WO2020135299A1 - 波长转换装置、发光装置及投影装置 - Google Patents

波长转换装置、发光装置及投影装置 Download PDF

Info

Publication number
WO2020135299A1
WO2020135299A1 PCT/CN2019/127278 CN2019127278W WO2020135299A1 WO 2020135299 A1 WO2020135299 A1 WO 2020135299A1 CN 2019127278 W CN2019127278 W CN 2019127278W WO 2020135299 A1 WO2020135299 A1 WO 2020135299A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength conversion
light
region
laser
diffuser
Prior art date
Application number
PCT/CN2019/127278
Other languages
English (en)
French (fr)
Inventor
戴达炎
周浩
宋霞
李屹
Original Assignee
深圳光峰科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光峰科技股份有限公司 filed Critical 深圳光峰科技股份有限公司
Priority to US17/419,217 priority Critical patent/US11415872B2/en
Publication of WO2020135299A1 publication Critical patent/WO2020135299A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/007Optical devices or arrangements for the control of light using movable or deformable optical elements the movable or deformable optical element controlling the colour, i.e. a spectral characteristic, of the light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/007Optical devices or arrangements for the control of light using movable or deformable optical elements the movable or deformable optical element controlling the colour, i.e. a spectral characteristic, of the light
    • G02B26/008Optical devices or arrangements for the control of light using movable or deformable optical elements the movable or deformable optical element controlling the colour, i.e. a spectral characteristic, of the light in the form of devices for effecting sequential colour changes, e.g. colour wheels
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0278Diffusing elements; Afocal elements characterized by the use used in transmission
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2053Intensity control of illuminating light
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2066Reflectors in illumination beam
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/208Homogenising, shaping of the illumination light

