WO2013005573A1 - リアクトル、コンバータ、及び電力変換装置 - Google Patents

リアクトル、コンバータ、及び電力変換装置 Download PDF

Info

Publication number
WO2013005573A1
WO2013005573A1 PCT/JP2012/065798 JP2012065798W WO2013005573A1 WO 2013005573 A1 WO2013005573 A1 WO 2013005573A1 JP 2012065798 W JP2012065798 W JP 2012065798W WO 2013005573 A1 WO2013005573 A1 WO 2013005573A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
reactor
core portion
heat dissipation
converter
Prior art date
Application number
PCT/JP2012/065798
Other languages
English (en)
French (fr)
Inventor
和宏 稲葉
雅幸 加藤
肇 川口
伸一郎 山本
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to US14/129,074 priority Critical patent/US20140140111A1/en
Priority to CN201280030034.4A priority patent/CN103608879B/zh
Publication of WO2013005573A1 publication Critical patent/WO2013005573A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating
    • H01F27/085Cooling by ambient air
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F37/00Fixed inductances not covered by group H01F17/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/02Casings
    • H01F27/022Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/255Magnetic cores made from particles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating
    • H01F27/22Cooling by heat conduction through solid or powdered fillings

Definitions

  • the present invention relates to a reactor used for a component of a power conversion device such as an in-vehicle DC-DC converter, a converter including the reactor, and a power conversion device including the converter.
  • a reactor used for a component of a power conversion device such as an in-vehicle DC-DC converter, a converter including the reactor, and a power conversion device including the converter.
  • it relates to a reactor with excellent heat dissipation.
  • Patent Document 1 discloses a magnetic core that forms a closed magnetic path by a coil, an inner core portion inserted into the coil, and a core portion that covers at least part of the outer periphery of the inner core portion and the coil.
  • the reactor provided with these is disclosed.
  • the entire connecting core part is formed of a mixture (molded and cured body) containing a magnetic material and a resin, and is joined to the inner core part by the above-described constituent resin without an adhesive.
  • the connecting core portion is formed so as to cover substantially all of the end surface and outer peripheral surface of the coil, and the end surface and outer peripheral surface that do not contact the case in the inner core portion (Patent Document). Fig. 1 (A) of 1).
  • the connecting core part is formed so as to cover the entire outer periphery of the coil, the end face of the coil, and both end faces of the inner core part (FIG. 4 of Patent Document 1).
  • the coil and magnetic core generate heat due to energization and the coil and magnetic core become hot.
  • this reactor is normally used by being fixed to an installation target such as a cooling base in order to cool a coil or the like that generates heat when energized.
  • connection core part When the part (connection core part) that covers the outer peripheral surface of the coil in the magnetic core is constituted by a molded and cured body of a magnetic material and resin as disclosed in Patent Document 1, it is compared with a magnetic material such as iron. Usually, a resin having poor thermal conductivity is interposed between the coil and the installation target. Therefore, it is difficult to dissipate heat from the coil that is a heating element. Therefore, even when the molded and cured body is used, development of a configuration that excels in heat dissipation is desired.
  • the present invention has been made in view of the above circumstances, and one of its purposes is to provide a reactor having excellent heat dissipation.
  • Another object of the present invention is to provide a converter including the reactor and a power conversion device including the converter.
  • the present invention achieves the above object by forming a portion that is not covered with a molding hardened body on a part of the outer peripheral surface of a coil or the like that generates heat, and providing a heat dissipation layer with excellent heat dissipation at this location.
  • the reactor of the present invention has a closed magnetic circuit formed by a coil formed by winding a winding, an inner core portion inserted into the coil, and both core portions of the inner core portion and the outer core portion covering the outer peripheral surface of the coil. And a magnetic core that forms The said outer core part is comprised from the mixture containing a magnetic material and resin. Either one of the coil or the inner core portion has an exposed portion where a part of the outer peripheral surface is not covered by the outer core portion, and at least a portion of the exposed portion is in the heat dissipation layer of the heat sink plate portion. It touches.
  • a part of the outer peripheral surface is exposed without being covered by the outer core part in the coil or the inner core part that is heated by energization, so that the exposed exposed part is directly joined to the heat dissipation layer.
  • the heat of the coil and the inner core can be efficiently transmitted to the heat dissipation layer. Therefore, the said heat can be transmitted to installation objects, such as a cooling base, via the said thermal radiation layer, and it is excellent in heat dissipation.
  • the outer core portion can be constituted by a molded and cured body of a magnetic material and a resin.
  • the outer core portion By configuring the outer core portion with the molded hardened body, an outer core portion having a desired shape can be easily formed as compared with a case where the outer core portion is configured with a laminated body of magnetic steel sheets or a compacted body. Further, a part of the outer peripheral surface of the coil having an arbitrary shape can be easily covered with the outer core portion.
  • the mixing ratio of the magnetic material and the resin can be easily changed, an outer core portion having desired magnetic characteristics (mainly inductance) and a magnetic core including the outer core portion can be easily formed.
  • At least a surface of the heat dissipation layer that is in contact with the exposed portion is made of an insulating adhesive.
  • the coil and the heat dissipation plate can be brought into contact with the heat dissipation layer even when the heat dissipation plate portion is made of a conductive material. It can be reliably insulated from the part. Therefore, the heat dissipation layer can be made thin, the heat can be easily transferred to the installation target, and the reactor is excellent in heat dissipation.
  • the thickness of the heat dissipation layer as described above, it is possible to reduce the distance between the installation surface of the coil or the inner core portion and the inner surface of the heat dissipation plate portion, thereby substantially increasing the size of the reactor. No.
  • the coil or the inner core portion can be reliably bonded onto the heat dissipation layer. Also from this point, a reactor excellent in heat dissipation can be obtained.
  • At least a part of the heat dissipation layer is made of an insulating high heat conductive adhesive, and at least a part of the exposed portion is joined to the insulating high heat conductive adhesive.
  • the heat dissipation layer formed on the heat dissipation plate is made of an insulating high heat conductive adhesive, even if the heat dissipation plate is made of a conductive material, the coil is connected to the heat dissipation layer (insulating high heat conductive bonding). By making contact (bonding) with the agent, the coil and the heat radiating plate can be reliably insulated. Therefore, the heat dissipation layer can be made thin, the heat can be easily transferred to the installation target, and the reactor is excellent in heat dissipation.
  • the outer core portion is composed of a mixture of a magnetic material and a resin.
  • the outer core portion is composed of a mixture of a magnetic material and a resin, the mixing ratio of the magnetic material and the resin can be easily changed, so that a reactor having an outer core portion having desired magnetic characteristics can be obtained.
  • Consisting of a mixture of a magnetic material and a resin means being composed of a mixture of only a magnetic material and a resin.
  • the exposed portion is formed on a part of the outer peripheral surface of the coil.
  • heat from the coil which is a heating element
  • the heat dissipation layer By forming the exposed part on the outer peripheral surface of the coil, heat from the coil, which is a heating element, can be efficiently transmitted to the heat dissipation layer, and the heat of the coil can be transmitted to the installation target via the heat dissipation layer. Excellent.
  • the exposed portion is formed continuously from one end to the other end along the axial direction of the coil.
  • the exposed portion is continuously formed from one end to the other end along the axial direction of the coil, so that heat can be uniformly radiated along the axial direction of the coil.
  • the outer core portion is formed by transfer molding or injection molding.
  • Reactors with an outer core formed by transfer molding or injection molding protect the coil and inner core from the external environment such as dust and corrosion, and ensure mechanical properties such as strength. Can be planned. Therefore, it is not necessary to separately provide a component that covers the side surface of the outer core portion, and therefore it is not necessary to separately provide a side wall portion or the like that forms a case integrally with the heat radiating plate portion. That is, the outer peripheral surface other than the contact surface of the outer core portion with the heat radiating plate portion can serve as a side wall of the case. Since there is no need to provide a side wall, the number of parts can be reduced, and the reactor can be downsized.
  • the heat sink plate is a separate member and includes a side wall portion that is disposed around the coil and the magnetic core.
  • a case is formed that covers the side surface and the installation surface of the outer core portion.
  • the outer core part By covering the side surface of the outer core part, it is possible to protect the outer core part from the external environment such as dust and corrosion, and to ensure mechanical properties such as strength.
  • the heat sink part and side wall part which comprise a case are another members, since each can be manufactured separately, the freedom degree of the manufacturing form is large. Therefore, the materials of the heat radiating plate portion and the side wall portion can be different.
  • the side wall portion and the heat radiating plate portion can be integrated after the assembly of the coil and the magnetic core is arranged in the heat radiating plate portion, the assembly workability of the reactor is also excellent.
  • the outer core portion forming step first, the assembly of the coil and the inner core portion is stored in a case in which the heat radiating plate portion and the side wall portion are integrated, and the outer core portion is placed in this case. By pouring a mixture containing the magnetic material and the resin to be formed into a predetermined shape and then curing the resin, the outer core portion can be formed and the reactor can be obtained.
  • a case having a side wall portion formed integrally with the heat radiating plate portion is provided.
  • the case covers the side surface and the installation surface of the outer core portion.
  • the reactor of the present invention can be suitably used as a component part of a converter.
  • the converter of the present invention comprises a switching element, a drive circuit that controls the operation of the switching element, and a reactor that smoothes the switching operation, and converts the input voltage by the operation of the switching element.
  • the reactor can be the reactor of the present invention.
  • the converter according to the present invention can be suitably used as a component part of a power converter.
  • the power converter of the present invention comprises a converter that converts an input voltage and an inverter that is connected to the converter and converts between direct current and alternating current, and drives a load by the power converted by the inverter. Therefore, the converter can be the converter of the present invention.
  • the converter of the present invention and the power conversion device of the present invention can be suitably used for in-vehicle components that are required to have excellent heat dissipation by including the reactor of the present invention having excellent heat dissipation.
  • the reactor of the present invention is excellent in heat dissipation.
  • FIG. 1A is a schematic perspective view of a reactor according to Embodiment 1.
  • FIG. 1B is a cross-sectional view taken along line BB in FIG. 1A.
  • FIG. 2 is an exploded perspective view schematically showing the reactor of the second embodiment.
  • FIG. 3 is a schematic configuration diagram schematically showing a power supply system of a hybrid vehicle.
  • FIG. 4 is a schematic circuit diagram showing an example of the power conversion device of the present invention including the converter of the present invention.
  • the reactor 1 includes a coil 2 formed by winding a winding 2w, an inner core portion 31 inserted into the coil 2, and an outer core portion 32 covering both the inner core portion 31 and the outer peripheral surface of the coil 2. And a magnetic core 3 that forms a closed magnetic path by the portion.
  • a feature of the reactor of the present invention is that either the coil 2 or the inner core portion 31 has an exposed portion 5 in which a part of the outer peripheral surface thereof is not covered by the outer core portion 32, and the exposed portion 5 This is because at least a part of is in contact with the heat dissipation layer 42 of the heat dissipation plate portion 40.
  • the exposed portion 5 is formed on the outer peripheral surface of the coil 2.
  • the coil 2 is a cylindrical body formed by spirally winding one continuous winding 2w.
  • the winding 2w is preferably a coated wire having an insulating coating made of an insulating material on the outer periphery of a conductor made of a conductive material such as copper, aluminum, or an alloy thereof.
  • a coated rectangular wire is used in which the conductor is made of a rectangular copper wire and the insulating coating is made of enamel (typically polyamideimide).
  • the thickness of the insulating coating is preferably 20 ⁇ m or more and 100 ⁇ m or less. The thinner the thickness, the higher the space factor, and the thicker the thickness, the pinholes can be reduced and the electrical insulation can be improved.
  • the insulating coating can also be a multilayer structure made of different materials.
  • a multilayer structure including a polyphenylene sulfide layer on the outer periphery of the polyamideimide layer can be used.
  • Multi-layer insulation coatings are also excellent in electrical insulation.
  • the number of turns (number of turns) of the winding 2w can be selected as appropriate.
  • the coil 2 is formed by edgewise winding the covered rectangular wire. By making the end face shape of the coil 2 circular, the coil can be formed relatively easily even with edgewise winding.
  • the winding 2w can be used in various shapes such as a circular shape and a polygonal shape, in addition to the conductor having a rectangular wire. It is easier to form a coil with a higher space factor by using a rectangular wire than using a round wire having a circular cross section.
  • various shapes such as an elliptical shape and a track shape can be used as the end face shape of the coil.
  • the thing of the form with which a pair of coil element was put side by side so that each axial direction may be parallel can also be utilized for a coil.
  • Both ends of the winding 2w forming the coil 2 are appropriately extended from the turn and drawn to the outside of the outer core portion 32, which will be described later.
  • a terminal member (not shown) made of a conductive material is connected.
  • An external device (not shown) such as a power source for supplying power is connected to the coil 2 through this terminal member.
  • welding such as TIG welding but also crimping or soldering can be used.
  • both end portions of the winding 2w are drawn upward so as to be orthogonal to the axial direction of the coil 2, but the drawing direction can be appropriately selected. Both ends of the winding may be drawn out so as to be parallel to the axial direction of the coil, or the drawing directions of the ends may be made different from each other.
  • the coil 2 is joined to a heat radiating layer 42 formed on a heat radiating plate portion 40 described later in a state where a part (inner core portion 31) of a magnetic core 3 described later is inserted on the inner periphery thereof.
  • the reactor 1 of this embodiment when the reactor 1 is installed on an installation target such as a cooling base, the reactor 1 has a horizontal arrangement in which the axial direction of the coil 2 is joined to the heat radiation layer 42 so as to be parallel to the surface of the installation target.
  • the coil 2 has an exposed portion 5 in which a part of the outer peripheral surface is not covered with the outer core portion 32.
  • the exposed portion 5 is an exposed portion of either the coil 2 or the inner core portion 31 whose outer peripheral surface is not covered by the outer core portion 32. Since at least a part of the exposed portion 5 is directly joined to the heat dissipation layer 42, the heat of the coil 2 and the inner core portion 31 can be efficiently transmitted to the heat dissipation layer 42. Therefore, the heat can be transmitted to an installation target such as a cooling base through the heat dissipation layer 42, and heat dissipation can be improved. Since the coil 2 is a heating element by energization, it is possible to effectively radiate heat by contacting the coil 2 to the heat radiation layer 42 in particular.
  • the exposed portion 5 forms the exposed portion 5 continuously from one end to the other end along the axial direction of the coil 2. In the exposed portion 5, the coil 2 and the heat dissipation layer 42 are joined.
