WO2018209722A1 - 一种增强光亮的投影光源及其投影系统 - Google Patents
一种增强光亮的投影光源及其投影系统 Download PDFInfo
- Publication number
- WO2018209722A1 WO2018209722A1 PCT/CN2017/085733 CN2017085733W WO2018209722A1 WO 2018209722 A1 WO2018209722 A1 WO 2018209722A1 CN 2017085733 W CN2017085733 W CN 2017085733W WO 2018209722 A1 WO2018209722 A1 WO 2018209722A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light source
- dichroic mirror
- blue
- led light
- light beam
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B21/00—Projectors or projection-type viewers; Accessories therefor
- G03B21/14—Details
- G03B21/20—Lamp housings
Definitions
- the utility model relates to the field of digital projection display technology, and more particularly to an enhanced projection light source and a projection system thereof.
- projection display light source is a very important component.
- the function of the projection light source is to convert as much as possible the large-angle distribution of the light beam, the illumination light of different shapes and brightness, into a uniform spot that is irradiated to the effective area of the display chip, thereby realizing a uniform and bright projection display screen.
- the user can enjoy a better visual enjoyment.
- the invention Under the premise of keeping the design of the projection optical path simple and efficient, the invention has the advantages of small size, low optical loss and enhanced light intensity for high light output. This also becomes one of the technical problems to be solved by those skilled in the art.
- a combination of a blue laser light source and an LED light source is generally used, and a blue laser light source is used to excite the green phosphor on the color wheel to generate a green light beam to improve the brightness of the projection light source; as shown in FIG. 1 , the blue laser light source 1
- the phosphor layer on the transmission excitation color wheel 7 generates a green fluorescent light beam, and then combines the red light beam and the blue light beam respectively generated by the red LED light source 8 and the blue LED light source 14; or is directly irradiated by the blue laser light source.
- a green LED light source with a phosphor layer is used to increase the brightness of the projection light source; as shown in FIG.
- the LD system is irradiated to the green LED light source to excite the phosphor layer to generate a green fluorescent light beam, a green fluorescent light beam and a green LED light beam. Combine light into the next optical device.
- the method of generating a green light source by using the phosphor layer on the excitation color wheel is easy to produce an aperture effect due to high-speed rotation, the image is unstable, and the image quality is poor; and the method of directly transmitting the phosphor layer by the LD system is due to the position of the light source. Settings are limited and not flexible enough.
- the structure is also not compact enough. Based on the above reasons, an enhanced bright projection light source that can overcome the influence of the color wheel on the projection image quality and has a flexible layout and compact structure has become one of the research focuses in the field.
- the object of the present invention is to provide a projection light source with a simple and reasonable structure, a compact layout, high brightness, and good projection quality.
- the present invention provides a light source for enhancing brightness, comprising: a blue LED light source device, a red LED light source device, a green light source device for generating a green fluorescent light beam, and a dichroic mirror group;
- the blue LED light source device includes: a blue LED light source for generating a blue light beam; and a first collimating lens group disposed on the optical path of the blue LED light source;
- the red LED light source device includes: a red light beam for generating a red LED light source and a second collimating lens group disposed on the optical path of the red LED light source;
- the green light source device comprises: a green LED light source and a third collimating lens group disposed on the optical path of the green LED light source, and the blue excitation light source And a fourth collimating lens group disposed on the optical path of the blue excitation light source;
- the dichroic mirror group includes: a first dichroic mirror and a second dichroic mirror;
- the green LED light source surface has a
- the first dichroic mirror and the second dichroic mirror are arranged in parallel or perpendicularly; the first dichroic mirror is disposed on the red LED light source, the blue excitation light source, and the outgoing light beam of the green LED light source. a light path for combining the red light beam and the green fluorescent light beam; the second dichroic mirror is disposed on the blue excitation light beam, the blue light beam, and the red light beam after being combined by the first dichroic mirror and The exiting optical path of the green fluorescent beam; the blue excitation beam is reflected by the second dichroic mirror, and the first dichroic mirror transmits and illuminates the phosphor beam generated by the green LED light source and the green LED light source itself.
- the layer produces a green fluorescent beam; the green fluorescent
- the light beam is transmitted through the first dichroic mirror, combined with the red light beam reflected by the first dichroic mirror, and then transmitted through the second dichroic mirror, and combined with the blue light beam reflected by the second dichroic mirror to form a white light beam.
- the first dichroic mirror and the second dichroic mirror are arranged in parallel; the central optical axis of the red LED light source is parallel to the central optical axis of the blue LED light source and the blue excitation light source, both with the green LED
- the central optical axis of the light source is perpendicular;
- the blue excitation light source and the blue LED light source are respectively disposed on the upper side and the lower side of the second dichroic mirror, and the opposite side emits light;
- the red LED light source and the blue LED light source are respectively disposed at the first The lower side of a dichroic mirror and a second dichroic mirror emit light in the same direction.
- the first dichroic mirror and the second dichroic mirror are vertically disposed; the central optical axis of the red LED light source is parallel to the central optical axis of the blue LED light source and the blue excitation light source, both with the green LED The central optical axis of the light source is perpendicular; the blue excitation light source and the blue LED light source are respectively disposed on the upper side and the lower side of the second dichroic mirror, and the opposite light is emitted; the red LED light source and the blue excitation light source are respectively disposed at the second The upper side of a dichroic mirror and a second dichroic mirror emit light in the same direction.
- the first dichroic mirror and the second dichroic mirror are arranged in parallel; the first dichroic mirror is disposed on an optical path of the red LED light source, the blue excitation light source, and the outgoing light beam of the green LED light source. And combining the red light beam and the green fluorescent light beam; the second dichroic mirror is disposed on the blue excitation light beam, the blue light beam, and the red light beam and the green fluorescent light after being combined by the first dichroic mirror The blue light beam is reflected by the second dichroic mirror and the first dichroic mirror, and then irradiated to the green LED light source and the light beam generated by the green LED light source itself to generate a phosphor layer.
- the green fluorescent light beam is reflected by the first dichroic mirror, combined with a red light beam transmitted through the first dichroic mirror, and then transmitted through the second dichroic mirror, and blue reflected through the second dichroic mirror
- the color beam is combined to form a white light beam.
- the central optical axis of the red LED source is parallel to the central optical axis of the blue LED source and the blue excitation source, both perpendicular to the central optical axis of the green LED source; the blue LED source and blue
- the excitation light sources are respectively disposed on the upper and lower sides of the second dichroic mirror, facing each other Light.
- the first dichroic mirror and the second dichroic mirror are arranged in parallel; the first dichroic mirror is disposed on an optical path of the red LED light source, the blue excitation light source, and the outgoing light beam of the green LED light source. And combining the red light beam and the green fluorescent light beam; the second dichroic mirror is disposed on the blue excitation light beam, the blue light beam, and the red light beam and the green fluorescent light after being combined by the first dichroic mirror The blue excitation beam is transmitted through the second dichroic mirror and then reflected by the first dichroic mirror to the green LED light source and the green LED light source itself is emitted by the light emitting chip to excite the phosphor layer.
- the green fluorescent light beam is reflected by the first dichroic mirror, combined with the red light beam transmitted through the first dichroic mirror, and then reflected by the second dichroic mirror, and transmitted through the second dichroic mirror
- the blue light beam is combined to form a white light beam.
- the central optical axis of the red LED source is parallel to the central optical axis of the blue excitation source, both perpendicular to the central optical axis of the blue LED source and the green LED source.
