WO2021008332A1 - 光源系统与显示设备 - Google Patents

光源系统与显示设备 Download PDF

Info

Publication number
WO2021008332A1
WO2021008332A1 PCT/CN2020/098510 CN2020098510W WO2021008332A1 WO 2021008332 A1 WO2021008332 A1 WO 2021008332A1 CN 2020098510 W CN2020098510 W CN 2020098510W WO 2021008332 A1 WO2021008332 A1 WO 2021008332A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light source
area
optical path
source system
Prior art date
Application number
PCT/CN2020/098510
Other languages
English (en)
French (fr)
Inventor
郭祖强
鲁宁
李屹
Original Assignee
深圳光峰科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光峰科技股份有限公司 filed Critical 深圳光峰科技股份有限公司
Priority to US17/626,783 priority Critical patent/US11917338B2/en
Publication of WO2021008332A1 publication Critical patent/WO2021008332A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3152Modulator illumination systems for shaping the light beam
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3102Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators
    • H04N9/3111Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators for displaying the colours sequentially, e.g. by using sequentially activated light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/206Control of light source other than position or intensity
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/208Homogenising, shaping of the illumination light
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3158Modulator illumination systems for controlling the spectrum
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3161Modulator illumination systems using laser light sources

Definitions

  • the present invention relates to the field of projection technology, in particular to a light source system and a display device.
  • the light source module of the existing projection equipment includes an excitation light source and a color wheel, wherein different areas of the color wheel have different phosphors, and these phosphors include red phosphors and green phosphors.
  • these phosphors include red phosphors and green phosphors.
  • the blue laser light cannot be converted by the color wheel when the blue laser excites the phosphor to produce fluorescence.
  • the unconverted blue laser light is reflected by the color wheel and mixed with the fluorescence or laser light.
  • the color coordinate of the light source is greatly affected, thereby affecting the color gamut range of the projection device.
  • the first aspect of the present invention provides a light source system, including:
  • An excitation light source for emitting the excitation light
  • a wavelength conversion device is provided with a conversion area and a reflection area, the conversion area and the reflection area are located on different planes, and the time sequence is on the light path of the excitation light, and the conversion area is used to convert at least part of the excitation light To receive laser light, the reflection area is used to reflect the excitation light;
  • the collection lens group is used to guide the light emitted from the conversion area to transmit in a first direction to obtain the first light, and to guide the excitation light emitted from the reflective area to transmit in a second direction to obtain the second light;
  • a first guiding device for guiding the received laser light in the first light to exit along the first optical path
  • a second guiding device for guiding the second light to be transmitted along the second optical path
  • the first guiding device is also used to combine the received laser light transmitted along the first optical path and the second light transmitted along the second optical path to obtain light source light, and guide the light source light to transmit along the light outgoing optical path.
  • a second aspect of the present invention provides a display device, including:
  • the light source system is the light source system as described above;
  • the modulation device is used to modulate the light source light emitted by the light source system along the light exit light path to obtain the image light of the image to be displayed.
  • a wavelength conversion device which includes a substrate on which a conversion area and a reflection area are provided.
  • the conversion area is used to convert at least part of the excitation light into a received laser, and the reflection area is used for reflection
  • the light exit surfaces of the conversion area and the reflection area are located in different planes.
  • a wavelength conversion device which includes a substrate on which a conversion area and a reflection area are provided.
  • the conversion area is used to convert at least part of the excitation light into a received laser, and the reflection area is used for reflection
  • the light exit surfaces of the conversion area and the reflection area are located in different planes.
  • the substrate is provided with the conversion area and the reflection area on the light incident side, the reflection area is formed with a groove, and the bottom wall of the groove is used to reflect the excitation light, so The side wall of the groove is connected to the plane where the conversion area is located; or
  • the substrate is provided with the conversion area and the reflection area on the light incident side, the conversion area is formed with a groove, and the bottom wall of the groove is provided with a wavelength conversion material.
  • the wavelength conversion material is used to The excitation light is converted into the received laser light, and the side wall of the groove is connected with the plane where the reflection area is located.
  • the substrate is provided with the conversion area and the reflection area on the light incident side
  • the wavelength conversion device is provided with a protrusion protruding toward the light incident side in the conversion area
  • the surface of the protrusion is provided with a wavelength conversion material
  • the wavelength conversion material is used to convert at least part of the excitation light into the received laser light
  • the edge of the protrusion is connected with the plane where the reflection area is located.
  • the light source system and the display device provided by the present invention include the wavelength conversion device, and the light exit surfaces of the conversion area and the reflection area on the wavelength conversion device are located on different planes, so that the reflected light from the collection lens group is The excitation light and the unconverted excitation light are transmitted in different directions, and the reflective element separates the unconverted excitation light and the reflected excitation light, so as to prevent the unconverted excitation light from being mixed into the received laser light and thus affect the
  • the color coordinates of the light emitted by the light source system are beneficial to improve the projection display quality of the display device.
  • FIG. 1 is a schematic diagram of the structure of the display device provided in the present invention.
  • FIG. 2 is a schematic structural diagram of the light source system shown in FIG. 1 provided by the first embodiment of the present invention.
  • 3A is a schematic top view of the structure of the wavelength conversion device shown in FIG. 2.
  • 3B is a cross-sectional view of the wavelength conversion device shown in FIG. 2 along the line III-III.
  • FIG. 4 is a schematic diagram of a part of the optical path between the reflected excitation light and the unconverted excitation light in the light source system shown in FIG. 2.
  • FIG. 5 is a schematic top view of the structure of the first guide element shown in FIG. 2.
  • Fig. 6 is a schematic structural diagram of a light source system provided by a second embodiment of the present invention.
  • Display screen 10 Light source system 100, 200 Excitation light source 110, 210 Excitation light a
  • Positive lens 111 Negative lens 112 The first homogenization device 113, 213 First guiding device 130, 230 Second guiding element 131 First guiding element 135 First zone 135a Second area 135b Second homogenization device 137, 237 Second guiding device 150, 250 Reflective element 151 First lens 152 Third guiding element 156 Scattering element 157 Relay lens 114, 132, 136, 158, 159, 211, 236 Supplementary light source 120, 220 Supplement light e Collecting lens group 170, 270 Optical axis D First light b By laser b1 Unconverted excitation light b2 Second light c Wavelength conversion device 180, 280 Light entrance 181 Groove V Substrate 182 Transition zone Y Reflection zone B
  • the present invention provides a display device 10, which can be a projection device, such as a laser TV, a cinema projector, an engineering machine, or an education projector.
  • the display device 10 includes a light source system 100 and a modulation device 500, wherein the light source system 100 is used to generate light source light, and the modulation device 500 is used to modulate the light source light according to the input original image data of each pixel in the image to be displayed to obtain the Image light for displaying images.
  • the light source system 100 includes an excitation light source 110, a wavelength conversion device 180 and a collection lens group 170.
  • the excitation light source 110 is used to emit the excitation light a;
  • the wavelength conversion device 180 is used to receive the excitation light a and convert part of the excitation light a to received laser light, and is also used to reflect part of the excitation light a.
  • the laser light emitted by the wavelength conversion device 180 and the reflected excitation light a are finally transmitted along the light output optical path L3 and the light source light emitted from the light source system 100 is obtained.
  • the collection lens group 170 is used to converge the excitation light a to the surface of the wavelength conversion device 180 and to collimate the light emitted by the wavelength conversion device 180.
  • the excitation light source 110 may be a blue light source for emitting blue light as the excitation light a. It can be understood that the excitation light source 110 may also be an ultraviolet light source for emitting ultraviolet light as the excitation light a.
  • the excitation light source 110 includes a light-emitting body.
  • the light-emitting body in this embodiment is a laser.
  • the light-emitting body includes a light-emitting diode.
  • the number of luminous bodies included in the specific excitation light source 110 can be flexibly selected according to requirements, for example, it may include a luminous body or an array of luminous bodies.
  • the wavelength conversion device 180 includes a substrate 182 and a driving unit 185.
  • the wavelength conversion device 180 is used to receive the excitation light a.
  • the substrate 182 includes a light incident surface 181 and a bottom surface (not labeled) disposed oppositely.
  • the light incident surface 181 is disposed on the substrate 182 and the light incident side of the wavelength conversion device 180 for receiving excitation Light a.
  • the driving unit 185 is disposed on the bottom surface of the substrate 182.
  • the substrate 182 is provided with a conversion area Y and a reflection area B on different planes, that is, the conversion area Y and the reflection area B are on different planes, and the conversion area Y and the reflection area B are both disposed on the substrate 182 and located in the wavelength conversion device 180 Light-incident side.
  • the driving unit 185 is used to drive the substrate 182 to periodically move, and to make the conversion area Y and the reflection area B be located on the optical path of the excitation light a in sequence.
  • the substrate 182 has a substantially disc shape, and the conversion area Y and the reflection area B are arranged along the circumferential direction of the substrate 182.
  • the conversion area Y has a partial ring shape
  • the reflection area B has a partial ring shape
  • the conversion area Y and the reflection area B form a circular ring.
  • the plane of the conversion area Y and the reflection area B is different.
  • the reflective area B is formed with a groove V, and the bottom wall of the groove V is provided with a reflective element, a reflective material, a dichroic film or a film capable of reflecting the excitation light, for Reflecting the excitation light
  • the conversion area Y is arranged on the light incident surface 181.
  • the light incident surface 181 is the upper plane of the substrate 182, which does not include the surfaces of the groove V, and the light incident surface 181 is connected to the sidewall of the groove V, namely The sidewall of the groove V is connected to the plane where the conversion area Y is located, so that the conversion area Y and the reflection area B are located at different planes.
  • the conversion area Y is formed with a groove V, and a wavelength conversion material is arranged on the bottom wall of the groove V, and the wavelength conversion material is used to convert incident excitation light into at least one
  • the light incident surface 181 is the upper plane of the substrate 182, which does not include the surfaces of the groove V, and the light incident surface 181 is connected to the sidewall of the groove V
  • the reflective area B is arranged on the light incident surface 181, In order to realize that the plane of the conversion area Y and the reflection area B are different.
