WO2020140780A1 - 光源系统及投影设备 - Google Patents

光源系统及投影设备 Download PDF

Info

Publication number
WO2020140780A1
WO2020140780A1 PCT/CN2019/127272 CN2019127272W WO2020140780A1 WO 2020140780 A1 WO2020140780 A1 WO 2020140780A1 CN 2019127272 W CN2019127272 W CN 2019127272W WO 2020140780 A1 WO2020140780 A1 WO 2020140780A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light source
source system
excitation light
excitation
Prior art date
Application number
PCT/CN2019/127272
Other languages
English (en)
French (fr)
Inventor
郭祖强
鲁宁
李屹
Original Assignee
深圳光峰科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光峰科技股份有限公司 filed Critical 深圳光峰科技股份有限公司
Priority to US17/420,509 priority Critical patent/US11822221B2/en
Publication of WO2020140780A1 publication Critical patent/WO2020140780A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/007Optical devices or arrangements for the control of light using movable or deformable optical elements the movable or deformable optical element controlling the colour, i.e. a spectral characteristic, of the light
    • G02B26/008Optical devices or arrangements for the control of light using movable or deformable optical elements the movable or deformable optical element controlling the colour, i.e. a spectral characteristic, of the light in the form of devices for effecting sequential colour changes, e.g. colour wheels
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/141Beam splitting or combining systems operating by reflection only using dichroic mirrors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/206Control of light source other than position or intensity
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2066Reflectors in illumination beam
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2073Polarisers in the lamp house
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/208Homogenising, shaping of the illumination light
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B33/00Colour photography, other than mere exposure or projection of a colour film
    • G03B33/08Sequential recording or projection