- the first dichroic mirror and the second dichroic mirror are at an angle of 45° to the central optical axis direction of the blue LED light source, the red LED light source, the blue excitation light source, and the green LED light source.
- the blue excitation source is an LED source or a laser source.
- the present invention further provides a projection system, comprising: any of the above-mentioned projection light sources; a fly-eye lens; an illumination beam reflecting device; a beam guiding device; a display chip and a projection lens; wherein the illumination beam reflecting device It may be a reflective lens or a curved mirror; the beam guiding device may be composed of a relay lens and a glued prism group; or a relay lens and a free-form lens.
- the utility model has the following beneficial effects: in the utility model, two or more dichroic mirrors are arranged to reflect and transmit the respective color light sources, wherein the blue excitation light source The generated blue excitation beam is reflected and/or transmitted through the dichroic mirror group and then irradiated to the green LED light source and the light beam generated by the green LED light source itself to generate a green fluorescent light beam, green fluorescent light beam and blue light.
- the blue light beam generated by the LED light source device and the red light beam generated by the red LED light source device are reflected and/or transmitted through the dichroic mirror group to form a white light, which greatly enhances the brightness of the green light source and enhances the brightness of the projection light source, and
- the setting of the dichroic mirror makes the structure setting flexible and the layout compact.
- FIG. 1 is a structural diagram of a projection light source excited by a prior art fluorescent color wheel structure
- Embodiment 1 of the enhanced bright projection light source of the present invention is a schematic structural view of Embodiment 1 of the enhanced bright projection light source of the present invention.
- Embodiment 2 is a schematic structural view of Embodiment 2 of the enhanced bright projection light source of the present invention.
- Embodiment 2 is a schematic structural view of Embodiment 2 of the enhanced bright projection light source of the present invention.
- Embodiment 2 is a schematic structural view of Embodiment 2 of the enhanced bright projection light source of the present invention.
- FIG. 7 is a schematic view of the mechanism of the projection system of the enhanced bright projection light source of the present invention.
- Embodiment 1 is a diagrammatic representation of Embodiment 1:
- the enhanced bright projection light source according to the embodiment of the present invention includes: a blue LED light source device and a red LED light source. a device, a green light source device for generating a green fluorescent light beam, and a dichroic mirror group;
- the blue LED light source device includes: a blue LED light source 101 for generating a blue light beam; and a first collimating lens group 102 disposed on the optical path of the blue LED light source;
- the red LED light source device includes: a red LED light source 103 for generating a red light beam and a second collimating lens group 104 disposed on the optical path of the red LED light source;
- the green light source device includes: a green LED light source 105 and a third standard disposed on the optical path of the green LED light source a direct lens group 106, a blue excitation light source 107, and a fourth collimating lens group 108 disposed on the optical path of the blue excitation light source 107;
- the dichroic mirror group includes: a first dichroic mirror 109 and a second branch disposed in parallel Color mirror 110.
- the green LED light source 105 includes an LED light emitting chip and a phosphor layer on the surface of the light emitting chip.
- the blue excitation light source 107 is reflected by the second dichroic mirror 110, and the first dichroic mirror 109 is transmitted to the surface of the green LED light source 105 and the light beam generated by the green LED light source 105 itself is opposite to the phosphor layer. Green fluorescent beam.
- the first dichroic mirror 109 is disposed on the optical path of the red LED light source 103, the blue excitation light source 107, and the green LED light source 105, for reflecting the blue excitation beam, and for the red beam and the green fluorescent beam. Combine light.
- the second dichroic mirror 110 is disposed on the blue excitation beam, the blue light beam, and the outgoing light path of the red and green fluorescent beams that are combined by the first dichroic mirror 109 for the blue
- the color excitation light beam and the blue light beam reflect and transmit the green fluorescent light beam and the red light beam that are combined by the first dichroic mirror 109, and transmit the reflected green fluorescent light beam, the blue light beam and the red light beam. Heguang.
- the blue light beam generated by the blue LED light source 101 is collimated by the first collimating lens group 102 and then reflected by the second dichroic mirror 110.
- the red light beam generated by the red LED light source 103 is first collimated by the second collimating lens group 104, and is reflected by the first dichroic mirror 109 to be combined with the green fluorescent light beam and transmitted through the second dichroic mirror 110.
- the green fluorescent light beam is transmitted through the first dichroic mirror 109, combined with the red light beam reflected by the first dichroic mirror 109, and then transmitted through the second dichroic mirror 110, and the blue reflected by the second dichroic mirror 110.
- the color beam is combined to form a white light beam.
- the central optical axis of the red LED light source 103 is parallel to the central optical axis of the blue LED light source 101 and the blue excitation light source 107, both perpendicular to the central optical axis of the green LED light source 105;
- the excitation light source 107 and the blue LED light source 101 are respectively disposed on two sides of the second dichroic mirror 110 to emit light in opposite directions;
- the red LED light source 103 and the blue LED light source 101 are respectively disposed on the first dichroic mirror 109 and the second sub-segment The same side of the color mirror 110 emits light in the same direction.
- the first dichroic mirror 109 and the second dichroic mirror 110 are disposed in parallel, and the central optical axes of the blue LED light source 101, the red LED light source 103, the blue excitation light source 107, and the green LED light source 105 are arranged in parallel.
- the angle of the direction is 45°.
- the blue excitation light source 107 may be a solid state light source such as an LED light source or a laser light source.
- Embodiment 2 is a diagrammatic representation of Embodiment 1:
- the blue LED light source device includes: a blue LED light source 201 for generating a blue light beam and is disposed in the blue The first collimating lens group 202 on the optical path of the color LED light source 201;
- the red LED light source device comprises: a red LED light source 203 for generating a red light beam and a second collimating lens group 204 disposed on the optical path of the red LED light source;
- the green light source device package The green LED light source 205 and the third collimating lens group 206 disposed on the optical path of the green LED light source 205, the blue excitation light source 207, and the fourth collimating lens group 208 disposed on the optical path of the blue excitation light source 207.
- the dichroic mirror group includes: a first dichroic mirror 209 and a second dichroic mirror 210 disposed vertically; a central optical axis and blue of the red LED light source 203
- the central optical axes of the color LED light source 201 and the blue excitation light source 207 are parallel, both perpendicular to the central optical axis of the green LED light source 205; the blue excitation light source 207 and the blue LED light source 201 are respectively disposed on the second dichroic mirror 210.
- the upper side and the lower side emit light in opposite directions; the red LED light source 203 and the blue excitation light source 201 are respectively disposed on the upper sides of the first dichroic mirror 209 and the second dichroic mirror 210, and emit light in the same direction.
- the green LED light source 205 includes: an LED light emitting chip and a phosphor layer on the surface of the light emitting chip.
- the blue excitation light source 207 is reflected by the second dichroic mirror 210, and the first dichroic mirror 209 is transmitted to the surface of the green LED light source 205 and the light beam generated by the green LED light source 205 itself is oppositely excited to generate the phosphor layer.
- Green fluorescent beam is transmitted to the surface of the green LED light source 205 and the light beam generated by the green LED light source 205 itself is oppositely excited to generate the phosphor layer.
- the first dichroic mirror 209 is disposed on the optical path of the outgoing beam of the red LED source 203, the blue excitation source 207, and the green LED source 205, for reflecting the blue excitation beam, and for the red beam and the green fluorescent beam. Combine light.
- the second dichroic mirror 210 is disposed on the blue excitation beam, the blue light beam, and the outgoing light path of the red and green fluorescent beams that are combined by the first dichroic mirror 209 for the blue
- the color excitation light beam and the blue light beam reflect and transmit the green fluorescent light beam and the red light beam that are combined by the first dichroic mirror 209, and perform the transmissively reflected green fluorescent light beam, the blue light beam and the red light beam. Heguang.