  • the magnetic core 3 includes a cylindrical inner core portion 31 inserted into the coil 2, an outer core formed so as to cover both end surfaces of the inner core portion 31, and a part of the cylindrical outer peripheral surface of the coil 2. Part 32.
  • the inner core portion 31 and the outer core portion 32 form a closed magnetic path when the coil 2 is excited.
  • the magnetic core 3 can have different magnetic characteristics by making the constituent material of the inner core portion 31 different from the constituent material of the outer core portion 32.
  • the saturation magnetic flux density of the inner core portion 31 is higher than the saturation magnetic flux density of the outer core portion 32, and the relative permeability of the outer core portion 32 can be made lower than the relative permeability of the inner core portion 31.
  • the relative permeability of the entire magnetic core 3 is preferably 10 or more and 50 or less. Then, it is easy to adjust the inductance of the reactor 1.
  • the relative magnetic permeability of the entire magnetic core 3 means that when a gap material is interposed in the magnetic core 3 such as between the inner core portion 31 and the outer core portion 32, the inner core portion 31, the outer core portion 32, and the gap material. And the relative permeability of the inner core portion 31 and the outer core portion 32 when the gap material is not interposed in the magnetic core 3.
  • the relative permeability of the inner core portion 31 is preferably 5 or more and 500 or less, and the relative permeability of the outer core portion 32 is preferably 5 or more and 50 or less.
  • the relative magnetic permeability of the inner core portion 31 is preferably 50 or more and 500 or less when the inner core portion 31 is formed of a powder compact, and is 5 or more and 50 when formed of a mixture containing a magnetic material and a resin. The following is preferable.
  • the maximum value of the gradient (B / H) of the obtained B-H initial magnetization curve is the relative permeability of the test piece, and the relative permeability is regarded as the relative permeability of the core part.
  • the magnetization curve here is a so-called DC magnetization curve.
  • the saturation magnetic flux density of the core part is described in the latter stage, but the saturation magnetic flux density is a test when a magnetic field of 10000 (Oe) is applied to the above test piece with an electromagnet and sufficiently magnetically saturated. It is the magnetic flux density of the piece.
  • the inner core portion 31 has a cylindrical outer shape along the shape of the inner peripheral surface of the coil 2, and the entire inner core portion 31 is composed of a compacted body, with a gap material, an air gap, and an adhesive interposed. Not a solid entity.
  • the green compact is typically obtained by molding a soft magnetic powder having an insulating coating on the surface and firing it at a temperature lower than the heat resistance temperature of the insulating coating.
  • a mixed powder in which a binder is appropriately mixed in addition to the soft magnetic powder can be used, or a powder having a coating made of a silicone resin or the like can be used as the insulating coating.
  • the saturation magnetic flux density of the green compact can be changed by adjusting the material of the soft magnetic powder, the mixing ratio of the soft magnetic powder and the binder, the amount of various coatings, and the like.
  • a soft magnetic powder having a high saturation magnetic flux density or increasing the proportion of the soft magnetic material by reducing the blending amount of the binder a green compact having a high saturation magnetic flux density can be obtained.
  • the saturation magnetic flux density tends to be increased by increasing the molding pressure. It is advisable to select the material of the soft magnetic powder and adjust the molding pressure so as to obtain a desired saturation magnetic flux density.
  • iron group metals such as Fe, Co, Ni, Fe-based alloys such as Fe-Si, Fe-Ni, Fe-Al, Fe-Co, Fe-Cr, Fe-Si-Al, rare earth metals Powders such as amorphous magnetic materials can be used.
  • the Fe-based alloy powder is easy to obtain a green compact with a high saturation magnetic flux density.
  • Such a powder can be produced by a gas atomization method, a water atomization method, a mechanical pulverization method, or the like.
  • a powder made of a nanocrystalline material having a nano-sized crystal preferably a powder made of an anisotropic nanocrystalline material
  • a compact with high anisotropy and low coercive force is obtained.
  • the insulating coating formed on the soft magnetic powder is a phosphoric acid compound, a silicon compound, a zirconium compound, an aluminum compound, or a boron compound.
  • the binder is a thermoplastic resin, a non-thermoplastic resin, a higher fatty acid, or the like. This binder disappears by the above baking, or changes to an insulator such as silica.
  • an insulator such as an insulating coating is present on the surface of the soft magnetic powder, so that the soft magnetic powder is insulated from each other, and as a result, eddy current loss can be reduced. Even when a high frequency current is applied to the coil, the loss can be reduced.
  • a well-known thing can be utilized for a compacting body.
  • the content of the soft magnetic powder (magnetic component) in the green compact is preferably 70% by volume or more, and more preferably 80% by volume or more, with the whole green compact being 100% by volume.
  • the inner core portion 31 can be a magnetic member having a high relative magnetic permeability and a high saturation magnetic flux density.
  • the relative permeability of the inner core portion 31 is preferably 50 or more and 500 or less, and the saturation magnetic flux density is preferably 1.0 T or more.
  • the thermal conductivity of the inner core portion 31 is desirably 10 W / m ⁇ K or more.
  • the inner core portion 31 is a mixture (molded and hardened body) containing a magnetic material and a resin similar to the outer core portion 32 described below, instead of the green compact, and an electromagnetic steel plate represented by a silicon steel plate. It can also be set as a laminated body. Further, the cross-sectional shape of the inner core portion 31 is a shape along the shape of the inner peripheral surface of the coil 2, and in addition to a circular shape, various shapes such as an elliptical shape, a track shape, or a polygonal shape can be used. Available.
  • the length of the inner core portion 31 is slightly longer than the length of the coil 2.
  • the “length” is the length of the coil 2 in the axial direction. Therefore, both end surfaces of the inner core portion 31 and the vicinity thereof protrude from the end surface of the coil 2.
  • the protruding length of the inner core portion can be selected as appropriate.
  • the protruding lengths from the respective end faces of the coil 2 are made equal, but they may be made different, or may be protruded only from one of the end faces of the coil 2.
  • the outer core portion 32 may be provided so that a closed magnetic path is formed when the coil 2 is excited.
  • the outer core portion 32 covers substantially all of the both end surfaces of the coil 2 and the outer peripheral surface of the coil 2 that are not in contact with the heat radiation layer 42 described later, and both the end surfaces of the inner core portion 31 and the vicinity thereof. It is formed as follows.
  • the magnetic core 3 forms a closed magnetic path by the outer core portion 32 and the inner core portion 31.
  • the outer core portion 32 and the inner core portion 31 may be joined by the constituent resin of the outer core portion 32 without using an adhesive or a gap material, and the end surfaces of the outer core portion 32 and the inner core portion 31 may be joined together. You may join by interposing an adhesive agent or a gap material between them. Here, the former is adopted.
  • the magnetic core 3 is an integrated product that is integrated without using an adhesive or a gap material over the whole.
  • the gap material is a nonmagnetic material (alumina, glass epoxy resin, unsaturated polyester, etc.), or the gap is an air gap.
  • the outer core portion 32 covers substantially all the portions of the coil 2 that are not in contact with the heat dissipation layer 42. Therefore, in the reactor 1, the outer core portion 32 can protect the coil 2 and the inner core portion 31 from the external environment such as dust and corrosion, and ensure mechanical properties such as strength.
  • the outer core portion 32 is entirely formed of a mixture (molded and cured body) containing a magnetic material and a resin.
  • the molded cured body can be typically formed by transfer molding, injection molding, MIM (Metal Injection Molding), cast molding, press molding using magnetic powder and powdered solid resin, or the like. Transfer molding, injection molding, and MIM are usually performed by mixing a powder made of a magnetic material (mixed powder with non-magnetic powder added if necessary) and a flowable binder resin. After applying pressure and pouring into a molding die, the binder resin is cured. In the cast molding, the mixed fluid is injected into a molding die without applying pressure, and is molded and cured.
  • MIM Metal Injection Molding
  • the same magnetic powder as that used for the inner core portion 31 described above can be used as the magnetic powder.
  • the soft magnetic powder used for the outer core portion 32 one made of an iron-based material such as pure iron powder or Fe-based alloy powder can be suitably used. You may utilize the coating powder which provides the film which consists of a phosphate etc. on the surface of the particle
  • the magnetic powder it is easy to use a powder having an average particle diameter of 1 ⁇ m to 1000 ⁇ m, and more preferably 10 ⁇ m to 500 ⁇ m.
  • thermosetting resin such as an epoxy resin, a phenol resin, or a silicone resin
  • the binder resin When a thermosetting resin is used, the molded body is heated to thermally cure the resin.
  • a normal temperature curable resin or a low temperature curable resin may be used as the binder resin. In this case, the resin is cured at room temperature or a relatively low curing temperature. Since a relatively large amount of resin, which is a non-magnetic material, remains in the molded hardened body, even when the same soft magnetic powder as that of the green compact forming the inner core portion 31 is used, the saturation magnetic flux density is higher than that of the green compact. And a core having a low relative permeability can be easily formed.
  • a filler made of ceramics such as alumina or silica may be mixed in addition to the magnetic material powder and the resin serving as the binder.
  • the filler having a specific gravity smaller than that of the magnetic material powder uneven distribution of the magnetic material powder is suppressed, and an outer core portion in which the magnetic material powder is uniformly dispersed can be easily obtained.
  • the said filler is comprised from the material excellent in thermal conductivity, it can contribute to the improvement of heat dissipation.
  • the total content of the magnetic material powder and the filler is 20% to 70% by volume, with the entire outer core portion being 100% by volume.
  • the molded and hardened body may be composed of a mixture made of only a magnetic material and a resin.
  • the relative magnetic permeability and saturation magnetic flux density can be adjusted. For example, when the blending amount of the magnetic material powder is reduced, the relative permeability tends to decrease.
  • the relative permeability and saturation magnetic flux density of the outer core portion may be adjusted so that the reactor has a desired inductance. It is desirable that the relative permeability of the outer core portion 32 is 5 or more and 50 or less, and the saturation magnetic flux density is 0.6 T or more, further 0.8 T or more.
  • the thermal conductivity of the outer core portion 32 is desirably 0.25 W / m ⁇ K or more.
  • the heat radiating plate 40 is a substantially rectangular plate, and is fixed in contact with an installation target such as a cooling base. In the example shown in FIGS. 1A and 1B, an installation state in which the heat radiating plate portion 40 is downward is shown, but there may be an installation state in which the heat radiating plate portion 40 is upward or lateral.
  • a heat radiating layer 42 is formed on one surface where the combination of the coil 2 and the magnetic core 3 is installed.
  • the external shape of the heat sink 40 can be selected as appropriate.
  • the heat radiating plate portion 40 has mounting portions 400 protruding from the four corners, and is provided with bolt holes 400h through which bolts (not shown) to be fixed to an installation target such as a cooling base are inserted. Yes.
  • the bolt hole 400h any of a through hole that is not threaded and a screw hole that is threaded can be used, and the number of the holes can be selected as appropriate.
  • the heat sink part 40 can be a heat sink part with excellent heat dissipation.
  • the metal material of the heat sink 40 aluminum and its alloys, magnesium (thermal conductivity: 156W / m ⁇ K) and its alloys, copper (398W / m ⁇ K) and its alloys, silver (427W / m) ⁇ K) and its alloys, iron, austenitic stainless steel (for example, SUS304: 16.7W / m ⁇ K), etc. can be used.
  • Use of the above aluminum, magnesium, and alloys thereof can contribute to reducing the weight of the reactor.
  • the heat radiating plate portion 40 is formed of a metal material, it can be formed by plastic working such as press working as well as casting such as die casting.
  • the heat sink 40 is made of aluminum.
  • the heat dissipation layer 42 can be made of a material having excellent thermal conductivity.
  • the heat conductivity of the heat dissipation layer 42 is preferably 0.5 W / m ⁇ K or more, and the heat dissipation layer 42 more preferably has electrical insulation.
  • the heat dissipation layer 42 has a higher thermal conductivity, and is preferably 2 W / m ⁇ K or more, 3 W / m ⁇ K or more, particularly 10 W / m ⁇ K or more, further 20 W / m ⁇ K or more, especially 30 W / m ⁇ K or more. It is preferable that it is comprised with the material of.
  • Non-metallic inorganic materials such as ceramics are examples of materials having excellent thermal conductivity. Ceramics include oxides containing at least one of metal elements, B and Si, carbides containing at least one of metal elements, B and Si, and nitrides containing at least one of metal elements, B and Si A kind of material selected from, can be used.
  • Ceramics are silicon nitride (Si 3 N 4 ): 20 W / m ⁇ K to 150 W / m ⁇ K, alumina (Al 2 O 3 ): 20 W / m ⁇ K to 30 W / m ⁇ K, aluminum nitride (AlN ): 200W / m ⁇ K to 250W / m ⁇ K, Boron nitride (BN): 50W / m ⁇ K to 65W / m ⁇ K, Silicon carbide (SiC): 50W / m ⁇ K to 130W / m -About K, etc. These ceramics are excellent in heat dissipation and also in electrical insulation. In the case of forming with the above ceramics, a vapor deposition method such as a PVD method or a CVD method can be used. Alternatively, a ceramic sintered plate or the like can be prepared and formed with an appropriate adhesive.
  • a vapor deposition method such as
  • the material can be an insulating resin containing a filler made of the ceramic.
  • the insulating resin is an epoxy resin, an acrylic resin, or the like.
  • the heat dissipation layer 42 having excellent heat dissipation and electrical insulation can be formed. Even when a resin containing a filler is used, the heat dissipation layer 42 can be easily formed by applying the resin to the heat dissipation plate 40. When the heat dissipation layer 42 is formed from the insulating resin, it can be easily formed by utilizing screen printing.
  • the heat dissipation layer 42 can be composed of an adhesive.
  • the adhesive is preferably an insulating adhesive, and more preferably an insulating high thermal conductive adhesive.
  • an insulating adhesive can improve the insulation between the exposed portion 5 of the coil 2 and the heat dissipation layer 42, and an insulating high heat conductive adhesive can improve the insulation in addition to the thermal conductivity. Can be improved.
  • the insulating adhesive is an epoxy resin adhesive, an acrylic resin adhesive, or the like. Examples of the insulating high thermal conductive adhesive include the insulating adhesive containing a filler made of the ceramic.
  • An insulating high thermal conductive adhesive has a thermal conductivity of more than 2 W / m ⁇ K.
  • the heat dissipation layer 42 may have a multilayer structure.
  • the layer on the surface side (surface side in contact with the exposed portion 5) in contact with the assembly of the coil 2 and the magnetic core 3 is made of the above insulating material, and the layer on the side in contact with the heat dissipation plate portion 40 A layer can be comprised with the said material which is excellent in heat conductivity.
  • the said surface side may be comprised from the said insulating adhesive agent or an insulation high heat conductive adhesive, and the side which touches the heat sink 40 may be comprised from the said material excellent in thermal conductivity.
  • the overall heat conductivity of the heat dissipation layer 42 is higher.As described above, 0.5 W / m ⁇ K or more, 2 W / m ⁇ K or more, 3 W / It is preferably m ⁇ K or more, particularly 10 W / m ⁇ K or more, more preferably 20 W / m ⁇ K or more, especially 30 W / m ⁇ K or more.
  • the heat radiation layer 42 is formed of an epoxy adhesive containing a filler made of alumina (thermal conductivity: 3 W / m ⁇ K).
  • the shape of the heat dissipation layer 42 is not particularly limited as long as the joint surface of the coil 2 and the magnetic core 3 has an area that can sufficiently contact the heat dissipation layer 42.
  • the heat radiation layer 42 preferably includes a positioning portion for positioning the exposed member (here, the coil 2) on the joint surface with the exposed portion 5.
  • the positioning portion By providing the positioning portion, when the outer core portion 32 is formed after the assembly of the coil 2 and the inner core portion 31 is joined to the heat dissipation layer 42, the assembly can be easily positioned and fixed to the heat dissipation layer 42.
  • a positioning groove 420 along the shape of the coil 2 is formed on the heat dissipation layer.