Definitions

  • the invention relates to the field of display technology, in particular to a light source system and a projection device.
  • the laser fluorescent hybrid light source is widely used in cinema projectors, engineering projections, business projections and laser TVs with its advantages of long life, low cost and high brightness, and has very good display effects.
  • the method of rotating the color wheel is commonly used for time-series light combining.
  • the schematic diagram of the optical path of the two-color wheel scheme is shown in Figure 1.
  • the blue laser emitted by the laser first excites the phosphor powder through the fluorescent wheel 50 to generate fluorescence, then filters through the filter wheel 60 and then enters the light modulation device, and finally the projection image is projected by the lens .
  • the problem with this solution is that the fluorescent wheel 50 and the filter wheel 60 must be synchronized, otherwise there is an abnormal display, and the two color wheels need to occupy a larger space, which is not conducive to the miniaturization of the projection device.
  • the structure in which the fluorescent wheel and the filter wheel are combined into one color wheel is shown in FIG. 2.
  • the color wheel 70 is divided into two circles, one circle is the fluorescent zone 71 and one circle is the filter zone 72.
  • the blue laser light incident on the fluorescent zone 71 is excited
  • the fluorescence generated by the phosphor passes through the relay optical path and enters the filter of the corresponding color segment, avoiding the synchronization problem of the two-color wheel scheme.
  • there are both a fluorescent area and a filter area on the color wheel which inevitably leads to an increase in the diameter of the color wheel and is not conducive to miniaturization of the projection device.
  • the filter wheel or the filter area is removed, although it is beneficial to reduce the size of the projection device, the fluorescent color is not pure, resulting in poor display effect.
  • a first aspect of the present invention provides a light source system, including:
  • Excitation light source used to emit excitation light
  • the wavelength conversion device is provided with a conversion layer for converting the wavelength of at least part of the excitation light to obtain a laser beam, and emitting the laser beam and the unconverted excitation light;
  • a dichroic component for guiding the second optical path of the laser beam emitted from the conversion layer and finally exiting the light source system along the exit optical path, and for guiding at least part of the unexcited excitation emitted by the conversion layer
  • the light is transmitted on a path other than the light exit optical path.
  • a second aspect of the present invention provides a projection apparatus including the light source system described above.
  • the wavelength conversion device in the light source system provided by the present invention uses the dichroic component to filter the excitation light in the laser light that is not converted by the wavelength conversion device, which is beneficial to improve the accuracy of the color of the light emitted by the light source system, thereby ensuring The display effect of the projection device using the light source system is improved, and it is beneficial to the miniaturization of the projection device.
  • Fig. 1 is a schematic structural diagram of a two-color wheel scheme.
  • FIG. 2 is a schematic view of the top structure of a color wheel synthesized by a fluorescent wheel and a filter wheel.
  • FIG. 3 is a schematic structural diagram of a light source system provided in the first embodiment of the present invention.
  • FIG. 4 is a schematic structural view of the wavelength conversion device shown in FIG. 3.
  • FIG. 5 is a schematic structural diagram of a light source system provided in a second embodiment of the present invention.
  • FIG. 6A is a schematic structural view of the wavelength conversion device shown in FIG. 5.
  • 6B is a schematic cross-sectional structural view of the wavelength conversion device shown in FIG. 5 taken along line A-A.
  • FIG. 7 is a schematic structural view of the second dichroic element shown in FIG. 5.
  • FIG. 8 is a schematic structural diagram of a light source system according to a third embodiment of the present invention.
  • FIG. 9 is a schematic structural view of the wavelength conversion device shown in FIG. 8.
  • FIG. 10 is a schematic structural diagram of a light source system according to a fourth embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of a light source system provided by a fifth embodiment of the present invention.
  • FIG. 12A is a schematic structural view of the wavelength conversion device shown in FIG. 11.
  • FIG. 12B is a schematic structural view of the wavelength conversion device shown in FIG. 11 along line B-B.
  • Light source system 100 200, 300, 400, 500
  • Wavelength conversion device 150 250, 350, 550
  • the first area 252a is the first area 252a
  • the second section G1 The second section G1
  • the invention provides a light source system, which uses dichroic components to filter the excitation light in the laser light that is not converted by the wavelength conversion device, which is beneficial to improve the accuracy of the color of the light emitted by the light source system, thereby ensuring the use of the light source system provided by the invention Display effect of your projection device.
  • the dichroic component filters out the excitation light that is not converted by the wavelength conversion device in the received laser, thereby improving the color purity of the emitted laser light.
  • the wavelength conversion device can omit the filter unit provided for filtering the emitted laser light It is beneficial to reduce the volume of the light source system, and is especially suitable for projection products such as micro projection and portable projection equipment that have high requirements for product volume.
  • the projection device including the light source system provided by the present invention further includes a control device and a light modulation device, wherein the control device is used to generate a modulation signal according to the image data of the image to be displayed, and the light modulation device is used to emit light to the light source system according to the modulation signal The light is modulated to obtain the image light of the image to be displayed.
  • the light source system 100 provided by the first embodiment of the present invention includes: an excitation light source 110, a dichroic component, and a wavelength conversion device 150.
  • the dichroic component includes a first dichroic element 130 and a second dichroic element 180.
  • the excitation light source 110 is used to emit excitation light. After being guided by the first dichroic element 130 or other guide elements, the excitation light is incident on the surface of the wavelength conversion device 150.
  • the wavelength conversion device 150 is used to perform wavelength conversion on at least part of the excitation light and obtain Set the received laser in the wavelength range, and emit the received laser and the unconverted excitation light.
  • the first dichroic element 130 is disposed on the optical path of the received laser beam emitted by the wavelength conversion device 150, is used to guide the received laser beam emitted from the wavelength conversion device 150 to exit the light source system 100 along the optical path L, and to guide the wavelength conversion device 150 At least part of the emitted excitation light that has not been converted is transmitted on a path other than the exit light path L.
  • the transmission of the unconverted excitation light in the light source system 100 is lost or irradiated It is absorbed and lost on the structural parts, so that at least part of the unconverted excitation light cannot be emitted from the exit light path L, which is helpful to improve the accuracy of the color of the light emitted by the light source system, thereby ensuring the projection equipment using the light source system provided by the present invention display effect.
  • the excitation light source 110 may be a blue light source, which emits blue excitation light. It can be understood that the excitation light source 110 is not limited to a blue light source, and the excitation light source 110 may also be a purple light source or the like.
  • the illuminant in the excitation light source 110 is a blue laser, which is used to emit blue laser light obeying the Gaussian distribution as the excitation light. It can be understood that the illuminant may include one, two, or more blue laser arrays. The number of lasers can be selected according to actual needs.
  • the light emitting body of the excitation light source 110 is a blue light emitting diode.
  • the wavelength conversion device 150 includes a driving unit 151 and a substrate 152.
  • the driving unit 151 is disposed at the geometric center of the bottom surface of the substrate 152 and is used to drive the substrate 152 to perform periodic motion.
  • the surface of the wavelength conversion device 150 is provided with a conversion layer P and a first scattering layer B.
  • the conversion layer P is provided with a wavelength conversion material, such as phosphor, phosphorescent material or quantum dots, etc., which is used to perform wavelength conversion on at least part of the excitation light to obtain a received laser, and emit the received laser and the unconverted excitation light.
  • the conversion layer The laser beam emitted from P obeyed Lambertian distribution, and the unconverted excitation light also obeyed the Lambertian fraction after being scattered by the wavelength conversion material.
  • the conversion layer P and the first scattering layer B are alternately located on the optical path of the excitation light, the wavelength conversion device 150 alternately emits the received laser light and the scattered excitation light, and the unconverted excitation light and the received laser light simultaneously It exits from the surface of the wavelength conversion device 150.
  • the substrate 152 is circular, and the area formed by the conversion layer P and the first scattering layer B is circular.