- the blue light beam generated by the blue LED light source 201 is collimated by the first collimating lens group 202 and then reflected by the second dichroic mirror 210.
- the red light beam generated by the red LED light source 203 is first collimated by the second collimating lens group 204, and is reflected by the first dichroic mirror 209 to be combined with the green fluorescent light beam and transmitted through the second dichroic mirror 210.
- the green fluorescent light beam is transmitted through the first dichroic mirror 209, combined with the red light beam reflected by the first dichroic mirror 209, and then transmitted through the second dichroic mirror 210, and the blue reflected through the second dichroic mirror 210.
- the color beam is combined to form a white light beam.
- the first dichroic mirror 209 and the second dichroic mirror 210 are disposed in parallel, and the central optical axes of the blue LED light source 101, the red LED light source 203, the blue excitation light source 207, and the green LED light source 205 are disposed in parallel.
- the angle of the direction is 45°.
- the blue excitation light source 207 can be a solid state light source such as an LED light source or a laser light source.
- the positions of the blue LED light source device and the red LED light source device can be mutually exchanged, as long as the red LED light source 203 and the blue LED light source 201 and the green fluorescent light beam after the transmission and reflection through the dichroic mirror can be ensured to be combined You can shoot in one direction.
- Embodiment 3 is a diagrammatic representation of Embodiment 3
- the blue LED light source device includes: a blue LED light source 301 for generating a blue light beam and is disposed in the blue Color LED light source 301 is a first collimating lens group 302 on the optical path;
- the red LED light source device comprises: a red LED light source 303 for generating a red light beam and a second collimating lens group 304 disposed on the optical path of the red LED light source;
- the green light source device includes: a green LED light source 305 and a third collimating lens group 306 disposed on the optical path of the green LED light source 305, a blue excitation light source 307, and a fourth collimation disposed on the optical path of the blue excitation light source 307
- the lens group 308; the first dichroic mirror 309 and the second dichroic mirror 310 are disposed in parallel.
- the first dichroic mirror 309 is configured to reflect the blue excitation beam. And a green fluorescent beam, as well as a transmitted red beam.
- the first dichroic mirror 309 is disposed on the optical path of the red light source 303, the blue excitation light source 307, and the green LED light source 305, and is used to combine the red light beam and the green fluorescent light beam.
- the second dichroic mirror 310 is disposed on the blue excitation beam, the blue light beam, and the outgoing light path of the red light beam and the green fluorescent light beam after the first dichroic mirror 309 is combined; for reflecting the blue LED
- the light beam, and the red light beam and the green fluorescent light beam that are transmitted through the first dichroic mirror 309 are combined, and the reflected and transmitted blue light beam, the red light beam and the green fluorescent light beam are combined.
- the blue excitation beam is reflected by the second dichroic mirror 310 and the first dichroic mirror 309, and then irradiated onto the surface of the green LED light source 305 and the light beam generated by the green LED light source 305 itself emits a phosphor layer to generate a green color. Fluorescent beam.
- the blue light beam generated by the blue LED light source 301 is collimated by the first collimating lens group 302 and reflected by the second dichroic mirror 310.
- the red light beam generated by the red LED light source 303 is first collimated by the second collimating lens group 304, and is transmitted through the first dichroic mirror 309 to be combined with the green fluorescent light beam and transmitted through the second dichroic mirror 310.
- the green fluorescent light beam is reflected by the first dichroic mirror 309, combined with the red light beam transmitted through the first dichroic mirror 309, and then transmitted through the second dichroic mirror 310, and the blue reflected by the second dichroic mirror 310.
- the color beam is combined to form a white light beam.
- the central optical axis of the red LED light source 303 and the blue LED light source 301, the central optical axis of the blue excitation light source 307, and the central optical axis of the green LED light source 305 are perpendicular; the blue LED light source The 301 and the blue excitation light source 307 are respectively disposed on both sides of the second dichroic mirror 310 to emit light in opposite directions.
- the first dichroic mirror 309 and the second dichroic mirror 310 are not limited to being disposed in parallel, and may be vertically disposed according to a placement position of a specific light source device.
- the positions of the blue LED light source device and the red LED light source device can be interchanged as long as the red LED light source 303 and the blue LED light source 301 and the green fluorescent light beam after the transmission and reflection through the dichroic mirror can be combined You can shoot in one direction.
- the central optical axis of the blue LED light source 301 and the central optical axis of the green LED light source 305, and the central light of the blue excitation light source 307 The axis, and the central optical axis of the red LED source 303 are perpendicular.
- Embodiment 4 is a diagrammatic representation of Embodiment 4:
- the blue LED light source device includes: a blue LED light source 401 for generating a blue light beam and is disposed in the blue
- the first collimating lens group 402 on the optical path of the color LED light source comprises: a red LED light source 403 for generating a red light beam and a second collimating lens group 404 disposed on the optical path of the red LED light source 403
- the green light source device includes: a green LED light source 405 and a third collimating lens group 406 disposed on the optical path of the green LED light source 405, a blue excitation light source 407, and a fourth collimation disposed on the optical path of the blue excitation light source 407
- the lens group 408; the first dichroic mirror 409 and the second dichroic mirror 410 are disposed in parallel.
- the first dichroic mirror 409 is disposed on the optical path of the outgoing beams of the red LED light source 403, the blue excitation light source 407, and the green LED light source 405 for combining the red light beam and the green fluorescent light beam.
- the second dichroic mirror 410 is disposed on the blue excitation beam, the blue light beam, and the outgoing light path of the red and green fluorescent beams that are combined by the first dichroic mirror 409 for transmitting the blue LED.
- the light source 401 and the red light beam and the green light reflected by the first dichroic mirror 409 The fluorescent beam is combined with the reflected and transmitted blue, red and green fluorescent beams.
- the blue excitation beam is transmitted through the second dichroic mirror 410, and then reflected by the first dichroic mirror 409 to the surface of the green LED light source 405 and the light beam generated by the green LED light source 405 itself is excited to generate the phosphor layer. Green fluorescent beam.
- the blue light beam generated by the blue LED light source 401 is collimated by the first collimating lens group 402 and transmitted through the second dichroic mirror 410.
- the red light beam generated by the red LED light source 403 is first collimated by the second collimating lens group 404, and is transmitted through the first dichroic mirror 409 to be combined with the green fluorescent light beam and reflected by the second dichroic mirror 410.
- the green fluorescent light beam is reflected by the first dichroic mirror 409, combined with the red light beam transmitted through the first dichroic mirror 409, and then reflected by the second dichroic mirror 410, and transmitted through the second dichroic mirror 410.
- the color beam is combined to form a white light beam.
- the central optical axis of the red LED light source 403 is parallel to the central optical axis of the blue excitation light source 407, and is perpendicular to the central optical axes of the blue LED light source 401 and the green LED light source 405.
- the first dichroic mirror 409 and the second dichroic mirror 410 are not limited to being disposed in parallel, and may be vertically disposed according to a placement position of a specific light source device.
- the positions of the blue LED light source device and the red LED light source device can be mutually exchanged, as long as the red LED light source 403 and the blue LED light source 401 and the green fluorescent light source 401 after the transmission and reflection through the dichroic mirror can be combined You can shoot in one direction.
- the central optical axis of the blue LED light source 401 is parallel to the central optical axis of the blue excitation light source 407, and both are associated with the red LED light source. 401 is perpendicular to the central optical axis of the green LED source 405.
