WO2020259615A1 - 一种光源系统及显示设备 - Google Patents

一种光源系统及显示设备 Download PDF

Info

Publication number
WO2020259615A1
WO2020259615A1 PCT/CN2020/098206 CN2020098206W WO2020259615A1 WO 2020259615 A1 WO2020259615 A1 WO 2020259615A1 CN 2020098206 W CN2020098206 W CN 2020098206W WO 2020259615 A1 WO2020259615 A1 WO 2020259615A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
source system
area
wavelength conversion
light source
Prior art date
Application number
PCT/CN2020/098206
Other languages
English (en)
French (fr)
Inventor
郭祖强
杨炳柯
李屹
Original Assignee
深圳光峰科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光峰科技股份有限公司 filed Critical 深圳光峰科技股份有限公司
Priority to US17/621,395 priority Critical patent/US11921410B2/en
Publication of WO2020259615A1 publication Critical patent/WO2020259615A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/007Optical devices or arrangements for the control of light using movable or deformable optical elements the movable or deformable optical element controlling the colour, i.e. a spectral characteristic, of the light
    • G02B26/008Optical devices or arrangements for the control of light using movable or deformable optical elements the movable or deformable optical element controlling the colour, i.e. a spectral characteristic, of the light in the form of devices for effecting sequential colour changes, e.g. colour wheels
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2013Plural light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2073Polarisers in the lamp house
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/208Homogenising, shaping of the illumination light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/141Beam splitting or combining systems operating by reflection only using dichroic mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0062Stacked lens arrays, i.e. refractive surfaces arranged in at least two planes, without structurally separate optical elements in-between
    • G02B3/0068Stacked lens arrays, i.e. refractive surfaces arranged in at least two planes, without structurally separate optical elements in-between arranged in a single integral body or plate, e.g. laminates or hybrid structures with other optical elements