  • the conversion layer P and the first scattering layer B may be disposed adjacent to or spaced apart, and each has a fan shape.
  • the conversion layer P includes a fan-shaped first section R1 and a second section G1, wherein the first section R1 and the second section G1 are respectively provided with a first color wavelength conversion material and a second color wavelength conversion material
  • the first color fluorescence and the second color fluorescence are respectively generated as the received laser light under the excitation of the excitation light.
  • the first color is red and the second color is green.
  • the conversion layer P is further provided with other color sections, such as a section for generating yellow/orange fluorescence, or a section for generating yellow/orange fluorescence is used to replace the first section R1 and/or the first section Two sections G1.
  • other color sections such as a section for generating yellow/orange fluorescence, or a section for generating yellow/orange fluorescence is used to replace the first section R1 and/or the first section Two sections G1.
  • the angle of incidence on the surface of the wavelength conversion device 150 is an acute angle.
  • the excitation light is incident obliquely on the surface of the wavelength conversion device 150.
  • a collection lens group 140 is provided between the wavelength conversion device 150 and the first dichroic element 130 for condensing the light incident on the surface of the wavelength conversion device 150 and collimating the light emitted by the wavelength conversion device 150 straight.
  • the excitation light emitted from the first dichroic element 130 enters the condensing lens group 140 from a position deviating from the optical axis of the condensing lens group 140, and after being focused by the condensing lens group, enters the surface of the wavelength conversion device 150 at an acute angle.
  • the first scattering layer B is provided with a scattering material to scatter the excitation light and reduce its speckle phenomenon.
  • the first scattering layer B scatters the excitation light at a small angle, so that the optical paths of the incident excitation light and the exiting excitation light of the first scattering layer B are separated, as shown in FIG.
  • the incident excitation light of the first scattering layer B and the exiting excitation light have a V-shaped optical path, so that the excitation light emitted by the excitation light source 110 and the excitation light emitted by the first scattering layer B are different when they enter the surface of the first dichroic element 130 In the region, the optical paths of the two beams of excitation light emitted from the first dichroic element 130 do not overlap, thereby simplifying the design of the optical path and helping to reduce the optical devices in the light source system 100.
  • the first dichroic element 130 is disposed between the excitation light source 110 and the wavelength conversion device 150, and is used to transmit the received laser light and reflect the excitation light.
  • the excitation light emitted by the excitation light source 110 is a blue laser light that follows a Gaussian distribution
  • the received laser light is red fluorescence and green fluorescence that follow a Lambertian distribution.
  • the scattered excitation light enters the collection lens at a large divergence angle
  • the group 140 after collimating by the collection lens group 140, enters the first dichroic element 130 with a larger beam diameter.
  • the first dichroic element 130 may be a dichroic sheet with reverse blue to yellow transmission, and the reflectivity to blue light may reach more than 99%.
  • the scattered excitation light and the received laser light emitted from the first dichroic element 130 are transmitted along the first optical path L1 and the second optical path L2, respectively, and at least part of the unconverted excitation light is emitted from the optical path L, the first optical path L1, and the second Transmission on the path other than the optical path L2.
  • the conversion layer P When the conversion layer P is located on the optical path of the excitation light, the conversion layer P emits the received laser light and the unconverted excitation light, wherein the amount of unconverted excitation light is small, and the unconverted excitation light is guided to the exit light path in the optical path structure During the L process, there is a large loss, or it is absorbed and lost when irradiated to the structural member, so most of the unconverted excitation light will not be emitted from the light source system 100 together with the received laser, so it is helpful to eliminate the unconverted excitation light Influenced by the color coordinates of the laser, it is helpful to improve the accuracy of the color of the light emitted by the light source system 100, thereby improving the display effect of the projection device.
  • the light source system 100 further includes a second dichroic element 180 disposed on the light exiting optical path L for guiding the laser light to be transmitted along the light exiting optical path L and exiting from the light source system 100, and for guiding along the first
  • the scattered excitation light transmitted by the optical path L1 is transmitted along the exit optical path L and exits from the light source system 100, and is also used to guide the unconverted excitation light to be transmitted on an optical path other than the exit optical path L, thereby consuming the unconverted optical path Of excitation light, so that most of the unconverted excitation light cannot exit the light source system 100 along the exit light path L.
  • the second dichroic element 180 is used for optically expanding and combining the scattered excitation light on the first optical path L1 and the received laser light on the second optical path L2, so that the second dichroic element 180 emits The excitation light and the received laser light exit the light source system 100 along the exit light path L.
  • the second dichroic element 180 is used to reflect the excitation light and transmit the received laser light, and is preferably a dichroic film with reverse blue to yellow color transmission, and the reflectivity to blue light can reach more than 99%.
  • the intermediate image A formed by the laser light emitted from the first dichroic element 130 is located at the second dichroic element 180 such that the area of the laser spot formed on the second dichroic element 180 is equal to the area of the intermediate image A.
  • the unconverted excitation light that is not reflected by the first dichroic element 130 is transmitted along the second optical path L2 and is incident on the surface of the second dichroic element 180, which is
  • the dichroic element 180 generates a large loss after being reflected, or is irradiated onto the structural member and is absorbed, and will not be emitted from the light source system 100, which is helpful to improve the accuracy of the color of the light emitted by the light source system 100, thereby improving the display effect of the projection device .
  • the scattered excitation light on the second optical path L2 is reflected by the second dichroic element 180 to cause a large loss, or is irradiated onto the structural member to be absorbed, so the scattered excitation light on the second optical path L2 is not It will be emitted from the light source system 100, which is beneficial to improve the uniformity of the emitted excitation light as the primary color light.
  • the excitation light on the second optical path L2 is almost completely reflected by the beam splitter, and will not be reflected from the light source.
  • the emergence of the system 100 is beneficial to improve the accuracy and uniformity of the color of the light emitted by the light source system 100, thereby improving the display effect of the projection device.
  • the first light path L1 is further provided with a first guide element 161 for guiding the excitation light emitted from the first dichroic element 130 to the second dichroic element 180.
  • the first The guide element 161 is a mirror.
  • a second guide element 163 is provided on the second optical path L2. The second guide element 163 is used to guide the light emitted from the first dichroic element 130 to enter the second dichroic element 180.
  • the second guide element 163 The element 163 is a mirror, or a dichroic sheet for reflecting laser light and transmitting excitation light.
  • the light source system 100 further includes a light homogenizing device 190 located on the outgoing light path L.
  • the light emitted by the second dichroic element 180 passes through the light homogenizing device 190 and then exits.
  • the light homogenizing device 190 may be an optical integrating rod or double compound eyes Lens and other devices.
  • the main difference between the light source system 200 and the light source system 100 according to the second embodiment of the present invention is that the light source system 200 further includes a supplementary light source 220 for emitting laser light as supplementary light, and the wavelength conversion device 250 further includes A second scattering layer R2 that scatters and reflects supplementary light.
  • the second scattering layer R2 is used to scatter incident supplemental light to eliminate or mitigate the speckle effect generated by the laser.
  • the supplementary light is sequentially guided through the second scattering layer R2 and the first guiding element 261, and is combined with the received laser light at the second dichroic element 280 and exits from the light source system 200 along the same optical path.
  • the red fluorescent color produced by the red fluorescent powder is not pure, and there is no filter unit to modify the red fluorescent color, and the red display effect is not good enough.
  • the supplementary light source 220 is emitted from the light source system 200 without wavelength conversion of the wavelength conversion device 250, and is used to improve the color gamut range and display effect covered by the primary color light emitted by the light source system 200.
  • the supplementary light source 220 emits light