- Embodiment 5 is a diagrammatic representation of Embodiment 5:
- the projection system includes: a projection light source for generating a projection illumination beam; a fly-eye lens 10; an illumination beam reflection device 20; beam guiding device; display chip 50 and projection lens 60.
- the illumination beam reflecting device 20 may be a reflective lens or a curved mirror; the beam guiding device may be composed of the relay lens 30 and the glue prism group 40; or the relay lens 30 and the free-form lens 40 composition.
- an anti-reflection film or an anti-reflection film may be plated as needed; the projection light source structure of the present invention is not limited to the above four types.
- the manner of generating green fluorescence by irradiating the phosphor layer on the green LED light source by the blue excitation light source belongs to the protection range of the present invention.
- the light source devices of the respective colors are preferably disposed on the same plane, so that the arrangement can make the structure more compact.
- the light source devices of different colors can be disposed not in the same plane according to the specific structure or environment, as long as The object of the present invention can be achieved by the green fluorescence generated by the excitation and the blue light beam and the red light beam being reflected and transmitted through the dichroic mirror and finally combined and emitted.
- each color light source is reflected and transmitted by providing two or more dichroic mirrors, wherein the blue excitation light source is reflected by the dichroic mirror or transmitted to the green LED light source and the green LED light source itself.
- the beams are oppositely excited to generate a green fluorescent light beam, the green fluorescent light beam and the blue light beam generated by the blue LED light source device, and the red light beam generated by the red LED light source device are reflected or transmitted through the dichroic mirror to be combined and emitted.
- the brightness of the green light source is enhanced, and the brightness of the projection light source is enhanced; and because of the setting of the dichroic mirror, the structure is simple and reasonable, the layout is compact, the structure setting can be flexible, and the green light source is greatly enhanced.
- the brightness improves the projection quality and solves the problem of insufficient brightness of the light source in the projection light source.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Projection Apparatus (AREA)
- Non-Portable Lighting Devices Or Systems Thereof (AREA)
Abstract
一种增强光亮的投影光源及其投影系统,投影光源包括:产生蓝色光束的蓝色LED光源装置、产生红色光束的红色LED光源装置、产生绿色荧光光束的绿色光源装置以及分色镜组;绿色光源装置包括:绿色LED光源(105)以及设置在绿色LED光源(105)光路上的第三准直透镜组(106),蓝色激发光源(107)以及设置于蓝色激发光源(107)光路上的第四准直透镜组(108);分色镜组包括第一分色镜(109)和第二分色镜(110);绿色LED光源(105)表面覆盖有荧光粉层,蓝色激发光源(107)所产生的蓝色激发光束经由分色镜组反射和/或透射后照射到绿色LED光源(105)表面与绿色LED光源(105)自身的发光芯片所产生的光束相向激发荧光粉层产生绿色荧光光束;经由第一分色镜(109)和第二分色镜(110)透射和/或反射的蓝色光束、红色光束以及绿色荧光光束合成白光光束。
Description
本实用新型涉及数字投影显示技术领域,更具体地说,涉及一种增强光亮的投影光源及其投影系统。
在投影显示产品中,投影显示光源是十分重要的部件。投影光源的功能在于尽可能多地将光束发出的大角度分布、形状不一、亮度不等的照明光线,转换为照射到显示芯片有效区域的均匀光斑,实现均匀、明亮的投影显示画面。投影模组要得到更好地应用,带给用户更好的视觉享受,就要在保持投影光路设计简洁高效的前提下,满足尺寸小、光损耗低并且增强光照强度使具有高的光输出,这也成为本领域技术人员有待解决的技术问题之一。
目前,一般是采用蓝色激光光源和LED光源结合,利用蓝色激光光源激发色轮上的绿色荧光粉产生绿光光束来提高投影光源的光亮度;如图1所示,蓝色激光光源1经透射激发色轮7上的荧光粉层产生绿色荧光光束,再与红色LED光源8和蓝色LED光源14分别产生的红色光束和蓝色光束进行合光;又或者是蓝色激光光源直接照射带有荧光粉层的绿色LED光源来提高投影光源的光亮度;如图2所示,LD系统经透射后照射到绿色LED光源上激发荧光粉层产生绿色荧光光束,绿色荧光光束与绿色LED光束合光进入下一光学装置。但是,采用激发色轮上的荧光粉层产生绿色光源的方法因高速旋转易产生光圈效应,图像不稳定,画质较差;而采用LD系统直接透射激发荧光粉层的方法则因光源的位置设置比较受限,不够灵活,