  • the substrate 182 is provided with a conversion zone Y and a reflection zone B on the light-incident side
  • the wavelength conversion device 180 is provided with a convex protruding toward the light-incident side (that is, away from the bottom surface of the substrate 182) in the conversion zone Y.
  • the surface of the protruding portion is provided with a wavelength conversion material.
  • the wavelength conversion material is used to convert at least part of the excitation light into the laser light.
  • the reflection area B is provided on the light incident surface 181, which is the upper plane of the substrate 182, It does not include each surface of the protrusion, and the edge of the protrusion is connected to the plane where the reflection area B is located (light incident surface 181), so as to realize that the conversion area Y and the reflection area B are on a different plane.
  • the conversion area Y is provided with a wavelength conversion material, which refers to a material that can convert light incident on the wavelength conversion material into light of different wavelengths, including well-known materials such as phosphors, nano-luminescent materials, or quantum dots.
  • the conversion area Y is used to convert the incident excitation light into the received laser light of other wavelengths, and part of the incident excitation light that cannot be converted by the conversion area Y will be emitted together with the received laser light.
  • a yellow phosphor is provided in the conversion area Y for generating yellow laser light (yellow fluorescence) under the excitation of the excitation light a.
  • the red phosphor and the green phosphor can be arranged in sections in the conversion area Y, and the red phosphor and the green phosphor are located on the light path of the excitation light a in sequence, so that red phosphor and green phosphor are generated in sequence.
  • the conversion area Y is provided with yellow phosphors to emit yellow fluorescence.
  • wavelength conversion materials for generating fluorescence of other colors such as orange phosphors and magenta phosphors, may be provided in the conversion area Y.
  • the reflection area B is provided with a reflective material for reflecting the incident excitation light a, such as diffuse reflection or specular reflection.
  • the conversion area Y performs specular reflection on the excitation light a, which is beneficial to maintain the reflection area B
  • the emitted and reflected excitation light also obeys the Gaussian distribution, thereby maintaining a small light divergence angle, which is beneficial for the subsequent light path (reflecting element 151) to recover the reflected excitation light.
  • the reflective area B can be provided with a metal reflective layer or metal reflective film with a reflectivity higher than a predetermined value to achieve specular reflection.
  • the light exit surfaces of the conversion area Y and the reflection area B are located on different planes, and the thickness of the wavelength conversion material is equivalent to that of the reflective material, that is, the light exit surfaces of the wavelength conversion material in the conversion area Y and the reflective material in the reflection area B are located in different
  • the conversion area Y and the reflection area B can be located in the same plane or in different planes.
  • the thickness of the wavelength conversion material and the reflection material can be set to meet certain conditions, so that the conversion area Y
  • the light emitting surface of the wavelength conversion material and the reflective material in the reflective zone B are located on different planes.
  • the substrate 182 rotates periodically. Under the irradiation of the excitation light a, the conversion area Y and the reflection area B are periodically located on the light path of the excitation light a, and the wavelength conversion device 180 periodically emits yellow received laser light and reflected blue excitation light a.
  • the wavelength conversion device 180 is a reflective color wheel, which is used to reflect the generated laser light and the unconverted excitation light, that is, the conversion area Y is used to reflect the incident unconverted excitation light a and reflect its surface Generated by the laser. Both the received laser light emitted from the conversion area Y and the unconverted excitation light a are Lambertian light. Compared with the Gaussian distributed excitation light a emitted by the excitation light source 110, the light divergence angle is larger.
  • the collection lens group 170 is disposed between the wavelength conversion device 180 and the excitation light source 110 and is disposed adjacent to the light incident side of the wavelength conversion device 180.
  • the collection lens group 170 includes a plurality of lenses arranged in sequence, the focal lengths of the plurality of lenses are not equal, and the smaller the focal length, the closer the distance between the lens and the wavelength conversion device 180 is.
  • the collection lens group 170 is used to guide the excitation light a emitted by the excitation light source 110 and obey the Gaussian distribution to enter the wavelength conversion device 180 and converge the excitation light a with a certain beam diameter so that the excitation light a is on the surface of the wavelength conversion device 180 A smaller spot is formed.
  • the optical axis D of the collection lens group 170 is the symmetry axis of the collection lens group 170, the excitation light a is incident on the collection lens group at a position deviated from the optical axis D, and the collection lens group 170 is used to change the propagation direction of the incident excitation light a so that They converge in a direction toward the optical axis D and are incident on the surface of the wavelength conversion device 180 obliquely (non-perpendicularly).
  • the excitation light a is incident on the collection lens assembly 170 in a direction parallel to the optical axis D, the light exit surface of the conversion area Y is set on the focal plane (the focal plane) of the collection lens assembly 170, and the excitation light passes through the collection lens.
  • the position where the group 170 is guided and irradiated to the conversion area Y is exactly the focal point of the collection lens group 170.
  • the conversion area Y receives the inclined incident excitation light a.
  • the emitted laser light and the unconverted excitation light conform to the Lambertian distribution.
  • the received laser light and the unconverted excitation light are collected
  • the lens group 170 obtains the first light b transmitted in the first direction, and the first light b includes the received laser light b1 and the unconverted excitation light b2. Since the collection lens group 170 is used to collimate the light emitted by the wavelength conversion device 180, the light emitted from the conversion area Y (the laser light and the unconverted excitation light) is roughly parallel light after passing through the collection lens group 170.
  • the included angle with the optical axis D is small; in particular, in this embodiment, since the position of the emitted light on the conversion area Y is the focal position of the collection lens group 170, the light emitted by the conversion area Y passes through the collection lens
  • the first light b obtained after the group 170 is parallel light, and the first direction is parallel to the optical axis D.
  • the collection lens group 170 guides the reflected excitation light emitted from the reflective area B to be transmitted in the second direction to obtain the second light c.
  • the second direction is different from the first direction, and the second light c comes from the collection lens group 170 It emits at a position deviated from the optical axis D, and propagates toward the optical axis D.
  • the excitation light a is incident on the surface of the wavelength conversion device 180 obliquely, the optical paths of the incident excitation light and the reflected excitation light on the surface of the wavelength conversion device 180 are separated (not interfered with each other), so that the subsequent light path collection of the wavelength conversion device 180 The reflected excitation light emitted. Since the light exit surfaces of the reflection area B and the conversion area Y are respectively arranged on different planes of the wavelength conversion device 180, the unconverted excitation light and the reflected excitation light emitted by the collection lens assembly 170 are respectively along the first direction and the second direction. Directional transmission, that is, the unconverted excitation light emitted by the wavelength conversion device 180 and the reflected excitation light are transmitted in different directions, thereby facilitating the removal of the unconverted excitation light transmitted in the first direction in the subsequent optical path.
  • the light source system 100 further includes a first guiding device 130 and a second guiding device 150.
  • the first guiding device 130 includes a second guiding element 131, and the second guiding element 131 is used to guide the excitation light a emitted by the excitation light source 110 to enter the wavelength conversion device 180, and guide the received laser light b1 in the first light b along the first optical path L1 transmits and guides the unconverted excitation light b2 and the second light c in the first light to be incident on the second guide device 150.
  • the second guiding element 131 may be a dichroic beam splitter for transmitting blue light and reflecting red and green light, that is, the second guiding element 131 reflects the received laser light b1, transmits the blue second light c and the unconverted light
  • the first optical path L1 of the excitation light b2 is a path through which the received laser light b1 emitted by the second guiding element 131 is transmitted alone, that is, the received laser light b1 is transmitted in the first optical path L1, and the second light c and the unconverted excitation light b2 are not transmitted.
  • the second guiding device 150 includes a reflective element 151 and a first lens 152.
  • the reflective element 151 is used to guide the second light c to be transmitted along the second optical path L2, and to guide at least part of the unconverted excitation light in the first light b.
  • b2 deviates from the second optical path L2 and transmits.
  • the second light path L2 is a path through which the second light c emitted from the second guiding element 131 is transmitted alone, that is, the second light c is transmitted on the second light path L2, but the first light b is not transmitted.
  • the reflective surface of the reflective element 151 is small, and is used to reflect the Gaussian distributed second light c emitted by the second guiding element 131 to the first lens 152, and the first lens is used to guide the second light c along the second optical path.
  • L2 transmission the unconverted excitation light b2 in the first light b has the same color as the second light c, and the transmission direction is different.
  • the second light c is transmitted along the second light path L2, and the unconverted excitation light b2 is Two optical paths are transmitted in different directions in L2.
  • the unconverted excitation light b2 in the first light b has a larger beam diameter, part of which is irradiated on the reflective element 151, and the remaining unconverted excitation light b2 is irradiated and is not received by the reflective element 151.
  • the unconverted excitation light b2 irradiated to the surface of the reflective element 151 is guided by the reflective element 151 to the surrounding space outside the first lens 152 and is not received by the first lens 152.
  • the second guiding device 150 includes a scattering element 157 and relay lenses 158 and 159.
  • the scattering element 157 is used to scatter the light on the second optical path L2 to eliminate the coherence of the laser, thereby alleviating the laser speckle phenomenon, and the scattering element 157 is also provided with an antireflection film.
  • the second light c emitted by the first lens 152 is guided by the scattering element 157 and the relay lenses 158 and 159 in order and then enters the first guiding device 130.
  • the light source system 100 further includes a supplementary light source 120 for emitting laser light as supplementary light e, and the supplementary light source 120 is used for emitting red and green laser light as supplementary light e.
  • the supplementary light e in the present invention includes a red laser to compensate for the red fluorescence in the yellow fluorescence, thereby avoiding the need for white light In order to ensure that the white light color coordinates filter out the excess green fluorescence, it is helpful to improve the light efficiency in the optical system.
  • the red and green colors obtained after fluorescence spectroscopy are low in color purity, and the color gamut range of projection display is small, which is not suitable for laser TVs and digital cinemas with high color gamut requirements.
  • adding a supplementary light source 120 to provide a red laser and a green laser is beneficial to improve the color purity of the primary color light emitted by the light source system 100 and improve the color gamut of the display device 10.