  • the body is a laser, used to emit the first color (red) laser light as supplementary light.
  • the first-color laser and the first-color fluorescence are metamerism light.
  • the first-color laser has a narrow spectral bandwidth, high pure color saturation, and a large color gamut coverage; the first-color fluorescence has a wide spectral bandwidth, The impure saturation of the color is low, and the range of the color gamut is small.
  • the red color Add red laser light to the fluorescence, and combine the red laser light with the red fluorescence to improve the red light display effect.
  • the conversion layer P and the first scattering layer B in the wavelength conversion device 250 are both disposed on the substrate 252.
  • the conversion layer P includes a method for generating first-color fluorescence under the excitation of excitation light.
  • the second scattering layer R2 and the first section R1 are arranged symmetrically along the geometric center of the substrate, that is, on the circular substrate 252, the center angle occupied by the second scattering layer R2 and the first section R1 is the opposite vertex angle, thus
  • the laser light and the supplementary light can be simultaneously emitted from the wavelength conversion device 250. It can be understood that the position of the second scattering layer R2 on the substrate 252 can be flexibly set according to the incident position of the supplementary light.
  • the surface of the substrate 252 includes adjacent first regions 252a and second regions 252b. As shown in the figure, the first regions 252a are disposed in a ring shape on the edge of the substrate 252, and the second regions 252b are disposed inside the first regions 252a. In one embodiment, the first area 252a and the second area 252b may exchange positions. The first region 252a and the second region 252b may be arranged adjacently or at intervals.
  • the conversion layer P and the first scattering layer B are both disposed in the first region 252a, the substrate 252 is provided with a recess 253 in the second region 252b, and the second scattering layer R2 is disposed on the side wall x surface of the recess 253.
  • the groove 253 is a V-shaped groove, and the side wall x is at an acute angle to the plane where the first region 252a is located, which is beneficial to the miniaturization design of the product and the assembly of the product.
  • the light source system 200 further includes necessary elements for guiding the incident incident light to the second scattering layer R2, such as the third guiding element 262 in FIG. 5.
  • the third guiding element 262 is a mirror.
  • the first guiding element 261 is used to reflect the excitation light emitted from the first dichroic element 230 and transmit the supplementary light emitted from the second scattering layer R2, for example, it may be a reverse blue translucent red dichroic sheet.
  • the second dichroic element 280 in the light source system 200 includes an intermediate region 280 a and an edge region 280 b.
  • the intermediate region 280 a is used to reflect excitation light and supplementary light
  • the edge region 280 b is used to reflect excitation light and Transmitted by laser.
  • the intermediate region 280a may be provided with an optical film that reflects red light and blue light and transmits light of other colors, such as red light and blue light that transmit excitation and supplementary light bands, and transmits light of other wave bands, thereby partially receiving light
  • Laser light can be transmitted from the middle region 208a to be utilized to improve light efficiency; in one embodiment, the middle region 280a can be a reflective film.
  • the edge region 280b may be provided with an anti-blue-yellow film. It can be understood that the intermediate region 280a is not limited to be disposed at the geometric center of the second dichroic element 280, but can also be disposed at an eccentric position or a peripheral region of the second dichroic element 280, and the edge region 280b can also be disposed at the second The geometric center or eccentric position of the dichroic element 280.
  • the light source system 300 provided in the third embodiment of the present invention is mainly different from the light source system 200 in that the supplementary light source 320 further includes a green laser for emitting second-color laser light as supplementary light.
  • the supplementary light source 320 is used to sequentially emit the first color laser and the second color laser.
  • a reverse red translucent green dichroic film or a reverse green translucent red dichroic film can be used for the red laser Combine the light with the green laser;
  • the side wall x of the groove 353 on the substrate 352 is also provided with a third scattering layer G2 for scattering the second-color laser light, the second-color laser light and the second-color fluorescence light are the same color heterogeneous light
  • the second section G1 and the third scattering layer G2 are arranged symmetrically along the geometric center of the substrate 352, that is, on the circular substrate 352, the center angle occupied by the second section G1 and the third scattering layer G2 is the opposite vertex angle.
  • the second color laser light and the first color laser light are incident on the surface of the wavelength conversion device 350 along the same optical path, thereby realizing the expansion of the color gamut of the green primary color light by the light source system 300, which is beneficial to improving the display quality of the projection device.
  • the main difference between the light source system 400 and the light source system 300 provided by the fourth embodiment of the present invention is that the intermediate image A formed by the laser light emitted from the first dichroic element 430 is located in the second dichroic element 480 and Between the homogenizing devices 490, the area of the laser spot formed on the second dichroic element 480 is larger than the area of the intermediate image A.
  • the intermediate area (not shown) on the second dichroic element 480 and the second When the surface area of the dichroic element 480 is determined, the amount of laser light incident on the middle area (not shown) of the second dichroic element 480 is relatively reduced, which is helpful to reduce the light loss of the laser light in the middle area. Help to improve the system's light efficiency and brightness.
  • the light source system 500 provided in the fifth embodiment of the present invention is mainly different from the light source system 200 in that excitation light and supplementary light are light of the first polarization state, and the first guiding element 561 is used to reflect the light.
  • One polarization state light transmits the second polarization state light, and a polarization conversion element 563 is further provided between the first guiding element 561 and the wavelength conversion device 550; supplementary light passes through the first guiding element 561 and the polarization conversion element 563 in sequence After being incident on the second scattering layer R2, after being reflected and scattered by the second scattering layer R2, it passes through the polarization state conversion element 563 again to obtain the supplementary light of the second polarization state, and the supplementary light of the second polarization state passes through the first guiding element 561 It is incident on the second dichroic element 580.
  • the first polarization state is the S polarization state
  • the second polarization state is the P polarization state
  • the first polarization state may be a P polarization state
  • the second polarization state may be an S polarization state
  • the polarization state conversion element 563 is used to change the polarization state of supplementary light, and may be a 1/4 wave plate.
  • the supplementary light is P-polarized light.
  • the 1/4 wave plate converts the supplementary light from P polarized light to circularly polarized light.
  • the circularly polarized supplementary light reflects and reflects through the second scattering layer R2. Scattering, it will be converted to P polarization state after the second perpendicular incidence on the 1/4 wave plate.
  • the first guiding element 561 may select a polarized second dichroic element, such as a PBS (polarization beam splitter) to reflect S-polarized light and transmit P-polarized light.
  • a polarized second dichroic element such as a PBS (polarization beam splitter) to reflect S-polarized light and transmit P-polarized light.
  • the first scattering layer B and the second scattering layer R2 do not change the polarization state of the incident laser under the condition that the laser speckle can be eliminated.
  • the first scattering layer B can change the polarization state of the incident excitation light, and part of the blue excitation light scattered by the first scattering layer B is converted to the P polarization state, and the other part maintains the S polarization state, and the S polarization
  • the excitation light in the state is guided to the second dichroic element 580 through the first guide element 561 and exits from the light source system 500.
  • the excitation light in the P-polarization state is transmitted from the first guide element 561 and is not utilized because blue light affects the brightness of the displayed image The degree of improvement is limited, so reducing the amount of blue excitation light has little effect on the quality of the projected image.
  • the wavelength conversion device 550 in the light source system 500 is compared with the wavelength conversion device 250.
  • the main difference is that the wavelength conversion device 550 omits the groove, and the second scattering layer R2 is provided on the surface of the substrate 552, that is The second scattering layer R2 and the first scattering layer B are located on the same plane, thereby ensuring that the supplementary light is incident perpendicularly to the polarization state conversion element 563, and the optical path design is simple.
  • the first scattering layer B and the second scattering layer R2 are arranged side by side, and the first scattering layer B and the second scattering layer R2 may be arranged adjacently or at intervals.