结构上也不够紧凑。基于上述原因,一种可克服色轮对投影画质的影响,且布局灵活,结构紧凑的增强光亮的投影光源成为本领域的研究重点之一。
实用新型内容
针对上述技术问题,本实用新型的目的在于提供一种结构简单合理,布局紧凑,亮度高,投影质量好的增强光亮的投影光源。
为实现上述目的,本实用新型提供了一种增强光亮的投影光源,包括:蓝色LED光源装置、红色LED光源装置、用于产生绿色荧光光束的绿色光源装置以及分色镜组;其中,所述蓝色LED光源装置包括:用于产生蓝色光束的蓝色LED光源以及设置于蓝色LED光源光路上的第一准直透镜组;所述红色LED光源装置包括:用于产生红色光束的红色LED光源以及设置于红色LED光源光路上的第二准直透镜组;所述绿光光源装置包括:绿色LED光源以及设置在绿色LED光源光路上的第三准直透镜组,蓝色激发光源以及设置于蓝色激发光源光路上的第四准直透镜组;所述分色镜组包括:第一分色镜和第二分色镜;所述绿色LED光源表面带有荧光粉层,蓝色激发光源所产生的蓝色激发光束经由分色镜组反射和/或透射后照射到绿色LED光源与绿色LED光源自身的发光芯片所产生的光束相向激发荧光粉层产生绿色荧光光束;经由所述第一分色镜和第二分色镜透射和/或反射的蓝色光束、红色光束以及绿色荧光光束合成白光光束。
根据优选实施例,所述第一分色镜和第二分色镜平行或垂直设置;所述第一分色镜设置于所述红色LED光源、蓝色激发光源以及绿色LED光源的出射光束的光路上,用于对红色光束和绿色荧光光束进行合光;所述第二分色镜设置于所述蓝色激发光束、蓝色光束,以及经第一分色镜合光后的红色光束和绿色荧光光束的出射光路上;所述蓝色激发光束经第二分色镜反射,第一分色镜透射后照射到绿色LED光源与绿色LED光源自身的发光芯片所产生的光束相向激发荧光粉层产生绿色荧光光束;所述绿色荧光
光束经由第一分色镜透射后与经由第一分色镜反射的红色光束进行合光然后经由第二分色镜透射,与经由第二分色镜反射的蓝色光束进行合光形成白光光束出射。
根据优选实施例,所述第一分色镜和第二分色镜平行设置;所述红色LED光源的中心光轴和蓝色LED光源以及蓝色激发光源的中心光轴平行,均与绿色LED光源的中心光轴垂直;所述蓝色激发光源和蓝色LED光源分别设置于第二分色镜的上侧和下侧,相向出光;所述红色LED光源和蓝色LED光源分别设置于第一分色镜和第二分色镜的下侧,同向出光。
根据优选实施例,所述第一分色镜和第二分色镜垂直设置;所述红色LED光源的中心光轴和蓝色LED光源以及蓝色激发光源的中心光轴平行,均与绿色LED光源的中心光轴垂直;所述蓝色激发光源和蓝色LED光源分别设置于第二分色镜的上侧和下侧,相向出光;所述红色LED光源和蓝色激发光源分别设置于第一分色镜和第二分色镜的上侧,同向出光。
根据优选实施例,所述第一分色镜和第二分色镜平行设置;所述第一分色镜设置于所述红色LED光源、蓝色激发光源以及绿色LED光源的出射光束的光路上,用于对红色光束和绿色荧光光束进行合光;所述第二分色镜设置于所述蓝色激发光束、蓝色光束,以及经第一分色镜合光后的红色光束和绿色荧光光束的出射光路上;所述蓝色激发光束先后经第二分色镜和第一分色镜反射后照射到绿色LED光源与绿色LED光源自身的发光芯片所产生的光束相向激发荧光粉层产生绿色荧光光束;所述绿色荧光光束经由第一分色镜反射后与经由第一分色镜透射的红色光束进行合光然后经由第二分色镜透射,与经由第二分色镜反射的蓝色光束进行合光形成白光光束出射。
根据优选实施例,所述红色LED光源的中心光轴和蓝色LED光源以及蓝色激发光源的中心光轴平行,均与绿色LED光源的中心光轴垂直;所述蓝色LED光源和蓝色激发光源分别设置于第二分色镜的上下两侧,相向出
光。
根据优选实施例,所述第一分色镜和第二分色镜平行设置;所述第一分色镜设置于所述红色LED光源、蓝色激发光源以及绿色LED光源的出射光束的光路上,用于对红色光束和绿色荧光光束进行合光;所述第二分色镜设置于所述蓝色激发光束、蓝色光束,以及经第一分色镜合光后的红色光束和绿色荧光光束的出射光路上;所述蓝色激发光束先经第二分色镜透射后经第一分色镜反射照射到绿色LED光源与绿色LED光源自身的发光芯片所产生的光束相向激发荧光粉层产生绿色荧光光束;所述绿色荧光光束经由第一分色镜反射后与经由第一分色镜透射的红色光束进行合光然后经由第二分色镜反射,与经由第二分色镜透射的蓝色光束进行合光形成白光光束出射。
根据优选实施例,所述红色LED光源的中心光轴和蓝色激发光源的中心光轴平行,均与蓝色LED光源和绿色LED光源的中心光轴垂直。
根据优选实施例,所述第一分色镜和第二分色镜与蓝色LED光源、红色LED光源、蓝色激发光源以及绿色LED光源的中心光轴方向的夹角均为45°。
根据优选实施例,所述蓝色激发光源为LED光源或者激光光源。
另外,本实用新型还提供了一种投影系统,包括:以上所述的任一种投影光源;复眼透镜;照明光束反射装置;光束导引装置;显示芯片及投影镜头;其中,照明光束反射装置可以为反射镜片或者曲面反射镜;所述光束导引装置可以由中继透镜和胶合棱镜组组成;或者由中继透镜和自由曲面透镜组成。
与现有技术相比,本实用新型具有如下有益效果:本实用新型中,通过设置两个或多个分色镜对各色光源进行反射和透射,其中蓝色激发光源所
产生的蓝色激发光束经由分色镜组反射和/或透射后照射到绿色LED光源与绿色LED光源自身的发光芯片所产生的光束相向激发荧光粉层产生绿色荧光光束,绿色荧光光束与蓝色LED光源装置产生的蓝色光束,以及红色LED光源装置产生的红色光束经过分色镜组的反射和/或透射后合成白光出射,大大增强了绿光光源亮度,增强了投影光源亮度,且由于分色镜的设置,使得结构设置灵活,布局紧凑。
图1是现有技术荧光色轮结构激发的投影光源结构图;
图2是现有技术荧光粉层直接激发的投影仪光学系统;
图3是本实用新型的增强光亮的投影光源实施例一的结构示意图;
图4是本实用新型的增强光亮的投影光源实施例二的结构示意图;
图5是本实用新型的增强光亮的投影光源实施例二的结构示意图;
图6是本实用新型的增强光亮的投影光源实施例二的结构示意图;
图7是本实用新型的增强光亮的投影光源的投影系统的机构示意图。
下面结合附图,对本实用新型的具体实施方式进行详细描述,但应当理解本实用新型的保护范围并不受具体实施方式的限制。
除非另有其它明确表示,否则在整个说明书和权利要求书中,术语“包括”或其变换如“包含”或“包括有”等等将被理解为包括所陈述的元件或组成部分,而并未排除其它元件或其它组成部分。
实施例一:
图3是本实用新型的增强光亮的投影光源实施例一的结构示意图;如图3所示,根据本实用新型具体实施方式的增强光亮的投影光源,包括:蓝色LED光源装置、红色LED光源装置、用于产生绿色荧光光束的绿色光源装置以及分色镜组;
其中,所述蓝色LED光源装置包括:用于产生蓝色光束的蓝色LED光源101以及设置于蓝色LED光源光路上的第一准直透镜组102;所述红色LED光源装置包括:用于产生红色光束的红色LED光源103以及设置于红色LED光源光路上的第二准直透镜组104;所述绿光光源装置包括:绿色LED光源105以及设置在绿色LED光源光路上的第三准直透镜组106,蓝色激发光源107以及设置于蓝色激发光源107光路上的第四准直透镜组108;所述分色镜组包括:平行设置的第一分色镜109和第二分色镜110。
所述绿色LED光源105包括:LED发光芯片和发光芯片表面的荧光粉层。所述蓝色激发光源107经第二分色镜110反射,第一分色镜109透射后照射到绿色LED光源105表面与绿色LED光源105自身的发光芯片所产生的光束相向激发荧光粉层产生绿色荧光光束。
所述第一分色镜109设置于所述红色LED光源103、蓝色激发光源107以及绿色LED光源105的出射光束的光路上,用于反射蓝色激发光束,并对红色光束和绿色荧光光束进行合光。
所述第二分色镜110设置于所述蓝色激发光束、蓝色光束,以及经第一分色镜109合光后的红色光束和绿色荧光光束的出射光路上,用于对所述蓝色激发光束和蓝色光束进行反射以及对经所述第一分色镜109合光的绿色荧光光束和红色光束进行透射,并将经透射反射后的绿色荧光光束,蓝色光束和红色光束进行合光。
所述蓝色LED光源101产生的蓝色光束经第一准直透镜组102准直后,经由第二分色镜110反射。
所述红色LED光源103产生的红色光束先经第二准直透镜组104准直后,经由第一分色镜109反射与绿色荧光光束合光并经所述第二分色镜110透射。
所述绿色荧光光束经由第一分色镜109透射后与经由第一分色镜109反射的红色光束进行合光然后经由第二分色镜110透射,与经由第二分色镜110反射的蓝色光束进行合光形成白光光束出射。