  • the red fluorescence obtained by the yellow fluorescence spectroscopy is too little, and the green fluorescence is too much.
  • the ratio is white light
  • the excess green fluorescence must be filtered out, resulting in lower light efficiency of the yellow fluorescence, and red and green lasers are added to the supplementary light. , Which is beneficial to improve the brightness of the yellow light emitted by the light source system 100.
  • the supplementary light source 120 is used to emit supplementary light e of one color, such as a red laser or a green laser.
  • the conversion area Y is located on the light path of the excitation light
  • the supplementary light source 120 is turned on and emits supplementary light e.
  • the reflection area B is located on the light path of the excitation light
  • the supplementary light source 120 is turned off and does not emit light.
  • the supplementary light may also be lasers of other colors or lasers of multiple colors, or light of one or more colors other than lasers.
  • the supplementary light source 120 is not included in the light source system 100.
  • the second guiding device further includes a third guiding element 156, the second light c is transmitted along the second optical path, and the supplementary light e is combined with the second light c after being guided by the third guiding element 156 and transmitted along the second optical path L2.
  • the third guiding element 156 is a dichroic beam splitter for transmitting red and green light and reflecting blue light. The light emitted by the third guiding element 156 enters the relay lens 158 through the scattering element 157.
  • the first guiding device 130 further includes a first guiding element 135.
  • the first guiding element 135 is used to transmit the received laser light b1 along the first optical path L1 and along the second optical path L2.
  • the transmitted second light c and the supplementary light e are combined to obtain the light source light, and the light source light is guided to transmit along the light exit optical path L3. That is, the first optical path L1 is the transmission path of the received laser light b1 between the second guiding element 131 and the first guiding element 135, and the second optical path L2 is the second light c between the second guiding element 131 and the first guiding element 135.
  • the transmission path is the transmission path of the received laser light b1 between the second guiding element 131 and the first guiding element 135.
  • the light exit light path L3 is a transmission path of the light source light from the first guide element 135 to its exit position from the light source system 100.
  • the first guiding element 135 is used to combine the received laser light b1 transmitted along the first optical path L1 and the second light c transmitted along the second optical path L2 to obtain the light source light, and guide The light from the light source is transmitted along the light path L3.
  • the first guiding element 135 includes a first area 135a and a second area 135b that do not overlap.
  • the second area 135b is disposed in the central area of the first guiding element 135 but is not limited to the central area.
  • the first area 135a surrounds the second area. Perimeter of area 135b.
  • the first area 135a is used to guide the received laser light b1 emitted by the second guiding element 131 to the light output path L3, and the second area 135b is used to guide the second light c and the supplementary light e emitted by the relay lens 159 in the second guiding device 150 Lead to the light path L3.
  • the first area 135a of the first guiding element 135 is plated with an antireflection film
  • the second area 135b is plated with a reflective film.
  • the first area 135a is used to transmit the received laser light b1 transmitted along the first optical path L1, the second light c and the supplementary light e are laser light, the light divergence angle is small, and the spot area is small.
  • the second area 135b is used to reflect the second light c and Supplement light e.
  • the position of the second region 135b is not limited to being located in the central region of the first guide element 135, and the first region 135a is not limited to be arranged around the second region 135b.
  • the first guiding device 130 also includes a relay lens 132.
  • the received laser light b1 emitted by the second guiding element 131 forms an intermediate image A on the first guiding element 135 through the relay lens 132.
  • the optical path is designed, such as through Adjusting the focal length and position of the relay lens 132 can make the size of the intermediate image A as large as possible, so that the fluorescence loss during the light combining process of the first guiding element 135 is reduced; the larger the size of the intermediate image A, the smaller the beam angle of the received laser b1 (ie The smaller the divergence angle), the larger the laser spot area on the first guiding element 135, and the smaller the beam angle, the higher the transmission efficiency of the first guiding element 135, which effectively improves the utilization rate of the received laser light b1.
  • a first homogenization device 113 for homogenizing the excitation light a is also provided between the excitation light source 110 and the wavelength conversion device 180.
  • the first homogenization device 113 is a fly eye lens (single fly eye lens or double fly eye lens).
  • a positive lens 111 and a negative lens 112 are arranged between the homogenization device 113 and the excitation light source 110, a relay lens 114 is arranged between the first homogenization device 113 and the second guide element 131, and the excitation light a emitted by the excitation light source 110 is sequentially After passing through the positive lens 111, the negative lens 112, the first homogenizing device 113 and the relay lens 114, it is incident on the second guide element 131.
  • a second light homogenizing device 137 for homogenizing the light emitted by the first guiding element 135 is provided on the light exit light path L3.
  • the second light homogenizing device 137 is a fly-eye lens (single fly eye lens or double fly eye lens), and a relay lens 136 is further provided between the second light homogenizing device 137 and the first guide element 135.
  • first guiding device 130 and the second guiding device 150 may also include other relay lenses or reflective elements for guiding light, which will not be repeated here.
  • the light exit surfaces of the conversion area Y and the reflection area B on the wavelength conversion device 180 are located on different planes, so that the reflected excitation light (second light c) emitted by the collection lens group 170 is different from the unconverted
  • the excitation light b2 is transmitted in different directions, and the reflective element 151 separates the unconverted excitation light b2 from the reflected excitation light, avoiding the unconverted excitation light b2 from being mixed into the received laser light b1, thereby affecting the emission of the light source system 100
  • the color coordinates of the light are beneficial to improve the projection display quality of the display device 10.
  • the light source system 200 includes an excitation light source 210, a supplementary light source 220, a first guiding device 230, a second guiding device 250, a collecting lens group 270, and Wavelength conversion device 280.
  • the main difference between the light source system 200 and the light source system 100 is that at least one of the first light homogenizing device 213 and the second light homogenizing device 237 in the light source system 200 is an optical integrator rod, which is beneficial to reduce the manufacturing difficulty and cost, and improve the cost performance of the display device 10. .
  • the light source system 200 can adjust the type and/or focal length of the relay lens near the first homogenization device 213 and the second homogenization device 237, such as changing the positive lens 111 and the negative lens 112 to In the relay lens 211, the relay lens 114 is changed to the relay lens 214, and the relay lens 136 is replaced with the relay lens 236, thereby improving the light homogenization effect of the first homogenization device 213 and the second homogenization device 237.
  • the light source system 200 provided by the second embodiment of the present invention is similar to the light source system 100 in other structures and working principles except for the above-mentioned differences from the light source system 100, and will not be repeated here.
  • the light source system 200 provided by the second embodiment of the present invention can prevent the unconverted excitation light from being mixed into the received laser light, thereby affecting the color coordinates of the light emitted by the light source system 200, and is beneficial to improving the projection display quality of the display device 10. Relatively speaking, the manufacturing difficulty and cost are also low, which can effectively improve the cost performance of the display device 10 using the light source system 200.
  • the modulation device 500 is used to modulate the light source light emitted by the light source system 100 along the light path L3 (FIG. 2).
  • the light source light includes the reflected excitation light emitted by the laser light and the reflective area B, but does not include The unconverted excitation light emitted from the conversion area Y.
  • the modulation device 500 may include any one of a liquid crystal display (LCD), a digital micro-mirror device (DMD), or a liquid crystal on silicon (LCOS).
  • the number of modulators included in the modulation device 500 can be selected according to actual needs.
  • the following takes the modulation device 500 including a dual-chip DMD as an example for description, that is, the display device 10 is a dual-chip DMD projection system.
  • the modulation device 500 includes a dual-chip DMD, and its working mode is that one DMD is responsible for processing one of the three primary colors in the light source light, and the other DMD is responsible for time-sharing processing the other two primary colors of the three primary colors, or, In one embodiment, one piece of DMD is responsible for processing one of the three primary colors of the light source light, another piece of DMD is responsible for processing the other primary color of the three primary colors, and the remaining one of the primary colors is divided into two parts, respectively Processed by two pieces of DMD.
  • the dual-chip DMD projection system includes both time-sequential light splitting and spatial light splitting.
  • the wavelength conversion device 180 is used to emit yellow light and blue light sequentially, the reflected blue excitation light from the reflective area B is used as the blue primary light, and the yellow light is divided into red primary light before entering the DMD. With green base color light. The red primary color light and the green primary color light respectively enter a piece of DMD and are processed at the same time. According to different product requirements, the blue primary color light can either share the DMD with the red primary color light or the green primary color light.
  • the monolithic DMD can only modulate one primary color light at a time, if the light source system is as described in the present invention, that is, the yellow light and the blue light are emitted sequentially, and the modulation device only includes one piece of DMD, it needs to be received after the yellow light is received.
  • the light period filters out the red primary color light or the green primary color light in the yellow light to modulate one primary color light in the yellow light, thereby causing waste of the light source light emitted by the light source system and low light efficiency.
  • the modulation device 500 modulates the red primary color light and the green primary color light at the same time, which is beneficial to improve the optical energy utilization rate of the display device 10.
  • the wavelength conversion device is provided with a reflection section, a red (or yellow) phosphor section, and a green phosphor section, the yellow light emitted by the yellow phosphor is filtered to obtain red fluorescence, then The wavelength conversion device emits red fluorescent-green fluorescent-blue laser light in sequence, and the modulation device modulates one color light at a time, so that the light source light emitted by the light source is not wasted.
  • the two DMDs in the modulation device 500 simultaneously emit the image light of the red primary color and the image light of the green primary color to the projection screen. Since the display device including only one DMD can only modulate the single primary color light and emit the single primary color image light at a time, Therefore, the modulation device 500 provided by the present invention includes two DMDs, which is beneficial to improve the brightness of each frame of color images emitted by the display device 10, and is also beneficial to overcome the imperfections of the single-chip DMD system in certain colors.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Projection Apparatus (AREA)