Abstract

一种光源系统(100),包括:激发光源(110),用于发出激发光;波长转换装置(150),设置有转换层(P),转换层(P)用于对至少部分激发光进行波长转换以得到受激光,并出射所述受激光与未被转换的激发光;以及二向色组件(130,180),用于引导转换层(P)出射的受激光沿第二光路传播,并最终沿出光光路从光源系统(100)出射,以及用于引导转换层(P)出射的至少部分未被转换的激发光在出光光路以外的路径上传输。还提供一种包括上述光源系统的投影设备。

Description

光源系统及投影设备 技术领域
本发明涉及显示技术领域,尤其涉及一种光源系统及投影设备。
背景技术
本部分旨在为权利要求书中陈述的本发明的具体实施方式提供背景或上下文。此处的描述不因为包括在本部分中就承认是现有技术。
激光荧光混合光源凭借其长寿命、低成本、高亮度的优势广泛应用于影院放映机、工程投影、商务投影和激光电视等产品中,并具备非常好的显示效果。
在单片式空间光调制器的投影设备中,常用旋转色轮方法进行时序合光。常见的色轮方案有两种:一种是荧光轮和滤光轮的双色轮方案;一种是荧光轮和滤光轮合成为一个色轮的方案。
双色轮方案的光路示意图如图1所示,激光器出射的蓝激光先通过荧光轮50激发荧光粉产生荧光,然后通过滤光轮60滤光后入射至光调制装置,最后由镜头投射产生投影图像。这种方案的问题在于荧光轮50和滤光轮60必须同步,否则存在显示异常,而且两个色轮需要占用较大的空间,不利于投影设备的小型化。
荧光轮和滤光轮合成为一个色轮的结构如图2所示,色轮70分为两圈,一圈为荧光区71,一圈为滤光区72,入射荧光区71的蓝激光激发荧光粉产生的荧光经过中继光路后入射对应色段的滤光片,避免了双色轮方案的同步问题。但是,色轮上既有荧光区,又有滤光区,必然导致色轮直径增大,也不利于投影设备的小型化。
然而,如果去掉滤光轮或滤光区,虽然有利于减小投影设备的体积,但会因荧光颜色不纯,导致显示效果不佳。
发明内容
本发明第一方面提供一种光源系统,包括:
激发光源,用于发出激发光;
波长转换装置,设置有转换层,所述转换层用于对至少部分激发光进行波长转换以得到受激光,并出射所述受激光与未被转换的激发光;以及
二向色组件,用于引导所述转换层出射的受激光第二光路传播,并最终沿出光光路从所述光源系统出射,以及用于引导所述转换层出射的至少部分未被转换的激发光在所述出光光路以外的路径上传输。
本发明第二方面提供一种投影设备,包括如上所述的光源系统。
本发明提供的光源系统中的波长转换装置中利用所述二向色组件滤除受激光中未被波长转换装置转换的激发光,有利于提高所述光源系统出射光线颜色的精准度,从而保证了采用所述光源系统的投影设备的显示效果,且有利于投影设备的小型化。
附图说明
为了更清楚地说明本发明实施例/方式技术方案,下面将对实施例/方式描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例/方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为双色轮方案的结构示意图。
图2为荧光轮与滤光轮合成的一个色轮的俯视结构示意图。
图3为本发明第一实施方式中提供的光源系统的结构示意图。
图4为图3所示的波长转换装置的俯视结构示意图。
图5为本发明第二实施方式中提供的光源系统的结构示意图。
图6A为图5所示的波长转换装置的俯视结构示意图。
图6B为图5所示的波长转换装置沿A-A线的剖视结构示意图。
图7为图5所示的第二二向色元件的俯视结构示意图。
图8为本发明第三实施方式提供的光源系统的结构示意图。
图9为图8所示的波长转换装置的俯视结构示意图。
图10为本发明第四实施方式提供的光源系统的结构示意图。
图11为本发明第五实施方式提供的光源系统的结构示意图。
图12A为图11所示的波长转换装置的俯视结构示意图。
图12B为图11所示的波长转换装置沿B-B线的结构示意图。
主要元件符号说明
荧光轮             50
滤光轮             60
色轮               70
荧光区             71
滤光区             72
光源系统           100、200、300、400、500
激发光源           110
补充光源           220、320
第一二向色元件     130、430
收集透镜组         140
波长转换装置       150、250、350、550
驱动单元           151
基板               152、252、352、552
第一区域           252a
第二区域           252b
转换层             P
第一区段           R1
第二区段           G1
第一散射层         B
第二散射层         R2
第三散射层         G2
凹槽               253、353
侧壁                x
第一引导元件        161、261、561
第二引导元件        163
第三引导元件        262
偏振态转换元件      563
第二二向色元件      180、280、480
匀光装置            190
中间像              A
出光光路            L
第一光路            L1
第二光路            L2
如下具体实施方式将结合上述附图进一步说明本发明。
具体实施方式
为了能够更清楚地理解本发明的上述目的、特征和优点,下面结合附图和具体实施例对本发明进行详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本发明,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。
本发明提供一种光源系统,利用二向色组件滤除受激光中未被波长转换装置转换的激发光,有利于提高光源系统出射光线颜色的精准度,从而保证了采用本发明提供的光源系统的投影设备的显示效果。二向色组件滤除了受激光中未被波长转换装置转换的激发光,从而提高了出射受激光的颜色纯度,波长转换装置可以省略设置用 于对其出射的受激光进行滤光的滤光单元,有利于减小光源系统的体积,特别适用于对产品体积要求较高的微投、便携式投影设备等投影产品中。包括本发明提供的光源系统的投影设备中还包括控制装置与光调制装置,其中,控制装置用于根据待显示图像的图像数据产生调制信号,光调制装置用于根据调制信号对光源系统出射的光线进行调制,以得到待显示图像的图像光。
请参阅图3,本发明第一实施方式提供的光源系统100包括:激发光源110、二向色组件以及波长转换装置150。二向色组件包括第一二向色元件130和第二二向色元件180。激发光源110用于发出激发光,激发光经过第一二向色元件130或其他引导元件引导后入射至波长转换装置150表面,波长转换装置150用于对至少部分激发光进行波长转换并得到预设波长范围内的受激光,并出射受激光与未被转换的激发光。第一二向色元件130设置于波长转换装置150出射的受激光的光路上,用于引导波长转换装置150出射的受激光沿出光光路L自光源系统100出射,以及用于引导波长转换装置150出射的至少部分未被转换的激发光在出光光路L以外的路径上传输,在第一二向色元件130的引导下,未被转换的激发光在光源系统100中传输被损耗掉,或者照射至结构件上被吸收损耗,使得至少部分未被转换的激发光无法从出光光路L出射,有利于提高光源系统出射光线颜色的精准度,从而保证了采用本发明提供的光源系统的投影设备的显示效果。
具体地,激发光源110可以为蓝色光源,发出蓝色激发光。可以理解的是,激发光源110不限于蓝色光源,激发光源110也可以是紫色光源等。本实施方式中,激发光源110中的发光体为蓝色激光器,用于发出服从高斯分布的蓝色激光作为激发光,可以理解,发光体可以包括一个、两个或多个蓝色激光器阵列,具体其激光器的数量可以依据实际需要选择。在一种实施方式中,激发光源110的发光体为蓝色发光二极管。
请结合图3参阅图4,波长转换装置150包括驱动单元151与基板152,驱动单元151设置于基板152的底面的几何中心,用于 带动基板152做周期性运动。
波长转换装置150的表面设置有转换层P与第一散射层B。其中转换层P设置有波长转换材料,比如荧光粉、磷光材料或量子点等,用于对至少部分激发光进行波长转换以得到受激光,并出射受激光与未被转换的激发光,转换层P出射的受激光服从朗伯分布,未被转换的激发光经过波长转换材料的散射后同样服从朗伯分。
在驱动单元151的带动下,转换层P与第一散射层B交替位于激发光的光路上,波长转换装置150交替出射受激光与散射后的激发光,未被转换的激发光与受激光同时从波长转换装置150表面出射。
具体地,基板152呈圆形,转换层P与第一散射层B组成的区域呈圆环状。转换层P与第一散射层B可以相邻设置或间隔设置,并分别呈扇环形。转换层P包括分别呈扇环形的第一区段R1与第二区段G1,其中第一区段R1与第二区段G1中分别设置有第一色波长转换材料与第二色波长转换材料,从而在激发光的激发下分别产生第一色荧光与第二色荧光作为受激光。在本实施方式中,第一色为红色,第二色为绿色。在一种实施方式中,转换层P还设置有其他颜色区段,比如用于产生黄/橙色荧光的区段,或者用产生黄/橙色荧光的区段代替第一区段R1及/或第二区段G1。
激发光经过第一二向色元件130或其他引导元件的引导后入射至波长转换装置150表面的入射角为锐角,换句话说,激发光倾斜入射至波长转换装置150表面。具体地,波长转换装置150与第一二向色元件130之间设置有收集透镜组140,用于对入射至波长转换装置150表面的光线进行会聚,并对波长转换装置150出射的光线进行准直。第一二向色元件130出射的激发光从偏离收聚透镜组140光轴的位置入射至收聚透镜组140,经过会聚透镜组的聚焦后,以锐角入射至波长转换装置150表面。
第一散射层B设置有散射材料,以对激发光进行散射并减弱其散斑现象。本发明中,第一散射层B在满足消除散斑现象的条件下,对激发光进行小角度散射,使得第一散射层B的入射激发光与出射 激发光的光路分离,比如图3所示的第一散射层B的入射激发光与出射激发光的光路呈V字形,使得激发光源110出射的激发光与第一散射层B出射的激发光入射至第一二向色元件130表面的不同区域中,从而第一二向色元件130出射的两束激发光光路不重叠,从而简化光路设计,有利于减少光源系统100中的光学器件。
第一二向色元件130设置于激发光源110与波长转换装置150之间,用于透射受激光并反射激发光。在本实施方式中,激发光源110出射的激发光为服从高斯分布的蓝色激光,受激光为服从朗伯分布的红色荧光与绿色荧光,散射后的激发光以较大发散角入射至收集透镜组140,经过收集透镜组140的准直后以较大光束直径入射至第一二向色元件130。第一二向色元件130可以是反蓝透黄的二向色片,对蓝光的反射率可达到99%以上。第一二向色元件130出射的散射后的激发光与受激光分别沿第一光路L1与第二光路L2传输,至少部分未被转换的激发光在出光光路L、第一光路L1以及第二光路L2以外的路径上传输。