在本实施例中,所述红色LED光源103的中心光轴和蓝色LED光源101以及蓝色激发光源107的中心光轴平行,均与绿色LED光源105的中心光轴垂直;所述蓝色激发光源107和蓝色LED光源101分别设置于第二分色镜110的两侧,相向出光;所述红色LED光源103和蓝色LED光源101分别设置于第一分色镜109和第二分色镜110的同侧,同向出光。
在本实施例中,所述第一分色镜109和第二分色镜110平行设置,与蓝色LED光源101、红色LED光源103、蓝色激发光源107以及绿色LED光源105的中心光轴方向的夹角均为45°。
在本实施例中,所述蓝色激发光源107可以为LED光源或者激光光源等固态光源。
实施例二:
图4是本实用新型的增强光亮的投影光源实施例二的结构示意图;如图4所示,所述蓝色LED光源装置包括:用于产生蓝色光束的蓝色LED光源201以及设置于蓝色LED光源201光路上的第一准直透镜组202;所述红色LED光源装置包括:用于产生红色光束的红色LED光源203以及设置于红色LED光源光路上的第二准直透镜组204;所述绿光光源装置包
括:绿色LED光源205以及设置在绿色LED光源205光路上的第三准直透镜组206,蓝色激发光源207以及设置于蓝色激发光源207光路上的第四准直透镜组208。
与实施例一不同的是,实施例二中,所述分色镜组包括:垂直设置的第一分色镜209和第二分色镜210;所述红色LED光源203的中心光轴和蓝色LED光源201以及蓝色激发光源207的中心光轴平行,均与绿色LED光源205的中心光轴垂直;所述蓝色激发光源207和蓝色LED光源201分别设置于第二分色镜210的上侧和下侧,相向出光;所述红色LED光源203和蓝色激发光源201分别设置于第一分色镜209和第二分色镜210的上侧,同向出光。
本实施例中,所述绿色LED光源205包括:LED发光芯片和发光芯片表面的荧光粉层。所述蓝色激发光源207经第二分色镜210反射,第一分色镜209透射后照射到绿色LED光源205表面与绿色LED光源205自身的发光芯片所产生的光束相向激发荧光粉层产生绿色荧光光束。
所述第一分色镜209设置于所述红色LED光源203、蓝色激发光源207以及绿色LED光源205的出射光束的光路上,用于反射蓝色激发光束,并对红色光束和绿色荧光光束进行合光。
所述第二分色镜210设置于所述蓝色激发光束、蓝色光束,以及经第一分色镜209合光后的红色光束和绿色荧光光束的出射光路上,用于对所述蓝色激发光束和蓝色光束进行反射以及对经所述第一分色镜209合光的绿色荧光光束和红色光束进行透射,并将经透射反射后的绿色荧光光束,蓝色光束和红色光束进行合光。
所述蓝色LED光源201产生的蓝色光束经第一准直透镜组202准直后,经由第二分色镜210反射。
所述红色LED光源203产生的红色光束先经第二准直透镜组204准直后,经由第一分色镜209反射与绿色荧光光束合光并经所述第二分色镜210透射。
所述绿色荧光光束经由第一分色镜209透射后与经由第一分色镜209反射的红色光束进行合光然后经由第二分色镜210透射,与经由第二分色镜210反射的蓝色光束进行合光形成白光光束出射。
在本实施例中,所述第一分色镜209和第二分色镜210平行设置,与蓝色LED光源101、红色LED光源203、蓝色激发光源207以及绿色LED光源205的中心光轴方向的夹角均为45°。
在本实施例中,所述蓝色激发光源207可以为LED光源或者激光光源等固态光源。
其中,所述蓝色LED光源装置与红色LED光源装置的位置可以相互调换,只要能保证经过分色镜透射和反射后的红色LED光源203和蓝色LED光源201与绿色荧光光束可以合光沿一个方向出射即可。
实施例三:
图5是本实用新型的增强光亮的投影光源实施例三的结构示意图;如图5所示,所述蓝色LED光源装置包括:用于产生蓝色光束的蓝色LED光源301以及设置于蓝色LED光源301光路上的第一准直透镜组302;所述红色LED光源装置包括:用于产生红色光束的红色LED光源303以及设置于红色LED光源光路上的第二准直透镜组304;所述绿光光源装置包括:绿色LED光源305以及设置在绿色LED光源305光路上的第三准直透镜组306,蓝色激发光源307以及设置于蓝色激发光源307光路上的第四准直透镜组308;所述第一分色镜309和第二分色镜310平行设置。
与实施例一不同的是,所述第一分色镜309用于反射蓝色激发光束以
及绿色荧光光束,以及透射红色光束。
所述第一分色镜309设置于所述红色LED光源303、蓝色激发光源307以及绿色LED光源305的出射光束的光路上,用于对红色光束和绿色荧光光束进行合光。
所述第二分色镜310设置于所述蓝色激发光束、蓝色光束,以及经第一分色镜309合光后的红色光束和绿色荧光光束的出射光路上;用于反射蓝色LED光束,以及透射经第一分色镜309合光后的红色光束和绿色荧光光束,并对经反射和透射后的蓝色光束,红色光束和绿色荧光光束进行合光。
所述蓝色激发光束先后经第二分色镜310和第一分色镜309反射后照射到绿色LED光源305表面与绿色LED光源305自身的发光芯片所产生的光束相向激发荧光粉层产生绿色荧光光束。
所述蓝色LED光源301产生的蓝色光束经第一准直透镜组302准直后,经由第二分色镜310反射。
所述红色LED光源303产生的红色光束先经第二准直透镜组304准直后,经由第一分色镜309透射与绿色荧光光束合光并经所述第二分色镜310透射。
所述绿色荧光光束经由第一分色镜309反射后与经由第一分色镜309透射的红色光束进行合光然后经由第二分色镜310透射,与经由第二分色镜310反射的蓝色光束进行合光形成白光光束出射。
在本实施例中,所述红色LED光源303的中心光轴和蓝色LED光源301,蓝色激发光源307的中心光轴,以及绿色LED光源305的中心光轴垂直;所述蓝色LED光源301和蓝色激发光源307分别设置于第二分色镜310的两侧,相向出光。
其中,所述第一分色镜309和第二分色镜310不限于平行设置,也可以根据具体的光源装置的摆放位置垂直设置。
其中,所述蓝色LED光源装置与红色LED光源装置的位置可以相互调换,只要能保证经过分色镜透射和反射后的红色LED光源303和蓝色LED光源301与绿色荧光光束可以合光沿一个方向出射即可。
其中,若所述蓝色LED光源装置与红色LED光源装置的位置相互调换,则所述蓝色LED光源301的中心光轴与绿色LED光源305的中心光轴,蓝色激发光源307的中心光轴,以及红色LED光源303的中心光轴垂直。
实施例四:
图6是本实用新型的增强光亮的投影光源实施例四的结构示意图;如图6所示,所述蓝色LED光源装置包括:用于产生蓝色光束的蓝色LED光源401以及设置于蓝色LED光源光路上的第一准直透镜组402;所述红色LED光源装置包括:用于产生红色光束的红色LED光源403以及设置于红色LED光源403光路上的第二准直透镜组404;所述绿光光源装置包括:绿色LED光源405以及设置在绿色LED光源405光路上的第三准直透镜组406,蓝色激发光源407以及设置于蓝色激发光源407光路上的第四准直透镜组408;所述第一分色镜409和第二分色镜410平行设置。
所述第一分色镜409设置于所述红色LED光源403、蓝色激发光源407以及绿色LED光源405的出射光束的光路上,用于对红色光束和绿色荧光光束进行合光。
所述第二分色镜410设置于所述蓝色激发光束、蓝色光束,以及经第一分色镜409合光后的红色光束和绿色荧光光束的出射光路上,用于透射蓝色LED光源401,以及反射经第一分色镜409合光后的红色光束和绿色
荧光光束,并对经反射和透射后的蓝色光束,红色光束和绿色荧光光束进行合光。
所述蓝色激发光束先经第二分色镜410透射后经第一分色镜409反射照射到绿色LED光源405表面与绿色LED光源405自身的发光芯片所产生的光束相向激发荧光粉层产生绿色荧光光束。
所述蓝色LED光源401产生的蓝色光束经第一准直透镜组402准直后,经由第二分色镜410透射。
所述红色LED光源403产生的红色光束先经第二准直透镜组404准直后,经由第一分色镜409透射与绿色荧光光束合光并经所述第二分色镜410反射。
所述绿色荧光光束经由第一分色镜409反射后与经由第一分色镜409透射的红色光束进行合光然后经由第二分色镜410反射,与经由第二分色镜410透射的蓝色光束进行合光形成白光光束出射。
在本实施例中,所述红色LED光源403的中心光轴和蓝色激发光源407的中心光轴平行,均与蓝色LED光源401和绿色LED光源405的中心光轴垂直。