  • the positioning groove 420 is a groove having a circular cross section and having a length in the axial direction of the coil 2.
  • the outer core portion 32 is not formed on the contact surface of the coil 2 with the positioning groove 420, and the exposed portion 5 is formed in the coil 2.
  • the form of the positioning portion is not particularly limited as long as the coil 2 can be positioned on the heat dissipation layer 42 in addition to the positioning groove 420 described above.
  • an insulator In order to further improve the insulation between the coil 2 and the magnetic core 3, it is preferable to interpose an insulator at a location where the coil 2 contacts the magnetic core 3.
  • an insulating tape can be attached to the inner and outer peripheral surfaces of the coil 2, or insulating paper or an insulating sheet can be disposed.
  • a bobbin (not shown) made of an insulating material may be disposed on the outer periphery of the inner core portion 31.
  • the bobbin can be a cylindrical body that covers the outer periphery of the inner core portion 31.
  • an insulating resin such as polyphenylene sulfide (PPS) resin, liquid crystal polymer (LCP), polytetrafluoroethylene (PTFE) resin can be suitably used.
  • the reactor 1 having the above configuration can be manufactured as follows. The components will be described with reference to FIGS. 1A and 1B as appropriate. First, the coil 2 and the inner core part 31 made of a compacted body are prepared, and the inner core part 31 is inserted into the coil 2 to produce a coil 2 and inner core part 31 assembly. At this time, an insulator may be appropriately disposed between the coil 2 and the inner core portion 31 as described above.
  • the assembly is joined to the heat radiation layer 42 of the heat sink plate 40.
  • the positioning groove 420 provided in the heat dissipation layer 42 the coil 2 can be positioned so that the portion to be exposed is surely in contact with the heat dissipation layer 42, and the assembly can be easily joined to the heat dissipation layer 42. .
  • the outer core portion 32 is formed on the outer peripheral surface of the braid joined on the heat radiation layer 42.
  • a plurality of molds (not shown) are used to form the outer core portion 32.
  • the heat sink plate 40 can be stored, and a container-shaped lower mold having an opening on the upper side and a container-like shape having an opening on the lower side are disposed between the inner surface of the side wall of the lower mold and the assembly.
  • An injection port for injecting the constituent material of the outer core portion is formed on the surface opposite to the opening of the upper mold.
  • the reactor 1 having the above configuration can be suitably used for applications where the energization conditions are such that the maximum current (DC) is about 100A to 1000A, the average voltage is about 100V to 1000V, and the operating frequency is about 5kHz to 100kHz.
  • DC maximum current
  • the reactor 1 can be suitably used as a component part of an in-vehicle power conversion device such as an electric vehicle or a hybrid vehicle.
  • the coil 2 that has generated heat by energization includes the exposed portion 5 that is exposed without being covered with the outer core portion 32. Therefore, the exposed portion 5 is joined to the heat dissipation layer 42. Therefore, the heat of the coil 2 can be efficiently transmitted to the heat dissipation layer 42. Therefore, the heat of the coil 2 can be transmitted to the installation target such as the cooling base through the heat dissipation layer 42, and the heat dissipation is excellent. Further, since the heat dissipation layer 42 is made of an adhesive, the coil 2 can be reliably bonded onto the heat dissipation layer 42 by curing the adhesive, and from this point, heat dissipation is excellent.
  • Reactor 1 does not have a case, so it can be made smaller. Even without a case, the outer core 32 can protect the coil 2 and the inner core 31 from the external environment such as dust and corrosion, and ensure mechanical properties such as strength. In addition, the coil 2 of the exposed portion 5 can also ensure mechanical characteristics and the like by the heat radiating plate portion 40.
  • the heat radiating plate portion 40 is preferably provided with a fixing groove 410 (see FIG. 1B) along the shape formed by the combination of the coil 2 and the magnetic core 3 on the surface on which the heat radiating layer 42 is formed.
  • the heat dissipation layer 42 is formed in the fixing groove 410.
  • the fixing groove 410 in which the heat dissipation layer 42 is formed has the shape of the assembly, so that the positioning of the assembly can be facilitated and the position is shifted. Can be suppressed. At this time, it is not necessary to provide a positioning part on the heat radiation layer 42.
  • the coil has an exposed portion, and the exposed portion is directly joined to the heat dissipation layer, so that the heat dissipation is excellent.
  • the outer core portion and the heat radiating plate portion can ensure mechanical characteristics for the coil and the inner core portion. Therefore, the case can be omitted and the reactor can be reduced in size.
  • Embodiment 2 A reactor according to Embodiment 2 of the present invention will be described with reference to FIG.
  • the second embodiment is different from the reactor 1 of the first embodiment described above in that it includes a side wall portion 41 that covers the side surface of the outer core portion 32 and is integrated with the heat radiating plate portion 40 to become the case 4.
  • the reactor 1 can be used as it is, the side wall portion 41 covers the side surface of the outer core portion 32, so that it is possible to ensure mechanical properties for the outer core portion 32 and the like.
  • the description will be focused on this difference, and the other configuration is the same as the configuration of the first embodiment, and thus the description thereof will be omitted.
  • the side wall portion 41 is formed of a separate member from the heat radiating plate portion 40, and becomes a case 4 that covers the side surface and the installation surface of the outer core portion 32 by integrating the two with a fixing material.
  • the side wall 41 is a rectangular frame having both ends opened, and is arranged so as to surround the side surface of the outer core portion 32 when the lower opening side is closed and assembled by the heat sink plate 40, and the upper opening side is a member. It is released without being blocked.
  • the side wall portion 41 has a rectangular shape in which the joining region with the heat radiating plate portion 40 is along the outer shape of the heat radiating plate portion 40, and the region on the upper opening side is a curved shape along the outer peripheral surface of the outer core portion 32.
  • the joining region of the side wall 41 with the heat sink plate 40 includes mounting portions 411 that protrude from the four corners, and each mounting portion 411 is provided with a bolt hole 411h.
  • the bolt hole 411h may be formed only from the constituent material of the side wall portion 41, or may be formed by arranging a cylindrical body made of another material. Here, a metal tube is arranged to form the bolt hole 411h.
  • the side wall portion 41 may not include the attachment portion, and only the heat radiating plate portion 40 may include the attachment portion 400.
  • the outer shape of the heat radiating plate portion 40 is formed so that the mounting portion 400 of the heat radiating plate portion 40 protrudes from the outer shape of the side wall portion 41.
  • the fixing material is a bonding member such as an adhesive or a bolt.
  • bolt holes are provided in the heat radiating plate portion 40 and the side wall portion 41, a bolt (not shown) is used as a fixing member, and these bolts are screwed together to integrate them.
  • the constituent material of the side wall portion 41 is a metal material
  • the metal material generally has a high thermal conductivity, and therefore a case with excellent heat dissipation can be obtained.
  • the metal material the same material as that of the heat radiating plate 40 described above can be used.
  • the constituent material can be a non-metallic material.
  • Nonmetallic materials include resins such as polybutylene terephthalate (PBT) resin, urethane resin, polyphenylene sulfide (PPS) resin, acrylonitrile-butadiene-styrene (ABS) resin.
  • PBT polybutylene terephthalate
  • PPS polyphenylene sulfide
  • ABS acrylonitrile-butadiene-styrene
  • these non-metallic materials are lighter than the above-described metal materials, and the reactor can be made light even if a case is provided.
  • the resin is mixed with a ceramic filler, the heat dissipation can be
  • the constituent material of the heat sink 40 and the side wall 41 can be the same material. In this case, both thermal conductivity becomes equal. Alternatively, since the heat radiating plate portion 40 and the side wall portion 41 are separate members, the constituent materials of both can be made different. In this case, in particular, when both constituent materials are selected so that the thermal conductivity of the heat radiating plate portion 40 is larger than the thermal conductivity of the side wall portion 41, the exposed portion 5 of the coil 2 disposed in the heat radiating plate portion 40. Heat can be efficiently transferred to the installation target such as a cooling base.
  • both the heat radiating plate portion 40 and the side wall portion 41 are made of aluminum.
  • the bottom plate portion 40 can be made of aluminum
  • the side wall portion 41 can be made of PBT resin.
  • the reactor including the side wall 41 (hereinafter referred to as the reactor with case 10) is covered with a side wall 41 from above so as to surround the periphery of the assembly of the coil 2 and the magnetic core 3, and a fixing material (here, separately) It can be obtained by integrating the heat radiating plate portion 40 and the side wall portion 41 with a prepared bolt (not shown).
  • the above method forms a combination of the coil 2 and the inner core portion 31, and then joins the assembly to the heat sink plate 40, then forms the outer core portion 32, and finally assembles the side wall portion 41.
  • This is a method for obtaining the reactor 10 with a case. That is, this is a method of assembling the side wall 41 to the reactor 1 of the first embodiment.
  • the assembly of the coil 2 and the inner core portion 31 is formed, then the assembly is joined to the heat radiating plate portion 40, the side wall portion 41 is then assembled, and finally the outer core portion 32 is formed.
  • the reactor 10 with a case can be obtained also by the process of.
  • the assembly of the coil 2 and the inner core portion 31 is fixed to the heat radiating plate portion 40, and the side wall portion 41 is integrated with the heat radiating plate portion 40 so as to surround this assembly, thereby forming the case 4.
  • a mixture containing a magnetic material and a resin constituting the outer core portion 32 is poured into the case 4 to form a predetermined shape, and then the resin is cured.
  • the outer core portion 32 can be formed and the reactor with case 10 can be obtained. Therefore, a costly mold is not required when manufacturing the case-equipped reactor 10.
  • the packing 6 When the case 4 is filled with resin, the packing 6 may be disposed in order to prevent uncured resin from leaking through the gap between the heat radiating plate portion 40 and the side wall portion 41.
  • the packing 6 is an annular body corresponding to the shape and size of the joint portion between the side wall portion 41 and the heat radiating plate portion 40, and is made of synthetic rubber. Is available.
  • the heat radiating plate 40 and the side wall 41 are separate members, the assembly of the coil 2 and the inner core portion 31 is arranged in the heat radiating plate 40, and then the heat radiating plate 40 and the side wall are arranged.
  • the part 41 can be integrated.
  • the heat sink plate 40 and the side wall portion 41 may be integrated after the assembly having the outer core portion 32 formed on the outer peripheral surface of the assembly is disposed on the heat sink plate 40. Therefore, the assembly workability of the reactor is excellent
  • the heat dissipation plate portion 40 and the side wall portion 41 are separate members, and the embodiment using the case 4 in which both are integrated by a fixing material has been described.
  • the case in which both are integrally formed is used. It can be in the form. In the case of this form, since the heat sink part and the side wall part are integrally formed with the same material, the assembly process of the heat sink part and the side wall part can be reduced.
  • the reactor when the reactor is installed on the installation target such as the cooling base, the horizontal configuration is described in which the axial direction of the coil is joined to the heat dissipation layer so as to be parallel to the surface of the installation target. Further, it can be in the form of a vertical arrangement bonded to the heat dissipation layer 42 so that the axial direction of the coil is orthogonal to the surface of the installation target.
  • the outer core portion covers substantially all of the end surface and outer peripheral surface of the coil, and the end surface and outer peripheral surface of the inner core portion that do not contact the heat sink plate portion. Formed. That is, the exposed portion that is exposed without being covered by the outer core portion is formed on one end face of the inner core portion.
  • the exposed part is directly joined to the heat dissipation layer, so that the heat of the inner core part can be transferred to the heat dissipation layer, and the heat of the inner core part is transferred to the installation target such as the cooling base through this heat dissipation layer. it can.
  • the outer core can protect the coil and inner core from the external environment such as dust and corrosion, and ensure mechanical properties such as strength.
  • the inner core part the mechanical characteristics can be secured by the heat radiating plate part.
  • the side wall portion may be a separate member from the heat radiating plate portion, or may be integrally formed.
  • Embodiment 4 The reactors of Embodiments 1 to 3 and Modifications 1 and 2 can be used as a component part of a converter mounted on a vehicle or the like, or a component part of a power conversion device including this converter.
  • a vehicle 1200 such as a hybrid vehicle or an electric vehicle is used for traveling by being driven by power supplied from a main battery 1210, a power converter 1100 connected to the main battery 1210, and the main battery 1210 as shown in FIG. Motor (load) 1220.
  • the motor 1220 is typically a three-phase AC motor, which drives the wheel 1250 when traveling and functions as a generator during regeneration.
  • vehicle 1200 includes an engine in addition to motor 1220.
  • an inlet is shown as a charging location of the vehicle 1200, but a form including a plug may be used.
  • the power conversion device 1100 includes a converter 1110 connected to the main battery 1210 and an inverter 1120 connected to the converter 1110 and performing mutual conversion between direct current and alternating current.
  • the converter 1110 shown in this example boosts the DC voltage (input voltage) of the main battery 1210 of about 200V to 300V to about 400V to 700V when the vehicle 1200 is running and supplies power to the inverter 1120.
  • converter 1110 steps down a DC voltage (input voltage) output from motor 1220 via inverter 1120 to a DC voltage suitable for main battery 1210 during regeneration, and charges main battery 1210.
  • the inverter 1120 converts the direct current boosted by the converter 1110 into a predetermined alternating current when the vehicle 1200 is running and supplies power to the motor 1220. During regeneration, the alternating current output from the motor 1220 is converted into direct current and output to the converter 1110. is doing.
  • the converter 1110 includes a plurality of switching elements 1111, a drive circuit 1112 that controls the operation of the switching elements 1111, and a reactor L, and converts input voltage by ON / OFF repetition (switching operation). (In this case, step-up / down pressure) is performed.
  • a power device such as FET or IGBT is used.
  • the reactor L has the function of smoothing the change when the current is going to increase or decrease by the switching operation by utilizing the property of the coil that tends to prevent the change of the current to flow through the circuit.
  • the reactor L the reactor described in the first to third embodiments and the first and second modifications is used. By using a reactor having excellent heat dissipation, it is possible to improve the heat dissipation of the power conversion device 1100 (including the converter 1110).
  • Vehicle 1200 is connected to converter 1110, power supply converter 1150 connected to main battery 1210, sub-battery 1230 as a power source for auxiliary devices 1240, and main battery 1210.
  • Auxiliary power supply converter 1160 for converting high voltage to low voltage is provided.
  • the converter 1110 typically performs DC-DC conversion, while the power supply device converter 1150 and the auxiliary power supply converter 1160 perform AC-DC conversion. Some converters 1150 for power feeding devices perform DC-DC conversion.
  • the reactor of power supply converter 1150 and auxiliary power supply converter 1160 has the same configuration as the reactors of Embodiments 1 to 3 and Modifications 1 and 2 above, and uses reactors whose sizes and shapes are appropriately changed. it can.
  • the reactors of Embodiments 1 to 3 and Modifications 1 and 2 can be used for converters that perform conversion of input power and that only perform step-up or converters that perform only step-down.
  • the reactor of the present invention can be used as a component part of a power conversion device such as a vehicle-mounted converter mounted on a vehicle such as a hybrid vehicle, an electric vehicle, or a fuel cell vehicle.
  • a power conversion device such as a vehicle-mounted converter mounted on a vehicle such as a hybrid vehicle, an electric vehicle, or a fuel cell vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Coils Of Transformers For General Uses (AREA)
  • General Induction Heating (AREA)

