WO2020135300A1 - 光源系统及投影装置 - Google Patents

光源系统及投影装置 Download PDF

Info

Publication number
WO2020135300A1
WO2020135300A1 PCT/CN2019/127279 CN2019127279W WO2020135300A1 WO 2020135300 A1 WO2020135300 A1 WO 2020135300A1 CN 2019127279 W CN2019127279 W CN 2019127279W WO 2020135300 A1 WO2020135300 A1 WO 2020135300A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
light
diffuser
wavelength conversion
laser
Prior art date
Application number
PCT/CN2019/127279
Other languages
English (en)
French (fr)
Inventor
戴达炎
周浩
宋霞
李屹
Original Assignee
深圳光峰科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光峰科技股份有限公司 filed Critical 深圳光峰科技股份有限公司
Publication of WO2020135300A1 publication Critical patent/WO2020135300A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2013Plural light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2066Reflectors in illumination beam
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/208Homogenising, shaping of the illumination light

Definitions

  • the invention relates to the technical field of lighting and projection, and in particular to a light source system and a projection device having the light source system.
  • light sources of projection devices are mainly divided into pure laser light sources and laser fluorescent mixed light sources.
  • Pure laser light sources generally use red, green, and blue lasers to illuminate the laser, which is very expensive, and because the technology of red and green lasers is immature, there is a problem of low electro-optical conversion efficiency.
  • Laser fluorescent hybrid light sources usually use blue lasers as excitation light to excite different phosphors to produce different colors of fluorescence. Compared with pure laser light sources, it can greatly reduce costs.
  • the method of generating fluorescence is to coat different phosphors on the color wheel, and drive the color wheel to rotate by a motor to generate time-sequential fluorescence.
  • the generated fluorescence spectrum is wide, and it needs to be modified by a color filter for filtering. Filtering the fluorescence usually adds a corresponding color correction film on the inside or outside of the color wheel. Therefore, red light accounts for a large proportion of the white-balanced color gamut, and the brightness of the light source cannot be maximized.
  • the common solution is to add a red laser light source and use another color wheel for astigmatism and light emission, so that the red laser light generated by the red laser light source and the red fluorescence mix into the optical machine, but increase the overall structure of the light source.
  • the volume of space is contrary to the actual demand to reduce the occupied space.
  • the present invention provides a light source system capable of improving the brightness of a light source and reducing the occupied space, which includes:
  • the first light source is used to emit the first laser
  • a wavelength conversion device includes a substrate, a diffuser, and a driving member, and the central axis of the substrate and the diffuser is located on the same straight line and rotates synchronously around the central axis under the driving of the driving member; among them,
  • the wavelength conversion device further includes a reflection area and a wavelength conversion area located on the same side of the substrate and arranged in sections, and the first laser light emitted from the first light source is incident on the reflection area and the wavelength conversion area in time sequence;
  • the first laser light emitted from the first light source enters the wavelength conversion region to excite fluorescence, and the second laser light emitted from the second light source is scattered by the diffuser and mixed with light of the same color to emit light.
  • the two surfaces of the light diffuser opposite to each other are provided with a light-transmitting film and a reflective film, and the light-transmitting film is located on a side of the light diffuser close to the reflection area and the wavelength conversion area Side; the second laser light emitted from the second light source is incident from the light-transmitting film and is reflected by the reflecting film after being scattered by the diffuser.
  • the second light source is located on the side where the light-transmitting film is provided on the diffuser.
  • the two surfaces opposite to the diffuser are provided with a light-transmitting film, and the second laser light emitted by the second light source is away from the diffuser and away from the reflection area and the wavelength conversion area from the diffuser
  • One layer of the light-transmitting film enters and exits from another layer of the light-transmitting film.
  • the second light source is located on a side of the diffuser away from the reflection area and the wavelength conversion area.
  • the substrate has a circular ring shape and is sleeved on the outer ring of the diffuser and is coaxially disposed with the diffuser.
  • the side surface of the light diffuser provided with the light-transmitting film is V-shaped, and the size of the V-shaped angle is not less than 90°.
  • the wavelength conversion region includes a reflective layer and a phosphor layer that are superimposed, and the reflective layer is located between the substrate and the phosphor layer.
  • the phosphor layer includes a first phosphor segment and a second phosphor segment arranged next to each other in sequence, and the first phosphor segment and the second phosphor segment contain different phosphors to excite different colors Of fluorescence.
  • the light source system further includes a light guide device including a mirror, a beam splitter, an area diaphragm, and a focusing lens, so that various colors of light emitted by the wavelength conversion device pass through the light After the guide device, it can exit along the same path.
  • a light guide device including a mirror, a beam splitter, an area diaphragm, and a focusing lens, so that various colors of light emitted by the wavelength conversion device pass through the light After the guide device, it can exit along the same path.
  • the first laser emitted from the first light source is a blue laser
  • the second laser emitted from the second light source is at least one of red laser, green laser, and blue laser.
  • the invention also provides a projection device including the light source system in any of the above embodiments.
  • the light source system provided by the present invention supplements the laser fluorescent mixed light source through the second light source and the diffuser to overcome the defect that the brightness of the light source cannot be maximized.
  • the diffuser is used to emit the second light source
  • the second laser is used for astigmatism treatment, which can avoid the problem of increasing the overall structure volume of the light source by using color filter or increasing the color wheel astigmatism.
  • FIG. 1 is a schematic structural diagram of a light source system provided by a first embodiment of the present invention.
  • FIG. 2 is a schematic surface view of the wavelength conversion device in the light source system shown in FIG. 1.
  • FIG. 3 is a schematic structural diagram of a light source system provided by a second embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a light source system provided by a third embodiment of the present invention.
  • FIG. 1 is a schematic structural diagram of a light source system 100 according to a first embodiment of the present invention.
  • the light source system 100 includes a first light source 110, a second light source 120, and a wavelength conversion device 130.