Definitions

  • the invention relates to the technical field of illumination and projection, and in particular to a wavelength conversion device, a light-emitting device and a projection device using the wavelength conversion device.
  • light sources of projection devices are mainly divided into pure laser light sources and laser fluorescent mixed light sources.
  • Pure laser light sources generally use red, green, and blue lasers to illuminate the laser, which is very expensive, and because the technology of red and green lasers is immature, there is a problem of low electro-optical conversion efficiency.
  • the laser fluorescent hybrid light source usually uses a blue laser as the first laser to excite different phosphors to generate different colors of fluorescence. Compared with a pure laser light source, the cost can be greatly reduced.
  • the method of generating fluorescence is to coat different phosphors on the color wheel, and drive the color wheel to rotate by a motor to generate time-sequential fluorescence.
  • the generated fluorescence spectrum is wide, and it needs to be modified by a color filter for filtering. Filtering fluorescence is usually done by adding a corresponding color correction film on the inside or outside of the color wheel, but the red light has low light efficiency and the brightness of the light source cannot be maximized.
  • a common solution is to add a red laser light source and use another color wheel for astigmatism to emit light.
  • the red laser and red fluorescence generated by the red laser light source are mixed into the optical machine, but the volume of the space occupied by the overall structure of the light source is increased, which is contrary to the actual demand for reducing the occupied space.
  • An object of the present invention is to provide a wavelength conversion device capable of improving the brightness of a light source and reducing the occupied space, a light emitting device and a projection device using the wavelength conversion device.
  • the present invention provides a wavelength conversion device including a substrate capable of rotating around a rotation axis, the substrate includes first and second surfaces opposite to each other, and surrounding the first surface A side surface of the ring between the second surface and the side surface of the ring that is not perpendicular to the first surface; the first surface is provided with a wavelength conversion material layer, and the side surface of the ring includes a first region and a second region ; The first area and the second area are used to reflect the incident light beam.
  • the first area is provided with a first diffuser
  • the second area is provided with a second diffuser
  • the first diffuser and the second diffuser are arranged in parallel
  • the first The diffuser and the second diffuser scatter and reflect the incident light beam.
  • the first diffuser includes a first transmission diffuser film and a first reflective film, and the first transmission diffuser film is located on the side of the first region away from the rotation axis;
  • the second diffuser includes a second transmission diffuser film and a second reflection film, and the second transmission diffuser film is located on a side of the second region away from the rotation axis.
  • the projection of the first region and the layer of wavelength conversion material on a plane perpendicular to the axis of rotation are adjacent to each other to form a circular ring; the second region and the wavelength conversion The projections of the material layers on a plane perpendicular to the rotation axis overlap.
  • the first area and the second area are arranged parallel to each other, and the projections of the first area and the second area on a plane perpendicular to the rotation axis are respectively fan-shaped
  • the fan ring projected in the first area is concentric with the fan ring projected in the second area, and is arranged diagonally with the center of the circle.
  • the angle between the first region and the rotation axis is greater than 40° and less than 90°.
  • a groove recessed toward the rotation axis is formed on the side of the ring, and both the first area and the second area are located between the second surface and the groove.
  • the wavelength conversion device further includes a reflective layer between the first surface and the wavelength conversion material layer.
  • the wavelength conversion material layer includes a first wavelength conversion section, a second wavelength conversion section, and a third wavelength conversion section that are sequentially arranged next to each other, the first wavelength conversion section, the second wavelength conversion section
  • the segment and the third wavelength conversion segment are respectively provided with different wavelength conversion materials.
  • the projection of the first region and the second wavelength conversion section on a plane perpendicular to the rotation axis is diagonally centered on the rotation axis; the second region and The projection of the second wavelength conversion section on a plane perpendicular to the rotation axis completely overlaps
  • the invention also provides a light-emitting device, which includes a first light source, a second light source, and the above-mentioned wavelength conversion device; the first light source is used to emit a first laser and the emitted first laser is incident on the first area in time sequence and On the wavelength conversion material layer, the first laser light incident on the wavelength conversion material layer can be converted into fluorescence; the second light source is used to emit a second laser light and the emitted second laser light passes through the second area After reflection, the light is mixed with fluorescent light of the same color.
  • a light-emitting device which includes a first light source, a second light source, and the above-mentioned wavelength conversion device; the first light source is used to emit a first laser and the emitted first laser is incident on the first area in time sequence and On the wavelength conversion material layer, the first laser light incident on the wavelength conversion material layer can be converted into fluorescence; the second light source is used to emit a second laser light and the emitted second laser light passes through the second area After reflection
  • the first light source is located on the side of the first surface
  • the second light source is located on the side of the second surface
  • the first laser light emitted by the first light source is a blue laser
  • the second laser emitted from the second light source is any one of red laser, green laser, blue laser and yellow laser.
  • the light-emitting device further includes a light guide assembly
  • the light guide assembly includes a dichroic sheet, a reflecting mirror, a focusing lens, and an area diaphragm, which are used to emit various colors of the wavelength conversion device The light is guided to exit along the same path.
  • the invention also provides a projection device including the above-mentioned light-emitting device.
  • the wavelength conversion device and the light emitting device provided by the present invention reflect and scatter the first laser light emitted by the first light source and the second laser light emitted by the second light source through the first area and the second area on the ring side of the substrate, which can not only overcome the existing There is a defect that the brightness of the light source cannot be exerted to the extreme, and it can make the structure more compact and help to reduce the occupied space.