Abstract

リアクトルは、巻線を巻回してなるコイルと、このコイル内に挿通された内側コア部、及びこの内側コア部とコイルの外周面を覆う外側コア部の両コア部により閉磁路を形成する磁性コアとを備える。外側コア部は、磁性材料と樹脂とを含む混合物から構成されている。コイル又は内側コア部のどちらか一方は、その外周面の一部が外側コア部に覆われない露出部を有し、露出部の少なくとも一部が、放熱板部に形成された放熱層に接している。

Description

リアクトル、コンバータ、及び電力変換装置
 本発明は、車載用DC-DCコンバータなどの電力変換装置の構成部品等に用いられるリアクトル、このリアクトルを具えるコンバータ、及びこのコンバータを具える電力変換装置に関するものである。特に、放熱性に優れるリアクトルに関する。
 電圧の昇圧動作や降圧動作を行う回路の部品の一つに、リアクトルがある。特許文献1には、コイルと、このコイル内に挿通された内側コア部、及びこの内側コア部とコイルの外周の少なくとも一部を覆う連結コア部の両コア部により閉磁路を形成する磁性コアとを備えるリアクトルが開示されている。連結コア部は、その全体が磁性材料と樹脂とを含む混合物(成形硬化体)により形成されており、内側コア部とは接着剤を介在することなく、上記構成樹脂により接合されている。このリアクトルをケースに収納する場合、連結コア部は、コイルの端面及び外周面の実質的に全て、及び内側コア部においてケースに接しない端面及び外周面を覆うように形成されている(特許文献1の図1(A))。また、リアクトルをケースに収納しない場合、連結コア部は、コイルの外周全体、コイルの端面及び内側コア部の両端面を覆うように形成されている(特許文献1の図4)。
国際公開第2011/013394号
 リアクトルの作動時、通電によりコイルと磁性コアが発熱してコイルや磁性コアが高温になる。特に、車載用リアクトルでは、一般的な電子部品に利用されるリアクトルと比較して発熱量が大きい。そのため、このリアクトルは、通常、通電時に発熱するコイル等を冷却するために、冷却ベースなどの設置対象に固定して利用される。
 磁性コアのうちコイルの外周面を覆う部分(連結コア部)を、特許文献1に開示されるような磁性材料と樹脂との成形硬化体により構成する場合、鉄などの磁性材料と比較して、通常、熱伝導性に劣る樹脂がコイルと設置対象との間に介在する。そのため、発熱体であるコイルからの放熱を行い難い。よって、上記成形硬化体を利用する場合であっても、放熱性に優れる構成の開発が望まれる。
 本発明は上記事情に鑑みてなされたものであり、その目的の一つは、放熱性に優れるリアクトルを提供することにある。
 本発明の他の目的は、上記リアクトルを具えるコンバータ、このコンバータを具える電力変換装置を提供することにある。
 本発明は、発熱するコイル等の外周面の一部に成形硬化体で覆われない箇所を形成し、この箇所に放熱性に優れる放熱層を備えることで、上記目的を達成する。
 本発明のリアクトルは、巻線を巻回してなるコイルと、このコイル内に挿通された内側コア部、及びこの内側コア部と上記コイルの外周面を覆う外側コア部の両コア部により閉磁路を形成する磁性コアとを備える。上記外側コア部は、磁性材料と樹脂とを含む混合物から構成されている。上記コイル又は上記内側コア部のどちらか一方は、その外周面の一部が上記外側コア部に覆われない露出部を有し、該露出部の少なくとも一部が、放熱板部の放熱層に接している。
 上記構成によれば、通電により高温になったコイルや内側コア部において、外周面の一部が外側コア部に覆われず露出することで、この露出した露出部を直接的に放熱層に接合でき、コイルや内側コア部の熱を効率よく放熱層に伝えられる。よって、当該放熱層を介して、上記熱を冷却ベースなどの設置対象に伝達でき、放熱性に優れる。
 放熱板部を設けることで、粉塵や腐食などの外部環境から露出されたコイルや内側コア部の保護することや、強度などの機械特性の確保等を図ることができる。
 また、上記リアクトルでは、放熱層を備えるので、コイル又は内側コア部の設置面から放熱層を介して効率よく放熱できる。したがって、外側コア部を磁性材料と樹脂との成形硬化体により構成することができる。外側コア部を上記成形硬化体により構成することで、外側コア部を電磁鋼板の積層体や圧粉成形体で構成する場合に比較して、所望の形状の外側コア部を容易に形成できる。また、任意の形状のコイルに対して、当該コイルの外周面の一部を容易に外側コア部で覆うことができる。更に、磁性材料と樹脂との混合割合を容易に変更できることから、所望の磁気特性(主としてインダクタンス)を有する外側コア部やこの外側コア部を備える磁性コアを容易に形成できる。
 本発明の一形態では、上記放熱層の少なくとも上記露出部と接する表面が、絶縁性接着剤で構成されている。
 放熱層の少なくとも上記露出部と接する表面が絶縁性接着剤で構成されているため、放熱板部が導電性材料から構成された場合でも、コイルを放熱層に接触させることで、コイルと放熱板部との間を確実に絶縁できる。従って、放熱層を薄くすることができ、上記熱を設置対象に伝達し易く、上記リアクトルは、放熱性に優れる。また、上述のように放熱層の厚さを薄くすることで、コイル又は内側コア部の設置面と放熱板部の内面との間隔を小さくすることができ、リアクトルの大型化を実質的に招かない。さらに、この接着剤を硬化することで、コイル又は内側コア部を放熱層上に確実に接合することができる。この点からも放熱性に優れるリアクトルを得ることができる。
 本発明の一形態では、上記放熱層の少なくとも一部が、絶縁高熱伝導接着剤で構成され、上記露出部の少なくとも一部が、上記絶縁高熱伝導接着剤に接合されている。
 放熱板部に形成された放熱層の少なくとも一部は、絶縁高熱伝導接着剤により構成されることから、放熱板部が導電性材料から構成された場合でも、コイルを放熱層(絶縁高熱伝導接着剤)に接触(接合)させることで、コイルと放熱板部との間を確実に絶縁できる。従って、放熱層を薄くすることができ、上記熱を設置対象に伝達し易く、上記リアクトルは、放熱性に優れる。また、上述のように放熱層の厚さを薄くすることで、コイル又は内側コア部の設置面と放熱板部の内面との間隔を小さくすることができ、リアクトルの大型化を実質的に招かない。
 本発明の一形態では、外側コア部は、磁性材料と樹脂との混合物から構成されている。
 外側コア部を磁性材料と樹脂との混合物から構成することで、磁性材料と樹脂との混合割合を容易に変更できるので、所望の磁気特性を有する外側コア部を備えるリアクトルとすることができる。なお、「磁性材料と樹脂との混合物から構成されている」とは、磁性材料と樹脂のみの混合物から構成されていることをいう。
 本発明の一形態では、上記露出部が、上記コイルの外周面の一部に形成されている。
 露出部をコイルの外周面に形成することで、発熱体であるコイルからの熱を効率よく放熱層に伝えられ、当該放熱層を介して、コイルの熱を設置対象に伝達でき、放熱性に優れる。
 本発明の一形態では、上記露出部が、上記コイルの軸方向に沿って一端から他端に連続して形成されている。
 コイルの外周面において、露出部をコイルの軸方向に沿って一端から他端に連続して形成することで、コイルの軸方向に沿って均一に放熱することができる。
 本発明の一形態では、上記外側コア部は、トランスファー成形又は射出成形により形成されている。
 トランスファー成形や射出成形により形成された外側コア部を備えるリアクトルは、外側コア部により、粉塵や腐食などの外部環境からコイルや内側コア部を保護することや、強度などの機械特性の確保等を図ることができる。よって、外側コア部の側面を覆う部品を別途設ける必要がなく、したがって上記放熱板部と一体化してケースを構成するような側壁部等を別途設ける必要がない。つまり、外側コア部の放熱板部との接触面以外の外周面をケースの側壁としての役割とすることができる。側壁部を設ける必要がないため、部品点数の削減が図れ、リアクトルも小型化できる。
 本発明の一形態では、上記放熱板部とは別部材で、上記コイルと磁性コアとの周囲を囲んで配置される側壁部を備える。この側壁部と上記放熱板部とを一体化することにより、上記外側コア部の側面と設置面とを覆うケースが構成される。
 外側コア部の側面も覆うことで、粉塵や腐食などの外部環境から外側コア部を保護することや、強度などの機械特性の確保等を図ることができる。上記構成では、ケースを構成する放熱板部と側壁部とが別部材であることから、それぞれを別個に製造できるため、その製造形態の自由度が大きい。したがって、放熱板部と側壁部の材質を異なる材質とすることもできる。また、コイルと磁性コアとの組合体を放熱板部に配置してから側壁部と放熱板部とを一体にできるため、リアクトルの組立て作業性にも優れる。
 ケースを備えることで、外側コア部の形成工程において、まずコイルと内側コア部の組物を放熱板部と側壁部とが一体化されたケースに収納し、このケース内に、外側コア部を構成する磁性材料と樹脂とを含む混合物を流し込んで、所定の形状に成形した後、樹脂を硬化させることで、外側コア部を形成できると共に、リアクトルを得ることができる。
 本発明の一形態では、上記放熱板部と一体に形成された側壁部を有するケースを備える。上記ケースは、上記外側コア部の側面と設置面とを覆う。
 この構成では、ケースを構成する放熱板部と側壁部とが一体に形成されているので、放熱板部と側壁部との組立工程の削減が図れる。
 本発明のリアクトルは、コンバータの構成部品に好適に利用することができる。本発明のコンバータは、スイッチング素子と、上記スイッチング素子の動作を制御する駆動回路と、スイッチング動作を平滑にするリアクトルとを具え、上記スイッチング素子の動作により、入力電圧を変換するものであり、上記リアクトルを本発明のリアクトルとすることができる。この本発明のコンバータは、電力変換装置の構成部品に好適に利用することができる。また、本発明の電力変換装置は、入力電圧を変換するコンバータと、上記コンバータに接続されて、直流と交流とを相互に変換するインバータとを具え、このインバータで変換された電力により負荷を駆動するための電力変換装置であって、上記コンバータを本発明のコンバータとすることができる。
 本発明のコンバータや本発明の電力変換装置は、放熱性に優れる本発明のリアクトルを具えることで、放熱性に優れることが求められる車載部品などに好適に利用できる。
 本発明のリアクトルは、放熱性に優れる。
図1Aは、実施形態1のリアクトルの概略斜視図である。 図1Bは、図1AにおいてB-B線で切断した断面図である。 図2は、実施形態2のリアクトルの概略を示す分解斜視図である。 図3は、ハイブリッド自動車の電源系統を模式的に示す概略構成図である。 図4は、本発明のコンバータを具える本発明の電力変換装置の一例を示す概略回路図である。
 以下、図面を参照して、実施形態のリアクトルを説明する。図面において同一符号は同一部材を示す。
 <実施形態1>
 ≪リアクトルの全体構成≫
 図1A及び図1Bを参照して、本発明の実施形態1を説明する。リアクトル1は、巻線2wを巻回してなるコイル2と、このコイル2内に挿通された内側コア部31、及びこの内側コア部31とコイル2の外周面を覆う外側コア部32の両コア部により閉磁路を形成する磁性コア3とを備える。本発明のリアクトルの特徴とするところは、コイル2又は内側コア部31のどちらか一方は、その外周面の一部が外側コア部32に覆われない露出部5を有し、該露出部5の少なくとも一部が、放熱板部40の放熱層42に接していることにある。実施形態1では、コイル2の外周面に露出部5が形成されている。以下、各構成部材をより詳細に説明する。
 [コイル]