  • the first light source 110 is used to emit the first laser light
  • the second light source 120 is used to emit the second laser light.
  • the first laser light emitted by the first light source 110 is a blue laser, which can excite corresponding phosphors to generate red, green, or yellow fluorescence
  • the second laser light emitted by the second light source 120 is a red laser.
  • the second laser light emitted by the second light source 120 may also be a green laser or a blue laser.
  • the second light source 120 may also be a mixed light source capable of emitting two or three types of monochromatic light among red laser light, green laser light, and blue laser light.
  • the wavelength conversion device 130 includes a substrate 131, a diffuser 132, and a driving member 133, wherein the substrate 131 and the central axis 134 of the diffuser 132 are located on the same straight line and are synchronously rotated around the central axis 134 under the driving of the driving member 133.
  • the substrate 131 is substantially circular
  • the diffuser 132 is substantially circular.
  • the substrate 131 is sleeved on the outer ring of the diffuser 132 and is coaxially arranged.
  • the diffuser 132 may be circular
  • the outer ring of the substrate 131 is sleeve-shaped.
  • the wavelength conversion device 130 further includes a reflection region 135 and a wavelength conversion region 136 on the same side of the substrate 131 and arranged in sections.
  • the reflection area 135 and the wavelength conversion area 136 form an annular shape corresponding to the substrate 131 in shape and size, and the plane where the reflection area 135 and the wavelength conversion area 136 are located is perpendicular to the central axis 134.
  • the first laser light emitted from the first light source 110 is incident on the reflection area 135 and the wavelength conversion area 136 in time sequence.
  • the first laser light emitted from the first light source 110 When the first laser light emitted from the first light source 110 is incident on the reflection area 135, the first laser light is reflected and scattered; when the first light source When the first laser beam emitted from 110 is incident on the wavelength conversion region 136, the first laser beam excites the phosphor to generate fluorescence.
  • the wavelength conversion region 136 includes a reflective layer 1361 and a phosphor layer 1362 that are superimposed, and the reflective layer 1361 is located between the phosphor layer 1362 and the substrate 131.
  • the phosphor layer 1362 includes a first fluorescent segment 1363, a second fluorescent segment 1364, and a third fluorescent segment 1365 that are arranged adjacent to each other in sequence.
  • the first fluorescent segment 1363, the second fluorescent segment 1364, and the third fluorescent segment 1365 respectively contain different fluorescences Powder to stimulate different colors of fluorescence.
  • blue laser light incident on the first fluorescent segment 1363 can excite red fluorescence
  • blue laser light incident on the second fluorescent segment 1364 can excite green fluorescence
  • blue laser incident on the third fluorescent segment 1365 can excite yellow fluorescence.
  • the phosphor layer 1362 may further include only fluorescent segments capable of generating red and green fluorescence; or the phosphor layer 1362 may only include fluorescent segments capable of generating yellow fluorescence.
  • the working principle of the light source system 100 provided by the first embodiment of the present invention is that: the substrate 131 and the diffuser 132 rotate under the driving of the driving member 133, and the blue laser light emitted from the first light source 110 is incident on the reflection area 135 and the first fluorescence in time sequence
  • the light emitted by the wavelength conversion device 130 is blue light, that is, the blue laser light that has undergone reflection and scattering.
  • the blue laser light enters the first fluorescent section 1363, it can be excited to generate red fluorescence.
  • the red laser light emitted by the second light source 120 is combined with the red fluorescence after being scattered by the diffuser 132.
  • the wavelength conversion device 130 emits The emitted light is red light.
  • the blue laser light enters the second fluorescent section 1364, it generates green fluorescence, and at this time, the light emitted by the wavelength conversion device 130 is green light.
  • the blue laser light enters the third fluorescent section 1365, it generates yellow fluorescence, and at this time, the light emitted by the wavelength conversion device 130 is yellow light.
  • two opposite surfaces of the light diffuser 132 are provided with a light-transmitting film 1321 and a reflective film 1322 respectively, and the light-transmitting film 1321 is located on the side of the light diffuser 132 near the reflection area 135 and the wavelength conversion area 136.
  • the two surfaces of the light diffuser 132 provided with the light-transmitting film 1321 and the reflective film 1322 are perpendicular to the central axis 134, respectively.
  • the second light source 120 is located on the side of the diffuser 132 where the light-transmitting film 1321 is provided.
  • the second light source 120 When the red laser light emitted from the second light source 20 enters the diffuser 132, it passes through the transmission of the light-transmitting film 1321, the scattering of the diffuser 132, and the reflection of the reflection film 1322, and then transmits through the light-transmitting film 1321 and exits.
  • the second light source 120 need not be limited to the side where the light-transmitting film 1321 is provided on the diffuser 132, and the red laser light emitted from the second light source 120 can be provided The side of the light film 1321 is incident. It can be understood that the second light source 120 is disposed on the side of the diffuser 132 where the light-transmitting film 1321 is provided to shorten the optical path and make the structure more compact.
  • the second light source 120 can emit two monochromatic lights of blue laser light and red laser light, wherein the blue laser light and the red laser light can be incident on the diffuser 132 in time sequence, or can be incident at the same time To different areas of the diffuser 132. Specifically, the blue laser light emitted by the second light source 120 is incident on the diffuser 132 and is reflected by the reflective film 1322 after being diffused by the diffuser 132. At this time, the blue light emitted by the diffuser 132 can replace the first light source 110 to reflect through the reflective area 135 Outgoing blue light.
  • the red laser light emitted from the second light source 120 is scattered by the diffuser 132 and then enters the first fluorescent section 1363 with the blue laser light emitted from the first light source 110 to mix and emit light.
  • the blue laser light of the second light source 120 is scattered by the diffuser 132 and enters the spatial light modulator as blue illumination light for light modulation. Since the blue laser light in the second light source 120 provides blue illumination light, at this time, the light emitted by the first laser light emitted by the first light source 110 after being converted by the wavelength conversion device 130 may not include blue light.
  • the red light emitted by the diffuser 132 passes through the astigmatism, eliminating the coherence of the laser and eliminating the laser speckle.