Definitions

  • This application relates to the field of optical technology, and in particular to a light source system and a display device.
  • Multi-color laser display solutions can achieve good display effects, and they have developed rapidly in recent years.
  • multi-color laser display schemes can be mainly divided into two categories, one is an RGB three-color pure laser display optical-mechanical system, and the other is a three-color pure laser display system mixed with fluorescence.
  • the RGB three-color pure laser display system has bright colors and wide color gamut, but due to the very good coherence of the laser itself, the speckle of the picture is serious, and various complicated methods are needed to reduce the speckle. At the same time, the cost of the laser is also very high. .
  • the hybrid optical system of multi-color laser and fluorescence uses the characteristics of high laser brightness and good color, which can not only achieve high overall brightness and wide color gamut, but also use low-cost fluorescence and laser mixing to improve pure laser display dispersion.
  • the serious problem of spots reduces the cost of the entire system and improves the display effect of the picture.
  • Most of the existing laser fluorescent light sources use blue lasers and blue lasers to form the three primary colors of RGB. Due to the large difference between the spectrum of laser and fluorescence, the laser can be easily combined with a dichroic plate. Fluorescence combined light; but for multi-color laser light sources, the laser spectrum and fluorescence spectrum will overlap, causing the combined light of the laser and fluorescence to lose a certain amount of fluorescence. The more laser light is added, the more fluorescence loss will be .
  • the main problem solved by this application is how to reduce the light loss of the received laser light when the primary color light and the received laser light are combined.
  • the technical solution adopted in this application is to provide a light source system that includes a first light emitting component, a second light emitting component, a wavelength conversion device, an optical component, and a light combining device.
  • the first light emitting component is used for At least one primary color light is generated;
  • the second light-emitting component is used to generate excitation light;
  • the wavelength conversion device is at least partially arranged on the optical path of the excitation light, and is used to receive the excitation light and generate the corresponding laser;
  • the optical component is arranged on the laser On the optical path, it is used to increase the optical extension of the received laser;
  • the light combining device is arranged on the common optical path of the primary color light and the received laser and located behind the optical component, and is used to combine the primary color light and the received laser.
  • a display device which includes a light source system, wherein the light source system is the aforementioned light source system.
  • the beneficial effect of the present application is: the light source system in the present application includes a first light-emitting component, a second light-emitting component, a wavelength conversion device, an optical component, and a light combining device.
  • the second light-emitting component can inject the excitation light into the wavelength conversion device, so that the wavelength conversion device generates the received laser light, and outputs the received laser light to the optical component.
  • the laser is processed, and the received laser with increased optical extension is output to the light combining device, which combines the primary color light and the received laser; because the received laser and the primary color light are in the optical path after the increased optical extension of the received laser Combined, the ratio of the optical extension of the received laser light and the primary color light is increased, which can effectively reduce the loss of the received laser light when combining the light and improve the optical efficiency of the light source system.
  • Fig. 1 is a schematic structural diagram of a first embodiment of a light source system provided by the present application
  • FIG. 2 is a schematic structural diagram of a second embodiment of the light source system provided by the present application.
  • FIG. 3 is a schematic diagram of the structure of the wavelength conversion device provided by the present application.
  • FIG. 4 is a schematic diagram of a fly-eye lens in the embodiment shown in FIG. 2;
  • FIG. 5 is a schematic diagram of the shading plate in the embodiment shown in FIG. 2;
  • Fig. 6 is a schematic structural diagram of a third embodiment of a light source system provided by the present application.
  • Fig. 7 is a schematic structural diagram of a fourth embodiment of a light source system provided by the present application.
  • Fig. 8 is a schematic structural diagram of a fifth embodiment of a light source system provided by the present application.
  • FIG. 9 is a schematic structural diagram of an embodiment of a display device provided by the present application.
  • FIG. 1 is a schematic structural diagram of a first embodiment of a light source system provided by the present application.
  • the light source system 100 includes: a first light-emitting component 11, a second light-emitting component 12, a wavelength conversion device 13, an optical component 14 and a combination Light device 15.
  • the first light-emitting component 11 may include at least one primary color light emitting device, such as a laser or a light-emitting diode, which is used to generate at least one primary color light.
  • the first light-emitting component 11 may incident the generated primary color light through the primary color light exit optical path.
  • Light combining device 15 correspondingly, taking a laser as an example, the primary color light may include lasers of multiple colors, specifically, it may include a red laser, a green laser, and/or a blue laser.
  • the second light-emitting component 12 is used to generate excitation light, which includes at least one excitation light source that generates the excitation light; the wavelength conversion device 13 is at least partially arranged on the light path of the excitation light, and the wavelength conversion device 13 is used to receive the excitation light and generate corresponding excitation light. Laser, and emits the generated received laser light to the optical component 14.
  • the second light-emitting component 12 may include a blue laser.
  • the blue laser emits a blue laser as the excitation light and enters the wavelength conversion area on the wavelength conversion device 13, and the wavelength conversion area contains a wavelength capable of wavelength conversion. Convert matter.
  • the wavelength conversion material receives blue laser light and emits received laser light having a wavelength different from the blue laser light to the optical component 14.
  • the wavelength conversion material may be quantum dots or fluorescent materials, etc.
  • the fluorescent material is taken as an example in this embodiment. Fluorescent materials of different colors can emit fluorescence of corresponding colors under the excitation of excitation light.
  • the fluorescent material in this embodiment may include yellow fluorescent material, red fluorescent material, or green fluorescent material.
  • the optical assembly 14 is arranged on the exit light path of the received laser, and the optical assembly 14 is used to process the incident received laser to increase the optical expansion of the received laser; the light combining device 15 is arranged on the common exit light of the primary color light and the received laser On the road and behind the optical component 14, the light combining device 15 is used for combining the received laser light emitted by the optical component 14 and the primary color light emitted by the first light emitting component 11, and emits the combined light.
  • the light source system 100 includes a first light-emitting component 11, a second light-emitting component 12, a wavelength conversion device 13, an optical component 14 and a light combining device 15.
  • the optical component 14 is used to process the received laser light generated by the wavelength conversion device 13 to increase the optical extension of the received laser. Because the laser beam of the primary color light and the received laser are increased in the optical extension of the received laser After the synthesis in the optical path, the ratio of the optical extension of the received laser light and the laser beam is increased, which can effectively reduce the received laser light loss when combining the light, and improve the optical efficiency of the light source system 100.
  • FIG. 2 is a schematic structural diagram of a second embodiment of a light source system provided by the present application.
  • the light source system 200 includes: a first light-emitting component 201, a second light-emitting component 202, a wavelength conversion device 203, an optical component 204, and a combination Light device 205.
  • the first light-emitting component 201 includes at least a red laser light source 2011 for generating red laser light, a green laser light source 2012 for generating green laser light, and a blue laser light source 2013 for generating blue laser light.
  • the light source system 200 also includes three dichroic plates 209, 210, and 211. Specifically, the dichroic plates 209, 210, and 211 respectively reflect light in a certain wavelength range and transmit light in another wavelength range.
  • the dichroic plate 209 reflects red laser light and transmits light of other colors
  • the dichroic plate 210 Reflects the green laser light and transmits other colors of light
  • the dichroic sheet 211 reflects the blue laser light and transmits other colors of light
  • the scattering device is a scattering area 2032 configured on the wavelength conversion device 203.
  • a scattering sheet is configured on the wavelength conversion device 203 to form the scattering area 2032.
  • the dichroic film 209 in this embodiment needs to reflect the red laser light. Therefore, the dichroic film 209 can also be replaced by a reflective device such as a mirror.
  • the scattering device may be a scattering device that is separately provided from the wavelength conversion device 203, such as a scattering wheel.
  • the second light-emitting assembly 202 includes at least one excitation light source 2021, and the excitation light emitted by the excitation light source 2021 is used to excite the wavelength conversion material included in the wavelength conversion device 203 to generate a laser light.
  • the wavelength conversion material is a fluorescent material as an example, and the generated laser light is the fluorescence corresponding to the color of the fluorescent material.
  • the excitation light source 2021 can be a blue excitation light source.
  • the excitation light is a blue laser, but it is not used as the blue primary light.
  • the wavelength range of the excitation light can be 445nm ⁇ 465nm; in order to obtain a better blue primary light,
  • the emission wavelength of the excitation light source 2021 is 465 nm.
  • the excitation light source 2021 may also be a violet excitation light source or an ultraviolet excitation light source, etc., which is not specifically limited in this application.
  • the wavelength conversion device 203 may be a color wheel.
  • the technical solution of the present application will be described below by taking the wavelength conversion device 203 as a color wheel as an example, but it is not limited thereto. In other embodiments, the wavelength conversion device 203 may also be other devices.