 コイル2は、1本の連続する巻線2wを螺旋状に巻回してなる円筒状体である。巻線2wは、銅やアルミニウム、その合金などの導電性材料からなる導体の外周に、絶縁性材料からなる絶縁被覆を備える被覆線が好適である。ここでは、導体が銅製の平角線からなり、絶縁被覆がエナメル(代表的にはポリアミドイミド)からなる被覆平角線を利用している。絶縁被覆の厚さは、20μm以上100μm以下が好ましく、薄いほど占積率を高められ、厚いほどピンホールを低減できて電気絶縁性を高められる。例えば、エナメル材料を多層に塗布して絶縁被覆を形成すると、絶縁被覆の厚さを厚くできる。また、絶縁被覆は、異なる材質の多層構造とすることもできる。例えば、ポリアミドイミド層の外周にポリフェニレンスルフィド層を備える多層構造とすることができる。多層構造の絶縁被覆も電気絶縁性に優れる。巻線2wの巻き数(ターン数)は適宜選択できる。コイル2は、この被覆平角線をエッジワイズ巻きにして形成されている。コイル2の端面形状を円形状とすることで、エッジワイズ巻きであっても比較的容易にコイルを形成できる。巻線2wは、導体が平角線であるもの以外に、断面が円形状、多角形状等の種々の形状のものを利用できる。断面が円形状の丸線を用いるよりも、平角線を用いたほうが占積率の高いコイルを形成し易い。コイルの端面形状には、円形状以外にも、楕円形状やトラック形状等の種々の形状のものを利用できる。また、コイルは、一対のコイル素子が、その各軸方向が並列するように横並びされた形態のものも利用できる。
 コイル2を形成する巻線2wの両端部は、ターンから適宜引き延ばされて後述する外側コア部32の外部に引き出され、絶縁被覆が剥がされて露出された導体部分に、銅やアルミニウムなどの導電性材料からなる端子部材(図示せず)が接続される。この端子部材を介して、コイル2に電力供給を行う電源などの外部装置(図示せず)が接続される。巻線2wの導体部分と端子部材との接続には、TIG溶接などの溶接の他、圧着や半田による接続などが利用できる。図1A及び図1Bに示す例では、コイル2の軸方向に直交するように巻線2wの両端部を上方に引き出しているが、引き出し方向は適宜選択することができる。巻線の両端部をコイルの軸方向に平行するように引き出してもよいし、各端部の引き出し方向をそれぞれ異ならせてもよい。
 このコイル2は、その内周に後述する磁性コア3の一部(内側コア部31)が挿入された状態で、後述する放熱板部40に形成された放熱層42に接合されている。本形態のリアクトル1では、このリアクトル1を冷却ベースなどの設置対象に設置したとき、コイル2の軸方向が設置対象の表面に平行するように放熱層42に接合された横型配置である。このコイル2は、その外周面の一部が外側コア部32に覆われない露出部5を有している。
 (露出部)
 露出部5は、コイル2又は内側コア部31のどちらか一方において、その外周面が外側コア部32に覆われておらず、露出した部分のことである。この露出部5の少なくとも一部が、放熱層42に直接的に接合されていることで、コイル2や内側コア部31の熱を効率よく放熱層42に伝えられる。よって、放熱層42を介して、上記熱を冷却ベースなどの設置対象に伝達でき、放熱性を向上できる。コイル2は通電による発熱体であるため、特に、コイル2を放熱層42に接することで、効果的に放熱を行うことができる。ここでは、図1Bに示すように、露出部5は、コイル2の軸方向に沿って一端から他端に連続して露出部5を形成している。そして、この露出部5において、コイル2と放熱層42とが接合されている。
 [磁性コア]
 磁性コア3は、コイル2内に挿通された円柱状の内側コア部31と、内側コア部31の両端面、及びコイル2の円筒状の外周面の一部を覆うように形成された外側コア部32とを備える。これら内側コア部31及び外側コア部32により、コイル2を励磁したとき、閉磁路を形成する。磁性コア3は、内側コア部31の構成材料と、外側コア部32の構成材料とを異ならせることで、磁気特性を異ならせることができる。内側コア部31の飽和磁束密度は、外側コア部32の飽和磁束密度よりも高く、外側コア部32の比透磁率は、内側コア部31の比透磁率よりも低くすることができる。
 磁性コア3全体の比透磁率は、10以上50以下とすることが好ましい。そうすれば、リアクトル1のインダクタンスを調整し易い。ここで、磁性コア3全体の比透磁率とは、内側コア部31と外側コア部32の間など磁性コア3にギャップ材を介在する場合は、内側コア部31と外側コア部32とギャップ材とを合わせた比透磁率であり、磁性コア3にギャップ材が介在されない場合は、内側コア部31と外側コア部32を合わせた比透磁率である。
 内側コア部31の比透磁率は、5以上500以下とすることが好ましく、外側コア部32の比透磁率は、5以上50以下とすることが好ましい。内側コア部31の比透磁率は、内側コア部31を圧粉成形体で構成する場合、50以上500以下とすることが好ましく、磁性材料と樹脂とを含む混合物で構成する場合、5以上50以下とすることが好ましい。
 なお、上記コア部の比透磁率は、次のようにして求めたものとする。まず、各コア部と同じ材料で構成した材料を加工し、外径34mm、内径20mm、厚さ5mmのリング状試験片を作製する。このリング状試験片に、一次側300巻き、二次側20巻きの巻線を施し、試験片についてのB-H初磁化曲線を、H=0~100エルステッド(Oe)の範囲で測定する。測定には、理研電子株式会社製BHカーブトレーサ「BHS-40S10K」を用いることができる。得られたB-H初磁化曲線の勾配(B/H)の最大値が試験片の比透磁率であり、その比透磁率を上記コア部の比透磁率と見做す。なお、ここでの磁化曲線とは、所謂直流磁化曲線である。因みに、後段でコア部の飽和磁束密度について記載しているが、その飽和磁束密度は、上記試験片に対して電磁石で10000(Oe)の磁界を印加し、十分に磁気飽和させたときの試験片の磁束密度である。
 (内側コア部)
 内側コア部31は、コイル2の内周面の形状に沿った円柱状の外形を有しており、その全体が圧粉成形体から構成されて、ギャップ材やエアギャップ、接着剤が介在していない中実体である。
 圧粉成形体は、代表的には、表面に絶縁被膜を備える軟磁性粉末を成形後、上記絶縁被膜の耐熱温度以下で焼成することにより得られる。軟磁性粉末に加えて適宜結合剤を混合した混合粉末を利用したり、上記絶縁被膜としてシリコーン樹脂等からなる被膜を備えた粉末を利用したりすることができる。圧粉成形体の飽和磁束密度は、軟磁性粉末の材質や、上記軟磁性粉末と上記結合剤との混合比、種々の被膜の量などを調整することで変化させることができる。飽和磁束密度の高い軟磁性粉末を用いたり、結合剤の配合量を低減して軟磁性材料の割合を高めたりすることで、飽和磁束密度が高い圧粉成形体が得られる。その他にも、成形圧力を高くすることで飽和磁束密度を高められる傾向にある。所望の飽和磁束密度となるように軟磁性粉末の材質の選択や成形圧力の調整などを行うとよい。
 上記軟磁性粉末として、Fe,Co,Niなどの鉄族金属、Fe-Si,Fe-Ni,Fe-Al,Fe-Co,Fe-Cr,Fe-Si-AlなどのFe基合金、希土類金属、アモルファス磁性体、などの粉末が利用できる。特に、Fe基合金粉末は、飽和磁束密度が高い圧粉成形体を得易い。このような粉末は、ガスアトマイズ法や水アトマイズ法、機械的粉砕法などにより製造することができる。また、結晶がナノサイズであるナノ結晶材料からなる粉末、好ましくは異方性ナノ結晶材料からなる粉末を用いると、高異方性で低保磁力の圧粉成形体が得られる。軟磁性粉末に形成される絶縁被膜は、燐酸化合物、珪素化合物、ジルコニウム化合物、アルミニウム化合物、又は硼素化合物などである。結合剤は、熱可塑性樹脂、非熱可塑性樹脂、又は高級脂肪酸などである。この結合剤は、上記焼成により消失したり、シリカなどの絶縁物に変化したりする。圧粉成形体では、軟磁性粉末の表面に絶縁被膜などの絶縁物が存在するので、軟磁性粉末同士が絶縁され、その結果、渦電流損失を小さくすることができる。コイルに高周波の電流が通電される場合であっても、上記損失を小さくすることができる。圧粉成形体は、公知のものを利用することができる。
 圧粉成形体における軟磁性粉末(磁性成分)の含有量は、圧粉成形体全体を100体積%として、70体積%以上とすることが望ましく、80体積%以上とすることがさらに望ましい。圧粉成形体は絶縁成分に比べて磁性成分が圧倒的に多いため、内側コア部31を高比透磁率でかつ高飽和磁束密度の磁性部材とすることができる。内側コア部31の比透磁率は50以上500以下、飽和磁束密度は1.0T以上とすることが望ましい。また、内側コア部31の熱伝導率は10W/m・K以上とすることが望ましい。
 なお、内側コア部31は、上記圧粉成形体に代えて、次述する外側コア部32と同様の磁性材料と樹脂とを含む混合物(成形硬化体)や、珪素鋼板に代表される電磁鋼板の積層体とすることもできる。また、内側コア部31の断面形状は、コイル2の内周面の形状に沿った形状であって、円形状以外にも、楕円形状やトラック形状、或いは多角形状等の種々の形状のものを利用できる。
 図1A及び図1Bに示す例では、内側コア部31の長さはコイル2の長さよりも若干長い。ここでの「長さ」はコイル2の軸方向の長さとする。そのため、内側コア部31の両端面及びその近傍がコイル2の端面から突出している。内側コア部の突出長さは適宜選択することができる。ここでは、内側コア部31においてコイル2の各端面からの突出長さを等しくしているが、異ならせてもよいし、コイル2のいずれか一方の端面からのみ突出させてもよい。また、内側コア部の長さとコイルの長さとが等しい形態、内側コア部の長さがコイルの長さよりも短い形態とすることもできる。いずれの形態にしても、コイル2を励磁したときに閉磁路が形成されるように外側コア部32を備えるとよい。
 (外側コア部)
 外側コア部32は、コイル2の両端面、コイル2の外周面のうち、後述する放熱層42に接触していない箇所の実質的に全て、及び内側コア部31の両端面及びその近傍を覆うように形成されている。外側コア部32と内側コア部31とにより、磁性コア3は、閉磁路を形成する。この外側コア部32と内側コア部31とは接着剤やギャップ材を介在することなく、外側コア部32の構成樹脂により接合してもよいし、外側コア部32と内側コア部31の端面との間に接着剤やギャップ材を介在して接合してもよい。ここでは前者を採用する。従って、磁性コア3は、その全体に亘って接着剤やギャップ材を介することなく一体化された一体化物である。なお、後者を採用する場合、ギャップ材を非磁性材料(アルミナやガラスエポキシ樹脂、不飽和ポリエステルなど)とするか、ギャップをエアギャップにする。
 外側コア部32は、コイル2において放熱層42に接触していない箇所の実質的に全てを覆っている。したがって、リアクトル1では、外側コア部32により、粉塵や腐食などの外部環境からコイル2や内側コア部31を保護することや、強度などの機械特性の確保等を図ることができる。
 上記外側コア部32は、その全体が磁性材料と樹脂とを含む混合物(成形硬化体)により形成されている。成形硬化体は、代表的には、トランスファー成形、射出成形、MIM(Metal Injection Molding)、注型成形、磁性体粉末と粉末状の固形樹脂とを用いたプレス成形などにより形成することができる。トランスファー成形や射出成形、MIMは、通常、磁性材料からなる粉末(必要に応じて更に非磁性粉末を加えた混合粉末)と流動性のあるバインダ樹脂とを混合し、この混合流体を、所定の圧力をかけて成形金型に流し込んで成形した後、バインダ樹脂を硬化させる。注型成形は、上記混合流体を、圧力をかけることなく成形金型に注入して成形・硬化させる。いずれの成形手法も、磁性粉末には、上述した内側コア部31に利用する軟磁性粉末と同様のものを利用することができる。特に、外側コア部32に利用する軟磁性粉末として、純鉄粉末やFe基合金粉末などの鉄基材料からなるものが好適に利用できる。軟磁性材料からなる粒子の表面に燐酸塩などからなる被膜を具える被覆粉末を利用してもよい。磁性粉末は、平均粒径が1μm以上1000μm以下、更に10μm以上500μm以下の粉末が利用し易い。
 また、上記いずれの成形手法においても、バインダとなる樹脂には、エポキシ樹脂、フェノール樹脂、シリコーン樹脂等の熱硬化性樹脂を好適に利用できる。熱硬化性樹脂を用いた場合、成形体を加熱して樹脂を熱硬化させる。バインダとなる樹脂に常温硬化性樹脂、或いは低温硬化性樹脂を用いてもよい。この場合、常温または比較的低温の硬化温度で、樹脂を硬化させる。成形硬化体は、非磁性材料である樹脂が比較的多く残存するため、内側コア部31を構成する圧粉成形体と同じ軟磁性粉末を用いた場合でも、圧粉成形体よりも飽和磁束密度が低く、かつ比透磁率も低いコアを形成し易い。