Abstract

一种光源系统(100)与显示设备(10),光源系统(100)包括:激发光源(110),用于发出激发光(a);波长转换装置(180),设置有转换区(Y)与反射区(B),转换区(Y)与反射区(B)位于不同的平面上,并且时序处于激发光(a)的光路上,转换区(Y)用于将至少部分激发光(a)转换为受激光(b1),反射区(B)用于反射激发光(a);收集透镜组(170),用于引导转换区(Y)出射的光线沿第一方向传输并得到第一光(b),以及用于引导反射区(B)出射的激发光(a)沿第二方向传输并得到第二光(c);第一引导装置(130),用于引导第一光(b)中的受激光(b1)沿第一光路(L1)出射;以及第二引导装置(150),用于引导第二光(c)沿第二光路(L2)传输;第一引导装置(130)还用于对沿第一光路(L1)传输的受激光(b1)以及沿第二光路(L2)传输的第二光(c)进行合光。

Description

光源系统与显示设备 技术领域
本发明涉及投影技术领域,尤其涉及一种光源系统与显示设备。
背景技术
本部分旨在为权利要求书中陈述的本发明的具体实施方式提供背景或上下文。此处的描述不因为包括在本部分中就承认是现有技术。
现有的投影设备的光源模组包括激发光源和色轮,其中,色轮的不同区域上具有不同的荧光粉,这些荧光粉包括红色荧光粉与绿色荧光粉。激发光源出射的蓝激光照射在色轮的不同区域时,会激发出对应颜色的荧光,这些不同颜色的荧光与光源模组出射的激光被混合成投影所需的白光。
然而,蓝激光激发荧光粉产生荧光的过程中会有相当一部分的蓝激光不能被色轮转换,使用反射式色轮的光源中,未被转换的蓝激光被色轮反射,混合在荧光或激光中,对光源色坐标影响很大,从而影响投影设备的色域范围。
发明内容
本发明第一方面提供一种光源系统,包括:
激发光源,用于发出所述激发光;
波长转换装置,设置有转换区与反射区,所述转换区与所述反射区位于不同的平面上,并且时序处于所述激发光的光路上,所述转换区用于将至少部分激发光转换为受激光,所述反射区用于反射所述激发光;
收集透镜组,用于引导所述转换区出射的光线沿第一方向传输并得到第一光,以及用于引导所述反射区出射的激发光沿第二方向传输并得到第二光;
第一引导装置,用于引导所述第一光中的受激光沿第一光路出射;以及
第二引导装置,用于引导所述第二光沿第二光路传输;
所述第一引导装置还用于对沿所述第一光路传输的受激光以及沿所述第二光路传输的第二光进行合光得到光源光,并引导所述光源光沿出光光路传输。
本发明第二方面提供一种显示设备,包括:
光源系统,为如上任意一项所述的光源系统;以及
调制装置,用于对所述光源系统沿所述出光光路出射的光源光进行调制得到待显示图像的图像光。
本发明第三方面提供一种波长转换装置,包括基板,所述基板上设置有转换区与反射区,所述转换区用于将至少部分激发光转换为受激光,所述反射区用于反射所述激发光,所述转换区与所述反射区的出光面位于不同平面内。
本发明第三方面提供一种波长转换装置,包括基板,所述基板上设置有转换区与反射区,所述转换区用于将至少部分激发光转换为受激光,所述反射区用于反射所述激发光,所述转换区与所述反射区的出光面位于不同平面内。
在一种实施方式中,所述基板在入光侧设置所述转换区与所述反射区,所述反射区形成有一凹槽,所述凹槽的底壁用于反射所述激发光,所述凹槽的侧壁与所述转换区所在的平面连接;或者
所述基板在入光侧设置所述转换区与所述反射区,所述转换区形成有一凹槽,所述凹槽的底壁设置有波长转换材料,所述波长转换材料用于将至少部分激发光转换为所述受激光,所述凹槽的侧壁与所述反射区所在的平面连接。
在一种实施方式中,所述基板在入光侧设置所述转换区与所述反射区,所述波长转换装置在所述转换区设置有朝向所述入光侧凸出的凸出部,所述凸出部的表面设置有波长转换材料,所述波长转换材料用于将至少部分激发光转换为所述受激光,所述凸出部的边缘与所述反射区所在的平面连接。
本发明提供的光源系统与显示设备中包括所述波长转换装置,利用所述波长转换装置上的转换区与反射区的出光面位于不同平面上,使得经过所述收集透镜组出射的反射后的激发光与未被转换的激发光沿不同方向传输,并且,所述反射元件将未被转换的激发光与反射后的激发光分离,避免了未被转换的激发光混入受激光中从而影响所述光源系统出射光线的色坐标,有利于提高所述显示设备的投影显示质量。
附图说明
为了更清楚地说明本发明实施例/方式技术方案,下面将对实施例/方式描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例/方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明中提供的显示设备的结构示意图。
图2为本发明第一实施方式提供的图1所示的光源系统的结构示意图。
图3A为图2所示的波长转换装置的俯视结构示意图。
图3B为图2所示的波长转换装置的沿III-III线的剖面图。
图4为图2所示的光源系统中的反射后的激发光与未被转换的激发光的部分光路示意图。
图5为图2所示的第一引导元件的俯视结构示意图。
图6为本发明第二实施方式提供的光源系统的结构示意图。
主要元件符号说明
显示设备 10
光源系统 100、200
激发光源 110、210
激发光 a
正透镜 111
负透镜 112
第一匀光装置 113、213
第一引导装置 130、230
第二引导元件 131
第一引导元件 135
第一区域 135a
第二区域 135b
第二匀光装置 137、237
第二引导装置 150、250
反射元件 151
第一透镜 152
第三引导元件 156
散射元件 157
中继透镜 114、132、136、158、159、211、236
补充光源 120、220
补充光 e
收集透镜组 170、270
光轴 D
第一光 b
受激光 b1
未被转换的激发光 b2
第二光 c
波长转换装置 180、280
入光面 181
凹槽 V
基板 182
转换区 Y
反射区 B
驱动单元 185
调制装置 500
第一光路 L1
第二光路 L2
出光光路 L3
如下具体实施方式将结合上述附图进一步说明本发明。
具体实施方式
为了能够更清楚地理解本发明的上述目的、特征和优点,下面结合附图和具体实施例对本发明进行详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本发明,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。
请参阅图1,本发明提供一种显示设备10,该显示设备10可以为投影设备,例如激光电视、影院放映机、工程机或者教育投影机等。显示设备10包括:光源系统100与调制装置500,其中,光源系统100用于产生光源光,调制装置500用于根据输入的待显示图像中每个像素的原始图像数据对光源光进行调制得到待显示图像的图像光。
请参阅图2,光源系统100包括激发光源110、波长转换装置180与收集透镜组170。其中,激发光源110用于发出激发光a;波长转换装置180,用于接收激发光a并将部分激发光a转换为受激光,还用于对部分激发光a进行反射。波长转换装置180出射的受激光与反射后的激发光a最终沿出光光路L3传输并得到自光源系统100出射的 光源光。收集透镜组170用于将激发光a汇聚至波长转换装置180的表面,以及用于对波长转换装置180出射的光线进行准直。
激发光源110可以为蓝色光源,用于发出蓝色光作为激发光a。可以理解的是,激发光源110还可以是紫外光源,用于发出紫外光作为激发光a。激发光源110包括发光体,本实施方式中的发光体为激光器,在变更实施方式中,发光体包括发光二极管。具体激发光源110中包括的发光体的数量,可以根据需要灵活选择,比如可以包括一个发光体或者发光体阵列。
请一并参阅图2、图3A与图3B,波长转换装置180包括基板182,与驱动单元185。波长转换装置180用于接收激发光a,基板182包括相对设置的入光面181与底面(未标识),入光面181设置于基板182以及波长转换装置180的入光侧,用于接收激发光a。驱动单元185设置于基板182的底面上。基板182上设置有位于不同平面上的转换区Y与反射区B,即转换区Y与反射区B的所在平面不同,转换区Y与反射区B均设置于基板182上且位于波长转换装置180的入光侧。驱动单元185用于驱动基板182周期性运动,并使得转换区Y与反射区B时序位于激发光a的光路上。