  • the color wheel 203 is provided with a wavelength conversion area 2031 and a scattering area 2032.
  • the wavelength conversion area 2031 is at least partially arranged on the optical path of the excitation light, receives the excitation light and generates corresponding laser light, and the incident direction of the excitation light with respect to the wavelength conversion area 2031 As opposed to or the same as the emission direction of the received laser light with respect to the wavelength conversion region 2031, FIG. 2 only shows the opposite situation.
  • the wavelength conversion area 2031 and the scattering area 2032 are respectively arranged at different radii of the color wheel 203, and the wavelength conversion area 2031 and the scattering area 2032 are both circular structures centered on the axis of the color wheel 203; the scattering wavelength conversion area 2031 A fluorescent material and a scattering sheet are respectively arranged with the scattering area 2032.
  • the fluorescent material is a fluorescent material or quantum dots.
  • the scattering sheet can weaken the coherence of the laser beam and eliminate speckle.
  • a wavelength conversion area 2031 is provided at a radius R1.
  • the wavelength conversion area 2031 may include a yellow fluorescent area 2031a, a green fluorescent area 2031b, and a red fluorescent area 2031c arranged along the circumferential direction of the color wheel 203;
  • a scattering area 2032 is provided at the location, and a scattering sheet is provided on the scattering area 2032.
  • the width of the wavelength conversion area 2031 be b, and the difference between the radius R2 and the radius R1 can be greater than or equal to b, that is, the wavelength conversion area 2031 and the scattering area 2032 can be set continuously, or the wavelength conversion area 2031 and the scattering area A gap is provided between the areas 2032.
  • the scattering region 2032 may be disposed at a radius R1
  • the wavelength conversion region 2031 may be disposed at a radius R2.
  • the color wheel 203 rotates periodically along its axis.
  • the yellow fluorescent area 2031a, the green fluorescent area 2031b, and the red fluorescent area 2031c periodically pass through the light path of the excitation light, receive the excitation light, and sequentially emit fluorescence corresponding to the color of the fluorescent area.
  • the wavelength conversion area 2031 and the scattering area 2032 are arranged on the same side of the color wheel 203, and the primary color light and the excitation light emitted by the first light-emitting assembly 201 and the second light-emitting assembly 202 are respectively incident from the same side of the color wheel 203
  • the wavelength conversion area 2031 and the scattering area 2032 are respectively incident from the same side of the color wheel 203.
  • the optical component 204 includes a homogenizing device 2041 and a polarization conversion system (PCS, Polarizing Conversion System) 2042 that are successively arranged along the optical path of the laser, wherein the homogenizing device 2041 is used to generate and emit the wavelength conversion region 2031
  • the received laser light is divided into multiple received lasers, and the multiple received lasers are output to the polarization conversion system 2042.
  • PCS Polarizing Conversion System
  • the received laser light emitted by the wavelength conversion device 203 is the first received laser
  • the homogenizing device 2041 processes the first received laser
  • Output multiple second received lasers, multiple second received lasers are further incident to the polarization conversion system 2042
  • the polarization conversion system 2042 converts the incident multiple second received lasers into polarized light.
  • the multiple second received laser light incident to the polarization conversion system 2042 is divided into P-polarized light having the first polarization direction and S-polarized light having the second polarization direction.
  • the optical extension of the multiple second received laser light is passed through The polarization process is improved; therefore, the optical extension of the received laser light emitted by the polarization conversion system 2042 is greater than the optical extension of the received laser light entering the homogenizing device 2041.
  • the polarization conversion system 2042 is used to divide the received laser light emitted by the homogenizing device 2041 into P-polarized light and S-polarized light.
  • the incident received laser light is decomposed into two polarized lights, and the light beam located in the middle area diverges to both sides, the cross-sectional area of the light beam along the propagation direction is enlarged, and the propagation angle is unchanged, so the optical expansion amount is increased.
  • the optical extension of the laser will increase by at least one time.
  • the light homogenizing device 2041 may be a fly-eye lens.
  • the fly-eye lens 2041 includes a first fly-eye lens 2041a and a second fly-eye lens 2041b, and a first fly-eye lens 2041a and a second fly-eye lens 2041b. It has a corresponding micro lens array (not shown in the figure). After the laser light is incident on the first fly-eye lens 2041a, it is divided into multiple beams by the microlens array of the first fly-eye lens 2041a.
  • each beam emitted by the first fly-eye lens 2041a can be imaged on the corresponding microlens in the microlens array of the second fly-eye lens 2041b, and the second fly-eye lens 2041b emits equally spaced and almost equal brightness beams to the polarization conversion system 2042 .
  • the light homogenizing device 2041 can also be a light-shielding plate. As shown in FIG. 5, the light-shielding area and the light-transmitting area of the light-shielding plate are staggered. The light-shielding plate is used to divide the incident laser light into multiple light beams. The multiple light beams are incident on the polarization conversion system 2042, and the polarization conversion system 2042 divides the multiple light beams emitted from the light shield into P-polarized light and S-polarized light.
  • the light homogenizing device 2041 may include the above-mentioned fly-eye lens and a light-shielding plate at the same time.
  • the light-transmitting area of the light-shielding plate corresponds to the light-emitting area of the fly-eye lens.
  • the light-transmitting area of the light-shielding plate corresponds to the second compound eye.
  • the microlens array of the lens it is best that the multiple light beams emitted by the second fly-eye lens can pass through the light-transmitting area of the light shielding plate, which can be achieved through the positional relationship between the two.
  • This embodiment can further prevent unnecessary interference light from entering the polarization conversion system 2042 when performing light splitting.
  • the first compound eye lens and the second compound eye can be adjusted
  • the distance of the lenses and the arrangement of the microlenses in the microlens array enable the light beam output by the second fly-eye lens to be incident on the polarization conversion system 2042 from the light-transmitting area on the light shielding plate for polarization splitting.
  • the optical component 204 may also only include the polarization conversion system 2042.
  • the received laser light emitted by the wavelength conversion device 203 passes through the collection lens 221 and the dichroic plate 220 and then enters the polarization conversion system 2042, and the polarization conversion system 2042 converts the received laser light into polarized light.
  • the received laser light incident on the polarization conversion system 2042 is divided into P-polarized light with a first polarization direction and S-polarized light with a second polarization direction, and the optical extension of the received laser light is increased after polarization processing;
  • the optical extension of the received laser light emitted by the polarization conversion system 2042 is greater than the optical extension of the incident received laser light.
  • the light combining device 205 includes a central area and a surrounding area outside the central area (not shown in the figure).
  • the central area of the light combining device 205 is coated with a transmission film to form a transmission area.
  • the transmission film may be Anti-reflection (AR) transmissive film
  • the surrounding area of the light combining device 205 is coated with a reflective film to form a reflective area
  • the light combining device 205 may be a light combining device in which the central area is a transmission area and the surrounding area is a reflective area.
  • the primary color light emitted by the first light-emitting component 201 is transmitted along its exit light path in the central area of the light combining device 205 in a direction toward the relay lens 206; the color wheel 203 is based on the excitation of the second light-emitting component 202
  • the received laser light generated by the light is reflected in the direction of the relay lens 206 in the surrounding area of the light combining device 205 along its exit optical path.
  • the primary color light and the received laser light are mixed at the light combining device 205 to form a synthesized light.
  • the light source system 200 also includes a relay lens 206, a polarization beam splitting prism 207, a light modulator 208, a mirror 212, a condenser lens 213, a condenser lens 214, a square rod 215, a mirror 216, and a relay lens 217 , A reflective strip 218, a light homogenizing device 219, a dichroic sheet 220, and at least one collecting lens 221.
  • the reflecting mirror 212, the condensing lens 213, the condensing lens 214, the square rod 215, the reflecting mirror 216 and the relay lens 217 are arranged on the exit light path of the primary color light; the reflecting strip 218, the light homogenizing device 219, the dichroic sheet 220 and At least one collection lens 221 is arranged on the exit light path of the excitation light and the received laser light.
  • the reflecting mirror 212 is used to reflect the mixed primary color light emitted by the dichroic plate 211 to the condensing lens 213; the condensing lens 213 is used to converge the incident primary color light to The scattering region 2032 on the wavelength conversion device 203.
  • the scattering region 2032 on the wavelength conversion device 203 is at least partially arranged on the light path of at least one primary color light, and the at least one primary color light incident on the scattering region 2032 is scattered and reflected by the scattering sheet of the scattering region 2032, and then passes through the condenser lens again 213 adjusts its transmission direction.
  • the square rod 215 is a homogenizing optical device, so that at least one primary color light is homogenized in the square rod 215. At least one primary color light after light processing passes through the reflecting mirror 216 and the relay lens 217 and then enters the light combining device 205.
  • the reflective strip 218 is used to reflect the incident excitation light; the homogenizing device 219 is used to homogenize the incident excitation light and perform the treatment of the processed excitation light.
  • the light is input to the dichroic sheet 220.
  • the homogenization device 219 can be a diffuser or a fly-eye lens, etc.; the dichroic plate 220 has the optical characteristics of reflecting blue and translucent yellow, and the excitation light output by the homogenization device 219 is reflected by the dichroic plate 220 to the collecting lens 221 for collection