  • FIG. 1 is a schematic structural diagram of a light-emitting device according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of a wavelength conversion device in the light emitting device shown in FIG.
  • FIG. 3 is a top view of the wavelength conversion device shown in FIG. 2.
  • FIG. 4 is a schematic structural view of the light emitting device shown in FIG. 1 in another state.
  • FIG. 5 is a schematic structural diagram of a light emitting device according to another embodiment of the present invention.
  • the first reflective film 362 is the first reflective film 362
  • FIG. 1 is a schematic structural diagram of a light emitting device 100 according to an embodiment of the present invention.
  • the light emitting device 100 includes a first light source 10, a second light source 20, and a wavelength conversion device 30.
  • the first light source 10 is used to emit a first laser
  • the first laser can be used as an excitation light to excite the wavelength conversion material to generate fluorescence
  • the second light source 20 is used to emit a second laser.
  • the first laser light emitted by the first light source 10 is a blue laser
  • the second laser light emitted by the second light source 20 is a red laser.
  • the second laser light emitted by the second light source 20 may also be a green laser, a blue laser, or a yellow laser.
  • the wavelength conversion device 30 includes a substrate 31 and a driving member 32.
  • the driving member 32 can drive the substrate 31 to rotate, that is, the driving member 32 drives the substrate 31 to rotate around a rotation axis 33 passing through the substrate 31.
  • the driving element 32 is an electric motor, and the rotating shaft 33 and the rotating shaft of the electric motor are on the same straight line. It should be noted that, in other embodiments, the substrate 31 can also move or not move in other ways.
  • the substrate 31 includes a first surface 311, a second surface 312, and a ring side 313, wherein the first surface 311 and the second surface 312 are located on opposite sides of the substrate 31, and the ring side 313 surrounds the first surface 311 Between the second surface 312 and the ring side surface 313 is not perpendicular to the first surface 311.
  • the first surface 311 and the second surface 312 are spaced apart in parallel and perpendicular to the rotation axis 33 respectively.
  • a reflective layer 34 and a wavelength conversion material layer 35 that are sequentially stacked are provided on the first surface 311 of the substrate 31, that is, the reflective layer 34 is located between the wavelength conversion material layer 35 and the first surface 311.
  • the wavelength conversion material layer 35 is provided with a wavelength conversion material, so that the first laser light incident on the wavelength conversion material layer 35 can be wavelength converted to generate fluorescence.
  • the color of the fluorescence is determined by the type of wavelength conversion material contained in the wavelength conversion material layer 35. influences.
  • the wavelength conversion material layer 35 includes a first wavelength conversion section 351, a second wavelength conversion section 352, and a third wavelength conversion section 353 that are adjacently arranged in sequence, the first wavelength conversion section 351, the second wavelength conversion section 352 And the third wavelength conversion section 353 is respectively provided with different wavelength conversion materials to excite different colors of fluorescence.
  • the blue laser light emitted from the first light source 10 is excited to generate green fluorescence when it enters the first wavelength conversion section 351
  • the blue laser light emitted from the first light source 10 is excited to generate red fluorescence when it is incident to the second wavelength conversion section 352.
  • the blue laser light emitted from a light source 10 is incident on the third wavelength conversion section 353, it generates yellow fluorescence.
  • the reflective layer 34 can reflect the first laser light incident on the wavelength conversion material layer 35 to improve the conversion efficiency of the first laser light and reduce light loss.
  • the ring side 313 includes a first region 3131 and a second region 3132.
  • the first region 3131 and the second region 3132 are used to reflect the incident light beam.
  • one side of the first region 3131 is adjacent to the second surface 312, and the other side is inclined toward the first surface 311 and close to the rotation axis 33;
  • one side of the second region 3132 is opposite to the second surface 312 Adjacent, the other side is inclined toward the first surface 311 and away from the rotation axis 33.
  • the projection of the first region 3131 and the wavelength conversion material layer 35 on a plane perpendicular to the rotation axis 33 is formed end-to-end, and the center of the ring is located on the rotation axis 33.
  • the second region 3132 overlaps the projection of the wavelength conversion material layer 35 on a plane perpendicular to the rotation axis 33. It should be noted that “overlap” may be a complete overlap or a partial overlap.
  • the first area 3131 and the second area 3132 are arranged parallel to each other, and the projections of the first area 3131 and the second area 3132 on a plane perpendicular to the rotation axis 33 are respectively fan-shaped.
  • the fan-shaped ring projected by the first area 3131 and the fan-shaped ring projected by the second area 3132 are concentric and arranged diagonally with the center of the circle.
  • the projections of the first area 3131 and the second area 3132 on a plane perpendicular to the rotation axis 33 are not limited to be diagonally arranged in the center.
  • the angle between the first area 3131 and the rotation axis 33 is greater than 40° and less than 90° to facilitate the light path setting.
  • the projection of the first region 3131 and the second wavelength conversion section 352 on a plane perpendicular to the rotation axis 33 is diagonally centered on the rotation axis, and the second region 3132 and the second wavelength conversion section 352 The projections on a plane perpendicular to the axis of rotation 33 completely coincide.
  • the first area 3131 is provided with a first light diffuser 36
  • the second area 3132 is provided with a second light diffuser 37.
  • the first diffuser 36 is in the shape of an arc and includes a first transmission diffuser film 361 and a first reflection film 362.
  • the first transmission diffuser film 361 and the first reflection film 362 are located on two opposite sides of the first diffuser 36
  • the first transmission diffuser film 361 is located on the side of the first diffuser 36 away from the rotation axis 33.
  • the second diffuser 37 is arc-shaped and includes a second transmission diffuser film 371 and a second reflection film 372.
  • the second transmission diffuser film 371 and the second reflection film 372 are located at two opposite sides of the second diffuser 37 And the second transmission diffuser film 371 is located on the side of the second diffuser 37 away from the rotation axis 33.
