光を発光する蛍光体を有する第1領域と、緑色光を発光する蛍光体を有する第2領域と、青色光のレーザ光を透過させる第3領域とが分割して配置された円形基板を回転させることによって、赤色の蛍光と、緑色の蛍光と、青色のレーザ光とを時分割で発生させる。
  2a~2c レーザ光源
  4 ダイクロイックプリズム
  5 蛍光体 
  6 円形基板
  7 ホイールモータ
  8a 光インテグレータ
  9a 空間光変調素子
 16a~16c レーザ光
 17 蛍光
 18a~18e 光源装置
 19a~19k,19m 拡散板
 20a~20g 板バネ

Claims (13)

  1.  レーザ光源と、
     前記レーザ光源からの光を励起光として発光する蛍光体を有する蛍光板と、
     前記蛍光板を回転させるモータと、
     前記レーザ光源からの光を反射し、前記蛍光体からの光を透過する光学部材と、
     前記レーザ光源からの光を拡散する拡散板と、
     前記拡散板と前記モータとを連結する弾性部材と、を備える光源装置。
  2.  請求項1に記載の光源装置において、
     前記モータの固体伝播周波数が、前記弾性部材の共振周波数と一致する、光源装置。
  3.  請求項1または2に記載の光源装置において、
     前記蛍光板は、前記蛍光板の中心から偏心した位置に、前記モータの回転軸が固定されている、光源装置。
  4.  請求項1ないし3のいずれか1項に記載の光源装置において、
     前記弾性部材は、前記モータから前記拡散板に向かって帯状に延ばされ、
     前記弾性部材の延在方向に関する一端部に前記モータが配され、前記弾性部材の延在方向に関する他端部に前記拡散板が配されている、光源装置。
  5.  請求項1ないし4のいずれか1項に記載の光源装置において、
     前記拡散板は、前記光学部材の出射端からの光路上に配置されている、光源装置。
  6.  請求項1ないし4のいずれか1項に記載の光源装置において、
     前記レーザ光源は、前記蛍光体を励起するための光を出射する第1のレーザ光源と、前記蛍光体を照射することなく前記光学部材から出射される光を出射する第2のレーザ光源と、を含み、
     前記拡散板は、前記光学部材と前記第2のレーザ光源との間の、該第2のレーザ光源からの光の光路上に配置されている、光源装置。
  7.  請求項6に記載の光源装置において、
     前記レーザ光源は、前記蛍光体を照射することなく前記光学部材から出射される光を出射する第3のレーザ光源を更に含み、
     前記拡散板は、前記光学部材と前記第2のレーザ光源との間の、前記第2のレーザ光源からの光の光路上に配置された第1の拡散板と、前記光学部材と前記第3のレーザ光源との間の、前記第3のレーザ光源からの光の光路上に配置された第2の拡散板と、を含み、
     前記第1及び第2の拡散板は、各々個別の前記弾性部材に連結されると共に、複数の前記弾性部材の各々が前記モータに連結されている、光源装置。
  8.  請求項7に記載の光源装置において、
     前記モータの固体伝播周波数が、前記複数の弾性部材のうちで、少なくとも1つの弾性部材の共振周波数と一致する、光源装置。
  9.  請求項1ないし8のいずれか1項に記載の光源装置において、
     前記蛍光板は、前記蛍光体と、基材とが混ぜられて形成されている、光源装置。
  10.  請求項1ないし9のいずれか1項に記載の光源装置において、
     ファンを回転させるファンモータを有する送風機を備え、
     前記モータは、前記ファンモータである、光源装置。
  11.  請求項10に記載の光源装置において、
     前記送風機は、前記ファンから前記レーザ光源に向かって空気を送る、光源装置。
  12.  請求項10に記載の光源装置において、
     前記送風機は、前記投写型表示装置の筐体内の空気を該筐体外に排気する、光源装置。
  13.  請求項1ないし12のいずれか1項に記載の光源装置と、
     前記光源装置からの光を変調する光変調素子と、を備える投写型表示装置。
PCT/JP2011/065981 2011-07-13 2011-07-13 光源装置及び投写型表示装置 WO2013008323A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/129,235 US9448416B2 (en) 2011-07-13 2011-07-13 Light source device and projection-type display device
PCT/JP2011/065981 WO2013008323A1 (ja) 2011-07-13 2011-07-13 光源装置及び投写型表示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/065981 WO2013008323A1 (ja) 2011-07-13 2011-07-13 光源装置及び投写型表示装置

