WO2019033672A1 - 双色激光光源和激光投影机 - Google Patents

双色激光光源和激光投影机 Download PDF

Info

Publication number
WO2019033672A1
WO2019033672A1 PCT/CN2017/117868 CN2017117868W WO2019033672A1 WO 2019033672 A1 WO2019033672 A1 WO 2019033672A1 CN 2017117868 W CN2017117868 W CN 2017117868W WO 2019033672 A1 WO2019033672 A1 WO 2019033672A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
laser
red
laser light
blue
Prior art date
Application number
PCT/CN2017/117868
Other languages
English (en)
French (fr)
Inventor
田有良
Original Assignee
海信集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201710712834.9A external-priority patent/CN109407451B/zh
Priority claimed from CN201710712832.XA external-priority patent/CN109407450B/zh
Application filed by 海信集团有限公司 filed Critical 海信集团有限公司
Publication of WO2019033672A1 publication Critical patent/WO2019033672A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1006Beam splitting or combining systems for splitting or combining different wavelengths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/18Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical projection, e.g. combination of mirror and condenser and objective
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/48Laser speckle optics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0075Arrangements of multiple light guides
    • G02B6/0078Side-by-side arrangements, e.g. for large area displays
    • G02B6/008Side-by-side arrangements, e.g. for large area displays of the partially overlapping type
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/208Homogenising, shaping of the illumination light
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B33/00Colour photography, other than mere exposure or projection of a colour film
    • G03B33/08Sequential recording or projection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3102Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators
    • H04N9/3111Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators for displaying the colours sequentially, e.g. by using sequentially activated light sources
    • H04N9/3114Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators for displaying the colours sequentially, e.g. by using sequentially activated light sources by using a sequential colour filter producing one colour at a time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3158Modulator illumination systems for controlling the spectrum
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3161Modulator illumination systems using laser light sources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3164Modulator illumination systems using multiple light sources
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/007Optical devices or arrangements for the control of light using movable or deformable optical elements the movable or deformable optical element controlling the colour, i.e. a spectral characteristic, of the light
    • G02B26/008Optical devices or arrangements for the control of light using movable or deformable optical elements the movable or deformable optical element controlling the colour, i.e. a spectral characteristic, of the light in the form of devices for effecting sequential colour changes, e.g. colour wheels
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/141Beam splitting or combining systems operating by reflection only using dichroic mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4215Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical elements being wavelength selective optical elements, e.g. variable wavelength optical modules or wavelength lockers

