WO2013005356A1 - 希土類アルミニウムガーネットタイプ蛍光体およびこれを用いた発光装置 - Google Patents

希土類アルミニウムガーネットタイプ蛍光体およびこれを用いた発光装置 Download PDF

Info

Publication number
WO2013005356A1
WO2013005356A1 PCT/JP2012/001705 JP2012001705W WO2013005356A1 WO 2013005356 A1 WO2013005356 A1 WO 2013005356A1 JP 2012001705 W JP2012001705 W JP 2012001705W WO 2013005356 A1 WO2013005356 A1 WO 2013005356A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor
light
rare earth
aluminum garnet
yag
Prior art date
Application number
PCT/JP2012/001705
Other languages
English (en)
French (fr)
Inventor
大塩 祥三
奥山 浩二郎
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2012527144A priority Critical patent/JP5672619B2/ja
Priority to EP12807859.9A priority patent/EP2730637B1/en
Priority to KR1020147001243A priority patent/KR20140043123A/ko
Priority to CN201280033563.XA priority patent/CN103703102B/zh
Publication of WO2013005356A1 publication Critical patent/WO2013005356A1/ja
Priority to US14/143,961 priority patent/US8957575B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • C09K11/7792Aluminates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7706Aluminates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7774Aluminates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials

Definitions

  • the present invention is used together with a solid light emitting element such as a light emitting diode (LED) or a semiconductor laser diode (LD), for example, and is used for a light source for a display device such as a projector or a white LED illumination light source or a light source for an illumination device.
  • a solid light emitting element such as a light emitting diode (LED) or a semiconductor laser diode (LD)
  • LD semiconductor laser diode
  • the present invention relates to a novel rare earth aluminum garnet type phosphor and a light emitting device using the novel rare earth aluminum garnet type phosphor.
  • Y 3 Al 3 O 12 is a compound represented by the chemical formula of Y 3 Al 3 O 12 .
  • This Y 3 Al 5 O 12 is widely known by the name of yttrium aluminum garnet, abbreviated as YAG (yag), and is used in solid lasers, translucent ceramics, phosphors and the like. It is also known that there are compounds in which the lattice position of Y is substituted with other metal elements, particularly rare earths, and compounds in which the lattice position of Al is substituted with other metals, particularly Ga (for example, non-patent documents). 2).
  • a compound based on the compound represented by the chemical formula of Y 3 Al 3 O 12 is used as an ion that functions as a luminescent center, for example, Ce 3+ , Tb 3+ , Eu 3+ , Mn 2+ ,
  • YAG phosphor a phosphor belonging to the type of yttrium aluminum garnet
  • LuAG phosphor phosphor belonging to the type of lutetium aluminum garnet
  • These are collectively defined as rare earth aluminum garnet type phosphors.
  • a YAG phosphor activated with at least Ce 3+ is defined as a YAG: Ce phosphor
  • a LaAG phosphor activated with at least Ce 3+ is defined as a LaAG: Ce phosphor
  • at least Ce A LuAG phosphor activated by 3+ is defined as a LuAG: Ce phosphor.
  • these are collectively defined as a rare earth aluminum garnet type Ce phosphor.
  • the YAG phosphor in the present specification has a garnet-type crystal structure and functions as the emission center in an inorganic compound containing at least yttrium, aluminum, and oxygen as elements constituting a crystal lattice. It is a phosphor obtained by adding ions.
  • the LaAG phosphor described above is an ion that has a garnet-type crystal structure and functions as a luminescent center in an inorganic compound containing at least lanthanum, aluminum, and oxygen as elements constituting a crystal lattice.
  • a phosphor of a compound in which Y in the chemical formula shown as an example of the YAG phosphor is substituted with La is substituted with La.
  • the LuAG-based phosphor described above is an ion that has a garnet-type crystal structure and serves as an emission center for an inorganic compound containing at least lutetium, aluminum, and oxygen as elements constituting the crystal lattice.
  • a phosphor of a compound in which Y in the chemical formula shown as an example of the YAG phosphor is substituted with Lu is substituted with Lu.
  • YAG Ce-based phosphors are excited by irradiation with particle beams or electromagnetic waves such as electron beams, vacuum ultraviolet rays, and blue light, and yellow to green visible light. Is known to give off. It is also known that the 1/10 afterglow is as short as 100 ns or less. For this reason, YAG: Ce phosphors are widely used in many light emitting devices (see, for example, Non-Patent Document 2 and Patent Documents 1 to 7).
  • YAG Ce-based phosphors described above, for example, a simple (Y, Ce) 3 Al 5 O 12 phosphor in terms of composition (generally expressed as Y 3 Al 5 O 12 : Ce 3+ phosphor).
  • the color of the light emitted is yellow-green.
  • elements of the same group for example, Lu or Gd for Y, or Ga for Al, Ga substitution or Lu substitution In the case of Gd substitution, the light color changes from yellow to orange.
  • a light source for a display device or a lighting device that emits primary light from a solid-state light emitting element such as a light emitting diode (LED) or a semiconductor laser diode (LD) by shifting to a long wavelength side by a YAG: Ce phosphor.
  • a YAG: Ce-based phosphor whose light color is controlled by replacing a part of Y or Al as described above is frequently used (for example, see Non-Patent Documents 2 and 3).
  • a light-emitting device such as a display light source or a lighting application as it is, such as green light emitted from a YAG phosphor such as a YAG: Ce phosphor
  • the crystal lattice of the YAG: Ce phosphor is used.
  • development of new light-emitting devices and the like to be used by controlling the wavelength by replacing part or all of the constituent elements with other elements having different ion radii and the like (for example, Patent Document 1, 2, 11).
  • the color tone is controlled by a method using a composition containing Gd in the crystal lattice or a method using a composition containing Mg and Si in the crystal lattice.
  • Some phosphors having a garnet structure other than the YAG: Ce system are also known.
  • the CSS and TAG can replace YAG: Ce-based phosphors, and are being used or studied for use in the technical field of white LEDs.
  • Ce phosphor are replaced in order to control the color tone of the light emitted by the phosphor having a garnet structure activated by Ce 3+.
  • Ga, Sc, Lu, etc. have been used as other elements.
  • these Ga compounds, Lu compounds, and Sc compounds are rare substances on the earth and are generally expensive. For this reason, while it is required to improve the performance of the light emitting device such as improving the color tone of the green display light and improving the color rendering property of the illumination light, the application of the YAG phosphor to the light emitting device becomes difficult year by year from the cost aspect. There was a problem.
  • a high-efficiency phosphor having an emission peak in a wavelength region shorter than 540 nm, particularly less than 530 nm, without using a rare and expensive element In addition, it is difficult to provide a high-efficiency phosphor that emits blue-green or pure green light, and it is difficult to obtain sufficient color rendering properties.
  • the present invention has been made to solve these problems, and provides a novel phosphor capable of controlling the emission wavelength without using a composition that uses a large amount of rare and expensive raw materials.
  • Another object of the present invention is to provide a light-emitting device that has high color rendering properties and can reduce manufacturing costs.
  • the rare earth aluminum garnet type phosphor of the present invention is a compound comprising a garnet structure containing rare earth elements, aluminum and oxygen, including ions that emit fluorescence, and in terms of composition, the compound
  • the element combination of rare earth elements and aluminum constituting the element is partially substituted by any element combination of alkaline earth metal and zirconium (Zr) or alkaline earth metal and hafnium (Hf)
  • Zr zirconium
  • Hf hafnium
  • the light-emitting device of the present invention includes a phosphor and a light source that generates primary light irradiated to the phosphor.
  • the rare earth aluminum garnet-type phosphor according to the present invention is used as the phosphor, and the primary It is characterized in that light is converted into long wavelength light and emitted.
  • FIG. 1 is a schematic cross-sectional view illustrating an example of a semiconductor light emitting device according to an embodiment. It is a figure which shows the spectral distribution of the output light which the 1st semiconductor light-emitting device concerning embodiment emits. It is a figure which shows the spectral distribution of the output light which the 2nd semiconductor light-emitting device concerning embodiment emits. It is a figure which shows the spectral distribution of the output light which the 3rd semiconductor light-emitting device concerning embodiment emits. It is a chromaticity diagram which shows the display color gamut of the display apparatus concerning embodiment. It is a figure which shows the structure of an example of the light source device concerning embodiment.
  • FIG. 6 is a graph showing the relationship between the d value of the (420) plane of the YAG: Ce phosphors of Examples 1 to 6 and the Ca—Zr substitution amount. It is a figure which shows the excitation spectrum and emission spectrum of the YAG: Ce type
  • FIG. 6 is a graph showing the relationship between the d value of the (420) plane of the YAG: Ce phosphors of Examples 1 to 6 and the Ca—Zr substitution amount. It is a figure which shows the excitation spectrum and emission spectrum of the YAG: Ce type
  • FIG. 13 It is a figure which shows the excitation spectrum and emission spectrum of YAG type
  • FIG. 14 It is a figure which shows the excitation spectrum and emission spectrum of YAG type
  • FIG. It is a figure which shows the excitation spectrum and emission spectrum of the YAG type fluorescent substance of Example 15.
  • FIG. It is a figure which shows the excitation spectrum and emission spectrum of the YAG: Ce type
  • FIG. 6 is a diagram showing an excitation spectrum and an emission spectrum of a rare earth aluminum garnet type Ce phosphor of Example 21.
  • FIG. It is a figure which shows the excitation spectrum and emission spectrum of the rare earth aluminum garnet type Ce type
  • FIG. 6 is a diagram showing XRD patterns of rare earth aluminum garnet type Ce phosphors of Examples 23 to 25. It is a figure which shows the excitation spectrum and emission spectrum of the rare earth aluminum garnet type Ce type
  • the rare earth aluminum garnet type phosphor of the present invention is a compound that contains a fluorescent ion and constitutes a garnet structure containing a rare earth element, aluminum, and oxygen.
  • the element combination is partially substituted with any element combination of alkaline earth metal and zirconium (Zr) or alkaline earth metal and hafnium (Hf).
  • part or all of the constituent elements of the crystal lattice of the rare earth aluminum garnet type phosphor can be replaced without using rare and expensive elements, and the emission color can be controlled. it can.
  • the rare earth element is preferably yttrium, lanthanum, or lutetium, and is preferably a compound belonging to any of the yttrium aluminum garnet type, lanthanum aluminum garnet type, or lutetium aluminum garnet type.
  • the emission wavelength of a widely used phosphor such as a YAG phosphor can be controlled while reducing the cost.
  • the total number of atoms of the partially substituted alkaline earth metal is more than 0.1 and not more than 2.0 with respect to 12 anions constituting the compound having the garnet crystal structure. Is preferred. By doing so, it is possible to easily control the emission wavelength by exhibiting the effect of partial substitution.
  • Ln 3-x M x Al 5 -x X x O chemical compounds represented by the formula 12 containing ions that emit fluorescence, said Ln is yttrium (Y), lanthanum (La), or lutetium (Lu ), At least one transition metal selected from zirconium (Zr) or hafnium (Hf), and x is a numerical value satisfying 0 ⁇ x ⁇ 2. It is preferable that By doing so, it is possible to obtain a rare earth aluminum garnet type phosphor sufficiently utilizing the merit of partial substitution.
  • the alkaline earth metal preferably contains at least calcium (Ca).
  • Ca is an alkaline earth metal
  • Y 3-x Ca x Al 5-x Zr x O 12, Y 3-x Ca x Al 5-x Hf x O 12, La 3-x Ca x Al 5-x Zr x O 12 , or,, Lu 3-x Ca x Al 5-x Zr x O 12 is a compound represented by any chemical formula, and x is preferably a numerical value satisfying 0 ⁇ x ⁇ 2.
  • the numerical value on the lower limit side of x for which the effect of partial substitution is noticeable is over 0.1, and the preferable numerical value on the upper limit side of x is 2.0 or less in consideration of the merit of partial substitution.
  • the ion emitting fluorescence is preferably Ce 3+ .
  • the rare earth aluminum garnet type phosphor of the present invention can be used as a Ce 3+ activated green phosphor widely used or studied for use in light emitting devices.
  • the ion emitting fluorescence further includes at least one ion selected from Pr 3+ , Tb 3+ and Mn 2+ .
  • the ion emitting fluorescence further includes at least one ion selected from Pr 3+ , Tb 3+ and Mn 2+ .
  • the light-emitting device of the present invention includes a phosphor and a light source that generates primary light irradiated to the phosphor, and the rare earth aluminum garnet-type phosphor according to any one of claims 1 to 4 is used as the phosphor.
  • the primary light is converted into a long wavelength light and emitted.
  • a light emitting device capable of emitting light of various wavelengths from blue green to red using primary light of ultraviolet light or blue light can be realized at low cost.
  • a semiconductor solid-state light emitting device having an emission peak in a wavelength range of 400 nm to 480 nm is used as the light source for generating the primary light, and emitted light having an emission peak in a region of 485 nm or more, particularly 500 nm or more is emitted Is preferred.
  • rare earth aluminum garnet type phosphor As the rare earth aluminum garnet type phosphor described in the present embodiment, a compound belonging to any type of yttrium aluminum garnet, lanthanum aluminum garnet, or lutetium aluminum garnet using yttrium, lanthanum, or lutetium as the rare earth element. explain.
  • the rare earth aluminum garnet type phosphor of the present embodiment is a compound belonging to any type of yttrium aluminum garnet, lanthanum aluminum garnet, or lutetium aluminum garnet, and in terms of composition, yttrium, aluminum, and lanthanum constituting the compound. And aluminum, or any combination of elements of lutetium and aluminum is partially substituted by an element combination of alkaline earth metal and zirconium (Zr), or alkaline earth metal and hafnium (Hf). Yes.
  • the total number of atoms of the partially substituted alkaline earth metal is as follows. It is preferably more than 0.1 and not more than 2.0 with respect to 12 anions constituting the compound having a crystal structure. More preferably, it is 0.3 or more and less than 1.0, or more than 1.0 and 2.0 or less with respect to 12 anions constituting the compound having a garnet crystal structure.
  • a more preferred form of the YAG-based phosphor of the present embodiment is a Ln 3-x M x Al 5 -x X x O compound represented by the chemical formula 12 containing ions that emit fluorescence, where "Ln "Is a rare earth containing at least one of Y, La or Lu,” M “is an alkaline earth metal,” X “is at least one transition metal selected from Zr or Hf, “X” is a numerical value satisfying 0 ⁇ x ⁇ 2, preferably 0.3 ⁇ x ⁇ 1 or 1 ⁇ x ⁇ 2.
  • the substituted alkaline earth metal contains at least Ca.
  • the alkaline earth metal is more preferably all calcium.
  • At least an alkaline earth metal, particularly Mg, Ca or Sr, and an element combination of Zr or Hf are partially substituted, so that the absolute amount of the element combination of yttrium, lanthanum, or lutetium and aluminum is small. Therefore, a phosphor having a novel composition in which the amount of rare earth yttrium, lanthanum, or lutetium used is suppressed can be obtained.
  • rare earth aluminum garnet type phosphors are constructed using zirconium, it becomes a phosphor as a new compound that refrains from the use of rare earths and rare metals, and rare earth aluminum garnet type phosphors with novel functions.
  • a rare earth aluminum garnet-type Ce phosphor can be provided.
  • the numerical value on the lower limit side of x for which the effect of partial substitution is recognized remarkably exceeds 0.1, particularly 0.3 or more. 2.0 or less.
  • the YAG phosphor of the present embodiment forms a solid solution of a compound represented by a chemical formula of MZrO 3 or MHfO 3 with a YAG compound, LaAG compound, or LuAG compound containing a fluorescent ion.
  • the alkaline earth metal M and Zr are in solid solution in the YAG compound, LaAG compound, or LuAG compound, and the alkaline earth metal “M” contains Ca. Is preferred.
  • Lu 3-x Ca x Al 5-x Zr x O 12 is a compound represented by any chemical formula, and x is 0 ⁇ x ⁇ 3, preferably 0.1 ⁇ x ⁇ 2, more preferably More preferably, the numerical value satisfies either 0.25 ⁇ x ⁇ 1 or 1 ⁇ x ⁇ 2. That is, in a more preferred form, the alkaline earth metal is all calcium.
  • the alkaline earth metal contains Ca
  • the shift of light emission to the short wavelength side is noticeably observed in the rare earth aluminum garnet type Ce phosphor. This tendency becomes more prominent when all the alkaline earth metal is Ca. For this reason, it is preferable for obtaining a rare earth aluminum garnet type Ce phosphor that emits green, blue-green, or green-blue fluorescence with good color purity.
  • Y 3-x Ca x Al 5-x Zr x O 12 Y 3-x Ca x Al 5-x Hf x O 12 , La 3-
  • Y, La, or part of Lu can be replaced with other metal elements capable of forming trivalent ions, in particular rare earths.
  • a part of Ca can be replaced with other metal elements capable of forming divalent ions, particularly other alkaline earth metals.
  • a part of Al can be replaced with another metal element capable of forming a trivalent ion, in particular, a group 3 Sc and a group 13 element (such as Ga) or a transition metal capable of forming a trivalent ion.
  • a part of Zr or Hf is another metal element capable of forming a tetravalent ion, particularly a group 14 metal element (particularly Si, Ge, and / or Sn) or a group 4 metal element (such as Ti). Can be replaced.
  • the rare earth aluminum garnet type phosphor of this embodiment can take various modifications in a composition range that does not impair the garnet structure and contains at least one of Y, La, or Lu and Al. It becomes.
  • Specific examples of the rare earth aluminum garnet type phosphor according to the present invention include, for example, the following compounds containing a luminescent center ion.
  • the rare earth aluminum garnet type phosphor of the present embodiment can also be configured to include gallium (Ga), lutetium (Lu), scandium (Sc), and the like. In this case, it is preferable to reduce the usage amount of Ga, Lu, Sc and the like. However, the more preferable rare earth aluminum garnet type phosphor of the present embodiment does not contain artificially added Ga, Lu, or Sc. A compound containing such an element is not only rare and expensive, but also has a relatively small merit for cost when having a function as a phosphor. Therefore, a novel rare earth aluminum garnet type in which the production cost is reduced by avoiding the use of Ga compounds, Lu compounds, and Sc compounds by using phosphors that do not contain artificially added Ga, Lu, or Sc. A phosphor can be realized.
  • the aluminum constituting the compound is further replaced with Ga or Sc.
  • the aluminum constituting the compound is further replaced with Ga or Sc.
  • the rare earth aluminum garnet type phosphor of the present invention containing Ga or Sc can be a preferable compound in terms of crystal quality.
  • the rare earth aluminum garnet type phosphor of the present embodiment does not contain a group 14 element, particularly Si. If it does in this way, it will become an inorganic compound which aimed at sufficient differentiation with respect to conventionally known rare earth aluminum garnet type fluorescent substance.
  • the luminescent center ion is an ion that can emit fluorescence by electron energy transition in a compound that functions as a phosphor matrix, that is, a YAG-based compound crystal in this embodiment.
  • ions called transition metal ion emission centers such as Sn 2+ , Sb 3+ , Tb + , Pb 2+ , Bi 3+ , which are ions called ns 2 -type ion emission centers, Cr 3+ , Mn 4+ , Ce 3+ , Pr 3+ , Nd 3+ , Sm 3+ , Eu 3+ , Gd 3+ , Tb 3+ , Dy 3+ , Ho 3+ , Er 3+ , Tm 3 + , such as Mn 2+ , Fe 3+, etc. It is at least one ion selected from 3+ , Sm 2+ , Eu 2+ , Yb 2+ and the like.
  • the rare earth aluminum garnet type phosphor of the present embodiment is configured so that at least one of these emission center ions is included in the YAG-based compound described above.
  • YAG compounds can be exposed to external stimuli such as irradiation with particle beams ( ⁇ rays, ⁇ rays, electron beams) or electromagnetic waves ( ⁇ rays, X rays, vacuum ultraviolet rays, ultraviolet rays, visible light, etc.). It becomes excited and emits fluorescence.
  • This fluorescent light is sufficient for a light emitting device as long as it is any electromagnetic wave selected from ultraviolet rays, visible light, and infrared rays.
  • fluorescent light that is preferable in practical use is visible light.
  • visible light fluorescent light it can be widely used as a light-emitting device for a display device or a lighting device.
  • the emission center ion is at least one ion selected from Mn 4+ , Mn 2+ , Ce 3+ , Pr 3+ , Eu 3+ , and Tb 3+, visible light components that have many uses, that is, blue, blue-green, It becomes a phosphor that emits green, yellow, orange, red, and white.
  • the luminescent center ion is at least one rare earth ion selected from Ce 3+ , Pr 3+ , Eu 3+ , and Tb 3+ , or a transition metal ion of Mn 2+ , it can be used as a display device or a lighting device. It is preferable because it becomes a rare earth aluminum garnet type phosphor that emits more blue-green light, green light, orange light, red light, or white light.
  • the fluorescence emitted by the phosphor preferably includes at least the light emitted by Ce 3+ , and the preferred ion emitting fluorescence is Ce 3+ .
  • the rare earth aluminum garnet-type phosphor according to the present embodiment is intended to reduce the manufacturing cost of the light-emitting device without replacing the relatively expensive conventional green phosphor and without deteriorating the characteristics of green light. Can do.
  • Y 3 (Al, Ga) 5 O 12 : Ce 3+ green phosphor and Ca 3 Sc 2 Si 3 O 12 : Ce 3 + green phosphor have been postponed because of an increase in production cost. It is possible to improve the performance of light emitting devices. For this reason, development of a display device in which the color tone of the green output light is improved, an illumination light source and an illumination device in which the color rendering property of the output light is improved is promoted, and these light emitting devices can be put into practical use.
  • the peak of the spectral distribution of the light emitted by Ce 3+ is located within the wavelength range of 490 nm or more and less than 540 nm, particularly 500 nm or more and less than 540 nm. , 505 nm or more and less than 535 nm.
  • the light emission of Ce 3+ is based on the 5d 1 ⁇ 4f 1 electron energy transition that allows parity. Due to this, the energy difference of the light-emitting and light absorption of Ce 3+ is reduced, the lifetime of the emission levels of Ce 3+ is very short and 10 -8 ⁇ 10 -7 s (10 ⁇ 100ns).
  • the peak of the excitation spectrum is located within a shorter wavelength range than the conventional YAG: Ce-based phosphor, that is, more than 400 nm and less than 450 nm, particularly more than 405 nm and less than 440 nm. 10 afterglow has an ultrashort afterglow of 1.0 msec or less.
  • the rare earth aluminum garnet type Ce phosphor of the present embodiment is an ultrashort afterglow phosphor that absorbs violet to blue light, which is short-wavelength visible light, and can emit blue-green to green light. Will function as. These features, for example, improve the color rendering of the output light of white LEDs that use blue LEDs, the laser projectors that use blue LDs and phosphors, and the display color gamut on liquid crystal panels that use LEDs as light sources. can do.
  • ions emitting preferable fluorescence are not only Ce 3+, but also from luminescent center ions different from Ce 3+ , in particular, Pr 3+ , Tb 3+ and Mn 2+. It is also preferable to contain at least one selected ion as a coactivator. By doing so, a rare earth aluminum garnet that emits light having a light emission component in which Pr 3+ , Tb 3+ or Mn 2+ is added to the light emission component of Ce 3+ when irradiated with light of purple to blue light. A type phosphor can be obtained, and the color tone of the emission color can be controlled.
  • the rare earth aluminum garnet-type Ce phosphor of the present embodiment can promote the improvement of the performance of a light-emitting device that uses a solid-state light-emitting element such as an LED or LD, which has been actively developed in recent years. Thus, it becomes possible to provide a light emitting device with improved light emission characteristics.
  • the rare earth aluminum garnet type phosphor of this embodiment is a novel substance, it can be synthesized using an orthodox solid phase reaction similar to that of a conventional YAG phosphor. That is, Y 2 O 3 , La 2 O 3 , Lu 2 O 3 , Sc 2 O 3 , CeO 2 , Al 2 O 3 , Ga 2 O 3 , CaCO 3 , ZrO 2 , which are universal ceramic raw material powders.
  • HfO 2 or the like the raw material powder is prepared so as to become a stoichiometric composition or a composition close to this, and the raw material powder is mixed using an automatic mortar or the like, and the mixed raw material is put into a firing container such as an alumina crucible. After charging, the materials can be synthesized by heating and reacting the raw materials for several hours at a firing temperature of 1500 to 1700 ° C. using a box-type electric furnace or the like.
  • the properties of the rare earth aluminum garnet-type phosphor of the present embodiment are not limited. It can be formed as a phosphor of various shapes such as single crystal, thin film, thick film, lump, granule, powder, nanoparticle, ceramic, translucent ceramic, and can be used in various properties. Can be easily inferred by those skilled in the art.
  • the rare earth aluminum garnet-type phosphor of the present embodiment is used as a slurry, paste, sol, or gel by appropriately mixing with a solvent such as water, organic solvent, resin, or water glass, for example. You can also.
  • Embodiment 2 Hereinafter, as Embodiment 2, the control of the fluorescence wavelength in a phosphor belonging to the Ce 3+ activated rare earth aluminum garnet type will be described.
  • the phosphor belonging to the Ce 3+ activated rare earth aluminum garnet type is composed of yttrium and aluminum, lanthanum and aluminum, or lutetium constituting the phosphor of the rare earth aluminum garnet type Ce phosphor.
  • the tendency wavelength can be controlled by replacing a part of any element combination of aluminum and aluminum with an element combination of alkaline earth metal and Zr, or alkaline earth metal and Hf.
  • the alkaline earth metal preferably contains at least Ca, and the alkaline earth metal containing Ca is more preferably all Ca. Furthermore, it is more preferable that the number of atoms of Ca and Zr or the number of atoms of Ca and Hf be the same.
  • Y 3-x Ca x Al 5-x Zr x O 12, Y 3-x Ca x Al 5-x Hf x O 12, La 3-x Ca x Al 5-x Zr x O 12 , or,, Lu A compound represented by any chemical formula of 3-x Ca x Al 5-x Zr x O 12 is formed, and x is a numerical value satisfying 0 ⁇ x ⁇ 2.
  • the peak wavelength of fluorescence of the rare earth aluminum garnet type Ce phosphor is increased from about 560 nm to 500 nm as the substitution amount of alkaline earth metal, particularly Ca, Zr or Hf, that is, the value of x increases.
  • it moves to the short side to near 490 nm, and fluorescence of yellowish green, green, blue-green, and green-blue color tone can be obtained.
  • the light color of the fluorescence emitted by the rare earth aluminum garnet type Ce phosphor in order to control the good green light in terms of color tone, although somewhat varying depending activated amount of Ce 3+, for example, Ce 3+ activated yttrium aluminum
  • the numerical value of x is set to a numerical value satisfying 0 ⁇ x ⁇ 1.
  • the numerical value of x is set to a numerical value satisfying 1 ⁇ x ⁇ 2.
  • the numerical value of x is set to a numerical value satisfying 1 ⁇ x ⁇ 2.
  • the method for controlling the fluorescence wavelength of the rare earth aluminum garnet type Ce phosphor disclosed as the present embodiment it is preferable that Ga, Lu, or Sc does not contain the phosphor. In this way, the color tone of the rare earth aluminum garnet type Ce phosphor can be controlled from yellowish green to blue-green to patina without using rare and expensive Ga compounds, Lu compounds and Sc compounds as in the past.
  • This is a method for controlling the fluorescence wavelength.
  • Such a method for controlling the fluorescence wavelength is advantageous in terms of cost as a method for controlling the fluorescence wavelength of the rare earth aluminum garnet type Ce phosphor.
  • it can be sufficiently differentiated from the fluorescence wavelength control method using rare and expensive substances such as Ga compounds, Lu compounds, and Sc compounds described in the prior art column, and can be used as an alternative. Become.
  • the element that substitutes a part of aluminum does not contain a group 14 element, particularly Si. If it does in this way, it can be set as the control method which aimed at sufficient differentiation with respect to the control method of the fluorescence wavelength known conventionally.
  • the light emitting device is configured by using the rare earth aluminum garnet type phosphor according to the present invention described in the first embodiment.
  • the light emitting device of this embodiment it is preferable to use the light emitted from the rare earth aluminum garnet type phosphor according to the present invention for either display or illumination.
  • the various light-emitting devices using LED or a laser diode and fluorescent substance are mentioned, for example. Specific examples include white LEDs as semiconductor light emitting devices, light source devices and projectors, LED illumination light sources and illumination devices including LED backlights, and display devices and illumination devices such as LCDs with LED backlights, as well as sensors and sensitization.
  • a vessel Such as a vessel.
  • the rare earth aluminum garnet-type phosphor described in the first embodiment is a novel substance.
  • the rare earth aluminum garnet-type Ce-based phosphor has characteristics that are not found in the conventional YAG: Ce-based phosphor as described in the first embodiment. Have. For this reason, a light-emitting device having characteristics equivalent to those of a light-emitting device using a phosphor having a garnet-type crystal structure constituted by using a rare and expensive element without using a rare and expensive element is reduced. Can be provided at a cost.
  • a particularly preferred light-emitting device is a light-emitting device configured using the rare earth aluminum garnet type Ce phosphor described in the first embodiment.
  • the rare earth aluminum garnet type Ce-based phosphor is an orthodox Ce 3+ activated green phosphor widely used in conventional light emitting devices, for example, Y 3 (Al, Ga) 5 O. 12 : Ce 3+ , (Lu, Y) 3 Al 5 O 12 : Ce 3+ , Ca 3 Sc 2 Si 3 O 12 : It is necessary to use rare metal elements (Ga, Lu, and Sc) not found in Ce 3+, etc.