  • the first region 3131 and the second region 3132 can directly reflect the incident light beam by coating.
  • the working principle of the light-emitting device 100 provided by this embodiment lies in:
  • the substrate 31 rotates around the rotation axis 33 under the driving of the driving member 32, and the blue laser light emitted from the first light source 10 is incident on the wavelength conversion material layer 35 and the first diffuser 36 in time sequence.
  • the blue laser light emitted from the first light source 10 is incident on the first diffuser 36 (see FIG. 4)
  • the blue laser light is reflected by the first reflective film 362 after being scattered by the first transmission diffuser film 361, and then passes through the first
  • the transmission scattering transmitted through the light diffusing film 361 exits from the wavelength conversion device 30, and at this time, the exit light of the wavelength conversion device 30 is blue light that has undergone astigmatism.
  • the blue laser emitted from the first light source 10 When the blue laser emitted from the first light source 10 is incident on the wavelength conversion material layer 35 (see FIG. 1), the blue laser excites the wavelength conversion material in the wavelength conversion material layer 35 into fluorescence emission, and when the blue laser is incident on the second wavelength During the conversion section 352, the red laser light emitted from the second light source 20 is incident on the second diffuser 37.
  • the red laser light emitted from the second light source 20 is incident on the second diffuser 37, the red laser light is transmitted and scattered from the second transmission diffuser film 371, is reflected by the second reflection film 372, and then passes through the second transmission diffuser film 371.
  • the transmission scattering is emitted from the wavelength conversion device 30.
  • the light emitted from the wavelength conversion device 30 is red light, that is, mixed light of red fluorescence and red laser light.
  • the first light source 10 is located on the side of the first surface 311 of the substrate 31, and the second light source 20 is located on the side of the second surface 312 of the substrate 31.
  • the first light source 10 does not need to be limited to the side of the first surface 311 of the substrate 31, and the second light source 20 does not need to be limited to the side of the second surface 312 of the substrate 31.
  • the device causes the first laser light emitted from the first light source 10 to enter the wavelength conversion material layer 35 and the first diffuser 36 in time sequence, and causes the first laser light emitted from the second light source 20 to enter the second diffuser 37. It can be understood that, disposing the first light source 10 on the side of the first surface 311 of the substrate 31 and disposing the second light source 20 on the side of the second surface of the substrate 31 is beneficial to shorten the optical path and make the structure more compact.
  • the light emitting device 100 further includes a light guide assembly 40, the light guide assembly 40 includes a dichroic sheet 41, a plurality of focusing lenses 42, an area membrane 43, a first reflecting mirror 44 and a second reflecting mirror 45 to make the wavelength Various colors of light emitted by the conversion device 30 pass through the light guide assembly 40 and then enter the spatial light modulator 200 and other subsequent optical devices along the same path.
  • the light guide assembly 40 includes a dichroic sheet 41, a plurality of focusing lenses 42, an area membrane 43, a first reflecting mirror 44 and a second reflecting mirror 45 to make the wavelength Various colors of light emitted by the conversion device 30 pass through the light guide assembly 40 and then enter the spatial light modulator 200 and other subsequent optical devices along the same path.
  • the dichroic sheet 41 can reflect blue light and transmit other colors of light.
  • the blue laser light emitted from the first light source 10 is reflected by the dichroic sheet 41 and then enters the wavelength conversion material layer 35 or the first diffuser 36, and the The fluorescent light emitted from the conversion material layer 35 passes through the dichroic sheet 41, is reflected by the first reflecting mirror 44, and is transmitted by the area membrane 43.
  • the light beams emitted from the first diffuser 36 and the second diffuser 37 are reflected by the second mirror 45 and then reflected by the area diaphragm 43. Therefore, the light of various colors emitted by the wavelength conversion device 30 passes through the area membrane 43 and exits along the same path.
  • the plurality of focusing lenses 42 are respectively disposed on the optical path between the dichroic sheet 41 and the substrate 31, the optical path between the dichroic sheet 41 and the first reflecting mirror 44, and between the substrate 31 and the second reflecting mirror 45 On the optical path and the optical path between the second reflecting mirror 45 and the area diaphragm 43, a light-gathering effect is achieved.
  • the light-emitting device 100 further includes a collimating lens group 50, and the light emitted from the area film 43 passes through the collimating lens group 50 to realize the collimating process of the light beam.
  • FIG. 5 is a schematic structural diagram of a light emitting device 100 according to another embodiment of the present invention.
  • the structure of the light-emitting device 100 shown in FIG. 5 is basically the same as that of the light-emitting device 100 shown in FIG. 1, the difference is that the ring side surface 313 of the light-emitting device 100 shown in FIG. 5 is provided with a groove recessed toward the rotating shaft 33 3133, the first area 3131 and the second area 3132 are both located between the second surface 312 and the groove 3133.
  • the first laser light emitted from the first light source 10 is incident on the wavelength conversion material layer 35 to be converted into fluorescence, and a large amount of heat is generated.
  • the arrangement of the groove 3133 is beneficial to the wavelength conversion device 30 for heat dissipation.
  • the groove 3133 has a ring shape, which makes the substrate 31 form a double-layer structure. Practice shows that the double-layer dynamic balance adjustment of the substrate 31 is better than the vibration effect after the single-layer dynamic balance adjustment.
  • the light emitting device 100 provided in any of the above embodiments can be applied to a projection and display system, such as a liquid crystal display (LCD, Liquid Crystal) or a digital light path processor projector (DLP, Digital Light Processor); and can also be applied to a lighting system , Such as car lights, stage lights; can also be used in the field of 3D display technology.
  • a projection and display system such as a liquid crystal display (LCD, Liquid Crystal) or a digital light path processor projector (DLP, Digital Light Processor)
  • DLP Digital Light Processor
  • the present invention further provides a projection device (not shown).
  • the projection device includes the light-emitting device 100 of any of the above embodiments.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Astronomy & Astrophysics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Signal Processing (AREA)
  • Projection Apparatus (AREA)