Definitions

  • the present application relates to the field of projection display, and in particular to a two-color laser light source and a laser projector.
  • the laser light source is a light source with high brightness, strong directivity and emits a monochromatic beam. Due to the many advantages of the laser light source, it has been gradually applied to the field of projection display in recent years. Compared with the traditional monochromatic laser source, the two-color laser source can improve the color purity, color brightness and color gamut of the light source, and better meet the color requirements of laser projection.
  • Embodiments of the present application provide a two-color laser light source and a laser projector.
  • the technical solution is as follows:
  • the present application provides a two-color laser light source including a first blue laser emitter, a second blue laser emitter, a red laser emitter, a fluorescent wheel, a light collecting component, and a light combining component,
  • the fluorescent wheel is provided with a green fluorescent region and a transmissive region;
  • the light combining member is disposed between the first blue laser emitter and the fluorescent wheel, and the fluorescent wheel is disposed between the light combining member and the red laser emitter, the light collecting member And the second blue laser emitters are respectively disposed on both sides of the light combining member, a line between the first blue laser emitter and the fluorescent wheel, and the light collecting member and the first The lines between the two blue laser emitters are perpendicular to each other;
  • the light combining member is configured to transmit a first blue laser light emitted by the first blue laser emitter to the fluorescent wheel, and generate the first blue laser light to illuminate the green fluorescent region After the green fluorescence, the green fluorescence is reflected to the light collecting member;
  • the light combining member is further configured to receive a second blue laser light emitted by the second blue laser emitter, and transmit the second blue laser light to the light collecting member;
  • the light combining member is further configured to receive a red laser light emitted by the red laser emitter and transmitted through the transmission region, and reflect the red laser light to the light collecting member.
  • the present application provides a two-color laser light source including a first blue laser emitter, a second blue laser emitter, a red laser emitter, a fluorescent wheel, a light receiving component, and a light combining component.
  • the fluorescent wheel is provided with a green fluorescent region and a transmissive region;
  • the light combining member is disposed between the first blue laser emitter and the fluorescent wheel, and the fluorescent wheel is disposed between the light combining member and the second blue laser emitter, a light collecting member and the red laser emitter are respectively disposed on both sides of the light combining member, a line between the first blue laser emitter and the fluorescent wheel, and the light collecting member and the red
  • the lines between the laser emitters are perpendicular to each other;
  • the light combining member is configured to transmit a first blue laser light emitted by the first blue laser emitter to the fluorescent wheel, and generate the first blue laser light to illuminate the green fluorescent region After the green fluorescence, the green fluorescence is reflected to the light collecting member;
  • the light combining component is further configured to receive a red laser light emitted by the red laser emitter and transmit the red laser light to the light collecting component;
  • the light combining member is further configured to receive a second blue laser light emitted by the second blue laser emitter and transmitted through the transmissive region, and reflect the second blue laser light to the light collecting member ;
  • the polarization direction of the second blue laser is perpendicular to the polarization direction of the first blue laser.
  • the present application provides a laser projector comprising the two-color laser source of any of the above aspects.
  • the laser light source includes a first blue laser emitter, a second blue laser emitter, a red laser emitter, a fluorescent wheel, a light collecting component, and a light combining component.
  • the fluorescent wheel is provided with a green fluorescent region and a transmissive region; the light combining member is disposed between the first blue laser emitter and the fluorescent wheel, the fluorescent wheel is disposed between the light combining member and the red laser emitter, the light collecting member and the first Two blue laser emitters are respectively disposed on both sides of the light combining member, and a line between the first blue laser emitter and the fluorescent wheel and a line connecting the light collecting member and the second blue laser emitter are perpendicular to each other; a first blue laser emitted by a blue laser emitter can pass through the light combining member and excite the green fluorescent region of the fluorescent wheel to emit green fluorescence, and then the green fluorescent light is reflected by the light combining member to the light collecting member; The second blue laser light emitted by the laser emitter is transmitted to the light collecting member through the light combining member, and the red laser light emitted by the red laser emitter passes through the transmission region of the fluorescent wheel, and is combined by the light combining portion. The light is reflected to the
  • the laser light source includes a first blue laser emitter, a second blue laser emitter, a red laser emitter, a fluorescent wheel, a light receiving component, and a light combining component.
  • the fluorescent wheel is provided with a green fluorescent region and a transmissive region; the light combining member is disposed between the first blue laser emitter and the fluorescent wheel, and the fluorescent wheel is disposed between the light combining member and the second blue laser emitter, and the light collecting
  • the component and the red laser emitter are respectively disposed on both sides of the light combining member, and the connection between the first blue laser emitter and the fluorescent wheel and the line between the light collecting part and the red laser emitter are perpendicular to each other;
  • the first blue The first blue laser light emitted by the laser emitter can pass through the light combining member and excite the green fluorescent region of the fluorescent wheel to emit green fluorescence, and then the green fluorescent light is reflected by the light combining member to the light collecting member;
  • the red light emitted by the red laser emitter The laser light is transmitted through the light combining member to the light collecting member, and the second blue laser light emitted by the second blue laser emitter passes through the transmission region of the fluorescent wheel, and is To the light collecting member
  • FIG. 1 is a schematic structural view of a two-color laser light source in the related art
  • 2-1 is a schematic structural diagram of a two-color laser light source according to an embodiment of the present application.
  • FIG. 2-2 is a schematic structural diagram of another two-color laser light source provided by an embodiment of the present application.
  • 3-1 is a schematic diagram of a fluorescent wheel provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of another two-color laser light source provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a color filter wheel provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of still another two-color laser light source according to an embodiment of the present application.
  • 7-1 is a schematic structural diagram of still another two-color laser light source according to an embodiment of the present application.
  • FIG. 7-2 is a schematic structural diagram of still another two-color laser light source according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of still another two-color laser light source according to an embodiment of the present application.
  • 9-1 is a schematic structural diagram of still another two-color laser light source according to an embodiment of the present application.
  • 9-2 is a schematic structural diagram of still another two-color laser light source according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of still another fluorescent wheel provided by an embodiment of the present application.
  • the laser light source is a light source with high brightness, strong directivity, and emits a monochromatic coherent light beam. Due to the many advantages of the laser light source, it has been gradually applied to the field of projection display in recent years.
  • the laser source can be applied to a laser projector.
  • the laser projector can emit light of at least one color to achieve display of the image.
  • the base color is the "basic color” that cannot be obtained by blending other colors. Mixing the base colors in different proportions can produce other new colors.
  • Laser projectors typically produce a primary color of light to achieve a graphical display.
  • the general laser projector produces three primary colors, namely red, green and blue. With the development of technology, laser projectors can also produce two primary colors and one mixed color, or a combination of primary colors and other mixed colors. This embodiment of the present application does not limit this.
  • the laser source may include at least one laser emitter capable of emitting light of at least one color.
  • the laser light source may further include: a fluorescent wheel (also called a fluorescent color wheel), and the fluorescent wheel may serve as a wavelength conversion device.
  • the laser source may be a monochromatic laser source (ie comprising a laser emitter and the laser emitter produces a color) or a two-color laser source (ie comprising two laser emitters and each laser emitter producing a color ), thereby emitting one or two colors of laser light, the phosphor wheel is provided with a phosphor, which can be excited to emit fluorescence of a corresponding color, and is used to form a three primary color together with the color of the laser light emitted by the laser emitter as a projection light source
  • the optomechanical section provides illumination.
  • the light source portion of the laser projector includes at least one laser emitter and a fluorescent wheel.
  • the optical portion of the laser projector includes at least one imaging element and a projection lens, wherein the imaging element may be a Digital Micromirror Device (DMD) or a Liquid Crystal On Silicon (LCOS) component.
  • DMD Digital Micromirror Device
  • LCOS Liquid Crystal On Silicon
  • a two-color laser source can improve the color purity, color brightness, and color gamut of the light source to better meet the color requirements of laser projection.
  • the two-color laser light source generally includes a blue laser emitter 101, a red laser emitter 102, a fluorescent wheel 103, a beam shaping device 104, a light combining member 105, and a light collecting member 106.
  • the light-emitting principle of the two-color laser light source includes: after the blue laser light emitted from the blue laser emitter 101 passes through the beam shaping device 104, it is reflected by the light combining member 105 to the fluorescent wheel 103, and is transmitted from the fluorescent wheel 103 and passes through the relay loop optical path.
  • the light is outputted by the light combining member 105; the blue laser light is irradiated onto the fluorescent wheel 103, and the fluorescent wheel 103 can be excited to emit green fluorescence, which is transmitted and output by the light combining member 105; the red laser emitter 102 The emitted red laser passes through the beam shaping device 104 and is reflected and output by the light combining member 105. After the three colors of light enter the light collecting member, the illumination function of the laser light source is realized.
  • the embodiment of the present application provides a two-color laser light source, as shown in FIG. 2-1, the laser light source includes a first blue laser emitter 21a, a second blue laser emitter 21b, a red laser emitter 22, and a fluorescent wheel. 23.
  • the light collecting member 25 and the light combining member 24, the fluorescent wheel 23 is provided with a green fluorescent region and a transmissive region.
  • the light combining member 24 is disposed between the first blue laser emitter 21a and the fluorescent wheel 23, and the fluorescent wheel 23 is disposed between the light combining member 24 and the red laser emitter 22, the light collecting member 25 and the second blue laser emitting
  • the devices 21b are respectively disposed on both sides of the light combining member 25, the line between the first blue laser emitter 21a and the fluorescent wheel 23 and the line between the light collecting member 25 and the second blue laser emitter 21b are perpendicular to each other;
  • the light combining member 24 is configured to transmit the first blue laser light emitted by the first blue laser emitter 21a to the fluorescent wheel 23, and after receiving the green fluorescence generated by the first blue laser light to illuminate the green fluorescent region, the green light is emitted. Fluorescence is reflected to the light collecting member 25.
  • the light combining member 24 is also for receiving the second blue laser light emitted from the second blue laser emitter 21b and transmitting the second blue laser light to the light collecting member 25.
  • the light combining member 24 is also for receiving a red laser light emitted by the red laser emitter 22 and transmitted through the transmission region, and reflects the red laser light to the light collecting member 25.
  • the first blue laser emitter 21a, the second blue laser emitter 21b, the light combining member 24, and the light collecting member 25 are disposed on the first side of the fluorescent wheel 23, and the red laser emitter 22 is disposed.
  • the light combining member 24 is disposed between the first blue laser emitter 21a and the fluorescent wheel 23, and the light combining member 24 is disposed at the second blue laser emitter 21b and the light collecting member 25. between.
  • the laser emitter provided by the embodiment of the present application may be a laser emitter array or a separate laser emitter, wherein the connection and light collection between the first blue laser emitter 21a and the fluorescent wheel 23
  • the line between the member 25 and the second blue laser emitter 21b is not perpendicular to each other, and there is a certain deviation between the angle between the two lines and the right angle.
  • the light that satisfies the final laser emitter and the fluorescent wheel can enter the light collecting member 25.
  • the red laser emitter 22 includes: a first red laser emitter 22a and a second red laser emitter 22b; the red laser includes: a first red laser and a second red laser ;
  • the light combining member 24 is also specifically configured to respectively reflect the first red laser emitter 22a and the second red laser emitter 22b and transmit the first red laser and the second red laser transmitted through the transmissive region to the light collecting member 25;
  • the polarization direction of the first red laser is perpendicular to the polarization direction of the second red laser.
  • the first red laser emitter 22a and the second red laser emitter 22b may be disposed side by side on the second side of the fluorescent wheel, reflected by the reflecting device to the fluorescent wheel 23; or, may be arranged side by side with the first The position of the blue laser emitter 21a directly transmits the first red laser and the second red laser to the fluorescent wheel 23; or, as shown in FIG. 2-2, the laser light source further includes a dichroic film 28, the two The color patch 28 is for reflecting the second red laser light and transmitting the first red laser light.
  • the two-color laser light source may further include a plurality of beam shaping devices and reflecting devices 28, or, as shown in FIG. 2-2, the two-color laser light source may further include multiple beam shaping devices.
  • a dichroic patch 28 comprising a first beam shaping device A, a second beam shaping device B, a third beam shaping device C, a fourth beam shaping device D and a fifth beam shaping device E.
  • the first beam shaping device A, the second beam shaping device B, the third beam shaping device C and the fourth beam shaping device D may be a telescope system (in practical applications, the telescope system may include a convex lens and a concave lens), It is used to compress the parallel laser emitted by the laser emitter to reduce the area of the beam, and the compressed laser is still a parallel laser, which can improve the transmittance of the parallel laser in the rear optical device.
  • the telescope system may include a convex lens and a concave lens
  • the fifth beam shaping device E may be composed of two lenses, the first blue laser light is focused by the two lenses and irradiated onto the fluorescent wheel, and the green fluorescent light emitted by the fluorescent wheel and the red laser light emitted by the red laser emitting device may be composed of the two The lenses are collimated and then enter the light combining member to improve uniformity of light output.
  • the fifth beam shaping device E can also be composed of one, three or four lenses.
  • the number of lenses constituting the fifth beam shaping device E is not limited in the embodiment of the present application.
  • the optical path transmission process of the two-color laser light source includes: after passing through the first beam shaping device A, the first blue laser light is transmitted from the light combining member 24, and then irradiated onto the fluorescent wheel 23 through the fifth beam shaping device E.
  • the green fluorescence is reflected by the light combining member 24 and outputted to the light collecting member 25 after passing through the fifth beam shaping device E; after the second blue laser beam passes through the second beam shaping device B, The light combining member 24 transmits the light to the light collecting member 25; after the red laser light emitted from the red laser emitter 22 passes through the fourth beam shaping device D, the red laser light is reflected by the reflecting device 28 to the fluorescent wheel 23, the red laser light from the fluorescent wheel After transmission 23, the fifth beam shaping device E passes through the light combining member 24 and reflects the output light collecting member 25. After the three colors of light enter the light collecting member 25, they can be mixed to form white light, thereby realizing the illumination function of the two-color laser light source.