本实施方式中,基板182呈大致圆盘状,转换区Y与反射区B沿基板182的周向设置。具体地,转换区Y呈部分环形,反射区B呈部分环形,转换区Y与反射区B组成圆环状。转换区Y与反射区B所在平面不同。在一种可选的实施方式中,反射区B形成有一凹槽V,凹槽V的底壁设置有反射元件、反射材料、二向色片或者能对激发光进行反射的膜片,用于反射激发光,转换区Y设置于入光面181上,入光面181为基板182上平面,其不包括凹槽V的各个表面,并且入光面181与凹槽V的侧壁连接,即凹槽V的侧壁与转换区Y所在的平面连接,以实现转换区Y与反射区B所在平面不同。或者,在另一种可选的实施方式中,转换区Y形成有一凹槽V,凹槽V的底壁上设置有波长转换材料,波长转换材料用于将入射的激发光转换为至少一种颜色的受激光,入光面181为基板182上平面,其不包括凹槽V的各个表面,并且入光面181与凹槽V的侧壁连接,反射区B设置于入 光面181上,以实现转换区Y与反射区B所在平面不同。在一种变更实施方式中,基板182在入光侧设置转换区Y与反射区B,波长转换装置180在转换区Y设置有朝向入光侧(即背离基板182底面的方向)凸出的凸出部,凸出部的表面设置有波长转换材料,波长转换材料用于将至少部分激发光转换为受激光,反射区B设置于入光面181上,入光面181为基板182上平面,其不包括凸出部的各个表面,并且凸出部的边缘与反射区B所在的平面(入光面181)连接,以实现转换区Y与反射区B所在平面不同。
进一步地,转换区Y设置有波长转换材料,波长转换材料是指可以将入射于波长转换材料的光转换成不同波长的光的材料,包括荧光粉、纳米发光材料或量子点等熟知的材料。转换区Y用于将入射的激发光转换为其他波长的受激光,入射的激发光中不能被转换区Y转换的部分激发光会随着受激光一起出射。本实施方式中,转换区Y中设置有黄色荧光粉,用于在激发光a的激发下产生黄色受激光(黄色荧光)。可以理解的是转换区Y中可以分段设置红色荧光粉与绿色荧光粉,并且红色荧光粉与绿色荧光粉时序位于激发光a的光路上,从而时序产生红色荧光与绿色荧光。或者转换区Y设置黄色荧光粉,从而出射黄色荧光。在其他实施方式中,转换区Y中还可以设置用于产生其他颜色荧光的波长转换材料,比如橙色荧光粉与品红色荧光粉。反射区B设置有反射材料用于对入射的激发光a进行反射,比如漫反射或镜面反射,由于激发光a为高斯光,转换区Y对激发光a进行镜面反射,有利于保持反射区B出射的反射后的激发光还服从高斯分布,从而保持较小的光线发散角,有利于后续光路(反射元件151)回收该反射后的激发光。反射区B可以设置反射率高于预定值的金属反射层或金属反射膜来实现镜面反射。
本发明中的转换区Y与反射区B的出光面位于不同平面,波长转换材料与反射材料的厚度相当,即转换区Y中的波长转换材料与反射区B中的反射材料的出光面位于不同平面,在一种实施方式中,转换区Y与反射区B可以位于同一平面内,也可以位于不同平面内,波长转换材料与反射材料可以从厚度上设置满足一定条件,使得转换区Y 中的波长转换材料与反射区B中的反射材料的出光面位于不同平面。
基板182周期性转动,在激发光a的照射下,转换区Y与反射区B周期性位于激发光a的光路上,波长转换装置180周期性出射黄色的受激光与反射后的蓝色激发光a。波长转换装置180为反射式色轮,用于将产生的受激光与未被转换的激发光反射出去,即转换区Y用于对入射的未被转换的激发光a进行反射,并反射其表面产生的受激光。转换区Y出射的受激光与未被转换的激发光a均为朗伯光,相对于激发光源110出射的高斯分布的激发光a,光线发散角较大。
收集透镜组170设置于波长转换装置180与激发光源110之间,并邻近波长转换装置180的入光侧设置。收集透镜组170包括依次设置的多个透镜,多个透镜之间的焦距不相等,其中焦距越小的透镜距离波长转换装置180的距离越近。
收集透镜组170,用于引导激发光源110出射的服从高斯分布的激发光a入射至波长转换装置180,并将具有一定光束直径的激发光a进行汇聚,使得激发光a在波长转换装置180表面形成一较小光斑。收集透镜组170的光轴D为收集透镜组170的对称轴,激发光a以偏离光轴D的位置入射至收集透镜组,收集透镜组170用于改变入射的激发光a的传播方向,使其沿趋向光轴D的方向汇聚并斜(非垂直)入射至波长转换装置180表面。本实施方式中,激发光a以平行于光轴D的方向入射至收集透镜组170,转换区Y的出光面设置于收集透镜组170的焦平面(焦点所在平面)上,激发光经过收集透镜组170的引导后照射至转换区Y的位置恰好为收集透镜组170的焦点。
请一并参阅图2与图4,转换区Y接收倾斜入射的激发光a,其出射的受激光与未被转换的激发光均符合朗伯分布,受激光与未被转换的激发光经过收集透镜组170后得到沿第一方向传输的第一光b,第一光b中包括受激光b1与未被转换的激发光b2。由于收集透镜组170用于对波长转换装置180出射的光线进行准直,故转换区Y出射光线(受激光与未被转换的激发光)经过收集透镜组170之后为大致平行光,第一方向与光轴D之间的夹角较小;特别地,在本实施方式中,由于转换区Y上的出射光线的位置为收集透镜组170的焦点位置, 因此转换区Y出射的光线经过收集透镜组170之后得到的第一光b为平行光,第一方向平行于光轴D。
由于反射区B与转换区Y的出光面位于垂直于光轴D的不同平面上,从而反射区B与转换区Y出射的光线入射至收集透镜组170的不同位置上,使得收集透镜组170将转换区Y出射的光线与反射区B出射的光线分别引导至不同的方向上传输。具体地,收集透镜组170将反射区B出射的反射后的激发光引导至第二方向上传输并得到第二光c,第二方向不同于第一方向,第二光c从收集透镜组170上偏离光轴D的位置出射,并向趋向于光轴D的方向传输。
由于激发光a斜入射至波长转换装置180表面,从而使得波长转换装置180表面的入射激发光与出射的反射后的激发光的光路分离(相互不干涉),以便于后续光路收集波长转换装置180出射的反射后的激发光。由于反射区B与转换区Y的出光面分别设置于波长转换装置180的不同平面上,导致收集透镜组170出射的未被转换的激发光与反射后的激发光分别沿第一方向与第二方向传输,即波长转换装置180出射的未被转换的激发光与反射后的激发光沿不同方向传输,从而便利在后续光路中去除沿第一方向传输的未被转换的激发光。
如图2所示,光源系统100还包括第一引导装置130与第二引导装置150。第一引导装置130包括第二引导元件131,第二引导元件131用于引导激发光源110出射的激发光a入射至波长转换装置180,并引导第一光b中的受激光b1沿第一光路L1传输,以及引导第一光中的未被转换的激发光b2以及第二光c入射至第二引导装置150。第二引导元件131可以为二向色分光片,用于透射蓝色光并反射红色光与绿色光,即第二引导元件131反射受激光b1,透射蓝色的第二光c以及未被转换的激发光b2第一光路L1为第二引导元件131出射的受激光b1独自传输的路径,即第一光路L1中传输受激光b1,并未传输第二光c以及未被转换的激发光b2。
第二引导装置150包括反射元件151与第一透镜152,反射元件151用于引导第二光c沿第二光路L2传输,以及用于引导第一光b中的至少部分未被转换的激发光b2偏离第二光路L2传输。第二光路L2 为第二引导元件131出射的第二光c独自传输的路径,即,第二光路L2上传输第二光c,并未传输第一光b。具体地,反射元件151的反射面较小,用于将第二引导元件131出射的高斯分布的第二光c反射至第一透镜152,第一透镜用于引导第二光c沿第二光路L2传输,第一光b中的未被转换的激发光b2与第二光c的颜色相同,传输方向不同,第二光c沿第二光路L2传输,未被转换的激发光b2沿与第二光路L2方向不同的路径传输。第一光b中未被转换的激发光b2光束直径较大,其中有部分照射至反射元件151上,其余未被转换的激发光b2照射未被反射元件151接收到。照射至反射元件151表面的未被转换的激发光b2被反射元件151引导至第一透镜152之外的周围空间中,未被第一透镜152接收到。
第二引导装置150包括散射元件157与中继透镜158、159。散射元件157用于对第二光路L2上的光线进行散射作用,以消除激光的相干性,从而缓解激光散斑现象,散射元件157还设置有增透膜。第一透镜152出射的第二光c依次经过散射元件157、中继透镜158、159的引导后入射至第一引导装置130。
如图2所示,光源系统100还包括用于发出激光作为补充光e的补充光源120,补充光源120用于发出红绿激光作为补充光e。由于波长转换装置180产生的黄色荧光中的红荧光偏少,绿荧光偏多,本发明中补充光e中包括红激光,从而对黄荧光中红荧光进行补偿,从而避免了为了配比为白光时为保证白光色坐标滤掉多余的绿荧光,有利于提高光学系统中的光效。此外,由于受激光(荧光)光谱较宽,荧光分光后得到的红光和绿光色纯度较低,投影显示的色域范围较小,不适用于激光电视和数字影院等色域要求高的应用场合,添加补充光源120以提供红色激光与绿色激光,有利于提高光源系统100出射基色光的色纯度,提高显示设备10的色域。另外,黄色荧光分光得到的红荧光偏少,绿荧光偏多,配比为白光时为保证白光色坐标必须滤掉多余的绿荧光,导致黄荧光光效变低,补充光中添加红绿激光,有利于提高光源系统100出射的黄色光的亮度。