Abstract

一种波长转换装置(30)与采用该波长转换装置(30)的发光装置(100)和投影装置。该波长转换装置(30)包括能够以一旋转轴(33)为中心转动的基板(31),基板(31)包括相背的第一表面(311)和第二表面(312),以及围设于第一表面(311)和第二表面(312)之间的环侧面(313),环侧面(313)与第一表面(311)非垂直设置;第一表面(311)设有波长转换材料层(35),环侧面(313)包括第一区域(3131)和第二区域(3132);第一区域(3131)和第二区域(3132)用于将入射的光束进行反射。相比于现有技术,能够提升光源亮度并缩小占用空间。

Description

波长转换装置、发光装置及投影装置 技术领域
本发明涉及照明和投影技术领域,尤其涉及一种波长转换装置与采用该波长转换装置的发光装置及投影装置。
背景技术
目前,投影装置的光源主要分为纯激光光源和激光荧光混合光源。纯激光光源一般采用红、绿、蓝三种颜色的激光器出射激光进行照明,价格十分昂贵,并且由于红激光和绿激光的技术不成熟,存在电光转换效率低的问题。激光荧光混合光源通常利用蓝激光作为第一激光,激发不同的荧光粉产生不同颜色的荧光,相对于纯激光光源,能够大大降低成本。
现有技术中,产生荧光的方法是在色轮上涂覆不同的荧光粉,通过马达驱动色轮转动以产生时序的荧光,然而,产生的荧光光谱较宽,需要修色膜片进行滤波。对荧光进行滤波通常是在色轮的内侧或者外侧增加对应的修色膜片,但红光光效低,光源亮度不能发挥到极致。
为增大白平衡的色域中的红光光效占比来达到更广的色域及更高的光效,常用的解决方式是增加红激光光源,并采用另外一个色轮进行散光出光,以使红激光光源产生的红激光与红荧光混合进入光机,但增大了光源整体结构占用的空间体积,与缩小占用空间的实际需求相悖。
发明内容
本发明的目的是提供一种能够提升光源亮度并缩小占用空间的波长转换装置与采用该波长转换装置的发光装置及投影装置。
为实现上述目的,本发明提供一种波长转换装置,包括能够以一旋转轴为中心转动的基板,所述基板包括相背的第一表面和第二表面,以及围设于所述第一表面和所述第二表面之间的环侧面,所述环侧面与所述第一表面非垂直设置;所述第一表面设有波长转换材料层,所述环侧面包括第一区域和第二区域;所述第一区域和所述第二区域用于将入射的光束进行反射。
在一个实施方式中,所述第一区域设置有第一散光片,所述第二区域设置有第二散光片,所述第一散光片和所述第二散光片平行设置,所述第一散光片和所述第二散光片将入射的光束进行散射并反射。
在一个实施方式中,所述第一散光片包括第一透过散光膜和第一反射膜,且所述第一透过散光膜位于所述第一区域远离所述旋转轴的一侧;所述第二散光片包括第二透过散光膜和第二反射膜,且所述第二透过散光膜位于所述第二区域远离所述旋转轴的一侧。
在一个实施方式中,所述第一区域与所述波长转换材料层在一垂直于所述旋转轴的平面上的投影首尾相邻接形成圆环状;所述第二区域与所述波长转换材料层在一垂直于所述旋转轴的平面上的投影重叠。
在一个实施方式中,所述第一区域与所述第二区域相互平行设置,且所述第一区域与所述第二区域在一垂直于所述旋转轴的平面上的投影分别为扇环形,所述第一区域投影的扇环形与所述第二区域投影的扇环形同圆心,并以所述圆心呈对角设置。
在一个实施方式中,所述第一区域与所述旋转轴之间的夹角大于40°且小于90°。
在一个实施方式中,所述环侧面开设有朝向所述旋转轴凹陷的凹槽,所述第一区域和所述第二区域均位于所述第二表面与所述凹槽之间。
在一个实施方式中,所述波长转换装置还包括位于所述第一表面与所述波长转换材料层之间的反射层。
在一个实施方式中,所述波长转换材料层包括依次相邻设置的第一波长转换段、第二波长转换段及第三波长转换段,所述第一波长转换段、所述第二波长转换段及所述第三波长转换段分别设置有不同的波长转换材料。
在一个实施方式中,所述第一区域与所述第二波长转换段在一垂直于所述旋转轴的平面上的投影以所述旋转轴为中心呈对角设置;所述第二区域与所述第二波长转换段在一垂直于所述旋转轴的平面上的投影完全重叠
本发明还提供一种发光装置,包括第一光源、第二光源及上述波长转换装置;所述第一光源用于出射第一激光且出射的第一激光依时序入射至所述第一区域及所述波长转换材料层上,入射至所述波长转换材料层上的第一激光能够转换为荧光;所述第二光源用于出射第二激光且出射的第二激光经过所述第二区域的反射后与相同颜色的荧光混合出光。
在一个实施方式中,所述第一光源位于所述第一表面的一侧,所述第二光源位于所述第二表面的一侧,所述第一光源出射的第一激光为蓝激光,所述第二光源出射的第二激光为红激光、绿激光、蓝激光及黄激光中的任一种。
在一个实施方式中,所述发光装置还包括光引导组件,所述光引导组件包括二向色片、反射镜、聚焦透镜及区域膜片,用于将所述波长转换装置出射的各种颜色光引导为沿同一路径出射。
本发明还提供一种投影装置,包括上述发光装置。
本发明提供的波长转换装置及发光装置通过基板的环侧面上的第一区域和第二区域对第一光源出射的第一激光及第二光源出射的第二激光进行反射散射,不仅能够克服现有光源亮度不能发挥到极致的缺陷,还能够使结构更加紧凑而有利于缩小占用空间。
附图说明
图1为本发明一实施例提供的发光装置的结构示意图。
图2为图1所示的发光装置中波长转换装置的结构示意图。
图3为图2所示的波长转换装置的俯视图。
图4为图1所示的发光装置在另一状态下的结构示意图。
图5为本发明另一实施例提供的发光装置的结构示意图。
主要元件符号说明
发光装置         100
第一光源         10
第二光源         20
波长转换装置     30
基板             31
第一表面         311
第二表面         312
环侧面           313
第一区域         3131
第二区域         3132
凹槽             3133
驱动件           32
旋转轴           33
反射层           34
波长转换材料层   35
第一波长转换段   351
第二波长转换段   352
第三波长转换段   353
第一散光片       36
第一透过散光膜   361
第一反射膜       362
第二散光片       37
第二透过散光膜   371
第二反射膜       372
光引导组件       40
二向色片         41
聚焦透镜         42
区域膜片         43
第一反射镜       44
第二反射镜       45
准直透镜组       50
如下具体实施方式将结合上述附图进一步说明本发明。
具体实施方式
请参阅图1,图1为本发明一实施例提供的发光装置100的结构示意图。该发光装置100包括第一光源10、第二光源20及波长转换装置30。
具体地,第一光源10用于出射第一激光,第一激光能够作为 激发光激发波长转换材料产生荧光,第二光源20用于出射第二激光。本实施例中,第一光源10出射的第一激光为蓝激光,第二光源20出射的第二激光为红激光。在其它实施例中,第二光源20出射的第二激光还可以是绿激光、蓝激光或者黄激光。
请一并参阅图2,波长转换装置30包括基板31和驱动件32,驱动件32能够带动基板31转动,亦即,驱动件32带动基板31围绕一穿过基板31的旋转轴33旋转。本实施例中,驱动件32为电动马达,旋转轴33与电动马达的转轴位于同一直线上。需要说明的是,在其它实施例中,基板31还能够以其它方式运动或者不运动。
