WO2014097527A1 - 希土類アルミニウムガーネットタイプ無機酸化物、蛍光体及びこれを用いた発光装置 - Google Patents

希土類アルミニウムガーネットタイプ無機酸化物、蛍光体及びこれを用いた発光装置 Download PDF

Info

Publication number
WO2014097527A1
WO2014097527A1 PCT/JP2013/006461 JP2013006461W WO2014097527A1 WO 2014097527 A1 WO2014097527 A1 WO 2014097527A1 JP 2013006461 W JP2013006461 W JP 2013006461W WO 2014097527 A1 WO2014097527 A1 WO 2014097527A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor
light
wavelength
emission spectrum
emission
Prior art date
Application number
PCT/JP2013/006461
Other languages
English (en)
French (fr)
Inventor
大塩 祥三
夏希 佐藤
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN201380067342.9A priority Critical patent/CN104918892B/zh
Priority to US14/652,313 priority patent/US9732271B2/en
Priority to EP13865579.0A priority patent/EP2937315B1/en
Priority to JP2014552893A priority patent/JP5991684B2/ja
Publication of WO2014097527A1 publication Critical patent/WO2014097527A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • C09K11/7792Aluminates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/30Compounds containing rare earth metals and at least one element other than a rare earth metal, oxygen or hydrogen, e.g. La4S3Br6
    • C01F17/32Compounds containing rare earth metals and at least one element other than a rare earth metal, oxygen or hydrogen, e.g. La4S3Br6 oxide or hydroxide being the only anion, e.g. NaCeO2 or MgxCayEuO
    • C01F17/34Aluminates, e.g. YAlO3 or Y3-xGdxAl5O12
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/78Compounds containing aluminium and two or more other elements, with the exception of oxygen and hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/006Compounds containing, besides zirconium, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G27/00Compounds of hafnium
    • C01G27/006Compounds containing, besides hafnium, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7743Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing terbium
    • C09K11/7749Aluminates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7774Aluminates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/84Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by UV- or VIS- data
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • H01L33/504Elements with two or more wavelength conversion materials

Definitions

  • the present invention relates to a rare earth aluminum garnet type inorganic oxide, a phosphor, and a light emitting device using the same.
  • garnet structure Conventionally, many compounds having a garnet crystal structure (hereinafter also referred to as a garnet structure) are known. Natural meteorites are silicate minerals, and highly transparent ones have been useful as jewels since ancient times, and meteorite sand has been used industrially as an abrasive.
  • the famous meteorites include iron meteorite (almandine: Fe 2+ 3 Al 2 (SiO 4 ) 3 ), wollastonite (grossular: Ca 3 Al 2 (SiO 4 ) 3 ), and andrite. : Ca 3 Fe 3+ 2 (SiO 4 ) 3 ).
  • bitumenite pyrope: Mg 3 Al 2 (SiO 4 ) 3
  • mansarite sessartine: Mn 3 Al 2 (SiO 4 ) 3
  • ash chrome meteorite uvarovite: Ca 3 Cr 2 ( SiO 4 ) 3
  • YAG a compound represented by Y 3 Al 2 (AlO 4 ) 3
  • YAG is an artificial mineral synthesized based on meteorite, and is widely known by the name of yttrium aluminum garnet.
  • YAG is utilized for uses, such as a solid-state laser, translucent ceramics, and fluorescent substance (for example, refer nonpatent literature 1). It is known that there are many variations of YAG.
  • Tb 3 Al 2 (AlO 4 ) 3 for example, see Patent Document 1
  • Y 3 Ga 2 (AlO 4 ) 3 for example, see Non-Patent Document 1
  • Y 3 Mg 2 (AlO 4 ) (SiO 4 ) 2 see, for example, Patent Document 2.
  • the phosphor refers to a compound that emits fluorescence by applying a stimulus such as ultraviolet excitation. Then, the extranuclear electrons of specific atoms constituting the compound are excited by ultraviolet rays or the like, and the energy level difference is emitted as visible light when returning to the ground state.
  • phosphors can be obtained by including rare earth ions or transition metal ions (Ce 3+ , Tb 3+ , Eu 3+ , Mn 2+ , Mn 4+ , Fe 3+ , Cr 3+, etc.) that function as luminescent centers in a compound such as YAG. .
  • a phosphor having a meteorite structure such as a YAG: Ce phosphor activated by Ce 3+ or a YAG: Tb phosphor activated by Tb 3+ is highly efficient fluorescence.
  • a garnet-type phosphor such as a YAG: Ce phosphor activated by Ce 3+ or a YAG: Tb phosphor activated by Tb 3+ is highly efficient fluorescence.
  • YAG: Ce phosphor activated by Ce 3+ or a YAG: Tb phosphor activated by Tb 3+ is highly efficient fluorescence.
  • Such garnet-type phosphors are used in many light emitting devices (see, for example, Patent Documents 3 and 4 and Non-Patent Document 1).
  • a feature of the garnet-type phosphor activated with Ce 3+ is that it is excited when irradiated with a particle beam or electromagnetic wave, and emits visible light of blue-green to green to yellow to red with ultrashort afterglow (for example, Non-patent document 1 and Patent document 2).
  • a YAG: Eu phosphor activated by Eu 3+ is also known, and research has been made on a red phosphor for a plasma display device (PDP) (for example, see Non-Patent Document 1).
  • the conventional Ce 3+ activated phosphor having a meteorite structure is excited by short-wavelength visible light (wavelength of 380 nm or more and less than 470 nm), and can control the color tone of light emission.
  • short-wavelength visible light wavelength of 380 nm or more and less than 470 nm
  • the conventional Ce 3+ activated phosphor has a wide half-value width of the emission spectrum, there has been a problem that the luminous flux and color rendering of an illumination light source to which this is applied are reduced.
  • the conventional Tb 3+ activated phosphor and Eu 3+ activated phosphor having a meteorite structure are hardly excited by short-wavelength visible light. Therefore, it has been difficult to provide a light-emitting device that emits green light or red light using a solid light-emitting element that emits short-wavelength visible light as an excitation source.