在其他实施方式中,补充光源120用于发出一种颜色的补充光e, 比如红激光或者绿激光。当转换区Y位于激发光的光路上时,补充光源120开启,发出补充光e,当反射区B位于激发光的光路上时,补充光源120关闭不发光。在变更实施方式中,补充光还可以是其他颜色的激光或多种颜色的激光,或者是激光以外的其他一种或多种颜色的光线。在变更实施方式中,光源系统100中不包括补充光源120。
第二引导装置还包括第三引导元件156,第二光c沿第二光路传输,补充光e经过第三引导元件156的引导后与第二光c合光并沿第二光路L2传输。具体地,第三引导元件156为二向色分光片,用于透射红光绿光,并反射蓝光。第三引导元件156出射的光线经过散射元件157进入中继透镜158。
请一并参阅图2、图4与图5,第一引导装置130还包括第一引导元件135,第一引导元件135用于对沿第一光路L1传输的受激光b1以及沿第二光路L2传输的第二光c和补充光e进行合光得到光源光,并引导光源光沿出光光路L3传输。即第一光路L1为受激光b1在第二引导元件131与第一引导元件135之间的传输路径,第二光路L2为第二光c在第二引导元件131与第一引导元件135之间的传输路径。出光光路L3为光源光从第一引导元件135至其从光源系统100出射位置之间的传输路径。在未设置补充光源120的实施方式中,第一引导元件135用于对沿第一光路L1传输的受激光b1以及沿第二光路L2传输的第二光c进行合光得到光源光,并引导光源光沿出光光路L3传输。具体地,第一引导元件135包括不重合的第一区域135a与第二区域135b,第二区域135b设置于第一引导元件135的中心区域但不限于中心区域,第一区域135a围绕在第二区域135b的周边。第一区域135a用于将第二引导元件131出射的受激光b1引导至出光光路L3,第二区域135b用于将第二引导装置150中中继透镜159出射的第二光c以及补充光e引导至出光光路L3。具体地,第一引导元件135的第一区域135a镀设有增透膜,第二区域135b镀设有反射膜。第一区域135a用于透射沿第一光路L1传输的受激光b1,第二光c以及补充光e为激光,光线发散角小,光斑面积小,第二区域135b用于反射第二光c以及补充光e。在变更实施方式中,第二区域135b的位置不限于 位于第一引导元件135的中心区域,第一区域135a不限定围绕第二区域135b设置。
如图2所示,第一引导装置130还包括中继透镜132,第二引导元件131出射的受激光b1经过中继透镜132在第一引导元件135形成中间像A,通过光路设计,比如通过调节中继透镜132的焦距与位置,可以使中间像A尺寸尽量大,使得第一引导元件135合光过程中荧光损失减小;中间像A尺寸越大,受激光b1光束角度越小(即发散角度越小),第一引导元件135上受激光光斑面积越大,光束角度越小第一引导元件135的透过效率越高,有效提升了受激光b1利用率。
激发光源110与波长转换装置180之间还设置有用于对激发光a进行匀光的第一匀光装置113,第一匀光装置113为复眼透镜(单复眼透镜或双复眼透镜),第一匀光装置113与激发光源110之间设置有正透镜111与负透镜112,第一匀光装置113与第二引导元件131之间设置有中继透镜114,激发光源110发出的激发光a依次经过正透镜111、负透镜112、第一匀光装置113与中继透镜114之后入射至第二引导元件131。
出光光路L3上设置有用于对第一引导元件135出射的光线进行匀光的第二匀光装置137。第二匀光装置137为复眼透镜(单复眼透镜或双复眼透镜),第二匀光装置137与第一引导元件135之间还设置有中继透镜136。
需要说明的是,第一引导装置130与第二引导装置150中还可以包括其他中继透镜或者是用于引导光线的反射元件,在这里不做赘述。
本实施方式中,利用波长转换装置180上的转换区Y与反射区B的出光面位于不同平面上,使得经过收集透镜组170出射的反射后的激发光(第二光c)与未被转换的激发光b2沿不同方向传输,并且,反射元件151将未被转换的激发光b2与反射后的激发光分离,避免了未被转换的激发光b2混入受激光b1中从而影响光源系统100出射光线的色坐标,有利于提高显示设备10的投影显示质量。
请参阅图6,本发明第二实施方式中提供的一种光源系统200,光源系统200包括激发光源210、补充光源220、第一引导装置230、第 二引导装置250、收集透镜组270、以及波长转换装置280。光源系统200与光源系统100的主要区别在于,光源系统200中的第一匀光装置213与第二匀光装置237至少一个为光学积分棒,有利于降低制作难度和成本,提升显示设备10性价比。相应地,为了提高匀光效果,光源系统200可调整第一匀光装置213与第二匀光装置237附近的中继透镜的种类及/或焦距,比如将正透镜111与负透镜112变更为中继透镜211,将中继透镜114变更为中继透镜214,更换中继透镜136为中继透镜236,从而提高第一匀光装置213与第二匀光装置237的匀光效果。本发明第二实施方式提供的一种光源系统200除上述与光源系统100的不同外,其他结构和工作原理与光源系统100类似,在此不再赘述。
本发明第二实施方式提供的一种光源系统200,除能避免未被转换的激发光混入受激光中从而影响光源系统200出射光线的色坐标,有利于提高显示设备10的投影显示质量外,相对来说,制作难度和成本也较低,可有效提升使用该光源系统200的显示设备10的性价比。
请参阅图1,调制装置500用于对光源系统100沿出光光路L3(图2)出射的光源光进行调制,光源光中包括受激光与反射区B出射的反射后的激发光,并不包括转换区Y出射的未被转换的激发光。调制装置500可以包括液晶显示器(LCD)、数字微镜器件(DMD)或硅基液晶(LCOS)中的任意一种。调制装置500中包括调制器的数量可以根据实际需要进行选择,下面以调制装置500包括双片DMD为例进行说明,即显示设备10为双片式DMD投影系统。
调制装置500包括双片DMD,其工作模式为一片DMD负责处理光源光中的三基色光中的一种基色光,另一片DMD负责分时处理三基色光中的其他两种基色光,或者,在一种实施方式中,一片DMD负责处理光源光中的三基色光中的一种基色光,另一片DMD负责处理三基色光中另一种基色光,剩余一种基色光分为两部分分别由两片DMD处理。也就是说,双片式DMD的投影系统中既包括时序分光还包括空间分光。
以上两个实施方式中,波长转换装置180用于时序出射黄色光与 蓝色光,反射区B出射的反射后的蓝色激发光作为蓝色基色光,黄色光在进入DMD之前分为红基色光与绿基色光。红基色光与绿基色光分别进入一片DMD被同时处理,按照不同的产品需求,蓝基色光既可以与红基色光共用DMD,也可以与绿基色光共用DMD。由于单片式的DMD在一个时刻仅能调制一种基色光,若光源系统如本发明所述,即时序出射黄色光与蓝色光,而调制装置仅包括一片DMD时,则需要在接收到黄色光的时段滤除黄色光中的红基色光或者绿基色光,以对黄色光中的一种基色光进行调制,从而造成对光源系统出射光源光的浪费,光效较低。调制装置500同时调制红基色光与绿基色光,有利于提高显示设备10的光学能量利用率。在单片式的DMD的实施方式中,若波长转换装置设置有反射段、红色(或黄色)荧光粉段、绿色荧光粉段,黄色荧光粉出射的黄色光经过滤光后得到红色荧光,则波长转换装置时序出射红色荧光-绿色荧光-蓝色激光,调制装置在一个时刻对一种颜色光进行调制,从而不会对光源出射的光源光造成浪费。
并且,调制装置500中两片DMD同时向投影屏幕出射红基色的图像光与绿基色的图像光,由于只包括一片DMD的显示设备一个时刻只能调制单基色光并出射单基色的图像光,因此本发明提供的调制装置500包括两片DMD,有利于提高显示设备10出射每帧彩色图像的亮度,还有利于克服单片式DMD系统在某些颜色上的不理想。
需要说明的是,在本发明的精神或基本特征的范围内,各个实施方式中的各具体方案可以相互适用,为节省篇幅及避免重复起见,在此就不再赘述。
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化涵括在本发明内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。此外,显然“包括”一词不排除其他单 元或步骤,单数不排除复数。装置权利要求中陈述的多个装置也可以由同一个装置或系统通过软件或者硬件来实现。第一,第二等词语用来表示名称,而并不表示任何特定的顺序。
最后应说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或等同替换,而不脱离本发明技术方案的精神和范围。