具体地,基板31包括第一表面311、第二表面312及环侧面313,其中,第一表面311与第二表面312位于基板31相背的两侧,环侧面313围设于第一表面311与第二表面312之间,且环侧面313与第一表面311非垂直设置。本实施例中,第一表面311与第二表面312平行间隔设置并分别垂直于旋转轴33。
进一步地,基板31的第一表面311上设有依次叠置的反射层34和波长转换材料层35,即反射层34位于波长转换材料层35和第一表面311之间。波长转换材料层35中设置有波长转换材料,因而能够使入射至波长转换材料层35上的第一激光波长转换产生荧光,另外,荧光的颜色受波长转换材料层35含有的波长转换材料种类的影响。
请参阅图3,波长转换材料层35包括依次相邻设置的第一波长转换段351、第二波长转换段352及第三波长转换段353,第一波长转换段351、第二波长转换段352及第三波长转换段353分别设置有不同的波长转换材料以激发产生不同颜色的荧光。本实施例中,第一光源10出射的蓝激光入射至第一波长转换段351时激发 产生绿荧光,第一光源10出射的蓝激光入射至第二波长转换段352时激发产生红荧光,第一光源10出射的蓝激光入射至第三波长转换段353时激发产生黄荧光。
需要说明的是,反射层34能够反射入射至波长转换材料层35上的第一激光,以提高第一激光的转化效率,减少光损失。
请参阅图1及图2,环侧面313包括第一区域3131和第二区域3132,第一区域3131和第二区域3132用于将入射的光束进行反射。其中,第一区域3131的其中一侧与第二表面312相邻接、另一侧朝向第一表面311并靠近旋转轴33的方向倾斜;第二区域3132的其中一侧与第二表面312相邻接、另一侧朝向第一表面311并远离旋转轴33的方向倾斜。
第一区域3131与波长转换材料层35在一垂直于旋转轴33的平面上的投影首尾相邻接形成圆环状,且该圆环的中心位于旋转轴33上。第二区域3132与波长转换材料层35在一垂直于旋转轴33的平面上的投影重叠。需要说明的是,“重叠”可以是完全重叠,也可以是部分重叠。
本实施例中,第一区域3131与第二区域3132相互平行设置,且第一区域3131与第二区域3132在一垂直于旋转轴33的平面上的投影分别为扇环形。具体地,第一区域3131投影的扇环形与第二区域3132投影的扇环形同圆心,并以圆心呈对角设置。在其它实施例中,第一区域3131与第二区域3132在一垂直于旋转轴33的平面上的投影不限于呈中心对角设置。优选地,第一区域3131与旋转轴33之间的夹角大于40°且小于90°以便于光路设置。
本实施例中,第一区域3131与第二波长转换段352在一垂直于旋转轴33的平面上的投影以旋转轴为中心呈对角设置,且第二区域3132与第二波长转换段352在一垂直于旋转轴33的平面上的 投影完全重合。
请参阅图2,第一区域3131设置有第一散光片36,第二区域3132设置有第二散光片37。第一散光片36呈弧形片状并包括第一透过散光膜361和第一反射膜362,第一透过散光膜361与第一反射膜362位于第一散光片36相背的两个表面,且第一透过散光膜361位于第一散光片36远离旋转轴33的一侧。第二散光片37呈弧形片状并包括第二透过散光膜371和第二反射膜372,第二透过散光膜371和第二反射膜372位于第二散光片37相背的两个表面,且第二透过散光膜371位于第二散光片37远离旋转轴33的一侧。在其它实施例中,可以直接采用镀膜的方式使第一区域3131和第二区域3132能够将入射的光束进行反射。
请参阅图1及图4,本实施例提供的发光装置100的工作原理在于:
基板31在驱动件32的驱动下围绕旋转轴33旋转,第一光源10出射的蓝激光依时序入射至波长转换材料层35和第一散光片36上。当第一光源10出射的蓝激光入射至第一散光片36时(见图4),蓝激光自第一透过散光膜361的透射散射后被第一反射膜362反射,之后再经过第一透过散光膜361的透射散射从波长转换装置30出射,此时,波长转换装置30的出射光为经过散光的蓝色光。
当第一光源10出射的蓝激光入射至波长转换材料层35时(见图1),蓝激光激发波长转换材料层35中的波长转换材料转换为荧光出射,并且当蓝激光入射至第二波长转换段352时,第二光源20出射的红激光入射至第二散光片37上。第二光源20出射的红激光入射至第二散光片37时,红激光自第二透过散光膜371的透射散射后被第二反射膜372反射,之后再经过第二透过散光膜371的透射散射从波长转换装置30出射,此时,波长转换装置30的出 射光为红色光,亦即红荧光和红激光的混合光。
本实施例中,第一光源10位于基板31的第一表面311的一侧,第二光源20位于基板31的第二表面312的一侧。在其它实施例中,第一光源10不必限制在基板31的第一表面311的一侧,第二光源20也不必限制在基板31的第二表面312的一侧,可以通过反射面等其它光学元件使第一光源10出射的第一激光依时序入射至波长转换材料层35和第一散光片36上,并使第二光源20出射的第一激光入射至第二散光片37上。可以理解,将第一光源10设置于基板31的第一表面311的一侧并将第二光源20设置于基板31的第二表面的一侧有利于缩短光程,使结构更加紧凑。
进一步地,发光装置100还包括光引导组件40,光引导组件40包括二向色片41、多个聚焦透镜42、区域膜片43、第一反射镜44及第二反射镜45,以使波长转换装置30出射的各种颜色光经过光引导组件40后沿同一路径进入空间光调制器200等其它后续光学器件。
具体地,二向色片41能够反射蓝色光并透射其它颜色光,第一光源10出射的蓝激光被二向色片41反射后入射至波长转换材料层35或者第一散光片36,自波长转换材料层35出射的荧光透过二向色片41、并被第一反射镜44反射后被区域膜片43透射。自第一散光片36及自第二散光片37出射的光束被第二反射镜45反射后又被区域膜片43反射。因此,波长转换装置30出射的各种颜色光经过区域膜片43后沿同一路径出射。
多个聚焦透镜42分别设置于二向色片41与基板31之间的光路上、二向色片41与第一反射镜44之间的光路上、基板31与第二反射镜45之间的光路上及第二反射镜45与区域膜片43之间的光路上,以起到聚光效果。
进一步地,发光装置100还包括准直透镜组50,区域膜片43的出射光经过准直透镜组50后能够实现光束的准直化处理。
请参阅图5,图5为本发明另一实施例提供的发光装置100的结构示意图。图5所示的发光装置100与图1所示的发光装置100的结构基本相同,其不同之处在于:图5所示的发光装置100的环侧面313开设有朝向旋转轴33凹陷的凹槽3133,第一区域3131和第二区域3132均位于第二表面312与凹槽3133之间。
需要说明的是,第一光源10出射的第一激光入射至波长转换材料层35转换为荧光的过程产生大量的热,凹槽3133的设置有利于波长转换装置30进行散热。此外,凹槽3133呈环形,使基板31形成双层结构,实践表明,基板31的双层动平衡调节优于单层动平衡调节后的振动效果。
上述任意一个实施例提供的发光装置100均可以应用于投影、显示系统,例如液晶显示器(LCD,Liquid Crystal Display)或数码光路处理器投影机(DLP,Digital Light Processor);也可以应用于照明系统,例如汽车照明灯、舞台灯;还可以应用于3D显示技术领域中。
进一步地,本发明还提供一种投影装置(图未示),该投影装置包括上述任一实施例的发光装置100。
以上仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其它相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (14)