Publications (1)

Publication Number Publication Date
WO2013008323A1 true WO2013008323A1 (ja) 2013-01-17

Family

ID=47505642

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/065981 WO2013008323A1 (ja) 2011-07-13 2011-07-13 光源装置及び投写型表示装置

Country Status (2)

Country Link
US (1) US9448416B2 (ja)
WO (1) WO2013008323A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104102081A (zh) * 2013-04-11 2014-10-15 索尼公司 投影型显示装置和投影型显示装置的控制方法
JP2015036708A (ja) * 2013-08-12 2015-02-23 株式会社リコー 光源装置及びこれを備えた画像投射装置
WO2015140980A1 (ja) * 2014-03-20 2015-09-24 Necディスプレイソリューションズ株式会社 投写型表示装置および投写型表示装置の投写方法
EP2930418A1 (en) * 2014-01-31 2015-10-14 Christie Digital Systems Canada, Inc. A light emitting wheel with eccentricity for dispelling a thermal boundary layer
EP2960575A1 (en) * 2014-04-24 2015-12-30 Samsung Electronics Co., Ltd Illumination apparatus and projection-type image display apparatus having the same
JP2019161128A (ja) * 2018-03-15 2019-09-19 豊田合成株式会社 発光装置

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9039187B2 (en) * 2010-05-21 2015-05-26 Nec Display Solutions, Ltd. Illumination optical system and a projector using the same
JP5574458B2 (ja) * 2010-10-19 2014-08-20 Necディスプレイソリューションズ株式会社 照明装置およびそれを用いた投射型表示装置
US9046750B2 (en) * 2010-11-17 2015-06-02 Nec Display Solutions, Ltd. Projector light source apparatus having collimator disposed between excitation light source and phosphor element
US9500935B2 (en) * 2011-04-18 2016-11-22 Nec Display Solutions, Ltd. Projection image display device
US9448416B2 (en) 2011-07-13 2016-09-20 Nec Display Solutions, Ltd. Light source device and projection-type display device
JP5987382B2 (ja) * 2011-07-22 2016-09-07 株式会社リコー 照明装置、ならびに、投射装置および投射装置の制御方法
CN103062672B (zh) * 2011-10-21 2015-03-11 中强光电股份有限公司 照明系统与投影装置
CN104808426A (zh) * 2012-04-10 2015-07-29 海信集团有限公司 一种投影显示光源
JP2014062951A (ja) * 2012-09-20 2014-04-10 Casio Comput Co Ltd 光源装置及びプロジェクタ
US9435996B2 (en) * 2012-12-07 2016-09-06 Samsung Electronics Co., Ltd. Illumination optical system for beam projector
JP6160117B2 (ja) * 2013-02-21 2017-07-12 セイコーエプソン株式会社 光源装置およびプロジェクター
EP2966490A1 (de) * 2014-07-08 2016-01-13 Fisba Optik Ag Vorrichtung zur Erzeugung von Licht mit mehreren Wellenlängen, Verfahren zur Herstellung einer Vorrichtung, Verwendung eines Positionierungsmoduls, Verfahren zur Kombination von Lichtstrahlen und Vorrichtung zur Erzeugung von Licht mit mehreren Wellenlängen
JP6331826B2 (ja) 2014-07-23 2018-05-30 大日本印刷株式会社 投射装置および照明装置
US9684181B2 (en) * 2014-09-19 2017-06-20 Panasonic Intellectual Property Management Co., Ltd. Optical device and projection video display device
CN105739226B (zh) * 2014-12-08 2019-06-21 深圳光峰科技股份有限公司 投影系统
JP2017207683A (ja) * 2016-05-20 2017-11-24 株式会社 オルタステクノロジー 液晶表示装置
US9778478B1 (en) * 2016-10-04 2017-10-03 Christine Digital Systems Usa, Inc. Projector with image plane modal vibration for speckle reduction
JP6787261B2 (ja) * 2017-06-27 2020-11-18 カシオ計算機株式会社 光源装置及び投影装置
WO2019043453A2 (en) * 2017-09-01 2019-03-07 Wayräy Sa TORSION SPRING GRANULARITY DIFFUSER
US10989996B2 (en) * 2017-11-20 2021-04-27 Sharp Kabushiki Kaisha Light source device and projector
CN108803223A (zh) * 2018-08-07 2018-11-13 广东联大光电有限公司 一种散斑消除结构
TWI681246B (zh) * 2018-11-05 2020-01-01 揚明光學股份有限公司 散熱裝置與投影機
CN112346290A (zh) * 2019-08-08 2021-02-09 中强光电股份有限公司 照明系统以及投影装置
CN210142255U (zh) * 2019-08-16 2020-03-13 中强光电股份有限公司 照明系统以及投影装置
US11716209B2 (en) * 2020-04-14 2023-08-01 The Regents Of The University Of Colorado, A Body Corporate Systems and methods for azimuthal multiplexing three-dimensional diffractive optics