  • An object of the present invention is to provide a rare earth aluminum garnet-type inorganic oxide, phosphor, and phosphor that can be excited by short-wavelength visible light and emit narrow-band green light and / or red light. To provide an apparatus.
  • the inorganic oxide according to the first aspect of the present invention has the general formula: M 2 LnX 2 (AlO 4 ) 3 (1) (Wherein M contains Ca, Ln contains Tb, and X contains at least one of Zr and Hf).
  • the number of Tb atoms in the general formula (1) is 0.1 or more and 1 or less, and the crystal structure is a meteorite structure.
  • the inorganic oxide according to the second aspect of the present invention is the inorganic oxide according to the first aspect, wherein M is a group consisting of Ca and an alkaline earth metal, Fe, Mn, Zn, Cd, Co and Cu. And at least one element selected from the above.
  • Ln is at least one selected from the group consisting of Tb and Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, Lu, In, Sb, and Bi.
  • X contains at least one of Zr and Hf and at least one element selected from the group consisting of Si, Ge, Ti, Sn and Pb.
  • the inorganic oxide according to the third aspect of the present invention is the inorganic oxide according to the first aspect, wherein M is Ca and Ln is Tb.
  • the inorganic oxide according to the fourth aspect of the present invention is the inorganic oxide according to the first aspect, wherein M is Ca, Ln is Tb, and X is either Zr or Hf.
  • the solid solution according to the fifth aspect of the present invention includes an inorganic oxide according to any one of the first to fourth aspects, and an inorganic compound that is in solid solution with the inorganic oxide and has a composition different from that of the inorganic oxide. It is a solid solution.
  • the number of moles of Tb in 1 mol of the solid solution is 0.1 mol or more and less than 3 mol, and the crystal structure of the solid solution is a meteorite structure.
  • the solid solution according to the sixth aspect of the present invention is a solid solution according to the fifth aspect, wherein the inorganic compound has a composition represented by the general formula (2): Ca 2 EuX 2 (AlO 4 ) 3 .
  • the solid solution according to the seventh aspect of the present invention is the solid solution according to the fifth aspect, wherein the inorganic compound has a composition represented by the general formula (3): M 3 Zr 2 (AlO 4 ) 2 (SiO 4 ).
  • the solid solution according to the fifth aspect has a composition represented by the general formula (4): A 3 D 2 (EG 4 ) 3 .
  • A contains Ca and Tb and at least one element selected from alkali metals, alkaline earth metals, and rare earth elements.
  • D contains an element represented by X and at least one element selected from Mg, Sc, Y, Ti, V, Zr, Hf, Zn, Al, Ga, In, Ge, and Sn.
  • E contains Al and at least one element selected from Zn, Al, Si, Ge, and P.
  • G contains O.
  • the phosphor according to the ninth aspect of the present invention comprises the inorganic oxide according to any one of the first to fourth aspects or the solid solution according to any of the fifth to eighth aspects.
  • the phosphor according to the tenth aspect of the present invention is the phosphor according to the ninth aspect, wherein the inorganic oxide or the solid solution forms the main skeleton of the crystal.
  • Tb 3+ contained in either the inorganic oxide or the solid solution emits a fluorescent component.
  • the phosphor according to the twelfth aspect of the present invention further contains Ce 3+ as an activator in the phosphor according to any of the ninth to eleventh aspects.
  • the phosphor according to the thirteenth aspect of the present invention further includes Eu 3+ as an activator in the phosphor according to the twelfth aspect. Further, Eu 3+ contained in the inorganic oxide or solid solution emits a fluorescent component.
  • the phosphor according to the fourteenth aspect of the present invention relates to the phosphor according to the thirteenth aspect, wherein the number of Eu atoms is less than the number of Tb atoms in 1 mol of the phosphor.
  • the phosphor according to the fifteenth aspect of the present invention is the phosphor according to the twelfth aspect, wherein the excitation spectrum of the phosphor has an excitation band due to Ce 3+ .
  • the phosphor according to any of the ninth to fifteenth aspects is excited at a wavelength of 380 nm or more and less than 470 nm.
  • the phosphor according to the seventeenth aspect of the present invention in the phosphor according to any of the ninth to sixteenth aspects, has a maximum value within the range of the wavelength of the emission spectrum from 535 nm to less than 560 nm. Furthermore, the 1/5 spectral width of the emission spectrum in the range of 535 nm or more and less than 560 nm is 3 nm or more and less than 30 nm.
  • the phosphor according to the eighteenth aspect of the present invention is the phosphor according to the thirteenth aspect, and has a maximum value within the wavelength range of the emission spectrum of 600 nm or more and less than 628 nm.
  • a phosphor according to a nineteenth aspect of the present invention is the phosphor according to the ninth aspect, wherein the phosphor contains Tb, Ce, and Eu and is made of a single-phase compound.
  • the excitation spectrum of the phosphor has a broad excitation band due to absorption of Ce 3+ , and the excitation band has an excitation peak in the range of 400 nm or more and less than 460 nm.
  • the emission spectrum of the phosphor has a fluorescent component due to at least one of Tb 3+ and Eu 3+ , and the intensity at a wavelength of 575 nm in the emission spectrum is smaller than 10% of the maximum value in the emission spectrum.
  • the phosphor according to the twentieth aspect of the present invention is the phosphor according to the nineteenth aspect, wherein the intensity at a wavelength of 520 nm in the emission spectrum is smaller than 30% of the maximum value of the emission spectrum.
  • the phosphor according to the twenty-first aspect of the present invention is the phosphor according to the nineteenth aspect, wherein the phosphor emits a fluorescent component of Tb 3+ and does not emit a fluorescent component of Eu 3+ .
  • the phosphor according to the twenty-second aspect of the present invention is the phosphor according to the nineteenth aspect, wherein the phosphor emits both Tb 3+ and Eu 3+ fluorescence components.
  • the phosphor according to the twenty-third aspect of the present invention is the phosphor according to the nineteenth aspect, wherein the phosphor emits a Eu 3+ fluorescent component, and the maximum value of the Tb 3+ fluorescent component is the Eu 3+ fluorescent component. It is less than 10% of the maximum value.