  • the area where the diffuser 132 emits red light and the area where the first fluorescent section 1363 emits red fluorescence are distributed 180° with the central axis 134 as the center.
  • the light source system 100 further includes a light guiding device 140, and the light guiding device 140 includes a first beam splitter 1411, a first mirror 1412, a second beam splitter 1413, an area diaphragm 1414, a second mirror 1415, and multiple focusing
  • the lens 142 allows various colors of light emitted by the wavelength conversion device 130 to enter the spatial light modulator and other subsequent optical devices along the same path after passing through the light guide device 140.
  • the first beam splitter 1411 can reflect blue light and transmit light of other colors, and the blue laser light emitted by the first light source 110 enters the substrate 131 through the reflection of the first beam splitter 1411.
  • the first reflecting mirror 1412 is used to reflect the second laser light emitted by the second light source 120 so that the second laser light enters the diffuser 132.
  • the second beam splitter 1413 can reflect blue light and transmit light of other colors.
  • the area film 1414 can reflect red light in the middle area through the area coating, and the peripheral area can reflect blue light and transmit light of other colors. Blue light emitted from the substrate 131 It is reflected by the first beam splitter 1411, the second beam splitter 1413, and the area diaphragm 1414 in this order.
  • the red light emitted from the diffuser 132 passes through the second beam splitter 1413 and is reflected by the area diaphragm 1414.
  • the red light emitted from the diffuser 312 can also be directly emitted from the intermediate position of the first mirror 1412 and the first mirror 1412 without being transmitted through the second beam splitter 1413.
  • the non-blue light emitted from the substrate 131 is sequentially transmitted through the first beam splitter 1411, reflected by the second mirror 1415, and transmitted by the area diaphragm 1414.
  • a plurality of focusing lenses 142 are respectively disposed in the optical path between the first beam splitter 1411 and the substrate 131, in the optical path between the first mirror 1412 and the diffuser plate 132, the diffuser plate 132 and the second beam splitter In the optical path between 1413, in the optical path between the first beam splitter 1411 and the second mirror 1415, and in the optical path between the second beam splitter 1413 and the area diaphragm 1414.
  • FIG. 3 is a schematic structural diagram of a light source system 200 according to a second embodiment of the present invention.
  • the light source system 200 provided in the second embodiment is substantially the same as the light source system 100 provided in the first embodiment, and also includes a first light source 210, a second light source 220, a wavelength conversion device 230, and a light guide device 240.
  • the wavelength conversion device 230 includes a substrate 231, a light diffusion sheet 232, a driving member 233, a reflection area 235, and a wavelength conversion area 236.
  • the wavelength conversion region 236 includes a reflective layer 2361 and a phosphor layer 2362 that are arranged in a stack.
  • the difference between the light source system 200 provided in the second embodiment and the light source system 100 provided in the first embodiment is that the two surfaces opposite to the diffuser 232 are provided with light-transmitting films 2321 respectively, and the second light source 220 is located on the diffuser 232 The side away from the reflection area 235 and the wavelength conversion area 236.
  • the second laser light emitted from the second light source 220 enters the diffuser 232, it is first transmitted by a layer of light-transmitting film 2321 far from the reflection area 235 and the wavelength conversion area 236, and then exits from another layer of light-transmitting film 2321.
  • the second light source 220 need not be limited to the side of the diffuser 232 away from the reflection area 235 and the wavelength conversion area 236, it can be understood that the second light source 220 is disposed on the diffuser 232 away from the reflection area 235 and the wavelength conversion area One side of 236 can shorten the optical path to make the structure more compact.
  • the light source system 200 provided in the second embodiment is different from the light source system 100 provided in the first embodiment in that the light guide device 240 includes a first beam splitter 2411, a second beam splitter 2413, an area film 2414, and a second ⁇ 2415 ⁇ Mirror 2415.
  • the blue laser light emitted from the first light source 210 enters the substrate 231 after being reflected by the first beam splitter 2411.
  • the blue light emitted from the substrate 231 is sequentially reflected by the first beam splitter 2411, the second beam splitter 2413, and the area diaphragm 2414.
  • the red light emitted from the diffuser 232 passes through the second beam splitter 2413 and is reflected by the regional diaphragm 2414.
  • the non-blue light emitted from the substrate 231 is sequentially transmitted through the first beam splitter 2411, reflected by the second reflecting mirror 2415, and transmitted by the area diaphragm 2414.
  • FIG. 4 is a schematic structural diagram of a light source system 300 according to a third embodiment of the present invention.
  • the light source system 300 provided by the third embodiment is substantially the same as the light source system 100 provided by the first embodiment, and also includes a first light source 310, a second light source 320, a wavelength conversion device 330, and a light guide device 340.
  • the wavelength conversion device 330 includes a substrate 331, a light diffuser 332, a driving member 333, a reflection area 335, and a wavelength conversion area 336.
  • the wavelength conversion region 336 includes a reflective layer 3361 and a phosphor layer 3362 that are arranged in a stack.
  • the two surfaces of the light-diffusing sheet 332 opposite to each other are provided with a light-transmitting film 3321 and a reflecting film 3322, respectively.
  • the light guide device 340 includes a first beam splitter 3411, a first mirror 3412, a second beam splitter 3413, a regional diaphragm 3414, and a second mirror 3415.
  • the difference between the light source system 300 provided in the third embodiment and the light source system 100 provided in the first embodiment is that the side surface of the diffuser 332 provided with the light-transmitting film 3321 is V-shaped, and the size of the V-shaped angle is not Less than 90°.
  • the V-shaped angle formed by the two opposite surfaces of the light-transmitting film 3321 may be 120°, 150°, or the like. It can be understood that by adjusting the size of the V-shaped angle, the position of the second light source 320 can be adjusted, so that the overall structure of the light source system 300 is more compact.
  • the light source systems 100, 200, and 300 provided in any of the above embodiments can be applied to projection and display systems, such as liquid crystal displays (LCD, Liquid Crystal) or digital light path processor projectors (DLP, Digital Light Processor); or Used in the field of 3D display technology.
  • LCD liquid crystal displays
  • DLP digital light path processor projectors
  • 3D display technology used in the field of 3D display technology.
  • the present invention further provides a projection device (not shown), which includes the light source system 100, 200, 300 provided in any one of the above embodiments.