  • the manufacturing cost can be reduced, the light emitting device as a display device with improved color tone and afterglow performance of green output light, and the illumination light source and lighting device with improved color rendering properties of illumination light and reduced manufacturing cost
  • the light emitting device can be obtained.
  • FIG. 1 is a diagram for explaining the technical idea of the light emitting device according to the present embodiment.
  • an excitation source 1 is a light source that generates primary light for exciting the rare earth aluminum garnet-type phosphor 2 according to the present invention described in the first embodiment.
  • the excitation source 1 is, for example, a particle beam such as an ⁇ ray, a ⁇ ray, an electron beam, an electromagnetic wave of a short wavelength visible light such as a ⁇ ray, an X ray, a vacuum ultraviolet ray, an ultraviolet ray, a visible light, particularly a violet light or a blue light.
  • It is a radiation device for emitting particle beams or electromagnetic waves, and various radiation generators, electron beam emitters, discharge light generators, solid state light emitting devices, solid state light emitters, and the like correspond to this.
  • Typical examples of the excitation source 1 include an electron gun, an X-ray tube, a rare gas discharge device, a mercury discharge device, a light emitting diode, a laser light generator including a semiconductor laser, and an inorganic or organic electroluminescence element. It is done.
  • the output light 4 is the output light emitted by the rare earth aluminum garnet-type phosphor 2 according to the present invention excited by the primary light that is the excitation line or the excitation light 3 emitted by the excitation source 1.
  • the fluorescent light is used as illumination light or display light in the light emitting device.
  • FIG. 1A is a conceptual diagram showing a light emitting device having a structure in which output light 4 emitted from a rare earth aluminum garnet type phosphor 2 is emitted in a direction in which excitation light or excitation light 3 irradiates the rare earth aluminum garnet type phosphor 2.
  • Examples of the light emitting device having the technical concept shown in FIG. 1A include a white LED light source, a fluorescent lamp, and an electron tube.
  • FIG. 1B shows light emission having a structure in which the output light 4 emitted from the rare earth aluminum garnet type phosphor 2 is emitted in the direction opposite to the direction in which the excitation line or excitation light 3 irradiates the rare earth aluminum garnet type phosphor 2.
  • FIG. 1B shows light emission having a structure in which the output light 4 emitted from the rare earth aluminum garnet type phosphor 2 is emitted in the direction opposite to the direction in which the excitation line or excitation light 3 irradiates the rare earth aluminum garnet type phosphor 2.
  • Examples of the light emitting device having the technical concept shown in FIG. 1B include a plasma display device, a light source device using a phosphor wheel with a reflector, and a projector.
  • the light emitting device of the present embodiment a semiconductor light emitting device, an illumination light source, an illumination device, a liquid crystal panel with an LED backlight, an LED projector, a laser projector, etc., configured using a rare earth aluminum garnet type phosphor It is.
  • the light emitting device according to the present embodiment will be described in detail with respect to a semiconductor light emitting device and a light source device for a projector.
  • FIG. 2 is a schematic cross-sectional view showing a semiconductor light emitting device which is a first specific example of the light source device according to the present embodiment.
  • FIG. 2 is a cross-sectional view, hatching indicating a cross section of the translucent resin 10 is omitted in consideration of easy viewing of the drawing.
  • a substrate 5 serves as a base for fixing the solid state light emitting device 6, for example, ceramics such as Al 2 O 3 and AlN, metals such as Al and Cu, glass, silicone resin, fillers, and the like. Consists of resins such as filled silicone resin.
  • a wiring conductor 7 is provided on the substrate 5, and power is supplied to the solid light emitting element 6 by electrically connecting the power supply electrode 8 of the solid light emitting element 6 and the wiring conductor 7 using a gold wire or the like. Yes.
  • the solid state light emitting device 6 that is a light source that generates primary light has electric energy applied by applying at least one voltage selected from direct current, alternating current, or pulse, and the electrical energy is reduced to near ultraviolet rays, purple light, blue light, or the like.
  • the solid-state light-emitting element 6 that is preferable for the purpose of obtaining primary light having a high output and a narrow spectral half width is an LED or an LD.
  • FIG. 2 illustrates a configuration in the case where the solid light emitting element 6 is an LED having an InGaN-based compound as a light emitting layer.
  • the wavelength conversion layer 9 includes the phosphor 2 made of a fluorescent material, and converts the wavelength of the primary light emitted from the solid light emitting element 6 into light that has moved relatively to the longer wavelength side.
  • the wavelength conversion layer 9 contains the rare earth aluminum garnet type phosphor according to the present invention described in the first embodiment as the phosphor 2 in the translucent resin 10. Note that the wavelength conversion layer 9 in the semiconductor light emitting device of the present embodiment can be configured by including a phosphor in a resin phosphor film, a translucent phosphor ceramic, a phosphor glass, or the like.
  • the rare earth aluminum garnet type Ce-based phosphor according to the present invention described in the first embodiment can be used alone as the phosphor 2, but if necessary, the rare earth aluminum garnet type Ce-based material can be used. A phosphor different from the phosphor may be included. Further, the rare earth aluminum garnet type phosphors of the first embodiment which are different in any one of the emission color and the composition may be used in combination.
  • the wavelength of the light that has moved to the longer wavelength side by absorbing the primary light emitted by the solid state light emitting device 6 is changed.
  • the light emitting color is appropriately selected from various phosphors that emit blue light, green blue light, blue green light, green light, yellow light, orange light, and red light, and the semiconductor light emitting device emits output light of a desired color. Can be.
  • Preferred high-efficiency phosphors for semiconductor light-emitting devices when the solid-state light-emitting element 6 is an LED or LD are oxide-based fluorescent materials such as oxides or acid halides activated by at least one of Eu 2+ and Ce 3+ Body, nitride phosphors such as nitrides and oxynitrides, or sulfide phosphors such as sulfides and oxysulfides can be used.
  • BaMgAl 10 O 17 Eu 2+
  • CaMgSi 2 O 6 Eu 2+
  • Ba 3 MgSi 2 O 8 Eu 2+
  • Sr 10 (PO 4 ) 6 Cl 2 Eu 2+ and the like.
  • a semiconductor light emitting device can be realized at low cost by using all the phosphors used as oxides.
  • the light emitting device has a wavelength of 400 nm or more and less than 480 nm.
  • Solid light-emitting element 6 emitting violet or blue light having an emission peak in the region
  • rare earth aluminum garnet type Ce phosphor emitting green light having an emission peak in the wavelength region of 485 nm to less than 540 nm, particularly 500 nm to less than 540 nm
  • a wavelength conversion layer 9 including at least 2.
  • a combination of a blue phosphor, a green phosphor, and a red phosphor, or a blue green phosphor, a yellow phosphor, and a red phosphor with respect to a purple solid light emitting element there are a combination with a green body, a combination of a green phosphor and a yellow phosphor, a combination of a green phosphor and a red phosphor, a combination with a green phosphor, etc. It is preferable to configure a semiconductor light emitting device using any of these combinations, or to finally emit output light based on these combinations.
  • the rare earth aluminum garnet type Ce-based phosphor described in the first embodiment is used as the above-described green phosphor, blue-green phosphor, or green-blue phosphor.
  • the solid light emitting element 6 is fixed on the substrate 5 on which the wiring conductor 7 is formed by using a mounting technique, and the power supply electrode 8 of the solid light emitting element 6 and the wiring conductor 7 are electrically connected by using a wire bonding technique or the like.
  • the translucent resin 10 such as a silicone resin and the phosphor 2 are sufficiently mixed to prepare a phosphor paste adjusted to have a predetermined viscosity.
  • the weight ratio of the phosphor 2 in the phosphor paste is set to several% to several tens%.
  • the wavelength conversion layer is formed by, for example, dropping a phosphor paste onto the solid light emitting element 6, covering the light extraction surface of the solid light emitting element 6 with the phosphor paste, and solidifying the phosphor paste by drying or the like.
  • 9 is formed as a semiconductor light emitting device.
  • the solid light emitting element 6 when the solid light emitting element 6 is energized and supplied with a predetermined power, the solid light emitting element 6 is primary light having a blue light emission peak within a wavelength range of 440 nm to less than 480 nm. Emits light.
  • the primary light is wavelength-converted into blue-green or green light by the rare earth aluminum garnet type Ce phosphor 2 with high wavelength conversion efficiency.
  • the primary light irradiates the phosphor 2 included in the wavelength conversion layer 9, and a part thereof is absorbed by the phosphor 2.
  • the primary light absorbed by the phosphor 2 is wavelength-converted by the phosphor 2, and wavelength-converted into light that has moved relatively to the longer wavelength side (low energy side).
  • the wavelength converted light converted in wavelength by the phosphor 2 passes through the translucent resin 10 and is emitted from the semiconductor light emitting device.
  • the primary light that has not been absorbed by the phosphor 2 also passes through the translucent resin 10 and is emitted from the semiconductor light emitting device.
  • both the wavelength-converted light from the phosphor 2 and the primary light that has not been absorbed by the phosphor 2 are emitted from the semiconductor light emitting device, and the light component obtained by adding both of these colors is semiconductor light emission.
  • the thickness and light transmittance of the wavelength conversion layer 9, the type and mixing ratio of the phosphors 2 included in the wavelength conversion layer 9, the wavelength of the primary light emitted from the solid light emitting element, and the like can be adjusted as appropriate, and are thus desired.
  • the light source may be designed so that illumination light such as a light source color or white light can be obtained. In some cases, all of the temporary light is absorbed by the phosphor and wavelength-converted. In this case, the light emitted from the semiconductor light-emitting device is only light that has been wavelength-converted by the phosphor.
  • the primary light from the solid-state light emitting element 6 is blue light having an emission peak in the wavelength range of 440 nm or more and less than 480 nm, and the wavelength of the blue light or green light is changed by the rare earth aluminum garnet type Ce phosphor 2.
  • An example of conversion is shown.
  • the rare earth aluminum garnet type Ce-based phosphor 2 is a green phosphor having an excitation peak on a shorter wavelength side than a blue region having a wavelength of 440 nm or more and less than 500 nm
  • the primary light from the solid-state imaging device 6 is emitted as blue light.
  • An apparatus may be configured.
  • the phosphor activated by Ce 3+ generally converts the wavelength of the excitation peak located on the longest wavelength side into light having a longer wavelength than the absorbed light with high photon conversion efficiency (internal quantum efficiency). Since it is known to obtain, a semiconductor light emitting device that emits light of a high luminous flux can be provided even in this way.
  • 3 to 5 are diagrams showing the spectral distribution of output light emitted from the semiconductor light emitting device of this embodiment.
  • the semiconductor light emitting device of this embodiment emits light in a wavelength range of 485 nm or more and less than 540 nm, particularly 500 nm or more and less than 540 nm, and a violet or blue light component having an emission peak in a wavelength range of 400 nm or more and less than 480 nm. It emits at least a blue-green or green light component having a peak. It can be. For this reason, in the semiconductor light emitting devices of the specific examples shown in FIGS. 3 to 5, the blue light component 12 having an emission peak in the wavelength region of 440 nm or more and less than 480 nm and the emission peak in the wavelength region of 500 nm or more and less than 540 nm. The blue-green or green light component 13 is shown.
  • FIG. 3 shows an InGaN blue LED having a light emitting layer of an InGaN-based compound that emits blue light as a solid-state light emitting device, and using at least the rare earth aluminum garnet type Ce-based phosphor and the red phosphor described in the first embodiment. 2 shows a spectral distribution that simulates the case of emitting a three-wavelength white output light having a correlated color temperature of 6700 K corresponding to a daylight color.
  • a solid line a shown in FIG. 3 represents an InGaN blue LED, the YAG: Ce phosphor of Embodiment 1 that emits a green light component having an emission peak near 530 nm, and an Eu that emits a red light component having an emission peak near 620 nm.
  • the spectral distribution when combining 2+ activated phosphors is shown.
  • an alternate long and short dash line b shown in FIG. 3 shows an InGaN blue LED
  • the YAG: Ce phosphor of Embodiment 1 that emits a blue-green light component having an emission peak near 515 nm, and a yellow-green color having an emission peak near 555 nm.
  • the spectral distribution is shown when a conventional YAG: Ce phosphor that emits a light component and an Eu 2+ activated phosphor that emits a red light component having an emission peak near 620 nm are combined.
  • a dotted line c shown in FIG. 3 shows a pseudo color having a correlated color temperature of 6700 K using an InGaN blue LED shown as a reference example and a conventional YAG: Ce phosphor that emits a yellow-green light component having an emission peak near 555 nm. This is a spectral distribution simulating the case where white output light is emitted.
  • the numerical value of Ra is sufficiently high and can be used as illumination light close to natural light.
  • the white output light indicated by the alternate long and short dash line b in FIG. 3 has an average color rendering index Ra of 97.1 and can be used almost as natural light.
  • FIG. 4 shows an InGaN blue LED having a light emitting layer of an InGaN compound that emits blue light as a solid state light emitting device, and a light bulb color using the YAG: Ce phosphor and red phosphor described in the first embodiment.
  • a spectral distribution simulating the case of emitting a three-wavelength white output light having a corresponding correlated color temperature of 2800 K is shown.
  • the solid line d in FIG. 4 is an InGaN blue LED, a YAG: Ce phosphor that emits a green light component having an emission peak near 530 nm, and Eu 2+ activated fluorescence that emits a red light component having an emission peak near 620 nm.
  • the spectral distribution in the case of combining bodies is shown.
  • a pseudo white color having a correlated color temperature of 2800 K is shown as a dotted line e in FIG. 4 using an InGaN blue LED and a conventional YAG: Ce phosphor that emits a yellow light component having an emission peak near 575 nm.
  • the simulated spectral distribution is shown when the output light is emitted.
  • the numerical value of Ra is sufficiently high and can be used as illumination light close to natural light.
  • FIG. 5 shows an InGaN blue LED having an emission layer of an InGaN compound having an emission peak near 450 nm as a solid state light emitting device, and a YAG: Ce phosphor having an emission peak near 520 nm, and around 620 nm or 650 nm.
  • 2 shows a spectral distribution simulating a case where a three-wavelength white output light having a correlated color temperature of 12000 K is emitted using a red phosphor having a light emission peak.
  • a solid line f in FIG. 5 indicates a spectral distribution when Eu 2+ activated phosphor emitting a red light component having a light emission peak in the vicinity of 620 nm is used as the red phosphor. 5 indicates a spectral distribution when CaAlSiN 3 : Eu 2+ having an emission peak near 650 nm is used as a red phosphor.
  • the white output light of the semiconductor light source device according to the present embodiment shown as a solid line f in FIG. 5 is different from the case of pseudo white showing the spectral distribution shown as a dotted line h in FIG. 5, and is around 450 nm, 520 nm, and 620 nm. Therefore, it can be used as a light source for multicolor display having a wide color gamut and a high light output by using a strong light component of red, green and blue. Further, since the white output light indicated by the alternate long and short dash line g in FIG. 5 has peaks in the vicinity of 450 nm, 520 nm, and 650 nm, it can be used as a light source for multicolor display having a wider color gamut.
  • Eu 2+ activated phosphor emitting a red light component having an emission peak near 620 nm which is used in the semiconductor light source device whose spectral distribution is shown in FIGS. 3 to 5, for example, a nitrite activated with Eu 2+ is used.
  • a doluminosilicate phosphor ((Sr, Ca) AlSiN 3 : Eu 2+ , SrAlSi 4 N 7 : Eu 2+, etc.) can be used.
  • FIG. 6 is a diagram showing an outline of a display color gamut of a display device configured by using a semiconductor light emitting device showing an example of a spectral distribution indicated by a solid line f and a dotted line h in FIG. 5 using a CIE chromaticity diagram. is there.
  • A is a display color gamut when a display device is configured using a semiconductor light emitting device that emits the output light of the three-wavelength type indicated by the solid line f in FIG.
  • B is a display color gamut when the display device is configured using a semiconductor light emitting device that emits pseudo white output light indicated by a dotted line h in FIG. 5.
  • A is a display color gamut when a display device is configured using a semiconductor light emitting device that emits the output light of the three-wavelength type indicated by the solid line f in FIG.
  • B is a display color gamut when the display device is configured using a semiconductor light emitting device that emits pseudo white output light indicated by a dotted line
  • the red and green light component intensities relative to the blue light component intensities are relatively stronger than in the case of pseudo white, so that the wide color as shown in FIG. Even in the area, high luminance display can be performed.
  • the semiconductor light emitting device includes a solid-state light emitting element that emits purple or blue light, and absorbs purple or blue light to produce blue-green or good color tone.
  • a green-blue or blue-green light component or color tone having an emission peak in a wavelength region of 485 nm to less than 540 nm, particularly 500 nm to less than 540 nm
  • at least a good green light component is emitted.
  • the green-blue or blue-green light component approximates the spectral distribution of light emitted from the illumination light source to the spectral distribution of natural light, the color rendering of the illumination light can be improved.
  • the good green light component can make the display device have a wide color gamut in terms of color tone.
  • the rare earth aluminum garnet type Ce phosphor used in the semiconductor light source device of the present embodiment is rare and does not require expensive elements, unlike the conventional high efficiency green phosphor capable of exciting violet to blue light. Can be greatly reduced. For this reason, the semiconductor light-emitting device of this embodiment has no factors that increase the cost for improving the color rendering properties of illumination light and widening the color gamut of the display device. It will be easy. In addition, the semiconductor light-emitting devices that have been put off the market for the reasons of cost increase will be promoted.
  • the semiconductor light emitting device of the present embodiment can be widely used as an illumination light source, a backlight of a liquid crystal display, and a light source for a display device.
  • these light-emitting devices such as illumination light sources, similarly to the semiconductor light-emitting device of the present embodiment, a rare-earth aluminum garnet-type phosphor that does not require the use of rare and expensive elements is used. This has the advantage of providing a display device capable of displaying the area.
  • the semiconductor light emitting device of this embodiment covers a wide range of light emitting devices such as illumination light sources and display devices.
  • the illumination light source may be configured by combining at least one semiconductor light emitting device of the present embodiment, a lighting circuit for operating the semiconductor light emitting device, and an electrical connection component such as a base such as a base. Become a thing. If a lighting fixture is further combined as needed, it will also comprise an illuminating device and an illumination system.
  • a display device using the semiconductor light emitting device of the present embodiment has at least a combination of a signal circuit for turning on and off the semiconductor light emitting device arranged in a matrix form. It will be sufficient if configured.
  • a display device including the semiconductor light emitting device of this embodiment is, for example, a liquid crystal panel with an LED backlight function.
  • the semiconductor light emitting devices of this embodiment are arranged in a line shape or a matrix shape and used as a backlight. It is sufficient that the liquid crystal panel is combined with at least one of a backlight, at least one of a lighting circuit for lighting the backlight, or a control circuit for ON / OFF controlling the backlight.
  • FIG. 7 is a diagram showing a light source device 14 as a second specific example of the light emitting device of this embodiment.
  • a fluorescent plate 15 is a fluorescent plate using the rare earth aluminum garnet type Ce-based phosphor according to the present invention described in the first embodiment.
  • the rare earth aluminum garnet described in the first embodiment is provided on one side of a substrate 16.
  • a type Ce phosphor layer is formed.
  • the first light source 17a is a light source for exciting the rare earth aluminum garnet type Ce phosphor described in the first embodiment.
  • the first light source 17a has a light emission peak in a wavelength region of 400 nm or more and less than 480 nm.
  • a solid-state light emitting element 6 that emits light, for example, a blue LD.
  • the light source device 14 of the present embodiment as shown in FIG. 7, at least purple or blue light emitted from the first light source 17a irradiates a rare earth aluminum garnet type Ce phosphor formed on the fluorescent plate 15 directly or indirectly. To do. Then, at least the blue-green or green light component 13 which has been wavelength-converted by the rare earth aluminum garnet type Ce phosphor is output.
  • a plurality of first light sources 17a are provided, and the purple or blue light emitted by the first light sources 17a is reflected by the reflection mirror 18, collected by the first lens 19a, and then one side of the fluorescent plate 15.
  • 1 shows an example of a structure for irradiating the rare earth aluminum garnet type Ce-based phosphor formed. Further, a reflection surface (not shown) is provided on the surface of the fluorescent plate 15 where the rare earth aluminum garnet type Ce phosphor is not provided, and the blue-green or green light component 13 emitted by the rare earth aluminum garnet type Ce phosphor is the first.
  • An example of a structure that reflects and travels in a direction opposite to the direction in which the purple or blue light emitted from the light source 17a is irradiated is shown.
  • the blue-green or green light component 13 emitted from the rare earth aluminum garnet-type Ce phosphor reflected by the reflecting surface of the fluorescent plate 15 is condensed by the first condenser lens 20a. Then, after the first optical axis conversion mirror 21a, the second lens 19b, the second optical axis conversion mirror 21b, the third lens 19c, and the third optical axis conversion mirror 21c are repeatedly subjected to optical axis conversion and condensing. After being incident on the incident lens 22, the light is emitted from the light source device 14.
  • the rare earth aluminum garnet-type Ce phosphor described in the first embodiment is a composition that emits green light with good color purity, and the thickness of the phosphor film constituting the phosphor plate 15 is increased. If the violet or blue light emitted from one light source 17a is sufficiently absorbed by the rare earth aluminum garnet type Ce phosphor, a green light component with good color purity is emitted from the light source device.
  • a blue light component and a red light component may be further emitted from the light source device 14 through the incident lens 22.
  • the first light source 17a is a blue LD
  • the blue light component emitted by the blue LD is transmitted through the fluorescent plate 15, and the second condenser lens 20b, the fourth optical axis conversion mirror 21d, and the fourth lens 19d. It suffices that the light is emitted from the light source device 14 through condensing and optical axis conversion.
  • Such a light source device 14 uses, for example, a motor 23 to rotate the fluorescent plate 15, and the purple or blue light emitted from the first light source 17a irradiates the rare earth aluminum garnet type Ce phosphor. This can be realized by providing a segment region and a segment region that passes without irradiating the rare earth aluminum garnet type Ce phosphor.
  • the red light component is provided with a second light source 17b such as a red LED that emits red light
  • the red light component emitted from the second light source 17b is the second lens 19b, the second light source 17b. It is sufficient that the light source device 14 emits the light after the condensing and the optical axis conversion are repeated by the optical axis conversion mirror 21b, the third lens 19c, and the third optical axis conversion mirror 21c.
  • Such a light source device can be used for a projector type display device.
  • Light emitted from the light source device 14 is condensed on a micromirror display element called a light modulation element (digital micromirror device: DMD) (not shown) or a liquid crystal plate, and the light-modulated light is projected onto a screen (not shown).
  • DMD digital micromirror device
  • a display image synchronized with the modulation signal can be obtained.
  • the light source device is described with reference to FIG. 7.
  • a light source device that outputs the blue-green or green light component emitted by the rare earth aluminum garnet-type Ce phosphor.
  • the first light source 17a can be configured as a blue LED
  • the second light source 17b can be configured as a red LD.
  • the first light source 17a is a blue LD
  • the fluorescent plate 15 is a segment in which blue light emitted from the blue LD irradiates a rare earth aluminum garnet type Ce phosphor and a red phosphor, and emits green light and red light, respectively.
  • a light source device that emits controlled red, green, and blue light components can also be configured as a rotatable one provided with a region and a segment region that passes without irradiating the phosphor.
  • the first light source 17a is a purple LD
  • the fluorescent plate 15 emits purple light emitted from the purple LD to irradiate a blue phosphor, a rare earth aluminum garnet-type Ce phosphor, and a red phosphor, respectively.
  • a light source device that emits controlled red, green, and blue light components can be configured even if it is rotatable and provided with segment regions that emit light and red light. In addition to these, various modifications can be considered.
  • the light source device of the present embodiment can be used for a projector (an LED projector or a laser projector) that uses a solid-state light emitting element.
  • the projector as the light source device is a display capable of displaying a wide color gamut using a rare earth aluminum garnet type phosphor that does not require the use of a rare and expensive element, like the semiconductor light emitting device of the present embodiment described above.
  • the apparatus can be provided at low cost.
  • the projector as the light source device of the present embodiment includes the light source device 14 described with reference to FIG. 7, a drive circuit that operates the light source device 14, a light modulation element, and a control circuit that controls the light modulation element. It will be sufficient to compose at least in combination. If necessary, a display device can be configured by further combining screens. An example of the display color gamut of these display devices is the range of the dotted line A in FIG. 6, and a projector having a wide color reproduction area can be realized.
  • the light-emitting device according to the present invention can be widely used as the above-described semiconductor light-emitting device and light source device, and other light-emitting devices using rare earth aluminum garnet-type phosphors other than the light-emitting device using the semiconductor light-emitting device and the light source device.
  • a light-emitting device that has favorable characteristics in green color tone and can reduce manufacturing costs can be obtained.
  • a light emitting device for example, a flying spot electron tube, a plasma display panel with a stereoscopic image display function (3D-PDP), a white LED, LED or LD as a semiconductor light emitting device, and a phosphor are used.
  • Various electronic devices such as projectors, illumination light sources using white LEDs, liquid crystal panels with LED backlights, sensors and intensifiers using phosphors can be realized.
  • the rare earth aluminum garnet-type phosphor according to the present invention was synthesized by using an orthodox ceramic technology utilizing a solid phase reaction, and its characteristics were evaluated.
  • a conventional YAG: Ce phosphor was produced in the same manner.
  • the mixed raw material after mixing was transferred to a container and dried at 120 ° C. overnight using a dryer.
  • the mixed raw material after drying was mixed using a mortar and pestle to obtain a baking raw material.
  • the calcined raw material was transferred to an alumina crucible with a lid, and calcined in an atmosphere of 1600 ° C. for 4 hours using a box-type electric furnace to obtain samples of Examples 1 to 6 and Comparative Example. For the convenience of the experiment, post-processing was omitted.
  • the crystal structures of the YAG: Ce-based phosphors of Examples 1 to 6 were evaluated using an X-ray diffractometer (X′Pert PRO (product name: Spectraly Co., Ltd., PANalytical)).
  • X′Pert PRO product name: Spectraly Co., Ltd., PANalytical
  • FIG. 8 shows the X-ray diffraction results (XRD) of Examples 3 to 6 shown in Table 1 and other comparative examples.
  • Example 6 the XRD pattern of Example 6 is shown as (a)