  • the reflecting device 28 can be a reflective sheet, and the reflecting sheet can be placed at an angle of 45° with the red laser emitter, so that the red laser light emitted by the horizontally placed red laser emitter is reflected by the reflecting sheet and can be vertically injected.
  • the fluorescent wheel enables the red laser to be transmitted according to a preset optical path, thereby ensuring the stability of the laser transmission.
  • the reflective device 28 can be a second dichroic color patch for reflecting red laser light to the fluorescent wheel 23.
  • the red laser emitter 22 may be disposed opposite the first blue laser emitter 21a on both sides of the fluorescent wheel 23, and the red laser light emitted by the red laser emitter 22 is directly transmitted to the fluorescent light. Wheel 23, without the need for transmission through a reflecting device.
  • the light collecting component can be a light rod.
  • the dual-color laser light source includes a first blue laser emitter, a second blue laser emitter, a red laser emitter, a fluorescent wheel, a light collecting component, and a light combining component.
  • the fluorescent wheel is provided with a green fluorescent region and a transmissive region; the light combining member is disposed between the first blue laser emitter and the fluorescent wheel, the fluorescent wheel is disposed between the light combining member and the red laser emitter, the light collecting member and
  • the second blue laser emitters are respectively disposed on both sides of the light combining member, and the connection between the first blue laser emitter and the fluorescent wheel and the line between the light collecting member and the second blue laser emitter are perpendicular to each other;
  • the first blue laser light emitted by the first blue laser emitter can pass through the light combining member and excite the green fluorescent region of the fluorescent wheel to emit green fluorescence, and then the green fluorescent light is reflected by the light combining member to the light collecting member;
  • the first red laser is p-polarized light
  • the second red laser is s-polarized light
  • the first blue laser is p-polarized light
  • the second blue laser is s-polarized light
  • the first red laser light is s-polarized light
  • the second red laser light is p-polarized light
  • the first blue laser light is s-polarized light
  • the second blue laser light is p-polarized light.
  • the red laser light collected by the light combining member is a combined light of the first red laser light and the second red laser light whose polarization directions are perpendicular to each other, the superposition of the two polarized lights can form a superposition of the phase pattern when the image is projected. Thereby generating more independent random phase patterns, effectively reducing the speckle effect of the red laser and improving the optical quality of the two-color laser source.
  • the first blue laser emitter, the second blue laser emitter, and the red laser emitter are all time-illuminated. In some embodiments, the lighting timings of the first blue laser emitter, the second blue laser emitter, and the red laser emitter are different. In some embodiments, if the red laser emitter comprises: a first red laser emitter and a second red laser emitter, the first red laser emitter and the second red laser emitter are illuminated for timing, or first red The laser emitter and the second red laser emitter are illuminated at the same time. When the first red laser emitter and the second red laser emitter are time-illuminated, it is ensured that both the output first red laser and the second red laser are transmitted to the transmission area of the fluorescent wheel.
  • the fluorescent wheel may include a green fluorescent region Y and a transmissive region K, the surface of the green fluorescent region Y is provided with a green phosphor, and the surface of the transmissive region Y is provided with a first diffusing
  • the body, the green fluorescent region and the transmissive region are arranged in a fan shape, and the fluorescent wheel can emit green fluorescence and transmit red laser light in a time series when rotated.
  • the first diffuser may be a micron-sized particle.
  • the fluorescent wheel can be rotated according to a preset rotation speed.
  • the green fluorescent region of the fluorescent wheel is aligned with the fifth beam shaping device E (the green fluorescent region is irradiated with laser light).
  • the transmission region of the fluorescent wheel is aligned with the fifth beam shaping device E (the transmission region is laser-emitting) Irradiation area), and neither the first blue laser emitter nor the second blue laser emitter are illuminated; when the first blue laser emitter and the red laser emitter are not lit, the second blue is illuminated Laser transmitter.
  • the fluorescent wheel may further include a blank area Q.
  • the blank area Q is located in the central area of the fluorescent wheel, and the green fluorescent area Y is located at the periphery of the blank area Q.
  • the green fluorescent area Y is arranged in a fan-shaped annular shape, and the transmitting area K is arranged in a fan shape or a fan-shaped annular shape.
  • the light combining member may include: a first dichroic color patch 241 disposed on a light incident side of the light collecting member 25, and a first dichroic color patch 241 for transmitting the first light.
  • the blue laser and the second blue laser reflect the green fluorescence and reflect the red laser emitted by the red laser emitter 22.
  • the light combining member may further include a fixed diffusion sheet 242 for homogenizing the first blue laser light, since the first blue laser light is the excitation light of the fluorescent wheel, If the beam is not homogenized, the intensity distribution of the laser spot is uneven, and the energy is concentrated. When directly incident on the surface of the fluorescent wheel, the concentrated laser spot may cause the surface of the fluorescent wheel to burn, damaging the fluorescent wheel, and the laser cannot be normally excited. The fluorescent wheel emits fluorescence.
  • the laser light source may further include: a color filter wheel 26 disposed on the light incident side of the first dichroic color patch 241 (light combining member) and the light collecting member 25.
  • the color filter wheel may include a red filter region R, a blue filter region B, and a green filter region G.
  • the color filter wheel rotates, the second blue laser, the red laser, and the green fluorescent light can be transmitted in series.
  • the second blue laser emitter when the color filter wheel is rotating, when the illumination area of the color filter wheel is a blue filter area, the second blue laser emitter is illuminated while the first blue laser emitter and the red laser are emitted.
  • the device does not light up; when the illumination area of the color filter wheel is a red filter area, the red laser emitter is illuminated, while the first blue laser emitter and the second blue laser emitter are not illuminated;
  • the illumination area of the color wheel is a green filter area
  • the first blue laser emitter is illuminated, and neither the second blue laser emitter nor the red laser emitter is illuminated, thereby achieving temporal transmission of the second blue Color laser, red laser and green fluorescence.
  • the laser light source may further include a focus lens 243 disposed between the first dichroic color patch 241 and the color filter wheel 26. Since the beam divergence angle of the light transmitted or reflected by the first dichroic color chip is greater than the light collecting angle of the light collecting member, the light collecting efficiency is low, affecting the brightness of the projection light source, and the focusing lens can be used for the first dichroic color film.
  • the transmitted second blue laser light, the reflected green fluorescent light, and the reflected red laser light are respectively focused to improve the light collecting efficiency of the light collecting member to improve the brightness of the projection light source.
  • the surface of the red filter region is provided with a second diffuser
  • the surface of the blue filter region is provided with a third diffuser.
  • the second diffuser and the third diffuser may be micron-sized particles, and the third diffuser may have the same particle diameter as the second diffuser.
  • the particle diameter of the second diffuser is different from the particle diameter of the first diffuser disposed on the surface of the transmitting region of the fluorescent wheel.
  • speckle Due to the high coherence of the laser, a speckle effect is inevitably generated.
  • speckle means that when the coherent light source illuminates a rough object, the scattered light will have interference in the space due to the same wavelength and a constant phase. Some of the interference occurs in the space, and some interference occurs.
  • the result is a grainy bright and dark spot on the screen, that is, some unfocused spots flicker, which is prone to vertigo when viewed for a long time, which will undoubtedly cause a drop in the quality of the projected image and reduce the user's viewing experience.
  • the red laser has a longer coherence length and higher coherence, so the speckle phenomenon is more serious.
  • the red laser when the red laser light emitted by the red laser emitter passes through the fluorescent wheel, the red laser is first diffused by the first diffuser on the transmission area of the fluorescent wheel, and then the color filter wheel is used.
  • the second diffuser on the red filter region diffuses the red laser a second time. Since the particle diameter of the first diffuser is different from the particle diameter of the second diffuser, the diffusion angle to the red laser is different.
  • the red laser can generate more independent random phase patterns; in some embodiments, since the fluorescent wheel and the color filter wheel are both rotated, the moving diffuser can further increase the random phase and can better destroy the red laser.
  • the coherence so that the laser source used for projection can form more independent random phase patterns on the projected image, and the more the number of independent random phase patterns, the weaker the phenomenon of light and dark spots by the integral action of the human eye.
  • the speckle effect of the red laser can be effectively attenuated, and the optical quality of the two-color laser source is improved.
  • the particle diameter of the first diffuser may be greater than the particle diameter of the second diffuser, for example, the particle diameter of the first diffuser is 100 microns, the second diffuser and the third diffuser The particle diameter is 30 microns.
  • the first diffuser can first disperse the red laser, and then the second diffuser accurately rearranges the phase of the red laser.
  • the particle diameter of the first diffuser may also be smaller than the particle diameter of the second diffuser, for example, the particle diameter of the first diffuser is 30 micrometers, and the second diffuser and the third diffuser The particle diameter is 100 microns.
  • the third diffuser on the blue filter region of the color filter wheel is used to homogenize the second blue laser to act as a dissipating spot for the blue laser; the green filter region on the color filter wheel is used for The green fluorescence is filtered to make the green light entering the light collecting part more pure.
  • the first diffuser is disposed on the surface of the transmissive area of the fluorescent wheel, and the second diffuser is disposed on the surface of the red diffusing region of the color filter wheel, thereby realizing a red laser with high coherence.
  • the two diffusions have a good dissipating effect on the red laser, thereby improving the optical quality of the two-color laser source.
  • the laser light source includes at least:
  • a first blue laser emitter 21a a first blue laser emitter 21a, a second blue laser emitter 21b, a red laser emitter 22, a fluorescent wheel 23, a light collecting member 25, and a light combining member 24, the fluorescent wheel 23 being provided with a green fluorescent region and a transmissive region;
  • the light combining member 24 is disposed between the first blue laser emitter 21a and the fluorescent wheel 23, and the fluorescent wheel 23 is disposed between the light combining member 24 and the second blue laser emitter 21b, the light collecting member 25 and the red laser emitting
  • the devices 22 are respectively disposed on both sides of the light combining member 24, and the connection between the first blue laser emitter 21a and the fluorescent wheel 23 and the line between the light collecting member 25 and the red laser emitter 22 are perpendicular to each other;
  • the light combining member 24 is configured to transmit the first blue laser light emitted by the first blue laser emitter 21a to the fluorescent wheel 23, and after receiving the green fluorescence generated by the first blue laser light to illuminate the green fluorescent region, the green light is emitted. Fluorescence is reflected to the light collecting member 25;
  • the light combining member 24 is further configured to receive the red laser light emitted by the red laser emitter 22, and transmit the red laser light to the light collecting member 25;
  • the light combining member 24 is further configured to receive the second blue laser light emitted by the second blue laser emitter 21b and transmitted through the transmissive region, and reflect the second blue laser light to the light collecting member 25;
  • the polarization direction of the second blue laser is perpendicular to the polarization direction of the first blue laser.
  • the optical path transmission process of the two-color laser light source includes: the first blue laser light is transmitted from the light combining member 24 and then irradiated on the fluorescent wheel 23, and the green fluorescent region of the excitation fluorescent wheel emits green fluorescence.
  • the green fluorescent light is reflected and output by the light combining member 24 to the light collecting member 25;
  • the second blue laser light is transmitted from the fluorescent wheel 23 to the light combining member 24, and then reflected and output by the light combining member 24 to the light collecting member 25; red laser emission
  • the red laser light emitted from the device 22 is transmitted from the light combining member 24 to the light collecting member 25. After the three colors of light enter the light collecting member 25, they can be mixed to form white light, thereby realizing the illumination function of the two-color laser light source.
  • the red laser emitter includes: a first red laser emitter 22a and a second red laser emitter 22b; the red laser includes: a first red laser and a second red laser; The first red laser emitter and the second red laser emitter are juxtaposed, and are disposed on the other side of the light combining member 24 with respect to the light collecting member 25.
  • the light combining member 24 is further configured to respectively receive the first red laser light emitted by the first red laser emitter 22a and the second red laser light emitted by the second red laser emitter 22b, and transmit the first red laser and the second red laser.
  • the light collecting member 25 To the light collecting member 25;
  • the polarization direction of the first red laser is perpendicular to the polarization direction of the second red laser.
  • the red laser light collected by the light combining component is the combined light of the first red laser and the second red laser whose polarization directions are perpendicular to each other, the superposition of the two polarized lights can form a superposition of the phase pattern when the image is projected, thereby generating more independence.
  • the random phase pattern effectively reduces the speckle effect of the red laser and improves the optical quality of the two-color laser source.
  • the first blue laser emitter, the second blue laser emitter, and the red laser emitter are all time-illuminated.
  • the red laser emitter includes a first red laser emitter and a second red laser emitter that are illuminated at the same time, or the first red laser emitter and the second red laser emitter are illuminated in time.
  • the light combining member includes a first dichroic color patch 241, and the first dichroic color patch 241 is disposed on the light incident side of the light collecting member 25.
  • the first dichroic color patch 241 is for transmitting the red laser light and the first blue laser light, reflecting the green fluorescent light, and reflecting the second blue laser light.
  • the laser light source further includes a second dichroic color patch 245, the fluorescent wheel 23 is located between the second dichroic color patch and the light combining member 24; and the second blue laser emitter
  • the light exiting direction of 21b is perpendicular to the axial direction of the fluorescent wheel 23; the second dichroic color patch 245 is for reflecting the second blue laser light to the fluorescent wheel.
  • the second blue laser emitter 21b can be directly facing the fluorescent wheel, so that there is no need to provide a dichroic color patch 245.
  • the fluorescent wheel may include a green fluorescent region Y and a transmissive region K, the surface of the green fluorescent region Y is provided with a green phosphor, and the surface of the transmissive region Y is provided with a first diffusing
  • the body, the green fluorescent region and the transmissive region are arranged in a fan shape, and the fluorescent wheel can emit green fluorescence and transmit a second blue laser in a time series when rotated.
  • the fluorescent wheel can be rotated according to a preset rotation speed.
  • the green fluorescent region of the fluorescent wheel is aligned with the fifth beam shaping device E (the green fluorescent region is irradiated with laser light). Zone), neither the second blue laser emitter nor the red laser emitter is illuminated; when the second blue laser emitter is illuminated, the transmission zone of the fluorescent wheel is aligned with the fifth beam shaping device E (the transmission zone is laser Irradiation area), and neither the first blue laser emitter nor the red laser emitter is illuminated; when both the first blue laser emitter and the second blue laser emitter are not lit, the red laser emission is illuminated Device.