Abstract

一种光源系统(100,200,300)及具有光源系统(100,200,300)的投影装置。光源系统(100,200,300)包括:第一光源(110,210,310),用于出射第一激光;第二光源(120,220,320),用于出射第二激光;及波长转换装置(130,230,330),波长转换装置(130,230,330)包括基板(131,231,331)、散光片(132,232,332)及驱动件(133,233,333),基板(131,231,331)与散光片(132,232,332)的中心轴(134)位于同一直线上并在驱动件(133,233,333)的驱动下围绕中心轴(134)同步旋转;其中,波长转换装置(130,230,330)还包括位于基板(131,231,331)同一侧且分段设置的反射区(135,235,335)及波长转换区(136,236,336),第一光源(110,210,310)出射的第一激光依时序入射至反射区(135,235,335)及波长转换区(136,236,336);第一光源(110,210,310)出射的第一激光入射至波长转换区(136,236,336)能够激发产生荧光,第二光源(120,220,320)出射的第二激光经过散光片(132,232,332)的散射后与相同颜色的荧光混合出光。该光源系统(100,200,300)能够提升光源亮度并缩小占用空间。

Description

光源系统及投影装置 技术领域
本发明涉及照明和投影技术领域,尤其涉及一种光源系统及具有该光源系统的投影装置。
背景技术
目前,投影装置的光源主要分为纯激光光源和激光荧光混合光源。纯激光光源一般采用红、绿、蓝三种颜色的激光器出射激光进行照明,价格十分昂贵,并且由于红激光和绿激光的技术不成熟,存在电光转换效率低的问题。激光荧光混合光源通常利用蓝激光作为激发光,激发不同的荧光粉产生不同颜色的荧光,相对于纯激光光源,能够大大降低成本。
现有技术中,产生荧光的方法是在色轮上涂覆不同的荧光粉,通过马达驱动色轮转动以产生时序的荧光,然而,产生的荧光光谱较宽,需要修色膜片进行滤波。对荧光进行滤波通常是在色轮的内侧或者外侧增加对应的修色膜片,因而红光在白平衡的色域中占比较大,光源亮度不能发挥到极致。
针对上述问题,常用的解决方式是增加红激光光源,并采用另外一个色轮进行散光出光,以使红激光光源产生的红激光与红荧光混合进入光机,但增大了光源整体结构占用的空间体积,与缩小占用空间的实际需求相悖。
发明内容
本发明提供一种能够提升光源亮度并缩小占用空间的光源系 统,其包括:
第一光源,用于出射第一激光;
第二光源,用于出射第二激光;及
波长转换装置,所述波长转换装置包括基板、散光片及驱动件,所述基板与所述散光片的中心轴位于同一直线上并在所述驱动件的驱动下围绕所述中心轴同步旋转;其中,
所述波长转换装置还包括位于所述基板同一侧且分段设置的反射区及波长转换区,所述第一光源出射的第一激光依时序入射至所述反射区及所述波长转换区;
所述第一光源出射的第一激光入射至所述波长转换区能够激发产生荧光,所述第二光源出射的第二激光经过所述散光片的散射后与相同颜色的光混合出光。
在一个实施方式中,所述散光片相背的两个表面分别设有透光膜和反射膜,且所述透光膜位于所述散光片靠近所述反射区及所述波长转换区的一侧;所述第二光源出射的第二激光自所述透光膜入射经所述散光片散射后被所述反射膜反射。
在一个实施方式中,所述第二光源位于所述散光片设有所述透光膜的一侧。
在一个实施方式中,所述散光片相背的两个表面均设有透光膜,所述第二光源出射的第二激光自所述散光片远离所述反射区及所述波长转换区的一层所述透光膜入射并从另外一层所述透光膜出射。
在一个实施方式中,所述第二光源位于所述散光片远离所述反射区及所述波长转换区的一侧。
在一个实施方式中,所述基板呈圆环状并套设于所述散光片的外圈与所述散光片同轴设置。
在一个实施方式中,所述散光片设有所述透光膜的一侧表面呈V形设置,且V形角的大小不小于90°。
在一个实施方式中,所述波长转换区包括叠加设置的反射层及荧光粉层,所述反射层位于所述基板与所述荧光粉层之间。
在一个实施方式中,所述荧光粉层包括依次相邻设置的第一荧光段及第二荧光段,所述第一荧光段与所述第二荧光段含有不同的荧光粉以激发产生不同颜色的荧光。
在一个实施方式中,所述光源系统还包括光引导装置,所述光引导装置包括反射镜、分光片、区域膜片及聚焦透镜,以使波长转换装置出射的各种颜色光经过所述光引导装置后能够沿同一路径出射。
在一个实施方式中,所述第一光源出射的第一激光为蓝激光,所述第二光源出射的第二激光为红激光、绿激光及蓝激光中的至少一种。
本发明还提供一种投影装置,包括上述任一实施方式中的光源系统。
相比于现有技术,本发明提供的光源系统通过第二光源及散光片对激光荧光混合光源进行补光,以克服光源亮度不能发挥到极致的缺陷,另外,采用散光片对第二光源出射的第二激光进行散光处理,能够避免采用修色片滤光或者增加色轮散光导致光源整体结构体积增大的问题。
附图说明
图1为本发明第一实施例提供的光源系统的结构示意图。
图2为图1所示的光源系统中波长转换装置的表面示意图。
图3为本发明第二实施例提供的光源系统的结构示意图。
图4为本发明第三实施例提供的光源系统的结构示意图。
主要元件符号说明
光源系统          100、200、300
第一光源          110、210、310
第二光源          120、220、320
波长转换装置      130、230、330
基板              131、231、331
散光片            132、232、332
透光膜            1321、2321、3321
反射膜            1322、3322
驱动件            133、233、333
中心轴            134
反射区            135、235、335
波长转换区        136、236、336
反射层            1361、2361、3361
荧光粉层          1362、2362、3362
第一荧光段        1363
第二荧光段        1364
第三荧光段        1365
光引导装置        140、240、340
第一分光片        1411、2411、3411
第一反射镜        1412、3412
第二分光片        1413、2413、3413
区域膜片          1414、2414、3414
第二反射镜        1415、2415、3415
聚焦透镜          142
如下具体实施方式将结合上述附图进一步说明本发明。
具体实施方式
请参阅图1,图1为本发明第一实施例提供的光源系统100的结构示意图。该光源系统100包括第一光源110、第二光源120及波长转换装置130。
具体地,第一光源110用于出射第一激光,第二光源120用于出射第二激光。本实施例中,第一光源110出射的第一激光为蓝激光,能够激发相应的荧光粉以产生红荧光、绿荧光或者黄荧光,第二光源120出射的第二激光为红激光。在其它实施例中,第二光源120出射的第二激光还可以是绿激光或者蓝激光。需要说明的是,第二光源120还可以是能够出射红激光、绿激光及蓝激光中的两种或者三种单色光的混合光源。
波长转换装置130包括基板131、散光片132及驱动件133,其中,基板131与散光片132的中心轴134位于同一直线上并在驱动件133的驱动下围绕中心轴134同步旋转。本实施例中,基板131大致呈圆环状,散光片132大致呈圆形,基板131套设于散光片132的外圈并同轴设置,在其它实施例中,散光片132可以呈圆环状并套设于基板131的外圈。
请一并参阅图2,波长转换装置130还包括位于基板131同一侧且分段设置的反射区135及波长转换区136。本实施例中,反射区135与波长转换区136围成形状及大小对应于基板131的圆环状,且反射区135与波长转换区136所在的平面垂直于中心轴134。第一光源110出射的第一激光依时序入射至反射区135及波长转换区136,当第一光源110出射的第一激光入射至反射区135时,第一激光被反射散射;当第一光源110出射的第一激光入射至波长转 换区136时,第一激光激发荧光粉产生荧光。