  • the phosphor according to the twenty-fourth aspect of the present invention is the phosphor according to the nineteenth aspect, wherein the number of Eu atoms contained in the phosphor is smaller than the number of Tb atoms.
  • the phosphor according to the twenty-fifth aspect of the present invention is a phosphor containing at least Ce 3+ and Tb 3+ as emission centers.
  • the excitation spectrum of the phosphor has a broad excitation band due to Ce 3+ absorption, and the excitation band has a peak in the range of 400 nm or more and less than 460 nm.
  • the emission spectrum of the phosphor emits a green fluorescent component due to Tb 3+ , and the emission intensity at a wavelength of 520 nm in the emission spectrum is smaller than 30% of the maximum value of the emission spectrum.
  • the phosphor according to the twenty-sixth aspect of the present invention is a phosphor containing at least Ce 3+ , Tb 3+ and Eu 3+ as emission centers.
  • the excitation spectrum of the phosphor has a broad excitation band due to Ce 3+ absorption, and the excitation band has a peak in the range of 400 nm or more and less than 460 nm.
  • the emission spectrum of the phosphor emits a green fluorescence component due to Tb 3+ and / or a red fluorescence component due to Eu 3+, and the emission intensity at a wavelength of 520 nm in the emission spectrum is smaller than 30% of the maximum value of the emission spectrum.
  • the phosphor according to the twenty-seventh aspect of the present invention is the phosphor according to the twenty-fifth or twenty-sixth aspect, wherein the intensity at a wavelength of 520 nm in the emission spectrum is smaller than 10% of the maximum value in the emission spectrum.
  • the phosphor according to the twenty-eighth aspect of the present invention is the phosphor according to any of the twenty-fifth to twenty-seventh aspects, wherein the intensity at a wavelength of 575 nm in the emission spectrum is smaller than 10% of the maximum value in the emission spectrum.
  • the phosphor according to the twenty-ninth aspect of the present invention is the phosphor according to the twenty-sixth aspect, wherein the emission spectrum has a maximum emission spectrum of a green fluorescence component due to Tb 3+ or a red fluorescence component due to Eu 3+ .
  • a light emitting device includes the phosphor according to any of the ninth to 29th aspects.
  • the light-emitting device according to the thirty-first aspect of the present invention is the light-emitting device according to the thirty-first aspect, further comprising Eu 3+ activated phosphor.
  • the light emitting device according to the thirty-second aspect of the present invention is the light emitting device according to the thirty-first or thirty-first aspect, wherein the phosphor is excited by short-wavelength visible light having a wavelength peak in the range of 380 nm to less than 470 nm.
  • a light-emitting device is the light-emitting device according to the thirty-second aspect, further comprising a solid-state light emitting element that emits short-wavelength visible light.
  • the inorganic oxide of the present invention can be excited with short-wavelength visible light and becomes a phosphor capable of emitting narrow-band green light and / or red light.
  • the light-emitting device of the present invention using the inorganic oxide emits strong light including a narrow-band green light component and / or a red light component using a solid-state light emitting element that emits short-wavelength visible light as an excitation source. Is possible.
  • FIG. 1 is a schematic view for explaining a light emitting device according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view schematically showing an example of a semiconductor light emitting device according to an embodiment of the present invention.
  • FIG. 3 is a diagram showing a spectral distribution of output light emitted from the semiconductor light emitting device according to the embodiment of the present invention.
  • FIG. 4 is a diagram showing a spectral distribution of output light emitted from the semiconductor light emitting device according to the embodiment of the present invention.
  • FIG. 5 is a diagram showing a spectral distribution of output light emitted from the semiconductor light emitting device according to the embodiment of the present invention.
  • FIG. 1 is a schematic view for explaining a light emitting device according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view schematically showing an example of a semiconductor light emitting device according to an embodiment of the present invention.
  • FIG. 3 is a diagram showing a spectral distribution of output
  • FIG. 6 is a diagram showing a spectral distribution of output light emitted from the semiconductor light emitting device according to the embodiment of the present invention.
  • FIG. 7 is a diagram showing a configuration of the light source device according to the embodiment of the present invention.
  • FIG. 8 shows the XRD pattern of the compounds of Examples 1 and 2.
  • FIG. 9 is a diagram showing an excitation spectrum and an emission spectrum of the phosphor of Example 1.
  • FIG. 10 is a diagram showing an excitation spectrum and an emission spectrum of the phosphor of Example 3.
  • FIG. 11 is a diagram showing an excitation spectrum and an emission spectrum of the phosphor of Example 4.
  • FIG. 12 is a diagram showing excitation spectra and emission spectra of the phosphors of Examples 5 to 11.
  • FIG. 13 is a diagram showing an excitation spectrum and an emission spectrum of the phosphor of Example 12.
  • “mineral” is a solid inorganic substance that is naturally produced, its composition can be described by chemical formula, the arrangement of constituent elements is regular, that is, crystalline, and its physical properties are narrow Things that fall within the range.
  • an artificial mineral there is an artificial mineral called an artificial mineral (man-made mineral).
  • Artificial minerals are the ones that have achieved the same components, structure and structure as naturally occurring minerals by chemical and physical methods. Artificial minerals may include inorganic solids having the same structure and basic composition as natural minerals but different components or compositions, and may also include general inorganic solids.
  • composition of the mineral can be easily expressed by the mixing ratio of the mineral having the composition at both ends of the composition change.
  • Such minerals are referred to as “solid solutions” because they produce a uniform phase that mixes solutions while being solid.
  • a compound having a meteorite structure and containing at least a rare earth element, aluminum, and oxygen as main components is referred to as a “rare earth aluminum garnet type inorganic oxide”.
  • a rare earth aluminum garnet type inorganic oxide that functions as a phosphor is referred to as a “rare earth aluminum garnet type phosphor”.
  • the rare earth aluminum garnet-type inorganic oxide according to this embodiment is an inorganic chemical substance created artificially with reference to natural minerals. And the said inorganic oxide has a composition shown by General formula (1), and a crystal structure is a meteorite structure.