  • the lens 221 condenses the incident excitation light to the wavelength conversion area 2031 of the wavelength conversion device 203.
  • the wavelength conversion area 2031 is generated based on the excitation of the excitation light and emits the received laser light to the collecting lens 221, and the emitted received laser light is transmitted through the collecting lens 221
  • the dichroic plate 220 is incident on the homogenization device 2041.
  • the homogenization device 2041 homogenizes the received laser light, and outputs the homogenized received laser light to the polarization conversion device 2042.
  • the polarization conversion device 2042 converts the polarization state of the incident received laser light.
  • the conversion device 2042 outputs the received laser light to the light combining device 205.
  • the primary color light emitted by the first optical component 201 and the received laser light generated by the color wheel 203 based on the excitation light of the second optical component 202 can be respectively guided to the light combining device 205 for light combining.
  • the primary color light is converged by the reflector 216 and the relay lens 217 and then enters the transmission area at the center of the light combining device 205 and transmits through the light combining device 205 to the relay lens 206; further, the amount of optical expansion increases
  • the processed received laser light is incident on the light combining device 205, and is reflected in the reflective area around the light combining device 205 and transmitted in the direction of the relay lens 206; and the combination of the primary color light and the received laser light by the light combining device 205 is realized. Light processing.
  • the number of collecting lenses 221 can be adjusted as needed. Further, the number of excitation light sources 2021 can be set according to specific needs, and the number of excitation light sources 2021 can be used to determine whether to provide reflective strips 218 between the excitation light source 2021 and the light homogenizing device 219 and the number of reflective strips 218 to be provided. For example, when the number of excitation light sources 2021 is less than three, the excitation light source 2021 can directly inject the excitation light into the homogenization device 219; when the number of excitation light sources 2021 is three, as shown in FIG. 2, two can be set The reflective strip 218 guides the excitation light emitted by the excitation light source 2021 to the homogenizing device 219 through the reflective strip 218.
  • the laser has the characteristic of extremely small divergence angle, and the transmission area of the light combining device 205 can be set to a minimum. Because of the small size, the received laser light loses less light in the central transmission area of the light combining device 205 and can be ignored.
  • the relay lens 206 is used to converge the synthesized light output by the light combining device 205 and enter the light modulator 208 through a polarization beam splitter (PBS, Polarization Beam Splitter) 207.
  • the number of the relay lens 206 can be set according to specific needs;
  • the light modulator 208 is used to modulate the incident synthetic light to form projection light, and the projection light passes through the projection lens to finally project an image on the projection screen.
  • the light modulator 208 may be a liquid crystal on silicon (LCOS) chip, a liquid crystal display (LCD, Liquid Crystal Display) chip, or other light modulators based on deflection, such as a digital micromirror device (DMD). , Digital Micro mirror Device) chip, this application does not make specific restrictions on this.
  • LCOS liquid crystal on silicon
  • LCD liquid crystal display
  • DMD digital micromirror device
  • FIG. 6 is a schematic structural diagram of a third embodiment of the light source system provided by the present application, and this embodiment is based on a modification of the light source system shown in FIG. 2.
  • the difference between this embodiment and the second embodiment of the light source system is that the central area of the light combining device 305 in the light source system 300 is coated with a reflective film, and the surrounding area is coated with a transmissive film, that is, the primary color light emitted by the first light-emitting component 201 is combined.
  • the reflection area at the center of the device 305 is reflected to the relay lens 206, and the laser light generated by the wavelength conversion device 203 based on the excitation light emitted by the second light emitting component 202 passes through the transmission area around the light combining device 305 and enters the relay lens 206.
  • the primary color light passes through the light combining device 305, it is reflected by the reflective film plated in the central area to the relay lens 206.
  • This type of light combining device 305 is easy to manufacture and can reduce production costs.
  • the laser light has the characteristic of extremely small divergence angle, and the reflection area of the light combining device 305 can be set to a minimum. Because of the small size, the received laser light loses less light in the reflection area at the center of the light combining device 305 and can be ignored.
  • FIG. 7 is a schematic structural diagram of a fourth embodiment of the light source system provided by the present application. This embodiment is based on a modification of the light source system shown in FIG. 2. The difference between this embodiment and the second embodiment of the light source system is that the primary color light and the excitation light are incident from different sides of the color wheel 203, and the first light-emitting assembly 201 The generated primary color light is transmitted in the scattering area 4032 of the color wheel 203, and the emission direction of the received laser light generated by the wavelength conversion area 2031 is consistent with the incident direction of the excitation light.
  • the scattering area 4032 on the color wheel 203 is at least partially arranged on the optical path of at least one primary color light, and the at least one primary color light incident on the scattering area 4032 is transmitted by the scattering area 4032 and then incident to the light combining device along the optical path of the primary color light. 205.
  • the color wheel 203 transmits the primary color light to the square rod 215 and the focusing lens 217, and the square rod 215 and the focusing lens 217 respectively homogenize and condense the primary color light.
  • the concentrated primary color light is transmitted through the light combining device 205.
  • the transmission area in the center is finally imaged at the spatial modulator 208.
  • the wavelength conversion device 203 is based on the excitation light generated by the laser after being reflected by the dichroic plate 420, after passing through the homogenizing device 2041 and the polarization conversion device 2042, it is reflected in the reflection area around the light combining device 205, and finally in the spatial modulator 208 imaging.
  • the purpose of combining the primary color light and the received laser light at the light combining device 205 is achieved.
  • the bottom plate of the scattering region 4032 can be hollowed out or the substrate of the scattering region 4032 can be set as a transparent substrate.
  • the scattering area 4032 and the wavelength conversion area 2031 can be arranged on the same side of the color wheel 203, as shown in FIG. 7. In other embodiments, the scattering area 4032 can also be arranged at the incidence of the primary color light with respect to the color wheel 203. surface.
  • the primary color light is transmitted in the scattering area 4032.
  • the lasers of different wavelengths are condensed to the scattering area 4032 through the condenser lens 222 and the reflector 216. After scattering, the coherence is weakened and transmitted into the scattering area 4032.
  • the rod 215 performs homogenization, and then passes through the relay lens 217 to combine with the received laser light; and the blue laser beam used to excite the fluorescent substance is transmitted through the dichroic plate 420, and the excited laser light is in the two directions
  • the color plate 420 is reflected to the homogenizing device 2041; the light source system of this structure is relatively more compact and saves space.
  • FIG. 8 is a schematic structural diagram of the fifth embodiment of the light source system provided by the present application. This embodiment is based on a modification of the fourth embodiment of the light source system shown in FIG. 7. The difference lies in: the wavelength in this embodiment
  • the conversion device 203 is provided with an inclined surface with a preset inclination angle, and the scattering area 5032 is arranged on the inclined surface.
  • the primary color light generated by the first optical component 201 is collected by the condensing lens 222 and then incident on the scattering area 5032 on the inclined surface.
  • the primary color light has an incident angle corresponding to the inclination angle of the inclined surface relative to the scattering area 5032, the primary color light can be reflected by the scattering area 5032 to the square rod 215.
  • the inclined surface is arranged at the edge of the color wheel 203, that is, the edge of the color wheel 203 is arranged as an inclined surface with a preset inclination angle.
  • the preset inclination angle may be 45°, and the primary color light is incident horizontally to the scattering area 5032 relative to the color wheel 203.
  • the incident angle of the primary color light relative to the scattering area 5032 is 45°, which can be based on the reflection of the scattering area 5032.
  • the transmission direction of the primary color light is deflected by 90° and enters the square rod 215.
  • the scattering area 5032 serves as a reflector while scattering the primary color light, which can reduce the number of optical elements in the light source system 500 and make the optical path more concise.
  • the laser light generated by the wavelength conversion device is natural light, and a polarization conversion system needs to be installed in the rear optical path to convert natural light into polarized light.
  • the optical expansion of the laser light will become Multiplying growth; because the combination of the laser light emitted by the first optical component and the stimulated laser light generated by the wavelength conversion device occurs after the polarization processing of the received laser light, the optical expansion of the received laser light doubles, and the laser light emitted by the first optical component
  • the ratio of the optical extension between the received laser light generated by the excitation of the wavelength conversion device will increase, so the loss of the received laser light during light combination can be reduced, and the optical efficiency of the light source system can be improved.
  • FIG. 9 is a schematic structural diagram of an embodiment of a display device provided by the present application.
  • the display device 90 includes a light source system 91, where the light source system 91 is the light source system in the foregoing embodiment.
  • the display device 90 is a projection display opto-mechanical device including three-color laser and fluorescence. It uses the characteristics of good laser color, high brightness and small optical expansion to make it combined with fluorescence to form a projection display system, which displays high brightness and color. Wide area and compact system structure.