 成形硬化体の構成材料として、磁性材料の粉末及びバインダとなる樹脂に加えて、アルミナやシリカなどのセラミックスからなるフィラーを混合させてもよい。磁性材料の粉末に比較して比重が小さい上記フィラーを混合することで、磁性材料の粉末の偏在を抑制して、全体に磁性材料の粉末が均一的に分散した外側コア部を得易い。また、上記フィラーが熱伝導性に優れる材料から構成される場合、放熱性の向上に寄与することができる。
上記フィラーを混合する場合、磁性材料の粉末とフィラーとの合計含有量は、外側コア部全体を100体積%として、20体積%~70体積%とする。もちろん、成形硬化体は、磁性材料と樹脂のみからなる混合物で構成されていてもよい。
 上記トランスファー成形や射出成形を利用する場合、磁性材料の粉末とバインダ樹脂との配合、上述したフィラーを含有する場合、磁性材料の粉末、バインダ樹脂、フィラーの配合を変えることで、外側コア部の比透磁率、飽和磁束密度を調整することができる。例えば、磁性材料の粉末の配合量を減らすと、比透磁率は小さくなる傾向にある。リアクトルが所望のインダクタンスを有するように、外側コア部の比透磁率、飽和磁束密度を調整するとよい。外側コア部32の比透磁率は5以上50以下、飽和磁束密度は0.6T以上、更には0.8T以上とすることが望ましい。また、外側コア部32の熱伝導率は、0.25W/m・K以上とすることが望ましい。
 [放熱板部]
 放熱板部40は、ほぼ矩形の板であり、冷却ベースなどの設置対象に接して固定される。図1A及び図1Bに示す例では、放熱板部40が下方となる設置状態を示すが、放熱板部40が上方、或いは側方となる設置状態も有り得る。この放熱板部40において、上記コイル2と磁性コア3との組合体が設置される一面に放熱層42が形成されている。放熱板部40の外形は適宜選択することができる。ここでは、放熱板部40は、四隅のそれぞれから突出した取付部400を有しており、冷却ベースなどの設置対象に固定するボルト(図示せず)が挿通されるボルト孔400hが設けられている。ボルト孔400hは、ネジ加工が成されていない貫通孔、ネジ加工がされたネジ孔のいずれも利用でき、個数なども適宜選択することができる。
 放熱板部40の構成材料が金属材料であれば、金属材料は一般に熱伝導率が高いことから、放熱板部40を放熱性に優れた放熱板部とすることができる。放熱板部40の構成材料の金属材料として、アルミニウムやその合金、マグネシウム(熱伝導率:156W/m・K)やその合金、銅(398W/m・K)やその合金、銀(427W/m・K)やその合金、鉄やオーステナイト系ステンレス鋼(例えば、SUS304:16.7W/m・K) などを使うことができる。上記アルミニウムやマグネシウム、及びその合金を利用すると、リアクトルの軽量化に寄与することができる。特に、アルミニウムやその合金は、耐食性にも優れるため、車載部品に好適に利用することができる。金属材料により放熱板部40を形成する場合、ダイキャストなどの鋳造の他、プレス加工などの塑性加工により形成することができる。ここでは、放熱板部40はアルミニウムにより構成している。
 (放熱層)
 放熱層42は、熱伝導性に優れる材料で構成することができる。放熱層42の熱伝導率は0.5W/m・K以上であることが好ましく、かつ放熱層42は電気絶縁性を有することがより好ましい。放熱層42は、熱伝導率が高いほど好ましく、2W/m・K以上、3W/m・K以上、特に10W/m・K以上、更に20W/m・K以上、とりわけ30W/m・K以上の材料により構成されることが好ましい。
 熱伝導性に優れる材料には、セラミックスなどの非金属無機材料がある。セラミックスは、金属元素、B、及びSiの少なくとも1種を含む酸化物、金属元素、B、及びSiの少なくとも1種を含む炭化物、及び金属元素、B、及びSiの少なくとも1種を含む窒化物、から選択される一種の材料などを使用することができる。セラミックスは、窒化珪素(Si3N4):20W/m・K~150W/m・K程度、アルミナ(Al2O3):20W/m・K~30W/m・K程度、窒化アルミニウム(AlN):200W/m・K~250W/m・K程度、窒化ほう素(BN):50W/m・K~65W/m・K程度、炭化珪素(SiC):50W/m・K~130W/m・K程度、等である。これらのセラミックスは、放熱性に優れる上に、電気絶縁性にも優れる。上記セラミックスにより形成する場合、PVD法やCVD法などの蒸着法を利用することができる。或いは、上記セラミックスの焼結板などを用意して、適宜な接着剤により形成することができる。
 或いは、上記材料は、上記セラミックスからなるフィラーを含有する絶縁性樹脂とすることができる。絶縁性樹脂は、エポキシ樹脂、アクリル樹脂などである。絶縁性樹脂に上記放熱性及び電気絶縁性に優れるフィラーを含有することで、放熱性及び電気絶縁性に優れる放熱層42を構成することができる。また、フィラーを含有する樹脂を利用した場合でも、放熱板部40に当該樹脂を塗布などすることで、放熱層42を容易に形成できる。上記絶縁性樹脂により放熱層42を形成する場合、スクリーン印刷を利用すると容易に形成することができる。
 また、放熱層42を、接着剤で構成することもできる。接着剤は、絶縁性接着剤であることが好ましく、絶縁高熱伝導接着剤であることがより好ましい。放熱層42を接着剤により構成することで、コイル2及び磁性コア3の組合体、特に、コイル2が有する露出部5と放熱層42との密着性を高められる。特に、絶縁性接着剤であれば、コイル2が有する露出部5と放熱層42との間の絶縁性を向上でき、絶縁高熱伝導接着剤であれば、絶縁性の向上に加えて熱伝導性を向上できる。上記絶縁性接着剤は、エポキシ樹脂系接着剤、アクリル樹脂系接着剤などである。上記絶縁高熱伝導接着剤としては、上記セラミックスからなるフィラーを含有する上記絶縁性接着剤などである。絶縁高熱伝導接着剤とは、熱伝導率が2W/m・K超である。
 放熱層42は多層構造としてもよい。その場合、放熱層42において、コイル2と磁性コア3との組合体に接する表面側(露出部5に接する表面側)の層を上記絶縁性材料で構成し、放熱板部40に接する側の層を熱伝導性に優れる上記材料で構成することができる。或いは、上記表面側が上記絶縁性接着剤や絶縁高熱伝導接着剤から構成され、放熱板部40に接する側が熱伝導性に優れる上記材料から構成されてもよい。このように放熱層42を多層構造とする場合でも、放熱層42の全体の熱伝導率が高いほど好ましく、上述のように、0.5W/m・K以上、2W/m・K以上、3W/m・K以上、特に10W/m・K以上、更に20W/m・K以上、とりわけ30W/m・K以上であることが好ましい。
 ここでは、放熱層42は、アルミナからなるフィラーを含有するエポキシ系接着剤により形成されている(熱伝導率:3W/m・K)。放熱層42は、コイル2及び磁性コア3の組合体との接合面が放熱層42に十分に接触できる面積を有していれば特に形状は問わない。
 放熱層42は、上記露出部5との接合面に、その露出された部材(ここでは、コイル2)の位置決めを行う位置決め部を備えることが好ましい。位置決め部を設けることで、放熱層42にコイル2と内側コア部31の組物を接合してから外側コア部32を形成する場合、上記組物を放熱層42に容易に位置決めして固定できる。ここでは、図1Bに示すように、放熱層42上にコイル2の形状に沿った位置決め溝420を形成している。ここでは、この位置決め溝420は、断面が円弧状であり、コイル2の軸方向の長さを有する溝である。この位置決め溝420にコイル2を載置することで、コイル2の位置決め溝420との接触面には外側コア部32が形成されず、コイル2に露出部5が形成される。位置決め部の形態は、上記位置決め溝420以外に、放熱層42上にコイル2を位置決めできれば特に問わない。
 [その他の構成部材]
 (絶縁物)
 コイル2と磁性コア3との間の絶縁性をより高めるために、コイル2において磁性コア3に接触する箇所には、絶縁物を介在させることが好ましい。絶縁物を介在させる形態として、コイル2の内・外周面に絶縁性テープを貼り付けたり、絶縁紙や絶縁シートを配置したりすることができる。また、内側コア部31の外周に絶縁性材料からなるボビン(図示せず)を配置してもよい。ボビンは、内側コア部31の外周を覆う筒状体とすることができる。また、筒状体の両端から周方向に延びる環状のフランジ部を備えるボビンを利用すると、コイル2の端面と外側コア部32との間の絶縁性を高められる。ボビンの構成材料には、ポリフェニレンスルフィド(PPS)樹脂、液晶ポリマー(LCP)、ポリテトラフルオロエチレン(PTFE)樹脂などの絶縁性樹脂が好適に利用できる。
 ≪リアクトルの製造方法≫
 上記構成を備えるリアクトル1は、以下のようにして製造することができる。構成部材は、適宜図1A及び図1Bを参照して説明する。まず、コイル2、及び圧粉成形体からなる内側コア部31を用意し、コイル2内に内側コア部31を挿入して、コイル2と内側コア部31の組物を作製する。このとき、上述のようにコイル2と内側コア部31との間に適宜絶縁物を配置させてもよい。
 次に、上記組物を放熱板部40の放熱層42に接合する。このとき、放熱層42に設けられた位置決め溝420を用いることで、コイル2において、露出させたい部分を放熱層42に確実に接するように位置決めでき、放熱層42に組物を容易に接合できる。
 そして、放熱層42上に接合した組物の外周面に外側コア部32を形成する。このとき、外側コア部32を形成するために複数の金型(図示せず)を用いる。次に、放熱板部40が収納でき、上方に開口部を有する容器状の下金型と、この下金型の側壁内面と組物との間に配置され、下方に開口部を有する容器状の上金型とを用意する。上金型の開口部と反対側の面には、外側コア部の構成材料を注入する注入口が形成されている。これら金型に組物を配置した状態で、上金型に形成された注入口から、外側コア部の構成材料である磁性材料と樹脂とを含む混合物を注入する。このとき、下金型、上金型、放熱板部の各接合面には隙間がないものとする。注入した混合物が硬化したら、金型を後退させる。こうして得られたリアクトル1は、放熱板部40の放熱層42上にコイル2の露出部5が接合され、この露出部5以外のコイル2と内側コア部31の組物の外周に外側コア部32が形成されている。
 ≪用途≫
 上記構成を備えるリアクトル1は、通電条件が、最大電流(直流)が 100A~1000A程度、平均電圧が100V~1000V程度、使用周波数が5kHz~100kHz程度である用途などに好適に利用することができ、代表的には電気自動車やハイブリッド自動車などの車載用電力変換装置の構成部品に好適に利用することができる。
 ≪効果≫
 実施形態1のリアクトル1では、通電により発熱したコイル2において、一部が外側コア部32で覆われず露出された露出部5を備えているため、この露出部5を放熱層42に接合することができ、コイル2の熱を効率よく放熱層42に伝えられる。よって、当該放熱層42を介して、コイル2の熱を冷却ベースなどの設置対象に伝達でき、放熱性に優れる。また、放熱層42は接着剤で構成されているため、この接着剤を硬化することで、コイル2を放熱層42上に確実に接合することができ、この点からも放熱性に優れる。
 リアクトル1は、ケースを有していないため、小型にできる。ケースを有していなくても、外側コア部32により、粉塵や腐食などの外部環境からコイル2や内側コア部31を保護することや、強度などの機械特性の確保等を図ることができ、また、露出部5のコイル2も、放熱板部40によって、機械特性の確保等を図ることができる。
 <変形例1>
 上述した実施形態1では、コイル2と内側コア部31の組物を放熱層42に接合してから、外側コア部32を形成した形態を説明した。コイル2と内側コア部31の組物に外側コア部32を形成した組合体を作製してから、この組合体を放熱層42に接合する形態とすることができる。
 放熱板部40は、放熱層42の形成面に、コイル2と磁性コア3の組合体がつくる形状に沿った固定溝410(図1B参照)を備えることが好ましい。この固定溝410に放熱層42を形成する。上記組合体を放熱層42に接合する際、放熱層42が形成された固定溝410が、当該組合体の形状となっているため、組合体の位置決めを容易にでき、その位置がずれることを抑制できる。このとき、放熱層42上には、位置決め部は特に設ける必要はない。