在转换层P位于激发光的光路上时,转换层P出射受激光与未被转换的激发光,其中未被转换的激发光量小,未被转换的激发光在光路结构中被引导至出光光路L的过程中产生较大损耗,或照射至结构件上被吸收损耗,因此大部分未被转换的激发光不会与受激光一起从光源系统100出射,因此有利于消除未被转换的激发光对受激光色坐标的影响,有利于提高光源系统100出射光线颜色的精准度,从而提升了投影设备的显示效果。
如图3所示,光源系统100还包括设置于出光光路L上的第二二向色元件180,用于引导受激光沿出光光路L传输并从光源系统100出射,以及用于引导沿第一光路L1传输的散射后的激发光沿出光光路L传输并从光源系统100出射,还用于引导未被转换的激发光在出光光路L以外的光路上传输,从而在光路上消耗掉未被转换的激发光,使得大部分未被转换的激发光无法沿出光光路L从光源系统100出射。
具体地,第二二向色元件180用于对第一光路L1上的散射后 的激发光与第二光路L2上的受激光进行光学扩展量合光,使得第二二向色元件180出射的激发光与受激光沿出光光路L从光源系统100出射。第二二向色元件180用于反射激发光并透射受激光,优先为反蓝透黄的二向色片,对蓝光的反射率可达到99%以上。第一二向色元件130出射的受激光形成的中间像A位于第二二向色元件180处,使得第二二向色元件180上形成的受激光的光斑面积等于中间像A的面积。
在转换层P位于激发光的光路上时,未被第一二向色元件130反射的未被转换的激发光沿第二光路L2传输并入射至第二二向色元件180表面,被第二二向色元件180反射后产生较大损耗,或照射至结构件上被吸收,不会从光源系统100出射,有利于提高光源系统100出射光线颜色的精准度,从而提升了投影设备的显示效果。在第一散射层B位于激发光的光路上时,部分未被第一二向色元件130反射的散射后的蓝色激发光穿过第一二向色元件130入射至第二二向色元件180表面,第二光路L2上的散射后的激发光被第二二向色元件180反射产生较大损耗,或照射至结构件上被吸收,因此第二光路L2上的散射后的激发光不会从光源系统100出射,从而有利于提高出射激发光作为基色光的均匀性。即第二光路L2上的光线依次经过第一二向色元件130与第二二向色元件180的分光处理后,第二光路L2上的激发光几乎被分光片完全反射掉,不会从光源系统100出射,有利于提高光源系统100出射光线颜色的精准度与均匀度,从而提升了投影设备的显示效果。
可以理解的是,第一光路L1上还设置有第一引导元件161,用于引导第一二向色元件130出射的激发光入射至第二二向色元件180,本实施方式中,第一引导元件161为反射镜。第二光路L2上设置有第二引导元件163,第二引导元件163用于以引导第一二向色元件130出射的光线入射至第二二向色元件180,本实施方式中,第二引导元件163为反射镜,或用于反射受激光并透射激发光的二向色片。
光源系统100还包括位于出光光路L上的的匀光装置190,第 二二向色元件180出射的光线经过匀光装置190的匀光后出射,匀光装置190可以为光学积分棒或者双复眼透镜等器件。本实施方式中,为减小光源系统100的体积优选使用双复眼透镜作为匀光装置190进行匀光。
请参阅图5,本发明第二实施方式提供的光源系统200与光源系统100的主要区别在于:光源系统200还包括用于发出激光作为补充光的补充光源220,波长转换装置250还包括用于对补充光进行散射与反射的第二散射层R2,第二散射层R2用于对入射的补充光进行散射以消除或缓解激光产生的散斑效应。补充光依次经过第二散射层R2与第一引导元件261的引导,在第二二向色元件280处与受激光合光并沿相同光路从光源系统200出射。
目前红荧光粉产生的红荧光颜色不纯,且无滤光单元对红荧光进行修色,红色显示效果不够好。本实施方式中,补充光源220不经过波长转换装置250的波长转换从光源系统200出射,用于提高光源系统200出射基色光覆盖的色域范围以及显示效果,优选地,补充光源220中的发光体为激光器,用于发出第一色(红色)激光作为补充光。第一色激光与第一色荧光为同色异谱光,具体地,第一色激光光谱带宽较窄,颜色纯正饱和度较高,覆盖色域范围较大;第一色荧光光谱带宽较宽,颜色不纯饱和度较低,覆盖色域范围较小,第一色荧光与第一色激光合光后从光源系统200出射,有利于扩展光源系统200的色域范围,本实施例中在红色荧光中增加红激光,通过红激光与红荧光合光改善红光显示效果。
请结合图5参阅图6A-图6B,波长转换装置250中的转换层P与第一散射层B均设置于基板252上,转换层P包括用于在激发光的激发下产生第一色荧光作为受激光的第一区段R1。第二散射层R2与第一区段R1沿基板的几何中心对称设置,即在圆形的基板252上,第二散射层R2与第一区段R1所占据的圆心角为对顶角,从而可以实现受激光与补充光同时从波长转换装置250出射,可以理解的是,可以根据补充光的入射位置灵活设置第二散射层R2在基板252上的位置。
基板252表面包括相邻设置的第一区域252a与第二区域252b,如图所示,第一区域252a呈环形设置于基板252的边缘,第二区域252b设置于第一区域252a内部,在一种实施方式中,第一区域252a与第二区域252b可以交换位置。第一区域252a与第二区域252b可以相邻设置或间隔设置。转换层P与第一散射层B均设置于第一区域252a中,基板252在第二区域252b设置有一凹槽253,第二散射层R2设置于凹槽253的侧壁x表面。本实施方式中,凹槽253为V形槽,侧壁x与第一区域252a所在平面呈锐角,有利于产品的小型化设计以及产品的组装。
可以理解的是,光源系统200还包括用于引导补充光入射至第二散射层R2的必要元件,比如图5中的第三引导元件262,优选地,第三引导元件262为反射镜。
进一步地,第一引导元件261用于反射第一二向色元件230出射的激发光,并透射第二散射层R2出射的补充光,比如可以是反蓝透红二向色片。
请结合图5参阅图7,光源系统200中的第二二向色元件280包括中间区域280a与边缘区域280b,中间区域280a用于反射激发光与补充光,边缘区域280b用于反射激发光并透射受激光。本实施方式中,中间区域280a可以设置反射红光与蓝光,透射其他颜色光线的光学膜片,比如透射激发光与补充光所在波段的红色光与蓝色光,透射其他波段的光线,从而部分受激光可以从中间区域208a透射从而被利用,以提高光效;在一种实施方式中,中间区域280a可以为反射膜。边缘区域280b可以设置反蓝透黄膜片。可以理解的是,中间区域280a不限于设置在第二二向色元件280的几何中心,还可以设置在第二二向色元件280的偏心位置或周边区域,边缘区域280b也可以设置在第二二向色元件280的几何中心或偏心位置。
请参阅图8-图9,本发明第三实施方式提供的光源系统300与光源系统200相比,主要区别在于,补充光源320还包括用于发出第二色激光作为补充光光的绿色激光器,补充光源320用于时序出射第一色激光与第二色激光,可以理解的是,在补充光源320中, 可以采用反红透绿二向色片或者反绿透红二向色片对红色激光与绿色激光进行合光;基板352上的凹槽353侧壁x上还设置有用于对第二色激光进行散射的第三散射层G2,第二色激光与第二色荧光为同色异谱光,第二区段G1与第三散射层G2沿基板352的几何中心对称设置,即在圆形的基板352上,第二区段G1与第三散射层G2占据的圆心角为对顶角。第二色激光与第一色激光沿相同光路入射至波长转换装置350表面,从而实现光源系统300对绿色基色光色域的扩展,有利于提升投影设备的显示品质。
请参阅图10,本发明第四实施方式提供的光源系统400与光源系统300的主要区别在于,第一二向色元件430出射的受激光形成的中间像A位于第二二向色元件480以及匀光器件490之间,使得第二二向色元件480上形成的受激光的光斑面积大于中间像A的面积,在第二二向色元件480上的中间区域(图未示)与第二二向色元件480表面面积确定的情况下,入射至第二二向色元件480上的中间区域(图未示)的受激光量相对减少,有利于减少受激光在中间区域的光线损失,有利于提高系统光效与亮度。
请参阅图11,本发明第五实施方式提供的光源系统500与光源系统200相比,主要区别在于,激发光与补充光均为第一偏振态的光,第一引导元件561用于反射第一偏振态的光并透射第二偏振态的光,第一引导元件561与波长转换装置550之间还设置有偏振态转换元件563;补充光依次经过第一引导元件561、偏振态转换元件563入射至第二散射层R2,经过第二散射层R2的反射与散射后再次穿过偏振态转换元件563得到第二偏振态的补充光,第二偏振态的补充光穿过第一引导元件561入射至第二二向色元件580。
在本实施方式中,第一偏振态为S偏振态,第二偏振态为P偏振态。在其他实施方式中,第一偏振态可为P偏振态,第二偏振态可为S偏振态。
偏振态转换元件563用于改变补充光的偏振态,可以为1/4波片。补充光为P偏振光,补充光垂直入射至1/4波片时,1/4波片将补充光由P偏振光转换为圆偏振光,圆偏振补充光经过第二散射层 R2的反射与散射,第二次垂直入射至1/4波片后将转换为P偏振态。
第一引导元件561在本实施方式中可以选择偏振第二二向色元件,比如PBS(polarization beam splitter,偏振分光棱镜),用于反射S偏振光,并透射P偏振光。在一种实施方式中,第一散射层B与第二散射层R2在能够达到消除激光散斑的条件下,均不改变入射激光的偏振态。在一种实施方式中,第一散射层B可以改变入射激发光的偏振态,经过第一散射层B散射后的蓝色激发光一部分转换为P偏振态,另一部分保持S偏振态,S偏振态的激发光经过第一引导元件561引导至第二二向色元件580并从光源系统500出射,P偏振态的激发光从第一引导元件561透射从而不被利用,由于蓝光对显示图像亮度提升程度有限,故减少蓝色激发光的出光量对投影图像质量影响不大。
请参阅图12A-图12B,光源系统500中的波长转换装置550与波长转换装置250相比,主要区别在于,波长转换装置550省略设置凹槽,第二散射层R2设置于基板552表面,即第二散射层R2与第一散射层B位于同一平面上,从而保证补充光垂直入射至偏振态转换元件563,光路设计简单。进一步地,第一散射层B与第二散射层R2并排设置,第一散射层B与第二散射层R2之间可以相邻设置也可以间隔设置。
需要说明的是,在本发明的精神或基本特征的范围内,各个实施方式中的具体方案可以相互适用,为节省篇幅及避免重复起见,在此就不再赘述。
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化涵括在本发明内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。此外,显然“包括”一词不排除其他单元或步骤,单数不排除复数。装置权利要求中陈述 的多个装置也可以由同一个装置或系统通过软件或者硬件来实现。第一,第二等词语用来表示名称,而并不表示任何特定的顺序。
最后应说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或等同替换,而不脱离本发明技术方案的精神和范围。