Abstract

一种光源系统(100,200)及显示设备,光源系统(100,200)包括第一发光组件(11,201)、第二发光组件(12,202)、波长转换装置(13,203)、光学组件(14,204)以及合光装置(15,205),第一发光组件(11,201)用于产生至少一种基色光;第二发光组件(12,202)用于产生激发光;波长转换装置(13,203)至少部分设置于激发光的光路上,其用于接收激发光并产生相应的受激光;光学组件(14,204)设置于受激光的光路上,其用于增加受激光的光学扩展量;合光装置(15,205)设置于基色光和受激光的共同光路上且位于光学组件(14,204)之后,其用于对基色光和受激光进行合光处理。通过上述方式,能够增加受激光的光学扩展量,使得基色光和受激光的光学扩展量之比增加,从而减少合光时受激光的光损耗。

Description

一种光源系统及显示设备 技术领域
本申请涉及光学技术领域,具体涉及一种光源系统及显示设备。
背景技术
近年来,高亮度、广色域以及小体积成为投影显示设备的发展方向,多色激光显示方案能够达到很好的显示效果,近年来得到了快速发展。现有技术中,多色激光显示方案主要可分为两类,一类是RGB三色纯激光显示的光机系统,另一类是混合了荧光的三色纯激光显示系统。RGB三色纯激光显示系统的色彩鲜艳、色域宽广,但由于激光本身相干性非常好的缘故,其画面散斑严重,需要通过各种复杂的方法减弱散斑,同时激光的成本也十分高昂。多色激光和荧光的混合光机系统利用激光亮度高、颜色好的特点,既能够实现高的整机亮度和宽广的色域,同时利用成本较低的荧光与激光混合来改善纯激光显示散斑严重的问题,降低了整个系统的成本,改善了画面的显示效果。现有的激光荧光光源中,大多是利用蓝激光以及蓝激光激发的荧光来构成RGB三基色,这种方案由于激光与荧光的光谱差别较大,可以简单的通过二向色片来将激光与荧光合光;但对于多色激光的光源而言,激光光谱与荧光光谱会有重叠的部分,造成激光与荧光合光会损失一定的荧光,激光加得越多,荧光的损失也会越多。
发明内容
本申请主要解决的问题是如何减少基色光和受激光合光时的受激光的光损耗。
为解决上述技术问题,本申请采用的技术方案是提供一种光源系统,该光源系统包括第一发光组件、第二发光组件、波长转换装置、光 学组件以及合光装置,第一发光组件用于产生至少一种基色光;第二发光组件用于产生激发光;波长转换装置至少部分设置于激发光的光路上,其用于接收激发光并产生相应的受激光;光学组件设置于受激光的光路上,其用于增加受激光的光学扩展量;合光装置设置于基色光和受激光的共同光路上且位于光学组件之后,其用于对基色光和受激光进行合光处理。
为解决上述技术问题,本申请采用的另一技术方案是提供一种显示设备,该显示设备包括光源系统,其中,光源系统为上述的光源系统。
通过上述方案,本申请的有益效果是:本申请中的光源系统包括第一发光组件、第二发光组件、波长转换装置、光学组件以及合光装置,第一发光组件和第二发光组件分别用于产生至少一束基色光和激发光,第二发光组件能够将激发光射入至波长转换装置,以使得波长转换装置产生受激光,并将受激光输出至光学组件,光学组件对入射的受激光进行处理,并将光学扩展量增加的受激光输出至合光装置,合光装置对基色光和受激光进行合成;由于受激光和基色光是在受激光的光学扩展量增加之后的光路中合成的,提高了受激光和基色光的光学扩展量之比,可有效地减少合光时的受激光损失,提高了光源系统的光学效率。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。其中:
图1是本申请提供的光源系统的第一实施例的结构示意图;
图2是本申请提供的光源系统的第二实施例的结构示意图;
图3是本申请提供的波长转换装置的结构示意图;
图4是图2所示的实施例中复眼透镜的示意图;
图5是图2所示的实施例中遮光板的示意图;
图6是本申请提供的光源系统的第三实施例的结构示意图;
图7是本申请提供的光源系统的第四实施例的结构示意图;
图8是本申请提供的光源系统的第五实施例的结构示意图;
图9是本申请提供的显示设备的一实施例的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性的劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
参阅图1,图1是本申请提供的光源系统的第一实施例的结构示意图,该光源系统100包括:第一发光组件11、第二发光组件12、波长转换装置13、光学组件14以及合光装置15。
第一发光组件11可包括至少一种基色光发光器件,如激光器或发光二极管,其用于产生至少一种基色光,第一发光组件11可将产生的基色光通过基色光出射光路入射至合光装置15;相应的,以激光器为例,基色光可包括多种颜色的激光,具体地,其可以包括红色激光、绿色激光和/或蓝色激光。
第二发光组件12用于产生激发光,其包括至少一个产生激发光的激发光源;波长转换装置13至少部分设置于激发光的光路上,波长转换装置13用于接收激发光并产生相应的受激光,并向光学组件14出射产生的受激光。
在一具体的实施例中,第二发光组件12可包括蓝光激光器,蓝光激光器出射蓝色激光作为激发光入射波长转换装置13上的波长转换区域,波长转换区域上包含有能够进行波长转换的波长转换物质。波长转换物质接收蓝色激光并向光学组件14出射波长不同于蓝色激光的受激光。其中,波长转换物质可以是量子点或荧光材料等,本实施例以荧光材料为例。不同颜色的荧光材料在激发光的激发下可出射相应颜色的荧光。本实施例中的荧光材料可包括黄色荧光材料、红色荧光材料或绿色 荧光材料等。
光学组件14设置于受激光的出射光路上,光学组件14用于对入射的受激光进行处理,以增加受激光的光学扩展量;合光装置15设置于基色光和受激光的共同的出射光路上且位于光学组件14之后,合光装置15用于对光学组件14出射的受激光和第一发光组件11出射的基色光进行合光处理,并出射合成光。
区别于现有技术,本实施例提供了一种光源系统100,该光源系统100包括第一发光组件11、第二发光组件12、波长转换装置13、光学组件14以及合光装置15,在激光束与受激光合光之前,利用光学组件14对波长转换装置13产生的受激光进行处理,增加受激光的光学扩展量,由于基色光的激光光束和受激光是在受激光的光学扩展量增加之后的光路中合成的,提高了受激光和激光束的光学扩展量之比,可有效地减少合光时的受激光损失,提高了光源系统100的光学效率。
参阅图2,图2是本申请提供的光源系统的第二实施例的结构示意图,该光源系统200包括:第一发光组件201、第二发光组件202、波长转换装置203、光学组件204以及合光装置205。
第一发光组件201至少包括用于产生红色激光的红色激光光源2011、用于产生绿色激光的绿色激光光源2012以及用于产生蓝色激光的蓝色激光光源2013。此外,光源系统200还包括三个二向色片209、210和211。具体的,二向色片209、210和211分别反射某波长范围的光并透射另一波长范围的光,其中,二向色片209反射红色激光并透射其他颜色的光,二向色片210反射绿色激光并透射其他颜色的光,二向色片211反射蓝色激光并透射其他颜色的光,最终令第一发光组件201出射的红色激光、绿色激光和蓝色激光经过二向色片209、210和211进行合光处理,经过合光后的基色光入射至散射装置。本实施例中,散射装置为波长转换装置203上配置的散射区域2032,具体的,在波长转换装置203上配置散射片以形成散射区域2032。
可以理解的是,本实施例中的二向色片209需要对红色激光进行反射,由此,二向色片209也可由反射镜等反射器件替换。散射装置可以 是区别于波长转换装置203而独立设置的散射装置,如散射轮等。
第二发光组件202包括至少一个激发光源2021,激发光源2021发出的激发光用于激发波长转换装置203包含的波长转换材料,以产生受激光。本实施例以波长转换材料为荧光材料为例,产生的受激光即为与荧光材料的颜色相对应的荧光。进一步地,激发光源2021可为蓝光激发光源,相应的,激发光为蓝色激光,但其并非作为蓝基色光,激发光的波长范围可以为445nm~465nm;为得到较好的蓝基色光,优选地,激发光源2021的发光波长为465nm。在其他实施方式中,激发光源2021也可为紫光激发光源或紫外光激发光源等,本申请不做具体限制。
波长转换装置203可为色轮,下面以波长转换装置203为色轮为例对本申请的技术方案进行描述,但不限于此,在其他实施方式中波长转换装置203也可以是其他装置。
色轮203上设置有波长转换区域2031和散射区域2032,波长转换区域2031至少部分设置于激发光的光路上,接收激发光并产生相应的受激光,激发光相对于波长转换区域2031的入射方向与受激光相对于波长转换区域2031的出射方向相反或相同,图2仅示出相反的情况。波长转换区域2031和散射区域2032分别设置于色轮203的不同半径处,且波长转换区域2031和散射区域2032均为以色轮203的轴心为中心的圆环状结构;散射波长转换区域2031和散射区域2032分别设置有荧光物质和散射片,该荧光物质为荧光材料或量子点等,散射片可削弱激光光束的相干性,消除散斑。
例如,如图3所示,在半径R1处设置波长转换区域2031,波长转换区域2031可包括沿色轮203圆周方向设置的黄色荧光区域2031a、绿色荧光区域2031b和红色荧光区域2031c;在半径R2处设置散射区域2032,散射区域2032上设置有散射片。本实施例中,令波长转换区域2031的宽度为b,半径R2和半径R1之间的差值可大于等于b,即波长转换区域2031和散射区域2032可连续设置,或者波长转换区域2031和散射区域2032之间设置有间隙。此外,在其他实施方式中,散射区域2032可设置于半径R1处,波长转换区域2031设置于半径R2处。色 轮203沿其轴心周期性转动,黄色荧光区域2031a、绿色荧光区域2031b和红色荧光区域2031c周期性依次经过激发光的光路,接收激发光,并依次出射与荧光区域的颜色对应的荧光。
本实施例中,波长转换区域2031和散射区域2032配置于色轮203的同侧,第一发光组件201和第二发光组件202各自出射的基色光和激发光从色轮203的同侧分别入射波长转换区域2031和散射区域2032。
继续参阅图2,光学组件204包括沿受激光的光路先后设置的匀光器件2041和偏振转换系统(PCS,Polarizing Conversion System)2042,其中,匀光器件2041用于将波长转换区域2031产生并出射的受激光划分为多束受激光,并将多束受激光输出至偏振转换系统2042,如,波长转换装置203出射的受激光为第一受激光,匀光器件2041对第一受激光进行处理,输出多束第二受激光,多束第二受激光进一步地入射至偏振转换系统2042,由偏振转换系统2042将入射的多束第二受激光转换为偏振光。具体地,入射到偏振转换系统2042的多束第二受激光被分成具有第一偏振方向的P偏振光和具有第二偏振方向的S偏振光,多束第二受激光的光学扩展量在经过偏振处理之后得到提升;由此,偏振转换系统2042出射的受激光的光学扩展量大于进入匀光器件2041的受激光的光学扩展量。
本实施例中,偏振转换系统2042用于将匀光器件2041出射的受激光分成P偏振光和S偏振光。入射的受激光被分解成两路偏振光,且位于中间区域的光束向两侧发散,其光束沿传播方向的截面积扩大,而传播角度不变,因此其光学扩展量增加,本实施例中,受激光的光学扩展量至少会增长1倍。