  • the XRD pattern of Example 5 is shown as (b)
  • the XRD pattern of Example 4 is shown as (c)
  • the XRD pattern of Example 3 is shown as (d).
  • a comparative example (e) and an Al 5 Y 3 O 12 pattern (PDF No. 33-0040) registered in PDF (Power Diffraction Files) are shown as Conventional Example 2 (f). It was.
  • Example 6 As can be seen from FIG. 8, when Example 6 (a), Example 5 (b) and Example 3 (d) are compared with Comparative Example (e) and Conventional Example 2 (f), Example 3
  • the XRD patterns of the YAG: Ce phosphors of Example 5 and Example 6 are the same as the XRD pattern of the conventional YAG: Ce phosphor as a comparative example, and Al 5 Y registered in the PDF of Conventional Example 2.
  • the 3 O 12 pattern coincided with the feature on the pattern shape surface. This indicates that at least the YAG: Ce phosphors of Example 3, Example 5, and Example 6 have the same garnet structure as the compound Y 3 Al 5 O 12 .
  • Example 4 (c) As can be seen by comparing Example 4 (c) with Example 6 (a) and Example 5 (e), the XRD pattern of the YAG: Ce phosphor of Example 4 ( c) was an XRD pattern in which two patterns, a pattern close to the pattern of Example 6 (a) and a pattern close to the pattern of the conventional YAG: Ce phosphor used as Comparative Example (e) overlapped. This indicates that the YAG: Ce phosphor of Example 4 is a mixture of two kinds of compounds having a garnet structure.
  • Example 3 (d), Example 5 (b), Example 3 (d), and Example 3 (d), Example 3 (d) are compared with Comparative Example (e).
  • FIG. 9 shows the YAG: Ce phosphors of Examples 1 to 6 on the basis of the XRD diffraction angle (2 ⁇ ) of the main peak around 33 ° (the diffraction line of (420) plane) of the XRD pattern.
  • FIG. 6 is a diagram summarizing the relationship between the amount of substitution of Ca—Zr (x) and the d value by calculating the d value of the (420) plane.
  • FIGS. 8 and 9 show that in a conventional YAG: Ce phosphor, compound (Y, Ce) 3 Al 5 O 12 and compound CaZrO 3 form a solid solution of both,
  • Ca 2 YZr 2 Al 3 O 12 Ce 3+ in which Ca and Zr are dissolved, or in a new phosphor
  • the new compound Ca 2 (Y, Ce) Zr 2 Al 3 O 12 and the compound (Y, Ce) 3 Al 5 O 12 is data that provides evidence that Y and Al form a solid solution in such a manner that they form a solid solution of both.
  • the synthesized compound is (Y (1-y) (1-x / 3) Zr (1-y) x / 3 Ce y ) 3 (Al 1- (1-y) x / 5 Ca (1 -y) x / 5) 5 O 12 formula compound represented by the (i.e., (Y, Zr, Ce) 3 (Al, Ca) at 5 O 12 is.) could be but not be denied here, collectively for convenience both as described above (Y (1-y) ( 1-x / 3) Ca (1-y) x / 3 Ce y) 3 (Al 1- (1-y) x / 5 Zr (1-y) x / 5 ) 5 O 12 was represented as a compound represented by the chemical formula.
  • YAG: Ce phosphors of Examples 1 to 6 were (Y, Ca, Ce) 3 (Al, Zr) 5 O 12 as a compound.
  • the structure of garnet is generally represented by the chemical formula A 3 B ′ 2 (B ′′ O 4 ) 3 , and A 3 B ′ 2 (SiO 2 ) where B ′′ is Si or Al. 4 ) 3 or A 3 B ′ 2 (AlO 4 ) 3 are known as stable structures. Therefore, in the present invention, the composition of the range in which the total number of Al and Si atoms is not less than 3 is stable with respect to 12 anions (oxygen, etc.) constituting the crystal of the YAG phosphor. It is expected to exist as a phase.
  • the total number of partially substituted alkaline earth metal atoms is 12 for the anions constituting the garnet crystal structure compound (YAG phosphor). It is considered that there are YAG phosphors having a composition of 2.0 or less, and the technical idea of the present invention is that the upper limit of the numerical value x indicating the Ca—Zr substitution amount, which is this composition range, is 2.0. It is supposed to be.
  • the excitation wavelength at the time of emission spectrum measurement was the excitation peak wavelength
  • the monitor wavelength at the time of excitation spectrum measurement was the emission peak wavelength.
  • the emission spectrum and the excitation spectrum are both normalized with a peak of 100.
  • the emission spectrum and the excitation spectrum were relatively shifted to the short wavelength side by the substitution of Ca—Zr, and the degree of the shift increased as the substitution amount of Ca—Zr increased.
  • the peaks of the emission spectrum and the excitation spectrum were, for example, 557 nm and 458 nm in the comparative examples (24e and 25e) where the value of x was 0, respectively, but Example 3 (24d, 25d), the wavelength shifted to 532 nm and 438 nm, respectively, and in Example 4 (24c, 25c) where the value of x was 1, the wavelength was shifted to 522 nm and 418 nm, respectively.
  • Example 5 in which the value of x is 1.5, the wavelength is shifted to 509 nm and 414 nm, respectively.
  • Example 6 in which the value of x is 2.0, Short wavelength shifts to 490 nm and 413 nm, respectively.
  • the Ca-Zr substitution amount increased, the light color emitted by the YAG: Ce phosphor changed from yellowish green to pure green and further from blue green to green blue with a short wavelength shift of the emission spectrum. .
  • the YAG: Ce phosphors of Examples 1 to 6 can efficiently absorb violet or blue light having a wavelength of 400 to 460 nm and convert the wavelength from pure green to blue green to green blue light. It is shown.
  • the YAG: Ce-based phosphor In the YAG: Ce-based phosphor, light on the longer wavelength side than the excitation peak on the longest wave side of the excitation spectrum has a high photon conversion efficiency (internal quantum efficiency) exceeding about 90% even if it is shifted from the excitation peak. ) Is known to be wavelength-converted. For this reason, the YAG: Ce-based phosphor of this example is a high-efficiency phosphor capable of exciting violet or blue light, particularly converting violet or blue light to pure green to blue-green to green-blue light with high photon conversion efficiency. You can say that.
  • YAG Ce phosphors
  • pure green to blue-green light colors use rare and expensive elements, such as when part of Y is replaced with Lu or part of Al is replaced with Ga.
  • a YAG: Ce-based phosphor that emits light of such a light color could be produced without using a rare and expensive element.
  • Examples 7 to 11 samples were fired in a 1600 ° C. atmosphere for 4 hours using a box electric furnace and then subjected to a reduction treatment in a carbon monoxide atmosphere at 1400 ° C. for 2 hours.
  • the reduction treatment was performed by a double crucible method in which an alumina crucible (without a lid) charged with a phosphor after being fired in the atmosphere at 1600 ° C. was charged into an alumina crucible with a slightly larger lid covered with carbon powder.
  • the XRD pattern of the YAG: Ce phosphors of Examples 7 to 11 is the same as the pattern of Example 6 shown as (a) in FIG. 8 and is omitted, but the YAG: Ce fluorescence of Examples 7 to 11 is omitted.
  • the body is (Y (1-y) (1/3) Ca (1-y) 2/3 Ce y ) 3 (Al 1-0.98 ⁇ 2/5 Zr 0.98 ⁇ 2/5 ) 5 O 12 It was confirmed that it was a compound (Y, Ca, Ce) 3 (Al, Zr) 5 O 12 represented by the following chemical formula and having a garnet crystal structure.
  • FIG. 11 is a table summarizing the results of evaluating the emission spectrum 24 and the excitation spectrum 25 of the YAG: Ce phosphors of Examples 7 to 11 in the same manner as in Examples 1 to 6, respectively.
  • FIG. 11 shows the emission spectrum 24f and excitation spectrum 25f of the YAG: Ce phosphor of Example 7, the emission spectrum 24g and excitation spectrum 25g of the YAG: Ce phosphor of Example 8, and the YAG: Ce system of Example 9.
  • Emission spectrum 24h and excitation spectrum 25h of the phosphor, emission spectrum 24i and excitation spectrum 25i of the YAG: Ce phosphor of Example 10, and emission spectrum 24j and excitation spectrum 25j of the YAG: Ce phosphor of Example 11 Are shown together.
  • the excitation wavelength at the time of emission spectrum measurement and the monitor wavelength at the time of excitation spectrum measurement are 410 nm and 500 nm, respectively, and in FIG. 11, the emission spectrum and the peak of the excitation spectrum are normalized as 100.
  • the excitation peak wavelength hardly changed even when the numerical value of y was changed, and was located in the vicinity of 410 nm.
  • the YAG: Ce-based phosphors of Examples 7 to 11 efficiently absorb violet light having a wavelength of about 410 nm and have an emission peak wavelength in the wavelength range of 490 nm to less than 515 nm. This indicates that wavelength conversion to blue-green or pure green light is possible.
  • the emission peak wavelength is obtained by using a rare and expensive element such as when a part of Y is replaced with Lu or a part of Al is replaced with Ga.
  • a rare and expensive element such as when a part of Y is replaced with Lu or a part of Al is replaced with Ga.
  • the emission spectrum 24a emission peak wavelength: 490 nm
  • the emission spectrum 24h emission peak wavelength: 494 nm
  • the emission peak wavelength is slightly shifted to the longer wavelength side by the reduction treatment.
  • the YAG: Ce phosphors of Examples 7 to 11 subjected to reduction treatment have an emission spectrum peak wavelength in the wavelength range of 490 nm or more and less than 515 nm depending on the Ce 3+ activation amount. Become a thing.
  • the emission peak wavelength can be controlled to be within the wavelength range of 485 nm to less than 540 nm, particularly 505 nm to less than 535 nm. is there.
  • the peak wavelength of the excitation spectrum can be controlled to be within a wavelength range of more than 400 nm and less than 450 nm, particularly more than 405 nm and less than 440 nm.
  • a YAG Ce-based phosphor co-activated with Ce 3+ and Pr 3+ .
  • Example 12 The specific weighing ratio of Example 12 was as shown in Table 3.
  • Example 12 was prepared in the same manner as in Examples 1-6.
  • the XRD pattern of the YAG: Ce phosphor of Example 12 is the same as the XRD pattern of Example 3 shown as (d) in FIG. 8 and is omitted, but the YAG: Ce phosphor of Example 12 is (Y (1-y-z ) (1-x / 3) Ca (1-y-z) x / 3 Ce y Pr z) 3 (Al 1- (1-y-z) x / 5 Zr (1 -Yz) x / 5 ) It was confirmed that it was a compound (Y, Ca, Ce, Pr) 3 (Al, Zr) 5 O 12 represented by the chemical formula of 5 O 12 and having a garnet crystal structure.
  • FIG. 12 shows the emission spectrum 24k and the excitation spectrum 25k of the YAG: Ce phosphor of Example 12 in the same manner as in Examples 1-6.
  • the excitation wavelength at the time of emission spectrum measurement and the monitor wavelength at the time of excitation spectrum measurement are normalized to 410 nm and 530 nm, respectively, and the emission spectrum and excitation spectrum peaks are normalized to 100.
  • the emission spectrum 24k has a shape with peaks near 532 nm in the green wavelength region and 610 nm in the red wavelength region, and the excitation spectrum 25k has a peak near 410 nm.
  • the phosphor of Example 12 is a YAG: Ce phosphor that is excited by purple or blue light and emits two light-emitting components of green and red simultaneously.
  • the YAG: Ce-based phosphor according to the present invention emits two emission peak components of green and red with good color purity at the same time.
  • Example 13 and 14 In the rare earth aluminum garnet type phosphors of Example 13 and Example 14, the emission center is made of Eu 3+ and Tb 3+ of rare earth ions other than Ce 3+ , and 0.98 (Y 3 ⁇ x Ca x Al 5 ⁇ x Zr x O 12 ) ⁇ 0.02Ln 3 Al 5 O 12
  • a YAG-based phosphor activated with rare earth ions of either Eu 3+ or Tb 3+ As a YAG-based phosphor activated with rare earth ions of either Eu 3+ or Tb 3+ .
  • the compound of stoichiometric composition (Y 0.98 ⁇ 2.5 / 3 Ca 0.98 ⁇ 0.5 / 3 Eu 0.02 ) 3 (Al 1 ⁇ 0.98 ⁇ 0.5 / 5 Zr 0.98 ⁇ 0.5 / 5 ) 5 O 12 or (Y 0.98 ⁇ 2.5 / 3 Ca 0.98 ⁇ 0.5 / 3 Tb 0 .02) 3 (Al 1-0.98 ⁇ 0.5 / 5 Zr 0.98 ⁇ 0.5 / 5) 5 O 12 material was weighed so that, further using a reaction accelerator traces.
  • Example 13 Specific weighing ratios of Example 13 and Example 14 were as shown in Table 4.
  • Example 13 and Example 14 were produced in the same manner as Examples 1-6.
  • YAG-based phosphors are (Y (1-y) (1-x / 3) Ca (1-y) x / 3 Ln y ) 3 (Al 1- (1-y) x / 5 Zr (1-y ) x / 5 )
  • Y, Ca, Ln) 3 Al, represented by the chemical formula of 5 O 12 (wherein Ln is Eu or Tb) and having a garnet crystal structure) Zr
  • FIG. 13 shows the results of evaluating the emission spectrum 24l and the excitation spectrum 25l of the YAG phosphor of Example 13 in the same manner as in Examples 1-6.
  • FIG. 14 shows the results of evaluating the emission spectrum 24m and the excitation spectrum 25m of the YAG phosphor of Example 14 in the same manner as in Examples 1-6.
  • the excitation wavelength at the time of emission spectrum measurement and the monitor wavelength at the time of measurement of excitation spectrum are normalized as an excitation peak wavelength and an emission peak wavelength, respectively, and the emission spectrum and the peak of the excitation spectrum are normalized as 100. Yes.
  • the emission spectrum 241 of Example 13 has a shape having a peak near 617 nm in the red wavelength region, and the excitation spectrum 251 has a peak near 243 nm.
  • the YAG phosphor of Example 13 is a YAG phosphor that is excited by ultraviolet rays and emits a red light emitting component.
  • the emission line-shaped light emission having a plurality of emission peaks in the red wavelength region in FIG. 13 is Eu 3+ light emission. Is clear.
  • the emission spectrum 24m of Example 14 has a shape having a peak around 546 nm in the green wavelength region, and the excitation spectrum 25m has a peak around 263 nm.
  • the YAG phosphor of Example 14 is a YAG phosphor that is excited by ultraviolet rays and emits a green light emitting component.
  • the emission line shape having a plurality of emission peaks in the near-ultraviolet-purple-blue-green-red wavelength region in FIG. It is clear that the emission is Tb 3+ emission.
  • the YAG phosphor according to the present invention emits a red or green light component.
  • Example 15 The specific weighing ratio of Example 15 was as shown in Table 5.
  • Example 15 was prepared in the same manner as in Examples 1-6.
  • the XRD pattern of the YAG phosphor of Example 15 is the same as the XRD pattern of Example 3 shown as (d) in FIG. 8 and is omitted, but the YAG phosphor of Example 15 is (Y (1- x / 3) (Ca 1-y Mn y ) x / 3 ) 3 (Al 1-x / 5 Zr x / 5 ) 5 O 12 having a garnet crystal structure (Y, Ca, Mn) 3 (Al, Zr) 5 O 12 was confirmed.
  • FIG. 15 shows the results of evaluating the emission spectrum 24n and the excitation spectrum 25n of the YAG phosphor of Example 15 in the same manner as in Examples 1-6.
  • the excitation wavelength at the time of emission spectrum measurement and the monitor wavelength at the time of excitation spectrum measurement are normalized as the excitation peak wavelength and the emission peak wavelength, respectively, and the emission spectrum and the peak of the excitation spectrum are normalized as 100, respectively.
  • the emission spectrum 24n of Example 15 has a shape with a peak near 583 nm in the orange wavelength region, and the excitation spectrum 25n has a peak near 228 nm.
  • the YAG phosphor of Example 15 is a YAG phosphor that emits an orange light-emitting component when excited by ultraviolet rays.
  • the broad spectrum emission having an emission peak in the orange wavelength region in FIG. 15 is Mn 2+ emission. it is obvious.
  • the YAG phosphor according to the present invention emits an orange light component.
  • Example 16 The specific weighing ratio of Example 16 was as shown in Table 6.
  • Example 16 A sample of Example 16 was produced in the same manner as in Examples 1 to 6 except that the firing temperature was 1700 ° C.
  • FIG. 16 shows an XRD pattern of Example 16 and Conventional Example 2 represented as (f) in FIG. 16 (g) shows an XRD pattern of Example 16 and FIG. 16 (f) shows an XRD pattern (PDF No. 33-0040) of Al 5 Y 3 O 12 of Conventional Example 2.
  • FIG. 16 shows an XRD pattern of Example 16 and Conventional Example 2 represented as (f) in FIG. 16 (g) shows an XRD pattern of Example 16 and FIG. 16 (f) shows an XRD pattern (PDF No. 33-0040) of Al 5 Y 3 O 12 of Conventional Example 2.
  • FIG. 16 shows an XRD pattern of Example 16 and Conventional Example 2 represented as (f) in FIG. 16 (g) shows an XRD pattern of Example 16 and FIG. 16 (f) shows an XRD pattern (PDF No. 33-0040) of Al 5 Y 3 O 12 of Conventional Example 2.
  • FIG. 16 shows an XRD pattern of Example 16 and Conventional Example 2 represented as (f) in FIG. 16 (g)
  • the XRD pattern of the YAG: Ce phosphor of Example 16 is the XRD pattern of the conventional YAG: Ce phosphor as a comparative example, the pattern of Al 5 Y 3 O 12 registered in the PDF, and the pattern. The features in the shape are consistent. This indicates that the YAG: Ce phosphor of Example 16 has the same garnet structure as the compound Y 3 Al 5 O 12 .
  • the YAG: Ce-based phosphor of Example 16 is (Y (1-y) (1-x / 3) Ca (1-y) x / 3 Ce y ) 3 (Al 1- (1 -Y) x / 5 Hf (1-y) x / 5 ) 5 O 12 (Y, Ca, Ce) 3 (Al, Hf) 5 O 12 represented by the chemical formula and having a garnet crystal structure I was able to confirm that. That is, it was found that the YAG phosphor can be manufactured even if Zr in the previous example is replaced with Hf.
  • FIG. 17 shows the results of evaluating the emission spectrum 24o and the excitation spectrum 25o of the YAG: Ce phosphor of Example 16 in the same manner as in Examples 1-6.
  • the excitation wavelength at the time of emission spectrum measurement and the monitor wavelength at the time of excitation spectrum measurement are normalized to 440 nm and 540 nm, respectively, and the peak of the emission spectrum and excitation spectrum is normalized to 100.
  • the emission spectrum 24o of Example 16 has a shape having a peak near 536 nm in the green wavelength region, and the excitation spectrum 25o has a peak near 424 nm.
  • the YAG: Ce-based phosphor of Example 16 is a YAG: Ce-based phosphor that is excited by violet light or blue light and emits a green light-emitting component having a good color tone.
  • the YAG: Ce-based phosphor according to the present invention emits a green light component even when Hf is used instead of Zr.
  • FIG. 18 shows XRD patterns of Examples 17 and 18 and Conventional Example 2.
  • FIG. 18 shows the XRD pattern of Example 17, and (i) shows the XRD pattern of Example 19.
  • a pattern (PDF No. 33-0040) of Conventional Example 2Al 5 Y 3 O 12 is shown as (f).
  • Example 17 and Example 18 are compared with the XRD pattern (f) of Conventional Example 2, so that Example 17 and Example The XRD pattern of 18 YAG: Ce phosphors almost coincided with the pattern of Al 5 Y 3 O 12 which is the conventional example 2 registered in the PDF in terms of the pattern shape. This indicates that the YAG: Ce phosphors of Example 17 and Example 18 have the same garnet structure as the compound Y 3 Al 5 O 12 .
  • the YAG: Ce phosphors of Example 17 and Example 18 are (Y (1-y) (1-x / 3) Mg (1-y) x / 3 Ce y ) 3 (Al 1- (1-y) x / 5 Zr (1-y) x / 5 ) 5 O 12 or (Y (1-y) (1-x / 3) Sr (1-y) x / 3 Ce y ) 3 (Al 1- (1-y) x / 5 Zr (1-y) x / 5 ) 5 O 12 (Y, Mg, Ce) 3 ( It was confirmed that it was Al, Zr) 5 O 12 or (Y, Sr, Ce) 3 (Al, Zr) 5 O 12 . That is, it has been found that a YAG phosphor can be manufactured even if Ca in the previous embodiment is replaced with Mg or Sr.
  • FIG. 19 shows the emission spectrum 24p and excitation spectrum 25p of the YAG: Ce phosphor of Example 17 and the emission spectrum 24q and excitation spectrum 25q of the YAG: Ce phosphor of Example 18 and [Table 1]. It is the figure which put together the light emission spectrum 24e of the comparative example, and the excitation spectrum 25e.
  • the data is normalized with the excitation wavelength at the time of emission spectrum measurement and the monitor wavelength at the time of excitation spectrum measurement being 440 nm and 540 nm, respectively, and the peak of the emission spectrum and excitation spectrum being 100.
  • the YAG: Ce-based phosphor (after reduction treatment) of the comparative example has peaks of the emission spectrum 24e and the excitation spectrum 24e at 565 nm and 450 nm, respectively, whereas The YAG: Ce phosphor has peaks of an emission spectrum 24p and an excitation spectrum 25p at 561 nm and 457 nm, respectively.
  • the YAG: Ce phosphor of Example 18 has an emission spectrum 24q and an excitation spectrum at 557 nm and 458 nm, respectively. It had a peak of 25q.
  • the YAG: Ce-based phosphors of Example 17 and Example 18 are YAG: Ce-based phosphors that are excited with blue light and emit a green light-emitting component having a good color tone.
  • the emission spectrum peak and excitation spectrum peak can also be obtained by partially replacing the element combination of Y and Al constituting the conventional YAG: Ce phosphor with an element combination of Mg or Sr and Zr of an alkaline earth metal other than Ca. It is shown that it can move to the short wavelength side.
  • the YAG: Ce-based phosphor according to the present invention has the same effect as that obtained by replacing with Ca by using Mg or Sr instead of Ca.
  • Example 19 and 20 In the rare earth aluminum garnet type phosphors of Examples 19 and 20, all or half of Y of Example 6 in which the emission center was Ce 3+ was replaced with La, and 0.98 (Ln 3-x Ca x Al 5-x Zr x O 12 ) ⁇ 0.02Ce 3 Al 5 O 12
  • (j) is an XRD pattern of the nineteenth embodiment.
  • the Al 5 Y 3 O 12 pattern PDF No. 33-0040
  • (f) Since the XRD pattern of Example 20 was the same as the pattern of Example 19, illustration was omitted.
  • the rare earth aluminum garnet type Ce of Example 19 and Example 20 can be seen by comparing the XRD pattern (j) of Example 19 and Example 20 with the XRD pattern (f) of Conventional Example 2.
  • the XRD pattern of the phosphor of the present invention almost coincided with the XRD pattern of the conventional example 2Al 5 Y 3 O 12 registered in the PDF in terms of the pattern shape. This indicates that the rare earth aluminum garnet type Ce phosphors of Example 19 and Example 20 have the same garnet structure as the compound Y 3 Al 5 O 12 .
  • the rare earth aluminum garnet type Ce phosphors of Example 19 and Example 20 are (La (1-y) (1-x / 3) Ca (1-y) x / 3 Ce y ) 3. (Al 1- (1-y) x / 5 Zr (1-y) x / 5 ) 5 O 12 or ((Y 0.5 La 0.5 ) (1-y) (1-x / 3 ) Ca (1-y) x / 3 Ce y ) 3 (Al 1- (1-y) x / 5 Zr (1-y) x / 5 ) 5 O 12 It was confirmed that the compound was (La, Ce) Ca 2 Zr 2 Al 3 O 12 or ((Y 0.5 La 0.5 ), Ce) Ca 2 Zr 2 Al 3 O 12 . That is, it was found that rare earth aluminum garnet type phosphors in which a part or all of Y in Examples 1 to 18 described above was replaced with La could be produced.
  • FIG. 21 summarizes the results of evaluating the emission spectrum 24 and the excitation spectrum 25 of the rare earth aluminum garnet type Ce phosphors of Example 19 and Example 20 in the same manner as in Examples 1-6.
  • the emission spectrum 24r and the excitation spectrum 25r are the data of Example 19
  • the emission spectrum 24s and the excitation spectrum 25s are the data of Example 20.
  • FIG. 21 shows, as an emission spectrum 24e and an excitation spectrum 25e, data of a sample obtained by reducing the conventional YAG: Ce phosphor shown in Table 1 as a comparative example.
  • the data is normalized with the excitation wavelength at the time of emission spectrum measurement and the monitor wavelength at the time of excitation spectrum measurement as the excitation peak wavelength and the emission peak wavelength, respectively, and the emission spectrum and the peak of the excitation spectrum as 100.
  • the conventional YAG: Ce-based phosphor (after reduction treatment) as a comparative example has peaks of an emission spectrum 24e and an excitation spectrum 25e at 565 nm and 450 nm, respectively.
  • the rare earth aluminum garnet type Ce phosphor of Example 19 has peaks of emission spectrum 24r and excitation spectrum 25r at 532 nm and 418 nm, respectively, and the rare earth aluminum garnet type Ce phosphor of Example 20 is at 509 nm and 415 nm, respectively. It had peaks of emission spectrum 24s and excitation spectrum 25s.
  • the rare earth aluminum garnet type Ce phosphor of Example 19 and Example 20 is excited by blue light and emits a blue-green or good-tone green light emitting component. It is also shown that the emission spectrum peak and the excitation spectrum peak can be obtained by partially replacing the element combination of Y and Al constituting the conventional YAG: Ce phosphor with the element combination of La and Ca and Zr. It shows that movement to the short wavelength side is possible.
  • the rare earth aluminum garnet-type Ce phosphor according to the present invention can recognize the same effect as the YAG: Ce phosphor using Y even when La is used instead of Y. It was.
  • the rare earth aluminum garnet type phosphor of Example 22 was obtained by co-activating Ce 3+ and Mn 2+ (Ln 1-y Ce y ) 3-x (Ca 1-a Mn z2 ) x Al 5-x Zr.
  • a compound having a stoichiometric composition (Y 0.90 Ce 0.05 Tb 0.05 ) Ca 2 Al 3 Zr 2 O 12 , or (Y 0.94
  • the raw materials were weighed so as to be Ce 0.06 ) (Ca 0.95 Mn 0.05 ) 2 Al 3 Zr 2 O 12 , and a trace amount of reaction accelerator was used.
  • Example 21 and Example 22 were as shown in Table 9 and Table 10, respectively.
  • Example 21 and Example 22 were produced in the same manner as in Examples 7-11.
  • Ce-based phosphor is a compound (Y, Ca, Ce, Tb) 3 (Al, Zr) 5 O 12 or (Y, Ca, Ce, Mn) 3 (Al, Zr) 5 having a garnet crystal structure. it was confirmed that the O 12.
  • Example 22 and 23 summarize the results of evaluating the emission spectrum 24 and the excitation spectrum 25 of the rare earth aluminum garnet type Ce phosphors of Example 21 and Example 22 in the same manner as in Examples 1 to 6, respectively. It is a thing.
  • the data are the excitation wavelength at the time of measuring the emission spectrum and the monitor wavelength at the time of measuring the excitation spectrum, respectively, and the peak of the emission spectrum and the excitation spectrum are 100. As standardized.
  • the rare earth aluminum garnet type Ce-based phosphor of Example 21 has a peak component of an emission spectrum 24t at at least four locations of 495 nm, 546 nm, 585 nm, and 625 nm, and an excitation spectrum at 410 nm. It had a peak of 25t.
  • the peak of 495nm has a light emitting based on 5d 1 ⁇ 4f 1 electron energy transition of Ce 3+, and based emission 5 D 4 ⁇ 7 F 6 electron energy transition of 4f 8 electrons Tb 3+ an overlap each other emission, 546 nm, around 585 nm, and the peak around 625nm, respectively, of the 4f 8 electrons Tb 3+, 5 D 4 ⁇ 7 F 5, 5 D 4 ⁇ 7 F 4, and 5 D 4 ⁇ It can be said that the light emission is based on 7 F 3 electron energy transition.
  • the rare earth aluminum garnet type Ce phosphor of Example 22 has a peak component of the emission spectrum 24u in at least two places near 497 nm and 572 nm, and has a peak of the excitation spectrum 25u at 412 nm. It was.
  • the peak at 497 nm is emission based on the Ce 3+ 5d 1 ⁇ 4f 1 electron energy transition
  • the peak near 572 nm is emission based on the 3d 5 electron energy transition of Mn 2+. I can say that.
  • Example 21 and Example 22 were co-activated with Ce 3+ and Tb 3+ and co-activated with Ce 3+ and Mn 2+ , respectively.
  • Rare earth aluminum garnet type Ce that emits blue-green and green (and orange and red) and blue-green and yellow light-emitting components, respectively, which are excited by violet or blue light. This indicates that the phosphor is a phosphor.
  • the rare earth aluminum garnet type Ce phosphor according to the present invention is not limited to the YAG: Ce phosphor co-activated with Ce 3+ and Pr 3+ shown in Example 12, but also Ce 3+ and Tb 3+ , or It became clear that it can be realized as several types of co-activated phosphors, such as phosphors co-activated with Ce 3+ and Mn 2+ .
  • the emission intensity ratio can be changed, and the color tone of the emission can be changed.
  • Such characteristics are particularly effective for improving the characteristics of the white LED illumination light source.
  • Example 24 was activated with Ce 3+ (Ln 1-y Ce y) 3-x Ca x (Al 1-z Ga z) of 5-x Zr x O 12
  • Example 23, Example 24, and Example 25 were as shown in Table 11, Table 12, and Table 13, respectively.
  • FIG. 24 (k) is the XRD pattern of Example 23
  • FIG. 24 (l) is the XRD pattern of Example 24
  • FIG. 24 (m) is the XRD pattern of Example 25.
  • the XRD patterns of Examples 23 to 25 shown in FIGS. 24 (k) to (m) are all similar to the XRD pattern of Example 6 shown in FIG. 8 (a).
  • LuAG: Ce or YAG: Ce phosphors of Examples 23 to 25 are compounds having the same garnet crystal structure as the YAG: Ce phosphor of Example 6. .
  • Example 24 and Example 25 shown in FIG. 24 (l) and FIG. 24 (m) and the XRD pattern of Example 4 shown in FIG. The suggested formation of a mixture of two types of compounds having a garnet structure may cause a part of Al 3+ constituting the phosphor to be converted to trivalent ions having a larger ionic radius than Al 3+ (for example, Ga 3+ or Sc 3+ It was also found that the compound was relaxed by substitution with at least one ion selected from the group consisting of a single crystal phase having a garnet crystal structure.
  • the LuAG: Ce phosphor or YAG: Ce phosphor of Example 23, Example 24, and Example 25 is a compound having a garnet crystal structure (Lu, Ca, Ce) 3 ( Al, Zr) 5 O 12 , (Y, Ca, Ce) 3 (Al, Ga, Zr) 5 O 12 , or (Y, Ca, Ce) 3 (Al, Sc, Zr) 5 O 12 Was confirmed.
  • FIG. 25 summarizes the results of evaluating the emission spectrum 24 and the excitation spectrum 25 of the rare earth aluminum garnet type Ce phosphors of Examples 23 to 25 in the same manner as in Examples 1 to 6.
  • the emission spectrum 24v and the excitation spectrum 25v are the data of Example 23
  • the emission spectrum 24w and the excitation spectrum 25w are the data of Example 24
  • the emission spectrum 24x and the excitation spectrum 25x are the data of Example 25.
  • the data is normalized by setting the excitation wavelength at the time of emission spectrum measurement and the monitor wavelength at the time of excitation spectrum measurement to the excitation peak wavelength and the emission peak wavelength, respectively, and the emission spectrum and the peak of the excitation spectrum as 100. Yes.
  • the rare earth aluminum garnet type Ce phosphor of Example 23 had a peak component of the emission spectrum 24v near 490 nm and a peak of the excitation spectrum 25v at 400 nm.
  • the rare earth aluminum garnet type Ce phosphor of Example 24 had a peak component of the emission spectrum 24w near 520 nm and a peak of the excitation spectrum 25w at 410 nm.
  • the rare earth aluminum garnet type Ce phosphor of Example 25 had a peak component of the emission spectrum 24x near 530 nm and a peak of the excitation spectrum 25x at 425 nm.
  • the rare earth aluminum garnet-type Ce phosphors of Examples 23 to 25 are phosphors activated with Ce 3+ , and are excited with violet light or blue light to produce green-blue to green-colored phosphors. It shows that it is a rare earth aluminum garnet type Ce phosphor that emits a light emitting component.
  • the rare earth aluminum garnet type phosphor according to the present invention can take various modifications in terms of the composition and the type of emission center, in particular, a solid solution of garnet compounds. It is.
  • the present invention is a compound comprising a garnet structure containing a fluorescent ion and containing a rare earth element, aluminum and oxygen, and in terms of composition, the element combination of the rare earth element and aluminum constituting the compound is an alkaline earth What is necessary is just to be characterized by being partially substituted by any element combination of metal and zirconium (Zr), or alkaline earth metal and hafnium (Hf), and is limited to the above-mentioned examples. It is not a thing.
  • the present invention it is possible to provide a novel phosphor capable of emitting emitted light having a wide range of wavelengths without using a composition that uses many rare and expensive raw materials.
  • this phosphor it is useful as an illumination light source, an application to a light emission source, and an electronic device using these as various light emitting devices that have high color rendering properties and can reduce manufacturing costs.