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003098476A (ja) * 2001-08-27 2003-04-03 Eastman Kodak Co レーザ投影型表示システム
WO2009118902A1 (ja) * 2008-03-28 2009-10-01 Necディスプレイソリューションズ株式会社 投写型画像表示装置
JP2010237443A (ja) * 2009-03-31 2010-10-21 Casio Computer Co Ltd 光源装置及びプロジェクタ
JP2011013320A (ja) * 2009-06-30 2011-01-20 Casio Computer Co Ltd 光源装置及びプロジェクタ

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4035068A (en) 1975-06-25 1977-07-12 Xerox Corporation Speckle minimization in projection displays by reducing spatial coherence of the image light
JPH07297111A (ja) 1994-04-27 1995-11-10 Sony Corp 露光照明装置
JP3975514B2 (ja) 1997-08-15 2007-09-12 ソニー株式会社 レーザディスプレイ装置
US7271962B2 (en) 2003-07-22 2007-09-18 Matsushita Electric Industrial Co., Ltd. Two-dimensional image formation apparatus
JP4711154B2 (ja) * 2009-06-30 2011-06-29 カシオ計算機株式会社 光源装置及びプロジェクタ
JP5625287B2 (ja) 2009-08-21 2014-11-19 カシオ計算機株式会社 光源装置、投影装置、投影方法及びプログラム
JP5406638B2 (ja) 2009-08-31 2014-02-05 カシオ計算機株式会社 光源装置及びプロジェクタ
CN102213384A (zh) 2010-04-01 2011-10-12 中强光电股份有限公司 光源模组与投影装置
JP2011248272A (ja) 2010-05-31 2011-12-08 Sanyo Electric Co Ltd 光源装置及び投写型映像表示装置
JP5574458B2 (ja) 2010-10-19 2014-08-20 Necディスプレイソリューションズ株式会社 照明装置およびそれを用いた投射型表示装置
CN103201678B (zh) 2010-11-09 2016-01-20 Nec显示器解决方案株式会社 照明装置和使用其的投影型显示装置
US9046750B2 (en) 2010-11-17 2015-06-02 Nec Display Solutions, Ltd. Projector light source apparatus having collimator disposed between excitation light source and phosphor element
US20140028984A1 (en) 2011-04-05 2014-01-30 Akihiro Osaka Light source apparatus and projection display apparatus
JP5987368B2 (ja) 2011-07-05 2016-09-07 株式会社リコー 照明装置および投射装置
US9448416B2 (en) 2011-07-13 2016-09-20 Nec Display Solutions, Ltd. Light source device and projection-type display device
JP6290523B2 (ja) * 2012-03-02 2018-03-07 セイコーエプソン株式会社 プロジェクター
JP5962904B2 (ja) 2012-04-26 2016-08-03 パナソニックIpマネジメント株式会社 光源装置及び該光源装置を備える投写型表示装置
JP6171345B2 (ja) * 2012-09-10 2017-08-02 株式会社リコー 照明光源装置及びこの照明光源装置を備えた投射装置及び投射装置の制御方法
JP6089616B2 (ja) * 2012-11-20 2017-03-08 セイコーエプソン株式会社 光源装置及びプロジェクター

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003098476A (ja) * 2001-08-27 2003-04-03 Eastman Kodak Co レーザ投影型表示システム
WO2009118902A1 (ja) * 2008-03-28 2009-10-01 Necディスプレイソリューションズ株式会社 投写型画像表示装置
JP2010237443A (ja) * 2009-03-31 2010-10-21 Casio Computer Co Ltd 光源装置及びプロジェクタ
JP2011013320A (ja) * 2009-06-30 2011-01-20 Casio Computer Co Ltd 光源装置及びプロジェクタ