  • M contains calcium (Ca)
  • Ln contains terbium (Tb)
  • X contains at least one of zirconium (Zr) and hafnium (Hf).
  • the inorganic oxide of this embodiment represented by the general formula (1) can exhibit novel fluorescence characteristics as will be described later.
  • the number of atoms of Tb in the general formula (1) is 0.1 or more and 1 or less.
  • Tb functions as a medium for transmitting energy to the emission center or Eu as described later. Therefore, the phosphor can efficiently emit green light and / or red light.
  • the rare earth aluminum garnet-type inorganic oxide of this embodiment functions as a fluorescent mineral, that is, an inorganic phosphor by containing a high concentration of Tb.
  • the function can be exhibited by limiting the number of Tb atoms in the general formula (1) to 0.1 or more and 1 or less.
  • the expression “the number of Tb atoms in the general formula (1) is 0.1 or more and 1 or less” is “the number of moles of Tb in 1 mol of the inorganic oxide represented by the general formula (1)”. Can also be expressed as “0.1 mol or more and 1 mol or less”.
  • the rare earth aluminum garnet type inorganic oxide according to the present embodiment also includes a number of modifications slightly different from the general formula (1) as long as the structure of the meteorite is not impaired. That is, the basic composition of the inorganic oxide according to this embodiment is, for example, Ca 2 TbX 2 (AlO 4 ) 3 . However, the inorganic oxide according to the present embodiment is similar to Ca 2 TbX 2 (AlO 4 ) 3 and is understood to include a modification example serving as an end component of the solid solution.
  • the “edge component” is a petrological term and is a component that forms the limit of the composition of the solid solution.
  • the element M in the general formula (1) contains at least calcium (Ca).
  • Ca calcium can be partially substituted with an element that can be a divalent ion other than calcium. Therefore, the element M in the general formula (1) contains Ca and at least one element selected from the group consisting of alkaline earth metals, Fe (II), Mn, Zn, Cd, Co, and Cu. There may be.
  • alkaline earth metal Mg, Sr and Ba are particularly preferable.
  • the majority of the element M in the general formula (1) is occupied by calcium (Ca).
  • occupying the majority of the elements M with Ca means that the Ca atoms occupy the majority of the group of atoms occupying the elements M.
  • the element M may be occupied only by calcium.
  • the element Ln in the general formula (1) contains at least terbium (Tb).
  • terbium can be partially substituted with an element that can be a trivalent ion other than terbium, particularly a rare earth element.
  • elements that can be trivalent ions include Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, Lu, In, Sb, and Bi.
  • the element Ln in the general formula (1) includes Tb, Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, Lu, In, Sb, and Bi. It may contain at least one element selected from the group consisting of:
  • the majority of the element Ln in the general formula (1) is occupied by terbium (Tb).
  • Tb terbium
  • occupying the majority of the element Ln with Tb means that the Tb atom occupies the majority of the atomic group occupying the element Ln.
  • the element Ln in the general formula (1) includes not only Tb but also Eu, a large number of Tb exists around Eu. Therefore, the efficiency of transmitting energy from Tb to Eu is increased, and the emission intensity of Eu can be increased.
  • the element Ln may be occupied only by terbium.
  • the element X in the general formula (1) contains at least one of zirconium (Zr) and hafnium (Hf).
  • zirconium and hafnium can be partially substituted with elements that can become tetravalent ions other than these elements.
  • the element that can be a tetravalent ion include Si, Ge, Ti, Sn, and Pb, and Sn is preferred. Therefore, the element X in the general formula (1) may contain at least one of Zr and Hf and at least one element selected from the group consisting of Si, Ge, Ti, Sn, and Pb. Good.
  • the majority of the element X in the general formula (1) is occupied by zirconium (Zr) and / or hafnium (Hf).
  • Zr zirconium
  • Hf hafnium
  • the fact that the majority of the element X is occupied by Zr and / or Hf means that the majority of the atomic group occupying the element X is occupied by Zr atoms and / or Hf atoms.
  • the element X may be occupied only by Zr and / or Hf.
  • element M may be Ca and element Ln may be Tb.
  • the element M is Ca
  • the element Ln is Tb
  • the element X may be either Zr or Hf.
  • Preferred as a fluorescent material and compounds similar to the inorganic oxide of this embodiment are Ca 2 (Tb, Ce) Zr 2 (AlO 4 ) 3 , Ca 2 (Y, Tb) Zr 2 (AlO 4 ). 3 etc. are illustrated. Further, Ca 2 (La, Tb) Hf 2 (AlO 4 ) 3 , (Ca, Sr) 2 (Y, Tb) (Zr, Hf) 2 (AlO 4 ) 3 , (Ca, Mg) 2 TbZr 2 (AlO 4 ) 3 , Ca 2 (Tb, Pr) Zr 2 (AlO 4 ) 3 and the like are also exemplified. Further, Ca 2 (Tb, Ce, Eu) Zr 2 (AlO 4) 3, Ca 2 (Tb, Eu) including Zr 2 (AlO 4) 3 is also illustrated.
  • the inorganic oxide of this embodiment may form a solid solution with an inorganic compound that is in solid solution with the inorganic oxide and has a composition different from that of the inorganic oxide. And it is preferable that this solid solution is a meteorite structure similarly to the inorganic oxide of this embodiment.
  • Such a solid solution can also be a rare earth aluminum garnet type phosphor having novel fluorescence characteristics.
  • the number of moles of Tb in 1 mol of the solid solution is preferably 0.1 mol or more and less than 3 mol.
  • the inorganic compound to be dissolved in the inorganic oxide of the present embodiment a compound having a meteorite structure is preferable, and a compound similar to the inorganic oxide is particularly preferable.
  • a compound similar to the inorganic oxide is particularly preferable.
  • a europium compound having a composition represented by the general formula (2): Ca 2 EuX 2 (AlO 4 ) 3 is preferable.
  • an inorganic compound is in solid solution with the inorganic oxide, it can be a solid solution that emits a fluorescent component of Eu 3+ .