  • the fluorescent wheel may further include a blank area Q.
  • the blank area Q is located in the central area of the fluorescent wheel, and the green fluorescent area Y is located at the periphery of the blank area Q.
  • the green fluorescent area Y is arranged in a fan-shaped annular shape, and the transmitting area K is arranged in a fan shape or a fan-shaped annular shape.
  • the laser light source includes at least:
  • the light combining member 24 is disposed between the first blue laser emitter 21a and the fluorescent wheel 23, and the fluorescent wheel 23 is disposed between the light combining member 24 and the second blue laser emitter 21b, the light collecting member 25 and the first red
  • the laser emitters 22a are respectively disposed on both sides of the light combining member 24, and the line between the first blue laser emitter 21a and the fluorescent wheel 23 and the line between the light collecting member 25 and the first red laser emitter 22a are perpendicular to each other. ;
  • a second red laser emitter 22b and a second blue laser emitter 21b are disposed on the same side of the fluorescent wheel 23;
  • the light combining member 24 is configured to transmit the first blue laser light emitted by the first blue laser emitter 21a to the fluorescent wheel 23, and after receiving the green fluorescence generated by the first blue laser light to illuminate the green fluorescent region, the green light is emitted. Fluorescence is reflected to the light collecting member 25;
  • the light combining member 24 is further configured to receive the first red laser light emitted by the first red laser emitter 22a, and transmit the first red laser light to the light collecting member 25;
  • the light combining member 24 is also specifically configured to reflect the second red laser light emitted by the second red laser emitter 22b and transmitted through the transmissive region to the light collecting member 25;
  • the light combining member is also specifically configured to receive the first red laser light emitted by the first red laser emitter 22a, and transmit the first red laser light to the light collecting member 25;
  • the polarization direction of the first red laser is perpendicular to the polarization direction of the second red laser.
  • the light collecting component can be a light rod.
  • the laser emitter provided by the embodiment of the present application may be a laser emitter array.
  • the first blue laser emitter 21a, the first red laser emitter 22a, the light combining member 24, and the light collecting member 25 are disposed on the first side of the fluorescent wheel 23, the second blue laser emitter 21b and The second red laser emitter 22b is disposed on the second side of the fluorescent wheel 23, the light combining member 24 is disposed between the first blue laser emitter 21a and the fluorescent wheel 23, and the light combining member 24 is disposed at the first red laser emission Between the device 22a and the light collecting member 25.
  • the polarization direction of the second blue laser is perpendicular to the polarization direction of the first blue laser, and the polarization direction of the second blue laser is parallel to the polarization direction of the second red laser, and the light combining member 24 is used for transmission.
  • a blue laser and a first red laser reflect the second blue laser and the second red laser.
  • a beam shaping device may be disposed on one side of the light emitting surface of each laser emitter, which is a first beam shaping device A, respectively.
  • the beam shaping device can be a telescope system (in practical applications, the telescope system can include a convex lens and a concave lens) for compressing parallel laser light emitted by the laser emitter to reduce the area of the beam, and the compressed laser beam Still parallel lasers can increase the transmittance of parallel lasers in the back end optics.
  • a fifth beam shaping device E may be disposed between the light combining member 24 and the fluorescent wheel 23.
  • the fifth beam shaping device E may be composed of two lenses, the first blue The first blue laser light emitted by the laser emitter is focused by the two lenses and irradiated onto the fluorescent wheel. The green fluorescence emitted by the fluorescent wheel can be collimated by the two lenses and then enter the light combining member to improve the uniformity of light output.
  • the fifth beam shaping device E is further configured to perform a collimation process on the second blue laser light and the second red laser light.
  • the fifth beam shaping device E may also be composed of one, three or four lenses. The number of lenses constituting the beam shaping device is not limited in the embodiment of the present application.
  • the laser light source may further include: a third dichroic color patch 246 located between the second blue laser emitter 21b and the fluorescent wheel 23, the third dichroic color patch 246 may be used to The second blue laser light is transmitted to the fluorescent wheel, and the second red laser light is reflected to the fluorescent wheel, and the first blue laser emitter and the second blue laser emitter are disposed opposite to each other on the fluorescent wheel. In some embodiments, as shown in FIG.
  • the two-color laser light source may further include: a fourth dichroic color patch 247, where the fourth dichroic color patch 247 is located at the second red laser emitter 22b and the fluorescent wheel 23.
  • the fourth dichroic color patch can be used to transmit the second red laser light to the fluorescent wheel and to reflect the second blue laser light to the fluorescent wheel.
  • the third dichroic color patch 246 may be placed at an angle of 45° with the second red laser emitter 22b, such that the second red laser light emitted by the horizontally placed second red laser emitter is After the reflection of the tri-color patch, the fluorescent wheel can be vertically injected, so that the second red laser can be transmitted according to the preset optical path, thereby ensuring the stability of the laser transmission.
  • the fourth dichroic color patch 247 can be placed at an angle of 45° to the second blue laser emitter 21b such that the second blue laser light emitted by the horizontally placed second blue laser emitter is After the fourth dichroic color sheet is reflected, the fluorescent wheel can be vertically injected, so that the second blue laser light can be transmitted according to the preset optical path, thereby ensuring the stability of the laser transmission.
  • the optical path transmission process of the two-color laser light source shown in FIG. 8 and FIG. 9-1 includes: the first blue laser light emitted by the first blue laser emitter 21a passes through the first beam shaping device A, and is transmitted from the light combining member 24. Then, the fifth beam shaping device E is irradiated on the fluorescent wheel 23 to excite the green phosphor to emit green fluorescence, and the green fluorescence is reflected and output by the light combining member 24 after passing through the fifth beam shaping device E; the second blue laser emitter The second blue laser light emitted from 21b passes through the second beam shaping device B, is transmitted from the third dichroic color patch 246 to the fluorescent wheel 23, and the second blue laser light is transmitted from the fluorescent wheel 23, and then passes through the fifth beam shaping device.
  • the first red laser light emitted from the first red laser emitter 22a passes through the third beam shaping device C, is transmitted through the light combining member 24, and is emitted by the second red laser emitter 22b.
  • the second red laser passes through the fourth beam shaping device D, the second red laser light is reflected by the third dichroic color patch 246 to the fluorescent wheel 23.
  • the fifth beam shaping is performed.
  • Loading E by the engagement member 24 reflects the light output, the first and second red laser light is a red laser engagement member 24 engaged red laser light in the final output. After the three colors of light enter the light collecting member 25, they can be mixed to form white light, thereby realizing the illumination function of the two-color laser light source.
  • the red laser light collected by the light combining component is the combined light of the first red laser and the second red laser whose polarization directions are perpendicular to each other, the superposition of the two polarized lights can be When the image is projected, the superposition of the phase pattern is formed, thereby generating more independent random phase patterns, effectively reducing the speckle effect of the red laser and improving the optical quality of the two-color laser source.
  • the first blue laser emitter, the second blue laser emitter, the first red laser emitter, and the second red laser emitter are all time-illuminated; or the first blue laser emitter The second blue laser emitter, and the red laser emitter are all time-illuminated, wherein the red laser emitter includes the first red laser emitter and the second red laser emitter with the same lighting timing. As shown in FIG. 9-1 and FIG.
  • the light combining member may include a polarization combining dichroic sheet 244 disposed on the light incident side of the light collecting member 25, and the polarization combining light direction
  • the color patch 244 is for transmitting the first blue laser light and the first red laser light, and reflects the green fluorescent light, the second blue laser light, and the second red laser light.
  • the first red laser is p-polarized light
  • the second red laser is s-polarized light
  • the first blue laser is p-polarized light
  • the second blue laser is s-polarized light
  • the disposed polarized light dichroic color patch can transmit p-polarized light and reflect s-polarized light.
  • the first red laser light is s-polarized light
  • the second red laser light is p-polarized light
  • the first blue laser light is s-polarized light
  • the second blue laser light is p-polarized light
  • the disposed polarized light dichroic color patch can transmit s-polarized light and reflect p-polarized light.
  • the polarized light dichroic color patch can also reflect green fluorescence.
  • the laser light source may further include a color filter wheel 27 disposed on the polarization combining dichroic sheet 244 (light combining member) and light collection. Between the light incident sides of the component 25, as shown in FIG. 5, the color filter wheel may include a red filter region R, a blue filter region B, and a green filter region G. When the color filter wheel rotates, the second blue laser, the red laser, and the green fluorescent light can be transmitted in series.
  • the second blue laser emitter when the illumination area of the color filter wheel rotates, when the illumination area of the color filter wheel is a blue filter area, the second blue laser emitter is illuminated while the first blue laser emitter, the first red The laser emitter and the second red laser emitter are neither illuminated; when the illumination area of the color filter wheel is a red filter zone, the first red laser emitter and the second red laser emitter are illuminated while the first blue The laser emitter and the second blue laser emitter are neither illuminated; when the illumination region of the color filter wheel is a green filter region, the first blue laser emitter is illuminated while the second blue laser emitter is Both a red laser emitter and a second red laser emitter are not illuminated, thereby enabling sequential transmission of the second blue laser, the red laser, and the green fluorescence.
  • the region on the color filter wheel that can transmit red light is a red filter region, but is not limited thereto.
  • the light combining member may further include a fixed diffusion sheet 242 for homogenizing the blue laser light emitted by the first blue laser emitter. Since the blue laser emitted by the first blue laser emitter is the excitation light of the fluorescent wheel, if the beam is not homogenized, the intensity distribution of the laser spot is uneven, the energy is concentrated, and the energy is concentrated when directly incident on the surface of the fluorescent wheel. The laser spot may cause the surface of the fluorescent wheel to burn and damage the fluorescent wheel, causing the laser to fail to properly fluoresce the fluorescent wheel.
  • the laser light source may further include a focusing lens 243 disposed between the polarization combining dichroic 244 and the color filter wheel 27. Since the beam divergence angle of the light transmitted or reflected by the polarized light dichroic color patch is larger than the light collecting part collecting angle, the light collecting efficiency is low, affecting the brightness of the projection light source, and the focusing lens can be used for the polarized light combining dichroic color film.
  • the transmitted first red laser light, the reflected green fluorescent light, the reflected second blue laser light, and the reflected second red laser light are respectively focused to improve the light collecting efficiency of the light collecting member to improve the brightness of the projection light source.
  • the surface of the red filter region may be provided with a second diffuser, and the surface of the blue filter region may be provided with a third diffuser.
  • the second diffuser and the third diffuser may be micron-sized particles.
  • the fluorescent wheel may include a green fluorescent region Y and a transmissive region, and the transmissive region may include a red diffusing region R1 and a blue diffusing region B1.
  • the surface of the green fluorescent region Y is provided with a green phosphor, and the red diffusing region R1 And a surface of the blue light diffusion region B1 is respectively provided with a first diffuser, which is a micron-sized particle.
  • a region capable of transmitting red light in the transmission region of the fluorescent wheel is a red light diffusion region, and a region capable of transmitting blue light is a blue light diffusion region, but For the limit.
  • the particle diameter of the diffuser provided on the surface of the fluorescent wheel is different from the particle diameter of the diffuser provided on the surface of the color filter wheel.
  • speckle Due to the high coherence of the laser, a speckle effect is inevitably generated.
  • speckle means that when the coherent light source illuminates a rough object, the scattered light will have interference in the space due to the same wavelength and a constant phase. Some of the interference occurs in the space, and some interference occurs.
  • the result is a grainy bright and dark spot on the screen, that is, some unfocused spots flicker, which is prone to vertigo when viewed for a long time, which will undoubtedly cause a drop in the quality of the projected image and reduce the user's viewing experience.
  • the second blue laser light emitted by the second blue laser emitter is first passed by the first diffuser on the blue light diffusion region of the fluorescent wheel to the second blue laser light when passing through the fluorescent wheel.
  • the second blue laser is diffused a second time by the third diffuser on the blue filter region of the color filter wheel, due to the blue light diffusion region of the fluorescent wheel.
  • the first diffuser and the third diffuser on the blue filter region of the color filter wheel have different particle diameters, so that the diffusion angle of the second blue laser light is different, so that the second blue laser can generate more Independent random phase pattern; in some embodiments, since the fluorescent wheel and the color filter wheel are both rotated, the moving diffuser can further increase the random phase, and can better destroy the coherence of the blue laser for projection
  • the laser source can form more independent random phase patterns on the projected image.
  • the principle of the dissipating plaque of the second red laser can refer to the principle of the dissipating plaque of the second blue laser, and will not be described herein.
  • the particle diameter of the diffuser disposed on the surface of the fluorescent wheel may be larger than the particle diameter of the diffuser disposed on the surface of the color filter wheel.
  • the diffuser of the surface of the fluorescent wheel has a particle diameter of 100.
  • the micrometer, the diffuser provided on the surface of the color filter wheel has a particle diameter of 30 ⁇ m.
  • the diffuser disposed on the surface of the fluorescent wheel can first disperse the laser, and then the diffuser disposed on the surface of the color filter wheel accurately rearranges the phase of the laser.
  • the particle diameter of the diffuser disposed on the surface of the fluorescent wheel may also be smaller than the particle diameter of the diffuser disposed on the surface of the color filter wheel.
  • the diffuser of the surface of the fluorescent wheel has a particle diameter of 30 micrometers.
  • the diffuser provided on the surface of the color filter wheel has a particle diameter of 100 ⁇ m.
  • the red laser in the two-color laser light source is a combination of a red laser and a second red laser, wherein the first red laser and the second red laser are different polarized lights, for example, the first red laser is p-polarized light, and the second red laser is s-polarized light, in the projected image
  • the superposition of the two polarized lights can form a superposition of the phase patterns, thereby generating more independent random phase patterns, further reducing the speckle effect of the red laser.
  • the red laser light collected by the light combining component is the combined light of the first red laser and the second red laser whose polarization directions are perpendicular to each other, the superposition of the two polarized lights can be When the image is projected, the superposition of the phase pattern is formed, thereby generating more independent random phase patterns, effectively reducing the speckle effect of the red laser and improving the optical quality of the two-color laser source.
  • the embodiment of the present application provides a laser projector, which may include the two-color laser light source shown in any of FIG. 2-1, FIG. 2-2, FIG. 4, and FIG.