Claims (16)

  1. 一种光源系统,其特征在于,包括:
    激发光源,用于发出激发光;
    波长转换装置,设置有转换层,所述转换层用于对至少部分激发光进行波长转换以得到受激光,并出射所述受激光与未被转换的激发光;以及
    二向色组件,用于引导所述转换层出射的受激光沿第二光路传播,并最终沿出光光路从所述光源系统出射,以及用于引导所述转换层出射的至少部分未被转换的激发光在所述出光光路以外的路径上传输。
  2. 如权利要求1所述的光源系统,其特征在于,所述二向色组件包括第一二向色元件和第二二向色元件,所述波长转换装置还包括:
    第一散射层,与所述转换层交替位于所述激发光的光路上,所述第一散射层用于对所述激发光进行反射与散射并得到散射后的激发光,散射后的激发光经过所述第一二向色元件的引导沿不同于所述第二光路的第一光路传播,并经过所述第二二向色元件的引导沿所述出光路径从所述光源系统出射。
  3. 如权利要求2所述的光源系统,其特征在于,所述激发光经过所述第一二向色元件的引导后以锐角入射至所述波长转换装置表面,所述第一散射层的入射激发光与出射激发光的光路分离。
  4. 如权利要求3所述的光源系统,其特征在于,所述第二二向色元件用于引导所述第一二向色元件出射的受激光沿所述出光路径传输,以及用于引导所述第一二向色元件出射的未被转换的激发光在所述出光路径外的路径上传输。
  5. 如权利要求4所述的光源系统,其特征在于,所述第二二向色元件还用于引导所述散射后的激发光沿所述出光路径传输。
  6. 如权利要求5所述的光源系统,其特征在于,还包括第一引导元件,用于引导所述第一二向色元件出射的散射后的激发光入射 至所述第二二向色元件。
  7. 如权利要求6所述的光源系统,其特征在于,所述光源系统还包括用于发出激光作为补充光的补充光源,所述波长转换装置还包括用于对所述补充光进行散射与反射的第二散射层,所述补充光依次经过所述第二散射层与所述第一引导元件的引导,在所述第二二向色元件处与所述受激光合光并沿所述出光光路从所述光源系统出射。
  8. 如权利要求7所述的光源系统,其特征在于,所述第二二向色元件包括中间区域与边缘区域,所述中间区域用于反射所述激发光与所述补充光,所述边缘区域用于反射所述激发光并透射所述受激光,所述第一引导元件用于反射所述激发光并透射所述补充光。
  9. 如权利要求8所述的光源系统,其特征在于,所述补充光包括第一色激光,所述波长转换装置包括基板,所述转换层与所述第一散射层均设置于所述基板上,所述转换层包括用于在所述激发光的激发下产生第一色荧光作为所述受激光的第一区段,所述第一色激光与所述第一色荧光为同色异谱光,所述第二散射层与所述第一区段沿所述基板的几何中心对称设置。
  10. 如权利要求9所述的光源系统,其特征在于,所述基板表面包括第一区域与第二区域,所述转换层与所述第一散射层均设置于所述第一区域中,所述基板在所述第二区域设置有一凹槽,所述第二散射层设置于所述凹槽的侧壁表面。
  11. 如权利要求9所述的光源系统,其特征在于,所述补充光还包括第二色激光,所述补充光源用于时序出射所述第一色激光与所述第二色激光;
    所述转换层还包括用于在所述激发光的激发下产生第二色荧光作为所述受激光的第二区段,所述第二色激光与所述第二色荧光为同色异谱光,所述凹槽的侧壁表面还设置有用于对所述第二色激光进行散射的第三散射层,所述第二区段与所述第三散射层沿所述基板的几何中心对称设置。
  12. 如权利要求1-11任意一项所述的光源系统,其特征在于, 所述第一二向色元件出射的受激光形成的中间像位于所述第二二向色元件处。
  13. 如权利要求1-11任意一项所述的光源系统,其特征在于,还包括用于对所述第二二向色元件出射的光线进行均匀化处理的匀光器件,所述第一二向色元件出射的受激光形成的中间像位于所述第二二向色元件以及所述匀光器件之间。
  14. 如权利要求7所述的光源系统,其特征在于,所述激发光与所述补充光均为第一偏振态的光,所述第一引导元件用于反射第一偏振态的光并透射第二偏振态的光,所述第一引导元件与所述波长转换装置之间还设置有偏振态转换元件;
    所述补充光依次经过所述第一引导元件、所述偏振态转换元件入射至所述第二散射层,经过所述第二散射层的反射与散射后再次穿过所述偏振态转换元件得到第二偏振态的补充光,第二偏振态的补充光穿过所述第一引导元件入射至所述第二二向色元件。
  15. 如权利要求14所述的光源系统,其特征在于,所述第一散射层与所述第二散射层设置于同一平面上。
  16. 一种投影设备,其特征在于,包括如权利要求1-15任意一项所述的光源系统。
PCT/CN2019/127272 2019-01-03 2019-12-23 光源系统及投影设备 WO2020140780A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/420,509 US11822221B2 (en) 2019-01-03 2019-12-23 Light source system and projection apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910005627.9 2019-01-03
CN201910005627.9A CN111399324B (zh) 2019-01-03 2019-01-03 光源系统及投影设备

Publications (1)

Publication Number Publication Date
WO2020140780A1 true WO2020140780A1 (zh) 2020-07-09

Family

ID=71407162

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/127272 WO2020140780A1 (zh) 2019-01-03 2019-12-23 光源系统及投影设备

Country Status (3)

Country Link
US (1) US11822221B2 (zh)
CN (1) CN111399324B (zh)
WO (1) WO2020140780A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117590678A (zh) * 2024-01-19 2024-02-23 宜宾市极米光电有限公司 合光系统和投影设备