  • the element X in the general formula (2) is the same as the element X in the general formula (1).
  • a compound having a composition represented by the general formula (3): M 3 Zr 2 (AlO 4 ) 2 (SiO 4 ) is also preferable.
  • the peak wavelength of the excitation spectrum or emission spectrum can be shifted by several nm to several tens of nm.
  • the element M in the general formula (3) is the same as the element M in the general formula (1).
  • natural meteorites are generally known to exist as solid solutions of multiple types of meteorites that are end components.
  • Ca 2 TbZr 2 (AlO 4) 3 and Ca 2 TbHf 2 (AlO 4) 3 in the inorganic oxide of the present embodiment can be regarded as an end component. Therefore, many kinds of solid solutions of the inorganic oxide of this embodiment and an inorganic compound having a meteorite structure different from the inorganic oxide and capable of becoming an end component can be obtained.
  • the said solid solution has a composition shown by General formula (4).
  • the element A contains Ca and Tb. Further, at least one of Ca and Tb in the element A can be partially substituted with an element that can be a divalent or trivalent ion. Furthermore, at least one of Ca and Tb in the element A can be replaced with an element other than an element that can be a divalent or trivalent ion.
  • the element that can be partially substituted with Ca and Tb can be a monovalent to trivalent ion with charge compensation by at least one of the element X in the general formula (1) and a tetrahedron other than the (AlO 4 ) tetrahedron. Elements are preferred. In addition, an element having an ionic radius of 0.6 to 1.7 mm, particularly 0.8 to 1.4 mm is preferable.
  • “ion radius” means the ion radius of Ahrens.
  • the element A in the general formula (4) preferably contains Ca and Tb and at least one element selected from alkali metals, alkaline earth metals, and rare earth elements.
  • the element corresponding to the element D in the general formula (4) is the element X in the general formula (1).
  • the element X contains at least one of Zr and Hf.
  • the element D can be partially substituted with an element that can be a tetravalent ion.
  • the element D can be replaced with an element other than an element that can be a tetravalent ion.
  • the element that can be partially substituted with the element D is preferably an element that can be a divalent or trivalent ion while accompanied by charge compensation by at least one of tetrahedrons other than Ca, Tb, and (AlO 4 ) tetrahedron.
  • an element having an ionic radius of 0.4 to 0.95, particularly 0.5 to 0.8 is preferable.
  • elements having an ionic radius of 0.4 to 0.95 are rare earth elements such as Mg, Sc and Y, and Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Al, Ga, and the like. Examples thereof include transition metals such as In and typical element metals.
  • the element D in the general formula (4) is selected from the element X in the general formula (1) and Mg, Sc, Y, Ti, V, Zr, Hf, Zn, Al, Ga, In, Ge, and Sn. It is preferable to contain at least one element.
  • the (AlO 4 ) tetrahedron in the inorganic oxide represented by the general formula (1) corresponds to the tetrahedron (EG 4 ) in the general formula ( 4 ).
  • the tetrahedron (EG 4 ) can be partially replaced with a tetrahedron other than the (AlO 4 ) tetrahedron.
  • Examples of tetrahedrons other than the (AlO 4 ) tetrahedron include (SiO 4 ), (GeO 4 ), (SiO 3 N), (ZnO 4 ), (FeO 4 ), (VO 4 ), and (PO 4 ). Of the tetrahedron.
  • the element E in the general formula (4) contains Al and at least one element selected from Zn, Al, Si, Ge, and P, and the element G contains O.
  • the standard for partial substitution of A, D, and (EG 4 ) is preferably less than half of one element to be substituted, and (AlO 4 ) It is preferable that it is less than half of one body.
  • account is preferably a majority of the element A in the general formula (4) Ca and Tb, it is preferred that a majority of the elements D in element X, further a majority of (EG 4) (AlO 4) It is preferable.
  • the inorganic oxide according to the present embodiment can form a solid solution with a compound similar to the inorganic oxide.
  • the number-of-moles of Tb in 1 mol of solid solutions are 0.1 mol or more and less than 3 mol.
  • the number of moles of Tb in 1 mole of the solid solution is more preferably 0.2 mol or more and less than 2 mol, and particularly preferably 0.4 mol or more and 1 mol or less.
  • Y 3 Al 2 (AlO 4 ) 3, Tb 3 Al 2 (AlO 4) 3, Y 3 Ga 2 (AlO 4) 3 Can be mentioned.
  • Ca 2 YZr 2 (AlO 4 ) 3, Ca 2 EuZr 2 (AlO 4) 3, Ca 2 YHf 2 (AlO 4) 3, Ca 3 Zr 2 (AlO 4) 2 (SiO 4) can also be mentioned .
  • Ca 2 LaZr 2 (AlO 4 ) 3, Ca 2 LuZr 2 (AlO 4) 3, Ca 2 LuHf 2 (AlO 4) 3, Ca 2 YSn 2 (AlO 4) 3, Ca 2 LaSn 2 (AlO 4) 3 etc. can also be mentioned.
  • the inorganic compound forming the solid solution is not limited to these.
  • the solid solution of this embodiment may contain at least one element selected from H, B, C, S, F, Cl, and the like in addition to the above-described elements. Moreover, the solid solution of this embodiment may contain nitrogen. That is, the element G in the tetrahedron (EG 4 ) in the general formula (4) may contain nitrogen in addition to oxygen, and the solid solution may be an oxynitride.
  • the solid solution of the present embodiment is preferably a solid solution having a meteorite structure having at least two kinds of compounds as end components.
  • the first compound (inorganic oxide) serving as the end component for example, a terbium compound represented by the general formula (1A): Ca 2 TbX 2 (AlO 4 ) 3 can be used.
  • the element X is the same as the element X in the general formula (1).
  • the solid solution of the present embodiment is also preferably a solid solution having a meteorite structure having at least three kinds of compounds as end components.
  • a first compound (inorganic oxide) serving as the end component for example, a terbium compound represented by the general formula (1A): Ca 2 TbX 2 (AlO 4 ) 3 can be used.