 この形態の場合も、実施形態1と同様、コイルに露出部を有しており、この露出部が放熱層に直接的に接合することで、放熱性に優れる。また、外側コア部と放熱板部により、コイルや内側コア部に対して、機械特性の確保等を図ることができる。よって、ケースを省略でき、リアクトルを小型にできる。
 <実施形態2>
 本発明の実施形態2に係るリアクトルについて、図2に基づいて説明する。実施形態2では、上述した実施形態1のリアクトル1において、外側コア部32の側面を覆い、放熱板部40と一体化することでケース4となる側壁部41を備える点が異なる。リアクトル1は、そのままでも利用することができるが、上記側壁部41で外側コア部32の側面も覆うことで、外側コア部32に対しても、機械特性の確保等を図ることができる。以下、この相違点を中心に説明し、その他の構成は実施形態1の構成と同様であるため、説明を省略する。
 [側壁部]
 側壁部41は、放熱板部40とは別部材で構成されており、固定材により両者を一体化することで、外側コア部32の側面と設置面とを覆うケース4となる。側壁部41は、両端が開口した矩形枠状体であり、下部開口側を放熱板部40により塞いで組み立てたとき、外側コア部32の側面を囲むように配置され、上部開口側は部材で塞がれることなく開放される。側壁部41は、放熱板部40との接合領域が該放熱板部40の外形に沿った矩形状であり、上部開口側の領域が外側コア部32の外周面に沿った曲面形状である。
 側壁部41の放熱板部40との接合領域は、放熱板部40と同様に、四隅のそれぞれから突出する取付部411を備え、各取付部411には、ボルト孔411hが設けられて、取付箇所を構成している。ボルト孔411hは、側壁部41の構成材料のみにより形成してもよいし、別材料からなる筒体を配置させて形成してもよい。ここでは、金属管を配置してボルト孔411hを形成している。或いは、側壁部41が取付部を備えておらず、放熱板部40のみが取付部400を備える形態としてもよい。この形態の場合、放熱板部40の取付部400が側壁部41の外形から突出するように放熱板部40の外形を形成する。
 放熱板部40と側壁部41とを一体に接続する手法は、種々の固定材を利用できる。固定材は、接着剤やボルトなどの接合部材である。ここでは、放熱板部40及び側壁部41にボルト孔(図示せず)を設け、固定材にボルト(図示せず)を利用し、このボルトをねじ込むことで、両者を一体化している。
 側壁部41の構成材料が金属材料であれば、金属材料は一般に熱伝導率が高いことから、放熱性に優れたケースとすることができる。金属材料としては、上述した放熱板部40の構成材料と同じものを利用できる。或いは、上記構成材料を非金属材料とすることもできる。非金属材料としては、ポリブチレンテレフタレート(PBT)樹脂、ウレタン樹脂、ポリフェニレンスルフィド(PPS)樹脂、アクリロニトリル-ブタジエン-スチレン(ABS)樹脂などの樹脂がある。また、これらの非金属材料は上述した金属材料よりも軽く、ケースを備えていてもリアクトルを軽量にできる。上記樹脂にセラミックスからなるフィラーを混合した形態とすると、放熱性を向上することができる。樹脂によりケース4を形成する場合、射出成形を好適に利用することができる。
 放熱板部40及び側壁部41の構成材料は同種の材料とすることができる。この場合、両者の熱伝導率は等しくなる。或いは、放熱板部40及び側壁部41が別部材であることから、両者の構成材料を異ならせることができる。この場合、特に、放熱板部40の熱伝導率が側壁部41の熱伝導率よりも大きくなるように、両者の構成材料を選択すると、放熱板部40に配置されるコイル2の露出部5の熱を冷却ベースなどの設置対象に効率よく伝達できる。ここでは、放熱板部40と側壁部41共にアルミニウムにより構成している。他に、底板部40をアルミニウムにより構成し、側壁部41をPBT樹脂により構成することもできる。
 ≪ケース(側壁部)付リアクトルの製造方法≫
 上記側壁部41を備えるリアクトル(以下、ケース付リアクトル10と呼ぶ)は、コイル2と磁性コア3との組合体の周囲を囲むように上方から側壁部41を被せ、固定材(ここでは、別途用意したボルト(図示せず))により、放熱板部40と側壁部41とを一体化することで得ることができる。
 上記方法は、コイル2と内側コア部31の組物を形成し、次に放熱板部40へ上記組物を接合し、次に外側コア部32を形成し、最後に側壁部41を組み立てる、という工程によりケース付リアクトル10を得る方法である。つまり、実施形態1のリアクトル1に側壁部41を組立てる方法である。この方法以外に、コイル2と内側コア部31の組物を形成し、次に放熱板部40へ上記組物を接合し、次に側壁部41を組み立て、最後に外側コア部32を形成する、という工程によってもケース付リアクトル10を得ることができる。この場合、まずコイル2と内側コア部31の組物を放熱板部40に固定し、側壁部41をこの組物を囲むように放熱板部40と一体化しケース4を形成する。このケース4内に、外側コア部32を構成する磁性材料と樹脂とを含む混合物を流し込んで、所定の形状に成形した後、樹脂を硬化させる。この方法によれば、外側コア部32を形成できると共に、ケース付リアクトル10を得ることができる。よって、ケース付リアクトル10の製造時にコストのかかる金型が不要となる。
 ケース4内に樹脂を充填する場合、未硬化の樹脂が放熱板部40と側壁部41との隙間から漏れることを防止するために、パッキン6を配置するとよい。ここでは、パッキン6は、側壁部41と放熱板部40との接合箇所の形状・サイズに応じた環状体であり、合成ゴムから構成されるものを利用しているが、適宜な材質のものが利用できる。ケース4の側壁部41の設置面側には、パッキン6を配置するパッキン溝(図示せず)を有する。
 ここでは、放熱板部40と側壁部41とが独立した別部材であるため、コイル2と内側コア部31との組物を放熱板部40に配置してから、この放熱板部40と側壁部41とを一体にすることができる。また、この組物の外周面に外側コア部32を形成した組合体を放熱板部40に配置してから、この放熱板部40と側壁部41とを一体することもできる。したがって、リアクトルの組立て作業性が優れている
 <変形例2>
 上述した実施形態2では、放熱板部40と側壁部41とが別部材であり、固定材により両者を一体化したケース4を用いる形態を説明したが、両者が一体に形成されたケースを用いる形態とすることができる。この形態の場合、放熱板部と側壁部とが同じ材料で一体に形成されているので、放熱板部と側壁部との組立工程の削減が図れる。
 <実施形態3>
 上述した実施形態1,2では、リアクトルを冷却ベースなどの設置対象に設置したとき、コイルの軸方向が設置対象の表面に平行するように放熱層に接合された横型配置の形態について説明したが、コイルの軸方向が設置対象の表面に直交するように放熱層42に接合された縦型配置の形態とすることができる。
 コイルと内側コア部の組物を縦型配置した場合、外側コア部は、コイルの端面及び外周面の実質的に全て、及び内側コア部において放熱板部に接しない端面及び外周面を覆うように形成される。つまり、外側コア部に覆われず露出した露出部は内側コア部の片方の端面に形成される。この露出部が放熱層に直接的に接合されていることで、内側コア部の熱を放熱層に伝えられ、この放熱層を介して、内側コア部の熱を冷却ベースなどの設置対象に伝達できる。
 ケースを有していなくても、外側コア部により、粉塵や腐食などの外部環境からコイルや内側コア部を保護することや強度などの機械特性の確保等を図ることができ、また、露出部の内側コア部も、放熱板部によって、機械特性の確保等を図ることができる。また、ケース(側壁部)を備える形態とすることもできる。この場合、側壁部は放熱板部と別部材であってもよいし、一体成形であってもよい。
 《実施形態4》
 実施形態1~3や変形例1,2のリアクトルは、車両などに載置されるコンバータの構成部品や、このコンバータを備える電力変換装置の構成部品に利用できる。
 ハイブリッド自動車や電気自動車などの車両1200は、図3に示すようにメインバッテリ1210と、メインバッテリ1210に接続される電力変換装置1100と、メインバッテリ1210からの供給電力により駆動して走行に利用されるモータ(負荷)1220とを備える。
モータ1220は、代表的には、3相交流モータであり、走行時、車輪1250を駆動し、回生時、発電機として機能する。ハイブリッド自動車の場合、車両1200は、モータ1220に加えてエンジンを備える。なお、図3では、車両1200の充電箇所としてインレットを示すが、プラグを備える形態としても良い。
 電力変換装置1100は、メインバッテリ1210に接続されるコンバータ1110と、コンバータ1110に接続されて、直流と交流との相互変換を行うインバータ1120とを有する。この例に示すコンバータ1110は、車両1200の走行時、200V~300V程度のメインバッテリ1210の直流電圧(入力電圧)を400V~700V程度にまで昇圧して、インバータ1120に給電する。また、コンバータ1110は、回生時、モータ1220からインバータ1120を介して出力される直流電圧(入力電圧)をメインバッテリ1210に適合した直流電圧に降圧して、メインバッテリ1210に充電させている。インバータ1120は、車両1200の走行時、コンバータ1110で昇圧された直流を所定の交流に変換してモータ1220に給電し、回生時、モータ1220からの交流出力を直流に変換してコンバータ1110に出力している。
 コンバータ1110は、図4に示すように複数のスイッチング素子1111と、スイッチング素子1111の動作を制御する駆動回路1112と、リアクトルLとを備え、ON/OFFの繰り返し(スイッチング動作)により入力電圧の変換(ここでは昇降圧)を行う。スイッチング素子1111には、FET,IGBTなどのパワーデバイスが利用される。リアクトルLは、回路に流れようとする電流の変化を妨げようとするコイルの性質を利用し、スイッチング動作によって電流が増減しようとしたとき、その変化を滑らかにする機能を有する。このリアクトルLとして、実施形態1~3や変形例1,2に記載のリアクトルを用いる。放熱性に優れるリアクトルを用いることで、電力変換装置1100(コンバータ1110を含む)の放熱性の向上を図ることができる。
 なお、車両1200は、コンバータ1110の他、メインバッテリ1210に接続された給電装置用コンバータ1150や、補機類1240の電力源となるサブバッテリ1230とメインバッテリ1210とに接続され、メインバッテリ1210の高圧を低圧に変換する補機電源用コンバータ1160を備える。コンバータ1110は、代表的には、DC-DC変換を行うが、給電装置用コンバータ1150や補機電源用コンバータ1160は、AC-DC変換を行う。給電装置用コンバータ1150のなかには、DC-DC変換を行うものもある。給電装置用コンバータ1150や補機電源用コンバータ1160のリアクトルに、上記実施形態1~3や変形例1,2のリアクトルなどと同様の構成を備え、適宜、大きさや形状などを変更したリアクトルを利用できる。また、入力電力の変換を行うコンバータであって、昇圧のみを行うコンバータや降圧のみを行うコンバータに、実施形態1~3や変形例1,2のリアクトルなどを利用することもできる。
 なお、本発明は、上述した実施の形態に限定されるものではなく、本発明の要旨を逸脱することなく、適宜変更することが可能である。
 本発明のリアクトルは、ハイブリッド自動車や電気自動車、燃料電池自動車等の車両に搭載される車載用コンバータなどの電力変換装置の構成部品に利用することができる。
 1 リアクトル 10 ケース付リアクトル
 2 コイル 2w 巻線
 3 磁性コア 31 内側コア部 32 外側コア部
 4 ケース 40 放熱板部 41 側壁部 42 放熱層
 400,411 取付部 400h,411h ボルト孔
 410 固定溝 420 位置決め溝
 5 露出部
 6 パッキン
 1100 電力変換装置 1110 コンバータ
 1111 スイッチング素子 1112 駆動回路
 L リアクトル 1120 インバータ
 1150 給電装置用コンバータ 1160 補機電源用コンバータ
 1200 車両 1210 メインバッテリ 1220 モータ
 1230 サブバッテリ 1240 補機類 1250 車輪