本实施例中,匀光器件2041可以为复眼透镜,如图4所示,复眼透镜2041包括相对设置的第一复眼透镜2041a和第二复眼透镜2041b,第一复眼透镜2041a和第二复眼透镜2041b具有对应的微透镜阵列(图中未示出)。受激光入射到第一复眼透镜2041a后,被第一复眼透镜2041a的微透镜阵列分成多个光束,由于第一复眼透镜2041a和第二复眼透镜2041b上的微透镜阵列是对应的,由此,第一复眼透镜2041a出射的每 个光束可在第二复眼透镜2041b的微透镜阵列中对应的微透镜上成像,由第二复眼透镜2041b出射等间隔且亮度几乎相等的光束到偏振转换系统2042上。
在另一实施方式中,匀光器件2041还可为遮光板,如图5所示,遮光板上遮光区域和透光区域交错设置,遮光板用于将入射的受激光分成多个光束,令多个光束入射至偏振转换系统2042,由偏振转换系统2042将遮光板出射的多个光束分成P偏振光和S偏振光。
在又一实施方式中,匀光器件2041可同时包括上述的复眼透镜和遮光板,遮光板的透光区域对应于复眼透镜的出光区域,具体的,遮光板的透光区域对应于第二复眼透镜的微透镜阵列,由第二复眼透镜出射的多个光束能够正好透射过遮光板的透光区域为最佳,可通过两者的位置关系实现。该实施方式可进一步地避免进行分光时多余的干扰光进入到偏振转换系统2042。进一步地,为了避免经过复眼透镜匀光后的受激光入射到遮光板的遮光区域时造成的受激光的损失,同时也确保偏振转换系统2042的正常工作,可以调整第一复眼透镜和第二复眼透镜的距离以及微透镜阵列中微透镜的排布,使得第二复眼透镜输出的光束能够完全从遮光板上的透光区域入射到偏振转换系统2042上进行偏振分束。
在又一实施方式中,光学组件204也可仅包含偏振转换系统2042。本实施方式中,波长转换装置203出射的受激光经过收集透镜221和二向色片220后入射偏振转换系统2042,由偏振转换系统2042将受激光转换为偏振光。具体地,入射到偏振转换系统2042的受激光被分成具有第一偏振方向的P偏振光和具有第二偏振方向的S偏振光,受激光的光学扩展量在经过偏振处理之后得到提升;由此,偏振转换系统2042出射的受激光的光学扩展量大于入射的受激光的光学扩展量。
在一具体的实施例中,合光装置205包括中心区域以及位于中心区域外侧的周围区域(图中未示出),合光装置205的中心区域镀透射膜形成透射区域,该透射膜可为抗反射(AR,Anti Reflection)透射膜,合光装置205的周围区域镀反射膜形成反射区域,即合光装置205可为中心区域为透射区域,周围区域为反射区域的合光器件。
如图2所示,第一发光组件201出射的基色光沿其出射光路在合光装置205的中心区域沿朝向中继透镜206的方向透射;色轮203基于第二发光组件202出射的激发光而产生的受激光沿其出射光路在合光装置205的周围区域向中继透镜206的方向反射。由此,在合光装置205处实现了基色光与受激光的混合,形成合成光。
进一步地参阅图2,光源系统200还包括中继透镜206、偏振分光棱镜207、光调制器208、反射镜212、会聚透镜213、会聚透镜214、方棒215、反射镜216、中继透镜217、反光条218、匀光装置219、二向色片220以及至少一个收集透镜221。其中,反射镜212、会聚透镜213、会聚透镜214、方棒215、反射镜216和中继透镜217设置在基色光的出射光路上;反光条218、匀光装置219、二向色片220以及至少一个收集透镜221设置在激发光和受激光的出射光路上。
对于第一光学组件201出射的基色光的光路而言,反射镜212用于将二向色片211出射的混合的基色光反射至会聚透镜213;会聚透镜213用于将入射的基色光会聚至波长转换装置203上的散射区域2032处。波长转换装置203上的散射区域2032至少部分设置于至少一种基色光的光路上,入射于散射区域2032的至少一种基色光经散射区域2032的散射片的散射和反射后,再次经过会聚透镜213以调整其传输方向,经过汇聚透镜213后经过会聚透镜214后入射至方棒215,方棒215为一匀光光学器件,以使至少一种基色光在方棒215内匀光,经过匀光处理后的至少一种基色光经过反射镜216和中继透镜217后入射至合光装置205。
对于第二光学组件202出射的激发光的光路而言,反光条218用于对入射的激发光进行反射;匀光装置219用于对入射的激发光进行匀光处理,并将处理后的激发光输入至二向色片220。其中,匀光装置219可以是散射片或复眼透镜等;二向色片220具有反蓝透黄的光学特性,匀光装置219输出的激发光被二向色片220反射至收集透镜221,收集透镜221将入射的激发光进行汇聚至波长转换装置203的波长转换区域2031,波长转换区域2031基于激发光的激发产生并向收集透镜221出 射受激光,出射的受激光经收集透镜221后透射过二向色片220入射至匀光器件2041,匀光器件2041对受激光进行匀光,输出匀光后的受激光至偏振转换装置2042,偏振转换装置2042转换入射的受激光的偏振状态,偏振转换装置2042输出受激光至合光装置205。
由此,即可将第一光学组件201出射的基色光和色轮203基于第二光学组件202的激发光产生的受激光分别引导至合光装置205处进行合光。具体的,基色光经过反射镜216和中继透镜217的汇聚后入射至合光装置205的中心的透射区域穿过合光装置205向中继透镜206传输;进一步地,经过光学扩展量增大处理后的受激光入射至合光装置205,并在合光装置205的周围的反射区域被反射而朝中继透镜206的方向传输;进而实现通过合光装置205对基色光和受激光的合光处理。
本实施例中,收集透镜221的数量可根据需要进行调整。进一步地,可根据具体需要来设置激发光源2021的数量,并根据激发光源2021的数量来确定是否在激发光源2021与匀光装置219之间设置反光条218以及需要设置的反光条218的数量。例如,当激发光源2021的数量少于三个时,激发光源2021可直接将激发光射入匀光装置219;在激发光源2021的数量为三个时,如图2所示,可设置两个反光条218,通过反光条218将激发光源2021出射的激发光引导至匀光装置219。
可以理解的是,受激光在合光装置205的中心的透射区域会损失一部分光,但由于基色光均为激光,激光具有发散角极小的特性,合光装置205的透射区域可设置的极小,因此受激光在合光装置205的中心的透射区域损失的光较少,可忽略。
中继透镜206用于将合光装置205输出的合成光汇聚,并经偏振分光棱镜(PBS,Polarization Beam Splitter)207入射至光调制器208,中继透镜206的数量可根据具体需要进行设置;光调制器208用于对入射的合成光进行调制,形成投影光,投影光透过投影透镜最终在投影屏幕上进行图像投影。本实施例中,光调制器208可以为液晶附硅(LCOS,Liquid Crystal on Silicon)芯片、液晶显示(LCD,Liquid Crystal Display)芯片或其他基于偏转的光调制器,如数字微镜器件(DMD,Digital Micro  mirror Device)芯片,本申请对此不作具体限制。
在另一具体的实施例中,如图6所示,图6是本申请提供的光源系统的第三实施例的结构示意图,该实施例是基于图2所示的光源系统的变形。本实施例相对于光源系统第二实施例的区别在于:光源系统300中的合光装置305的中心区域镀反射膜,周围区域镀透射膜,即第一发光组件201出射的基色光被合光装置305的中心的反射区域反射至中继透镜206,波长转换装置203基于第二发光组件202出射的激发光产生的受激光透过合光装置305的周围的透射区域入射至中继透镜206。本实施例中基色光经过合光装置305时被中心区域镀有的反射膜反射至中继透镜206,该种类型的合光装置305便于制造,可降低生产成本。
可以理解的是,受激光在合光装置305的中心的反射区域会损失一部分光,但由于基色光均为激光,激光具有发散角极小的特性,合光装置305的反射区域可设置的极小,因此受激光在合光装置305的中心的反射区域损失的光较少,可忽略。
在其他具体的实施例中,参阅图7,图7是本申请提供的光源系统的第四实施例的结构示意图。该实施例是基于图2所示的光源系统的变形,本实施例相对于光源系统第二实施例的区别在于:基色光和激发光从色轮203的不同侧射入,第一发光组件201产生的基色光在色轮203的散射区域4032被透射,而波长转换区域2031产生的受激光的出射方向与激发光的入射方向一致。
色轮203上的散射区域4032至少部分设置于至少一种基色光的光路上,且入射于散射区域4032的至少一种基色光经散射区域4032的透射后沿基色光的光路入射至合光装置205。具体地,色轮203将基色光透射至方棒215和聚焦透镜217,方棒215和聚焦透镜217分别对基色光进行匀光和聚光,聚光后的基色光透射过合光装置205的中心的透射区域,最终在空间调制器208处成像。而波长转换装置203基于激发光产生的受激光经过二向色片420的反射后经过匀光器件2041和偏振转换装置2042后在合光装置205的周围的反射区域被反射,终在空间调制器208处成像。由此,达到基色光和受激光在合光装置205处合光的 目的。
本实施例中,为了使得基色光能够更好地透过散射区域4032,可以将散射区域4032的底板镂空或将散射区域4032的基板设置为透光基板。
本实施例中,散射区域4032和波长转换区域2031可设置在色轮203的同一侧面,如图7所示,在其他实施方式中,散射区域4032也可设置在基色光相对色轮203的入射面。
本实施例中,基色光在散射区域4032处采用了透射的方式,不同波长的激光在经过合光后经由会聚透镜222和反射镜216会聚到散射区域4032,经过散射削弱相干性后透射进入方棒215进行匀光,然后经过中继透镜217后与受激光进行合光;而且用于激发荧光物质的蓝色激光光束在二向色片420处是透射的,激发产生的受激光在二向色片420处被反射至匀光器件2041;这种结构的光源系统相对更加紧凑,节省空间。
请参阅图8,图8是本申请提供的光源系统的第五实施例的结构示意图,本实施例是基于图7所示的光源系统第四实施例的变形,区别在于:本实施例中波长转换装置203设置有具有预设倾斜角的倾斜面,散射区域5032设置于倾斜面上,第一光学组件201产生的基色光经过会聚透镜222的汇聚后入射至倾斜面上的散射区域5032,此时基色光相对于散射区域5032具有与倾斜面的倾斜角对应的入射角,由此基色光可被散射区域5032反射至方棒215。
本实施例中,倾斜面设置于色轮203的边缘处,即将色轮203的边缘设置成具有预设倾斜角的倾斜面。进一步地,预设倾斜角可以为45°,基色光相对于色轮203水平入射散射区域5032,此时基色光相对于散射区域5032的入射角即为45°,即可基于散射区域5032的反射将基色光的传输方向偏转90°而入射至方棒215。
本实施例通过将散射区域5032设置成倾斜面,令散射区域5032在散射基色光的同时充当反射镜,可减少光源系统500中的光学元件的数量,使光路变得更为简洁。
上述基于偏振的光源系统中,波长转换装置受激产生的受激光是自 然光,需要在后方光路中设置偏振转换系统来将自然光转换成偏振光,在该转换过程中受激光的光学扩展量会成倍增长;由于第一光学组件出射的激光与波长转换装置受激产生的受激光的合光发生在对受激光进行偏振处理之后,受激光的光学扩展量倍增,第一光学组件出射的激光与波长转换装置受激产生的受激光之间的光学扩展量之比会变大,因此能够减少合光时受激光的损失,提高了光源系统的光学效率。
参阅图9,图9是本申请提供的显示设备的一实施例的结构示意图,显示设备90包括光源系统91,其中,光源系统91为上述实施例中的光源系统。
显示设备90是一种包括三色激光和荧光的投影显示光机装置,利用激光颜色好、亮度高以及光学扩展量小的特点,使得其与荧光进行结合构成投影显示系统,显示亮度高、色域广且系统结构紧凑等。
以上仅为本申请的实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (10)