  • the second compound comprising an end component (inorganic compound), for example, the general formula (2): Ca 2 EuX 2 can be used europium compound represented by (AlO 4) 3.
  • a third compound comprising an end component (inorganic compound), for example, the general formula (2A): Ca 2 Ln'X 2 can be used a rare earth compound represented by (AlO 4) 3.
  • the element Ln ′ is at least one element selected from the group consisting of Sc, Y, La, Ce, Pr, Nd, Sm, Gd, Dy, Ho, Er, Tm, Yb, and Lu.
  • the element X is the same as the element X in the general formula (1).
  • the solid solution of the present embodiment is also preferably a solid solution having a meteorite structure having at least the following three types of compounds as end components.
  • a first compound (inorganic oxide) serving as the end component for example, a terbium compound represented by the general formula (1A): Ca 2 TbX 2 (AlO 4 ) 3 can be used.
  • a europium compound represented by the general formula (2): Ca 2 EuX 2 (AlO 4 ) 3 can be used.
  • the third compound (inorganic compound) serving as the end component for example, a zirconium compound represented by the general formula (3): M 3 Zr 2 (AlO 4 ) 2 (SiO 4 ) can be used.
  • Elements X and M are the same as elements X and M in general formula (1).
  • the solid solution When the solid solution is composed of the above terbium compound, europium compound and zirconium compound, the solid solution may be represented by the general formula (5): M 2 + x Ln 1-x Zr 2 (AlO 4 ) 3-x (SiO 4 ) x it can.
  • the element Ln is Tb and Eu and at least one rare earth selected from the group consisting of Sc, Y, La, Ce, Pr, Nd, Sm, Gd, Dy, Ho, Er, Tm, Yb, and Lu.
  • the element Ln is preferably Tb, Eu, and Ce.
  • the x is preferably a numerical value satisfying 0 ⁇ x ⁇ 1, and particularly a numerical value satisfying 0 ⁇ x ⁇ 0.3.
  • terbium compounds in said solid solution is preferably Ca 2 TbZr 2 (AlO 4) 3, it is preferable europium compounds are Ca 2 EuZr 2 (AlO 4) 3.
  • a solid solution can contain Ce. Therefore, the solid solution has an excitation band derived from the electron energy transition of Ce 3+ and can emit fluorescence.
  • the shape of the rare earth aluminum garnet type inorganic oxide and solid solution of the present embodiment is not particularly limited. That is, similar to conventional YAG, etc., it can be made into compounds of various shapes such as single crystals, thin films, thick films, lumps, granules, powders, nanoparticles, ceramics, and translucent ceramics. Is possible.
  • the inorganic oxide and solid solution of this embodiment can be utilized for various uses as new industrial materials such as artificial gemstones, abrasives, ceramic materials, and electronic materials, like natural meteorites.
  • the rare earth aluminum garnet type inorganic oxide of this embodiment can be manufactured by a known method. Specifically, it can be synthesized using a known solid phase reaction, as in YAG.
  • rare earth oxides (Sc 2 O 3 , Y 2 O 3 , La 2 O 3 , CeO 2 , Pr 6 O 11 , Eu 2 O 3 , Gd 2 O 3 , Tb 4 O, which are universal ceramic raw material powders. 7 and Lu 2 O 3 ). Furthermore, alkaline earth carbonate (CaCO 3 ), Al 2 O 3 , Ga 2 O 3 , ZrO 2 , HfO 2 and the like are prepared. Next, the raw material powder is prepared so as to have a stoichiometric composition of the desired inorganic oxide or a composition close thereto, and sufficiently mixed using a mortar, a ball mill, or the like.
  • the inorganic oxide of this embodiment can be prepared by baking a mixed raw material with an electric furnace etc. using baking containers, such as an alumina crucible.
  • the mixed raw material is fired, it is preferably heated for several hours at a firing temperature of 1500 to 1700 ° C. in the air or in a weak reducing atmosphere.
  • the phosphor according to the present embodiment contains a rare earth aluminum garnet type inorganic oxide or solid solution.
  • the phosphor preferably has a rare earth aluminum garnet-type inorganic oxide or solid solution as a main skeleton of a crystal. That is, since the inorganic oxide itself has a function of emitting fluorescence as will be described later, the phosphor of the present embodiment exclusively uses the properties of the inorganic oxide.
  • the phosphor according to the present embodiment is a compound that mainly contains the inorganic oxide or the solid solution and emits fluorescence.
  • a phosphor refers to a compound obtained by substituting a part of an element constituting a crystal of a compound with an element that becomes a fluorescent ion. Ions having such characteristics are usually called “emission centers”.
  • the inorganic oxide of this embodiment includes at least calcium (Ca), a predetermined amount or more of terbium (Tb), zirconium (Zr) and / or hafnium (Hf), and aluminum (Al). And oxygen (O) as a constituent element of the crystal.
  • Tb is an element that can form Tb 3+ known as an emission center that emits green light.
  • Tb 3+ is an ion known as a light emission center that is difficult to quench even at a high concentration and has a small concentration quenching. Furthermore, Tb 3+ is transferring energy to the Eu 3+, an ion having a function as a sensitizer to enable light emission of Eu 3+. Therefore, the inorganic oxide of this embodiment and the solid solution containing the same have a function that the inorganic oxide itself emits fluorescence. That is, the phosphor of the present embodiment has a characteristic that at least Tb 3+ or Eu 3+ is a light emission center, and Tb 3+ or Eu 3 emits a fluorescent component.
  • Examples of green phosphors that have been widely used for light-emitting devices and have activated Tb 3+ include Y 3 Ga 2 (AlO 4 ) 3 : Tb 3+ , Y 2 SiO 5 : Tb 3+ . Further, as the green phosphor, (La, Ce) PO 4 : Tb 3+ , CeMgAl 11 O 19 : Tb 3+ , (Gd, Ce) MgB 5 O 10 : Tb 3+ and the like also exist.
  • Tb 3+ in the phosphor of the present embodiment functions as an emission center, it is possible to realize a green phosphor having an emission spectrum equivalent to that of a conventional Tb 3+ activated green phosphor.