具体地,波长转换区136包括叠加设置的反射层1361及荧光粉层1362,且反射层1361位于荧光粉层1362与基板131之间。荧光粉层1362包括依次相邻设置的第一荧光段1363、第二荧光段1364及第三荧光段1365,第一荧光段1363、第二荧光段1364及第三荧光段1365分别含有不同的荧光粉以激发产生不同颜色的荧光。
本实施例中,蓝激光入射至第一荧光段1363能够激发产生红荧光,蓝激光入射至第二荧光段1364能够激发产生绿荧光,蓝激光入射至第三荧光段1365能够激发产生黄荧光。在其它实施例中,荧光粉层1362还可以仅包括能够产生红荧光及绿荧光的荧光段;或者荧光粉层1362仅包括能够产生黄荧光的荧光段。
本发明第一实施例提供的光源系统100的工作原理在于:基板131与散光片132在驱动件133的驱动下旋转,第一光源110出射的蓝激光依时序入射至反射区135、第一荧光段1363、第二荧光段1364及第三荧光段1365,当蓝激光入射至反射区135时,波长转换装置130的出射光为蓝色光,也即经过了反射散射的蓝激光。当蓝激光入射至第一荧光段1363时能够激发产生红荧光,同时,第二光源120出射的红激光经过散光片132的散射后与红荧光进行合光,此时,波长转换装置130的出射光为红色光。当蓝激光入射至第二荧光段1364时激发产生绿荧光,此时,波长转换装置130的出射光为绿色光。当蓝激光入射至第三荧光段1365时激发产生黄荧光,此时,波长转换装置130的出射光为黄色光。
本实施例中,散光片132相背的两个表面分别设有透光膜1321和反射膜1322,且透光膜1321位于散光片132靠近反射区135及波长转换区136的一侧。散光片132设有透光膜1321和反射膜1322 的两个表面分别垂直于中心轴134。第二光源120位于散光片132设有透光膜1321的一侧。第二光源20出射的红激光入射至散光片132时,经过透光膜1321的透射、散光片132的散射、反射膜1322的反射后再次经过透光膜1321的透射并出射。在其它实施例中,第二光源120不必限制在散光片132设有透光膜1321的一侧,可以通过反射面等其它光学元件使第二光源120出射的红激光自散光片132设有透光膜1321的一侧入射,可以理解,将第二光源120设置于散光片132设有透光膜1321的一侧能够缩短光程使结构更加紧凑。
在第一实施例的一个变形实施例中,第二光源120能够出射蓝激光和红激光两种单色光,其中,蓝激光与红激光可以依时序入射至散光片132上,也可以同时入射至散光片132的不同区域。具体地,第二光源120出射的蓝激光入射至散光片132经过散光片132散光后由反射膜1322反射出光,此时,散光片132出射的蓝色光能够替代第一光源110经过反射区135反射出射的蓝色光。另外,第二光源120出射的红激光经过散光片132散射后与第一光源110出射的蓝激光入射至第一荧光段1363而获得的红荧光混合出光。第二光源120的蓝激光经过散光片132散射后作为蓝色照明光入射到空间光调制器进行光调制。由于第二光源120中的蓝激光提供了蓝色照明光,此时,第一光源110出射的第一激光经过波长转换装置130转换后出射的光,可以不包含蓝色光。
需要说明的是,散光片132出射的红色光经过了散光,消除了激光的相干性,消除了激光散斑。此外,散光片132出射红色光的区域与第一荧光段1363出射红荧光的区域以中心轴134为中心呈180°分布。
进一步地,光源系统100还包括光引导装置140,光引导装置 140包括第一分光片1411、第一反射镜1412、第二分光片1413、区域膜片1414、第二反射镜1415及多个聚焦透镜142,以使波长转换装置130出射的各种颜色光经过光引导装置140后能够沿同一路径进入空间光调制器等其它后续光学器件。
具体地,第一分光片1411能够反射蓝色光并透射其它颜色光,第一光源110出射的蓝激光经过第一分光片1411的反射入射至基板131。第一反射镜1412用于反射第二光源120出射的第二激光以使第二激光入射至散光片132。第二分光片1413能够反射蓝色光并透射其它颜色光,区域膜片1414通过区域镀膜使其中间区域能够反射红色光、周边区域能够反射蓝色光并透射其它颜色光,自基板131出射的蓝色光依次被第一分光片1411反射、第二分光片1413反射及区域膜片1414反射。自散光片132出射的红色光经过第二分光片1413透射后被区域膜片1414反射。在其它实施例中,自散光片312出射的红色光也可以不经过第二分光片1413透射而直接从第一反射镜1412和第一反射镜1412的中间位置出射。自基板131出射的非蓝色光依次经过第一分光片1411透射、第二反射镜1415反射及区域膜片1414透射。
本实施例中,多个聚焦透镜142分别设置于第一分光片1411与基板131之间的光路中、第一反射镜1412与散光片132之间的光路中、散光片132与第二分光片1413之间的光路中、第一分光片1411与第二反射镜1415之间的光路中及第二分光片1413与区域膜片1414之间的光路中。
请参阅图3,图3为本发明第二实施例提供的光源系统200的结构示意图。第二实施例提供的光源系统200与第一实施例提供的光源系统100大致相同,同样包括第一光源210、第二光源220、波长转换装置230及光引导装置240。波长转换装置230包括基板 231、散光片232、驱动件233、反射区235及波长转换区236。波长转换区236包括叠加设置的反射层2361及荧光粉层2362。
第二实施例提供的光源系统200与第一实施例提供的光源系统100的不同之处在于:散光片232相背的两个表面分别设有透光膜2321,第二光源220位于散光片232远离反射区235及波长转换区236的一侧。第二光源220出射的第二激光入射至散光片232时,先被远离反射区235及波长转换区236的一层透光膜2321透射后再从另外一层透光膜2321出射。在其它实施例中,第二光源220不必限制在散光片232远离反射区235及波长转换区236的一侧,可以理解,将第二光源220设置于散光片232远离反射区235及波长转换区236的一侧能够缩短光程使结构更加紧凑。
第二实施例提供的光源系统200与第一实施例提供的光源系统100的不同之处还在于:光引导装置240包括第一分光片2411、第二分光片2413、区域膜片2414及第二反射镜2415。第一光源210出射的蓝激光经过第一分光片2411的反射入射至基板231。自基板231出射的蓝色光依次被第一分光片2411反射、第二分光片2413反射及区域膜片2414反射。自散光片232出射的红色光经过第二分光片2413透射后被区域膜片2414反射。自基板231出射的非蓝色光依次经过第一分光片2411透射、第二反射镜2415反射及区域膜片2414透射。
请参阅图4,图4为本发明第三实施例提供的光源系统300的结构示意图。第三实施例提供的光源系统300与第一实施例提供的光源系统100大致相同,同样包括第一光源310、第二光源320、波长转换装置330及光引导装置340。波长转换装置330包括基板331、散光片332、驱动件333、反射区335及波长转换区336。波长转换区336包括叠加设置的反射层3361及荧光粉层3362。散光 片332相背的两个表面分别设有透光膜3321和反射膜3322。光引导装置340包括第一分光片3411、第一反射镜3412、第二分光片3413、区域膜片3414及第二反射镜3415。
第三实施例提供的光源系统300与第一实施例提供的光源系统100的不同之处在于:散光片332设有透光膜3321的一侧表面呈V形设置,且V形角的大小不小于90°。作为一种实施例,在波长转换装置的纵向截面上,透光膜3321相对的两个面所构成的V形角的大小可以是120°、150°等。可以理解,通过调整V形角的大小,能够调整第二光源320的位置,使光源系统300的整体结构更加紧凑。
上述任意一个实施例提供的光源系统100、200、300均可以应用于投影、显示系统,例如液晶显示器(LCD,Liquid Crystal Display)或数码光路处理器投影机(DLP,Digital Light Processor);也可以应用于3D显示技术领域中。
进一步地,本发明还提供一种投影装置(图未示),该投影装置包括上述任意一个实施例提供的光源系统100、200、300。
以上仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其它相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (12)