Abstract

 希少かつ高価な原料を多用する組成物にすることなく、発光波長の制御が可能な新規な蛍光体を提供する。蛍光を放つイオンを含み、希土類元素とアルミニウムと酸素を含むガーネット構造を構成する化合物であり、組成の面で、前記化合物を構成する希土類元素とアルミニウムの元素組み合わせが、アルカリ土類金属とジルコニウム(Zr)、または、アルカリ土類金属とハフニウム(Hf)のいずれかの元素組み合わせに部分的に置換されている。

Description

希土類アルミニウムガーネットタイプ蛍光体およびこれを用いた発光装置
 本発明は、例えば、発光ダイオード(LED)や半導体レーザーダイオード(LD)などの固体発光素子とともに用いられ、プロジェクターや白色LED照明光源などの表示装置用や照明装置用の光源に使用される蛍光体として幅広く利用できる、新規な希土類アルミニウムガーネットタイプ蛍光体、および、この新規の希土類アルミニウムガーネットタイプ蛍光体を用いた発光装置に関する。
 従来から、「ガーネット構造」と呼ばれる結晶構造を持つ化合物が知られている(例えば、非特許文献1参照)。
 その中の一つが、YAl12の化学式で表される化合物である。このYAl12は、イットリウムアルミニウムガーネットの呼称、YAG(ヤグ)という略称で広く知られ、固体レーザー、透光性セラミックス、そして、蛍光体などにおいて利用されている。また、Yの格子位置を他の金属元素、特に希土類で置換した化合物や、Alの格子位置を他の金属、特にGaで置換した化合物が存在することも知られている(例えば、非特許文献2参照)。
 以下、本明細書では、これらYAl12の化学式で表される化合物をベースにしてなる化合物に、発光中心として機能するイオン、例えば、Ce3+、Tb3+、Eu3+、Mn2+、Mn4+、Fe3+、Cr3+に代表される希土類イオンや遷移金属イオンなどを添加してなる無機蛍光物質を、YAG系蛍光体(=イットリウムアルミニウムガーネットのタイプに属する蛍光体)と定義し、YをLaで置き換えた化合物をベースにしてなる化合物に、上記した発光中心として機能するイオンを添加してなる無機蛍光物質を、LaAG系蛍光体(=ランタンアルミニウムガーネットのタイプに属する蛍光体)と定義し、YをLuで置き換えた化合物をベースにしてなる化合物に、上記した発光中心として機能するイオンを添加してなる無機蛍光物質を、LuAG系蛍光体(=ルテチウムアルミニウムガーネットのタイプに属する蛍光体)と定義する。また、これらをまとめて希土類アルミニウムガーネットタイプ蛍光体と定義する。
 さらに、便宜上、少なくともCe3+で付活したYAG系蛍光体をYAG:Ce系蛍光体と定義し、少なくともCe3+で付活したLaAG系蛍光体をLaAG:Ce系蛍光体と定義し、少なくともCe3+で付活したLuAG系蛍光体をLuAG:Ce系蛍光体と定義する。さらに、これらをまとめて、希土類アルミニウムガーネットタイプCe系蛍光体と定義する。
 すなわち、本明細書におけるYAG系蛍光体とは、ガーネットタイプの結晶構造を有し、かつ、結晶格子を構成する元素として、少なくともイットリウムとアルミニウムと酸素とを含む無機化合物に前記発光中心として機能するイオンを添加してなる蛍光体である。
 例えば、下記の化学式で表される化合物の蛍光体である。
 (Y,Ce)Al12       (例えば、特許文献1、2参照)
 (Y,Gd,Ce)Al12      (例えば、特許文献1、2参照)
 (Y,Eu)Al12      (例えば、特許文献1、2参照)
 (Y,Tb)(Al,Ga)12 (例えば、非特許文献2参照)
 (Y,Tb)Al12      (例えば、非特許文献2参照)
 (Y,Ce,Pr)Al12      (例えば、特許文献3参照)
 (Y,Lu,Ce,Pr)Al12(例えば、特許文献4参照)
 (Y,Ce)(Al,Si)(O,N)12(例えば、特許文献5参照)
 (Y,Ba,Ce)(Al,Si)12(例えば、特許文献6参照)。
 また、上記したLaAG系蛍光体は、ガーネットタイプの結晶構造を有し、かつ、結晶格子を構成する元素として、少なくともランタンとアルミニウムと酸素とを含む無機化合物に、上記の発光中心として機能するイオンを添加してなる蛍光体であり、例えば、上記YAG系蛍光体の例として示した化学式中の、YをLaで置換した化合物の蛍光体である。
 そして、上記したLuAG系蛍光体は、ガーネットタイプの結晶構造を有し、かつ、結晶格子を構成する元素として、少なくともルテチウムとアルミニウムと酸素とを含む無機化合物に、上記の発光中心として機能するイオンを添加してなる蛍光体であり、例えば、上記YAG系蛍光体の例として示した化学式中の、YをLuで置換した化合物の蛍光体である。
 これら希土類アルミニウムガーネットタイプ蛍光体の中でも、特に、YAG:Ce系蛍光体は、電子線、真空紫外線、そして青色光などの、粒子線または電磁波を照射すると、励起されて、黄~緑色の可視光を放つことが知られている。また、その1/10残光は100ns以下と極めて短いことも知られている。このために、YAG:Ce系蛍光体は数多くの発光装置に幅広く利用される(例えば、非特許文献2、特許文献1~7参照)。
 上記したYAG:Ce系蛍光体の中で、例えば、組成の面で単純な(Y,Ce)Al12蛍光体(一般には、YAl12:Ce3+蛍光体と表記される)が放つ光の光色は黄緑色である。これに対して、YAl12Ce3+を構成する元素の一部または全部を同属の元素、例えば、Yに対するLuまたはGd、あるいは、Alに対するGaで置換すると、Ga置換またはLu置換の場合は緑色、Gd置換の場合には黄色から橙色の光色となる。さらに、YAl12Ce3+を構成する(AlO)基の一部を(SiO)基で置換し、かつ、Alの一部をMgで置換して電荷補償するようにすると黄色~橙色~赤色の光色になる(特許文献8参照)。
 従来、発光ダイオード(LED)や半導体レーザーダイオード(LD)などの固体発光素子からの一次光を、YAG:Ce系蛍光体によって長波長側にシフトして放射する表示装置用や照明装置用の光源に使用される発光装置では、上記のような、YまたはAlの一部を置換することで光色制御したYAG:Ce系蛍光体が多用されている(例えば、非特許文献2、3参照)。このように、YAG:Ce系蛍光体をはじめとしたYAG系蛍光体が放つ緑色光等を、表示用光源やそのまま照明用途として用いるなどの発光装置において、YAG:Ce系蛍光体の結晶格子の構成元素の一部または全部を、イオン半径等が異なる他の元素で置換することによって波長を制御して、利用する新しい発光装置などの開発が活発化する傾向にある(例えば、特許文献1、2、11参照)。また、発光色として、黄色または橙色光を得る目的では、Gdを結晶格子に含む組成物とする方法、あるいは、MgとSiとを結晶格子に含む組成物とする方法によって色調制御していた。
 なお、YAG:Ce系以外の、ガーネット構造を持ついくつかの蛍光体も知られている。例えば、CaScSi12:Ce3+(略称:CSS)緑色蛍光体(特許文献9参照)や、TbAl12:Ce3+(略称:TAG)黄緑色蛍光体(特許文献10参照)がそれである。このCSSやTAGは、YAG:Ce系蛍光体を代替し得るものであり、白色LEDの技術分野で利用または利用検討がなされている。
特許第3503139号公報 米国特許公報第6,812,500号 特開2001-192655号公報 特表2006-520836号公報 特表2007-515527号公報 特許第4263453号公報 特開2009-185276号公報 国際公開公報WO2010/043287 特許第4032682号公報 特表2003-505582号公報 特開2011-13320号公報
ファインセラミックスの結晶化学、F.S.ガラッソー著、加藤誠軌・植松敬三訳、アグネ技術センター、277~284頁 蛍光体ハンドブック、蛍光体同学会編、オーム社、12頁、237~238頁、268~278頁、332頁 Conference Material of Siemens AG Corporate Technology, Phosphor Global Summit 2003, Scottsdale, Arizona USA, p.11
 上記したように、従来Ce3+で付活したガーネット構造を持つ蛍光体が放つ光の色調の制御を行うために、YAG:Ce系蛍光体の結晶格子の構成元素の一部または全部を置換する他の元素として、Ga、Sc、Luなどが用いられていた。しかし、これらのGa化合物、Lu化合物、Sc化合物は、地球上で希少な物質とされ一般に高価である。このため、緑色表示光の色調改善や照明光の演色性の改善などの発光装置の性能改善が求められる中で、発光装置へのYAG系蛍光体の応用が、コスト面から年々困難になるという課題があった。
 また、従来のYAG:Ce系蛍光体の発光色の制御方法では、希少かつ高価な元素を利用することなく、540nmよりも短い波長領域、とりわけ530nm未満に発光ピークを持つ高効率蛍光体、特に、青緑色または純緑色光を放つ高効率蛍光体を提供することが困難であり、十分な演色性を得ることが困難であるという課題もあった。
 本発明は、これらの課題を解決するためになされたものであり、希少かつ高価な原料を多用する組成物にすることなく、発光波長の制御が可能な新規な蛍光体を提供すること、さらに、高演色性を有し、かつ、製造コストが低減できる発光装置を提供することを目的とする。
 上記課題を解決するために、本発明の希土類アルミニウムガーネットタイプ蛍光体は、蛍光を放つイオンを含み、希土類元素とアルミニウムと酸素を含むガーネット構造を構成する化合物であり、組成の面で、前記化合物を構成する希土類元素とアルミニウムの元素組み合わせが、アルカリ土類金属とジルコニウム(Zr)、または、アルカリ土類金属とハフニウム(Hf)のいずれかの元素組み合わせに部分的に置換されていることを特徴とする。
 また、本発明の発光装置は、蛍光体と、前記蛍光体に照射される一次光を生成する光源とを備え、前記蛍光体として本発明にかかる希土類アルミニウムガーネットタイプ蛍光体が用いられ、前記一次光を長波長の光に波長変換して放出することを特徴とする。
 本発明によれば、希少かつ高価な原料を多用する組成物にすることなく、特に、緑色光または青緑色光を放つ蛍光体として機能し得る新規な蛍光体を提供することができる。
 また本発明によれば、特に、緑色~緑青色光成分の発揮性能に優れ、製造コストが低減された発光装置を提供することができる。
実施形態にかかる発光装置の技術思想を説明するための図である。 実施形態にかかる半導体発光装置の一例を示す模式断面図である。 実施形態にかかる第1の半導体発光装置が放つ出力光の分光分布を示す図である。 実施形態にかかる第2の半導体発光装置が放つ出力光の分光分布を示す図である。 実施形態にかかる第3の半導体発光装置が放つ出力光の分光分布を示す図である。 実施形態にかかる表示装置の表示色域を示す色度図である。 実施形態にかかる光源装置の一例の構成を示す図である。 実施例3~6のYAG:Ce系蛍光体のXRDパターンを示す図である。 実施例1~6のYAG:Ce系蛍光体の(420)面のd値とCa-Zr置換量との関係を示す図である。 実施例3~6のYAG:Ce系蛍光体の励起スペクトルと発光スペクトルを示す図である。 実施例7~11のYAG:Ce系蛍光体の励起スペクトルと発光スペクトルを示す図である。 実施例12のYAG:Ce系蛍光体の励起スペクトルと発光スペクトルを示す図である。 実施例13のYAG系蛍光体の励起スペクトルと発光スペクトルを示す図である。 実施例14のYAG系蛍光体の励起スペクトルと発光スペクトルを示す図である。 実施例15のYAG系蛍光体の励起スペクトルと発光スペクトルを示す図である。 実施例16のYAG:Ce系蛍光体のXRDパターンを示す図である。 実施例16のYAG:Ce系蛍光体の励起スペクトルと発光スペクトルを示す図である。 実施例17および18のYAG:Ce系蛍光体のXRDパターンを示す図である。 実施例17および18のYAG:Ce系蛍光体の励起スペクトルと発光スペクトルを示す図である。 実施例19および20のLaAG:Ce系蛍光体のXRDパターンを示す図である。 実施例19および20のLaAG:Ce系蛍光体の励起スペクトルと発光スペクトルを示す図である。 実施例21の希土類アルミニウムガーネットタイプCe系蛍光体の励起スペクトルと発光スペクトルを示す図である。 実施例22の希土類アルミニウムガーネットタイプCe系蛍光体の励起スペクトルと発光スペクトルを示す図である。 実施例23~25の希土類アルミニウムガーネットタイプCe系蛍光体のXRDパターンを示す図である。 実施例23~25の希土類アルミニウムガーネットタイプCe系蛍光体の励起スペクトルと発光スペクトルを示す図である。
 本発明の希土類アルミニウムガーネットタイプ蛍光体は、蛍光を放つイオンを含み、希土類元素とアルミニウムと酸素を含むガーネット構造を構成する化合物であり、組成の面で、前記化合物を構成する希土類元素とアルミニウムの元素組み合わせが、アルカリ土類金属とジルコニウム(Zr)、または、アルカリ土類金属とハフニウム(Hf)のいずれかの元素組み合わせに部分的に置換されている。
 このようにすることで、希土類アルミニウムガーネットタイプ蛍光体の結晶格子の構成元素の一部または全部を、希少であり高価な元素を用いることなく置換することができ、発光色の制御を行うことができる。
 上記構成において、前記希土類元素がイットリウム、ランタン、または、ルテチウムであり、イットリウムアルミニウムガーネットタイプ、ランタンアルミニウムガーネットタイプ、または、ルテチウムアルミニウムガーネットタイプのいずれかのタイプに属する化合物であることが好ましい。このようにすることで、YAG系蛍光体など汎用されている蛍光体を、コストを低減しながら発光波長の制御を行うことができる。
 また、部分的に置換されたアルカリ土類金属の総原子数は、ガーネットの結晶構造の前記化合物を構成する陰イオン12個に対して、0.1個を越え2.0個以下であることが好ましい。このようにすることで、部分置換の効果を発揮させて発光波長の制御を容易に行うことができる。
 さらに、蛍光を放つイオンを含むLn3-xAl5-x12の化学式で表される化合物であり、前記Lnはイットリウム(Y)、ランタン(La)、または、ルテチウム(Lu)のいずれかを少なくとも含む希土類、前記Mはアルカリ土類金属、前記Xはジルコニウム(Zr)またはハフニウム(Hf)から選ばれる少なくとも一つの遷移金属、前記xは0<x≦2を満足する数値であることが好ましい。このようにすることで、部分置換のメリットを十分に生かした希土類アルミニウムガーネットタイプ蛍光体を得ることができる。
 さらにまた、前記アルカリ土類金属は、少なくともカルシウム(Ca)を含むことが好ましい。アルカリ土類金属としてCaを含むことで、発光色の短波長側へのシフトを顕著にすることができる。
 また、Y3-xCaAl5-xZr12、Y3-xCaAl5-xHf12、La3-xCaAl5-xZr12、または、Lu3-xCaAl5-xZr12、のいずれかの化学式で表される化合物であり、前記xは、0<x≦2を満足する数値であることが好ましい。部分置換の効果が顕著に認められるxの下限側の数値は0.1を超え、部分置換対メリットなどを考慮して好ましいxの上限側の数値は2.0以下となる。
 さらに、前記蛍光を放つイオンは、Ce3+であることが好ましい。このようにすることで、発光装置用として広く利用または利用検討されているCe3+付活緑色蛍光体として本発明の希土類アルミニウムガーネットタイプ蛍光体を用いることができる。
 さらにまた、Ce3+だけでなく、前記蛍光を放つイオンは、さらに、Pr3+、Tb3+およびMn2+から選ばれる少なくとも一つのイオンを含むことも好ましい。このようにすることで、近紫外~紫~青色光の光を照射したときに、Ce3+の発光成分に、Pr3+、Tb3+あるいはMn2+の発光成分が加わった発光成分を持つ光を放つ希土類アルミニウムガーネットタイプ蛍光体を得ることができる。
 本発明の発光装置は、蛍光体と、前記蛍光体に照射される一次光を生成する光源とを備え、前記蛍光体として請求項1~4のいずれかに記載の希土類アルミニウムガーネットタイプ蛍光体が用いられ、前記一次光を長波長の光に波長変換して放出する。
 このようにすることで、紫外光または青色光の一次光を用いて、青緑色から赤色までのさまざまな波長の光を放出しうる発光装置を、低コストで実現することができる。
 上記構成において、前記一次光を生成する光源として400nm~480nmの波長範囲内に発光ピークを有する半導体固体発光素子を用い、485nm以上、特に500nm以上の領域に発光ピークを有する放出光を放出することが好ましい。このようにすることで、多用されている半導体発光素子を用いて、所望の波長の放出光を有する発光装置を安価に実用化することができる。
 (実施形態1)
 以下、本発明にかかる希土類アルミニウムガーネットタイプ蛍光体について、実施形態として説明する。
 本実施形態で説明する希土類アルミニウムガーネットタイプ蛍光体として、希土類元素としてイットリウム、ランタン、または、ルテチウムを用いた、イットリウムアルミニウムガーネット、ランタンアルミニウムガーネット、または、ルテチウムアルミニウムガーネットのいずれかのタイプに属する化合物を説明する。
 本実施形態の希土類アルミニウムガーネットタイプ蛍光体は、イットリウムアルミニウムガーネット、ランタンアルミニウムガーネット、または、ルテチウムアルミニウムガーネットのいずれかのタイプに属する化合物であり、組成の面で、化合物を構成するイットリウムとアルミニウム、ランタンとアルミニウム、または、ルテチウムとアルミニウムのいずれかの元素組み合わせが、アルカリ土類金属とジルコニウム(Zr)、または、アルカリ土類金属とハフニウム(Hf)のいずれかの元素組み合わせに部分的に置換されている。
 なお、本実施形態の希土類アルミニウムガーネットタイプ蛍光体において、部分的に置換されたアルカリ土類金属だけに着目して説明すると、部分的に置換されたアルカリ土類金属の総原子数は、ガーネットの結晶構造の化合物を構成する陰イオン12個に対して、0.1個を越え2.0個以下であることが好ましい。さらに好ましくは、ガーネットの結晶構造の前記化合物を構成する陰イオン12個に対して、0.3個以上1.0個未満、または、1.0個を越え2.0個以下である。
 また、本実施形態のYAG系蛍光体のより好ましい形態は、蛍光を放つイオンを含むLn3-xAl5-x12の化学式で表される化合物であり、ここで「Ln」は、Y、La、または、Luのいずれかを少なくとも含む希土類であり、「M」はアルカリ土類金属であり、「X」は、ZrまたはHfから選ばれる少なくとも一つの遷移金属であり、「x」は、0<x≦2、好ましくは、0.3≦x<1または1<x≦2のいずれかを満足する数値である。
 さらに、置換されたアルカリ土類金属が、少なくともCaを含むことが好ましい。また、アルカリ土類金属は、全てがカルシウムであることがより好ましい。少なくともアルカリ土類金属、特に、Mg、CaまたはSrのいずれかと、ZrまたはHfの元素組み合わせに部分置換されることによって、イットリウム、ランタン、または、ルテチウムのいずれかとアルミニウムの元素組み合わせの絶対量が少なくなるので、少なくとも希土類のイットリウム、ランタン、または、ルテチウムの使用量を抑制した新規な組成の蛍光体を得ることができる。また、ジルコニウムを利用して希土類アルミニウムガーネットタイプ蛍光体を構成することになるため、希土類や希少金属の使用を控えた新規な化合物としての蛍光体となり、新規な機能を持つ希土類アルミニウムガーネットタイプ蛍光体、特に、希土類アルミニウムガーネットタイプCe系蛍光体を提供することができる。ここで、部分置換の効果が顕著に認められるxの下限側の数値は0.1を超え、特に0.3以上であり、部分置換対メリットなどを考慮して好ましいxの上限側の数値は2.0以下である。
 なお、理由は不明確ながらも、YとAlの元素組み合わせをCaとZrの元素組み合わせで部分的に置換した場合、xの数値を次第に増した時に、xの数値が1に近づくにつれて結晶構造が不安定になり、さらにxの数値を増して2に近づけると結晶構造が安定化する傾向が認められる。このことから、前記「Ln」がYの場合には、好ましいxの数値範囲は、0.3≦x<1、または、1<x≦2のいずれかであるといえる。
 本実施形態のYAG系蛍光体は、蛍光を放つイオンを含むYAG系化合物、LaAG系化合物、または、LuAG系化合物と、MZrOまたはMHfOのいずれかの化学式で表される化合物の固溶体を形成するようにして、YAG系化合物、LaAG系化合物、または、LuAG系化合物に、アルカリ土類金属MとZrとが固溶していることも好ましく、アルカリ土類金属「M」はCaを含むことが好ましい。
 さらには、Y3-xCaAl5-xZr12、Y3-xCaAl5-xHf12、La3-xCaAl5-xZr12、または、Lu3-xCaAl5-xZr12のいずれかの化学式で表される化合物であり、xは、0<x<3、好ましくは、0.1<x≦2、より好ましくは、0.25≦x<1または1<x≦2のいずれかを満足する数値であることがより好ましい。つまり、より好ましい形態では前記アルカリ土類金属は、全てがカルシウムである。
 アルカリ土類金属がCaを含むようにすると、希土類アルミニウムガーネットタイプCe系蛍光体において、発光の短波長側へのシフトが顕著に認められる。この傾向は、アルカリ土類金属の全てをCaにするといっそう顕著になる。このため、色純度の良好な緑色や青緑色、さらには緑青色の蛍光を放つ希土類アルミニウムガーネットタイプCe系蛍光体を得る上で好ましいものになる。
 なお、元素が持つ化学的あるいは物理的な特性の類似性によって、Y3-xCaAl5-xZr12、Y3-xCaAl5-xHf12、La3-xCaAl5-xZr12、または、Lu3-xCaAl5-xZr12のいずれかの化学式で表される化合物において、Y、La、または、Luの一部は、3価のイオンを形成し得る他の金属元素、特に、希土類で置換できる。Caの一部は、2価のイオンを形成し得る他の金属元素、特に、他のアルカリ土類金属で置換できる。Alの一部は、3価のイオンを形成し得る他の金属元素、特に、3族のScおよび13族の元素(Gaなど)や3価のイオンを形成し得る遷移金属で置換できる。ZrまたはHfの一部は、4価のイオンを形成し得る他の金属元素、特に、14族の金属元素(特に、Si、Ge、および/またはSn)や4族の金属元素(Tiなど)で置換できる。
 このため、本実施形態の希土類アルミニウムガーネットタイプ蛍光体は、ガーネット構造を損ねず、かつ、少なくともY、La、または、LuのいずれかとAlとを含む組成範囲で、様々な変形例をとり得るものとなる。本発明にかかる希土類アルミニウムガーネットタイプ蛍光体の具体例は、発光中心イオンを含む、例えば、以下の化合物である。
 Y1.5Ca1.5Al3.5Zr1.512、YCaAlZrO12、Y2.5Ca0.5Al4.5Zr0.512、Y2.7Ca0.3Al4.7Zr0.312、Y2.9Ca0.1Al4.9Zr0.112、Y2.97Ca0.03Al4.97Zr0.0312、YCaAlHfO12、Y2.5Ca0.5Al4.5Hf0.512、Y2.5Mg0.5Al4.5Zr0.512、Y2.5Sr0.5Al4.5Zr0.512、Y2.5(Ca,Mg)0.5Al4.5Zr0.512、Y2.5(Ca,Sr)0.5Al4.5Zr0.512、Y2.5(Ca,Ba)0.5Al4.5Zr0.512、Y2.5Ca0.5(Al,Ga)4.5Zr0.512、Y2.5Ca0.5(Al,Sc)4.5Zr0.512、Y2.5Ca0.5(Mg,Al,Si)4.5Zr0.512、Y2.5Ca0.5Al4.5(Zr,Si)0.512、Y2.5Ca0.5Al4.5(Zr,Hf)0.512、(Y,Lu)2.5Ca0.5Al4.5Zr0.512、LaCaAlZrO12、(Y,La)CaAlZrO12、YCaAl(Zr,Ge)O12、YCaAl(Zr,Sn)O12、YCaAlGaZrO12、YCaAlScZrO12、CaLuAlZr12
 本実施形態の希土類アルミニウムガーネットタイプ蛍光体は、ガリウム(Ga)、ルテチウム(Lu)、スカンジウム(Sc)などを含めて構成することもできる。この場合は、Ga、Lu、Scなどの使用量を削減することが好ましい。但し、より好ましい本実施形態の希土類アルミニウムガーネットタイプ蛍光体は、人為的に加えられたGa、Lu、またはScを含まないものとする。このような元素を含む化合物は、希少で高価であるだけでなく、少なくとも、蛍光体としての機能を持たせる場合の、対コストメリットが相対的に小さい。このため、人為的に加えられたGa、Lu、またはScを含まない蛍光体とすることで、Ga化合物やLu化合物やSc化合物の使用を控えた製造コストが低減された新規な希土類アルミニウムガーネットタイプ蛍光体を実現できる。
 なお、希土類元素とアルミニウム元素の組み合わせをアルカリ土類金属とジルコニウム等の元素組み合わせで部分的に置換した本発明の希土類アルミニウムガーネットタイプ蛍光体において、さらに、化合物を構成するアルミニウムを、GaあるいはScで部分的に置換すると、結晶構造が安定化する傾向が認められる。
 このため、GaまたはScを含む本発明の希土類アルミニウムガーネットタイプ蛍光体は、結晶品位の面で好ましい化合物になり得る。
 また、本実施形態の希土類アルミニウムガーネットタイプ蛍光体は、14族の元素、特にSiを含まないことも好ましい。このようにすると、従来知られる希土類アルミニウムガーネットタイプ蛍光体に対して、十分な差別化を図った無機化合物になる。
 発光中心イオンは、蛍光体母体として機能する化合物、すなわち本実施形態ではYAG系の化合物の結晶中で、電子エネルギー遷移によって蛍光を放ち得るイオンである。具体的には、例えば、ns形イオン発光中心と呼ばれるイオンであるSn2+、Sb3+、Tl、Pb2+、Bi3+など、遷移金属イオン発光中心と呼ばれるイオンであるCr3+、Mn4+、Mn2+、Fe3+など、希土類イオン発光中心と呼ばれるイオンであるCe3+、Pr3+、Nd3+、Sm3+、Eu3+、Gd3+、Tb3+、Dy3+、Ho3+、Er3+、Tm3+、Yb3+、Sm2+、Eu2+、Yb2+などから選ばれる少なくとも一つのイオンである。
 本実施形態の希土類アルミニウムガーネットタイプ蛍光体は、前記したYAG系の化合物に、これら発光中心イオンを、少なくとも一つ含むようにして構成する。このようにすると、YAG系の化合物は、外部刺激、例えば、粒子線(α線、β線、電子線)や電磁波(γ線、X線、真空紫外線、紫外線、可視光他)の照射などによって励起され、蛍光を放つものになる。
 この蛍光は、紫外線、可視光、赤外線から選ばれるいずれかの電磁波であれは発光装置用として足りるが、実用面で好ましい蛍光は可視光である。蛍光を可視光とすることで、表示装置や照明装置用の発光装置として広範囲に利用できるものになる。
 なお、発光中心イオンを、Mn4+、Mn2+、Ce3+、Pr3+、Eu3+、およびTb3+から選ばれる少なくとも一つのイオンにすると、利用用途が多い可視光成分、すなわち、青、青緑、緑、黄、橙、赤、白を放つ蛍光体になる。特に、発光中心イオンを、Ce3+、Pr3+、Eu3+、およびTb3+から選ばれる少なくとも一つの希土類イオン、または、Mn2+の遷移金属イオンとすると、表示装置や照明装置用としての利用用途がいっそう多い、青緑色光、緑色光、橙色光、赤色光、または、白色光を放つ希土類アルミニウムガーネットタイプ蛍光体になるので好ましい。
 本実施形態の希土類アルミニウムガーネットタイプ蛍光体にあっては、蛍光体が放つ蛍光は、Ce3+が放つ光を少なくとも含むことが好ましく、好ましい蛍光を放つイオンは、Ce3+である。
 このように発光中心イオンをCe3+とすると、従来から発光装置用として広く利用または利用検討されているCe3+付活緑色蛍光体である、Y(Al,Ga)12:Ce3+、(Lu,Y)Al12:Ce3+、CaScSi12:Ce3+などを代替し、かつ、希少で高価なGa化合物やLu化合物やSc化合物を、蛍光体の製造工程で用いる必要性が少ない製造コストが低減できる緑色蛍光体になる。このため、本実施形態にかかる希土類アルミニウムガーネットタイプ蛍光体は、比較的高価な上記従来の緑色蛍光体を代替して、緑色光の特性を損ねることなく、発光装置の製造コストの低減を図ることができる。また、従来、Y(Al,Ga)12:Ce3+緑色蛍光体や、CaScSi12:Ce3+緑色蛍光体の導入に伴う製造コストの上昇を理由として見送られてきた発光装置の性能改善も推進可能となる。このため、緑色出力光の色調が改善された表示装置や、出力光の演色性が改善された照明光源、照明装置などの開発を促し、これら発光装置を実用化できるようになる。