  • red phosphors that have been widely used for light emitting devices and activated with Eu 3+
  • Y 2 O 3 Eu 3+
  • Y 2 O 2 S Eu 3+
  • Y (P, V) 4 Eu
  • Eu 3+ in the phosphor of the present embodiment functions as a light emission center
  • a red phosphor having an emission spectrum equivalent to that of a conventional Eu 3+ activated red phosphor or the like can be realized.
  • the inorganic oxide of the present embodiment itself has a function of emitting fluorescence.
  • transition metals such as Fe, Co, Ni, V, Cu, Cr, and Ti are known as elements that form ions that induce a decrease in the emission intensity of the phosphor. Such ions are usually called killer centers. Therefore, it is preferable that the phosphor of this embodiment does not contain these transition metals.
  • the inorganic oxide or the solid solution contains an ion serving as a light emission center. That is, the inorganic oxide of this embodiment and the solid solution containing it include at least Tb 3+ as a luminescent center or a sensitizer.
  • the phosphor emits light with higher efficiency or when the emission color is changed, it is preferable to add another emission center in addition to Tb 3+ . Further, even if Tb 3+ does not emit fluorescence, it is included in the technical scope of the present invention as long as the emission center ion other than Tb 3+ emits fluorescence.
  • the luminescent center other than Tb 3+ may be any compound that functions as a base material of the phosphor, that is, an ion that can emit fluorescence by electron energy transition in the inorganic oxide and solid solution crystals.
  • at least one of Sn 2+ , Sb 3+ , Tl + , Pb 2+ and Bi 3+ called ns 2 -type ion emission centers and Cr 3+ , Mn 4+ , Mn 2+ and Fe 3+ called transition metal ion emission centers. It is preferable to use one.
  • Ce 3+ called rare earth ions luminescence center
  • Ho 3+, Er 3+, Tm 3+, Yb 3+, Sm 2+, the Eu 2+ and Yb 2+ It is also preferable to use at least one.
  • the emission center in the phosphor of the present embodiment is more preferably at least one ion selected from Tb 3+ and Mn 4+ , Mn 2+ , Ce 3+ , Pr 3+ and Eu 3+ .
  • the emission center is particularly preferably at least one ion selected from Tb 3+ and Mn 2+ , Ce 3+ , Pr 3+ and Eu 3+ .
  • Tb 3+ not only Tb 3+ but also an emission center different from Tb 3+ , particularly at least one ion selected from Ce 3+ , Pr 3+ , Eu 3+ and Mn 2+ is activated. It is preferable to include as an agent.
  • Ce 3+ not only acts as a luminescent center, also acts as a sensitizer of Tb 3+, it is possible to increase the emission intensity of Tb 3+ having an emission line shape of the green component.
  • Ce 3+ has a function of absorbing short-wavelength visible light when it is present in the crystal lattice of the inorganic oxide and solid solution.
  • the phosphor of the present embodiment it is more preferable to include not only Tb 3+ but also Ce 3+ .
  • the excitation spectrum of the phosphor has an excitation band due to Ce 3+ .
  • a short-wavelength visible light Ce 3+ is absorbed, for moving the optical energy Ce 3+ is absorbed efficiently Tb 3+, it is possible to wavelength convert short wavelength visible light to bright line shape of the green light.
  • Ce 3+ also acts as a sensitizer of Pr 3+, it is possible to increase the emission intensity of Pr 3+ having an emission line shape of the red component.
  • the phosphor of the present embodiment preferably includes not only Tb 3+ and Ce 3+ but also Pr 3+ . This makes it possible to obtain a phosphor that emits not only Tb 3+ but also a light emitting component of Pr 3+ . That is, the wavelength of the short wavelength visible light can be efficiently converted into the bright line-shaped green light by Tb 3+ and the bright line-shaped red light by Pr 3+ .
  • Ce 3+ is also acts as a sensitizer of Mn 2+, it is possible to increase the emission intensity of Mn 2+ with a wide orange component spectral width. Therefore, it is preferable that the phosphor of this embodiment includes not only Tb 3+ and Ce 3+ but also Mn 2+ . This makes it possible to obtain a phosphor that emits not only Tb 3+ but also a light emitting component of Mn 2+ .
  • Tb 3+ not only acts as a luminescent center, the medium to transfer energy to the Eu 3+, i.e. also acts as a sensitizer of Eu 3+. Therefore, it is preferable that the phosphor of the present embodiment further contains Eu 3+ as a coactivator serving as a light emission center different from Tb 3+ . This makes it possible to emit not only Tb 3+ contained in the inorganic oxide or solid solution constituting the phosphor but also a light emitting component of Eu 3+ .
  • the phosphor of the present embodiment may have a characteristic that at least Eu 3+ serves as a light emission center and Eu 3+ emits a fluorescent component.
  • the short-wavelength visible light Ce 3+ is absorbed by the light energy Ce 3+ is absorbed efficiently Tb It can be moved to 3+ .
  • Ce 3+ absorbs short-wavelength visible light, and the light energy absorbed by Ce 3+ can be efficiently transferred to Tb 3+. it can.
  • the light energy moved to Tb 3+ can be efficiently moved to Eu 3+ .
  • the excitation spectrum of the phosphor that emits bright red light with Eu 3+ has a shape having an excitation band with Ce 3+ .
  • the rare earth aluminum garnet type phosphor of the present embodiment contains the above-described emission center in the inorganic oxide or solid solution containing Tb.
  • the inorganic oxide and the solid solution can be easily applied by external stimulation such as irradiation with particle beams ( ⁇ rays, ⁇ rays, electron beams) or electromagnetic waves ( ⁇ rays, X rays, vacuum ultraviolet rays, ultraviolet rays, visible rays).
  • particle beams ⁇ rays, ⁇ rays, electron beams
  • electromagnetic waves ⁇ rays, X rays, vacuum ultraviolet rays, ultraviolet rays, visible rays.