  1. 一种光源系统,其特征在于,包括:
    第一光源,用于出射第一激光;
    第二光源,用于出射第二激光;及
    波长转换装置,所述波长转换装置包括基板、散光片及驱动件,所述基板与所述散光片的中心轴位于同一直线上并在所述驱动件的驱动下围绕所述中心轴同步旋转;其中,
    所述波长转换装置还包括位于所述基板同一侧且分段设置的反射区及波长转换区,所述第一光源出射的第一激光依时序入射至所述反射区及所述波长转换区;
    所述第一光源出射的第一激光入射至所述波长转换区能够激发产生荧光,所述第二光源出射的第二激光经过所述散光片的散射后与相同颜色的荧光混合出光。
  2. 如权利要求1所述的光源系统,其特征在于,所述散光片相背的两个表面分别设有透光膜和反射膜,且所述透光膜位于所述散光片靠近所述反射区及所述波长转换区的一侧;所述第二光源出射的第二激光自所述透光膜入射经所述散光片散射后被所述反射膜反射。
  3. 如权利要求2所述的光源系统,其特征在于,所述第二光源位于所述散光片设有所述透光膜的一侧。
  4. 如权利要求1所述的光源系统,其特征在于,所述散光片相背的两个表面均设有透光膜,所述第二光源出射的第二激光自所述散光片远离所述反射区及所述波长转换区的一层所述透光膜入射并从另外一层所述透光膜出射。
  5. 如权利要求4所述的光源系统,其特征在于,所述第二光源位于所述散光片远离所述反射区及所述波长转换区的一侧。
  6. 如权利要求1所述的光源系统,其特征在于,所述基板呈圆环状并套设于所述散光片的外圈与所述散光片同轴设置。
  7. 如权利要求3所述的光源系统,其特征在于,所述散光片设有所述透光膜的一侧表面呈V形设置,且V形角的大小不小于90°。
  8. 如权利要求1所述的光源系统,其特征在于,所述波长转换区包括叠加设置的反射层及荧光粉层,所述反射层位于所述基板与所述荧光粉层之间。
  9. 如权利要求8所述的光源系统,其特征在于,所述荧光粉层包括依次相邻设置的第一荧光段及第二荧光段,所述第一荧光段与所述第二荧光段含有不同的荧光粉以激发产生不同颜色的荧光。
  10. 如权利要求1所述的光源系统,其特征在于,所述光源系统还包括光引导装置,所述光引导装置包括反射镜、分光片、区域膜片及聚焦透镜,以使波长转换装置出射的各种颜色光经过所述光引导装置后能够沿同一路径出射。
  11. 如权利要求1所述的光源系统,其特征在于,所述第一光源出射的第一激光为蓝激光,所述第二光源出射的第二激光为红激光、绿激光及蓝激光中的至少一种。
  12. 一种投影装置,包括权利要求1-11中任一项所述的光源系统。
PCT/CN2019/127279 2018-12-29 2019-12-23 光源系统及投影装置 WO2020135300A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811639443.X 2018-12-29
CN201811639443.XA CN111381425B (zh) 2018-12-29 2018-12-29 光源系统及投影装置