Claims (11)

  1.  巻線を巻回してなるコイルと、このコイル内に挿通された内側コア部、及びこの内側コア部と前記コイルの外周面を覆う外側コア部の両コア部により閉磁路を形成する磁性コアとを備えるリアクトルであって、
     前記外側コア部は、磁性材料と樹脂とを含む混合物から構成され、
     前記コイル又は前記内側コア部のどちらか一方は、その外周面の一部が前記外側コア部に覆われない露出部を有し、該露出部の少なくとも一部が、放熱板部に形成された放熱層に接していることを特徴とするリアクトル。
  2.  前記放熱層の少なくとも前記露出部と接する表面が、絶縁性接着剤から構成されていることを特徴とする請求項1に記載のリアクトル。
  3.  前記放熱層の少なくとも一部が、絶縁高熱伝導接着剤から構成され、
     前記露出部の少なくとも一部が、前記絶縁高熱伝導接着剤に接合されていることを特徴とする請求項1または2に記載のリアクトル。
  4.  前記外側コア部は、磁性材料と樹脂との混合物から構成されていることを特徴とする請求項1~3のいずれか1項に記載のリアクトル。
  5.  前記露出部が、前記コイルの外周面の一部に形成されていることを特徴とする請求項1~4のいずれか1項に記載のリアクトル。
  6.  前記露出部が、前記コイルの軸方向に沿って一端から他端に連続して形成されていることを特徴とする請求項5に記載のリアクトル。
  7.  前記外側コア部は、トランスファー成形又は射出成形により形成されていることを特徴とする請求項1~6のいずれか1項に記載のリアクトル。
  8.  さらに、前記放熱板部とは別部材で、前記コイルと磁性コアとの周囲を囲んで配置される側壁部を備え、
     この側壁部と前記放熱板部とを一体化することにより、前記外側コア部の側面と設置面とを覆うケースが構成されることを特徴とする請求項1~7のいずれか1項に記載のリアクトル。
  9.  さらに、前記放熱板部と一体に形成された側壁部を有するケースを備え、
     前記ケースは、前記外側コア部の側面と設置面とを覆うことを特徴とする請求項1~7のいずれか1項に記載のリアクトル。
  10.  スイッチング素子と、前記スイッチング素子の動作を制御する駆動回路と、スイッチング動作を平滑にするリアクトルとを備え、前記スイッチング素子の動作により、入力電圧を変換するコンバータであって、
     前記リアクトルは、請求項1~9のいずれか1項に記載のリアクトルであることを特徴とするコンバータ。
  11.  入力電圧を変換するコンバータと、前記コンバータに接続されて、直流と交流とを相互に変換するインバータとを備え、このインバータで変換された電力により負荷を駆動するための電力変換装置であって、
     前記コンバータは、請求項10に記載のコンバータであることを特徴とする電力変換装置。
PCT/JP2012/065798 2011-07-04 2012-06-21 リアクトル、コンバータ、及び電力変換装置 WO2013005573A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/129,074 US20140140111A1 (en) 2011-07-04 2012-06-21 Reactor, converter and power conversion device
CN201280030034.4A CN103608879B (zh) 2011-07-04 2012-06-21 电抗器、变换器以及功率变换装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011148683 2011-07-04
JP2011-148683 2011-07-04
JP2012107755A JP6176516B2 (ja) 2011-07-04 2012-05-09 リアクトル、コンバータ、及び電力変換装置
JP2012-107755 2012-05-09

Publications (1)

Publication Number Publication Date
WO2013005573A1 true WO2013005573A1 (ja) 2013-01-10

Family

ID=47436929

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/065798 WO2013005573A1 (ja) 2011-07-04 2012-06-21 リアクトル、コンバータ、及び電力変換装置

Country Status (4)

Country Link
US (1) US20140140111A1 (ja)
JP (1) JP6176516B2 (ja)
CN (1) CN103608879B (ja)
WO (1) WO2013005573A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015076443A (ja) * 2013-10-07 2015-04-20 株式会社デンソー リアクトル及びリアクトル放熱構造

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6160142B2 (ja) * 2013-03-14 2017-07-12 株式会社リコー 高電圧インバータ
JP6331495B2 (ja) * 2014-03-06 2018-05-30 株式会社デンソー リアクトル
JP6318798B2 (ja) * 2014-04-11 2018-05-09 株式会社デンソー リアクトル
JP6400357B2 (ja) * 2014-07-04 2018-10-03 住友ベークライト株式会社 発熱体封止物および誘導装置封止物
JP6410494B2 (ja) * 2014-07-04 2018-10-24 住友ベークライト株式会社 発熱体封止物の製造方法および誘導装置封止物の製造方法
JP6472614B2 (ja) * 2014-07-15 2019-02-20 株式会社トーキン コイル部品
JP6229670B2 (ja) * 2015-01-26 2017-11-15 トヨタ自動車株式会社 リアクトル
US10680199B2 (en) * 2015-02-17 2020-06-09 Lg Chem, Ltd. Encapsulation film
JP6393212B2 (ja) * 2015-02-26 2018-09-19 株式会社日立製作所 電力変換装置
JP6361884B2 (ja) * 2015-04-14 2018-07-25 株式会社オートネットワーク技術研究所 リアクトル、及びリアクトルの製造方法
JP6490227B2 (ja) * 2015-09-01 2019-03-27 三菱電機株式会社 電力変換装置
CN106803455B (zh) * 2015-11-26 2019-07-26 乾坤科技股份有限公司 平面型电抗器
JP6604250B2 (ja) * 2016-03-30 2019-11-13 Tdk株式会社 ワイヤレス電力伝送用コイル、ワイヤレス給電システム、ワイヤレス受電システムおよびワイヤレス電力伝送システム
CN108988510A (zh) * 2016-08-31 2018-12-11 矽力杰半导体技术(杭州)有限公司 电能发射天线及应用其的电能发射装置
US20180130592A1 (en) * 2016-11-04 2018-05-10 Ford Global Technologies, Llc Inductor cooling systems and methods
US10204729B2 (en) * 2016-11-04 2019-02-12 Ford Global Technologies, Llc Inductor cooling systems and methods
US10529479B2 (en) * 2016-11-04 2020-01-07 Ford Global Technologies, Llc Inductor cooling systems and methods
JP6961971B2 (ja) * 2017-03-22 2021-11-05 Tdk株式会社 コイル装置
CN113202775B (zh) * 2017-08-23 2023-09-15 浙江三花智能控制股份有限公司 电动泵
JP2019169667A (ja) * 2018-03-26 2019-10-03 Ntn株式会社 磁性素子
EP3680920A1 (en) * 2019-01-11 2020-07-15 Delta Electronics (Thailand) Public Co., Ltd. Packaged inductive component
CN110164673B (zh) 2019-05-07 2020-04-21 深圳顺络电子股份有限公司 一种金属软磁复合材料电感及其制作方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003017329A (ja) * 2001-06-28 2003-01-17 Tabuchi Electric Co Ltd インダクタンス素子
JP2008042094A (ja) * 2006-08-09 2008-02-21 Denso Corp リアクトル
JP2008147403A (ja) * 2006-12-08 2008-06-26 Sumitomo Electric Ind Ltd 軟磁性複合材料
JP2008305854A (ja) * 2007-06-05 2008-12-18 Toyota Motor Corp リアクトルおよびその製造方法
JP2009231495A (ja) * 2008-03-21 2009-10-08 Toyota Motor Corp リアクトル
WO2009125593A1 (ja) * 2008-04-08 2009-10-15 日立金属株式会社 リアクトル装置
JP2010147130A (ja) * 2008-12-17 2010-07-01 Toyota Motor Corp 電磁機器及びその冷却構造
WO2011013394A1 (ja) * 2009-07-29 2011-02-03 住友電気工業株式会社 リアクトル

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2615075A (en) * 1946-10-16 1952-10-21 Gen Electric Gas bubble elimination in liquid-cooled electrical apparatus
JP4851062B2 (ja) * 2003-12-10 2012-01-11 スミダコーポレーション株式会社 インダクタンス素子の製造方法
WO2007132558A1 (ja) * 2006-05-11 2007-11-22 Tamura Corporation コイル及びコイルの成形方法
JP5246502B2 (ja) * 2009-01-22 2013-07-24 住友電気工業株式会社 リアクトル、及びコンバータ
JP2010232421A (ja) * 2009-03-27 2010-10-14 Denso Corp リアクトル
JP5240246B2 (ja) * 2010-06-23 2013-07-17 トヨタ自動車株式会社 リアクトル
JP5626466B2 (ja) * 2011-06-27 2014-11-19 トヨタ自動車株式会社 リアクトル、および、その製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003017329A (ja) * 2001-06-28 2003-01-17 Tabuchi Electric Co Ltd インダクタンス素子
JP2008042094A (ja) * 2006-08-09 2008-02-21 Denso Corp リアクトル
JP2008147403A (ja) * 2006-12-08 2008-06-26 Sumitomo Electric Ind Ltd 軟磁性複合材料
JP2008305854A (ja) * 2007-06-05 2008-12-18 Toyota Motor Corp リアクトルおよびその製造方法
JP2009231495A (ja) * 2008-03-21 2009-10-08 Toyota Motor Corp リアクトル
WO2009125593A1 (ja) * 2008-04-08 2009-10-15 日立金属株式会社 リアクトル装置
JP2010147130A (ja) * 2008-12-17 2010-07-01 Toyota Motor Corp 電磁機器及びその冷却構造
WO2011013394A1 (ja) * 2009-07-29 2011-02-03 住友電気工業株式会社 リアクトル

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015076443A (ja) * 2013-10-07 2015-04-20 株式会社デンソー リアクトル及びリアクトル放熱構造

Also Published As

Publication number Publication date
CN103608879B (zh) 2016-10-05
CN103608879A (zh) 2014-02-26
US20140140111A1 (en) 2014-05-22
JP2013033928A (ja) 2013-02-14
JP6176516B2 (ja) 2017-08-09

Similar Documents

Publication Publication Date Title
JP6176516B2 (ja) リアクトル、コンバータ、及び電力変換装置
JP4947503B1 (ja) リアクトル、コンバータ、および電力変換装置
JP5867677B2 (ja) リアクトル、コンバータ及び電力変換装置
JP5605550B2 (ja) リアクトル及びその製造方法
JP5983942B2 (ja) リアクトル、コンバータ、及び電力変換装置
JP5561536B2 (ja) リアクトル、及びコンバータ
JP6065609B2 (ja) リアクトル、コンバータ、及び電力変換装置
WO2012114890A1 (ja) リアクトル
JP4947504B1 (ja) リアクトル、コンバータ、および電力変換装置
JP2009033051A (ja) リアクトル用コア
WO2013011780A1 (ja) リアクトル、コンバータ、及び電力変換装置
JP6032551B2 (ja) リアクトル、コンバータ、及び電力変換装置
JP6048652B2 (ja) リアクトル、コンバータ、および電力変換装置
JP5945906B2 (ja) リアクトルの収納構造体、および電力変換装置
JP2015012147A (ja) リアクトル
JP6080110B2 (ja) リアクトル
JP2013162069A (ja) リアクトル、コンバータ、及び電力変換装置
JP2013179186A (ja) リアクトル、リアクトル用部品、コンバータ、及び電力変換装置
WO2013168538A1 (ja) リアクトル、コンバータ、電力変換装置、および樹脂コア片の製造方法
JP2013106004A (ja) リアクトル、コンバータ、および電力変換装置
JP2013026418A (ja) リアクトル
WO2013073283A1 (ja) リアクトル、コンバータ、および電力変換装置
WO2014112480A1 (ja) コア部材、リアクトル、コンバータ、および電力変換装置
JP2013026478A (ja) リアクトル
JP2012204778A (ja) リアクトル、及びリアクトル用ケース

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12807712

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14129074

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12807712

Country of ref document: EP

Kind code of ref document: A1