Claims (14)

  1. 一种光源系统,其特征在于,包括:
    激发光源,用于发出所述激发光;
    波长转换装置,设置有转换区与反射区,所述转换区与所述反射区位于不同的平面上,并且时序处于所述激发光的光路上,所述转换区用于将至少部分激发光转换为受激光,所述反射区用于反射所述激发光;
    收集透镜组,用于引导所述转换区出射的光线沿第一方向传输并得到第一光,以及用于引导所述反射区出射的激发光沿第二方向传输并得到第二光;
    第一引导装置,用于引导所述第一光中的受激光沿第一光路出射;以及
    第二引导装置,用于引导所述第二光沿第二光路传输;
    所述第一引导装置还用于对沿所述第一光路传输的受激光以及沿所述第二光路传输的第二光进行合光得到光源光,并引导所述光源光沿出光光路传输。
  2. 如权利要求1所述的光源系统,其特征在于,所述波长转换装置包括基板,所述基板在入光侧设置所述转换区与所述反射区,所述反射区形成有一凹槽,所述凹槽的底壁用于反射所述激发光,所述凹槽的侧壁与所述转换区所在的平面连接;或者
    所述基板在入光侧设置所述转换区与所述反射区,所述转换区形成有一凹槽,所述凹槽的底壁设置有波长转换材料,所述波长转换材料用于将至少部分激发光转换为所述受激光,所述凹槽的侧壁与所述反射区所在的平面连接。
  3. 如权利要求1所述的光源系统,其特征在于,所述波长转换装置包括基板,所述基板在入光侧设置所述转换区与所述反射区,所述波长转换装置在所述转换区设置有朝向所述入光侧凸出的凸出部,所述凸出部的表面设置有波长转换材料,所述波长转换材料用于将至少部分激发光转换为所述受激光,所述凸出部的边缘与所述反射区所在 的平面连接。
  4. 如权利要求1所述的光源系统,其特征在于,所述第一引导装置包括第一引导元件,所述第一引导元件位于所述第一光路与第二光路的交汇处,用于对沿所述第一光路传输的受激光以及沿所述第二光路传输的第二光进行合光得到光源光,并引导所述光源光沿所述出光光路传输。
  5. 如权利要求4所述的光源系统,其特征在于,所述第二引导装置包括反射元件,所述反射元件用于引导所述第二光沿所述第二光路传输,并引导所述第一光中的至少部分未被转换的激发光偏离所述第二光路传输。
  6. 如权利要求5所述的光源系统,其特征在于,所述第二引导装置还包括设置于所述第二光路上的第一透镜,所述第一透镜用于接收并引导所述反射元件出射的第二光,所述反射元件出射的第一光中未被转换的激发光沿偏离所述第二光路的方向传输从而未照射至所述第一透镜。
  7. 如权利要求1所述的光源系统,其特征在于,所述第一引导装置还包括第二引导元件,所述第二引导元件用于引导所述激发光源出射的激发光经过所述收集透镜组入射至所述波长转换装置,并引导所述第一光中的受激光沿所述第一光路传输,以及引导所述第一光中的未被转换的激发光以及所述第二光入射至所述第二引导装置。
  8. 如权利要求7所述的光源系统,其特征在于,所述第一引导元件包括不重合的第一区域与第二区域,所述第一区域用于将所述第二引导元件出射的受激光引导至所述出光光路,所述第二区域用于将所述第二引导装置出射的第二光引导至所述出光光路。
  9. 如权利要求1所述的光源系统,其特征在于,所述激发光源与所述波长转换装置之间还设置有用于对所述激发光进行匀光的第一匀光装置,及/或所述出光光路上设置有用于对所述第一引导元件出射的光线进行匀光的第二匀光装置。
  10. 如权利要求9所述的光源系统,其特征在于,所述第一匀光装置及/或所述第二匀光装置包括单复眼透镜、双复眼透镜或者光学积分 棒。
  11. 如权利要求1所述的光源系统,其特征在于,所述光源系统还包括用于发出补充光的补充光源,所述第二引导装置引导所述补充光与所述第二光合光并沿所述第二光路传输。
  12. 如权利要求11所述的光源系统,其特征在于,所述第二引导装置还包括第三引导元件,所述第三引导元件用于将所述补充光与所述第二光进行合光并输出至所述第一引导元件,所述第一引导元件将所述受激光、第二光与补充光进行合光,所述光源光包括所述补充光。
  13. 如权利要求1-12任意一项所述的光源系统,其特征在于,所述激发光入射至所述收集透镜组的位置偏离所述收集透镜组光轴,使得所述激发光经过所述收集透镜组后斜入射至所述波长转换装置表面。
  14. 一种显示设备,其特征在于,包括:
    光源系统,为如权利要求1-13任意一项所述的光源系统;以及
    调制装置,用于对所述光源系统出射的光源光进行调制得到待显示图像的图像光。
PCT/CN2020/098510 2019-07-12 2020-06-28 光源系统与显示设备 WO2021008332A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/626,783 US11917338B2 (en) 2019-07-12 2020-06-28 Light source system and display apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910631789.3 2019-07-12
CN201910631789.3A CN112213908B (zh) 2019-07-12 2019-07-12 光源系统与显示设备