  1. 一种光源系统,其特征在于,包括:
    第一发光组件,用于产生至少一种基色光;
    第二发光组件,用于产生激发光;
    波长转换装置,至少部分设置于所述激发光的光路上,用于接收所述激发光并产生相应的受激光;
    光学组件,设置于所述受激光的光路上,用于增加所述受激光的光学扩展量;
    合光装置,设置于所述基色光和所述受激光的共同光路上且位于所述光学组件之后,用于对所述基色光和所述受激光进行合光处理。
  2. 根据权利要求1所述的光源系统,其特征在于,
    所述光学组件包括偏振转换系统,用于将所述受激光转换为偏振光。
  3. 根据权利要求2所述的光源系统,其特征在于,
    所述光学组件还包括匀光器件,所述匀光器件位于所述偏振转换系统和所述波长转换装置之间,用于将所述受激光划分为多束受激光,并将所述多束受激光输出至所述偏振转换系统。
  4. 根据权利要求3所述的光源系统,其特征在于,
    所述匀光器件为复眼透镜,所述复眼透镜包括相对设置的第一复眼透镜和第二复眼透镜,所述第一复眼透镜和所述第二复眼透镜均具有对应的微透镜阵列。
  5. 根据权利要求2所述的光源系统,其特征在于,
    所述光学组件还包括遮光区域和透光区域交错布置的遮光板,所述遮光板位于所述偏振转换系统和所述波长转换装置之间,用于将所述受激光划分为多束受激光。
  6. 根据权利要求1所述的光源系统,其特征在于,
    所述波长转换装置为色轮,所述色轮上设置有散射区域和波长转换区域,所述散射区域和所述波长转换区域分别设置于所述色轮上的不同 半径处。
  7. 根据权利要求6所述的光源系统,其特征在于,
    所述散射区域至少部分设置于所述至少一种基色光的光路上,入射于所述散射区域的所述至少一种基色光经所述散射区域的反射或透射进入所述合光装置。
  8. 根据权利要求6所述的光源系统,其特征在于,
    所述波长转换区域至少部分设置于所述激发光的光路上,接收所述激发光并产生相应的受激光,其中,所述激发光相对于所述波长转换区域的入射方向与所述受激光相对于所述波长转换区域的出射方向相反或相同。
  9. 根据权利要求6所述的光源系统,其特征在于,
    所述色轮设置有具有预设倾斜角的倾斜面,所述散射区域设置于所述倾斜面上。
  10. 一种显示设备,其特征在于,包括光源系统,其中,所述光源系统为权利要求1-9中任一项述的光源系统。
PCT/CN2020/098206 2019-06-28 2020-06-24 一种光源系统及显示设备 WO2020259615A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/621,395 US11921410B2 (en) 2019-06-28 2020-06-24 Light source system and display apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910579747.X 2019-06-28
CN201910579747.XA CN112147836B (zh) 2019-06-28 2019-06-28 一种光源系统及显示设备