其中,所述第一分色镜409和第二分色镜410不限于平行设置,也可以根据具体的光源装置的摆放位置垂直设置。
其中,所述蓝色LED光源装置与红色LED光源装置的位置可以相互调换,只要能保证经过分色镜透射和反射后的红色LED光源403和蓝色LED光源401与绿色荧光光束可以合光沿一个方向出射即可。
其中,若所述蓝色LED光源装置与红色LED光源装置的位置相互调换,则所述蓝色LED光源401的中心光轴与和蓝色激发光源407的中心光轴平行,均与红色LED光源401和绿色LED光源405的中心光轴垂直。
实施例五:
图7是本实用新型的增强光亮的投影光源的投影系统的机构示意图;如图7所示,所述投影系统,包括:投影光源,用以产生投影照明光束;复眼透镜10;照明光束反射装置20;光束导引装置;显示芯片50及投影镜头60。
在本实施例中,照明光束反射装置20可以为反射镜片或者曲面反射镜;所述光束导引装置可以由中继透镜30和胶合棱镜组40组成;或者由中继透镜30和自由曲面透镜40组成。
值得注意的是,上述实施例中,为了提高所述分色镜的反射或透射效率,可根据需要镀上增反膜或者增透膜;本实用新型的投影光源结构并不限制于上述四种实施例,凡是通过蓝色激发光源照射绿色LED光源上的荧光粉层的方式产生绿色荧光的方式均属于本实用新型的保护范围。
本实用新型实施例中,所述的各色光源装置优选设置于同一个平面,这样设置可以使得结构更加紧凑,当然也可以根据具体结构或者环境的需要将各色光源装置设置不在同一个平面,只要使得通过激发产生的绿色荧光以及蓝色光束和红色光束经过分色镜反射和透射后最终能合光出射,能够实现本实用新型的目的即可。
本发明中,通过设置两个或多个分色镜对各色光源进行反射和透射,其中蓝色激发光源经分色镜反射或者透射后照射到绿色LED光源与绿色LED光源自身的发光芯片所产生的光束相向激发荧光粉层产生绿色荧光光束,绿色荧光光束与蓝色LED光源装置产生的蓝色光束,以及红色LED光源装置产生的红色光束经过分色镜的反射或者透射进行合光出射,大大增强了绿光光源亮度,增强了投影光源亮度;且由于分色镜的设置,使得结构简单合理,布局紧凑,结构设置可灵活多变,大大增强了绿光光源的
亮度,提高了投影质量,解决了投影光源中光源亮度不足的难题。
前述对本实用新型的具体示例性实施方案的描述是为了说明和例证的目的。这些描述并非想将本实用新型限定为所公开的精确形式,并且很显然,根据上述教导,可以进行很多改变和变化。对示例性实施例进行选择和描述的目的在于解释本实用新型的特定原理及其实际应用,从而使得本领域的技术人员能够实现并利用本实用新型的各种不同的示例性实施方案以及各种不同的选择和改变。本实用新型的范围意在由权利要求书及其等同形式所限定。
Claims (10)
- 一种增强光亮的投影光源,其特征在于,包括:蓝色LED光源装置、红色LED光源装置、用于产生绿色荧光光束的绿色光源装置以及分色镜组;其中,所述蓝色LED光源装置包括:用于产生蓝色光束的蓝色LED光源以及设置于蓝色LED光源光路上的第一准直透镜组;所述红色LED光源装置包括:用于产生红色光束的红色LED光源以及设置于红色LED光源光路上的第二准直透镜组;所述绿光光源装置包括:绿色LED光源以及设置在绿色LED光源光路上的第三准直透镜组,蓝色激发光源以及设置于蓝色激发光源光路上的第四准直透镜组;所述分色镜组包括:第一分色镜和第二分色镜;所述绿色LED光源表面带有荧光粉层,蓝色激发光源所产生的蓝色激发光束经由分色镜组反射和/或透射后照射到绿色LED光源表面与绿色LED光源自身的发光芯片所产生的光束相向激发荧光粉层产生绿色荧光光束;经由所述第一分色镜和第二分色镜透射和/或反射的蓝色光束、红色光束以及绿色荧光光束合成白光光束。
- 根据权利要求1所述的投影光源,其特征在于,所述第一分色镜和第二分色镜平行或垂直设置;所述第一分色镜设置于所述红色LED光源、蓝色激发光源以及绿色 LED光源的出射光束的光路上,用于对红色光束和绿色荧光光束进行合光;所述第二分色镜设置于所述蓝色激发光束、蓝色光束,以及经第一分色镜合光后的红色光束和绿色荧光光束的出射光路上;所述蓝色激发光束经第二分色镜反射及第一分色镜透射后照射到绿色LED光源表面与绿色LED光源自身的发光芯片所产生的光束相向激发荧光粉层产生绿色荧光光束;所述蓝色光束经由第二分色镜反射;所述红色光束经由第一分色镜反射与绿色荧光光束合光并经所述第二分色镜透射;所述绿色荧光光束经由第一分色镜透射后与经由第一分色镜反射的红色光束进行合光然后经由第二分色镜透射,与经由第二分色镜反射的蓝色光束进行合光形成白光光束出射。
- 根据权利要求2所述的投影光源,其特征在于,所述第一分色镜和第二分色镜平行设置;所述红色LED光源的中心光轴和蓝色LED光源以及蓝色激发光源的中心光轴平行,均与绿色LED光源的中心光轴垂直;所述蓝色激发光源和蓝色LED光源分别设置于第二分色镜的两侧,相向出光;所述红色LED光源和蓝色LED光源分别设置于第一分色镜和第二分色镜的同侧,同向出光。
- 根据权利要求2所述的投影光源,其特征在于,所述第一分色镜和第二分色镜垂直设置;所述红色LED光源的中心光轴和蓝色LED光源以及蓝色激发光源的中心光轴平行,均与绿色LED光源的中心光轴垂直;所述蓝色激发光源和蓝色LED光源分别设置于第二分色镜的两侧,相向出光;所述红色LED光源和蓝色激发光源分别设置于第一分色镜和第二分色镜的同侧,同向出光。
- 根据权利要求1所述的投影光源,其特征在于,所述第一分色镜和第 二分色镜平行设置;所述第一分色镜设置于所述红色LED光源、蓝色激发光源以及绿色LED光源的出射光束的光路上,用于对红色光束和绿色荧光光束进行合光;所述第二分色镜设置于所述蓝色激发光束、蓝色光束,以及经第一分色镜合光后的红色光束和绿色荧光光束的出射光路上;所述蓝色激发光束先后经第二分色镜和第一分色镜反射后照射到绿色LED光源表面与绿色LED光源自身的发光芯片所产生的光束相向激发荧光粉层产生绿色荧光光束;所述蓝色光束经由第二分色镜反射;所述红色光束先经由第一分色镜透射与绿色荧光光束合光并经所述第二分色镜透射;所述绿色荧光光束经由第一分色镜反射后与经由第一分色镜透射的红色光束进行合光然后经由第二分色镜透射,与经由第二分色镜反射的蓝色光束进行合光形成白光光束出射。
- 根据权利要求5所述的投影光源,其特征在于,所述红色LED光源的中心光轴和蓝色LED光源以及蓝色激发光源的中心光轴平行,均与绿色LED光源的中心光轴垂直;所述蓝色LED光源和蓝色激发光源分别设置于第二分色镜的两侧,相向出光。
- 根据权利要求1所述的投影光源,其特征在于,所述第一分色镜和第二分色镜平行设置;所述第一分色镜设置于所述红色LED光源、蓝色激发光源以及绿色LED光源的出射光束的光路上,用于对红色光束和绿色荧光光束进行合光;所述第二分色镜设置于所述蓝色激发光束、蓝色光束,以及经第一分色镜合光后的红色光束和绿色荧光光束的出射光路上;所述蓝色激发光束先经第二分色镜透射后经第一分色镜反射照射到绿色LED光源表面与绿色LED光源自身的发光芯片所产生的光束相向激发荧光粉层产生绿色荧光光束;所述蓝色光束经由第二分色镜透射;所述红色光束经由第一分色镜透射与绿色荧光光束合光并经所述第二分色镜反射;所述绿色荧光光束经由第一分色镜反射后与经由第一分色镜透射的红色光束进行合光然后经由第二分色镜反射,与经由第二分色镜透射的蓝色光束进行合光形成白光光束出射。
- 根据权利要求7所述的投影光源,其特征在于,所述红色LED光源的中心光轴和蓝色激发光源的中心光轴平行,均与蓝色LED光源和绿色LED光源的中心光轴垂直。
- 根据权利要求1-8任一项所述的投影光源,其特征在于,所述第一分色镜和第二分色镜与蓝色LED光源、红色LED光源、蓝色激发光源以及绿色LED光源的中心光轴方向的夹角均为45°;所述蓝色激发光源为LED光源或者激光光源。
- 一种投影系统,其特征在于,包括:权利要求1-9任一项所述的投影光源;复眼透镜;照明光束反射装置;光束导引装置;显示芯片及投影镜头。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201720549490.XU CN207352345U (zh) | 2017-05-17 | 2017-05-17 | 一种增强光亮的投影光源及其投影系统 |
CN201720549490.X | 2017-05-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018209722A1 true WO2018209722A1 (zh) | 2018-11-22 |