Publications (1)

Publication Number Publication Date
WO2020135300A1 true WO2020135300A1 (zh) 2020-07-02

Family

ID=71127625

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/127279 WO2020135300A1 (zh) 2018-12-29 2019-12-23 光源系统及投影装置

Country Status (2)

Country Link
CN (1) CN111381425B (zh)
WO (1) WO2020135300A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115032856A (zh) * 2021-03-05 2022-09-09 青岛海信激光显示股份有限公司 光源组件和投影设备
CN115390349A (zh) 2021-05-25 2022-11-25 台达电子工业股份有限公司 激光光源共轴设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130050654A1 (en) * 2011-08-25 2013-02-28 Appotronics Corporation Limited Method and apparatus for a solid state light source
CN104020632A (zh) * 2013-02-28 2014-09-03 深圳市绎立锐光科技开发有限公司 发光装置及相关投影系统
US20140340649A1 (en) * 2013-05-14 2014-11-20 Ricoh Company, Ltd. Lighting device, projector including the same, and lighting method
CN204986566U (zh) * 2015-09-23 2016-01-20 深圳市绎立锐光科技开发有限公司 一种发光装置
CN106383428A (zh) * 2015-08-06 2017-02-08 深圳市绎立锐光科技开发有限公司 光源系统和投影系统
CN107632487A (zh) * 2013-04-20 2018-01-26 深圳市绎立锐光科技开发有限公司 发光装置及相关光源系统
CN108931878A (zh) * 2017-05-26 2018-12-04 深圳市光峰光电技术有限公司 光源系统及显示设备