 なお、本実施形態の希土類アルミニウムガーネットタイプCe系蛍光体においては、Ce3+が放つ光の分光分布のピークは、490nm以上540nm未満の波長範囲内に位置するものになり、500nm以上540nm未満、特に、505nm以上535nm未満の波長範囲内に位置するものとすることができる。
 このため、色調が良好な緑色光だけでなく、従来、汎用されている原料の利用だけでは実現が困難であった青緑色光や緑青光色の発色を実現する蛍光体を、希少な化合物を蛍光体原料として使用することなく提供することができるようになる。
 一方で、Ce3+の発光は、パリティー許容となる5d→4fの電子エネルギー遷移に基づくことが知られている。これに起因して、Ce3+の光吸収と発光のエネルギー差は小さく、Ce3+の発光準位の寿命は、10-8~10-7s(10~100ns)と極めて短い。事実、励起スペクトルのピークは、従来のYAG:Ce系蛍光体よりも短波長域の波長範囲内、すなわち、400nmを超え450nm未満、特に、405nmを越え440nm未満に位置するものになり、1/10残光は1.0msec以下の超短残光性を有する。
 このため、本実施形態の希土類アルミニウムガーネットタイプCe系蛍光体は、短波長可視光である、紫~青色光を吸収して青緑~緑色の光を放ち得る、超短残光性の蛍光体として機能するものになる。これらの特長は、例えば、青色LEDを利用する白色LEDの出力光の演色性や、青色LDと蛍光体とを利用するレーザープロジェクター、および、LEDを光源とする液晶パネルでの表示色域を改善することができる。
 また、本実施形態の希土類アルミニウムガーネットタイプ蛍光体にあって好ましい蛍光を放つイオンはCe3+だけでなく、さらに、Ce3+とは別の発光中心イオン、特に、Pr3+、Tb3+およびMn2+から選ばれる少なくとも一つのイオンを共付活剤として含むことも好ましい。このようにすることで、紫~青色光の光を照射したときに、Ce3+の発光成分に、Pr3+、Tb3+あるいはMn2+の発光成分が加わった発光成分を持つ光を放つ希土類アルミニウムガーネットタイプ蛍光体を得ることができ、発光色の色調を制御することができる。
 このように、本実施形態の希土類アルミニウムガーネットタイプCe系蛍光体は、特に、近年、開発が活発化している、LEDやLDなどの固体発光素子を利用する発光装置の性能改善を促すことができ、発光特性が改善された発光装置を提供できるようになる。
 本実施形態の希土類アルミニウムガーネットタイプ蛍光体は、新規な物質ではあるが、従来のYAG系蛍光体と同様のオーソドックスな固相反応を用いて合成することができる。つまり、普遍的なセラミックス原料粉末である、Y、La、Lu、Sc、CeO、Al、Ga、CaCO、ZrO、HfOなどを用いて、化学量論的組成かこれに近い組成となるように原料粉末を調合し、自動乳鉢などを利用して原料粉末を混合し、アルミナるつぼなどの焼成容器に混合原料を仕込んだ後、箱型電気炉などを用いて、1500~1700℃の焼成温度で原料同士を数時間加熱反応させると合成することができる。
 なお、新規物質となる本実施形態の希土類アルミニウムガーネットタイプ蛍光体は、その性状を限定されるものではない。単結晶、薄膜状、厚膜状、塊状、粒状、粉末状、ナノ粒子状、セラミックス状、透光性セラミックス状など、様々な形状の蛍光体として形成することができ、様々な性状で実用できることは、当業者であれば容易に類推できる。
 本実施形態の希土類アルミニウムガーネットタイプ蛍光体は、例えば、水、有機溶剤、樹脂などの溶媒や水ガラスなどと適宜混合して、スラリー状、ペースト状、ゾル状、ゲル状としたものとして利用することもできる。
 (実施形態2)
 以下、実施形態2として、Ce3+付活の希土類アルミニウムガーネットタイプに属する蛍光体における、蛍光波長の制御について説明する。
 上記実施形態1で説明したように、Ce3+付活の希土類アルミニウムガーネットタイプに属する蛍光体は、希土類アルミニウムガーネットタイプCe系蛍光体の蛍光体を構成するイットリウムとアルミニウム、ランタンとアルミニウム、または、ルテチウムとアルミニウムのいずれかの元素組み合わせの一部を、アルカリ土類金属とZr、または、アルカリ土類金属とHfのいずれかの元素組み合わせで置換することで、その傾向波長を制御することができる。
 ここで、アルカリ土類金属は、少なくともCaを含むことが好ましく、Caを含むアルカリ土類金属は、全てがCaであることがより好ましい。さらに、CaとZrの各々の原子数、または、CaとHfの各々の原子数が同数となるようにすることがより好ましい。
 例えば、Y3-xCaAl5-xZr12、Y3-xCaAl5-xHf12、La3-xCaAl5-xZr12、または、Lu3-xCaAl5-xZr12のいずれかの化学式で表される化合物を形成するようにして、xは、0<x≦2を満足する数値となるようにする。このようにすると、アルカリ土類金属、特にCaと、ZrまたはHfの置換量、すなわち、xの数値が増加するにつれて、希土類アルミニウムガーネットタイプCe系蛍光体の蛍光のピーク波長が約560nmから500nm、さらには490nm付近にまで短長側へと移動し、黄緑、緑、青緑、および緑青の色調の蛍光を得ることができるようになる。
 希土類アルミニウムガーネットタイプCe系蛍光体が放つ蛍光の光色を、色調の面で良好な緑色光に制御するには、Ce3+の付活量によって多少変動するものの、例えば、Ce3+付活イットリウムアルミニウムガーネットタイプに属するYAG:Ce系蛍光体では、xの数値を0<x≦1を満足する数値となるようにする。また、例えば、Ce3+付活ランタンアルミニウムガーネットタイプに属するLaAG:Ce系蛍光体では、xの数値を1<x≦2を満足する数値となるようにする。緑青色または青緑色光に光色制御するには、例えば、YAG:Ce系では、xの数値を1<x≦2を満足する数値となるようにする。
 また、本実施形態として開示する希土類アルミニウムガーネットタイプCe系蛍光体の蛍光波長の制御方法において、Ga、Lu、またはScを蛍光体が含まないようにすることが好ましい。このようにすると、希少で高価な、Ga化合物やLu化合物やSc化合物を、従来のように使用することなく、希土類アルミニウムガーネットタイプCe系蛍光体の色調を黄緑~青緑~緑青まで制御できる、蛍光波長の制御方法となる。このような蛍光波長の制御方法によれば、希土類アルミニウムガーネットタイプCe系蛍光体の蛍光波長の制御方法としてコスト面で有利である。また、従来技術欄で説明した、Ga化合物、Lu化合物、およびSc化合物などの希少で高価な物質を用いる蛍光波長の制御方法との差別化を十分に図ることができ、これを代替するものになる。
 なお、本実施形態の傾向波長の制御方法にあっては、アルミニウムの一部を置換する元素は、14族の元素、特にSiを含まないことも好ましい。このようにすると、従来知られる蛍光波長の制御方法に対して、十分な差別化を図った制御方法とすることができる。
 (実施形態3)
 以下、実施形態3として、本発明にかかる発光装置について説明する。
 本実施形態にかかる発光装置は、実施形態1で説明した本発明にかかる希土類アルミニウムガーネットタイプ蛍光体を用いて構成したものである。
 本実施形態の発光装置としては、前記した本発明にかかる希土類アルミニウムガーネットタイプ蛍光体が放つ光を、表示または照明のいずれかの目的に利用することが好ましい。なお、本実施形態にかかる発光装置としては、例えば、LEDまたはレーザーダイオードと蛍光体とを利用する各種の発光装置が挙げられる。具体例としては、半導体発光装置としての白色LED、光源装置やプロジェクター、LEDバックライトを含むLED照明光源や照明装置、およびLEDバックライト付きLCDなどの表示装置や照明装置の他、センサーや増感器などである。
 上記実施形態1で説明した希土類アルミニウムガーネットタイプ蛍光体は新規物質であり、特に希土類アルミニウムガーネットタイプCe系蛍光体は、実施形態1で説明したように従来のYAG:Ce系蛍光体に無い特徴を有する。このため、希少かつ高価な元素を用いることなく、従来の希少かつ高価な元素を用いて構成したガーネット型の結晶構造を持つ蛍光体を用いた発光装置と同等の特性を持つ発光装置を、低コストで提供することができる。
 特に、好ましい発光装置は、実施形態1で説明した希土類アルミニウムガーネットタイプCe系蛍光体を用いて構成した発光装置である。希土類アルミニウムガーネットタイプCe系蛍光体は、実施形態1で説明したように、従来の発光装置に広く用いられてきたオーソドックスなCe3+付活緑色蛍光体、例えば、Y(Al,Ga)12:Ce3+、(Lu,Y)Al12:Ce3+、CaScSi12:Ce3+などには無い、希少金属元素(Ga、Lu、およびSc)を使用する必要性が薄いという特長を有し、Ce3+付活の緑色蛍光体において希少金属元素を削減するか、Ce3+付活の緑色蛍光体を代替し得る。これによって、製造コストが低減でき、緑色出力光の色調や残光性能が改善された表示装置としての発光装置や、照明光の演色性が改善され、製造コストが低減された照明光源や照明装置としての発光装置を得ることができる。
 図1(図1Aおよび図1B)は、いずれも本実施形態にかかる発光装置の技術思想を説明するための図である。
 図1A、および、図1Bにおいて、励起源1は、実施形態1で説明した本発明にかかる希土類アルミニウムガーネットタイプ蛍光体2を励起するための、一次光を生成する光源である。励起源1は、例えば、α線、β線、電子線などの粒子線や、γ線、X線、真空紫外線、紫外線、可視光、特に紫色光や青色光などの短波長可視光の電磁波を放つ粒子線、あるいは電磁波の放射装置であり、各種の放射線発生装置、電子ビーム放射装置、放電光発生装置、固体発光素子や固体発光装置などがこれに相当する。励起源1の代表的なものとしては、電子銃、X線管球、希ガス放電装置、水銀放電装置、発光ダイオード、半導体レーザーを含むレーザー光発生装置、無機あるいは有機のエレクトロルミネッセンス素子などが挙げられる。
 また、図1A、および、図1Bにおいて、出力光4は、励起源1が放つ励起線または励起光3である一次光によって励起された本発明にかかる希土類アルミニウムガーネットタイプ蛍光体2が放つ出力光である蛍光であり、発光装置において照明光や表示光として利用されるものである。
 図1Aは、励起線または励起光3が希土類アルミニウムガーネットタイプ蛍光体2を照射する方向に、希土類アルミニウムガーネットタイプ蛍光体2が放つ出力光4が放たれる構造の発光装置を示す概念図である。なお、図1Aに示す技術思想を有する発光装置としては、白色LED光源や、蛍光ランプ、電子管などが挙げられる。
 一方、図1Bは、励起線または励起光3が、希土類アルミニウムガーネットタイプ蛍光体2を照射する方向とは逆の方向に希土類アルミニウムガーネットタイプ蛍光体2が放つ出力光4が放たれる構造の発光装置を示す概念図である。図1Bに示す技術思想を有する発光装置としては、プラズマディスプレイ装置や、反射板付き蛍光体ホイールを利用する光源装置およびプロジェクターなどが挙げられる。
 本実施形態の発光装置の具体例として好ましいものは、希土類アルミニウムガーネットタイプ蛍光体を利用して構成した、半導体発光装置、照明光源、照明装置、LEDバックライト付き液晶パネル、LEDプロジェクター、レーザープロジェクターなどである。以下、具体例として、半導体発光装置とプロジェクター用の光源装置について、本実施形態にかかる発光装置を詳細に説明する。
 (半導体発光装置)
 図2は、本実施形態にかかる光源装置の第1の具体例である半導体発光装置を示す模式断面図である。図2は断面図であるが、図面の見易さを考慮して透光性樹脂10の断面を示すハッチングは省略している。
 図2において、基板5は、固体発光素子6を固定するための基台となるものであり、例えば、Al、AlNなどのセラミックス、Al、Cuなどの金属、ガラス、シリコーン樹脂、フィラー入りシリコーン樹脂などの樹脂から構成される。
 また、基板5上には配線導体7が設けられ、固体発光素子6の給電電極8と配線導体7とを金線などを用いて電気的に接続することによって、固体発光素子6に給電している。
 一次光を生成する光源である固体発光素子6は、直流、交流、又はパルスの中から選ばれる少なくともいずれかの電圧を印加する電力供給によって、電気エネルギーを近紫外線、紫色光、または青色光などの光エネルギーに変換する電光変換素子であり、例えば、LED、LD、無機エレクトロルミネッセンス(EL)素子、有機EL素子などである。特に、高出力かつ狭スペクトル半値幅の一次光を得る目的で好ましい固体発光素子6は、LED又はLDである。なお、図2は、固体発光素子6を、InGaN系化合物を発光層とするLEDとした場合の構成を図示している。
 波長変換層9は、蛍光物質からなる蛍光体2を含み、固体発光素子6が放つ一次光を相対的に長波長側に移動した光に波長変換する。波長変換層9は、透光性樹脂10に、蛍光体2として実施形態1で説明した本発明にかかる希土類アルミニウムガーネットタイプ蛍光体を含んでいる。なお、本実施形態の半導体発光装置における波長変換層9としては、樹脂蛍光膜、透光性蛍光セラミックス、蛍光ガラスなどに蛍光体を含ませて構成することができる。
 波長変換層9には、蛍光体2として実施形態1で説明した本発明にかかる希土類アルミニウムガーネットタイプCe系蛍光体を単独で使用することもできるが、必要に応じて、希土類アルミニウムガーネットタイプCe系蛍光体とは異なる蛍光体を含むようにしてもよい。また、発光色または組成のいずれかの面で異なる実施形態1の希土類アルミニウムガーネットタイプ蛍光体を複種類組み合わせて用いるようにしてもよい。
 波長変換層9に用いることができる、希土類アルミニウムガーネットタイプCe系蛍光体とは異なる蛍光体としては、固体発光素子6が放つ一次光を吸収して相対的に長波長側に移動した光に波長変換する蛍光体であれば、特に限定されるものではない。発光色として、青色光、緑青光、青緑色光、緑色光、黄色光、橙色光、赤色光を放つ各種の蛍光体から適宜選択して、半導体発光装置が、所望の色の出力光を放つようにすることができる。
 固体発光素子6をLEDまたはLDとした場合の半導体発光装置用として好ましい高効率蛍光体としては、Eu2+またはCe3+の少なくともいずれかで付活した酸化物や酸ハロゲン化物などの酸化物系蛍光体、窒化物や酸窒化物などの窒化物系蛍光体、または、硫化物や酸硫化物などの硫化物系蛍光体を用いることができる。
 具体的には、青色蛍光体として、BaMgAl1017:Eu2+、CaMgSi:Eu2+、BaMgSi:Eu2+、Sr10(POCl:Eu2+などが、緑青または青緑色蛍光体として、SrSiCl:Eu2+、SrAl1424:Eu2+、BaAl13:Eu2+、BaSiO:Eu2+、BaZrSi:Eu2+などが、緑色蛍光体として、(Ba,Sr)SiO:Eu2+、BaMgAl1017:Eu2+,Mn2+、CeMgAl1119:Mn2+、YAl12:Ce3+、CaScSi12:Ce3+、CaSc:Ce3+、β-Si:Eu2+、SrSi:Eu2+、BaSi12:Eu2+、SrSi13Al21:Eu2+、YTbSiC:Ce3+、SrGa:Eu2+などが、黄または橙色蛍光体としは、(Sr,Ba)SiO:Eu2+、(Y,Gd)Al12:Ce3+、α-Ca-SiAlON:Eu2+、YSiC:Ce3+、YMgAl(AlO(SiO):Ce3+などが、赤色蛍光体としては、SrSi:Eu2+、CaAlSiN:Eu2+、SrAlSi:Eu2+、CaS:Eu2+、LaS:Eu3+、YMg(AlO)(SiO:Ce3+などがあげられる。
 なお、利用する蛍光体を全て酸化物とすることで、低コストで半導体発光装置を実現することができる。
 実施形態1で説明した希土類アルミニウムガーネットタイプ蛍光体は、400nm以上480nm未満の波長領域内に励起スペクトルのピークを持つものが多いため、本実施形態にかかる発光装置としては、400nm以上480nm未満の波長領域内に発光ピークを持つ紫または青色光を発する固体発光素子6と、485nm以上540nm未満、特に500nm以上540nm未満の波長領域内に発光ピークを持つ緑色光を発する希土類アルミニウムガーネットタイプCe系蛍光体2を少なくとも含む波長変換層9とを備えるものである。
 なお、固体発光素子と蛍光体の好ましい組み合わせとしては、紫色固体発光素子に対して、青色蛍光体と緑色蛍光体と赤色蛍光体との組み合わせ、または、青緑色蛍光体と黄色蛍光体と赤色蛍光体との組み合わせ、青色固体発光素子に対して、緑色蛍光体と黄色蛍光体との組み合わせ、または、緑色蛍光体と赤色蛍光体との組み合わせ、または、緑色蛍光体との組み合わせなどがある。これらの組み合わせのいずれかを用いて半導体発光装置を構成するか、または、これらの組み合わせに基づく出力光を最終的に放つようにすることが好ましい。
 本実施形態の半導体発光装置では、上記した緑色蛍光体、青緑色蛍光体、または、緑青色蛍光体として、実施形態1で説明した希土類アルミニウムガーネットタイプCe系蛍光体を用いるものである。
 ここで、本実施形態の半導体発光装置の製造方法の一例を説明する。
 まず、配線導体7を形成した基板5上に実装技術を用いて固体発光素子6を固定し、ワイヤーボンディング技術等を用いて固体発光素子6の給電電極8と配線導体7とを電気的に接続する。一方で、シリコーン樹脂などの透光性樹脂10と、蛍光体2を十分に混合し、所定の粘度となるように調整した蛍光体ペーストを作製する。蛍光体ペースト中の蛍光体2の重量割合は、数%~数10%程度となるようにする。その後、固体発光素子6上に蛍光体ペーストを滴下するなどして、固体発光素子6の光取り出し面を蛍光体ペーストで覆って、蛍光体ペーストを乾燥させるなどして固化することによって波長変換層9を形成し、半導体発光装置とする。
 このようにして形成された半導体発光装置では、固体発光素子6に通電して所定の電力を供給すると固体発光素子6が、440nm以上480nm未満の波長範囲内に発光ピークを有する青色光である一次光を発光する。この一次光は、希土類アルミニウムガーネットタイプCe系蛍光体2によって、高い波長変換効率で青緑または緑色の光に波長変換される。
 一次光は、波長変換層9に含まれた蛍光体2を照射し、一部が蛍光体2に吸収される。蛍光体2に吸収された一次光は、蛍光体2によって波長変換され、相対的に長波長側(低エネルギー側)に移動した光に波長変換する。そして、蛍光体2によって波長変換された波長変換光が透光性樹脂10を通り抜けて半導体発光装置から出射する。一方、蛍光体2に吸収されなかった一次光も、透光性樹脂10を通り抜けて半導体発光装置から出射する。この結果、半導体発光装置からは、蛍光体2による波長変換光と、蛍光体2に吸収されなかった一次光の両方が出射することになり、これら双方が加色混合された光成分が半導体発光装置から出力される。波長変換層9の厚みや光透過率、波長変換層9に含まれる蛍光体2の種類や混合割合、固体発光素子が放つ前記一次光の波長などは適宜調整できるものであるので、所望とする光源色や、白色などの照明光が得られるように光源設計すればよい。なお、一時光がすべて蛍光体に吸収されて波長変換される場合もあり、この場合には、半導体発光装置からの出射光は、蛍光体で波長変換された光のみとなる。
 上記では、固体発光素子6からの一次光が、440nm以上480nm未満の波長範囲内に発光ピークを有する青色光であり、希土類アルミニウムガーネットタイプCe系蛍光体2によって、青緑または緑色の光に波長変換される例を示した。希土類アルミニウムガーネットタイプCe系蛍光体2が波長440nm以上500nm未満の青色領域よりも短波長側に励起ピークを有する緑色蛍光体である場合には、固体撮像素子6からの一次光を青色光として発光装置を構成してもよい。Ce3+で付活された蛍光体は、一般に、最も長波長側に位置する励起ピークの光を、高い光子変換効率(内部量子効率)で、吸収した光よりも長波長の光に波長変換し得ることが知られているため、このようにしても、高光束の光を放つ半導体発光装置を提供できることになる。
 図3~5は、本実施形態の半導体発光装置が放つ出力光の分光分布を示す図である。
 本実施形態の半導体発光装置は、上記の通り、400nm以上480nm未満の波長領域内に発光ピークを有する紫または青色の光成分と、485nm以上540nm未満、特に500nm以上540nm未満の波長領域内に発光ピークを有する青緑色または緑色の光成分とを少なくとも放出するものである。とすることができる。このため、図3~図5に示される具体例の半導体発光装置では、440nm以上480nm未満の波長領域内に発光ピークを有する青色の光成分12と、500nm以上540nm未満の波長領域に発光ピークを有する青緑色または緑色の光成分13とを示している。
 図3は、固体発光素子として、青色光を放つInGaN系化合物を発光層とするInGaN青色LEDを備え、実施形態1に記載した希土類アルミニウムガーネットタイプCe系蛍光体と赤色蛍光体とを少なくとも用いて、昼光色相当となる相関色温度6700Kの三波長形の白色系出力光を放つようにした場合をシミュレーションした分光分布を示している。
 図3に示す実線aは、InGaN青色LEDと、530nm付近に発光ピークを持つ緑色光成分を放つ実施形態1のYAG:Ce系蛍光体と、620nm付近に発光ピークを持つ赤色光成分を放つEu2+付活蛍光体を組み合わせた場合の分光分布を示す。また、図3に示す一点鎖線bは、InGaN青色LEDと、515nm付近に発光ピークを持つ青緑色光成分を放つ実施形態1のYAG:Ce系蛍光体と、555nm付近に発光ピークを持つ黄緑色光成分を放つ従来のYAG:Ce系蛍光体と、620nm付近に発光ピークを持つ赤色光成分を放つEu2+付活蛍光体を組み合わせた場合の分光分布を示している。
 図3に示す点線cは、参考例として示す、InGaN青色LEDと、555nm付近に発光ピークを持つ黄緑色光成分を放つ従来のYAG:Ce系蛍光体とを用いて、相関色温度6700Kの擬似白色の出力光を放つようにした場合をシミュレーションした分光分布である。
 図3中実線aとして示した白色系出力光は、平均演色評価数Raが95.5であり、図3中に点線cとして示した比較例の擬似白色の出力光のRa=77.0に対して、Raの数値が十分高く、自然光に近い照明光として利用できる。また、図3中に一点鎖線bとして示す白色系出力光は、平均演色評価数Raが97.1であり、ほぼ自然光として利用できる。
 図4は、固体発光素子として、青色光を放つInGaN系化合物を発光層とするInGaN青色LEDを備え、実施形態1に記載したYAG:Ce系蛍光体と赤色蛍光体とを用いて、電球色相当となる相関色温度2800Kの三波長形の白色系出力光を放つようにした場合をシミュレーションした分光分布を示している。
 図4中の実線dが、InGaN青色LEDと、530nm付近に発光ピークを持つ緑色光成分を放つYAG:Ce系蛍光体と、620nm付近に発光ピークを持つ赤色光成分を放つEu2+付活蛍光体を組み合わせた場合の分光分布を示している。
 参考のため、図4中に点線eとして、InGaN青色LEDと、575nm付近に発光ピークを持つ黄色光成分を放つ従来のYAG:Ce系蛍光体とを用いて、相関色温度2800Kの擬似白色の出力光を放つようにした場合をシミュレーションした分光分布を示した。
 図4中実線dとして示した白色系出力光は、平均演色評価数Raが93.1であり、図4中に点線eとして示した比較例の擬似白色の出力光のRa=54.5に対して、Raの数値が十分高く、自然光に近い照明光として利用できる。
 図5は、固体発光素子として、450nm付近に発光ピークを持つInGaN系化合物を発光層とするInGaN青色LEDを備え、520nm付近に発光ピークを持つYAG:Ce系蛍光体と、620nm付近または650nm付近に発光ピークを持つ赤色蛍光体とを用いて、相関色温度が12000Kの三波長形の白色系出力光を放つようにした場合をシミュレーションした分光分布を示している。
 図5中の実線fは、赤色蛍光体として、620nm付近に発光ピークを持つ赤色光成分を放つEu2+付活蛍光体を用いた場合の分光分布を示している。また、図5中の一点鎖線gは、赤色蛍光体として、650nm付近に発光ピークを持つCaAlSiN:Eu2+を用いた場合の分光分布を示している。
 参考のため、図5中に点線hとして、InGaN青色LEDと、555nm付近に発光ピークを持つ黄緑色光成分を放つ従来のYAG:Ce系蛍光体とを用いて、相関色温度12000Kの擬似白色の出力光を放つようにした場合をシミュレーションした分光分布を示した。
 図5中実線fとして示した、本実施形態にかかる半導体光源装置の白色系出力光は、図5中に点線hとして示した分光分布を示す擬似白色の場合と異なり、450nmと520nmと620nm付近に各々ピークを持つ三波長形となるため、赤緑青の強い光成分を利用して、広色域で高光出力の多色表示用光源として利用することができる。また、図5中一点鎖線gとして示す白色系出力光は、450nmと520nmと650nm付近に各々ピークを持つので、さらに広色域の多色表示用の光源としてとして利用することができる。
 なお、図3~図5に分光分布を示した半導体光源装置に用いられる、620nm付近に発光ピークを持つ赤色光成分を放つEu2+付活蛍光体としては、例えば、Eu2+で付活したニトリドアルミノシリケート系蛍光体((Sr,Ca)AlSiN:Eu2+、SrAlSi:Eu2+など)を利用することができる。
 図6は、図5中に実線fおよび点線hで示した分光分布の一例を示す半導体発光装置を用いて構成した表示装置の表示色域の概要を、CIE色度図を用いて示す図である。図6において、Aが図5において実線fとして示した三波長形の出力光を放つ半導体発光装置を用いて表示装置を構成した場合の表示色域である。また、図6において、Bが図5において点線hで示した疑似白色の出力光を放つ半導体発光装置を用いて表示装置を構成した場合の表示色域である。図5に示したように、三波長形とすることによって、青色光成分強度に対する赤色と緑色の光成分強度が疑似白色の場合よりも相対的に強くなるので、図6Aに示すような広色域であっても高輝度表示ができることとなる。本発明では、このような広色域の高輝度表示を、希少金属元素の使用を控えて実現する表示装置を提供できることとなる。
 以上説明したように、本実施形態の第1の具体例である半導体発光装置は、紫または青色の光を発する固体発光素子と、紫または青色の光を吸収して、青緑または良好な色調の緑色光成分を放つことができる希土類アルミニウムガーネットタイプCe系蛍光体とを組み合わせることで、485nm以上540nm未満、特に500nm以上540nm未満の波長領域内に発光ピークを有する、緑青または青緑光成分あるいは色調の面で良好な緑色光成分を少なくとも放つものになる。緑青または青緑光成分は、照明光源が放つ光の分光分布を自然光の分光分布に近づけるため、照明光の演色性を高めることができる。また、良好な緑色光成分によって、色調の面で表示装置の広色域化を可能にすることができる。
 本実施形態の半導体光源装置に用いられる希土類アルミニウムガーネットタイプCe系蛍光体は、紫~青色光励起が可能な従来の高効率緑色蛍光体とは異なり、希少であり高価な元素を必要とせず、コストの大幅な低減を可能とする。このため、本実施形態の半導体発光装置は、照明光の演色性の改善や表示装置の広色域化に対してコストが高くなる因子を持たないため、特性改善がなされた半導体発光装置の上市を容易なものとなる。また、従来、コストアップを理由として、上市が見送られてきた半導体発光装置の実用も促すものとなる。
 具体的な構成の図示は省略するが、本実施形態の半導体発光装置は、照明光源用や液晶ディスプレイのバックライト用、さらに表示装置用の光源などとして広く利用可能である。これら照明光源等の発光装置としても、本実施形態の半導体発光装置と同様、希少かつ高価な元素を用いる必要性のない希土類アルミニウムガーネットタイプ蛍光体を用いて、高演色性の照明光源や広色域表示可能な表示装置を提供できるという利点を有するものとなる。
 つまり、本実施形態の半導体発光装置は、照明光源や表示装置などの発光装置を幅広く網羅するものである。例えば、照明光源としては、少なくとも一つの本実施形態の半導体発光装置と、半導体発光装置を動作させる点灯回路と、口金などの照明器具との電気的な接続部品とを少なくとも組み合わせて構成すれば足りるものになる。必要に応じて、さらに照明器具を組み合わせれば、照明装置や照明システムを構成することにもなる。