Family
ID=62362448
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/085733 WO2018209722A1 (zh) | 2017-05-17 | 2017-05-24 | 一种增强光亮的投影光源及其投影系统 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN207352345U (zh) |
WO (1) | WO2018209722A1 (zh) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111198475A (zh) * | 2018-11-19 | 2020-05-26 | 无锡视美乐激光显示科技有限公司 | 一种蓝光产生方法及照明系统 |
CN110187595A (zh) * | 2019-06-18 | 2019-08-30 | 吕素萍 | 一种混合投影光源及其形成方法 |
CN114077139A (zh) * | 2020-08-21 | 2022-02-22 | 成都极米科技股份有限公司 | 一种三色光源设备和投影显示设备 |
CN112230517A (zh) * | 2020-10-28 | 2021-01-15 | 晶影光学技术(常熟)有限公司 | 一种高功率、高均匀度微型紫外led照明器 |
CN112305845A (zh) * | 2020-11-13 | 2021-02-02 | 歌尔光学科技有限公司 | 投影光路和投影设备 |
CN214409564U (zh) * | 2021-02-09 | 2021-10-15 | 中强光电股份有限公司 | 照明系统及投影装置 |
WO2023245936A1 (zh) * | 2022-06-23 | 2023-12-28 | 青岛海信激光显示股份有限公司 | 光源装置和投影系统 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110234923A1 (en) * | 2010-03-26 | 2011-09-29 | Panasonic Corporation | Lighting device and projection type image display apparatus using the same |
US20120162614A1 (en) * | 2010-12-28 | 2012-06-28 | JVC Kenwood Corporation | Light Source Device |
CN102789121A (zh) * | 2012-04-10 | 2012-11-21 | 海信集团有限公司 | 一种投影显示光源 |
CN104122742A (zh) * | 2014-08-01 | 2014-10-29 | 杭州瑾丽光电科技有限公司 | 一种激光混合光源投影机及其光源装置 |
CN205750256U (zh) * | 2016-06-17 | 2016-11-30 | 广景视睿科技(深圳)有限公司 | 一种投影照明光路 |
CN106950788A (zh) * | 2017-05-17 | 2017-07-14 | 广景视睿科技(深圳)有限公司 | 一种投影照明光路及其投影装置 |
-
2017
- 2017-05-17 CN CN201720549490.XU patent/CN207352345U/zh active Active
- 2017-05-24 WO PCT/CN2017/085733 patent/WO2018209722A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110234923A1 (en) * | 2010-03-26 | 2011-09-29 | Panasonic Corporation | Lighting device and projection type image display apparatus using the same |
US20120162614A1 (en) * | 2010-12-28 | 2012-06-28 | JVC Kenwood Corporation | Light Source Device |
CN102789121A (zh) * | 2012-04-10 | 2012-11-21 | 海信集团有限公司 | 一种投影显示光源 |
CN104122742A (zh) * | 2014-08-01 | 2014-10-29 | 杭州瑾丽光电科技有限公司 | 一种激光混合光源投影机及其光源装置 |
CN205750256U (zh) * | 2016-06-17 | 2016-11-30 | 广景视睿科技(深圳)有限公司 | 一种投影照明光路 |
CN106950788A (zh) * | 2017-05-17 | 2017-07-14 | 广景视睿科技(深圳)有限公司 | 一种投影照明光路及其投影装置 |
Also Published As
Publication number | Publication date |
---|---|
CN207352345U (zh) | 2018-05-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018209722A1 (zh) | 一种增强光亮的投影光源及其投影系统 | |
WO2018209723A1 (zh) | 一种投影照明光路及其投影装置 | |
US9743053B2 (en) | Light source apparatus and image display apparatus | |
US11243460B2 (en) | Light source device and projection system | |
WO2013152570A1 (zh) | 一种投影显示光源 | |
CN109407450B (zh) | 双色激光光源和激光投影机 | |
TW201542966A (zh) | 照明系統及投影裝置 | |
JP2017058656A (ja) | 照明システム及び投影装置 | |
KR20170036064A (ko) | 발광 장치 및 프로젝션 시스템 | |
KR20150123064A (ko) | 조명장치 및 이를 구비한 투사형 영상표시장치 | |
CN110389486B (zh) | 光源装置及显示设备 | |
JP2012141411A (ja) | 光源装置 | |
CN114391251B (zh) | 光束调制设备和投影系统 | |
CN108803214B (zh) | 光源系统及显示设备 | |
US20200319539A1 (en) | Light source system, projection device of same, and lighting device thereof | |
WO2020216263A1 (zh) | 光源系统和显示设备 | |
CN110471245A (zh) | 光源系统、投影设备及照明设备 | |
WO2019033672A1 (zh) | 双色激光光源和激光投影机 | |
JP2016136461A (ja) | 照明装置及びこれを用いた投射装置 | |
WO2022037196A1 (zh) | 一种三色光源设备和投影显示设备 | |
TWI731105B (zh) | 光源結構及投影系統 | |
CN113608402A (zh) | 照明装置及微型投影仪 | |
WO2020135300A1 (zh) | 光源系统及投影装置 | |
CN109143744A (zh) | 光源系统及应用所述光源系统的投影系统 | |
CN116880119A (zh) | 光源装置和投影设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17910434 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 29/04/2020) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17910434 Country of ref document: EP Kind code of ref document: A1 |