Publications (1)

Publication Number Publication Date
WO2021008332A1 true WO2021008332A1 (zh) 2021-01-21

Family

ID=74047214

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/098510 WO2021008332A1 (zh) 2019-07-12 2020-06-28 光源系统与显示设备

Country Status (3)

Country Link
US (1) US11917338B2 (zh)
CN (1) CN112213908B (zh)
WO (1) WO2021008332A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112283609B (zh) * 2020-09-30 2023-08-18 赫尔曼·友瀚·范·贝赫库姆 一种光源设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103376634A (zh) * 2012-04-24 2013-10-30 中强光电股份有限公司 光源模组与投影装置
CN103869590A (zh) * 2012-12-07 2014-06-18 三星电子株式会社 用于光束投影仪的照明光学系统
US20150036332A1 (en) * 2013-07-30 2015-02-05 Delta Electronics, Inc. Display illuminating module
CN104345530A (zh) * 2013-07-30 2015-02-11 台达电子工业股份有限公司 显示光源模块
CN105892200A (zh) * 2015-01-26 2016-08-24 台湾彩光科技股份有限公司 光学色轮组件及其光学色轮
CN109491187A (zh) * 2017-09-13 2019-03-19 深圳光峰科技股份有限公司 波长转换装置、光源系统及投影设备
CN109557752A (zh) * 2017-09-26 2019-04-02 深圳光峰科技股份有限公司 光源系统及投影装置
CN109557753A (zh) * 2017-09-26 2019-04-02 深圳光峰科技股份有限公司 光源系统及投影装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5491888B2 (ja) * 2010-02-05 2014-05-14 日立コンシューマエレクトロニクス株式会社 投写型表示装置
JP5910554B2 (ja) * 2013-03-22 2016-04-27 ソニー株式会社 光源装置および表示装置
CN105051601B (zh) * 2013-04-18 2017-05-31 松下知识产权经营株式会社 投影型影像显示装置
CN105190432B (zh) * 2013-04-22 2017-07-28 日立麦克赛尔株式会社 光源装置和投影型影像显示装置
WO2014196079A1 (ja) * 2013-06-07 2014-12-11 Necディスプレイソリューションズ株式会社 光源装置およびそれを備えた投写型表示装置
JP2015092224A (ja) * 2013-10-03 2015-05-14 パナソニックIpマネジメント株式会社 光源装置および投写型表示装置
JP2018510467A (ja) * 2015-03-05 2018-04-12 フィリップス ライティング ホールディング ビー ヴィ 発光装置
JP6525856B2 (ja) * 2015-11-28 2019-06-05 キヤノン株式会社 光源光学系およびこれを用いた投射型表示装置
CN205910480U (zh) * 2016-05-19 2017-01-25 深圳市绎立锐光科技开发有限公司 一种光源系统及其投影设备、照明装置
CN106444253A (zh) * 2016-12-05 2017-02-22 明基电通有限公司 激光投影机的光源系统
JP6946650B2 (ja) * 2017-02-01 2021-10-06 セイコーエプソン株式会社 光源装置及びプロジェクター
CN110928124A (zh) * 2017-03-14 2020-03-27 深圳光峰科技股份有限公司 光源装置及投影系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103376634A (zh) * 2012-04-24 2013-10-30 中强光电股份有限公司 光源模组与投影装置
CN103869590A (zh) * 2012-12-07 2014-06-18 三星电子株式会社 用于光束投影仪的照明光学系统
US20150036332A1 (en) * 2013-07-30 2015-02-05 Delta Electronics, Inc. Display illuminating module
CN104345530A (zh) * 2013-07-30 2015-02-11 台达电子工业股份有限公司 显示光源模块
CN105892200A (zh) * 2015-01-26 2016-08-24 台湾彩光科技股份有限公司 光学色轮组件及其光学色轮
CN109491187A (zh) * 2017-09-13 2019-03-19 深圳光峰科技股份有限公司 波长转换装置、光源系统及投影设备
CN109557752A (zh) * 2017-09-26 2019-04-02 深圳光峰科技股份有限公司 光源系统及投影装置
CN109557753A (zh) * 2017-09-26 2019-04-02 深圳光峰科技股份有限公司 光源系统及投影装置

Also Published As

Publication number Publication date
US11917338B2 (en) 2024-02-27
CN112213908A (zh) 2021-01-12
US20220303511A1 (en) 2022-09-22
CN112213908B (zh) 2022-12-02

Similar Documents

Publication Publication Date Title
CN109634041B (zh) 一种光源系统及投影系统
US11243460B2 (en) Light source device and projection system
US11402736B2 (en) Light source system and projection device
TWI687754B (zh) 照明系統與投影裝置
EP3457687A1 (en) Illumination system and projection apparatus
US9470963B2 (en) Lighting device and projection type video display apparatus
WO2020259615A1 (zh) 一种光源系统及显示设备
WO2020216263A1 (zh) 光源系统和显示设备
EP3792690A1 (en) Light source system, projection device and illumination device
WO2020140780A1 (zh) 光源系统及投影设备
WO2020063159A1 (zh) 光源系统及投影系统
CN113406850B (zh) 一种投影系统
WO2021008332A1 (zh) 光源系统与显示设备
US11405597B2 (en) Illumination system and projection device
US10838291B2 (en) Illumination system and projection device
WO2020135300A1 (zh) 光源系统及投影装置
US20210286252A1 (en) Light source system and projection system using the same
WO2021008330A1 (zh) 光源系统与显示设备
WO2021037240A1 (zh) 一种光源及投影设备
WO2020211587A1 (zh) 波长转换装置、光源系统与显示设备
CN111198410B (zh) 散射元件、光源系统及显示设备
WO2023245936A1 (zh) 光源装置和投影系统
WO2024066229A1 (zh) 光源模组及投影设备
WO2020119398A1 (zh) 光源系统及显示设备
CN117930575A (zh) 光学系统和投影设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20840755

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20840755

Country of ref document: EP

Kind code of ref document: A1