 また、例えば、本実施形態の半導体発光装置を用いた表示装置は、本実施形態の半導体発光装置をマトリックス状に配置し、マトリックス状に配置した半導体発光装置をON-OFFする信号回路を少なくとも組み合わせて構成すれば足りるものになる。別の形態の、本実施形態の半導体発光装置を備えた表示装置は、例えば、LEDバックライト機能付き液晶パネルである。当該表示装置は、例えば、本実施形態の半導体発光装置をライン状またはマトリックス状に配置しバックライトとして利用する。そして、バックライトと、バックライトを点灯する点灯回路、または、バックライトをON-OFF制御する制御回路の少なくともいずれかと、液晶パネルとを少なくとも組み合わせて構成すれば足りるものになる。
 (光源装置)
 図7は、本実施形態の発光装置の第2の具体例となる光源装置14を示す図である。
 図7において、蛍光板15は、実施形態1で説明した本発明にかかる希土類アルミニウムガーネットタイプCe系蛍光体を利用した蛍光板であり、例えば、基材16の片面に実施形態1で説明した希土類アルミニウムガーネットタイプCe系蛍光体層を形成してなるものである。また、第一光源17aは、実施形態1で説明した希土類アルミニウムガーネットタイプCe系蛍光体を励起するための光源であり、例えば、400nm以上480nm未満の波長領域内に発光ピークを持つ、紫または青色光を発する固体発光素子6、例えば青色LDである。
 本実施形態の光源装置14では、図7に示すように、少なくとも、第一光源17aが放つ紫または青色光が、直接または間接的に蛍光板15に形成した希土類アルミニウムガーネットタイプCe系蛍光体を照射するようにする。そして、希土類アルミニウムガーネットタイプCe系蛍光体によって波長変換された、青緑色または緑色の光成分13を少なくとも出力する。
 なお、図7では、第一光源17aは複数設けており、第一光源17aが放つ紫または青色光は、反射ミラー18によって反射され、第一レンズ19aで集光された後、蛍光板15の片面に形成した希土類アルミニウムガーネットタイプCe系蛍光体を照射する構造の一例を示している。また、蛍光板15の希土類アルミニウムガーネットタイプCe系蛍光体を設けていない面には、図示しない反射面を設け、希土類アルミニウムガーネットタイプCe系蛍光体が放つ青緑色または緑色の光成分13が、第一光源17aが放つ紫または青色光が照射する向きとは逆向きに反射して進む構造の一例を示している。
 この光源装置14の構造例の場合、蛍光板15の反射面によって反射された、希土類アルミニウムガーネットタイプCe系蛍光体が放つ青緑色または緑色の光成分13は、第一集光レンズ20aによって集光され、その後、第一光軸変換ミラー21a、第二レンズ19b、第二光軸変換ミラー21b、第三レンズ19c、第三光軸変換ミラー21cによって、光軸変換と集光の繰り返しがなされた後、入射レンズ22への入射を経て、光源装置14から出射される。
 なお、実施形態1で説明した希土類アルミニウムガーネットタイプCe系蛍光体は、色純度の良好な緑色光を放つ組成物とし、かつ、蛍光板15を構成する蛍光膜の厚みを厚くするなどして、第一光源17aが放つ紫または青色光が、希土類アルミニウムガーネットタイプCe系蛍光体に十分吸収されるようにすると、色純度の良好な緑色光成分が光源装置14から出射されることとなる。
 一方で、多色表示のための光源装置14とするには、例えば、入射レンズ22を通して光源装置14から、さらに、青色光成分と赤色光成分が出射するようにすればよい。
 青色光成分は、例えば、第一光源17aを青色LDとして、青色LDが放つ青色光成分が蛍光板15を透過して、第二集光レンズ20b、第四光軸変換ミラー21d、第四レンズ19d等による集光と光軸変換などを経て、光源装置14から出射されるようにすれば足りる。
 このような光源装置14は、例えば、モーター23などを利用して、蛍光板15を回転可能なものとし、第一光源17aが放つ紫または青色光が、希土類アルミニウムガーネットタイプCe系蛍光体を照射するセグメント領域と、希土類アルミニウムガーネットタイプCe系蛍光体を照射することなく通過するセグメント領域とを設けるなどすれば実現できる。
 また、赤色光成分は、例えば、図7に示すように、赤色光を放つ例えば赤色LEDなどの第二光源17bを設け、第二光源17bが放つ赤色光成分が、第二レンズ19b、第二光軸変換ミラー21b、第三レンズ19c、第三光軸変換ミラー21cによって、集光と光軸変換との繰り返しがなされた後、光源装置14から出射されるようにすれば足りる。
 このように構成すると、第一光源17aの出力と第二光源17bの出力と蛍光板15の回転速度とを制御することによって、光の三原色となる赤・緑・青の光成分が各々制御されて放つ多色表示用の光源装置になる。
 また、このような光源装置は、プロジェクタータイプの表示装置に利用可能である。光源装置14から出射された光を、図示しない光変調素子(デジタルマイクロミラーデバイス:DMD)と呼ばれるマイクロミラー表示素子や液晶板などに集光し、光変調した光を図示しないスクリーンなどに投影することにより、変調信号に同期した表示画像を得ることができる。
 なお、本実施形態の光源装置は、図7を用いて説明した、第一光源17aを青色LDとして青色LDが放つ青色光成分と、第二光源17bを赤色LEDとして赤色LEDが放つ赤色光成分と、希土類アルミニウムガーネットタイプCe系蛍光体が放つ青緑または緑色の光成分とを出力する光源装置に限られない。本実施形態にかかる光源装置としては、実施形態1として説明した本発明にかかる希土類アルミニウムガーネットタイプ蛍光体によって波長変換された、各色の光成分を少なくとも出力することを特徴とする、さまざまな具体例を想定することができる。
 例えば、第一光源17aは青色LEDとして構成することもできるし、第二光源17bは赤色LDとして構成することもできる。また、第一光源17aは青色LDとし、蛍光板15は、青色LDが放つ青色光が希土類アルミニウムガーネットタイプCe系蛍光体と赤色蛍光体とを照射して、各々、緑色光と赤色光を放つセグメント領域と、蛍光体を全く照射することなく通過するセグメント領域とを設けた回転可能なものとしても、各々制御された赤・緑・青の光成分を放つ光源装置を構成することができる。
 さらに、第一光源17aは紫色LDとし、蛍光板15は紫色LDが放つ紫色光が、青色蛍光体と希土類アルミニウムガーネットタイプCe系蛍光体と赤色蛍光体とを照射して、各々、青色光と緑色光と赤色光を放つセグメント領域を設けた回転可能なものとしても、各々制御された赤・緑・青の光成分を放つ光源装置を構成することができる。これら以外にも、様々な変形例が考えられる。
 また、図示は省略するが、本実施形態の光源装置としては、固体発光素子を利用するプロジェクター(LEDプロジェクターやレーザープロジェクター)に利用可能である。また、これら光源装置としてのプロジェクターは、前記した本実施形態の半導体発光装置と同様、希少かつ高価な元素を用いる必要性のない希土類アルミニウムガーネットタイプ蛍光体を用いて、広色域表示可能な表示装置を低コストで提供できるという利点を有するものとなる。
 例えば、本実施形態の光源装置としてのプロジェクターは、図7を用いて説明した光源装置14と、光源装置14を動作させる駆動回路と、光変調素子と、光変調素子を制御する制御回路とを少なくとも組み合わせて構成すれば足りるものになる。必要に応じて、さらにスクリーンを組み合わせて表示装置を構成することもできる。これら表示装置の表示色域の一例は、図6中の点線Aの範囲となり、広い色再現領域を備えたプロジェクターを実現することができる。
 なお、本発明にかかる発光装置は、上記説明した半導体発光装置や光源装置、およびこれを利用した発光装置以外の希土類アルミニウムガーネットタイプ蛍光体を利用した他の発光装置として広く利用可能であり、特に緑色の色調の面で良好な特性を有し、製造コストを低減することができる発光装置とすることができる。
 このような本発明にかかる発光装置を用いて、たとえば、フライングスポット電子管、立体画像表示機能付きプラズマディスプレイパネル(3D-PDP)、半導体発光装置としての白色LED、LEDまたはLDと蛍光体とを利用するプロジェクター、および、白色LEDを利用した照明光源やLEDバックライト付きの液晶パネル、蛍光体を利用するセンサーや増感器などのさまざま電子機器が実現できる。
 [実施例]
 以下、本発明にかかる希土類アルミニウムガーネットタイプ蛍光体の実施例を説明する。
 固相反応を利用するオーソドックスなセラミックス技術を用いて本発明にかかる希土類アルミニウムガーネットタイプ蛍光体を合成し、その特性を評価した。
 本実施例では、以下の化合物粉末を原料として使用した。
 酸化スカンジウム(Sc):純度3N、信越化学工業株式会社製
 酸化イットリウム(Y):純度3N、信越化学工業株式会社製
 酸化ランタン(La):純度4N、信越化学工業株式会社製
 酸化セリウム(CeO):純度4N、信越化学工業株式会社製
 酸化プラセオジム(Pr11):純度3N、信越化学工業株式会社製
 酸化ユーロピウム(Eu):純度3N、信越化学工業株式会社製
 酸化テルビウム(Tb):純度4N、信越化学工業株式会社製
 酸化ルテチウム(Lu):純度2N5、信越化学工業株式会社製
 酸化アルミニウム(θ-Al):純度>4N5、住友化学株式会社製
 酸化ガリウム(Ga):純度3N、株式会社高純度化学研究所製
 酸化マグネシウム(MgO):純度4N、株式会社高純度化学研究所製
 炭酸カルシウム(CaCO):純度2N5、関東化学株式会社製
 炭酸ストロンチウム(SrCO):純度4N、和光純薬工業株式会社製
 炭酸バリウム(BaCO):純度4N、和光純薬工業株式会社製
 酸化ジルコニウム(ZrO):純度3N、関東化学株式会社製
 酸化ハフニウム(HfO):純度98.5%、第一稀元素化学工業株式会社製
 炭酸マンガン(MnCO):純度>3N、株式会社高純度化学研究所
 なお、原料同士の反応性を高める目的で、酸化アルミニウムについては、住友化学株式会社製のAKP-G008を使用した。
 また、実施例では、反応促進剤として、
 弗化アルミニウム(AlF):純度3N、株式会社高純度化学研究所製
 炭酸カリウム(KCO):純度2N5、関東化学株式会社製
を用いた。
 (実施例1~6)
 実施例1~6の希土類アルミニウムガーネットタイプ蛍光体は、0.98(Y3-xCaAl5-xZr12)・0.02CeAl12の組成式で表される化合物、つまり、(Y(1-y)(1-x/3)Ca(1-y)x/3Ce(Al1-(1-y)x/5Zr(1-y)x/512の化学式で表される化合物(但し、0.125≦x≦2、y=0.02)としてのYAG:Ce系蛍光体とした。
 なお、比較例として、従来のYAG:Ce系蛍光体も同様に作製した。
 反応によって化学量論的組成の化合物(Y0.98(1-x/3)Ca0.98x/3Ce0.02(Al1-0.98x/5Zr0.98x/512となるように、上記した各原料を秤量し、さらに微量の反応促進剤を用いた。
 実施例1~6および比較例の原料と反応促進剤の、具体的な秤量割合は表1に示す通りとした。
Figure JPOXMLDOC01-appb-T000001
 ボールミルを用いて、これら原料および反応促進剤を、適量の水(純水)とともに十分湿式混合した。
 混合後の混合原料を容器に移し、乾燥機を用いて、120℃で一晩乾燥させた。乾燥後の混合原料を乳鉢と乳棒を用いて混合し、焼成原料とした。
 焼成原料を蓋付きのアルミナるつぼに移し、箱型電気炉を用いて、1600℃の大気中で4時間焼成して実施例1~6および比較例のサンプルとした。なお、実験の都合上、後処理については省略した。
 以下、実施例1~6のYAG:Ce系蛍光体の特性を評価した結果を説明する。
 まず、実施例1~6のYAG:Ce系蛍光体の結晶構造を、X線回折装置(X‘Pert PRO(製品名:スペクトリス株式会社製、PANalytical)を用いて評価した。
 図8は、表1に示した実施例3~6、および、比較例他のX線回折結果(XRD)を示している。
 図8において、実施例6のXRDパターンを(a)、実施例5のXRDパターンを(b)、実施例4のXRDパターンを(c)、および実施例3のXRDパターンを(d)として示す。また、参考のため、比較例を(e)、PDF(Power Diffraction Files)に登録されている、Al12のパターン(PDF No.33-0040)を従来例2(f)として示した。
 図8からわかるように、実施例6(a)、実施例5(b)および実施例3(d)と、比較例(e)および従来例2(f)を比べると、実施例3、実施例5および実施例6のYAG:Ce系蛍光体のXRDパターンは、比較例とした従来のYAG:Ce系蛍光体のXRDパターン、および、従来例2であるPDFに登録されているAl12のパターンと、パターン形状面での特徴が一致した。このことは、少なくとも実施例3、実施例5および実施例6のYAG:Ce系蛍光体が、化合物YAl12と同じガーネット構造を有することを示している。
 なお、図8において、実施例4(c)と、実施例6(a)および実施例5(e)とを比較して判るように、実施例4のYAG:Ce系蛍光体のXRDパターン(c)は、実施例6(a)のパターンに近いパターンと、比較例(e)とした従来のYAG:Ce系蛍光体のパターンに近いパターンの二種類が重なったXRDパターンとなった。このことは、実施例4のYAG:Ce系蛍光体が、ガーネット構造を有する二種類の化合物の混合物であることを示している。
 また、図8において、実施例6(a)、実施例5(b)および実施例3(d)と、比較例(e)とを対比して判るように、実施例3(d)、実施例5(b)および実施例6(a)のYAG:Ce系蛍光体のXRDパターンのピークは、Ca-Zrの置換量(すなわちxである。)の増加とともに低角度側へとシフトした。
 図9は、XRDパターンの33°付近の主ピーク((420)面の回折線である。)のXRD回折角(2θ)をもとに、実施例1~6のYAG:Ce系蛍光体の(420)面のd値を算出して、Ca-Zrの置換量(x)とd値との関係をまとめた図である。なお、xの数値がx=1の場合には、上記のように、x=0に近いパターンとx=2に近いパターンの二種類が重なったXRDパターンが認められたため、図9では、二つのd値をプロットしている。
 図9に示すように、d値は、x=1付近でd値の不連続特性が認められたものの、x=1の両サイドでは、Ca-Zrの置換量(x)にほぼ比例して増加した。
 このことは、Ca-Zrの置換量を増すにつれて、YAG:Ce系蛍光体の(420)面の面間隔が次第に伸び(実施例1~3)、実施例4の組成物となるx=1付近で面間隔の不連続特性が認められ、その後、再び面間隔が伸びて、Ceが少量添加されたCaYZrAl12化合物に近づくことを示している。
 また、図8と図9とは、従来のYAG:Ce系蛍光体中で、化合物(Y,Ce)Al12と、化合物CaZrOとが、両者の固溶体を形成するようにして、CaとZrとが固溶する、あるいは、新規蛍光体となるCaYZrAl12:Ce3+中で、新規化合物Ca(Y,Ce)ZrAl12と化合物(Y,Ce)Al12とが、両者の固溶体を形成するようにして、YとAlとが固溶する証拠となるデータである。
 このように、図8および図9に示す解析結果は、先に触れた(Y(1-y)(1-x/3)Ca(1-y)x/3Ce(Al1-(1-y)x/5Zr(1-y)x/512の化学式で表される化合物(つまり、(Y,Ca,Ce)(Al,Zr)12である)が実在し、これが合成されたことを示す根拠となるものである。
 なお、x=1付近で認められた上記不連続特性は、後記するように、蛍光体を構成するAlの一部を、さらにGaやScなど、Al3+よりもイオン半径が大きな3価の金属イオンとなり得る元素で置換することにより緩和される。
 また、Yの格子位置をCaが置換しAlの格子位置をZrが置換するのか、それとも、Yの格子位置をZrが置換しAlの格子位置をCaが置換するのかについては不明であり、学術的な精査が望まれる。すなわち、合成された化合物が、(Y(1-y)(1-x/3)Zr(1-y)x/3Ce(Al1-(1-y)x/5Ca(1-y)x/512の化学式で表される化合物(つまり、(Y,Zr,Ce)(Al,Ca)12である。)である可能性も否定しきれないが、ここでは、便宜上両者をまとめて、上述のように(Y(1-y)(1-x/3)Ca(1-y)x/3Ce(Al1-(1-y)x/5Zr(1-y)x/512の化学式で表される化合物として表記した。
 このようにして、実施例1~6のYAG:Ce系蛍光体が、化合物としての(Y,Ca,Ce)(Al,Zr)12であることを確認できた。
 なお、ざくろ石(ガーネット:garnet)の構造は、一般に、AB’(B”Oの化学式で表され、前記B”をSiまたはAlとした、AB’(SiOまたはAB’(AlOが安定構造として多数知られている。このため、本発明にあっては、YAG系蛍光体の結晶を構成する12個の陰イオン(酸素他)に対して、AlとSiの原子の総数が3個を下回らない範囲の組成が安定相として存在することが予想される。つまり、Si原子を含まない場合では、部分的に置換された、アルカリ土類金属の総原子数は、ガーネットの結晶構造の化合物(YAG系蛍光体)を構成する陰イオン12個に対して、2.0個以下の組成を持つYAG系蛍光体が存在するものと考えられ、本発明の技術思想は、この組成範囲である、Ca-Zr置換量を示す数値xの上限が2.0のものとしている。
 次に、実施例1~6のYAG:Ce系蛍光体の励起特性と発光特性を、分光蛍光光度計(FP-6500(製品名:日本分光株式会社製))を用いて評価した。
 図10は、実施例6のYAG:Ce系蛍光体の発光スペクトル24aと励起スペクトル25a、実施例5のYAG:Ce系蛍光体の発光スペクトル24bと励起スペクトル25b、実施例4のYAG:Ce系蛍光体の発光スペクトル24cと励起スペクトル25c、実施例3のYAG:Ce系蛍光体の発光スペクトル24dと励起スペクトル25d、および、比較例の発光スペクトル24eと励起スペクトル25eをまとめた図である。
 なお、発光スペクトル測定時の励起波長を励起ピーク波長とし、励起スペクトル測定時のモニタ波長を発光ピーク波長とした。また、図10では、発光スペクトルと励起スペクトルは、いずれもピークを100として規格化して示している。
 図10から判るように、Ca-Zrの置換によって、発光スペクトルと励起スペクトルは相対的に短波長側へとシフトし、Ca-Zrの置換量の増加とともに、シフトの程度は大きくなった。発光スペクトルと励起スペクトルのピークは、例えば、xの数値が0の比較例(24e、25e)では、各々、557nmと458nmであったが、xの数値が0.5の実施例3(24d、25d)では、各々、532nmと438nmにまで短波長シフトし、xの数値が1の実施例4(24c、25c)では、各々、522nmと418nmにまで短波長シフトした。さらに、xの数値が1.5の実施例5(24b、25b)では、各々、509nmと414nmにまで短波長シフトし、xの数値が2.0の実施例6(24a、25a)では、各々、490nmと413nmにまで短波長シフトした。そして、Ca-Zrの置換量の増加に伴う発光スペクトルの短波長シフトに伴って、YAG:Ce系蛍光体が放つ光色は、黄緑色から純緑色、さらに青緑色から緑青色へと変化した。
 このことは、実施例1~6のYAG:Ce系蛍光体が、波長400~460nm付近の紫または青色光を効率良く吸収して、純緑~青緑~緑青色光へと波長変換できることを示すものである。
 なお、YAG:Ce系蛍光体では、励起スペクトルの最長波側の励起ピークよりも長波長側の光は、たとえ励起ピークからずれていても、90%程度を超える高い光子変換効率(内部量子効率)で波長変換されることが知られている。このため、本実施例のYAG:Ce系蛍光体は、特に紫色または青色光を高い光子変換効率で純緑~青緑~緑青色光に波長変換する、紫または青色光励起可能な高効率蛍光体であるといえる。
 従来のYAG:Ce系蛍光体では、純緑色~青緑色の光色は、Yの一部をLuで置換した場合やAlの一部をGaで置換した場合など、希少かつ高価な元素を利用した組成でのみ認められていたが、本発明では、希少かつ高価な元素を利用することなく、このような光色の光を放つYAG:Ce系蛍光体を製造できた。
 (実施例7~11)
 実施例7~11の希土類アルミニウムガーネットタイプ蛍光体は、Ce3+の付活量が異なる(1-x)(Y3-xCaAl5-xZr12)・xCeAl12の組成式で表される化合物、つまり、(Y(1-y)(1-x/3)Ca(1-y)x/3Ce(Al1-(1-y)x/5Zr(1-y)x/512の化学式で表される化合物(但し、x=2、0.003y≦0.1)としてのYAG:Ce系蛍光体とした。
 反応によって化学量論的組成の化合物(Y(1-y)(1/3)Ca(1-y)2/3Ce(Al1-0.98×2/5Zr0.98×2/512となるように、前記原料を秤量し、さらに微量の反応促進剤を用いた。
 実施例7~11の原料と反応促進剤の、具体的な秤量割合は表2に示す通りとした。
Figure JPOXMLDOC01-appb-T000002
 実施例1~6と同様にして、実施例7~11のサンプルを作製、評価した。
 なお、実施例7~11では、箱型電気炉を用いて1600℃の大気中で4時間焼成した後、1400℃の一酸化炭素雰囲気中で2時間の還元処理を施してサンプルとした。還元処理については、1600℃の大気中焼成後の蛍光体を仕込んだアルミナるつぼ(蓋なし)を、カーボン粉末を敷き詰めた一回り大きな蓋付きのアルミナるつぼ内に仕込む二重るつぼ方式によって行った。
 実施例7~11のYAG:Ce系蛍光体のXRDパターンは、図8中に(a)として示した実施例6のパターンと同様なので省略するが、実施例7~11のYAG:Ce系蛍光体は(Y(1-y)(1/3)Ca(1-y)2/3Ce(Al1-0.98×2/5Zr0.98×2/512の化学式で表され、ガーネットの結晶構造を有する化合物(Y,Ca,Ce)(Al,Zr)12であることが確認できた。
 図11は、実施例7~11のYAG:Ce系蛍光体の、各々、発光スペクトル24と励起スペクトル25を、実施例1~6と同様にして評価した結果をまとめた図である。
 図11に、実施例7のYAG:Ce系蛍光体の発光スペクトル24fと励起スペクトル25f、実施例8のYAG:Ce系蛍光体の発光スペクトル24gと励起スペクトル25g、実施例9のYAG:Ce系蛍光体の発光スペクトル24hと励起スペクトル25h、実施例10のYAG:Ce系蛍光体の発光スペクトル24iと励起スペクトル25i、および、実施例11のYAG:Ce系蛍光体の発光スペクトル24jと励起スペクトル25jをまとめて示した。
 なお、発光スペクトル測定時の励起波長と励起スペクトル測定時のモニタ波長は、各々、410nmと500nmとし、図11では、発光スペクトルと励起スペクトルのピークを100として規格化している。
 図11から判るように、yの数値(Ce3+の付活量に対応)が0.003から増加するにつれて、発光ピーク波長は、490nmから513nmまでシフトした。そして、発光スペクトルの長波長シフトに伴って、YAG:Ce系蛍光体が放つ光色は、緑青色から緑青色、そして純緑色へと変化した。一方、励起ピーク波長は、yの数値を変えても殆ど変化せず410nm付近に位置した。
 このことは、実施例7~11のYAG:Ce系蛍光体が、波長410nm付近の紫色光を効率良く吸収して、発光ピーク波長が490nm以上515nm未満の波長範囲内に位置する、緑青色、青緑色、または純緑色の光に波長変換し得ることを示すものである。
 従来のYAG:Ce系蛍光体では、Yの一部をLuで置換した場合やAlの一部をGaで置換した場合など、希少かつ高価な元素を利用した組成とすることで、発光ピーク波長としては、530nm程度までの短波長化を図ることができ、黄緑~純緑色までだけの光色を得ることができていたが、本発明では、希少かつ高価な元素を利用することなく、さらに短波長化を進めることができ、緑青色までの光色の光を放つYAG:Ce系蛍光体を製造できた。
 なお、先に説明した、図10中の実施例6の発光スペクトル24a(発光ピーク波長:490nm)と、図11中の実施例9の発光スペクトル24h(発光ピーク波長:494nm)とを比較して判るように、還元処理によって、発光ピーク波長は、若干、長波長側に移動する。また、還元処理を施した、実施例7~11のYAG:Ce系蛍光体は、Ce3+付活量に依存して、発光スペクトルのピーク波長が、490nm以上515nm未満の波長範囲内に位置するものになる。したがって、実施例1~11として示した本発明のYAG:Ce系蛍光体では、発光ピーク波長は485nm以上540nm未満、特に、505nm以上535nm未満の波長範囲内に位置するものに制御できることは明らかである。同様に、励起スペクトルのピーク波長も、400nmを超え450nm未満、特に、405nmを越え440nm未満の波長範囲内に位置するものに制御できるといえる。
 (実施例12)
 実施例12の希土類アルミニウムガーネットタイプ蛍光体は、0.98(Y3-xCaAl5-xZr12)・0.02(Ce0,9Pr0.1Al12の組成式で表される化合物、つまり、(Y(1-y―z)(1-x/3)Ca(1-y―z)x/3CePr(Al1-(1-y―z)x/5Zr(1-y―z)x/512の化学式で表される化合物(但し、x=0.5、y=0.018、z=0.002)としての、Ce3+とPr3+で共付活したYAG:Ce系蛍光体とした。
 実施例1~6と同様に、固相反応によって化学量論的組成の化合物(Y0.98×2.5/3)Ca0.98×0.5/3Ce0.02×0.9Pr0.02×0.1(Al1-0.98×0.5/5Zr0.98×0.5/512となるように、前記原料を秤量し、さらに微量の反応促進剤を用いた。
 実施例12の具体的な秤量割合は表3に示す通りとした。
Figure JPOXMLDOC01-appb-T000003
 実施例1~6と同様にして、実施例12のサンプルを作製した。
 実施例12のYAG:Ce系蛍光体のXRDパターンは、図8中に(d)として示した実施例3のXRDパターンと同様なので省略するが、実施例12のYAG:Ce系蛍光体は、(Y(1-y―z)(1-x/3)Ca(1-y―z)x/3CePr(Al1-(1-y―z)x/5Zr(1-y―z)x/512の化学式で表され、ガーネットの結晶構造を有する化合物(Y,Ca,Ce,Pr)(Al,Zr)12であることを確認した。
 図12は、実施例12のYAG:Ce系蛍光体の、発光スペクトル24kと励起スペクトル25kを、実施例1~6と同様にして示したものである。なお、図12において、発光スペクトル測定時の励起波長と励起スペクトル測定時のモニタ波長は、各々、410nmと530nmとし、発光スペクトルと励起スペクトルのピークを100として規格化している。
 図12から判るように、発光スペクトル24kは、緑色の波長領域内の532nm付近と、赤色の波長領域内の610nm付近にピークを持つ形状であり、励起スペクトル25kは410nm付近にピークを持った。このことは、実施例12の蛍光体が、紫色または青色の光で励起されて、緑色と赤色の二つの発光成分を同時に放つYAG:Ce系蛍光体であることを示している。
 なお、Ce3+とPr3+とで共付活したYAG:Ce系蛍光体に関する先行技術文献の記載内容などから、530nm付近に発光ピークを持つスペクトル幅の広い発光はCe3+の発光であり、610nm付近に発光ピークを持つスペクトル幅の狭い発光はPr3+の発光であることは明らかである。
 本発明にかかるYAG:Ce系蛍光体は、色純度の良好な緑色と赤色の二つの発光ピーク成分を同時に放つものであることが確認できた。
 (実施例13、14)
 実施例13および実施例14の希土類アルミニウムガーネットタイプ蛍光体は、発光中心をCe3+以外の希土類イオンの、Eu3+およびTb3+とし、0.98(Y3-xCaAl5-xZr12)・0.02LnAl12の組成式で表される化合物、つまり、(Y(1-y)(1-x/3)Ca(1-y)x/3Ln(Al1-(1-y)x/5Zr(1-y)x/512の化学式で表される化合物(但し、x=0.5、y=0.02、前記Lnは、EuまたはTb。)としての、Eu3+またはTb3+のいずれか希土類イオンで付活したYAG系蛍光体とした。