  1. 一种波长转换装置,包括能够以一旋转轴为中心转动的基板,其特征在于,所述基板包括相背的第一表面和第二表面,以及围设于所述第一表面和所述第二表面之间的环侧面,所述环侧面与所述第一表面非垂直设置;所述第一表面设有波长转换材料层,所述环侧面包括第一区域和第二区域;所述第一区域和所述第二区域用于将入射的光束进行反射。
  2. 如权利要求1所述的波长转换装置,其特征在于,所述第一区域设置有第一散光片,所述第二区域设置有第二散光片,所述第一散光片和所述第二散光片平行设置,所述第一散光片和所述第二散光片将入射的光束进行散射并反射。
  3. 如权利要求2所述的波长转换装置,其特征在于,所述第一散光片包括第一透过散光膜和第一反射膜,且所述第一透过散光膜位于所述第一区域远离所述旋转轴的一侧;所述第二散光片包括第二透过散光膜和第二反射膜,且所述第二透过散光膜位于所述第二区域远离所述旋转轴的一侧。
  4. 如权利要求1所述的波长转换装置,其特征在于,所述第一区域与所述波长转换材料层在一垂直于所述旋转轴的平面上的投影首尾相邻接形成圆环状;所述第二区域与所述波长转换材料层在一垂直于所述旋转轴的平面上的投影重叠。
  5. 如权利要求1所述的波长转换装置,其特征在于,所述第一区域与所述第二区域相互平行设置,且所述第一区域与所述第二区域在一垂直于所述旋转轴的平面上的投影分别为扇环形,所述第一区域投影的扇环形与所述第二区域投影的扇环形同圆心,并以所述圆心呈对角设置。
  6. 如权利要求5所述的波长转换装置,其特征在于,所述第 一区域与所述旋转轴之间的夹角大于40°且小于90°。
  7. 如权利要求1所述的波长转换装置,其特征在于,所述环侧面开设有朝向所述旋转轴凹陷的凹槽,所述第一区域和所述第二区域均位于所述第二表面与所述凹槽之间。
  8. 如权利要求1所述的波长转换装置,其特征在于,所述波长转换装置还包括位于所述第一表面与所述波长转换材料层之间的反射层。
  9. 如权利要求1所述的波长转换装置,其特征在于,所述波长转换材料层包括依次相邻设置的第一波长转换段、第二波长转换段及第三波长转换段,所述第一波长转换段、所述第二波长转换段及所述第三波长转换段分别设置有不同的波长转换材料。
  10. 如权利要求9所述的波长转换装置,其特征在于,所述第一区域与所述第二波长转换段在一垂直于所述旋转轴的平面上的投影以所述旋转轴为中心呈对角设置;所述第二区域与所述第二波长转换段在一垂直于所述旋转轴的平面上的投影完全重叠。
  11. 一种发光装置,其特征在于,包括第一光源、第二光源及权利要求1~10任意一项所述的波长转换装置;所述第一光源用于出射第一激光且出射的第一激光依时序入射至所述第一区域及所述波长转换材料层上,入射至所述波长转换材料层上的第一激光能够转换为荧光;所述第二光源用于出射第二激光且出射的第二激光经过所述第二区域的反射后与相同颜色的荧光混合出光。
  12. 如权利要求11所述的发光装置,其特征在于,所述第一光源位于所述第一表面的一侧,所述第二光源位于所述第二表面的一侧,所述第一光源出射的第一激光为蓝激光,所述第二光源出射的第二激光为红激光、绿激光、蓝激光及黄激光中的任一种。
  13. 如权利要求11所述的发光装置,其特征在于,所述发光 装置还包括光引导组件,所述光引导组件包括二向色片、反射镜、聚焦透镜及区域膜片,用于将所述波长转换装置出射的各种颜色光引导为沿同一路径出射。
  14. 一种投影装置,其特征在于,包括权利要求11~13任意一项所述的发光装置。
PCT/CN2019/127278 2018-12-29 2019-12-23 波长转换装置、发光装置及投影装置 WO2020135299A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/419,217 US11415872B2 (en) 2018-12-29 2019-12-23 Wavelength conversion device, light-emitting device and projection device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811645685.X 2018-12-29
CN201811645685.XA CN111381358B (zh) 2018-12-29 2018-12-29 波长转换装置、发光装置及投影装置