Publications (1)

Publication Number Publication Date
WO2020259615A1 true WO2020259615A1 (zh) 2020-12-30

Family

ID=73891569

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/098206 WO2020259615A1 (zh) 2019-06-28 2020-06-24 一种光源系统及显示设备

Country Status (3)

Country Link
US (1) US11921410B2 (zh)
CN (1) CN112147836B (zh)
WO (1) WO2020259615A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11914273B2 (en) 2021-04-30 2024-02-27 Coretronic Corporation Optical engine module and projection device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113093398B (zh) * 2021-04-09 2023-01-06 青岛海信激光显示股份有限公司 消散斑组件、光源装置及光源装置的控制方法
CN113687569A (zh) * 2021-07-30 2021-11-23 深圳光峰科技股份有限公司 一种光源系统
CN115469503B (zh) * 2022-11-14 2023-03-10 深圳市橙子数字科技有限公司 一种激光以及led光源组合的投影系统
CN116794919B (zh) * 2023-08-28 2023-12-12 宜宾市极米光电有限公司 一种光源系统及投影设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203217230U (zh) * 2012-12-28 2013-09-25 深圳市绎立锐光科技开发有限公司 发光装置及投影系统
WO2014024218A1 (ja) * 2012-08-06 2014-02-13 パナソニック株式会社 蛍光体光学素子、その製造方法及び光源装置
CN104656355A (zh) * 2013-11-25 2015-05-27 德州仪器公司 具有由低集光率源泵激的光学转换介质的投影仪
CN107688274A (zh) * 2016-08-05 2018-02-13 深圳市光峰光电技术有限公司 一种光源装置以及投影设备
CN107703705A (zh) * 2016-08-09 2018-02-16 深圳市光峰光电技术有限公司 光源系统及投影设备
CN108535943A (zh) * 2017-03-03 2018-09-14 深圳市光峰光电技术有限公司 一种光源装置及其投影显示系统
CN109557753A (zh) * 2017-09-26 2019-04-02 深圳光峰科技股份有限公司 光源系统及投影装置
CN109870871A (zh) * 2017-12-04 2019-06-11 深圳光峰科技股份有限公司 光源系统及投影系统

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102566230B (zh) * 2010-12-08 2015-05-27 深圳市绎立锐光科技开发有限公司 投影系统、光源系统以及光源组件
JP5648556B2 (ja) * 2011-03-28 2015-01-07 ソニー株式会社 照明装置、投射型表示装置および直視型表示装置
JP5906416B2 (ja) * 2011-06-30 2016-04-20 パナソニックIpマネジメント株式会社 照明装置および投写型表示装置
JP2013076870A (ja) * 2011-09-30 2013-04-25 Sanyo Electric Co Ltd 投写型映像表示装置
CN104991406B (zh) * 2011-11-10 2017-01-25 深圳市光峰光电技术有限公司 一种光源系统、照明装置及投影装置
CN102402111B (zh) * 2011-11-29 2013-06-26 苏州生物医学工程技术研究所 一种高亮度led照明匀光系统
CN102518964A (zh) * 2011-12-11 2012-06-27 深圳市光峰光电技术有限公司 光源和照明装置
CN204422793U (zh) * 2015-01-14 2015-06-24 深圳市绎立锐光科技开发有限公司 棒式复眼及投影设备
CN204595411U (zh) * 2015-04-09 2015-08-26 深圳市光峰光电技术有限公司 发光装置和投影显示设备
JP6575361B2 (ja) * 2016-01-07 2019-09-18 セイコーエプソン株式会社 波長変換素子、照明装置及びプロジェクター
JP6911391B2 (ja) * 2017-03-06 2021-07-28 セイコーエプソン株式会社 照明装置及びプロジェクター
CN108572498B (zh) * 2017-03-14 2019-12-03 深圳光峰科技股份有限公司 光源装置及投影系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014024218A1 (ja) * 2012-08-06 2014-02-13 パナソニック株式会社 蛍光体光学素子、その製造方法及び光源装置
CN203217230U (zh) * 2012-12-28 2013-09-25 深圳市绎立锐光科技开发有限公司 发光装置及投影系统
CN104656355A (zh) * 2013-11-25 2015-05-27 德州仪器公司 具有由低集光率源泵激的光学转换介质的投影仪
CN107688274A (zh) * 2016-08-05 2018-02-13 深圳市光峰光电技术有限公司 一种光源装置以及投影设备
CN107703705A (zh) * 2016-08-09 2018-02-16 深圳市光峰光电技术有限公司 光源系统及投影设备
CN108535943A (zh) * 2017-03-03 2018-09-14 深圳市光峰光电技术有限公司 一种光源装置及其投影显示系统
CN109557753A (zh) * 2017-09-26 2019-04-02 深圳光峰科技股份有限公司 光源系统及投影装置
CN109870871A (zh) * 2017-12-04 2019-06-11 深圳光峰科技股份有限公司 光源系统及投影系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11914273B2 (en) 2021-04-30 2024-02-27 Coretronic Corporation Optical engine module and projection device

Also Published As

Publication number Publication date
CN112147836B (zh) 2023-08-04
US20220334457A1 (en) 2022-10-20
US11921410B2 (en) 2024-03-05
CN112147836A (zh) 2020-12-29

Similar Documents

Publication Publication Date Title
WO2020259615A1 (zh) 一种光源系统及显示设备
US9648291B2 (en) Light source device and projection type image display device
US11187969B2 (en) Projector including a light modulator
CN111258165B (zh) 激光投影设备
US10509303B2 (en) Laser projection device with reflective component and 1/4 wave plate
CN111562713A (zh) 激光投影设备
US11275253B2 (en) Laser projector
US11378876B2 (en) Light source device and display apparatus
EP3561593B1 (en) Projection display system
US20210011363A1 (en) Projection system
WO2022037196A1 (zh) 一种三色光源设备和投影显示设备
JP2011215531A (ja) プロジェクター
CN111176059A (zh) 照明系统
EP3617798B1 (en) Light source apparatus and projector
JP2001005097A (ja) 反射型カラープロジェクター
CN111983878B (zh) 光学旋转装置、照明系统以及投影装置
WO2023030016A1 (zh) 激光投影设备
US11917338B2 (en) Light source system and display apparatus
WO2021143444A1 (zh) 复眼透镜组、光源装置及投影设备
CN112213909B (zh) 光源系统与显示设备
WO2021037240A1 (zh) 一种光源及投影设备
CN112738484B (zh) 激光投影设备
WO2023103359A1 (zh) 光源和激光投影设备
CN218957014U (zh) 激光光源及激光投影设备
CN218630503U (zh) 激光光源及激光显示设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20831756

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20831756

Country of ref document: EP

Kind code of ref document: A1