Abstract

一种双色激光光源和激光投影机。激光光源中的合光部件(24)用于将第一蓝色激光透射至荧光轮(23),并将由第一蓝色激光照射绿色荧光区(Y)所产生的绿色荧光反射至光收集部件(25);还用于将第二蓝色激光透射至光收集部件(25);还用于将由红色激光发射器(102)发出并经由透射区透射的红色激光反射至光收集部件(25)。该光路系统较为简单,体积较小。

Description

双色激光光源和激光投影机
本申请要求于2017年8月18日提交中国专利局,申请号为201710712834.9、申请名称为“双色激光光源和激光投影机”,以及于2017年8月18日提交中国专利局,申请号为201710712832.X、申请名称为“双色激光光源和激光投影机”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及投影显示领域,特别涉及一种双色激光光源和激光投影机。
背景技术
激光光源是一种光亮度高、方向性强、发出单色光束的光源,由于激光光源的诸多优点,近年来逐渐被应用于投影显示领域。与传统的单色激光光源相比,双色激光光源可以提高光源的色彩纯度、色彩亮度以及色域,更好地满足激光投影的色彩需求。
发明内容
本申请实施例提供了一种双色激光光源和激光投影机。所述技术方案如下:
第一方面,本申请提供了一种双色激光光源,所述激光光源包括第一蓝色激光发射器、第二蓝色激光发射器、红色激光发射器、荧光轮、光收集部件和合光部件,所述荧光轮设置有绿色荧光区和透射区;
所述合光部件设置在所述第一蓝色激光发射器和所述荧光轮之间,所述荧光轮设置在所述合光部件和所述红色激光发射器之间,所述光收集部件和所述第二蓝色激光发射器分别设置在所述合光部件两侧,所述第一蓝色激光发射器与所述荧光轮之间的连线和所述光收集部件与所述第二蓝色激光发射器之间的连线相互垂直;
所述合光部件用于将所述第一蓝色激光发射器发出的第一蓝色激光透射至所述荧光轮,并在接收到所述第一蓝色激光照射所述绿色荧光区所产生的绿色荧光后,将所述绿色荧光反射至光收集部件;
所述合光部件还用于接收所述第二蓝色激光发射器发出的第二蓝色激光,并将所述第二蓝色激光透射至所述光收集部件;
所述合光部件还用于接收由所述红色激光发射器发出并经由所述透射区透射的红色激光,并将所述红色激光反射至所述光收集部件。
第二方面,本申请提供了一种双色激光光源,所述激光光源包括第一蓝色激光发射器、第二蓝色激光发射器、红色激光发射器、荧光轮、光接收部件和合光部件,所述荧光轮设置有绿色荧光区和透射区;
所述合光部件设置在所述第一蓝色激光发射器和所述荧光轮之间,所述荧光轮设置在所述合光部件和所述第二蓝色激光发射器之间,所述光收集部件和所述红色激光发射器分别设置在所述合光部件两侧,所述第一蓝色激光发射器与所述荧光轮之间的连线和所述光收集部件与所述红色激光发射器之间的连线相互垂直;
所述合光部件用于将所述第一蓝色激光发射器发出的第一蓝色激光透射至所述荧光轮,并在接收到所述第一蓝色激光照射所述绿色荧光区所产生的绿色荧光后,将所述绿色荧光反射至光收集部件;
所述合光部件还用于接收所述红色激光发射器发出的红色激光,并将所述红色激光透射至所述光收集部件;
所述合光部件还用于接收由所述第二蓝色激光发射器发出并经由所述透射区透射的第二蓝色激光,并将所述第二蓝色激光反射至所述光收集部件;
其中,所述第二蓝色激光的偏振方向与所述第一蓝色激光的偏振方向垂直。
第三方面,本申请提供了一种激光投影机,所述激光投影机包括上述方面任一所述的双色激光光源。
本申请实施例提供的双色激光光源和激光投影机,该激光光源包括第一蓝色激光发射器、第二蓝色激光发射器、红色激光发射器、荧光轮、光收集部件和合光部件,所述荧光轮设置有绿色荧光区和透射区;合光部件设置在第一蓝色激光发射器和荧光轮之间,荧光轮设置在合光部件和红色激光发射器之间,光收集部件和第二蓝色激光发射器分别设置在合光部件两侧,第一蓝色激光发射器与荧光轮之间的连线和光收集部件与第二蓝色激光发射器之间的连线相互垂直;第一蓝色激光发射器发出的第一蓝色激光能够透过合光部件并激发荧光轮的绿色荧光区发出绿色荧光,再由合光部件将该绿色荧光反射至光收集部件; 第二蓝色激光发射器发出的第二蓝色激光透过合光部件透射至光收集部件,红色激光发射器发出的红色激光透过荧光轮的透射区后,被合光部件反射至光收集部件,该双色激光光源的光路系统较为简单。
本申请实施例提供的双色激光光源和激光投影机,该激光光源包括第一蓝色激光发射器、第二蓝色激光发射器、红色激光发射器、荧光轮、光接收部件和合光部件,所述荧光轮设置有绿色荧光区和透射区;合光部件设置在第一蓝色激光发射器和荧光轮之间,荧光轮设置在合光部件和第二蓝色激光发射器之间,光收集部件和红色激光发射器分别设置在合光部件两侧,第一蓝色激光发射器与荧光轮之间的连线和光收集部件与红色激光发射器之间的连线相互垂直;第一蓝色激光发射器发出的第一蓝色激光能够透过合光部件并激发荧光轮的绿色荧光区发出绿色荧光,再由合光部件将该绿色荧光反射至光收集部件;红色激光发射器发出的红色激光透过合光部件透射至光收集部件,第二蓝色激光发射器发出的第二蓝色激光透过荧光轮的透射区后,被合光部件反射至光收集部件,该双色激光光源的光路系统较为简单。
附图说明
图1是相关技术中的一种双色激光光源的结构示意图;
图2-1是本申请实施例提供的一种双色激光光源的结构示意图;
图2-2是本申请实施例提供的另一种双色激光光源的结构示意图;
图3-1是本申请实施例提供的一种荧光轮的示意图;
图3-2是本申请实施例提供的另一种荧光轮的示意图;
图4是本申请实施例提供的另一种双色激光光源的结构示意图;
图5是本申请实施例提供的一种滤色轮的示意图;
图6是本申请实施例提供的又一种双色激光光源的结构示意图;
图7-1是本申请实施例提供的又一种双色激光光源的结构示意图
图7-2是本申请实施例提供的又一种双色激光光源的结构示意图;
图8是本申请实施例提供的又一种双色激光光源的结构示意图;
图9-1是本申请实施例提供的又一种双色激光光源的结构示意图;
图9-2是本申请实施例提供的又一种双色激光光源的结构示意图;
图10是本申请实施例提供的又一种荧光轮的示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
激光光源是一种光亮度高、方向性强、发出单色相干光束的光源,由于激光光源的诸多优点,近年来逐渐被应用于投影显示领域。
在一些实施方式中,激光光源可以应用于激光投影机。激光投影机可以发出至少一种颜色的光线以实现图像的显示。基色,是指不能通过其他颜色的混合调配而得出的“基本色”。以不同比例将基色混合,可以产生出其他的新颜色。激光投影机通常产生基色的光线来实现图形的显示。一般的激光投影机产生的颜色为三基色,即红、绿、蓝三种颜色,随着科技的发展,激光投影机也可以产生两基色和一种混合色,或基色和其他混合色的组合,本申请实施例对此不作限定。
激光投影机的激光光源有多种,该激光光源可以包括:至少一个激光发射器,激光光源能够发射出至少一种颜色的光线。通常该激光光源还可以包括:荧光轮(也称荧光色轮),荧光轮可以作为波长转换装置。激光光源可以是单色激光光源(即包括一个激光发射器且该激光发射器产生一种颜色),也可以是双色激光光源(即包括两个激光发射器且每个激光发射器产生一种颜色),从而发出一种或两种颜色的激光,荧光轮上设置有荧光粉,可以被激发出对应颜色的荧光,用于与激光发射器发出的激光的颜色共同组成三基色,作为投影光源向光机部分提供照明。激光投影机的光源部分包括至少一激光发射器和一荧光轮。激光投影机的光学部分包括至少一成像元件和一投影透镜,其中成像元件可以是数字微镜元件(Digital Micromirror Device,简称DMD)或硅基液晶(Liquid Crystal On Silicon,简称LCOS)元件。
与单色激光光源相比,双色激光光源可以提高光源的色彩纯度、色彩亮度以及色域,更好地满足激光投影的色彩需求。
相关技术中,如图1所示,双色激光光源一般包括蓝色激光发射器101、红色激光发射器102、荧光轮103、光束整形装置104、合光部件105和光收集部件106。该双色激光光源的出光原理包括:蓝色激光发射器101发出的蓝色激光经过光束整形装置104后,由合光部件105反射至荧光轮103,从荧光轮103透射并经过中继回路光路后再次到达合光部件105,被合光部件105反射输出;蓝 色激光照射至荧光轮103上,可以激发荧光轮103发出绿色荧光,该绿色荧光由合光部件105透射输出;红色激光发射器102发出的红色激光经过光束整形装置104后,由合光部件105反射输出;三种颜色的光进入光收集部件后,实现激光光源的照明功能。
本申请实施例提供了一种双色激光光源,如图2-1所示,该激光光源包括第一蓝色激光发射器21a、第二蓝色激光发射器21b、红色激光发射器22、荧光轮23、光收集部件25和合光部件24,荧光轮23设置有绿色荧光区和透射区。
合光部件24设置在第一蓝色激光发射器21a和荧光轮23之间,荧光轮23设置在合光部件24和红色激光发射器22之间,光收集部件25和第二蓝色激光发射器21b分别设置在合光部件25两侧,第一蓝色激光发射器21a与荧光轮23之间的连线和光收集部件25与第二蓝色激光发射器21b之间的连线相互垂直;
合光部件24用于将第一蓝色激光发射器21a发出的第一蓝色激光透射至荧光轮23,并在接收到第一蓝色激光照射绿色荧光区所产生的绿色荧光后,将绿色荧光反射至光收集部件25。
合光部件24还用于接收第二蓝色激光发射器21b发出的第二蓝色激光,并将第二蓝色激光透射至光收集部件25。
合光部件24还用于接收由红色激光发射器22发出并经由透射区透射的红色激光,并将红色激光反射至光收集部件25。
如图2-1所示,第一蓝色激光发射器21a、第二蓝色激光发射器21b、合光部件24和光收集部件25设置在荧光轮23的第一侧,红色激光发射器22设置在荧光轮23的第二侧,合光部件24设置在第一蓝色激光发射器21a和荧光轮23之间,且合光部件24设置在第二蓝色激光发射器21b和光收集部件25之间。
需要说明的是,本申请实施例提供的激光发射器可以为激光发射器阵列也可以为单独的激光发射器,其中,第一蓝色激光发射器21a与荧光轮23之间的连线和光收集部件25与第二蓝色激光发射器21b之间的连线相互垂直并非限定两条连线之间绝对垂直,两条连线之间的夹角与直角之间可以存在一定的偏差,只需满足最终激光发射器和荧光轮的光线均能进入光收集部件25即可。
在一些实施方式中,如图2-2所示,红色激光发射器22包括:第一红色激光发射器22a和第二红色激光发射器22b;红色激光包括:第一红色激光和第二红色激光;
合光部件24还具体用于分别将第一红色激光发射器22a和第二红色激光发射器22b发出并经由透射区透射的第一红色激光和第二红色激光反射至光收集部件25;
其中,第一红色激光的偏振方向与第二红色激光的偏振方向垂直。
在一些实施方式中,第一红色激光发射器22a和第二红色激光发射器22b可以并排设置在荧光轮的第二侧,通过反射装置反射至荧光轮23;或,可以并排设置在与第一蓝色激光发射器21a相对的位置,直接将第一红色激光和第二红色激光传输至荧光轮23;或,如图2-2所示,激光光源还包括一二向色片28,该二向色片28用于反射第二红色激光,透射第一红色激光。
在一些实施方式中,如图2-1所示,双色激光光源还可以包括多个光束整形装置和反射装置28,或,如图2-2所示,双色激光光源还可以包括多个光束整形装置和二向色片28,该多个光束整形装置包括第一光束整形装置A、第二光束整形装置B、第三光束整形装置C、第四光束整形装置D和第五光束整形装置E。
其中,第一光束整形装置A、第二光束整形装置B、第三光束整形装置C和第四光束整形装置D可以为望远镜系统(实际应用中,该望远镜系统可以包括一个凸透镜和一个凹透镜),用于将激光发射器发出的平行激光进行压缩,以减小光束的面积,且压缩后的激光仍为平行激光,可以提高平行激光在后端光学器件中的透过率。
第五光束整形装置E可以由两个透镜组成,第一蓝色激光由该两个透镜聚焦后照射至荧光轮上,荧光轮发出的绿色荧光和红色激光发射器发出的红色激光可以由该两个透镜进行准直处理后进入合光部件,提高出光的均匀性。
第五光束整形装置E还可以由一个、三个或四个透镜组成,本申请实施例对组成第五光束整形装置E的透镜数量不做限定。
本申请实施例提供的双色激光光源的光路传输过程包括:第一蓝色激光经过第一光束整形装置A后,从合光部件24透射,再经过第五光束整形装置E照射在荧光轮23上,用于激发绿色荧光粉发出绿色荧光,该绿色荧光经过第五光束整形装置E后由合光部件24反射输出至光收集部件25;第二蓝色激光经过第二光束整形装置B后,从合光部件24透射输出至光收集部件25;红色激光发射器22发出的红色激光经过第四光束整形装置D后,由反射装置28将该红色激 光反射至荧光轮23,该红色激光从荧光轮23透射后,经过第五光束整形装置E并由合光部件24反射输出光收集部件25。三种颜色的光进入光收集部件25后可以混合形成白光,实现双色激光光源的照明功能。
其中,反射装置28可以为反射片,该反射片可以与红色激光发射器呈45°夹角放置,以使得水平放置的红色激光发射器发出的红色激光由该反射片反射后,可以垂直射入荧光轮,使红色激光能够按照预设的光路进行传输,从而保证了激光传输的稳定性。
在一些实施方式中,该反射装置28可以为第二二向色片,用于将红色激光反射至荧光轮23。
在一些实施方式中,在其他实施例中,红色激光发射器22可以与第一蓝色激光发射器21a相对设置在荧光轮23的两侧,红色激光发射器22发出的红色激光直接传输至荧光轮23,而无需通过反射装置进行传输。
在一些实施方式中,光收集部件可以为光棒。
综上所述,本申请实施例提供的双色激光光源,该激光光源包括第一蓝色激光发射器、第二蓝色激光发射器、红色激光发射器、荧光轮、光收集部件和合光部件,所述荧光轮设置有绿色荧光区和透射区;合光部件设置在第一蓝色激光发射器和荧光轮之间,荧光轮设置在合光部件和红色激光发射器之间,光收集部件和第二蓝色激光发射器分别设置在合光部件两侧,第一蓝色激光发射器与荧光轮之间的连线和光收集部件与第二蓝色激光发射器之间的连线相互垂直;第一蓝色激光发射器发出的第一蓝色激光能够透过合光部件并激发荧光轮的绿色荧光区发出绿色荧光,再由合光部件将该绿色荧光反射至光收集部件;第二蓝色激光发射器发出的第二蓝色激光透过合光部件透射至光收集部件,红色激光发射器发出的红色激光透过荧光轮的透射区后,被合光部件反射至光收集部件,该双色激光光源的光路系统较为简单。
在一些实施方式中,第一红色激光为p偏振光,第二红色激光为s偏振光,第一蓝色激光为p偏振光,第二蓝色激光为s偏振光;
或者,第一红色激光为s偏振光,第二红色激光为p偏振光,第一蓝色激光为s偏振光,第二蓝色激光为p偏振光。
上述具体实施方式中,由于合光部件采集的红色激光为偏振方向相互垂直的第一红色激光和第二红色激光的合光,两种偏振光的叠加能够在投影图像时 形成相位图样的叠加,从而产生更多的独立随机相位图样,有效减弱了红色激光的散斑效应,提高了双色激光光源的光学品质。
在本申请实施例中,第一蓝色激光发射器、第二蓝色激光发射器和红色激光发射器均为时序点亮。在一些实施方式中,第一蓝色激光发射器、第二蓝色激光发射器和红色激光发射器的点亮时刻不同。在一些实施方式中,若红色激光发射器包括:第一红色激光发射器和第二红色激光发射器时,第一红色激光发射器和第二红色激光发射器为时序点亮,或第一红色激光发射器和第二红色激光发射器的点亮时刻相同。当第一红色激光发射器和第二红色激光发射器为时序点亮,需保证输出的第一红色激光和第二红色激光都传输至荧光轮的透射区。
在一些实施方式中,如图3-1所示,荧光轮可以包括绿色荧光区Y和透射区K,绿色荧光区Y的表面设置有绿色荧光粉,透射区Y的表面设置有第一漫射体,绿色荧光区和透射区均呈扇形排布,该荧光轮在转动时,能够时序性地发出绿色荧光和透射红色激光。
其中,第一漫射体可以为微米级的粒子。
实际应用中,荧光轮可以按照预设的转动速度进行转动,在点亮第一蓝色激光发射器时,荧光轮的绿色荧光区对准第五光束整形装置E(绿色荧光区为激光的照射区域)时,且第二蓝色激光发射器和红色激光发射器均不点亮;当点亮红色激光发射器时,荧光轮的透射区对准第五光束整形装置E(透射区为激光的照射区域),且第一蓝色激光发射器和第二蓝色激光发射器均不点亮;在第一蓝色激光发射器和红色激光发射器均不点亮时,点亮第二蓝色激光发射器。
由于荧光轮的中心区域无法对准第五光束整形装置,也即是荧光轮的中心区域任意时刻均无法成为激光的照射区域,因此如图3-2所示,荧光轮还可以包括空白区Q,该空白区Q位于荧光轮的中心区域,绿色荧光区Y位于空白区Q的外围,该绿色荧光区Y呈扇形环状排布,透射区K呈扇形或扇形环状排布。
如图4所示,合光部件可以包括:第一二向色片241,第一二向色片241设置在光收集部件25的入光侧,第一二向色片241用于透射第一蓝色激光和第二蓝色激光,反射绿色荧光以及反射红色激光发射器22发出的红色激光。
在一些实施方式中,如图4所示,合光部件还可以包括固定扩散片242,该固定扩散片用于匀化第一蓝色激光,由于第一蓝色激光为荧光轮的激励光,如 果光束未进行匀化,激光的光斑强度分布不均,能量集中,直接入射到荧光轮表面时,能量集中的激光光斑可能会使荧光轮表面发生灼烧,损坏荧光轮,导致激光无法正常激发荧光轮发出荧光。
在一些实施方式中,如图4所示,激光光源还可以包括:滤色轮26,该滤色轮26设置在第一二向色片241(合光部件)和光收集部件25的入光侧之间,如图5所示,该滤色轮可以包括红色滤光区R、蓝色滤光区B和绿色滤光区G。滤色轮在转动时,能够时序性地透射第二蓝色激光、红色激光和绿色荧光。
在一些实施方式中,滤色轮在转动时,当滤色轮的照射区域为蓝色滤光区时,点亮第二蓝色激光发射器,同时第一蓝色激光发射器和红色激光发射器均不点亮;当滤色轮的照射区域为红色滤光区时,点亮红色激光发射器,同时第一蓝色激光发射器和第二蓝色激光发射器均不点亮;当滤色轮的照射区域为绿色滤光区时,点亮第一蓝色激光发射器,同时第二蓝色激光发射器和红色激光发射器均不点亮,从而实现了时序性地透射第二蓝色激光、红色激光和绿色荧光。
在一些实施方式中,如图4所示,激光光源还可以包括聚焦透镜243,该聚焦透镜243设置在第一二向色片241和滤色轮26之间。由于第一二向色片透射或反射的光的光束扩散角大于光收集部件收集角度时,会导致光的收集效率低,影响投影光源亮度,聚焦透镜可以用于将从第一二向色片透射的第二蓝色激光、反射的绿色荧光以及反射的红色激光分别进行聚焦,提高光收集部件对光的收集效率,以提高投影光源的亮度。
在一些实施方式中,在本申请实施例提供的滤色轮中,红色滤光区的表面设置有第二漫射体,蓝色滤光区的表面设置有第三漫射体。该第二漫射体和第三漫射体可以为微米级的粒子,第三漫射体的粒子直径可以与第二漫射体的粒子直径相同。其中,第二漫射体的粒子直径与荧光轮的透射区的表面设置的第一漫射体的粒子直径不同。
由于激光的高相干性,不可避免地产生散斑效应。所谓散斑是指相干光源在照射粗糙的物体时,散射后的光由于波长相同,相位恒定,就会在空间中产生干涉,空间中有部分发生干涉相长,有部分发生干涉相消,最终的结果是在屏幕上出现颗粒状的明暗相间的斑点,也就是一些未聚焦的斑点闪烁,长时间观看易产生眩晕感,这无疑会造成投影图像质量的下降,降低用户的观看体验。 相较于蓝色激光,红色激光的相干长度更长,具有更高的相干性,因此散斑现象更为严重。
在本申请实施例中,红色激光发射器发出的红色激光在经过荧光轮时,先由荧光轮的透射区上的第一漫射体将该红色激光进行第一次扩散,然后由滤色轮的红色滤光区上的第二漫射体对该红色激光进行第二次扩散,由于第一漫射体的粒子直径与第二漫射体的粒子直径不同,因此对红色激光的扩散角度不同,可以使红色激光产生较多的独立随机相位图样;在一些实施方式中,由于荧光轮和滤色轮都是转动的,运动的漫射体可以进一步增加随机相位,能够更好的破坏红色激光的相干性,从而用于投影的激光光源在投影图像上能够形成更多的独立随机相位图样,而独立随机相位图样的数目越多,利用人眼的积分作用,明暗斑点的现象就越弱,从而能够有效减弱红色激光的散斑效应,提高了双色激光光源的光学品质。
在一些实施方式中,第一漫射体的粒子直径可以大于第二漫射体的粒子直径,例如,第一漫射体的粒子直径为100微米,第二漫射体和第三漫射体的粒子直径为30微米。第一漫射体可以将红色激光先打散,再由第二漫射体对红色激光的相位进行精确重排。
需要说明的是,第一漫射体的粒子直径也可以小于第二漫射体的粒子直径,例如第一漫射体的粒子直径为30微米,第二漫射体和第三漫射体的粒子直径为100微米。
另外,滤色轮的蓝色滤光区上的第三漫射体用于匀化第二蓝色激光,对蓝色激光起到消散斑的作用;滤色轮上的绿色滤光区用于过滤绿色荧光,使进入光收集部件的绿光更纯。
上述具体实施方式中,通过在荧光轮的透射区的表面设置第一漫射体,在滤色轮的红光扩散区的表面设置第二漫射体,实现了对相干性较高的红色激光的两次扩散,对红色激光起到了较好的消散斑效果,从而提高了双色激光光源的光学品质。
本申请实施例提供了一种双色激光光源,如图6所示,该激光光源至少包括:
第一蓝色激光发射器21a、第二蓝色激光发射器21b、红色激光发射器22、 荧光轮23、光收集部件25和合光部件24,荧光轮23设置有绿色荧光区和透射区;
合光部件24设置在第一蓝色激光发射器21a和荧光轮23之间,荧光轮23设置在合光部件24和第二蓝色激光发射器21b之间,光收集部件25和红色激光发射器22分别设置在合光部件24两侧,第一蓝色激光发射器21a与荧光轮23之间的连线和光收集部件25与红色激光发射器22之间的连线相互垂直;
合光部件24用于将第一蓝色激光发射器21a发出的第一蓝色激光透射至荧光轮23,并在接收到第一蓝色激光照射绿色荧光区所产生的绿色荧光后,将绿色荧光反射至光收集部件25;
合光部件24还用于接收红色激光发射器22发出的红色激光,并将红色激光透射至光收集部件25;
合光部件24还用于接收由第二蓝色激光发射器21b发出并经由透射区透射的第二蓝色激光,并将第二蓝色激光反射至光收集部件25;
其中,第二蓝色激光的偏振方向与第一蓝色激光的偏振方向垂直。
在一些实施方式中,本申请实施例提供的双色激光光源的光路传输过程包括:第一蓝色激光从合光部件24透射后照射在荧光轮23上,激发荧光轮的绿色荧光区发出绿色荧光,该绿色荧光由合光部件24反射输出至光收集部件25;第二蓝色激光从荧光轮23透射至合光部件24后,由合光部件24反射输出至光收集部件25;红色激光发射器22发出的红色激光从合光部件24透射输出至光收集部件25。三种颜色的光进入光收集部件25后可以混合形成白光,实现双色激光光源的照明功能。
在一些实施方式中,如图7-1所示,红色激光发射器包括:第一红色激光发射器22a和第二红色激光发射器22b;红色激光包括:第一红色激光和第二红色激光;第一红色激光发射器和第二红色激光发射器并列设置,均相对于光收集部件25设置在合光部件24的另一侧。
合光部件24还具体用于分别接收第一红色激光发射器22a发出的第一红色激光和第二红色激光发射器22b发出的第二红色激光,并将第一红色激光和第二红色激光透射至光收集部件25;
其中,第一红色激光的偏振方向与第二红色激光的偏振方向垂直。
由于合光部件采集的红色激光为偏振方向相互垂直的第一红色激光和第二 红色激光的合光,两种偏振光的叠加能够在投影图像时形成相位图样的叠加,从而产生更多的独立随机相位图样,有效减弱了红色激光的散斑效应,提高了双色激光光源的光学品质。
在一些实施方式中,第一蓝色激光发射器、第二蓝色激光发射器、红色激光发射器均为时序点亮。在一些实施方式中,红色激光发射器包括的第一红色激光发射器和第二红色激光发射器的点亮时刻相同,或第一红色激光发射器和第二红色激光发射器为时序点亮。
在一些实施方式中,如图7-2所示,合光部件包括第一二向色片241,第一二向色片241设置在光收集部件25的入光侧;
第一二向色片241用于透射红色激光和第一蓝色激光,反射绿色荧光以及反射第二蓝色激光。
在一些实施方式中,如图7-2所示,激光光源还包括第二二向色片245,荧光轮23位于第二二向色片和合光部件24之间;第二蓝色激光发射器21b的出光方向与荧光轮23的轴向相垂直;第二二向色片245用于将第二蓝色激光反射至荧光轮。在另外一些实施方式中,第二蓝色激光发射器21b可直接朝向荧光轮,从而无需设置二向色片245.
在一些实施方式中,如图3-1所示,荧光轮可以包括绿色荧光区Y和透射区K,绿色荧光区Y的表面设置有绿色荧光粉,透射区Y的表面设置有第一漫射体,绿色荧光区和透射区均呈扇形排布,该荧光轮在转动时,能够时序性地发出绿色荧光和透射第二蓝色激光。
实际应用中,荧光轮可以按照预设的转动速度进行转动,当点亮第一蓝色激光发射器时,荧光轮的绿色荧光区对准第五光束整形装置E(绿色荧光区为激光的照射区域),第二蓝色激光发射器和红色激光发射器均不点亮;当点亮第二蓝色激光发射器时,荧光轮的透射区对准第五光束整形装置E(透射区为激光的照射区域),且第一蓝色激光发射器和红色激光发射器均不点亮;在第一蓝色激光发射器和第二蓝色激光发射器均不点亮时,点亮红色激光发射器。
由于荧光轮的中心区域无法对准第五光束整形装置,也即是荧光轮的中心区域任意时刻均无法成为激光的照射区域,因此如图3-2所示,荧光轮还可以包括空白区Q,该空白区Q位于荧光轮的中心区域,绿色荧光区Y位于空白区Q的外围,该绿色荧光区Y呈扇形环状排布,透射区K呈扇形或扇形环状排布。
本实施例中的实现原理和技术效果与前述实施例类似,此处不再赘述。
在一些实施方式中,如图8所示,该激光光源至少包括:
第一蓝色激光发射器21a、第二蓝色激光发射器21b、第一红色激光发射器22a和第二红色激光发射器22b、荧光轮23、光收集部件25和合光部件24,荧光轮设置有绿色荧光区和透射区。
合光部件24设置在第一蓝色激光发射器21a和荧光轮23之间,荧光轮23设置在合光部件24和第二蓝色激光发射器21b之间,光收集部件25和第一红色激光发射器22a分别设置在合光部件24两侧,第一蓝色激光发射器21a与荧光轮23之间的连线和光收集部件25与第一红色激光发射器22a之间的连线相互垂直;
第二红色激光发射器22b和第二蓝色激光发射器21b设置在荧光轮23的同一侧;
合光部件24用于将第一蓝色激光发射器21a发出的第一蓝色激光透射至荧光轮23,并在接收到第一蓝色激光照射绿色荧光区所产生的绿色荧光后,将绿色荧光反射至光收集部件25;
合光部件24还用于接收第一红色激光发射器22a发出的第一红色激光,并将第一红色激光透射至光收集部件25;
合光部件24还具体用于将第二红色激光发射器22b发出并经由透射区透射的第二红色激光反射至光收集部件25;
合光部件还具体用于接收第一红色激光发射器22a发出的第一红色激光,并将第一红色激光透射至光收集部件25;
其中,第一红色激光的偏振方向与第二红色激光的偏振方向垂直。
在一些实施方式中,光收集部件可以为光棒。
需要说明的是,本申请实施例提供的激光发射器可以为激光发射器阵列。
如图8所示,第一蓝色激光发射器21a、第一红色激光发射器22a、合光部件24和光收集部件25设置在荧光轮23的第一侧,第二蓝色激光发射器21b和第二红色激光发射器22b设置在荧光轮23的第二侧,合光部件24设置在第一蓝色激光发射器21a和荧光轮23之间,且合光部件24设置在第一红色激光发射器22a和光收集部件25之间。
相应的,第二蓝色激光的偏振方向与第一蓝色激光的偏振方向垂直,且第 二蓝色激光的偏振方向与第二红色激光的偏振方向平行,该合光部件24用于透射第一蓝色激光和第一红色激光,反射第二蓝色激光和第二红色激光。
在一些实施方式中,如图8所示,在本申请实施例提供的双色激光光源中,每个激光发射器的出光面一侧可以设置有光束整形装置,分别为第一光束整形装置A、第二光束整形装置B、第三光束整形装置C和第四束整形装置D。该光束整形装置可以为望远镜系统(实际应用中,该望远镜系统可以包括一个凸透镜和一个凹透镜),用于将激光发射器发出的平行激光进行压缩,以减小光束的面积,且压缩后的激光仍为平行激光,可以提高平行激光在后端光学器件中的透过率。
在一些实施方式中,如图8所示,合光部件24与荧光轮23之间可以设置有第五光束整形装置E,该第五光束整形装置E可以由两个透镜组成,第一蓝色激光发射器发出的第一蓝色激光由该两个透镜聚焦后照射至荧光轮上,荧光轮发出的绿色荧光可以由该两个透镜进行准直处理后进入合光部件,提高出光的均匀性。该第五光束整形装置E还用于对第二蓝色激光和第二红色激光进行准直处理。在一些实施方式中,该第五光束整形装置E还可以由一个、三个或四个透镜组成,本申请实施例对组成光束整形装置的透镜数量不做限定。
由于第二蓝色激光发射器21b发出的第二蓝色激光的方向与第二红色激光发射器22b发出的第二红色激光的方向垂直,则如图8、图9-1所示,该双色激光光源还可以包括:第三二向色片246,该第三二向色片246位于第二蓝色激光发射器21b与荧光轮23之间,该第三二向色片246可以用于将第二蓝色激光透射至荧光轮,以及将第二红色激光反射至荧光轮,此时第一蓝色激光发射器和第二蓝色激光发射器相对设置在荧光轮两侧。在一些实施方式中,如图9-2所示,该双色激光光源还可以包括:第四二向色片247,该第四二向色片247位于第二红色激光发射器22b与荧光轮23之间,该第四二向色片可以用于将第二红色激光透射至荧光轮,以及将第二蓝色激光反射至荧光轮。
在本申请实施例中,第三二向色片246可以与第二红色激光发射器22b呈45°夹角放置,以使得水平放置的第二红色激光发射器发出的第二红色激光由该第三二向色片反射后,可以垂直射入荧光轮,使第二红色激光能够按照预设的光路进行传输,从而保证了激光传输的稳定性。在一些实施方式中,第四二向色片247可以与第二蓝色激光发射器21b呈45°夹角放置,以使得水平放置 的第二蓝色激光发射器发出的第二蓝色激光由该第四二向色片反射后,可以垂直射入荧光轮,使第二蓝色激光能够按照预设的光路进行传输,从而保证了激光传输的稳定性
如图8、图9-1所示的双色激光光源的光路传输过程包括:第一蓝色激光发射器21a发出的第一蓝色激光经过第一光束整形装置A后,从合光部件24透射,再经过第五光束整形装置E照射在荧光轮23上,激发绿色荧光粉发出绿色荧光,该绿色荧光经过第五光束整形装置E后由合光部件24反射输出;第二蓝色激光发射器21b发出的第二蓝色激光经过第二光束整形装置B后,从第三二向色片246透射至荧光轮23,该第二蓝色激光从荧光轮23透射后,经过第五光束整形装置E并由合光部件24反射输出;第一红色激光发射器22a发出的第一红色激光经过第三光束整形装置C后,从合光部件24透射输出,且第二红色激光发射器22b发出的第二红色激光经过第四光束整形装置D后,由第三二向色片246将该第二红色激光反射至荧光轮23,该第二红色激光从荧光轮23透射后,经过第五光束整形装置E并由合光部件24反射输出,第一红色激光和第二红色激光的合光为合光部件24最终输出的红色激光。三种颜色的光进入光收集部件25后可以混合形成白光,实现双色激光光源的照明功能。
综上所述,本申请实施例提供的双色激光光源,由于合光部件采集的红色激光为偏振方向相互垂直的第一红色激光和第二红色激光的合光,两种偏振光的叠加能够在投影图像时形成相位图样的叠加,从而产生更多的独立随机相位图样,有效减弱了红色激光的散斑效应,提高了双色激光光源的光学品质。
在本申请实施例中,第一蓝色激光发射器、第二蓝色激光发射器、第一红色激光发射器和第二红色激光发射器均为时序点亮;或第一蓝色激光发射器、第二蓝色激光发射器,和红色激光发射器均为时序点亮,其中红色激光发射器包括的第一红色激光发射器和第二红色激光发射器的点亮时刻相同。如图9-1、图9-2所示,合光部件可以包括偏振合光二向色片244,该偏振合光二向色片244设置在光收集部件25的入光侧,该偏振合光二向色片244用于透射第一蓝色激光和第一红色激光,反射绿色荧光、第二蓝色激光以及第二红色激光。
在一些实施方式中,第一红色激光为p偏振光,第二红色激光为s偏振光,第一蓝色激光为p偏振光,第二蓝色激光为s偏振光。相应的,设置的偏振合光二向色片可以透射p偏振光,反射s偏振光。
或者,第一红色激光为s偏振光,第二红色激光为p偏振光,第一蓝色激光为s偏振光,第二蓝色激光为p偏振光。相应的,设置的偏振合光二向色片可以透射s偏振光,反射p偏振光。
需要说明的是,该偏振合光二向色片还可以反射绿色荧光。
在一些实施方式中,如图9-1、图9-2所示,激光光源还可以包括滤色轮27,该滤色轮27设置在偏振合光二向色片244(合光部件)和光收集部件25的入光侧之间,如图5所示,该滤色轮可以包括红色滤光区R、蓝色滤光区B和绿色滤光区G。滤色轮在转动时,能够时序性地透射第二蓝色激光、红色激光和绿色荧光。
在一些实施方式中,滤色轮在转动时,当滤色轮的照射区域为蓝色滤光区时,点亮第二蓝色激光发射器,同时第一蓝色激光发射器、第一红色激光发射器和第二红色激光发射器均不点亮;当滤色轮的照射区域为红色滤光区时,点亮第一红色激光发射器和第二红色激光发射器,同时第一蓝色激光发射器和第二蓝色激光发射器均不点亮;当滤色轮的照射区域为绿色滤光区时,点亮第一蓝色激光发射器,同时第二蓝色激光发射器、第一红色激光发射器和第二红色激光发射器均不点亮,从而实现了时序性地透射第二蓝色激光、红色激光和绿色荧光。
在本申请实施例中,为了增强消散斑的效果,优选滤色轮上能够透过红光的区域为红色滤光区,但并不以此为限定。
在一些实施方式中,如图9-1、图9-2所示,合光部件还可以包括固定扩散片242,该固定扩散片用于匀化第一蓝色激光发射器发出的蓝色激光,由于第一蓝色激光发射器发出的蓝色激光为荧光轮的激励光,如果光束未进行匀化,激光的光斑强度分布不均,能量集中,直接入射到荧光轮表面时,能量集中的激光光斑可能会使荧光轮表面发生灼烧,损坏荧光轮,导致激光无法正常激发荧光轮发出荧光。
再在一些实施方式中,如图9-1、图9-2所示,激光光源还可以包括聚焦透镜243,该聚焦透镜243设置在偏振合光二向色片244与滤色轮27之间。由于偏振合光二向色片透射或反射的光的光束扩散角大于光收集部件收集角度时,会导致光的收集效率低,影响投影光源亮度,聚焦透镜可以用于对从偏振合光二向色片透射的第一红色激光、反射的绿色荧光、反射的第二蓝色激光以及反 射的第二红色激光分别进行聚焦,提高光收集部件对光的收集效率,以提高投影光源的亮度。
在一些实施方式中,在本申请实施例提供的滤色轮中,红色滤光区的表面可以设置有第二漫射体,蓝色滤光区的表面可以设置有第三漫射体,该第二漫射体和第三漫射体可以为微米级的粒子。
如图10所示,荧光轮可以包括绿色荧光区Y和透射区,透射区可以包括红光扩散区R1和蓝光扩散区B1,绿色荧光区Y的表面设置有绿色荧光粉,红光扩散区R1和蓝光扩散区B1的表面分别设置有第一漫射体,该第一漫射体为微米级的粒子。荧光轮在转动时,能够时序性地发出绿色荧光、透射第二蓝色激光和透射第二红色激光。
在本申请实施例中,为了增强消散斑的效果,优选荧光轮的透射区上能够透过红光的区域为红光扩散区,能够透过蓝光的区域为蓝光扩散区,但并不以此为限定。
需要说明的是,荧光轮的表面设置的漫射体的粒子直径与滤色轮的表面设置的漫射体的粒子直径不同。
由于激光的高相干性,不可避免地产生散斑效应。所谓散斑是指相干光源在照射粗糙的物体时,散射后的光由于波长相同,相位恒定,就会在空间中产生干涉,空间中有部分发生干涉相长,有部分发生干涉相消,最终的结果是在屏幕上出现颗粒状的明暗相间的斑点,也就是一些未聚焦的斑点闪烁,长时间观看易产生眩晕感,这无疑会造成投影图像质量的下降,降低用户的观看体验。
在本申请实施例中,第二蓝色激光发射器发出的第二蓝色激光在经过荧光轮时,先由荧光轮的蓝光扩散区上的第一漫射体对该第二蓝色激光进行第一次扩散,进入合光部件后,由滤色轮的蓝色滤光区上的第三漫射体对该第二蓝色激光进行第二次扩散,由于荧光轮的蓝光扩散区上的第一漫射体与滤色轮的蓝色滤光区上的第三漫射体的粒子直径不同,因此对第二蓝色激光的扩散角度不同,可以使第二蓝色激光产生较多的独立随机相位图样;在一些实施方式中,由于荧光轮和滤色轮都是转动的,运动的漫射体可以进一步增加随机相位,能够更好的破坏蓝色激光的相干性,从而用于投影的激光光源在投影图像上能够形成更多的独立随机相位图样,同理,第二红色激光的消散斑原理可以参考第二蓝色激光的消散斑原理,在此不做赘述。独立随机相位图样的数目越多,利 用人眼的积分作用,明暗斑点的现象就越弱,从而能够有效减弱激光的散斑效应,提高了双色激光光源的光学品质。
在一些实施方式中,荧光轮的表面设置的漫射体的粒子直径可以大于滤色轮的表面设置的漫射体的粒子直径,例如,荧光轮的表面设置的漫射体的粒子直径为100微米,滤色轮的表面设置的漫射体的粒子直径为30微米。荧光轮的表面设置的漫射体可以将激光先打散,再由滤色轮的表面设置的漫射体对激光的相位进行精确重排。
需要说明的是,荧光轮的表面设置的漫射体的粒子直径也可以小于滤色轮的表面设置的漫射体的粒子直径,例如荧光轮的表面设置的漫射体的粒子直径为30微米,滤色轮的表面设置的漫射体的粒子直径为100微米。
进一步说明,由于相较于蓝色激光,红色激光的相干长度更长,具有更高的相干性,因此散斑现象更为严重,而本申请实施例提供的双色激光光源中的红色激光为第一红色激光与第二红色激光的合光,由于第一红色激光和第二红色激光为不同的偏振光,例如第一红色激光为p偏振光,第二红色激光为s偏振光,在投影图像时,两种偏振光的叠加能够形成相位图样的叠加,从而产生更多的独立随机相位图样,进一步减弱了红色激光的散斑效应。
综上所述,本申请实施例提供的双色激光光源,由于合光部件采集的红色激光为偏振方向相互垂直的第一红色激光和第二红色激光的合光,两种偏振光的叠加能够在投影图像时形成相位图样的叠加,从而产生更多的独立随机相位图样,有效减弱了红色激光的散斑效应,提高了双色激光光源的光学品质。
本申请实施例提供了一种激光投影机,该激光投影机可以包括图2-1、图2-2、图4、图6-图9-2任一所示的双色激光光源。
以上所述仅为本申请的可选实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (33)

  1. 一种双色激光光源,其特征在于,所述激光光源包括第一蓝色激光发射器、第二蓝色激光发射器、红色激光发射器、荧光轮、光收集部件和合光部件,所述荧光轮设置有绿色荧光区和透射区;
    所述合光部件设置在所述第一蓝色激光发射器和所述荧光轮之间,所述荧光轮设置在所述合光部件和所述红色激光发射器之间,所述光收集部件和所述第二蓝色激光发射器分别设置在所述合光部件两侧,所述第一蓝色激光发射器与所述荧光轮之间的连线和所述光收集部件与所述第二蓝色激光发射器之间的连线相互垂直;
    所述合光部件用于将所述第一蓝色激光发射器发出的第一蓝色激光透射至所述荧光轮,并在接收到所述第一蓝色激光照射所述绿色荧光区所产生的绿色荧光后,将所述绿色荧光反射至光收集部件;
    所述合光部件还用于接收所述第二蓝色激光发射器发出的第二蓝色激光,并将所述第二蓝色激光透射至所述光收集部件;
    所述合光部件还用于接收由所述红色激光发射器发出并经由所述透射区透射的红色激光,并将所述红色激光反射至所述光收集部件。
  2. 根据权利要求1所述的激光光源,其特征在于,所述红色激光发射器包括:第一红色激光发射器和第二红色激光发射器;所述红色激光包括:第一红色激光和第二红色激光;
    所述合光部件还具体用于分别将所述第一红色激光发射器和所述第二红色激光发射器发出并经由所述透射区透射的所述第一红色激光和所述第二红色激光反射至所述光收集部件;
    其中,所述第一红色激光的偏振方向与所述第二红色激光的偏振方向垂直。
  3. 根据权利要求1或2所述的激光光源,其特征在于,所述合光部件包括第一二向色片,所述第一二向色片设置在所述光收集部件的入光侧;
    所述第一二向色片用于透射所述第一蓝色激光和所述第二蓝色激光,反射所述绿色荧光以及反射所述红色激光。
  4. 根据权利要求1至3任一所述的激光光源,其特征在于,所述激光光源还包括第二二向色片,所述荧光轮位于所述第二二向色片和所述合光部件之间;
    所述红色激光发射器的出光方向与所述荧光轮的轴向相垂直;
    所述第二二向色片用于将所述红色激光反射至所述荧光轮。
  5. 根据权利要求1至4任一所述的激光光源,其特征在于,所述绿色荧光区的表面设置有绿色荧光粉,所述透射区的表面设置有第一漫射体;
    所述透射区用于透射所述红色激光。
  6. 根据权利要求5所述的激光光源,其特征在于,所述绿色荧光区呈扇形排布或扇形环状排布。
  7. 根据权利要求3所述的激光光源,其特征在于,所述激光光源还包括滤色轮,所述滤色轮设置在所述合光部件和所述光收集部件的入光侧之间,所述滤色轮包括红色滤光区、蓝色滤光区和绿色滤光区;
    所述滤色轮在转动时,能够时序性地透射所述第二蓝色激光、所述红色激光和所述绿色荧光。
  8. 根据权利要求7所述的激光光源,其特征在于,所述激光光源还包括聚焦透镜,所述聚焦透镜设置在所述第一二向色片与所述滤色轮之间;
    所述聚焦透镜用于对从所述第一二向色片透射的所述第二蓝色激光、反射的红色激光以及反射的所述绿色荧光分别进行聚焦。
  9. 根据权利要求1至8任一项所述的激光光源,其特征在于,所述合光部件还包括固定扩散片,所述固定扩散片设置在所述第一蓝色激光发射器和所述合光部件之间,用于匀化所述第一蓝色激光。
  10. 根据权利要求2所述的激光光源,其特征在于,所述第一红色激光为p偏振光,所述第二红色激光为s偏振光,所述第一蓝色激光为p偏振光,所述第二蓝色激光为s偏振光;
    或者,所述第一红色激光为s偏振光,所述第二红色激光为p偏振光,所述第一蓝色激光为s偏振光,所述第二蓝色激光为p偏振光。
  11. 根据权利要求1至10任一所述的激光光源,其特征在于,每个所述激光发射器的出光面一侧设置有光束整形装置。
  12. 根据权利要求1至11任一所述的激光光源,其特征在于,所述第一蓝色激光发射器、所述第二蓝色激光发射器、所述红色激光发射器均为时序点亮。
  13. 根据权利要求12所述的激光光源,其特征在于,若所述红色激光发射器包括:第一红色激光发射器和第二红色激光发射器时,所述第一红色激光发射器和所述第二红色激光发射器为时序点亮,或所述第一红色激光发射器和所 述第二红色激光发射器的点亮时刻相同。
  14. 一种双色激光光源,其特征在于,所述激光光源包括第一蓝色激光发射器、第二蓝色激光发射器、红色激光发射器、荧光轮、光接收部件和合光部件,所述荧光轮设置有绿色荧光区和透射区;
    所述合光部件设置在所述第一蓝色激光发射器和所述荧光轮之间,所述荧光轮设置在所述合光部件和所述第二蓝色激光发射器之间,所述光收集部件和所述红色激光发射器分别设置在所述合光部件两侧,所述第一蓝色激光发射器与所述荧光轮之间的连线和所述光收集部件与所述红色激光发射器之间的连线相互垂直;
    所述合光部件用于将所述第一蓝色激光发射器发出的第一蓝色激光透射至所述荧光轮,并在接收到所述第一蓝色激光照射所述绿色荧光区所产生的绿色荧光后,将所述绿色荧光反射至光收集部件;
    所述合光部件还用于接收所述红色激光发射器发出的红色激光,并将所述红色激光透射至所述光收集部件;
    所述合光部件还用于接收由所述第二蓝色激光发射器发出并经由所述透射区透射的第二蓝色激光,并将所述第二蓝色激光反射至所述光收集部件;
    其中,所述第二蓝色激光的偏振方向与所述第一蓝色激光的偏振方向垂直。
  15. 根据权利要求14所述的激光光源,其特征在于,所述红色激光发射器包括:第一红色激光发射器和第二红色激光发射器;所述红色激光包括:第一红色激光和第二红色激光;
    所述合光部件还具体用于分别接收所述第一红色激光发射器发出的第一红色激光和所述第二红色激光发射器发出的第二红色激光,并将所述第一红色激光和所述第二红色激光透射至所述光收集部件;
    其中,所述第一红色激光的偏振方向与所述第二红色激光的偏振方向垂直。
  16. 根据权利要求14所述的激光光源,其特征在于,所述激光光源还包括第二红色激光发射器;所述红色激光发射器为第一红色激光发射器;
    所述第二红色激光发射器和所述第二蓝色激光发射器设置在所述荧光轮的同一侧;
    所述合光部件还具体用于将所述第二红色激光发射器发出并经由所述透射 区透射的第二红色激光反射至所述光收集部件;
    所述合光部件还具体用于接收所述第一红色激光发射器发出的第一红色激光,并将所述第一红色激光透射至所述光收集部件;
    其中,所述第一红色激光的偏振方向与所述第二红色激光的偏振方向垂直。
  17. 根据权利要求14或15所述的激光光源,其特征在于,所述合光部件包括第一二向色片,所述第一二向色片设置在所述光收集部件的入光侧;
    所述第一二向色片用于透射所述红色激光和所述第一蓝色激光,反射所述绿色荧光以及反射所述第二蓝色激光。
  18. 根据权利要求14、15或18所述的激光光源,其特征在于,所述激光光源还包括第二二向色片,所述荧光轮位于所述第二二向色片和所述合光部件之间;
    所述第二蓝色激光发射器的出光方向与所述荧光轮的轴向相垂直;
    所述第二二向色片用于将所述第二蓝色激光反射至所述荧光轮。
  19. 根据权利要求16所述的激光光源,其特征在于,
    所述合光部件包括偏振合光二向色片,所述偏振合光二向色片设置在所述光收集部件的入光侧;
    所述偏振合光二向色片用于透射所述第一蓝色激光和所述第一红色激光,反射所述绿色荧光、所述第二蓝色激光以及所述第二红色激光。
  20. 根据权利要求16或19所述的激光光源,其特征在于,所述激光光源还包括第三二向色片,所述第三二向色片位于所述第二蓝色激光发射器与所述荧光轮之间;
    所述第二蓝色激光发射器的出光方向与所述第二红色激光发射器的出光方向相垂直;
    所述第三二向色片用于将所述第二蓝色激光透射至荧光轮,以及将所述第二红色激光反射至所述荧光轮。
  21. 根据权利要求16或19所述的激光光源,其特征在于,所述激光光源还包括第四二向色片,所述第四二向色片位于所述第二红色激光发射器与所述荧光轮之间;
    所述第二蓝色激光发射器的出光方向与所述第二红色激光发射器的出光方向相垂直;
    所述第四二向色片用于将所述第二红色激光透射至荧光轮,以及将所述第二蓝色激光反射至所述荧光轮。
  22. 根据权利要求14、15、17或18所述的激光光源,其特征在于,所述绿色荧光区的表面设置有绿色荧光粉,所述透射区的表面设置有第一漫射体;
    所述透射区用于透射所述第二蓝色激光。
  23. 根据权利要求16、19、20或21所述的激光光源,其特征在于,所述透射区包括红光扩散区和蓝光扩散区,所述绿色荧光区的表面设置有绿色荧光粉,所述红光扩散区和所述蓝光扩散区的表面设置有第一漫射体;
    所述红光扩散区用于透射所述第二红色激光,所述蓝光扩散区用于透射所述第二蓝色激光。
  24. 根据权利要求22或23所述的激光光源,其特征在于,所述绿色荧光区呈扇形排布或扇形环状排布。
  25. 根据权利要求15或16所述的激光光源,其特征在于,所述第二蓝色激光的偏振方向与所述第二红色激光的偏振方向平行。
  26. 根据权利要求14至25任一所述的激光光源,其特征在于,所述激光光源还包括滤色轮,所述滤色轮设置在所述合光部件和所述光收集部件的入光侧之间,所述滤色轮包括红色滤光区、蓝色滤光区和绿色滤光区;
    所述滤色轮在转动时,能够时序性地透射所述第一蓝色激光、所述第二蓝色激光、所述红色激光和所述绿色荧光。
  27. 根据权利要求26所述的激光光源,其特征在于,所述激光光源还包括聚焦透镜,所述聚焦透镜设置在所述合光部件与所述滤色轮之间;
    所述聚焦透镜用于对从所述合光部件透射的红色激光、反射的所述绿色荧光、反射的所述第二蓝色激光分别进行聚焦。
  28. 根据权利要求14至27任一项所述的激光光源,其特征在于,所述合光部件还包括固定扩散片,所述固定扩散片设置在所述第一蓝色激光发射器和所述合光部件之间,用于匀化所述第一蓝色激光。
  29. 根据权利要求15、16、19、20、21、23或25所述的激光光源,其特征在于,所述第一红色激光为p偏振光,所述第二红色激光为s偏振光,所述第一蓝色激光为p偏振光,所述第二蓝色激光为s偏振光;
    或者,所述第一红色激光为s偏振光,所述第二红色激光为p偏振光,所述 第一蓝色激光为s偏振光,所述第二蓝色激光为p偏振光。
  30. 根据权利要求14至29任一所述的激光光源,其特征在于,每个所述激光发射器的出光面一侧设置有光束整形装置。
  31. 根据权利要求14或15所述的激光光源,其特征在于,所述第一蓝色激光发射器、所述第二蓝色激光发射器、所述红色激光发射器均为时序点亮。
  32. 根据权利要求31所述的激光光源,其特征在于,若所述红色激光发射器包括:第一红色激光发射器和第二红色激光发射器时,所述第一红色激光发射器和所述第二红色激光发射器为时序点亮,或所述第一红色激光发射器和所述第二红色激光发射器的点亮时刻相同。
  33. 一种激光投影机,其特征在于,所述激光投影机包括权利要求1至32任一所述的双色激光光源。
PCT/CN2017/117868 2017-08-18 2017-12-22 双色激光光源和激光投影机 WO2019033672A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201710712834.9A CN109407451B (zh) 2017-08-18 2017-08-18 双色激光光源和激光投影机
CN201710712832.X 2017-08-18
CN201710712832.XA CN109407450B (zh) 2017-08-18 2017-08-18 双色激光光源和激光投影机
CN201710712834.9 2017-08-18