 実施例1~6と同様に、固相反応によって化学量論的組成の化合物(Y0.98×2.5/3Ca0.98×0.5/3Eu0.02(Al1-0.98×0.5/5Zr0.98×0.5/512、または、(Y0.98×2.5/3Ca0.98×0.5/3Tb0.02(Al1-0.98×0.5/5Zr0.98×0.5/512となるように原料を秤量し、さらに微量の反応促進剤を用いた。
 実施例13および実施例14の具体的な秤量割合は表4に示す通りとした。
Figure JPOXMLDOC01-appb-T000004
 実施例1~6と同様にして、実施例13および実施例14のサンプルを作製した。
 実施例13および実施例14のYAG系蛍光体のXRDパターンも、図8中に(d)として示した実施例3のXRDパターンと同様なので図示は省略するが、実施例13および実施例14のYAG系蛍光体は、(Y(1-y)(1-x/3)Ca(1-y)x/3Ln(Al1-(1-y)x/5Zr(1-y)x/512の化学式で表される化合物(但し、Lnは、EuまたはTb。)の化学式で表され、ガーネットの結晶構造を有する化合物(Y,Ca,Ln)(Al,Zr)12であることを確認した。
 図13は、実施例13のYAG系蛍光体の、発光スペクトル24lと励起スペクトル25lとを、実施例1~6と同様にして評価した結果を示している。また、図14は、実施例14のYAG系蛍光体の、発光スペクトル24mと励起スペクトル25mとを、実施例1~6と同様にして評価した結果を示している。なお、図13および図14において、発光スペクトル測定時の励起波長と励起スペクトル測定時のモニタ波長を、各々、励起ピーク波長と発光ピーク波長とし、発光スペクトルと励起スペクトルのピークを100として規格化している。
 図13から判るように、実施例13の発光スペクトル24lは、赤色の波長領域内の617nm付近にピークを持つ形状であり、励起スペクトル25lは243nm付近にピークを持った。このことは、実施例13のYAG系蛍光体が、紫外線で励起されて、赤色の発光成分を放つYAG系蛍光体であることを示している。なお、Eu3+で付活した蛍光体に関わる先行技術文献の記載内容などから、図13中の、赤色の波長領域内に複数の発光ピークを持つ輝線状の発光はEu3+の発光であることは明らかである。
 一方、図14から判るように、実施例14の発光スペクトル24mは、緑色の波長領域内の546nm付近にピークを持つ形状であり、励起スペクトル25mは263nm付近にピークを持った。このことは、実施例14のYAG系蛍光体が、紫外線で励起されて、緑色の発光成分を放つYAG系蛍光体であることを示している。なお、Tb3+で付活した蛍光体に関わる先行技術文献の記載内容などから、図14中の、近紫外~紫~青~緑~赤色の波長領域内に複数の発光ピークを持つ輝線状の発光はTb3+の発光であることは明らかである。
 以上より、本発明にかかるYAG系蛍光体は、赤色あるいは緑色の光成分を放つものであることを確認することができた。
 (実施例15)
 実施例15の希土類アルミニウムガーネットタイプ蛍光体は、発光中心をCe3+以外の遷移金属イオンの、Mn2+とし、Y3-x(Ca1―yMnAl5-xZr12の組成式で表される化合物、つまり、(Y(1-x/3)(Ca1-yMnx/3(Al1-x/5Zrx/512の化学式で表される化合物(但し、x=0.5、y=0.01)としての、Mn2+で付活したYAG系蛍光体とした。
 実施例1~6と同様に、固相反応によって化学量論的組成の化合物(Y2.5/3(Ca0.99Mn0.010.5/3(Al4.5/5Zr0.5/512となるように原料を秤量し、さらに微量の反応促進剤を用いた。
 実施例15の具体的な秤量割合は表5に示す通りとした。
Figure JPOXMLDOC01-appb-T000005
 実施例1~6と同様にして、実施例15のサンプルを作製した。
 実施例15のYAG系蛍光体のXRDパターンも、図8中(d)として示した実施例3のXRDパターンと同様なので省略するが、実施例15のYAG系蛍光体は、(Y(1-x/3)(Ca1-yMnx/3(Al1-x/5Zrx/512の化学式で表され、ガーネットの結晶構造を有する化合物(Y,Ca,Mn)(Al,Zr)12であることを確認した。
 図15は、実施例15のYAG系蛍光体の、発光スペクトル24nと励起スペクトル25nを、実施例1~6と同様にして評価した結果を示している。なお、図15においても、発光スペクトル測定時の励起波長と励起スペクトル測定時のモニタ波長を、各々、励起ピーク波長と発光ピーク波長とし、発光スペクトルと励起スペクトルのピークを100として規格化している。
 図15から判るように、実施例15の発光スペクトル24nは、橙色の波長領域内の583nm付近にピークを持つ形状であり、励起スペクトル25nは228nm付近にピークを持った。このことは、実施例15のYAG系蛍光体が、紫外線で励起されて、橙色の発光成分を放つYAG系蛍光体であることを示している。なお、Mn2+で付活した蛍光体に関わる先行技術文献の記載内容などから、図15中の、橙色の波長領域内に発光ピークを持つスペクトル幅の広い発光はMn2+の発光であることは明らかである。
 以上より、本発明にかかるYAG系蛍光体は、橙色の光成分を放つものであることを確認することができた。
 (実施例16)
 実施例16の希土類アルミニウムガーネットタイプ蛍光体は、発光中心をCe3+とした実施例4のZrをHfで置き換え、0.98(Y3-xCaAl5-xHf12)・0.02CeAl12の組成式で表される化合物、つまり、(Y(1-y)(1-x/3)Ca(1-y)x/3Ce(Al1-(1-y)x/5Hf(1-y)x/512の化学式で表される化合物(但し、x=1.0、y=0.02)としての、YAG:Ce系蛍光体とした。
 実施例1~6と同様に、固相反応によって化学量論的組成の化合物(Y0.98×2.5/3Ca0.98×0.5/3Ce0.02(Al1-0.98×0.5/5Hf0.98×0.5/512となるように原料を秤量し、さらに微量の反応促進剤を用いた。
 実施例16の具体的な秤量割合は表6に示す通りとした。
Figure JPOXMLDOC01-appb-T000006
 焼成温度を1700℃とした以外は、実施例1~6と同様にして、実施例16のサンプルを作製した。
 その後、実施例1~6と同様にして、実施例16のYAG:CE系蛍光体の結晶構造を、X線回折装置を用いて評価した。
 図16は、実施例16と、図8で(f)として表した従来例2のXRDパターンを示している。図16において、(g)が実施例他16のXRDパターンを示し、(f)が従来例2のAl12のXRDパターン(PDF No.33-0040)を示している。
 図16に示した実施例16のXRDパターン(g)と、図8に示した比較例のXRDパターン(e)、および、比較例2のXRDパターン(f)とを比較して判るように、実施例16のYAG:Ce系蛍光体のXRDパターンは、比較例とした従来のYAG:Ce系蛍光体のXRDパターン、および、PDFに登録されているAl12のパターンと、パターン形状面での特徴が一致した。このことは、実施例16のYAG:Ce系蛍光体が、化合物YAl12と同じガーネット構造を有することを示している。
 このようにして、実施例16のYAG:Ce系蛍光体は、(Y(1-y)(1-x/3)Ca(1-y)x/3Ce(Al1-(1-y)x/5Hf(1-y)x/512の化学式で表され、ガーネットの結晶構造を有する化合物(Y,Ca,Ce)(Al,Hf)12であることを確認できた。つまり、先の実施例におけるZrをHfで置換しても、YAG系蛍光体を製造できることが判った。
 図17は、実施例16のYAG:Ce系蛍光体の、発光スペクトル24oと励起スペクトル25oとを、実施例1~6と同様にして評価した結果を示している。
 なお、図17においては、発光スペクトル測定時の励起波長と励起スペクトル測定時のモニタ波長を、各々、440nmと540nmとし、発光スペクトルと励起スペクトルのピークを100として規格化している。
 図17から判るように、実施例16の発光スペクトル24oは、緑色の波長領域内の536nm付近にピークを持つ形状であり、励起スペクトル25oは424nm付近にピークを持った。このことは、実施例16のYAG:Ce系蛍光体が、紫色光または青色光で励起されて、色調の良好な緑色の発光成分を放つYAG:Ce系蛍光体であることを示している。
 以上より、本発明にかかるYAG:Ce系蛍光体は、Zrの替わりにHfを用いることによっても、緑色の光成分を放つことが確認できた。
 (実施例17、18)
 実施例17および18の希土類アルミニウムガーネットタイプ蛍光体は、発光中心をCe3+とした実施例4のCaをMgまたはSrで置き換え、0.98(Y3-xAl5-xZr12)・0.02CeAl12の組成式で表される化合物(但し、Mは、MgまたはSr)、つまり、(Y(1-y)(1-x/3)(1-y)x/3Ce(Al1-(1-y)x/5Zr(1-y)x/512の化学式で表される化合物(但し、x=0.5、y=0.02、M=MgまたはSr)としての、YAG:Ce系蛍光体とした。
 実施例1~6と同様に、固相反応によって化学量論的組成の化合物(Y0.98×2.5/3Mg0.98×0.5/3Ce0.02(Al1-0.98×0.5/5Zr0.98×0.5/512、または、(Y0.98×2.5/3Sr0.98×0.5/3Ce0.02(Al1-0.98×0.5/5Zr0.98×0.5/512となるように原料を秤量し、さらに微量の反応促進剤を用いた。
 実施例17および18の具体的な秤量割合は表7に示す通りとした。
Figure JPOXMLDOC01-appb-T000007
 実施例1~6と同様にして、実施例17および18のサンプルを作製した。
 その後、実施例1~6と同様にして、実施例17および18のYAG:Ce系蛍光体の結晶構造を、X線回折装置を用いて評価した。
 図18は、実施例17および実施例18と、従来例2のXRDパターンを示している。
 図18において、(h)が実施例17のXRDパターンを示し、(i)が実施例19のXRDパターンを示している。参考のため、(f)として、従来例2Al12のパターン(PDF No.33-0040)を示した。
 図18において、実施例17のXRDパターン(h)、および実施例18のXRDパターン(i)と、従来例2のXRDパターン(f)とを比較して判るように、実施例17および実施例18のYAG:Ce系蛍光体のXRDパターンは、PDFに登録されている従来例2であるAl12のパターンと、パターン形状面での特徴がほぼ一致した。このことは、実施例17および実施例18のYAG:Ce系蛍光体が、化合物YAl12と同じガーネット構造を有することを示している。
 このようにして、実施例17および実施例18のYAG:Ce系蛍光体は、(Y(1-y)(1-x/3)Mg(1-y)x/3Ce(Al1-(1-y)x/5Zr(1-y)x/512、または、(Y(1-y)(1-x/3)Sr(1-y)x/3Ce(Al1-(1-y)x/5Zr(1-y)x/512の化学式で表され、ガーネットの結晶構造を有する化合物(Y,Mg,Ce)(Al,Zr)12または(Y,Sr,Ce)(Al,Zr)12であることを確認できた。つまり、先の実施例におけるCaをMgやSrで置換しても、YAG系蛍光体を製造できることが判った。
 図19は、実施例17のYAG:Ce系蛍光体の発光スペクトル24pと励起スペクトル25p、実施例18のYAG:Ce系蛍光体の発光スペクトル24qと励起スペクトル25q、および[表1]に示した比較例の発光スペクトル24eと励起スペクトル25eをまとめた図である。
 図19では、データは、発光スペクトル測定時の励起波長と励起スペクトル測定時のモニタ波長を、各々、440nmと540nmとし、発光スペクトルと励起スペクトルのピークを100として規格化している。
 図19に示すように、比較例のYAG:Ce系蛍光体(還元処理後)が、565nmと450nmに、各々、発光スペクトル24eと励起スペクトル24eのピークを持つのに対して、実施例17のYAG:Ce系蛍光体は、561nmと457nmに各々、発光スペクトル24pと励起スペクトル25pのピークを持ち、実施例18のYAG:Ce系蛍光体は、557nmと458nmに各々、発光スペクトル24qと励起スペクトル25qのピークを持った。
 このことは、実施例17および実施例18のYAG:Ce系蛍光体が、青色光で励起されて、色調の良好な緑色の発光成分を放つYAG:Ce系蛍光体であることを示すとともに、従来のYAG:Ce系蛍光体を構成するYとAlの元素組み合わせを、Ca以外のアルカリ土類金属のMgあるいはSrとZrの元素組み合わせに部分置換することによっても、発光スペクトルピークと励起スペクトルピークの短波長側への移動ができることを示している。
 以上より、本発明にかかるYAG:Ce系蛍光体は、Caの替わりにMgあるいはSrを用いることによっても、Caを用いて置換した場合と同様の効果があることを確認することができた。
 (実施例19、20)
 実施例19および20の希土類アルミニウムガーネットタイプ蛍光体は、発光中心をCe3+とした実施例6のYの全部または半数をLaで置き換え、0.98(Ln3-xCaAl5-xZr12)・0.02CeAl12の組成式で表される化合物(但し、Lnは、LaまたはY0.5La0.5である。)、つまり、(La(1-y)(1-x/3)Ca(1-y)x/3Ce(Al1-(1-y)x/5Zr(1-y)x/512、((Y0.5La0.5)(1-y)(1-x/3)Ca(1-y)x/3Ce(Al1-(1-y)x/5Zr(1-y)x/512の化学式で表される化合物(但し、x=2、y=0.02)としての、希土類アルミニウムガーネットタイプCe系蛍光体とした。
 実施例7~11と同様に、固相反応によって化学量論的組成の化合物(La0.98×2.5/3Ca0.98×0.5/3Ce0.02(Al1-0.98×0.5/5Zr0.98×0.5/512、または、((Y0.5La0.5)0.98×2.5/3Ca0.98×0.5/3Ce0.02(Al1-0.98×0.5/5Zr0.98×0.5/512となるように原料を秤量し、さらに微量の反応促進剤を用いた。
 実施例19および20の具体的な秤量割合は表8に示す通りとした。
Figure JPOXMLDOC01-appb-T000008
 実施例7~11と同様にして、実施例19および20のサンプルを作製した。
 その後、実施例7~11と同様にして、実施例19および20の希土類アルミニウムガーネットタイプCe系蛍光体の結晶構造を、X線回折装置を用いて評価した。
 図20おいて、(j)が実施例19のXRDパターンである。また、参考のために、従来例2であるAl12のパターン(PDF No.33-0040)を(f)として示した。なお、実施例20のXRDパターンは、実施例19のパターンと同様のパターンであったため図示を省略した。
 図20において、実施例19および実施例20のXRDパターン(j)と、従来例2のXRDパターン(f)とを比較して判るように、実施例19および実施例20の希土類アルミニウムガーネットタイプCe系蛍光体のXRDパターンは、PDFに登録されている従来例2Al12のXRDパターンと、パターン形状面での特徴がほぼ一致した。このことは、実施例19および実施例20の希土類アルミニウムガーネットタイプCe系蛍光体が、化合物YAl12と同じガーネット構造を有することを示している。
 このようにして、実施例19および実施例20の希土類アルミニウムガーネットタイプCe系蛍光体は、(La(1-y)(1-x/3)Ca(1-y)x/3Ce(Al1-(1-y)x/5Zr(1-y)x/512、または、((Y0.5La0.5)(1-y)(1-x/3)Ca(1-y)x/3Ce(Al1-(1-y)x/5Zr(1-y)x/512の化学式で表され、ガーネットの結晶構造を有する化合物(La,Ce)CaZrAl12または((Y0.5La0.5),Ce)CaZrAl12であることを確認できた。つまり、先の実施例1~18におけるYの一部または全部をLaで置換した、希土類アルミニウムガーネットタイプ蛍光体も製造できることが判った。
 図21は、実施例19および実施例20の希土類アルミニウムガーネットタイプCe系蛍光体の、発光スペクトル24と励起スペクトル25を、実施例1~6と同様にして評価した結果をまとめたものである。なお、図21において、発光スペクトル24rと励起スペクトル25rが実施例19のデータ、発光スペクトル24sと励起スペクトル25sが実施例20のデータである。また、図21には、比較のために、表1において比較例として示した従来のYAG:Ce系蛍光体を還元処理したサンプルのデータを発光スペクトル24eと励起スペクトル25eとして示した。
 図21では、データは、発光スペクトル測定時の励起波長と励起スペクトル測定時のモニタ波長を、各々、励起ピーク波長と発光ピーク波長とし、発光スペクトルと励起スペクトルのピークを100として規格化している。
 図21に示すように、比較例である従来のYAG:Ce系蛍光体(還元処理後)が、565nmと450nmに、各々、発光スペクトル24eと励起スペクトル25eのピークを持つのに対して、実施例19の希土類アルミニウムガーネットタイプCe系蛍光体は、532nmと418nmに各々、発光スペクトル24rと励起スペクトル25rのピークを持ち、実施例20の希土類アルミニウムガーネットタイプCe系蛍光体は、509nmと415nmに各々、発光スペクトル24sと励起スペクトル25sのピークを持った。
 このことは、実施例19および実施例20の希土類アルミニウムガーネットタイプCe系蛍光体が、青色光で励起されて、青緑色または色調の良好な緑色の発光成分を放つ希土類アルミニウムガーネットタイプCe系蛍光体であることを示すとともに、従来のYAG:Ce系蛍光体を構成するYとAlの元素組み合わせを、LaおよびCaとZrの元素組み合わせに部分置換することによっても、発光スペクトルピークと励起スペクトルピークの短波長側への移動ができることを示している。
 以上より、本発明にかかる希土類アルミニウムガーネットタイプCe系蛍光体は、Yの替わりにLaを用いることによっても、Yが用いられたYAG:Ce系蛍光体の場合と同様の効果を認めることができた。
 (実施例21、22)
 実施例21の希土類アルミニウムガーネットタイプ蛍光体は、Ce3+とTb3+とを共付活した(Ln1-y―zCeTbz13-xCaAl5-xZr12の化学式で表される化合物(但し、LnはY、x=2、y=z1=0.05、)としての、希土類アルミニウムガーネットタイプCe系蛍光体とした。
 また、実施例22の希土類アルミニウムガーネットタイプ蛍光体は、Ce3+とMn2+とを共付活した(Ln1-yCe3-x(Ca1-aMnz2Al5-xZr12の化学式で表される化合物(但し、LnはY、x=2、y=0.06、z2=0.05)としての、希土類アルミニウムガーネットタイプCe系蛍光体とした。
 実施例7~11と同様に、固相反応によって化学量論的組成の化合物(Y0.90Ce0.05Tb0.05)CaAlZr12、または、(Y0.94Ce0.06)(Ca0.95Mn0.05AlZr12となるように原料を秤量し、さらに微量の反応促進剤を用いた。
 実施例21と実施例22の具体的な秤量割合は、各々、表9と表10に示す通りとした。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
 実施例7~11と同様にして、実施例21および実施例22のサンプルを作製した。
 実施例21および実施例22のYAG:Ce系蛍光体のXRDパターンは、図8中に(a)として示した実施例6のパターンと同様なので省略するが、実施例21および実施例22のYAG:Ce系蛍光体は、ガーネットの結晶構造を有する化合物(Y,Ca,Ce,Tb)(Al,Zr)12、または(Y,Ca,Ce,Mn)(Al,Zr)12であることが確認できた。
 図22と図23は、各々、実施例21と実施例22の希土類アルミニウムガーネットタイプCe系蛍光体の、発光スペクトル24と励起スペクトル25を、実施例1~6と同様にして評価した結果をまとめたものである。
 図22および図23では、データは、いずれも、発光スペクトル測定時の励起波長と励起スペクトル測定時のモニタ波長を、各々、励起ピーク波長と発光ピーク波長とし、発光スペクトルと励起スペクトルのピークを100として規格化している。
 図22に示すように、実施例21の希土類アルミニウムガーネットタイプCe系蛍光体は、495nm、546nm、585nm付近、および、625nm付近の少なくとも四箇所に発光スペクトル24tのピーク成分を持ち、410nmに励起スペクトル25tのピークを持った。
 なお、文献記載内容などから、495nmのピークは、Ce3+の5d→4f電子エネルギー遷移に基づく発光と、Tb3+の4f電子の電子エネルギー遷移に基づく発光とが重なった発光であり、546nm、585nm付近、および625nm付近のピークは、各々、Tb3+の4f電子の、、および電子エネルギー遷移に基づく発光であるといえる。
 また、図23に示すように、実施例22の希土類アルミニウムガーネットタイプCe系蛍光体は、497nmおよび572nm付近の少なくとも二箇所に発光スペクトル24uのピーク成分を持ち、412nmに励起スペクトル25uのピークを持った。
 なお、文献記載内容などから、497nmのピークは、Ce3+の5d→4f電子エネルギー遷移に基づく発光であり、572nm付近のピークは、Mn2+の3d電子エネルギー遷移に基づく発光であるといえる。
 これらのことは、実施例21および実施例22の希土類アルミニウムガーネットタイプCe系蛍光体が、各々、Ce3+とTb3+で共付活された蛍光体、および、Ce3+とMn2+で共付活された蛍光体であることを示すともに、紫色光または青色光で励起されて、各々、青緑色と緑色(と橙色と赤色)、および、青緑色と黄色の発光成分を放つ希土類アルミニウムガーネットタイプCe系蛍光体であることを示している。
 以上より、本発明にかかる希土類アルミニウムガーネットタイプCe系蛍光体は、実施例12で示したCe3+とPr3+で共付活したYAG:Ce系蛍光体だけでなく、Ce3+とTb3+、あるいはCe3+とMn2+で共付活した蛍光体など、いくつかの種類の共付活蛍光体として実現できることが明らかとなった。
 なお、Ce3+と共付活剤(Tb3+やMn2+など)との付活割合を変えることによって、これらの発光強度割合を変えることができ、発光の色調を変えることができる。このような特性は、特に白色LED照明光源の特性改善に有効なものとなる。
 (実施例23~25)
 実施例23の希土類アルミニウムガーネットタイプ蛍光体は、Ce3+を付活した(Ln1-y―zCe3-xCaAl5-xZr12の化学式で表される化合物(但し、LnはLu、x=2、y=0.06)としての、希土類アルミニウムガーネットタイプCe系蛍光体とした。
 また、実施例24の希土類アルミニウムガーネットタイプ蛍光体は、Ce3+を付活した(Ln1-yCe3-xCa(Al1-zGa5-xZr12の化学式で表される化合物(但し、LnはY、x=1、y=0.03、z=0.25)としての、希土類アルミニウムガーネットタイプCe系蛍光体とした。
 さらに、実施例25の希土類アルミニウムガーネットタイプ蛍光体は、Ce3+を付活した(Ln1-yCe3-xCa(Al1-zSc5-xZr12の化学式で表される化合物(但し、LnはY、x=1、y=0.03、z=0.25)としての、希土類アルミニウムガーネットタイプCe系蛍光体とした。
 実施例7~11と同様に、固相反応によって化学量論的組成の化合物(Lu0.94Ce0.06)CaAlZr12、(Y0.97Ce0.03CaAlGaZrO12、または、(Y0.97Ce0.03CaAlScZrO12となるように原料を秤量し、さらに微量の反応促進剤を用いた。
 実施例23、実施例24、および、実施例25の具体的な秤量割合は、各々、表11、表12、および、表13に示す通りとした。
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
 実施例7~11と同様にして、実施例23~25のサンプルを作製した。
 実施例23、実施例24、および、実施例25のLuAG:Ce系およびYAG:Ce系蛍光体のXRDパターンを、図24にまとめて示す。
 図24(k)が実施例23のXRDパターン、図24(l)が実施例24のXRDパターン、図24(m)が実施例25のXRDパターンである。
 図24(k)~(m)に示す実施例23~25のXRDパターンは、いずれも、図8(a)に示す実施例6のXRDパターン等と類似した。
 このことは、実施例23~25のLuAG:Ce系あるいはYAG:Ce系蛍光体は、実施例6のYAG:Ce系蛍光体と同様のガーネットの結晶構造を有する化合物であることを示している。
 また、図24(l)と図24(m)として示す、実施例24と実施例25のXRDパターンと、図8(c)に示す実施例4のXRDパターンとの対比から、実施例4において示唆された、ガーネット構造を有する二種類の化合物の混合物の形成が、蛍光体を構成するAl3+の一部を、Al3+よりもイオン半径が大きい3価のイオン(例えば、Ga3+またはSc3+から選ばれる少なくとも一つのイオン)で置換することによって緩和されて、ガーネットの結晶構造を持つ単一結晶相の化合物になることも判った。
 このようにして、実施例23、実施例24、および、実施例25のLuAG:Ce系蛍光体あるいはYAG:Ce系蛍光体は、ガーネットの結晶構造を有する化合物(Lu,Ca,Ce)(Al,Zr)12、(Y,Ca,Ce)(Al,Ga,Zr)12、または、(Y,Ca,Ce)(Al,Sc,Zr)12であることが確認できた。
 図25は、実施例23~25の希土類アルミニウムガーネットタイプCe系蛍光体の、発光スペクトル24と励起スペクトル25を、実施例1~6と同様にして評価した結果をまとめたものである。なお、図25において、発光スペクトル24vと励起スペクトル25vが実施例23のデータ、発光スペクトル24wと励起スペクトル25wが実施例24のデータ、発光スペクトル24xと励起スペクトル25xが実施例25のデータである。
 なお図25でも、データは、いずれも発光スペクトル測定時の励起波長と励起スペクトル測定時のモニタ波長を、各々励起ピーク波長と発光ピーク波長とし、発光スペクトルと励起スペクトルのピークを100として規格化している。
 図25に示すように、実施例23の希土類アルミニウムガーネットタイプCe系蛍光体は、490nm付近に発光スペクトル24vのピーク成分を持ち、400nmに励起スペクトル25vのピークを持った。また、実施例24の希土類アルミニウムガーネットタイプCe系蛍光体は、520nm付近に発光スペクトル24wのピーク成分を持ち、410nmに励起スペクトル25wのピークを持った。さらに、実施例25の希土類アルミニウムガーネットタイプCe系蛍光体は、530nm付近に発光スペクトル24xのピーク成分を持ち、425nmに励起スペクトル25xのピークを持った。
 なお、文献記載内容などから、いずれのピークも、Ce3+の5d→4f電子エネルギー遷移に基づく発光であるといえる。
 これらのことは、実施例23~25の希土類アルミニウムガーネットタイプCe系蛍光体が、Ce3+で付活された蛍光体であることを示すともに、紫色光または青色光で励起されて緑青~緑色の発光成分を放つ希土類アルミニウムガーネットタイプCe系蛍光体であることを示している。
 以上の実施例1~25より、本発明にかかる希土類アルミニウムガーネットタイプ蛍光体は、組成や発光中心の種類の面で様々な変形例、特に、ガーネット化合物同士の固溶体など、を取り得ることは明らかである。
 本発明は、蛍光を放つイオンを含み、希土類元素とアルミニウムと酸素を含むガーネット構造を構成する化合物であり、組成の面で、前記化合物を構成する希土類元素とアルミニウムの元素組み合わせが、アルカリ土類金属とジルコニウム(Zr)、または、アルカリ土類金属とハフニウム(Hf)のいずれかの元素組み合わせに部分的に置換されていることを特徴とするものであればよく、上記実施例に限定されるものではない。
 以上説明したように、本発明によれば、希少かつ高価な原料を多用する組成物にすることなく、広範囲の波長の放出光を放出できる新規な蛍光体を提供できる。また、この蛍光体を用いることで、高演色性を有し、かつ、製造コストが低減できる各種の発光装置として、照明光源や発光光源への応用やこれらを用いた電子機器として有用である。