Publications (1)

Publication Number Publication Date
WO2020135299A1 true WO2020135299A1 (zh) 2020-07-02

Family

ID=71127612

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/127278 WO2020135299A1 (zh) 2018-12-29 2019-12-23 波长转换装置、发光装置及投影装置

Country Status (3)

Country Link
US (1) US11415872B2 (zh)
CN (1) CN111381358B (zh)
WO (1) WO2020135299A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114063375B (zh) * 2020-08-10 2024-01-23 成都极米科技股份有限公司 一种光源系统
CN116107143A (zh) * 2021-11-11 2023-05-12 中强光电股份有限公司 色轮模块与投影装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102650409A (zh) * 2011-10-28 2012-08-29 深圳市光峰光电技术有限公司 波长转换器件、制作方法及光源装置
CN203489181U (zh) * 2013-10-15 2014-03-19 深圳市光峰光电技术有限公司 色轮及其光源系统、投影系统
CN104880819A (zh) * 2015-05-28 2015-09-02 苏州佳世达光电有限公司 一种色轮及应用其的投影系统
US20170199451A1 (en) * 2016-01-07 2017-07-13 Seiko Epson Corporation Wavelength conversion element, illumination device, and projector
CN108663879A (zh) * 2017-03-31 2018-10-16 中强光电股份有限公司 投影机及其照明系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102650409A (zh) * 2011-10-28 2012-08-29 深圳市光峰光电技术有限公司 波长转换器件、制作方法及光源装置
CN203489181U (zh) * 2013-10-15 2014-03-19 深圳市光峰光电技术有限公司 色轮及其光源系统、投影系统
CN104880819A (zh) * 2015-05-28 2015-09-02 苏州佳世达光电有限公司 一种色轮及应用其的投影系统
US20170199451A1 (en) * 2016-01-07 2017-07-13 Seiko Epson Corporation Wavelength conversion element, illumination device, and projector
CN108663879A (zh) * 2017-03-31 2018-10-16 中强光电股份有限公司 投影机及其照明系统

Also Published As

Publication number Publication date
US20220121093A1 (en) 2022-04-21
CN111381358A (zh) 2020-07-07
CN111381358B (zh) 2021-12-31
US11415872B2 (en) 2022-08-16

Similar Documents

Publication Publication Date Title
EP3722874B1 (en) Light source device, image projection apparatus, light source optical system
JP5767444B2 (ja) 光源装置及び画像投影装置
JP5633946B2 (ja) 光源装置、投写型表示装置、および画像形成素子照明方法
US10732496B2 (en) Color wheel and laser projection apparatus
JP2021092761A (ja) 光源装置及び画像投射装置
JP2020086261A (ja) 光源光学系、光源装置及び画像投射装置
CN110389486B (zh) 光源装置及显示设备
JP2024045430A (ja) 光源装置及び画像投射装置
JP7413740B2 (ja) 光源装置、画像投射装置及び光源光学系
CN107436529B (zh) 一种光源装置以及投影显示装置
WO2020135299A1 (zh) 波长转换装置、发光装置及投影装置
CN106950785B (zh) 一种光源装置及照明装置
WO2020135300A1 (zh) 光源系统及投影装置
JP6137238B2 (ja) 光源装置及び画像投影装置
CN114585968A (zh) 光源装置、图像投影装置和光源光学系统
JP6388051B2 (ja) 光源装置及び画像投影装置
JP6353583B2 (ja) 光源装置及び画像投影装置
JP6149991B2 (ja) 光源装置及び画像投影装置
JP7338409B2 (ja) 光源装置、画像投射装置及び光源光学系
JP7342624B2 (ja) 光源装置、画像投射装置及び光源光学系
JP7338410B2 (ja) 光源装置、画像投射装置及び光源光学系
JP6680340B2 (ja) 光源装置及び画像投影装置
US20230251558A1 (en) Light source device and projection apparatus
WO2021008330A1 (zh) 光源系统与显示设备
JP6453495B2 (ja) 光源装置及び画像投影装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19903413

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19903413

Country of ref document: EP

Kind code of ref document: A1