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5656058B2 (ja) * 2010-08-24 2015-01-21 カシオ計算機株式会社 発光ユニット及びプロジェクタ
CN202109406U (zh) * 2010-12-08 2012-01-11 绎立锐光科技开发(深圳)有限公司 光波长转换轮组件及带该光波长转换轮组件的光源
JP2012159603A (ja) * 2011-01-31 2012-08-23 Minebea Co Ltd 光源装置及びプロジェクタ
CN104991406B (zh) * 2011-11-10 2017-01-25 深圳市光峰光电技术有限公司 一种光源系统、照明装置及投影装置
CN102650814B (zh) * 2011-12-11 2015-02-25 深圳市光峰光电技术有限公司 光源系统及投影装置
CN102854728B (zh) * 2011-12-18 2016-03-16 深圳市光峰光电技术有限公司 光源系统及投影装置
CN104020633B (zh) * 2013-02-28 2015-12-09 深圳市绎立锐光科技开发有限公司 发光装置及相关投影系统
JP6394144B2 (ja) * 2013-11-08 2018-09-26 日本電気硝子株式会社 プロジェクター用蛍光ホイール及びプロジェクター用発光デバイス
CN105204279B (zh) * 2014-06-23 2017-07-11 深圳市绎立锐光科技开发有限公司 光源系统及投影设备
DE102014221115A1 (de) * 2014-10-17 2016-04-21 Osram Gmbh Lichtmodul für eine Beleuchtungsvorrichtung, Leuchtstoffrad für ein entsprechendes Lichtmodul und optisches System
JP6476970B2 (ja) * 2015-02-17 2019-03-06 セイコーエプソン株式会社 照明装置およびプロジェクター
JP6551044B2 (ja) * 2015-08-19 2019-07-31 セイコーエプソン株式会社 波長変換素子、照明装置およびプロジェクター
CN205539893U (zh) * 2016-01-14 2016-08-31 深圳市光峰光电技术有限公司 一种波长转换装置、光源系统以及投影装置
CN108169990A (zh) * 2016-12-07 2018-06-15 中航国画(上海)激光显示科技有限公司 一种双色激光光源投影机及其控制方法
JP6883783B2 (ja) * 2017-04-18 2021-06-09 パナソニックIpマネジメント株式会社 蛍光体ホイール、及び、照明装置
CN108803213B (zh) * 2017-04-27 2021-03-19 中强光电股份有限公司 波长转换滤光模块以及照明系统
CN109491187B (zh) * 2017-09-13 2021-05-04 深圳光峰科技股份有限公司 波长转换装置、光源系统及投影设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130050654A1 (en) * 2011-08-25 2013-02-28 Appotronics Corporation Limited Method and apparatus for a solid state light source
CN104020632A (zh) * 2013-02-28 2014-09-03 深圳市绎立锐光科技开发有限公司 发光装置及相关投影系统
CN107632487A (zh) * 2013-04-20 2018-01-26 深圳市绎立锐光科技开发有限公司 发光装置及相关光源系统
US20140340649A1 (en) * 2013-05-14 2014-11-20 Ricoh Company, Ltd. Lighting device, projector including the same, and lighting method
CN106383428A (zh) * 2015-08-06 2017-02-08 深圳市绎立锐光科技开发有限公司 光源系统和投影系统
CN204986566U (zh) * 2015-09-23 2016-01-20 深圳市绎立锐光科技开发有限公司 一种发光装置
CN108931878A (zh) * 2017-05-26 2018-12-04 深圳市光峰光电技术有限公司 光源系统及显示设备

Also Published As

Publication number Publication date
CN111381425B (zh) 2022-04-15
CN111381425A (zh) 2020-07-07

Similar Documents

Publication Publication Date Title
US8894213B2 (en) Light source device and projection display apparatus
US9348204B2 (en) Light source module with wavelength conversion module and projection apparatus
EP3514623B1 (en) Illumination system and projection apparatus
CN109765745B (zh) 光源装置及投影系统
JP2012141411A (ja) 光源装置
US10732496B2 (en) Color wheel and laser projection apparatus
US11422450B2 (en) Light source apparatus and display device
US11656540B2 (en) Illumination device and projector
EP3771945B1 (en) Illumination system and projection apparatus
WO2020135300A1 (zh) 光源系统及投影装置
CN113296341B (zh) 照明系统
WO2019033672A1 (zh) 双色激光光源和激光投影机
WO2020135299A1 (zh) 波长转换装置、发光装置及投影装置
TW201833655A (zh) 光源裝置
TWI731105B (zh) 光源結構及投影系統
TWI726073B (zh) 光學系統
TWI730146B (zh) 光學系統
WO2021143438A1 (zh) 波长转换装置、光源装置及投影系统
WO2021008332A1 (zh) 光源系统与显示设备
CN116893565A (zh) 光源装置
CN111381426B (zh) 光源系统及投影设备
CN111781791A (zh) 光源系统及投影设备
US20230266650A1 (en) Static-phosphor image projector and method
JP7338409B2 (ja) 光源装置、画像投射装置及び光源光学系
US20230251558A1 (en) Light source device and projection apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19903265

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19903265

Country of ref document: EP

Kind code of ref document: A1