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113946090A (zh) * 2020-07-15 2022-01-18 深圳光峰科技股份有限公司 一种光源系统与投影系统
US11720010B2 (en) * 2020-12-07 2023-08-08 Ricoh Company, Ltd. Light source device and projection device
CN117130219A (zh) * 2023-08-23 2023-11-28 无锡激擎光电科技有限公司 光源系统和投影设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016173390A (ja) * 2015-03-16 2016-09-29 セイコーエプソン株式会社 照明装置およびプロジェクター
CN206863465U (zh) * 2017-05-26 2018-01-09 深圳市光峰光电技术有限公司 波长转换装置与光源系统
CN108572497A (zh) * 2017-03-14 2018-09-25 深圳市光峰光电技术有限公司 光源装置及投影系统
CN108931878A (zh) * 2017-05-26 2018-12-04 深圳市光峰光电技术有限公司 光源系统及显示设备
CN208188569U (zh) * 2018-05-17 2018-12-04 中强光电股份有限公司 照明系统以及投影装置

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9851071B2 (en) * 2010-12-08 2017-12-26 Appotronics China Corporation Light source employing a wavelength conversion device with a light introducing device and a light collecting device
CN202109406U (zh) * 2010-12-08 2012-01-11 绎立锐光科技开发(深圳)有限公司 光波长转换轮组件及带该光波长转换轮组件的光源
JP5842162B2 (ja) * 2011-03-23 2016-01-13 パナソニックIpマネジメント株式会社 光源装置及びそれを用いた画像表示装置
CN103376634B (zh) * 2012-04-24 2015-11-18 中强光电股份有限公司 光源模组与投影装置
WO2014102907A1 (ja) * 2012-12-25 2014-07-03 Necディスプレイソリューションズ株式会社 光源装置、プロジェクターおよび画像変調素子の照明方法
DE102014202090B4 (de) * 2014-02-05 2024-02-22 Coretronic Corporation Beleuchtungsvorrichtung mit einer Wellenlängenkonversionsanordnung
JP6427962B2 (ja) * 2014-06-03 2018-11-28 セイコーエプソン株式会社 光源装置、およびプロジェクター
TWI530749B (zh) * 2014-06-06 2016-04-21 台達電子工業股份有限公司 光源模組與色輪的製作方法
CN204856019U (zh) * 2015-07-20 2015-12-09 深圳市光峰光电技术有限公司 一种发光装置及投影机
CN106523955B (zh) * 2015-09-14 2019-10-11 中强光电股份有限公司 照明系统及投影装置
JP6575361B2 (ja) * 2016-01-07 2019-09-18 セイコーエプソン株式会社 波長変換素子、照明装置及びプロジェクター
CN106200235B (zh) * 2016-07-22 2019-01-25 明基智能科技(上海)有限公司 投影机及应用其的投影方法
CN107688272A (zh) * 2016-08-04 2018-02-13 深圳市光峰光电技术有限公司 发光装置及投影系统
CN107703705A (zh) * 2016-08-09 2018-02-16 深圳市光峰光电技术有限公司 光源系统及投影设备
CN206193432U (zh) * 2016-11-09 2017-05-24 深圳市绎立锐光科技开发有限公司 一种3d投影镜头及投影设备
CN108267914B (zh) * 2016-12-30 2022-01-11 中强光电股份有限公司 波长转换装置及其投影机
CN206610072U (zh) * 2017-03-14 2017-11-03 深圳市光峰光电技术有限公司 光源装置及投影系统
CN206671745U (zh) * 2017-03-14 2017-11-24 深圳市光峰光电技术有限公司 光源装置及投影系统
CN108572498B (zh) * 2017-03-14 2019-12-03 深圳光峰科技股份有限公司 光源装置及投影系统
CN206819040U (zh) * 2017-04-27 2017-12-29 深圳市光峰光电技术有限公司 光源系统及显示设备
CN108931879A (zh) * 2017-05-26 2018-12-04 深圳市光峰光电技术有限公司 光源系统、投影设备及图像显示控制方法
CN108931880B (zh) * 2017-05-26 2023-03-14 深圳光峰科技股份有限公司 光源系统及显示设备
CN109557752B (zh) * 2017-09-26 2021-03-02 深圳光峰科技股份有限公司 光源系统及投影装置
CN207457687U (zh) * 2017-09-26 2018-06-05 深圳市光峰光电技术有限公司 光源系统及投影设备
CN207851495U (zh) * 2018-02-14 2018-09-11 中强光电股份有限公司 波长转换轮与投影装置
CN110471244A (zh) * 2018-05-10 2019-11-19 中强光电股份有限公司 照明系统及投影装置
CN110501867B (zh) 2018-05-17 2022-04-12 中强光电股份有限公司 照明系统、投影装置以及照明控制方法
CN110874004B (zh) * 2018-09-03 2021-11-30 深圳光峰科技股份有限公司 光源装置及显示设备
CN208752383U (zh) * 2018-09-17 2019-04-16 中强光电股份有限公司 照明系统及投影装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016173390A (ja) * 2015-03-16 2016-09-29 セイコーエプソン株式会社 照明装置およびプロジェクター
CN108572497A (zh) * 2017-03-14 2018-09-25 深圳市光峰光电技术有限公司 光源装置及投影系统
CN206863465U (zh) * 2017-05-26 2018-01-09 深圳市光峰光电技术有限公司 波长转换装置与光源系统
CN108931878A (zh) * 2017-05-26 2018-12-04 深圳市光峰光电技术有限公司 光源系统及显示设备
CN208188569U (zh) * 2018-05-17 2018-12-04 中强光电股份有限公司 照明系统以及投影装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117590678A (zh) * 2024-01-19 2024-02-23 宜宾市极米光电有限公司 合光系统和投影设备

Also Published As

Publication number Publication date
CN111399324A (zh) 2020-07-10
CN111399324B (zh) 2022-11-25
US11822221B2 (en) 2023-11-21
US20220082915A1 (en) 2022-03-17

Similar Documents

Publication Publication Date Title
WO2020140780A1 (zh) 光源系统及投影设备
EP3382451B1 (en) Projection system and light emitting device thereof
CN109765745B (zh) 光源装置及投影系统
WO2014196079A1 (ja) 光源装置およびそれを備えた投写型表示装置
JP2012008549A (ja) 光源装置およびこれを用いた照明装置ならびに画像表示装置
US11099468B2 (en) Light source device and projection display apparatus
CN112147836B (zh) 一种光源系统及显示设备
JP6796751B2 (ja) 光源装置、及び投写型映像表示装置
US10185214B2 (en) Projector and image display method including a light separation optical system
WO2020216263A1 (zh) 光源系统和显示设备
EP3561593B1 (en) Projection display system
US9175826B2 (en) Illuminating unit and display
US10866498B2 (en) Wavelength conversion element, light source apparatus, and image projection apparatus
WO2020135300A1 (zh) 光源系统及投影装置
WO2018025351A1 (ja) プロジェクタ
WO2021008332A1 (zh) 光源系统与显示设备
CN111381426B (zh) 光源系统及投影设备
JP2023024245A (ja) 波長変換プレート、光源装置および画像投射装置
JP2016184064A (ja) デスペックル照明装置およびデスペックル照明方法、投写型表示装置
JP2007127795A (ja) 投写光学装置及び複数色光照明装置及び投写型映像表示装置
CN112213909B (zh) 光源系统与显示设备
WO2020211587A1 (zh) 波长转换装置、光源系统与显示设备
CN217767174U (zh) 一种光源装置和投影系统
JP7108901B2 (ja) 照明装置及び投写型表示装置
JP2023116230A (ja) 光源装置および投射装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19907244

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19907244

Country of ref document: EP

Kind code of ref document: A1