Claims (10)

  1.  蛍光を放つイオンを含み、
     希土類元素とアルミニウムと酸素を含むガーネット構造を構成する化合物であり、
     組成の面で、前記化合物を構成する希土類元素とアルミニウムの元素組み合わせが、アルカリ土類金属とジルコニウム(Zr)、または、アルカリ土類金属とハフニウム(Hf)のいずれかの元素組み合わせに部分的に置換されていることを特徴とする希土類アルミニウムガーネットタイプ蛍光体。
  2.  前記希土類元素がイットリウム、ランタン、または、ルテチウムであり、
     イットリウムアルミニウムガーネットタイプ、ランタンアルミニウムガーネットタイプ、または、ルテチウムアルミニウムガーネットタイプのいずれかのタイプに属する化合物である請求項1に記載の希土類アルミニウムガーネットタイプ蛍光体。
  3.  部分的に置換されたアルカリ土類金属の総原子数は、ガーネットの結晶構造の前記化合物を構成する陰イオン12個に対して、0.1個を越え2.0個以下である請求項1または2に記載の希土類アルミニウムガーネットタイプ蛍光体。
  4.  蛍光を放つイオンを含むLn3-xAl5-x12の化学式で表される化合物であり、前記Lnはイットリウム(Y)、ランタン(La)、または、ルテチウム(Lu)のいずれかを少なくとも含む希土類、前記Mはアルカリ土類金属、前記Xはジルコニウム(Zr)またはハフニウム(Hf)から選ばれる少なくとも一つの遷移金属、前記xは0<x≦2を満足する数値である請求項2に記載の希土類アルミニウムガーネットタイプ蛍光体。
  5.  前記アルカリ土類金属は、少なくともカルシウム(Ca)を含む請求項1~4のいずれかに記載の希土類アルミニウムガーネットタイプ蛍光体。
  6.  Y3-xCaAl5-xZr12、Y3-xCaAl5-xHf12、La3-xCaAl5-xZr12、または、Lu3-xCaAl5-xZr12、のいずれかの化学式で表される化合物であり、前記xは、0<x≦2を満足する数値である請求項4に記載の希土類アルミニウムガーネットタイプ蛍光体。
  7.  前記蛍光を放つイオンは、Ce3+である請求項1~4のいずれかに記載の希土類アルミニウムガーネットタイプ蛍光体。
  8.  前記蛍光を放つイオンは、さらに、Pr3+、Tb3+およびMn2+から選ばれる少なくとも一つのイオンを含む請求項7に記載の希土類アルミニウムガーネットタイプ蛍光。
  9.  蛍光体と、前記蛍光体に照射される一次光を生成する光源とを備え、
     前記蛍光体として請求項1~4のいずれかに記載の希土類アルミニウムガーネットタイプ蛍光体が用いられ、前記一次光を長波長の光に波長変換して放出することを特徴とする発光装置。
  10.  前記一次光を生成する光源として400nm~480nmの波長範囲内に発光ピークを有する半導体固体発光素子を用い、485nm以上の領域に発光ピークを有する放出光を放出する請求項9に記載の発光装置。
PCT/JP2012/001705 2011-07-05 2012-03-12 希土類アルミニウムガーネットタイプ蛍光体およびこれを用いた発光装置 WO2013005356A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012527144A JP5672619B2 (ja) 2011-07-05 2012-03-12 希土類アルミニウムガーネットタイプ蛍光体およびこれを用いた発光装置
EP12807859.9A EP2730637B1 (en) 2011-07-05 2012-03-12 Rare-earth aluminum garnet type fluorescent substance and light-emitting device obtained using same
KR1020147001243A KR20140043123A (ko) 2011-07-05 2012-03-12 희토류 알루미늄 가닛 타입 형광체 및 이를 이용한 발광 장치
CN201280033563.XA CN103703102B (zh) 2011-07-05 2012-03-12 稀土类铝石榴石型荧光体以及使用了该荧光体的发光装置
US14/143,961 US8957575B2 (en) 2011-07-05 2013-12-30 Rare earth aluminum garnet type phosphor and light-emitting device using the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011148912 2011-07-05
JP2011-148912 2011-07-05
JP2011-228087 2011-10-17
JP2011228087 2011-10-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/143,961 Continuation US8957575B2 (en) 2011-07-05 2013-12-30 Rare earth aluminum garnet type phosphor and light-emitting device using the same

Publications (1)

Publication Number Publication Date
WO2013005356A1 true WO2013005356A1 (ja) 2013-01-10

Family

ID=47436724

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/001705 WO2013005356A1 (ja) 2011-07-05 2012-03-12 希土類アルミニウムガーネットタイプ蛍光体およびこれを用いた発光装置

Country Status (6)

Country Link
US (1) US8957575B2 (ja)
EP (1) EP2730637B1 (ja)
JP (1) JP5672619B2 (ja)
KR (1) KR20140043123A (ja)
CN (1) CN103703102B (ja)
WO (1) WO2013005356A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014097527A1 (ja) * 2012-12-20 2014-06-26 パナソニック株式会社 希土類アルミニウムガーネットタイプ無機酸化物、蛍光体及びこれを用いた発光装置
WO2014136407A1 (ja) * 2013-03-08 2014-09-12 パナソニック株式会社 希土類アルミニウムガーネットタイプ無機酸化物、蛍光体及びこれを用いた発光装置
JP2015111263A (ja) * 2013-11-29 2015-06-18 エルジー ディスプレイ カンパニー リミテッド 車両のダッシュボード用液晶表示素子
JP2015115506A (ja) * 2013-12-12 2015-06-22 パナソニックIpマネジメント株式会社 照明光源
JPWO2015045260A1 (ja) * 2013-09-30 2017-03-09 パナソニックIpマネジメント株式会社 蛍光体及びこれを用いた発光装置、照明光源、照明装置
JP2017521524A (ja) * 2014-10-15 2017-08-03 有研稀土新材料股▲フン▼有限公司 柘榴石型蛍光粉と調製方法及びこの蛍光粉を含有する装置
US10892839B2 (en) 2016-05-19 2021-01-12 Siemens Aktiengsellschaft Method for fast reconfiguration of GM clocks in the TSN network by means of an explicit teardown message
CN115322784A (zh) * 2022-06-01 2022-11-11 中国科学院上海硅酸盐研究所 一种八面体格位掺杂改善铝镓酸钆闪烁材料及其制备方法和应用

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9871176B2 (en) 2015-02-02 2018-01-16 Ferro Corporation Glass compositions and glass frit composites for use in optical applications
CN109642157A (zh) * 2016-08-29 2019-04-16 松下知识产权经营株式会社 荧光体以及发光装置
JP6863071B2 (ja) * 2017-05-19 2021-04-21 日亜化学工業株式会社 希土類アルミニウム・ガリウム酸塩の組成を有する蛍光体及び発光装置
US11566175B2 (en) * 2017-06-06 2023-01-31 Panasonic Intellectual Property Management Co., Ltd. Wavelength converter and method for producing thereof, and light emitting device using the wavelength converter
CN107721161A (zh) * 2017-10-31 2018-02-23 上海应用技术大学 一种应用于led封装的绿色荧光玻璃及其制备方法
KR102086821B1 (ko) * 2018-07-27 2020-03-09 세종대학교산학협력단 Led용 지르콘네이트 형광체, 이의 제조방법, 및 이의 발광 특성
CN109437900A (zh) * 2018-12-12 2019-03-08 中国科学院宁波材料技术与工程研究所 一种荧光陶瓷块体、制备方法及其在激光照明中的应用
US11326099B2 (en) * 2019-10-30 2022-05-10 GE Precision Healthcare LLC Ceramic scintillator based on cubic garnet compositions for positron emission tomography (PET)
CN111072384A (zh) * 2019-12-27 2020-04-28 中国科学院上海硅酸盐研究所 一种紫外激发荧光陶瓷及其制备方法
CN111995397A (zh) * 2020-08-14 2020-11-27 中国科学院宁波材料技术与工程研究所 一种荧光陶瓷及其制备方法与应用
CN111908910B (zh) * 2020-08-18 2022-04-22 新沂市锡沂高新材料产业技术研究院有限公司 一种暖白光照明用高显指透明陶瓷及其制备方法
KR102584281B1 (ko) * 2021-09-03 2023-10-04 세종대학교산학협력단 Dy가 도핑된 가넷 결정 구조를 갖는 형광체
KR102619834B1 (ko) * 2021-09-03 2024-01-02 세종대학교산학협력단 Sm이 도핑된 주황색 발광 산화물 형광체
WO2023039357A1 (en) * 2021-09-10 2023-03-16 Heraeus Conamic North America Llc Uv-activated red ceramic bodies comprising yag for use in semiconductor processing chambers
CN114149259A (zh) * 2021-11-24 2022-03-08 海南钇坤智能科技有限公司 一种抑制离子转变的激光陶瓷材料

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001192655A (ja) 1999-10-27 2001-07-17 Patent Treuhand Ges Elektr Gluehlamp Mbh 光源用の発光物質及び該発光物質を含む光源
JP2003505582A (ja) 1999-07-23 2003-02-12 パテント−トロイハント−ゲゼルシヤフト フユール エレクトリツシエ グリユーラムペン ミツト ベシユレンクテル ハフツング 光源用発光物質および発光物質を有する光源
JP3503139B2 (ja) 1996-07-29 2004-03-02 日亜化学工業株式会社 発光装置と表示装置
US6812500B2 (en) 1996-06-26 2004-11-02 Osram Opto Semiconductors Gmbh & Co. Ohg. Light-radiating semiconductor component with a luminescence conversion element
JP2006104049A (ja) * 2004-09-08 2006-04-20 Shin Etsu Chem Co Ltd ジルコニウム又はハフニウム及びマンガン含有酸化物
WO2006049284A1 (ja) * 2004-11-08 2006-05-11 Tohoku Techno Arch Co., Ltd. Prを含むシンチレータ用単結晶及びその製造方法並びに放射線検出器及び検査装置
JP2006520836A (ja) 2003-03-17 2006-09-14 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 放射源及び蛍光物質を有する照明システム
JP2007515527A (ja) 2003-12-22 2007-06-14 パテント−トロイハント−ゲゼルシヤフト フユール エレクトリツシエ グリユーラムペン ミツト ベシユレンクテル ハフツング 蛍光体及びかかる蛍光体を有する光源
JP2007145705A (ja) * 2005-11-07 2007-06-14 Hitachi Metals Ltd 多結晶セラミック磁性体材料、マイクロ波磁性体、及びこれを用いた非可逆回路素子
JP2007169647A (ja) * 2005-12-22 2007-07-05 General Electric Co <Ge> シンチレータ物質及びシンチレータ物質を含む放射線検出器
JP4032682B2 (ja) 2001-08-28 2008-01-16 三菱化学株式会社 蛍光体
WO2009041297A1 (ja) * 2007-09-25 2009-04-02 Kabushiki Kaisha Toshiba 蛍光体およびそれを用いたledランプ
JP4263453B2 (ja) 2002-09-25 2009-05-13 パナソニック株式会社 無機酸化物及びこれを用いた発光装置
JP2009185276A (ja) 2008-02-01 2009-08-20 Samsung Sdi Co Ltd プラズマディスプレイパネル用緑色蛍光体およびこれを含むプラズマディスプレイパネル
JP2009544791A (ja) * 2006-07-26 2009-12-17 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 少なくとも一つのマルチサイト元素を含有するyagベースのセラミックガーネット材料
WO2010043287A1 (de) 2008-10-13 2010-04-22 Merck Patent Gmbh Dotierte granat-leuchtstoffe mit rotverschiebung für pcleds
CN101760197A (zh) * 2009-10-27 2010-06-30 李�瑞 一种白光led用黄色荧光粉及其制备方法
JP2011013320A (ja) 2009-06-30 2011-01-20 Casio Computer Co Ltd 光源装置及びプロジェクタ

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6552487B1 (en) 1999-10-27 2003-04-22 Patent-Treuhand-Gesellschaft Fuer Elektrische Gluehlampen Mbh Phosphor for light sources, and associated light source
US7189340B2 (en) 2004-02-12 2007-03-13 Mitsubishi Chemical Corporation Phosphor, light emitting device using phosphor, and display and lighting system using light emitting device
US6869544B2 (en) * 2001-12-14 2005-03-22 National Cheng Kung University Process for producing nanoscale yttrium aluminum garnet (YAG) fluorescent powders
CN1318540C (zh) * 2002-09-13 2007-05-30 北京有色金属研究总院<Del/> 一种蓝光激发的白色led用荧光粉及其制造方法
CN101084329A (zh) * 2004-11-08 2007-12-05 东北泰克诺亚奇股份有限公司 含Pr的闪烁体用单晶及其制造方法和放射线检测器以及检查装置
WO2006106883A1 (ja) * 2005-03-31 2006-10-12 Dowa Electronics Materials Co., Ltd. 蛍光体、蛍光体シートおよびその製造方法、並びに当該蛍光体を用いた発光装置

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6812500B2 (en) 1996-06-26 2004-11-02 Osram Opto Semiconductors Gmbh & Co. Ohg. Light-radiating semiconductor component with a luminescence conversion element
JP3503139B2 (ja) 1996-07-29 2004-03-02 日亜化学工業株式会社 発光装置と表示装置
JP2003505582A (ja) 1999-07-23 2003-02-12 パテント−トロイハント−ゲゼルシヤフト フユール エレクトリツシエ グリユーラムペン ミツト ベシユレンクテル ハフツング 光源用発光物質および発光物質を有する光源
JP2001192655A (ja) 1999-10-27 2001-07-17 Patent Treuhand Ges Elektr Gluehlamp Mbh 光源用の発光物質及び該発光物質を含む光源
JP4032682B2 (ja) 2001-08-28 2008-01-16 三菱化学株式会社 蛍光体
JP4263453B2 (ja) 2002-09-25 2009-05-13 パナソニック株式会社 無機酸化物及びこれを用いた発光装置
JP2006520836A (ja) 2003-03-17 2006-09-14 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 放射源及び蛍光物質を有する照明システム
JP2007515527A (ja) 2003-12-22 2007-06-14 パテント−トロイハント−ゲゼルシヤフト フユール エレクトリツシエ グリユーラムペン ミツト ベシユレンクテル ハフツング 蛍光体及びかかる蛍光体を有する光源
JP2006104049A (ja) * 2004-09-08 2006-04-20 Shin Etsu Chem Co Ltd ジルコニウム又はハフニウム及びマンガン含有酸化物
WO2006049284A1 (ja) * 2004-11-08 2006-05-11 Tohoku Techno Arch Co., Ltd. Prを含むシンチレータ用単結晶及びその製造方法並びに放射線検出器及び検査装置
JP2007145705A (ja) * 2005-11-07 2007-06-14 Hitachi Metals Ltd 多結晶セラミック磁性体材料、マイクロ波磁性体、及びこれを用いた非可逆回路素子
JP2007169647A (ja) * 2005-12-22 2007-07-05 General Electric Co <Ge> シンチレータ物質及びシンチレータ物質を含む放射線検出器
JP2009544791A (ja) * 2006-07-26 2009-12-17 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 少なくとも一つのマルチサイト元素を含有するyagベースのセラミックガーネット材料
WO2009041297A1 (ja) * 2007-09-25 2009-04-02 Kabushiki Kaisha Toshiba 蛍光体およびそれを用いたledランプ
JP2009185276A (ja) 2008-02-01 2009-08-20 Samsung Sdi Co Ltd プラズマディスプレイパネル用緑色蛍光体およびこれを含むプラズマディスプレイパネル
WO2010043287A1 (de) 2008-10-13 2010-04-22 Merck Patent Gmbh Dotierte granat-leuchtstoffe mit rotverschiebung für pcleds
JP2011013320A (ja) 2009-06-30 2011-01-20 Casio Computer Co Ltd 光源装置及びプロジェクタ
CN101760197A (zh) * 2009-10-27 2010-06-30 李�瑞 一种白光led用黄色荧光粉及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Phosphor Handbook", vol. 12, OHMSHA, LTD., article "Phosphor Research Society", pages: 237 - 238,268-
F. S. GALASSO; MASANORI KATO; KEIZO UEMATSU: "Fine Ceramics no Kessho Kagaku", AGNE GIJYUTSU CENTER INC., pages: 277 - 284
See also references of EP2730637A4

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150344775A1 (en) * 2012-12-20 2015-12-03 Panasonic Intellectual Property Management Co., Ltd. Rare earth aluminum garnet-type inorganic oxide, phosphor and light-emitting device using same
US9732271B2 (en) 2012-12-20 2017-08-15 Panasonic Intellectual Property Management Co., Ltd. Rare earth aluminum garnet-type inorganic oxide, phosphor and light-emitting device using same
WO2014097527A1 (ja) * 2012-12-20 2014-06-26 パナソニック株式会社 希土類アルミニウムガーネットタイプ無機酸化物、蛍光体及びこれを用いた発光装置
JPWO2014136407A1 (ja) * 2013-03-08 2017-02-09 パナソニックIpマネジメント株式会社 希土類アルミニウムガーネットタイプ無機酸化物、蛍光体及びこれを用いた発光装置
CN104968763A (zh) * 2013-03-08 2015-10-07 松下知识产权经营株式会社 稀土类铝石榴石型无机氧化物、荧光体以及使用了该荧光体的发光装置
JP6008307B2 (ja) * 2013-03-08 2016-10-19 パナソニックIpマネジメント株式会社 希土類アルミニウムガーネットタイプ無機酸化物、蛍光体及びこれを用いた発光装置
CN104968763B (zh) * 2013-03-08 2016-12-21 松下知识产权经营株式会社 稀土类铝石榴石型无机氧化物、荧光体以及使用了该荧光体的发光装置
WO2014136407A1 (ja) * 2013-03-08 2014-09-12 パナソニック株式会社 希土類アルミニウムガーネットタイプ無機酸化物、蛍光体及びこれを用いた発光装置
US9976080B2 (en) 2013-03-08 2018-05-22 Panasonic Intellectual Property Management Co., Ltd. Rare earth aluminum garnet-type inorganic oxide, phosphor and light-emitting device using same
JPWO2015045260A1 (ja) * 2013-09-30 2017-03-09 パナソニックIpマネジメント株式会社 蛍光体及びこれを用いた発光装置、照明光源、照明装置
US9840666B2 (en) 2013-09-30 2017-12-12 Panasonic Intellectual Property Management Co., Ltd. Phosphor having inorganic oxide with cerium and terbium activators, light-emitting device illumination light source, and illumination device using same
JP2015111263A (ja) * 2013-11-29 2015-06-18 エルジー ディスプレイ カンパニー リミテッド 車両のダッシュボード用液晶表示素子
JP2015115506A (ja) * 2013-12-12 2015-06-22 パナソニックIpマネジメント株式会社 照明光源
JP2017521524A (ja) * 2014-10-15 2017-08-03 有研稀土新材料股▲フン▼有限公司 柘榴石型蛍光粉と調製方法及びこの蛍光粉を含有する装置
US10892839B2 (en) 2016-05-19 2021-01-12 Siemens Aktiengsellschaft Method for fast reconfiguration of GM clocks in the TSN network by means of an explicit teardown message
CN115322784A (zh) * 2022-06-01 2022-11-11 中国科学院上海硅酸盐研究所 一种八面体格位掺杂改善铝镓酸钆闪烁材料及其制备方法和应用

Also Published As

Publication number Publication date
EP2730637A4 (en) 2014-12-03
US8957575B2 (en) 2015-02-17
JP5672619B2 (ja) 2015-02-18
KR20140043123A (ko) 2014-04-08
CN103703102B (zh) 2015-09-30
US20140152173A1 (en) 2014-06-05
EP2730637A1 (en) 2014-05-14
JPWO2013005356A1 (ja) 2015-02-23
EP2730637B1 (en) 2017-06-14
CN103703102A (zh) 2014-04-02

Similar Documents

Publication Publication Date Title
JP5672619B2 (ja) 希土類アルミニウムガーネットタイプ蛍光体およびこれを用いた発光装置
JP6372764B2 (ja) 発光装置
JP4733535B2 (ja) 酸窒化物蛍光体、酸窒化物蛍光体の製造方法、半導体発光装置、発光装置、光源、照明装置、及び画像表示装置
JP2006213910A (ja) 酸窒化物蛍光体及び発光装置
JP2005048105A (ja) 蛍光体組成物およびそれを用いた発光装置
WO2018008282A1 (ja) 蛍光体を用いた発光装置
JP2005336450A (ja) 蛍光体組成物とその製造方法、並びにその蛍光体組成物を用いた発光装置
JP2013028667A (ja) イットリウムアルミニウムガーネットタイプの蛍光体とこれを用いた発光装置
JP6008307B2 (ja) 希土類アルミニウムガーネットタイプ無機酸化物、蛍光体及びこれを用いた発光装置
JP2014210684A (ja) アルミニウムガーネットタイプ無機酸化物、蛍光体及びこれを用いた発光装置
CN108603112B (zh) 荧光体和发光装置
CN110730762A (zh) 石榴石硅酸盐、石榴石硅酸盐荧光体以及使用了石榴石硅酸盐荧光体的波长转换体和发光装置
WO2015029284A1 (ja) 蛍光体及びこれを用いた発光装置
WO2015045260A1 (ja) 蛍光体及びこれを用いた発光装置、照明光源、照明装置
JP2007231105A (ja) 蛍光体、蛍光膜、発光装置及び蛍光体の製造方法
KR20150067711A (ko) 형광체와 이를 포함하는 발광 소자
WO2022091568A1 (ja) 蛍光体、それを用いた光源、生化学分析装置、及び蛍光体の製造方法
JP2016176017A (ja) 蛍光体及びこれを用いた発光装置
JP2016176017A5 (ja)
JP6692053B2 (ja) 蛍光体及び発光装置
US11394176B2 (en) Light emitting device
TWI523935B (zh) 螢光粉體、其製造方法及其應用
JP2017002211A (ja) 蛍光体、その製造方法及び発光装置
Jose Mueller-Mach et a
JP2011003786A (ja) 発光装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012527144

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12807859

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2012807859

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012807859

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147001243

Country of ref document: KR

Kind code of ref document: A