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104102081A (zh) * 2013-04-11 2014-10-15 索尼公司 投影型显示装置和投影型显示装置的控制方法
JP2014206581A (ja) * 2013-04-11 2014-10-30 ソニー株式会社 投射型表示装置及び投射型表示装置の制御方法
JP2015036708A (ja) * 2013-08-12 2015-02-23 株式会社リコー 光源装置及びこれを備えた画像投射装置
CN104375366A (zh) * 2013-08-12 2015-02-25 株式会社理光 光源装置以及具备该光源装置的图像投影装置
EP2857897A1 (en) * 2013-08-12 2015-04-08 Ricoh Company Ltd. Light source device and image projecting apparatus having the same
US9442352B2 (en) 2013-08-12 2016-09-13 Ricoh Company, Ltd. Light source device including passage forming member and image projecting apparatus having the same
EP2930418A1 (en) * 2014-01-31 2015-10-14 Christie Digital Systems Canada, Inc. A light emitting wheel with eccentricity for dispelling a thermal boundary layer
WO2015140980A1 (ja) * 2014-03-20 2015-09-24 Necディスプレイソリューションズ株式会社 投写型表示装置および投写型表示装置の投写方法
CN106104376A (zh) * 2014-03-20 2016-11-09 Nec显示器解决方案株式会社 投射显示设备和用于投射显示设备的投射方法
JPWO2015140980A1 (ja) * 2014-03-20 2017-04-06 Necディスプレイソリューションズ株式会社 投写型表示装置および投写型表示装置の投写方法
US10257480B2 (en) 2014-03-20 2019-04-09 Nec Display Solutions, Ltd. Projection display apparatus and projection method for projection display apparatus
EP2960575A1 (en) * 2014-04-24 2015-12-30 Samsung Electronics Co., Ltd Illumination apparatus and projection-type image display apparatus having the same
US9664990B2 (en) 2014-04-24 2017-05-30 Samsung Electronics Co., Ltd. Illumination apparatus and projection-type image display apparatus having the same
JP2019161128A (ja) * 2018-03-15 2019-09-19 豊田合成株式会社 発光装置
JP7043002B2 (ja) 2018-03-15 2022-03-29 豊田合成株式会社 発光装置

Also Published As

Publication number Publication date
US9448416B2 (en) 2016-09-20
US20140125956A1 (en) 2014-05-08

Similar Documents

Publication Publication Date Title
WO2013008323A1 (ja) 光源装置及び投写型表示装置
US9500935B2 (en) Projection image display device
US8550633B2 (en) Laser projector having a diffuser vibrated by using component of a cooling mechanism
US8851681B2 (en) Illumination device and display unit
JP4612043B2 (ja) 画像投影装置
TWI485439B (zh) 用於減少經投影影像中之斑點之裝置及方法
JP5682813B2 (ja) 照明装置及びプロジェクター
JP4175078B2 (ja) 照明装置及び画像表示装置
JP5313029B2 (ja) 投射型表示装置
WO2006095855A1 (ja) 画像投影装置
JP6520942B2 (ja) 蛍光体ホイール、光源ユニットおよび画像表示装置
JP2004144936A (ja) 照明装置及び画像表示装置
JP2012194268A (ja) 拡散板、光源装置、及びプロジェクター
JPWO2015111145A1 (ja) 光源装置およびこれを用いた映像表示装置
JP5590628B2 (ja) 投写型表示装置
WO2019033672A1 (zh) 双色激光光源和激光投影机
JP2011215531A (ja) プロジェクター
JP2014178693A (ja) 照明装置および表示装置
JP5991389B2 (ja) 照明装置及びプロジェクター
US9612509B2 (en) Vibrating body mounting structure and projection-type image display device including same
JP6931770B2 (ja) 蛍光体ホイール装置、光源装置、及び投写型映像表示装置
JP2021179500A (ja) 光源装置および画像投射装置
JP4661861B2 (ja) 照明装置及び画像表示装置
WO2013140591A1 (ja) 拡散板回転機構、プロジェクター及びプロジェクターシステム
WO2020125070A1 (zh) 激光光源及激光投影机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11869278

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14129235

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11869278

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP