WO2018209723A1 - 一种投影照明光路及其投影装置 - Google Patents

一种投影照明光路及其投影装置 Download PDF

Info

Publication number
WO2018209723A1
WO2018209723A1 PCT/CN2017/085734 CN2017085734W WO2018209723A1 WO 2018209723 A1 WO2018209723 A1 WO 2018209723A1 CN 2017085734 W CN2017085734 W CN 2017085734W WO 2018209723 A1 WO2018209723 A1 WO 2018209723A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
light beam
blue
dichroic mirror
led light
Prior art date
Application number
PCT/CN2017/085734
Other languages
English (en)
French (fr)
Inventor
高志强
杨伟樑
赵远
林清云
Original Assignee
广景视睿科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广景视睿科技(深圳)有限公司 filed Critical 广景视睿科技(深圳)有限公司
Publication of WO2018209723A1 publication Critical patent/WO2018209723A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2013Plural light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2053Intensity control of illuminating light

Definitions

  • the present invention relates to the field of digital projection display technology, and more particularly to a projection illumination optical path and a projection apparatus therefor.
  • projection display light source is a very important component.
  • the function of the projection light source device is to convert as much as possible a large-angle distribution of light beams, illumination lights of different shapes and brightness, into a uniform spot that illuminates the effective area of the display chip, thereby realizing a uniform and bright projection display screen.
  • the user can enjoy a better visual enjoyment.
  • the invention Under the premise of keeping the design of the projection optical path simple and efficient, the invention has the advantages of small size, low optical loss and enhanced light intensity for high light output. This also becomes one of the technical problems to be solved by those skilled in the art.
  • a combination of a blue laser source and an LED light source is generally used, and a blue laser source is used to excite the green phosphor on the color wheel to generate a green light source to improve the brightness of the projection light source; as shown in FIG. 1 , the blue laser light source 1
  • the phosphor layer on the transmission excitation color wheel 7 produces a green light source, and then combines with the red LED light source 8 and the blue LED light source 14; or the blue laser source directly illuminates the green LED light source with the phosphor layer
  • the LD system is transmitted to the green LED light source to excite the phosphor layer to produce green fluorescence, and the green fluorescent beam and the green LED beam merge into the next optical device.
  • the method of using the phosphor layer on the excitation color wheel to produce a green light source is easy to produce an aperture effect due to high-speed rotation, the image is unstable, and the image quality is poor; and the method of directly transmitting the phosphor layer by using the LD system is due to the light source.
  • the location setting is limited, not flexible enough, and the structure is not compact enough.
  • an object of the present invention is to provide a projection illumination optical path with a simple and reasonable structure, a compact layout, high brightness, good projection quality, and a projection device thereof.
  • the present invention provides a projection illumination light path comprising: a blue LED light source for generating a blue light beam; and a first collimating lens group disposed directly in front of the blue LED light source optical path; a red LED light source of the light beam and a second collimating lens group disposed directly in front of the red LED light source optical path; a green LED light source and a third collimating lens group disposed directly in front of the green LED light source optical path; a blue laser light source and being disposed in the blue a fourth collimating lens group directly in front of the optical path of the color laser light source; a dichroic mirror group; a fly-eye lens; and a prism group; wherein the prism group includes: a first prism and a second right-angle prism; There is a phosphor layer, and the blue laser beam generated by the blue laser light source is totally reflected by one surface of the first prism and then incident on the surface of the green LED light source and the light beam generated by the light emitting chip
  • the dichroic mirror group comprises: a first dichroic mirror and a second dichroic mirror arranged in parallel or perpendicularly;
  • the first prism is a right-angle prism disposed on an outgoing light path of the blue laser beam for use in all Reflecting the blue laser beam and injecting it into the green LED light source;
  • the second dichroic mirror is disposed on the outgoing light path of the blue LED light source and the green LED light source for transmitting the green fluorescent light beam or reflecting the blue light beam;
  • the first dichroic mirror is disposed on the optical path of the red LED light source and the outgoing beam of the green fluorescent light beam and the blue light beam transmitted and reflected by the second dichroic mirror, Reflecting the red light beam, transmitting the blue light beam and the green fluorescent light beam;
  • the blue laser light beam is reflected by the inclined surface of the first prism, is homogenized by the fly-eye lens, and is transmitted to the green LED through the first dichroic mirror and the second dichroic mirror.
  • the light source surface and the light beam generated by the light emitting chip of the green LED light source itself excite the phosphor layer to generate a green fluorescent light beam;
  • the green fluorescent light beam is transmitted through the first dichroic mirror and the second dichroic mirror;
  • a dichroic mirror is reflected and incident on the first dichroic mirror, transmitted through the first dichroic mirror;
  • the red light beam is reflected via a first dichroic mirror;
  • the light beam is reflected by the first dichroic mirror and transmitted to form a white light beam.
  • the central optical axis of the red LED light source, the central optical axis of the blue LED light source, and the central optical axis of the blue laser light source are parallel, both perpendicular to the central optical axis of the green LED light source; the first dichroic mirror And the angle between the second dichroic mirror and the red LED light source, the blue LED light source, the green LED light source, and the blue laser light source in the central optical axis direction are both 45°; the central optical axis of the green LED light source and the fly-eye lens The central optical axes coincide.
  • the dichroic mirror group includes: a third dichroic mirror and a fourth dichroic mirror disposed in parallel or perpendicularly;
  • the first prism is a right-angle prism disposed on an outgoing light path of the blue laser beam for reflection a blue laser beam;
  • the third dichroic mirror is disposed on the outgoing light path of the blue LED light source for transmitting or reflecting the blue light beam and the red light beam, and combining the blue light beam and the red light beam;
  • the fourth dichroic mirror is disposed on the green LED light source device, and on the optical path of the red light beam and the blue light beam outgoing light beam transmitted and reflected by the third dichroic mirror, for transmitting the green fluorescent light beam, reflecting the blue color The light beam and the red light beam; the blue laser beam is totally reflected by the inclined surface of the first prism, is homogenized by the fly-eye lens, and then transmitted through the fourth dichroic mirror to the surface of the green LED light source and the light-emitting chip of the green LED light source
  • the beams are oppositely excited to the phosphor layer to produce a green fluorescent beam; the green fluorescent beam is transmitted through the fourth dichroic mirror; the blue and red beams are transmitted or reflected through the third dichroic mirror The light is reflected by the fourth dichroic mirror; the blue light beam, the red light beam and the green fluorescent light beam are transmitted and reflected by the fourth dichroic mirror and combined to form a white light beam.
  • a central optical axis of the red LED light source is parallel to a central optical axis of the green LED light source, and is perpendicular to a central optical axis of the blue LED light source and a central optical axis of the blue laser light source; or the blue LED
  • the central optical axis of the light source is parallel to the central optical axis of the green LED light source, and is perpendicular to the central optical axis of the red LED light source and the central optical axis of the blue laser light source;
  • the first dichroic mirror and the second dichroic mirror are The angles of the red LED light source, the blue LED light source, the green LED light source, and the blue laser light source in the central optical axis direction are both 45°; the central optical axis of the green LED light source coincides with the central optical axis of the fly-eye lens.
  • the dichroic mirror group includes: a fifth dichroic mirror and a sixth dichroic mirror disposed in parallel, and a first wedge prism;
  • the first prism is a non-right angle prism, and is disposed at an outgoing light of the blue laser beam On the road, for reflecting the blue laser beam;
  • the fifth dichroic mirror is disposed on the blue LED light source, and the red LED light source is used to transmit or reflect the blue light beam and the red light beam, and is combined;
  • the sixth dichroic mirror is disposed on the green LED light source device, and on the optical path of the red light beam and the blue light beam outgoing light beam transmitted and reflected by the fifth dichroic mirror, for reflecting the green fluorescent light beam and the blue laser light a light beam, and a blue light beam and a red light beam that are transmitted by the third dichroic mirror;
  • the first wedge prism is disposed on the optical path of the blue laser light beam reflected by the first prism, including the first reflective surface and the second reflective surface The first reflective surface and
  • a dichroic mirror which is reflected by the sixth dichroic mirror and is incident on the surface of the green LED light source and the light beam generated by the light emitting chip of the green LED light source itself, and the phosphor layer is excited to generate a green fluorescent light beam;
  • the green fluorescent light beam is passed through the sixth a dichroic mirror reflection;
  • the blue light beam and the red light beam are transmitted or reflected via a fifth dichroic mirror and combined and transmitted through the sixth dichroic mirror;
  • the blue light beam, the red light beam and the green fluorescent light beam The dichroic mirror transmits and reflects and combines the light to form a white light beam incident on the first wedge prism, and is reflected by the first reflecting surface of the first wedge prism to be emitted.
  • the central optical axis of the red LED light source is parallel to the central optical axis of the green LED light source, both perpendicular to the central optical axis of the blue LED light source and the central optical axis of the blue laser light source, or the blue colored LED light source
  • the central optical axis is parallel to the central optical axis of the green LED light source, both perpendicular to the central optical axis of the red LED source and the central optical axis of the blue laser source; the fifth dichroic mirror and the sixth dichroic mirror and the red LED
  • the angles of the central optical axes of the light source, the blue LED source, the green LED source and the blue laser source are both 45°.
  • the dichroic mirror group includes: a seventh dichroic mirror, and a second wedge prism;
  • the first prism is a non-orthogonal prism disposed on an outgoing light path of the blue laser beam for reflecting the blue laser beam;
  • the seventh dichroic mirror is disposed on the blue LED light source, the outgoing light path of the red LED light source, for transmitting or reflecting the blue light beam and the red light beam and combining light;
  • the second wedge prism is disposed on the first a light path of a blue laser beam reflected by a prism, comprising a third reflecting surface and a fourth reflecting surface, wherein the third reflecting surface and the fourth reflecting surface are non-parallel, and the third reflecting surface is used for transmitting or refracting a red light beam.
  • the fourth reflective surface for transmitting or refracting a red light beam, a blue light beam, and reflecting a blue laser light beam; the blue laser light beam first passing through one of the first prisms After total reflection, incident on the fourth reflecting surface of the second wedge prism, and then reflected by the fourth reflecting surface of the second wedge prism to the surface of the green LED light source and the light emitting chip of the green LED light source itself
  • the beam of light is oppositely excited to generate a green fluorescent beam;
  • the green fluorescent beam is reflected by a third reflecting surface of the second wedge prism;
  • the blue beam and the red beam are transmitted or reflected by the seventh dichroic mirror and combined Transmitting through the third reflective surface and the fourth reflective surface of the second wedge prism; the blue light beam, the red light beam and the green fluorescent light beam are transmitted and reflected by the third reflective surface of the second wedge prism, and combined to form a white light beam Exit.
  • a projection apparatus comprising the above-described projection illumination light path, further comprising: a display chip and a projection lens group.
  • the blue light beam, the red light beam and the green fluorescent light beam that are transmitted and/or reflected by the dichroic mirror group are combined into a white light beam to enter the fly-eye lens, and then pass through the first prism and the first
  • the two right-angle prisms are incident on the display chip; the display chips are parallel to the right-angled sides of the second right-angle prism.
  • a projection illumination light path comprising: a blue LED light source and a first collimating lens group; a red LED light source and a second collimating lens group; a green LED light source and a third collimating lens group; a blue laser light source and a fourth collimating lens group; a dichroic mirror group; a fly-eye lens; and a prism group; the prism group includes: a first prism and a second right-angle prism;
  • the surface of the light source is provided with a phosphor layer, and the blue laser beam generated by the blue laser light source is reflected by the full-reflection right-angle surface of one of the first prisms, and then irradiated to the surface of the green LED light source and the light-emitting chip of the green LED light source itself.
  • the phosphor beam layer is oppositely excited to generate a green fluorescent light beam.
  • the blue laser light source is totally reflected by one surface of the first prism, and then the surface of the green LED light source and the light beam generated by the light emitting chip of the green LED light source are opposite to each other to excite the phosphor layer.
  • Producing a green fluorescent light beam greatly enhancing the brightness of the green light source, enhancing the brightness of the projection light source; and due to the setting of the dichroic mirror and the prism
  • the structure is simple and reasonable, the layout is compact, the structure setting can be flexible and varied, the brightness of the green light source is greatly enhanced, the projection quality is improved, and the problem of insufficient brightness of the light source in the projection light source device is solved.
  • FIG. 1 is a structural diagram of a projection light source excited by a prior art fluorescent color wheel structure
  • Embodiment 3 is a schematic structural view of Embodiment 1 of a projection illumination optical path of the present invention.
  • FIG. 4 is a schematic structural view of a second embodiment of a projection illumination optical path of the present invention.
  • FIG. 5 is a schematic structural view of a third embodiment of a projection illumination optical path of the present invention.
  • FIG. 6 is a schematic structural view of a fourth embodiment of a projection illumination optical path of the present invention.
  • FIG. 7 is a schematic structural view of a projection apparatus corresponding to the first embodiment of the projection illumination optical path of the present invention.
  • a projection illumination optical path includes: a blue LED light source 101 for generating a blue light beam; and a first collimating lens group 102 directly in front of the optical path of the blue LED light source 101; a red LED light source 103 for generating a red light beam; and a second collimating lens group 104 disposed directly in front of the optical path of the red LED light source 103; for generating green a green LED light source 105 of the LED beam and a third collimating lens group 106 disposed directly in front of the optical path of the green LED light source 105; a blue laser light source 107 and a fourth collimating lens group 108 disposed directly in front of the optical path of the blue laser light source 107 ; a dichroic mirror group; a fly-eye lens 111; and a prism group.
  • the green LED light source 105 includes: an LED light emitting chip and a phosphor layer on the surface of the light emitting chip;
  • the dichroic mirror group includes: a first dichroic mirror 109 and a second dichroic mirror 110; a fly eye lens And a prism group; wherein the prism group comprises: a first prism 112 and a second right angle prism 113, the first prism 112 is a right angle prism;
  • the green LED light source 105 has a phosphor layer on the surface, blue The blue laser beam generated by the laser light source 107 is totally reflected by the first prism 112 and then incident on the surface of the green LED light source 105 and the green LED light source 105.
  • the light beam generated by the own light-emitting chip is opposite to the excitation phosphor layer to generate a green fluorescent light beam, and the green fluorescent light beam and the green LED light beam generated by the green LED light source 105 are combined to form a green fluorescent light beam.
  • the first dichroic mirror 109 and the second dichroic mirror 110 are vertically disposed; the first prism is a 112 right angle prism disposed on an outgoing light path of the blue laser beam for reflecting the blue laser beam. And is incident on the green LED light source 105; the second dichroic mirror 110 is disposed on the outgoing light path of the blue LED light source 101 and the green LED light source 105 for transmitting a green fluorescent light beam or reflecting a blue light beam.
  • the first dichroic mirror 109 is disposed on the red LED light source 103, and on the optical path of the green fluorescent light beam and the blue light beam outgoing light beam transmitted and reflected by the second dichroic mirror, for reflecting the red light beam, transmitting blue Color beam and green fluorescent beam.
  • the blue laser beam (the wavelengths of the blue LED beam and the blue laser beam are different) is totally reflected by the slope of the first prism 109, is homogenized by the fly-eye lens 111, and passes through the first dichroic mirror 109 and the second dichroic mirror 110.
  • the light beam incident on the surface of the green LED light source 105 and the light emitting chip of the green LED light source 105 itself is opposite to the excitation phosphor layer to generate a green fluorescent light beam; the green fluorescent light beam passes through the first dichroic mirror 109 and the second dichroic mirror 110. transmission.
  • the blue light beam is reflected by the second dichroic mirror 110 and incident on the first dichroic mirror 109, and transmitted through the first dichroic mirror 109.
  • the red light beam is reflected by the first dichroic mirror 109.
  • the blue, red and green fluorescent beams are reflected by the first dichroic mirror 109 and transmitted to form a white light beam.
  • the central optical axis of the red LED light source 103, the central optical axis of the blue LED light source 101, and the central optical axis of the blue laser light source 107 are parallel, both perpendicular to the central optical axis of the green LED light source 105.
  • the angle between the first dichroic mirror 109 and the second dichroic mirror 110 is 90°; the angle between the first dichroic mirror 109 and the second dichroic mirror 110 is 90°; The angle between the first dichroic mirror 109 and the second dichroic mirror 110 and the red LED light source 103, the blue LED light source 101, the green LED light source 105, and the central optical axis of the blue laser light source are both 45 degrees; The central optical axis of the green LED light source 105 coincides with the central optical axis of the fly-eye lens 111.
  • the first dichroic mirror 109 and the second dichroic mirror 110 are not limited to being vertically disposed, and may be disposed in parallel according to a placement position of a specific light source device.
  • the positions of the blue LED light source 101 and the red LED light source 103 can be mutually exchanged, as long as the red light beam and the blue light beam and the green fluorescent light beam transmitted and reflected by the dichroic mirror can be combined to emit light in one direction, that is, can.
  • the blue laser beam generated by the blue laser source 107 is different from the wavelength of the blue beam generated by the blue LED source 101, so the second dichroic mirror 110 can transmit blue.
  • the laser beam but reflects the blue beam.
  • a projection illumination optical path includes: a blue LED light source 201 for generating a blue light beam; a first collimating lens group 202 directly in front of the optical path of the blue LED light source 201; a red LED light source 203 for generating a red light beam; and a second collimating lens group 204 disposed directly in front of the optical path of the red LED light source 203; a green LED light source 205 of the LED beam and a third collimating lens group 206 disposed directly in front of the optical path of the green LED light source 205; a blue laser light source 207 and a fourth collimating lens group 208 disposed directly in front of the optical path of the blue laser light source 207 ; a dichroic mirror group; a fly-eye lens 211; and a prism group.
  • the dichroic mirror group includes: a third dichroic mirror 209 and a fourth dichroic mirror 210 disposed in parallel; the third dichroic mirror 209 is disposed on the
  • the blue LED light source 201 and the red LED light source 203 are used to transmit or reflect the blue light beam and the red light beam, and combine the blue light beam and the red light beam.
  • the fourth dichroic mirror 210 is disposed on the optical path of the green LED light source 205 and the outgoing beam of the red light beam and the blue light beam transmitted and reflected by the third dichroic mirror for transmitting the green fluorescent light beam, reflecting blue Color beam and red beam.
  • the prism group includes a first prism 212 and a second right angle prism 213.
  • the first prism 212 is a right angle prism disposed on an outgoing light path of the blue laser beam 207 for reflecting the blue laser beam 207.
  • the blue laser beam 207 is totally reflected by the inclined surface of the first prism 212, it is homogenized by the fly-eye lens 211, and then transmitted through the fourth dichroic mirror 210 to the surface of the green LED light source 205 and the light-emitting chip of the green LED light source 205 itself.
  • the beam of light is opposite to the excitation phosphor layer to produce a green fluorescent beam; the green fluorescent beam is transmitted through the fourth dichroic mirror 210.
  • the blue light beam and the red light beam are transmitted or reflected via the third dichroic mirror 209 and combined and reflected by the fourth dichroic mirror 210.
  • the blue light beam, the red light beam and the green fluorescent light beam are transmitted and reflected by the fourth dichroic mirror and combined to form a white light beam.
  • the central optical axis of the red LED light source 203 is parallel to the central optical axis of the green LED light source 205, and is perpendicular to the central optical axis of the blue LED light source 201 and the central optical axis of the blue laser light source 207;
  • the angle between the third dichroic mirror 209 and the fourth dichroic mirror 210 and the horizontal direction is 45°; the central optical axis of the green LED light source 205 coincides with the central optical axis of the fly-eye lens 211.
  • the first dichroic mirror 209 and the second dichroic mirror 210 are not limited to being disposed in parallel, and may be vertically disposed according to a placement position of a specific light source device.
  • the positions of the blue LED light source 201 and the red LED light source 203 can be mutually exchanged, as long as the red light beam and the blue light beam and the green fluorescent light beam transmitted and reflected by the dichroic mirror can be combined to emit light in one direction, that is, can.
  • the blue LED light source 201 is red
  • the central optical axis of the blue LED light source 201 and the central optical axis of the green LED light source 205 are disposed in parallel, both with the central optical axis of the red LED light source 203 and the center of the blue excitation light source 207.
  • the optical axis is vertical.
  • a projection illumination optical path includes: a blue LED light source for generating a blue light beam and is disposed in blue a first collimating lens group directly in front of the optical path of the color LED light source; a red LED light source for generating a red light beam; and a second collimating lens group disposed directly in front of the optical path of the red LED light source; a green LED light source for generating a green LED light beam 305 and a third collimating lens group disposed directly in front of the optical path of the green LED light source 305; a blue laser light source 307 and a fourth collimating lens group disposed directly in front of the optical path of the blue laser light source 307; a dichroic mirror group; a fly-eye lens 311; and prism group.
  • the dichroic mirror group includes: a fifth dichroic mirror 309 and a sixth dichroic mirror 310 disposed in parallel, and a first wedge prism 314; the first prism 312 It is a non-right angle prism disposed on the outgoing light path of the blue laser beam 307 for reflecting the blue laser beam 307.
  • the fifth dichroic mirror 309 is disposed on the outgoing light path of the blue LED light source 303 for transmitting or reflecting the blue light beam and the red light beam, and is combined;
  • the sixth dichroic mirror 310 is disposed on the green LED light source 305, and on the optical path of the red light beam and the blue light beam outgoing light beam transmitted and reflected by the fifth dichroic mirror, for reflecting the green fluorescent light beam and the blue light. a laser beam, and a blue beam and a red beam that are transmitted by the third dichroic mirror;
  • the first wedge prism 314 is disposed on the optical path of the blue laser beam 307 reflected by the first prism 312, and includes a first reflective surface S1 and a second reflective surface S2, and the first reflective surface S1 and the second reflective surface S2 Non-parallel, the first reflecting surface S1 is for reflecting a red light beam, a blue light beam and the green fluorescent light beam, and the second reflecting surface S2 is for reflecting a blue laser light beam.
  • the angle between the first reflecting surface S1 and the second reflecting surface S2 is preferably defined as 0°-30°.
  • the blue laser beam 307 is first totally reflected by one of the faces of the first prism 312 (the face disposed in parallel with the right-angled surface of the second prism 313 in this embodiment), and then incident on the first wedge prism 314
  • the second reflective surface S2 is reflected by the second reflective surface S2 of the first wedge prism 314 and incident on the fly-eye lens 311 to be homogenized into the sixth dichroic mirror 310, and reflected by the sixth dichroic mirror 310.
  • the surface of the green LED light source 305 and the light beam generated by the light-emitting chip of the green LED light source itself excite the phosphor layer to generate a green fluorescent light beam, which is reflected by the sixth dichroic mirror 310.
  • the blue and red beams are transmitted or reflected via the fifth dichroic mirror 309 and combined and transmitted through the sixth dichroic mirror 310.
  • the blue light beam, the red light beam and the green fluorescent light beam are transmitted and reflected by the sixth dichroic mirror 310 and combined to form a white light beam incident on the first wedge prism 314 and passed through the first wedge prism 314.
  • the reflecting surface S1 is reflected and then emitted.
  • the central optical axis of the red LED light source 303 is parallel to the central optical axis of the green LED light source 305, and is perpendicular to the central optical axis of the blue LED light source 301 and the central optical axis of the blue laser light source 307;
  • the angle between the fifth dichroic mirror 309 and the sixth dichroic mirror 310 and the red LED light source 303, the blue LED light source 301, the green LED light source 305, and the blue laser light source 307 are both at an angle of 45 degrees.
  • the first dichroic mirror 309 and the second dichroic mirror 310 are not limited to being vertically disposed, and may be disposed in parallel according to a placement position of a specific light source device.
  • the positions of the blue LED light source 301 and the red LED light source 303 can be mutually exchanged, as long as the red light beam and the blue light beam and the green fluorescent light beam transmitted and reflected by the dichroic mirror can be combined to emit light in one direction, that is, can.
  • the central optical axis of the blue LED light source 301 is The central optical axes of the green LED light sources 305 are parallel, both perpendicular to the central optical axis of the red LED light source 303 and the central optical axis of the blue laser light source 307.
  • a projection illumination optical path includes: a blue LED light source for generating a blue light beam and is disposed in blue a first collimating lens group directly in front of the optical path of the color LED light source; a red LED light source for generating a red light beam; and a second collimating lens group disposed directly in front of the optical path of the red LED light source; a green LED light source for generating a green LED light beam 405 and a third collimating lens group disposed directly in front of the optical path of the green LED light source 405; a blue laser light source 407 and a fourth collimating lens group disposed directly in front of the optical path of the blue laser light source 407; a dichroic mirror group; a fly-eye lens 411; and prism group.
  • the dichroic mirror group includes: a seventh dichroic mirror 409 and a second wedge prism 410; and the first prism 412 is a non-right angle prism.
  • the first prism is disposed on an outgoing light path of the blue laser beam 407 for reflecting the blue laser beam;
  • the seventh dichroic mirror 409 is disposed on the outgoing light path of the blue LED light source for transmitting or reflecting the blue light beam and the red light beam and combining light;
  • the second wedge prism 410 is disposed on the optical path of the blue laser beam 407 reflected by the first prism 412, and includes a third reflective surface S3 and a fourth reflective surface S4, and the third reflective surface S3 and the fourth reflective surface S4 Non-parallel, the third reflecting surface S3 is for transmitting or refracting a red light beam, a blue light beam and reflecting the green fluorescent light beam, and the fourth reflecting surface S4 is for transmitting or refracting a red light beam, a blue light beam, and reflecting Blue laser beam.
  • the angle between the third reflecting surface S3 and the fourth reflecting surface S4 is preferably defined as 0°-30°.
  • the blue laser beam 407 is first totally reflected by one of the faces of the first prism 412 (the face disposed in parallel with the right-angle face of the second prism in this embodiment), and then homogenized by the fly-eye lens 411.
  • the fourth reflecting surface S4 incident on the second wedge prism 410 is reflected by the second wedge reflecting surface S4 and reflected on the surface of the green LED light source 405 and the light beam generated by the light emitting chip of the green LED light source itself. Exciting the phosphor layer to generate a green fluorescent light beam, the green fluorescent light beam being reflected by the third reflective surface S3 of the second wedge prism 410;
  • the blue light beam and the red light beam are transmitted or reflected via the seventh dichroic mirror 409 and combined and transmitted or refracted via the third reflective surface S3 and the fourth reflective surface S4 of the second wedge prism 410;
  • the blue light beam, the red light beam and the green fluorescent light beam are transmitted and reflected by the second wedge prism and combined to form a white light beam.
  • the positions of the blue LED light source and the red LED light source can be mutually exchanged, as long as the red light beam and the blue light beam and the green fluorescent light beam transmitted and reflected by the dichroic mirror can be combined to emit light in one direction.
  • FIG. 7 is a schematic structural view of a projection device corresponding to the first embodiment of the projection illumination optical path of the present invention; as shown in FIG. 7, a projection device includes: the projection illumination described above The optical path further includes: a display chip 100 and a projection lens group 200.
  • the blue LED beam, the red LED beam, and the green fluorescent beam synthesized white light beam transmitted and/or reflected via the dichroic mirror group enter the fly-eye lens 511 to be homogenized, and then pass through the first prism 512 and the first
  • the two right-angle prisms 513 are incident on the display chip 100.
  • the display chip 100 is parallel to the right-angled surface of the second right-angle prism 513, and is disposed in parallel so that the light beam emitted from the second right-angle prism can be vertically incident on the display chip, and the light gathering effect is relatively high. it is good.
  • the second right angle prism is used to change the direction of the guiding beam such that the illumination beam incident perpendicularly to the DMD is reflected by the second right angle prism and then horizontally incident on the projection lens.
  • the dichroic mirror may be coated with an anti-reflection film or an anti-reflection film as needed; the structure of the projection light source device of the present invention is not limited to the above four embodiments, and any reflection by blue
  • the laser light source illuminates the light beam generated by the light emitting chip of the green LED light source itself It is within the scope of the present invention to generate a green fluorescent light beam by opposing the phosphor layer.
  • the light source devices of the respective colors are preferably disposed on the same plane, so that the arrangement can make the structure more compact.
  • the light source devices of different colors can be set not in the same plane according to the specific structure or environment, as long as the passage is made.
  • the green fluorescence generated by the excitation and the blue light beam and the red light beam are reflected and transmitted through the dichroic mirror, and finally can be combined and emitted, and the object of the present invention can be achieved.
  • the projection illumination optical path of the present invention and the projection device thereof reflect the blue phosphor light source to excite the phosphor layer on the green LED light source to generate green fluorescence, thereby greatly enhancing the brightness of the green light source and enhancing the brightness of the projection light source;
  • the structure setting of the dichroic mirror and the prism because of the setting of the dichroic mirror and the prism, the structure is simple and reasonable, the layout is compact, the structure setting can be flexible and varied, the brightness of the green light source is greatly enhanced, the projection quality is improved, and the problem of insufficient brightness of the light source in the projection light source device is solved.

Abstract

一种投影照明光路及其投影装置,包括:蓝色LED光源(101)以及第一准直透镜组(102);红色LED光源(103)以及第二准直透镜组(104);绿色LED光源(105)以及第三准直透镜组(106);蓝色激光光源(107)以及第四准直透镜组(108);分色镜组;复眼透镜(111);以及棱镜组;所述棱镜组包括:第一棱镜(112)和第二直角棱镜(113);所述绿色LED光源(105)表面带有荧光粉层,蓝色激光光源(107)所产生的蓝色激光光束经第一棱镜(112)其中一个面全反射后照射到绿色LED光源(105)激发荧光粉层产生绿色荧光光束;蓝色激光光束经第一棱镜(112)其中一个面全反射后入射到绿色LED光源(105)表面与绿色LED光源(105)自身的发光芯片所产生的光束相向激发荧光粉层产生绿色荧光光束,大大增强了绿光光源亮度,且结构设置灵活,布局紧凑,增强了投影光源亮度,提高了投影质量。

Description

一种投影照明光路及其投影装置 技术领域
本发明涉及数字投影显示技术领域,更具体地说,涉及一种投影照明光路及其投影装置。
背景技术
在投影显示产品中,投影显示光源是十分重要的部件。投影光源装置的功能在于尽可能多地将光束发出的大角度分布、形状不一、亮度不等的照明光线,转换为照射到显示芯片有效区域的均匀光斑,实现均匀、明亮的投影显示画面。投影模组要得到更好地应用,带给用户更好的视觉享受,就要在保持投影光路设计简洁高效的前提下,满足尺寸小、光损耗低并且增强光照强度使具有高的光输出,这也成为本领域技术人员有待解决的技术问题之一。
目前,一般是采用蓝色激光源和LED光源结合,利用蓝色激光光源激发色轮上的绿色荧光粉产生绿光光源来提高投影光源的光亮度;如图1所示,蓝色激光光源1经透射激发色轮7上的荧光粉层产色绿色光源,再与红色LED光源8和蓝色LED光源14进行合光;又或者是蓝色激光光源直接照射带有荧光粉层的绿色LED光源来提高投影光源的光亮度;如图2所示,LD系统经透射后照射到绿色LED光源上激发荧光粉层产色绿色荧光,绿色荧光光束与绿色LED光束合光进入下一光学装置。但是,采用激发色轮上的荧光粉层产色绿色光源的方法因高速旋转易产生光圈效应,图像不稳定,画质较差;而采用LD系统直接透射激发荧光粉层的方法则因光源的位置设置比较受限,不够灵活,结构上也不够紧凑。基于上述原因,一种 可克服色轮对投影画质的影响,且布局灵活,结构紧凑的增强光亮的投影照明光路成为本领域的研究重点之一。
公开于该背景技术部分的信息仅仅旨在增加对本发明的总体背景的理解,而不应当被视为承认或以任何形式暗示该信息构成已为本领域一般技术人员所公知的现有技术。。
发明内容
针对上述技术问题,本发明的目的在于提供一种结构简单合理,布局紧凑,亮度高,投影质量好的增强光亮的投影照明光路及其投影装置。
为实现上述目的,本发明提供了一种投影照明光路,包括:用于产生蓝色光束的蓝色LED光源以及设置于蓝色LED光源光路正前方的第一准直透镜组;用于产生红色光束的红色LED光源以及设置于红色LED光源光路正前方的第二准直透镜组;绿色LED光源以及设置在绿色LED光源光路正前方的第三准直透镜组;蓝色激光光源以及设置于蓝色激光光源光路正前方的第四准直透镜组;分色镜组;复眼透镜;以及棱镜组;其中,所述棱镜组包括:第一棱镜和第二直角棱镜;所述绿色LED光源表面带有荧光粉层,蓝色激光光源所产生的蓝色激光光束经第一棱镜的其中一个面全反射后入射到绿色LED光源表面与绿色LED光源自身的发光芯片所产生的光束相向激发荧光粉层产生绿色荧光光束;经由所述分色镜组和棱镜组透射和/或反射的蓝色光束、红色光束以及绿色荧光光束合成白光光束。
优选地,所述分色镜组包括:平行或垂直设置的第一分色镜和第二分色镜;所述第一棱镜为直角棱镜,设置在蓝光激光光束的出射光路上,用于全反射蓝光激光光束并将其入射至绿色LED光源;所述第二分色镜设置于所述蓝色LED光源,绿色LED光源的出射光路上,用于透射绿色荧光光束或反射蓝色光束;所述第一分色镜设置于所述红色LED光源,以及经第二分色镜透射和反射的绿色荧光光束和蓝色光束的出射光束的光路上,用于 反射红色光束,透射蓝色光束和绿色荧光光束;蓝色激光光束经第一棱镜的斜面反射后,经复眼透镜均匀化,再经第一分色镜和第二分色镜透射入射到绿色LED光源表面与绿色LED光源自身的发光芯片所产生的光束相向激发荧光粉层产生绿色荧光光束;所述绿色荧光光束经由第一分色镜和第二分色镜透射;所述蓝色光束经由第二分色镜反射并入射到所述第一分色镜上,经由所述第一分色镜透射;所述红色光束经由第一分色镜反射;所述蓝色光束,红色光束和绿色荧光光束经第一分色镜反射和透射合光形成白光光束出射。
优选地,所述红色LED光源的中心光轴、蓝色LED光源的中心光轴以及蓝色激光光源的中心光轴平行,均与绿色LED光源的中心光轴垂直;所述第一分色镜和第二分色镜与红色LED光源,蓝色LED光源,绿色LED光源以及蓝色激光光源的中心光轴方向的夹角均为45°;所述绿色LED光源的中心光轴与复眼透镜的中心光轴重合。
优选地,所述分色镜组包括:平行或垂直设置的第三分色镜和第四分色镜;所述第一棱镜为直角棱镜,设置在蓝光激光光束的出射光路上,用于反射蓝光激光光束;所述第三分色镜设置于所述蓝色LED光源,红色LED光源的出射光路上,用于透射或反射蓝色光束和红色光束,对蓝色光束和红色光束合光;所述第四分色镜设置于所述绿色LED光源装置,以及经第三分色镜透射和反射的红色光束和蓝色光束的出射光束的光路上,用于透射绿色荧光光束,反射蓝色光束和红色光束;蓝色激光光束经第一棱镜的斜面全反射后,经复眼透镜均匀化,再经第四分色镜透射入射到绿色LED光源表面与绿色LED光源自身的发光芯片所产生的光束相向激发荧光粉层产生绿色荧光光束;所述绿色荧光光束经由第四分色镜透射;所述蓝色光束和红色光束经由第三分色镜透射或反射后合光并经由所述第四分色镜反射;所述蓝色光束,红色光束和绿色荧光光束经第四分色镜透射和反射后合光形成白光光束出射。
优选地,所述红色LED光源的中心光轴与绿色LED光源的中心光轴平行,且均与蓝色LED光源的中心光轴和蓝色激光光源的中心光轴垂直;或者所述蓝色LED光源的中心光轴与绿色LED光源的中心光轴平行,且均与红色LED光源的中心光轴和蓝色激光光源的中心光轴垂直;所述第一分色镜和第二分色镜与红色LED光源,蓝色LED光源,绿色LED光源以及蓝色激光光源的中心光轴方向的夹角均为45°;所述绿色LED光源的中心光轴与复眼透镜的中心光轴重合。
优选地,所述分色镜组包括:平行设置的第五分色镜和第六分色镜,以及第一楔形棱镜;所述第一棱镜为非直角棱镜,设置在蓝光激光光束的出射光路上,用于反射蓝光激光光束;所述第五分色镜设置于所述蓝色LED光源,红色LED光源的出射光路上,用于透射或反射蓝色光束和红色光束,并进行合光;所述第六分色镜设置于所述绿色LED光源装置,以及经第五分色镜透射和反射的红色光束和蓝色光束的出射光束的光路上,用于反射绿色荧光光束和蓝色激光光束,以及透射第三分色镜合光后的蓝色光束和红色光束;所述第一楔形棱镜设置于经第一棱镜反射的蓝光激光光束的光路上,包括第一反射面和第二反射面,所述第一反射面和第二反射面非平行,所述第一反射面用于反射红色光束,蓝色光束和所述绿色荧光光束,所述第二反射面用于反射蓝光激光光束;所述蓝色激光光束先经第一棱镜的其中一个面全反射后,入射到所述第一楔形棱镜的第二反射面,再经所述第一楔形棱镜第二反射面反射入射到第六分色镜,经所述第六分色镜反射入射到绿色LED光源表面与绿色LED光源自身的发光芯片所产生的光束相向激发荧光粉层产生绿色荧光光束;所述绿色荧光光束经由第六分色镜反射;所述蓝色光束和红色光束经由第五分色镜透射或反射后合光并经由所述第六分色镜透射;所述蓝色光束,红色光束和绿色荧光光束经第六分色镜透射和反射后合光形成白光光束入射到所述第一楔形棱镜,并经所述第一楔形棱镜的第一反射面反射后出射。
优选地,所述红色LED光源的中心光轴与绿色LED光源的中心光轴平行,均与蓝色LED光源的中心光轴和蓝色激光光源的中心光轴垂直,或者所述蓝色色LED光源的中心光轴与绿色LED光源的中心光轴平行,均与红色LED光源的中心光轴和蓝色激光光源的中心光轴垂直;所述第五分色镜和第六分色镜与红色LED光源,蓝色LED光源,绿色LED光源以及蓝色激光光源的中心光轴的夹角均为45°。
优选地,所述分色镜组包括:第七分色镜,以及第二楔形棱镜;所述第一棱镜为非直角棱镜,设置在蓝光激光光束的出射光路上,用于反射蓝光激光光束;所述第七分色镜设置于所述蓝色LED光源,红色LED光源的出射光路上,用于透射或反射蓝色光束和红色光束并进行合光;所述第二楔形棱镜设置于经第一棱镜反射的蓝光激光光束的光路上,包括第三反射面和第四反射面,所述第三反射面和第四反射面非平行,所述第三反射面用于透或折射红色光束,蓝色光束和反射所述绿色荧光光束,所述第四反射面用于透或折射红色光束,蓝色光束,并反射蓝光激光光束;所述蓝色激光光束先经第一棱镜的其中一个面全反射后,入射到所述第二楔形棱镜的第四反射面,再经所述第二楔形棱镜第四反射面反射入射到绿色LED光源表面与绿色LED光源自身的发光芯片所产生的光束相向激发荧光粉层产生绿色荧光光束;所述绿色荧光光束经由第二楔形棱镜的第三反射面反射;所述蓝色光束和红色光束经由第七分色镜透射或反射后合光并经由所述第二楔形棱镜的第三反射面和第四反射面透射;所述蓝色光束,红色光束和绿色荧光光束经第二楔形棱镜的第三反射面透射和反射后合光形成白光光束出射。
根据本发明的另一实施例,还提供了一种投影装置,其包括上述的投影照明光路,还包括:显示芯片和投影镜头组。
优选地,经由所述分色镜组透射和/或反射的蓝色光束、红色光束以及绿色荧光光束合成白光光束进入复眼透镜均匀化后,再经过第一棱镜和第 二直角棱镜入射到显示芯片;所述显示芯片与第二直角棱镜的一直角边平行。
与现有技术相比,本发明具有如下有益效果:一种投影照明光路,包括:蓝色LED光源以及第一准直透镜组;红色LED光源以及的第二准直透镜组;绿色LED光源以及第三准直透镜组;蓝色激光光源以及第四准直透镜组;分色镜组;复眼透镜;以及棱镜组;所述棱镜组包括:第一棱镜和第二直角棱镜;所述绿色LED光源表面带有荧光粉层,蓝色激光光源所产生的蓝色激光光束经第一棱镜其中一个面全反射直角面反射后照射到绿色LED光源表面与绿色LED光源自身的发光芯片所产生的光束相向激发荧光粉层产生绿色荧光光束;本发明中,蓝色激光光源经第一棱镜其中一个面全反射后激发绿色LED光源表面与绿色LED光源自身的发光芯片所产生的光束相向激发荧光粉层产生绿色荧光光束,大大增强了绿光光源亮度,增强了投影光源亮度;且由于分色镜和棱镜的设置,使得结构简单合理,布局紧凑,结构设置可灵活多变,大大增强了绿光光源的亮度,提高了投影质量,解决了投影光源装置中光源亮度不足的难题。
附图说明
图1是现有技术荧光色轮结构激发的投影光源结构图;
图2是现有技术荧光粉层直接激发的投影仪光学系统;
图3是本发明的投影照明光路实施例一的结构示意图;
图4是本发明的投影照明光路实施例二的结构示意图;
图5是本发明的投影照明光路实施例三的结构示意图;
图6是本发明的投影照明光路实施例四的结构示意图;
图7是本发明的投影照明光路实施例一所对应的投影装置结构示意图。
具体实施方式
下面结合附图,对本发明的具体实施方式进行详细描述,但应当理解本发明的保护范围并不受具体实施方式的限制。
除非另有其它明确表示,否则在整个说明书和权利要求书中,术语“包括”或其变换如“包含”或“包括有”等等将被理解为包括所陈述的元件或组成部分,而并未排除其它元件或其它组成部分。
图3是本发明的投影照明光路实施例一的结构示意图;如图3所示,根据本发明具体实施方式的投影照明光路,包括:用于产生蓝色光束的蓝色LED光源101以及设置于蓝色LED光源101光路正前方的第一准直透镜组102;用于产生红色光束的红色LED光源103以及设置于红色LED光源103光路正前方的第二准直透镜组104;用于产生绿色LED光束的绿色LED光源105以及设置在绿色LED光源105光路正前方的第三准直透镜组106;蓝色激光光源107以及设置于蓝色激光光源107光路正前方的第四准直透镜组108;分色镜组;复眼透镜111;以及棱镜组。
其中,本发明实施例中,所述绿色LED光源105包括:LED发光芯片和发光芯片表面的荧光粉层;分色镜组包括:第一分色镜109和第二分色镜110;复眼透镜111;以及棱镜组;其中,所述棱镜组包括:第一棱镜112和第二直角棱镜113,所述第一棱镜112为直角棱镜;所述绿色LED光源105表面带有荧光粉层,蓝色激光光源107所产生的蓝色激光光束经第一棱镜112斜面全反射后入射到绿色LED光源105表面与绿色LED光源105 自身的发光芯片所产生的光束相向激发荧光粉层产生绿色荧光光束,绿色荧光光束与绿色LED光源105所产生的绿色LED光束合光形成绿色荧光光束。
在本实施例中,所述第一分色镜109和第二分色镜110垂直设置;所述第一棱镜为112直角棱镜,设置在蓝光激光光束的出射光路上,用于反射蓝光激光光束并将其入射至绿色LED光源105;所述第二分色镜110设置于所述蓝色LED光源101,绿色LED光源105的出射光路上,用于透射绿色荧光光束或反射蓝色光束。
所述第一分色镜109设置于所述红色LED光源103,以及经第二分色镜透射和反射的绿色荧光光束和蓝色光束的出射光束的光路上,用于反射红色光束,透射蓝色光束和绿色荧光光束。
蓝色激光光束(蓝色LED光束和蓝色激光光束波长不同)经第一棱镜109的斜面全反射后,经复眼透镜111均匀化,再经第一分色镜109和第二分色镜110透射入射到绿色LED光源105表面与绿色LED光源105自身的发光芯片所产生的光束相向激发荧光粉层产生绿色荧光光束;所述绿色荧光光束经由第一分色镜109和第二分色镜110透射。
所述蓝色光束经由第二分色镜110反射并入射到所述第一分色镜109上,经由所述第一分色镜109透射。
所述红色光束经由第一分色镜109反射。
所述蓝色光束,红色光束和绿色荧光光束经第一分色镜109反射和透射合光形成白光光束出射。
所述红色LED光源103的中心光轴、蓝色LED光源101的中心光轴以及蓝色激光光源107的中心光轴平行,均与绿色LED光源105的中心光轴垂直。
在本实施例中,所述第一分色镜109和第二分色镜110的夹角为90°;所述第一分色镜109和第二分色镜110的夹角为90°;所述第一分色镜109和第二分色镜110与红色LED光源103,蓝色LED光源101,绿色LED光源105以及蓝色激光光源的中心光轴的夹角均为45°;所述绿色LED光源105的中心光轴与复眼透镜111的中心光轴重合。
其中,所述第一分色镜109和第二分色镜110不限于垂直设置,也可以根据具体的光源装置的摆放位置平行设置。
其中,所述蓝色LED光源101与红色LED光源103的位置可以相互调换,只要能保证经过分色镜透射和反射后的红色光束和蓝色光束与绿色荧光光束可以合光沿一个方向出射即可。
值得注意的是,在本实施例中,所述蓝色激光光源107所产生的蓝色激光光束与蓝色LED光源101所产生的蓝色光束波长不同,因此第二分色镜110可以透射蓝色激光光束但是反射蓝色光束。
图4是本发明的投影照明光路实施例二的结构示意图;如图4所示,根据本发明具体实施方式的投影照明光路,包括:用于产生蓝色光束的蓝色LED光源201以及设置于蓝色LED光源201光路正前方的第一准直透镜组202;用于产生红色光束的红色LED光源203以及设置于红色LED光源203光路正前方的第二准直透镜组204;用于产生绿色LED光束的绿色LED光源205以及设置在绿色LED光源205光路正前方的第三准直透镜组206;蓝色激光光源207以及设置于蓝色激光光源207光路正前方的第四准直透镜组208;分色镜组;复眼透镜211;以及棱镜组。
与实施例一不同的是,实施例二中,所述分色镜组包括:平行设置的第三分色镜209和第四分色镜210;所述第三分色镜209设置于所述蓝色LED光源201,红色LED光源203的出射光路上,用于透射或反射蓝色光束和红色光束,对蓝色光束和红色光束合光。
所述第四分色镜210设置于所述绿色LED光源205,以及经第三分色镜透射和反射的红色光束和蓝色光束的出射光束的光路上,用于透射绿色荧光光束,反射蓝色光束和红色光束。
所述棱镜组包括:第一棱镜212和第二直角棱镜213,所述第一棱镜212为直角棱镜,设置在蓝光激光光束207的出射光路上,用于反射蓝光激光光束207。
蓝色激光光束207经第一棱镜212的斜面全反射后,经复眼透镜211均匀化,再经第四分色镜210透射入射到绿色LED光源205表面与绿色LED光源205自身的发光芯片所产生的光束相向激发荧光粉层产生绿色荧光光束;所述绿色荧光光束经由第四分色镜210透射。
所述蓝色光束和红色光束经由第三分色镜209透射或反射后合光并经由所述第四分色镜210反射。
所述蓝色光束,红色光束和绿色荧光光束经第四分色镜透射和反射后合光形成白光光束出射。
在本实施例中,所述红色LED光源203的中心光轴与绿色LED光源205的中心光轴平行,均与蓝色LED光源201的中心光轴和蓝色激光光源207的中心光轴垂直;所述第三分色镜209和第四分色镜210与水平方向的夹角均为45°;所述绿色LED光源205的中心光轴与复眼透镜211的中心光轴重合。
其中,所述第一分色镜209和第二分色镜210不限于平行设置,也可以根据具体的光源装置的摆放位置垂直设置。
其中,所述蓝色LED光源201与红色LED光源203的位置可以相互调换,只要能保证经过分色镜透射和反射后的红色光束和蓝色光束与绿色荧光光束可以合光沿一个方向出射即可。若所述蓝色LED光源201与红色 LED光源203的位置相互调换,则所述蓝色LED光源201的中心光轴和绿色LED光源205的中心光轴平行设置,均与红色LED光源203的中心光轴和蓝色激发光源207的中心光轴垂直。
图5是本发明的投影照明光路实施例三的结构示意图;如图5所示,根据本发明具体实施方式的投影照明光路,包括:用于产生蓝色光束的蓝色LED光源以及设置于蓝色LED光源光路正前方的第一准直透镜组;用于产生红色光束的红色LED光源以及设置于红色LED光源光路正前方的第二准直透镜组;用于产生绿色LED光束的绿色LED光源305以及设置在绿色LED光源305光路正前方的第三准直透镜组;蓝色激光光源307以及设置于蓝色激光光源307光路正前方的第四准直透镜组;分色镜组;复眼透镜311;以及棱镜组。
与实施例一和实施例二不同的是,所述分色镜组包括:平行设置的第五分色镜309和第六分色镜310,以及第一楔形棱镜314;所述第一棱镜312为非直角棱镜,设置在蓝光激光光束307的出射光路上,用于反射蓝光激光光束307。
所述第五分色镜309设置于所述蓝色LED光源301,红色LED光源303的出射光路上,用于透射或反射蓝色光束和红色光束,并进行合光;
所述第六分色镜310设置于所述绿色LED光源305,以及经第五分色镜透射和反射的红色光束和蓝色光束的出射光束的光路上,用于反射绿色荧光光束和蓝色激光光束,以及透射第三分色镜合光后的蓝色光束和红色光束;
所述第一楔形棱镜314设置于经第一棱镜312反射的蓝光激光光束307的光路上,包括第一反射面S1和第二反射面S2,所述第一反射面S1和第二反射面S2非平行,所述第一反射面S1用于反射红色光束,蓝色光束和所述绿色荧光光束,所述第二反射面S2用于反射蓝光激光光束。所述 第一反射面S1和第二反射面S2之间的夹角优选限定为0°-30°。
所述蓝色激光光束307先经第一棱镜312的其中一个面(本实施例中,设置为与第二棱镜313直角面平行的面)全反射后,入射到所述第一楔形棱镜314的第二反射面S2,再经所述第一楔形棱镜314的第二反射面S2反射入射到复眼透镜311进行均匀化进入第六分色镜310,经所述第六分色镜310反射入射到绿色LED光源305表面与绿色LED光源自身的发光芯片所产生的光束相向激发荧光粉层产生绿色荧光光束,所述绿色荧光光束经由第六分色镜310反射。
所述蓝色光束和红色光束经由第五分色镜309透射或反射后合光并经由所述第六分色镜透射310。
所述蓝色光束,红色光束和绿色荧光光束经第六分色镜310透射和反射后合光形成白光光束入射到所述第一楔形棱镜314,并经所述第一楔形棱镜314的第一反射面S1反射后出射。
在本实施例中,所述红色LED光源303的中心光轴与绿色LED光源305的中心光轴平行,均与蓝色LED光源301的中心光轴和蓝色激光光源307的中心光轴垂直;所述第五分色镜309和第六分色镜310与红色LED光源303,蓝色LED光源301,绿色LED光源305以及蓝色激光光源307的中心光轴的夹角均为45°。
其中,所述第一分色镜309和第二分色镜310不限于垂直设置,也可以根据具体的光源装置的摆放位置平行设置。
其中,所述蓝色LED光源301与红色LED光源303的位置可以相互调换,只要能保证经过分色镜透射和反射后的红色光束和蓝色光束与绿色荧光光束可以合光沿一个方向出射即可。若所述蓝色LED光源301与红色LED光源303的位置相互调换,则所述蓝色LED光源301的中心光轴与 绿色LED光源305的中心光轴平行,均与红色LED光源303的中心光轴和蓝色激光光源307的中心光轴垂直。
图6是本发明的投影照明光路实施例四的结构示意图;如图6所示,根据本发明具体实施方式的投影照明光路,包括:用于产生蓝色光束的蓝色LED光源以及设置于蓝色LED光源光路正前方的第一准直透镜组;用于产生红色光束的红色LED光源以及设置于红色LED光源光路正前方的第二准直透镜组;用于产生绿色LED光束的绿色LED光源405以及设置在绿色LED光源405光路正前方的第三准直透镜组;蓝色激光光源407以及设置于蓝色激光光源407光路正前方的第四准直透镜组;分色镜组;复眼透镜411;以及棱镜组。
与实施例和实施例二不同的是,所述分色镜组包括:第七分色镜409和第二楔形棱镜410;所述第一棱镜412为非直角棱镜。
所述第一棱镜设置在蓝光激光光束407的出射光路上,用于反射蓝光激光光束;
所述第七分色镜409设置于所述蓝色LED光源,红色LED光源的出射光路上,用于透射或反射蓝色光束和红色光束并进行合光;
所述第二楔形棱镜410设置于经第一棱镜412反射的蓝光激光光束407的光路上,包括第三反射面S3和第四反射面S4,所述第三反射面S3和第四反射面S4非平行,所述第三反射面S3用于透或折射红色光束,蓝色光束和反射所述绿色荧光光束,所述第四反射面S4用于透或折射红色光束,蓝色光束,并反射蓝光激光光束。其中,所述第三反射面S3和第四反射面S4之间的夹角优选限定为0°-30°。
所述蓝色激光光束407先经第一棱镜412的其中一个面(本实施例中,设置为与第二棱镜直角面平行的面)全反射后,经复眼透镜411均匀化, 入射到所述第二楔形棱镜410的第四反射面S4,再经所述第二楔形棱镜第四反射面S4反射入射到绿色LED光源405表面与绿色LED光源自身的发光芯片所产生的光束相向激发荧光粉层产生绿色荧光光束,所述绿色荧光光束经由第二楔形棱镜410的第三反射面S3反射;
所述蓝色光束和红色光束经由第七分色镜409透射或反射后合光并经由所述第二楔形棱镜410的第三反射面S3和第四反射面S4透射或折射;
所述蓝色光束,红色光束和绿色荧光光束经第二楔形棱镜透射和反射后合光形成白光光束出射。
其中,所述蓝色LED光源与红色LED光源的位置可以相互调换,只要能保证经过分色镜透射和反射后的红色光束和蓝色光束与绿色荧光光束可以合光沿一个方向出射即可。
另外,本发明还提供了一种投影装置;图7是本发明的投影照明光路实施例一所对应的投影装置结构示意图;如图7所示,一种投影装置包括:上述所述的投影照明光路,还包括:显示芯片100和投影镜头组200。
在本实施例中,经由所述分色镜组透射和/或反射的蓝色LED光束、红色LED光束以及绿色荧光光束合成白光光束进入复眼透镜511均匀化后,再经过第一棱镜512和第二直角棱镜513入射到显示芯片100;优选所述显示芯片100与第二直角棱镜513的一直角面平行,平行设置使得从第二直角棱镜出射的光束能够垂直入射到显示芯片,光线聚拢效果较好。其中第二直角棱镜用于改变引导光束方向,使得垂直入射到DMD的照明光束经第二直角棱镜反射后水平入射到投影镜头。
值得注意的是,上述实施例中,所述分色镜可根据需要镀上增反膜或者增透膜;本发明的投影光源装置结构并不限制于上述四种实施例,凡是通过反射蓝色激光光源照射绿色LED光源自身的发光芯片所产生的光束 相向激发荧光粉层产生绿色荧光光束均属于本发明的保护范围。
本发明实施例中,所述的各色光源装置优选设置于同一个平面,这样设置可以使得结构更加紧凑,当然也可以根据具体结构或者环境的需要将各色光源装置设置不在同一个平面,只要使得通过激发产生的绿色荧光以及蓝色光束和红色光束经过分色镜反射和透射后最终能合光出射,能够实现本发明的目的即可。
综上所述,本发明的投影照明光路及其投影装置中蓝色激光光源经反射后激发绿色LED光源上的荧光粉层产生绿色荧光,大大增强了绿光光源亮度,增强了投影光源亮度;且由于分色镜和棱镜的设置,使得结构简单合理,布局紧凑,结构设置可灵活多变,大大增强了绿光光源的亮度,提高了投影质量,解决了投影光源装置中光源亮度不足的难题。
前述对本发明的具体示例性实施方案的描述是为了说明和例证的目的。这些描述并非想将本发明限定为所公开的精确形式,并且很显然,根据上述教导,可以进行很多改变和变化。对示例性实施例进行选择和描述的目的在于解释本发明的特定原理及其实际应用,从而使得本领域的技术人员能够实现并利用本发明的各种不同的示例性实施方案以及各种不同的选择和改变。本发明的范围意在由权利要求书及其等同形式所限定。

Claims (10)

  1. 一种投影照明光路,其特征在于,包括:
    用于产生蓝色光束的蓝色LED光源以及设置于蓝色LED光源光路正前方的第一准直透镜组;用于产生红色光束的红色LED光源以及设置于红色LED光源光路正前方的第二准直透镜组;绿色LED光源以及设置在绿色LED光源光路正前方的第三准直透镜组;蓝色激光光源以及设置于蓝色激光光源光路正前方的第四准直透镜组;分色镜组;复眼透镜;以及棱镜组;
    其中,所述棱镜组包括:第一棱镜和第二直角棱镜;所述绿色LED光源表面带有荧光粉层,蓝色激光光源所产生的蓝色激光光束经第一棱镜的其中一个面全反射后入射到绿色LED光源表面与绿色LED光源自身的发光芯片所产生的光束相向激发荧光粉层产生绿色荧光光束;
    经由所述分色镜组和棱镜组透射和/或反射的蓝色光束、红色光束以及绿色荧光光束合成白光光束。
  2. 根据权利要求1所述的投影照明光路,其特征在于,
    所述分色镜组包括:平行或垂直设置的第一分色镜和第二分色镜;
    所述第一棱镜为直角棱镜,设置在蓝光激光光束的出射光路上,用于全反射蓝光激光光束并将其入射至绿色LED光源;
    所述第二分色镜设置于所述蓝色LED光源,绿色LED光源的出射光路上,用于透射绿色荧光光束或反射蓝色光束;
    所述第一分色镜设置于所述红色LED光源,以及经第二分色镜透射和反射的绿色荧光光束和蓝色光束的出射光束的光路上,用于反射红色光束,透射蓝色光束和绿色荧光光束;
    蓝色激光光束经第一棱镜的斜面反射后,经复眼透镜均匀化,再经第一分色镜和第二分色镜透射入射到绿色LED表面与绿色LED光源自身的发光芯片所产生的光束相向激发荧光粉层产生绿色荧光光束,所述绿色荧光光束经由第一分色镜和第二分色镜透射;
    所述蓝色光束经由第二分色镜反射并入射到所述第一分色镜上,经由所述第一分色镜透射;
    所述红色光束经由第一分色镜反射;
    所述蓝色光束,红色光束和绿色荧光光束经第一分色镜反射和透射合光形成白光光束出射。
  3. 根据权利要求2所述的投影照明光路,其特征在于,所述红色LED光源的中心光轴、蓝色LED光源的中心光轴以及蓝色激光光源的中心光轴平行,均与绿色LED光源的中心光轴垂直;所述第一分色镜和第二分色镜与红色LED光源,蓝色LED光源,绿色LED光源以及蓝色激光光源的中心光轴方向的夹角均为45°;所述绿色LED光源的中心光轴与复眼透镜的中心光轴重合。
  4. 根据权利要求1所述的投影照明光路,其特征在于,
    所述分色镜组包括:平行或垂直设置的第三分色镜和第四分色镜;
    所述第一棱镜为直角棱镜,设置在蓝光激光光束的出射光路上,用于反射蓝光激光光束;
    所述第三分色镜设置于所述蓝色LED光源,红色LED光源的出射光路 上,用于透射或反射蓝色光束和红色光束,对蓝色光束和红色光束合光;
    所述第四分色镜设置于所述绿色LED光源装置,以及经第三分色镜透射和反射的红色光束和蓝色光束的出射光束的光路上,用于透射绿色荧光光束,反射蓝色光束和红色光束;
    蓝色激光光束经第一棱镜的斜面反射后,经复眼透镜均匀化,再经第四分色镜透射入射到绿色LED光源表面与绿色LED光源自身的发光芯片所产生的光束相向激发荧光粉层产生绿色荧光光束;所述绿色荧光光束经由第四分色镜透射;
    所述蓝色光束和红色光束经由第三分色镜透射或反射后合光并经由所述第四分色镜反射;
    所述蓝色光束,红色光束和绿色荧光光束经第四分色镜透射和反射后合光形成白光光束出射。
  5. 根据权利要求4所述的投影照明光路,其特征在于,所述红色LED光源的中心光轴与绿色LED光源的中心光轴平行,且均与蓝色LED光源的中心光轴和蓝色激光光源的中心光轴垂直;或者所述蓝色LED光源的中心光轴与绿色LED光源的中心光轴平行,且均与红色LED光源的中心光轴和蓝色激光光源的中心光轴垂直;所述第一分色镜和第二分色镜与红色LED光源,蓝色LED光源,绿色LED光源以及蓝色激光光源的中心光轴方向的夹角均为45°;所述绿色LED光源的中心光轴与复眼透镜的中心光轴重合。
  6. 根据权利要求1所述的投影照明光路,其特征在于,
    所述分色镜组包括:平行设置的第五分色镜和第六分色镜,以及第一楔形棱镜;
    所述第一棱镜为非直角棱镜,设置在蓝光激光光束的出射光路上,用 于反射蓝光激光光束;
    所述第五分色镜设置于所述蓝色LED光源,红色LED光源的出射光路上,用于透射或反射蓝色光束和红色光束,并进行合光;
    所述第六分色镜设置于所述绿色LED光源装置,以及经第五分色镜透射和反射的红色光束和蓝色光束的出射光束的光路上,用于反射绿色荧光光束和蓝色激光光束,以及透射第三分色镜合光后的蓝色光束和红色光束;
    所述第一楔形棱镜设置于经第一棱镜反射的蓝光激光光束的光路上,包括第一反射面和第二反射面,所述第一反射面和第二反射面非平行,所述第一反射面用于反射红色光束,蓝色光束和所述绿色荧光光束,所述第二反射面用于反射蓝光激光光束;
    所述蓝色激光光束先经第一棱镜的其中一个面全反射后,入射到所述第一楔形棱镜的第二反射面,再经所述第一楔形棱镜第二反射面反射入射到第六分色镜,经所述第六分色镜反射入射到绿色LED光源表面与绿色LED光源自身的发光芯片所产生的光束相向激发荧光粉层产生绿色荧光光束,所述绿色荧光光束经由第六分色镜反射;
    所述蓝色光束和红色光束经由第五分色镜透射或反射后合光并经由所述第六分色镜透射;
    所述蓝色光束,红色光束和绿色荧光光束经第六分色镜透射和反射后合光形成白光光束入射到所述第一楔形棱镜,并经所述第一楔形棱镜的第一反射面反射后出射。
  7. 根据权利要求6所述的投影照明光路,其特征在于,所述红色LED光源的中心光轴与绿色LED光源的中心光轴平行,均与蓝色LED光源的中心光轴和蓝色激光光源的中心光轴垂直,或者所述蓝色色LED光源的中心光轴与绿色LED光源的中心光轴平行,均与红色LED光源的中心光轴和蓝 色激光光源的中心光轴垂直;所述第五分色镜和第六分色镜与红色LED光源,蓝色LED光源,绿色LED光源以及蓝色激光光源的中心光轴的夹角均为45°。
  8. 根据权利要求1所述的投影照明光路,其特征在于,
    所述分色镜组包括:第七分色镜,以及第二楔形棱镜;
    所述第一棱镜为非直角棱镜,设置在蓝光激光光束的出射光路上,用于反射蓝光激光光束;
    所述第七分色镜设置于所述蓝色LED光源,红色LED光源的出射光路上,用于透射或反射蓝色光束和红色光束并进行合光;
    所述第二楔形棱镜设置于经第一棱镜反射的蓝光激光光束的光路上,包括第三反射面和第四反射面,所述第三反射面和第四反射面非平行,所述第三反射面用于透或折射红色光束,蓝色光束和反射所述绿色荧光光束,所述第四反射面用于透或折射红色光束,蓝色光束,并反射蓝光激光光束;
    所述蓝色激光光束先经第一棱镜的其中一个面反射后,入射到所述第二楔形棱镜的第四反射面,再经所述第二楔形棱镜第四反射面反射入射到绿色LED光源表面与绿色LED光源自身的发光芯片所产生的光束相向激发荧光粉层产生绿色荧光光束;所述绿色荧光光束经由第二楔形棱镜的第三反射面反射;
    所述蓝色光束和红色光束经由第七分色镜透射或反射后合光并经由所述第二楔形棱镜的第三反射面和第四反射面透射;
    所述蓝色光束,红色光束和绿色荧光光束经第二楔形棱镜的第三反射面透射和反射后合光形成白光光束出射。
  9. 一种投影装置,其包括上述1-8项任一项所述的投影照明光路,其 特征在于,还包括:显示芯片和投影镜头组。
  10. 据权利要求9所述的投影装置,其特征在于,经由所述分色镜组透射和/或反射的蓝色光束、红色光束以及绿色荧光光束合成白光光束进入复眼透镜均匀化后,再经过第一棱镜和第二直角棱镜入射到显示芯片;所述显示芯片与第二直角棱镜的一直角边平行。
PCT/CN2017/085734 2017-05-17 2017-05-24 一种投影照明光路及其投影装置 WO2018209723A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710349749.0A CN106950788A (zh) 2017-05-17 2017-05-17 一种投影照明光路及其投影装置
CN201710349749.0 2017-05-17

Publications (1)

Publication Number Publication Date
WO2018209723A1 true WO2018209723A1 (zh) 2018-11-22

Family

ID=59478714

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/085734 WO2018209723A1 (zh) 2017-05-17 2017-05-24 一种投影照明光路及其投影装置

Country Status (2)

Country Link
CN (1) CN106950788A (zh)
WO (1) WO2018209723A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207352345U (zh) * 2017-05-17 2018-05-11 广景视睿科技(深圳)有限公司 一种增强光亮的投影光源及其投影系统
CN107748474B (zh) * 2017-10-16 2019-09-06 广景视睿科技(深圳)有限公司 一种提高投影亮度的混色发光方法及投影装置
CN108641933B (zh) * 2018-05-03 2024-02-06 莫纳(苏州)生物科技有限公司 一种基于dlp技术的荧光定量pcr检测装置
CN112114482B (zh) * 2019-06-20 2022-11-29 青岛海信激光显示股份有限公司 激光投影设备
CN110456603A (zh) * 2019-08-05 2019-11-15 深圳光维科技有限公司 投影显示光学系统
CN211289937U (zh) * 2019-11-12 2020-08-18 深圳市绎立锐光科技开发有限公司 光源装置及照明系统
CN113608402A (zh) * 2021-08-11 2021-11-05 四川长虹电器股份有限公司 照明装置及微型投影仪
WO2023245936A1 (zh) * 2022-06-23 2023-12-28 青岛海信激光显示股份有限公司 光源装置和投影系统
CN115469503B (zh) * 2022-11-14 2023-03-10 深圳市橙子数字科技有限公司 一种激光以及led光源组合的投影系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110234923A1 (en) * 2010-03-26 2011-09-29 Panasonic Corporation Lighting device and projection type image display apparatus using the same
US20120162614A1 (en) * 2010-12-28 2012-06-28 JVC Kenwood Corporation Light Source Device
CN102789121A (zh) * 2012-04-10 2012-11-21 海信集团有限公司 一种投影显示光源
CN203337988U (zh) * 2013-06-18 2013-12-11 深圳大学 一种激光投影光源
CN104122742A (zh) * 2014-08-01 2014-10-29 杭州瑾丽光电科技有限公司 一种激光混合光源投影机及其光源装置
CN205750256U (zh) * 2016-06-17 2016-11-30 广景视睿科技(深圳)有限公司 一种投影照明光路

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5574458B2 (ja) * 2010-10-19 2014-08-20 Necディスプレイソリューションズ株式会社 照明装置およびそれを用いた投射型表示装置
JP5311155B2 (ja) * 2010-12-14 2013-10-09 カシオ計算機株式会社 光源装置及びプロジェクタ
CN206991012U (zh) * 2017-05-17 2018-02-09 广景视睿科技(深圳)有限公司 一种投影照明光路及其投影装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110234923A1 (en) * 2010-03-26 2011-09-29 Panasonic Corporation Lighting device and projection type image display apparatus using the same
US20120162614A1 (en) * 2010-12-28 2012-06-28 JVC Kenwood Corporation Light Source Device
CN102789121A (zh) * 2012-04-10 2012-11-21 海信集团有限公司 一种投影显示光源
CN203337988U (zh) * 2013-06-18 2013-12-11 深圳大学 一种激光投影光源
CN104122742A (zh) * 2014-08-01 2014-10-29 杭州瑾丽光电科技有限公司 一种激光混合光源投影机及其光源装置
CN205750256U (zh) * 2016-06-17 2016-11-30 广景视睿科技(深圳)有限公司 一种投影照明光路

Also Published As

Publication number Publication date
CN106950788A (zh) 2017-07-14

Similar Documents

Publication Publication Date Title
WO2018209723A1 (zh) 一种投影照明光路及其投影装置
JP4186918B2 (ja) 画像表示装置
EP3598230B1 (en) Light source device and projection system
WO2018209722A1 (zh) 一种增强光亮的投影光源及其投影系统
TW201738648A (zh) 照明系統以及投影裝置
KR20150123064A (ko) 조명장치 및 이를 구비한 투사형 영상표시장치
TWI524129B (zh) 照明系統以及投影裝置
TW200541118A (en) Illumination system with non-radially symmetrical aperture
US8491125B2 (en) Lighting device and projection type display apparatus including the same
JP4678231B2 (ja) 均一化光学素子、照明装置及び画像表示装置
WO2018171042A1 (zh) 一种投影机
CN112540499B (zh) 投影仪
CN110389486B (zh) 光源装置及显示设备
WO2020216263A1 (zh) 光源系统和显示设备
TWI731073B (zh) 照明系統
CN206991012U (zh) 一种投影照明光路及其投影装置
WO2019033672A1 (zh) 双色激光光源和激光投影机
WO2022037196A1 (zh) 一种三色光源设备和投影显示设备
TW201833655A (zh) 光源裝置
US11586103B2 (en) Illumination system and projection apparatus
JP5170221B2 (ja) 照明装置および画像表示装置
WO2020135300A1 (zh) 光源系统及投影装置
CN109254485B (zh) 光源装置及投影系统
WO2021143444A1 (zh) 复眼透镜组、光源装置及投影设备
JP4382503B2 (ja) 投写型表示装置の光源装置と投写型表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17910063

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 29/04/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17910063

Country of ref document: EP

Kind code of ref document: A1