Publications (1)

Publication Number Publication Date
WO2019033672A1 true WO2019033672A1 (zh) 2019-02-21

Family

ID=60923362

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/117868 WO2019033672A1 (zh) 2017-08-18 2017-12-22 双色激光光源和激光投影机

Country Status (3)

Country Link
US (2) US10139716B1 (zh)
EP (1) EP3444668B1 (zh)
WO (1) WO2019033672A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019033672A1 (zh) * 2017-08-18 2019-02-21 海信集团有限公司 双色激光光源和激光投影机
CN110275376B (zh) * 2018-03-16 2021-08-03 深圳光峰科技股份有限公司 显示设备及显示方法
TW202129392A (zh) * 2019-12-20 2021-08-01 日商索尼股份有限公司 光源裝置及投射型顯示裝置
WO2021132061A1 (ja) * 2019-12-27 2021-07-01 ソニーグループ株式会社 光源装置および投射型表示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103376636A (zh) * 2012-04-26 2013-10-30 索尼公司 显示单元和照明装置
CN103399453A (zh) * 2013-08-23 2013-11-20 中国华录集团有限公司 一种增强光亮的投影机光源装置
CN203745788U (zh) * 2014-01-03 2014-07-30 深圳市亿思达显示科技有限公司 一种双激光光源系统
US20140226306A1 (en) * 2013-01-29 2014-08-14 Texas Instruments Incorporated Color Sequence Illumination System with Phosphor Light Filter
CN105093794A (zh) * 2015-06-03 2015-11-25 海信集团有限公司 一种双色激光光源
CN106597785A (zh) * 2015-10-14 2017-04-26 海信集团有限公司 一种荧光轮及双色激光光源

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012213036A1 (de) 2012-07-25 2014-01-30 Osram Gmbh Beleuchtungsvorrichtung mit leuchtstoffrad
CN104603689B (zh) * 2012-09-10 2017-06-23 三菱电机株式会社 光源装置
JP6205835B2 (ja) 2013-05-14 2017-10-04 株式会社リコー 照明装置、この照明装置を備えた投射装置、および、照明方法
EP3127328B1 (en) 2014-04-04 2023-05-17 Barco N.V. Laser projection illumination system
CN105223761B (zh) * 2014-07-01 2017-05-24 中强光电股份有限公司 投影装置及照明系统
US9874805B2 (en) * 2015-01-30 2018-01-23 Panasonic Intellectual Property Management Co., Ltd. Light source apparatus and projection display apparatus
CN106154713B (zh) * 2015-04-09 2018-05-15 深圳市光峰光电技术有限公司 光源系统和投影系统
CN105137610A (zh) 2015-10-22 2015-12-09 海信集团有限公司 一种激光消散斑光路及双色、三色激光光源
CN106200235B (zh) 2016-07-22 2019-01-25 明基智能科技(上海)有限公司 投影机及应用其的投影方法
WO2019033672A1 (zh) * 2017-08-18 2019-02-21 海信集团有限公司 双色激光光源和激光投影机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103376636A (zh) * 2012-04-26 2013-10-30 索尼公司 显示单元和照明装置
US20140226306A1 (en) * 2013-01-29 2014-08-14 Texas Instruments Incorporated Color Sequence Illumination System with Phosphor Light Filter
CN103399453A (zh) * 2013-08-23 2013-11-20 中国华录集团有限公司 一种增强光亮的投影机光源装置
CN203745788U (zh) * 2014-01-03 2014-07-30 深圳市亿思达显示科技有限公司 一种双激光光源系统
CN105093794A (zh) * 2015-06-03 2015-11-25 海信集团有限公司 一种双色激光光源
CN106597785A (zh) * 2015-10-14 2017-04-26 海信集团有限公司 一种荧光轮及双色激光光源

Also Published As

Publication number Publication date
US20190204723A1 (en) 2019-07-04
EP3444668B1 (en) 2021-05-12
US20190361331A9 (en) 2019-11-28
EP3444668A1 (en) 2019-02-20
US10514595B2 (en) 2019-12-24
US10139716B1 (en) 2018-11-27

Similar Documents

Publication Publication Date Title
US10459326B2 (en) Dual-color projector
CN112147837B (zh) 双色激光光源和激光投影机
US9325955B2 (en) Light source apparatus and projector apparatus with optical system having reduced color irregularity
WO2016192223A1 (zh) 一种激光光源和投影显示设备
KR20150123064A (ko) 조명장치 및 이를 구비한 투사형 영상표시장치
US9429829B2 (en) Illumination system and projection apparatus
TWM482090U (zh) 發光裝置及投影系統
WO2019033672A1 (zh) 双色激光光源和激光投影机
WO2018209723A1 (zh) 一种投影照明光路及其投影装置
CN211786563U (zh) 照明系统与投影装置
WO2017059657A1 (zh) 一种激光消散斑光路及双色激光光源、三色激光光源
CN109407451B (zh) 双色激光光源和激光投影机
CN110389486B (zh) 光源装置及显示设备
US11336873B2 (en) Illumination system and projection apparatus
TW201833655A (zh) 光源裝置
US20170242266A1 (en) Illumination device and projector
WO2020135300A1 (zh) 光源系统及投影装置
CN209373337U (zh) 偏光旋转装置及投影装置
CN116893565A (zh) 光源装置
US20200081335A1 (en) Stationary light source
TWI766093B (zh) 固態光源裝置
US20230251558A1 (en) Light source device and projection apparatus
TWI795436B (zh) 固態光源裝置
JP2021005060A (ja) 光源装置およびこれを備える画像投射装置
JP2008015298A (ja) 照明装置及びプロジェクタ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17921867

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17921867

Country of ref document: EP

Kind code of ref document: A1