  • the fluorescence emitted from the phosphor according to the present embodiment can be used for a light-emitting device described later as long as it is any electromagnetic wave selected from ultraviolet rays, visible rays, and infrared rays. Visible light. If the emitted fluorescence is visible light, it can be widely used as a light emitting device
  • the fluorescent substance of this embodiment contains Ce, Pr, Eu, and Mn in a crystal lattice as rare earth elements other than Tb.
  • the color tone of the emission color can be arbitrarily controlled.
  • the phosphor containing Ce 3+ is to varying degrees, are often light emission component of the normal Ce 3+ is observed.
  • the main fluorescent component due to Ce 3+ is in the wavelength region of 430 nm or more and less than 550 nm.
  • strength of wavelength 520nm in the emission spectrum of the said fluorescent substance can be made smaller than 30% of the intensity
  • the Tb 3+ light emitting component may not be substantially recognized. This means that in the phosphor, energy transfer from Tb 3+ to Eu 3+ is efficiently performed.
  • the number of moles of Tb per mole of the inorganic oxide to be a phosphor is the number of atoms of 0.1 to less than 1.
  • the number of moles of the element contained in the phosphor as the activator is less than the number of moles of the inorganic oxide, and is 0.01 mole or more and less than 0.3 mole per mole of the inorganic oxide. preferable.
  • the phosphor of the present embodiment is preferably excitable by short-wavelength visible light.
  • the short wavelength visible light is preferably light in the range of 380 nm or more and less than 470 nm.
  • the short wavelength visible light is either violet light having a maximum value of spectral distribution within a range of 380 nm or more and less than 420 nm, or blue light having a maximum value of spectral distribution within a range of 420 nm or more and less than 470 nm. It is preferable. This facilitates the provision of a light emitting device combined with a solid light emitting element, as will be described later.
  • the phosphor of the present embodiment has a maximum value in the emission spectrum of the emitted light in the range of 535 nm to 560 nm, particularly 540 nm to 555 nm.
  • the apparent brightness of light depends on the visibility, and the visibility of the human eye has a maximum value at 555 nm. And even if the energy intensity of light is equal, the green light within the above range feels relatively bright. Therefore, a phosphor with good visibility can be obtained by having a maximum value within this range.
  • the phosphor of the present embodiment preferably has a full width at half maximum (FWHM) of an emission spectrum in the range of 535 nm or more and less than 560 nm of 3 nm or more and less than 30 nm.
  • FWHM full width at half maximum
  • the 1/5 spectral width of the emission spectrum in the range of 535 nm to less than 560 nm is more preferably 3 nm to less than 30 nm
  • the 1/10 spectral width is particularly preferably 3 nm to less than 30 nm.
  • the phosphor preferably has a half width of an emission spectrum within a range of 535 nm or more and less than 560 nm of 10 nm or more and less than 20 nm, and a 1/5 spectral width or 1/10 spectral width of the emission spectrum is also 15 nm or more and less than 25 nm. Preferably there is.
  • Such an emission spectrum has an emission line-like green light component, and the light component is concentrated in a wavelength region having high visibility. For this reason, such a phosphor can emit a light component with good green color purity and outstanding brightness.
  • the 1/5 spectral width and the 1/10 spectral width refer to the width of the emission spectrum at a position where the maximum intensity of the emission spectrum is 1, and the intensity is 1/5 and 1/10, respectively. .
  • the intensity at a wavelength of 575 nm in the emission spectrum is preferably 10% of the maximum intensity value of the emission spectrum, particularly preferably less than 5%.
  • the phosphor containing Ce 3+ and Tb 3+ when to release the emission component of both Ce 3+ and Tb 3+, the emission spectrum has a maximum intensity in the range of less than 450 nm 500 nm, the main by Tb 3+ It is characterized by being smaller than 50% of the maximum intensity of the bright line.
  • the main emission line by Tb 3+ means an emission line having a maximum value in a range of 535 nm or more and less than 560 nm.
  • the phosphor of the present embodiment has a maximum value in the emission spectrum of 600 nm or more and less than 628 nm, particularly 600 nm or more and less than 620 nm. Light with a high proportion of red light component becomes warm color light, and by having a maximum value within this range, it is possible to obtain a phosphor that emits light close to an incandescent bulb that has been favored conventionally. .
  • the phosphor of the present embodiment can be a phosphor made of a single-phase compound having a meteorite structure and containing terbium (Tb) and cerium (Ce).
  • the phosphor of the present embodiment can be a phosphor made of a single-phase compound having a meteorite structure and containing terbium (Tb), cerium (Ce), and europium (Eu).
  • the excitation spectrum has a broad excitation band due to absorption of Ce 3+ , and the excitation band has a peak in the range of 400 nm or more and less than 460 nm.
  • phosphor containing a Tb 3+ and Ce 3+, or emission spectrum of Tb 3+ and Ce 3+ and Eu 3+ phosphor containing the one of at least the Tb 3+ and Eu 3+ One of them has a fluorescent component.
  • the intensity at a wavelength of 575 nm is preferably smaller than 10% of the maximum intensity value of the emission spectrum, particularly 5%.
  • the intensity at a wavelength of 520 nm is preferably 30%, particularly less than 10% of the maximum intensity value of the emission spectrum.
  • Such a phosphor emits a bright line-shaped green fluorescent component derived from Tb 3+ and / or a bright line-shaped red fluorescent component derived from Eu 3+ when combined with a solid-state light emitting element that emits purple or blue light. It becomes possible to provide a light source.
  • the phosphor of this embodiment can be a phosphor containing at least Ce 3+ and Tb 3+ as emission centers.
  • the excitation spectrum of the phosphor has a broad excitation band due to Ce 3+ absorption, and the excitation band preferably has a peak within a range of 400 nm to less than 460 nm.
  • the emission spectrum of the phosphor emits a green fluorescent component due to Tb 3+ , and the emission intensity at a wavelength of 520 nm in the emission spectrum is preferably smaller than 30% of the maximum value of the emission spectrum.
  • the phosphor of the present embodiment can be a phosphor containing at least Ce 3+ , Tb 3+ and Eu 3+ as the emission center.
  • the excitation spectrum of the phosphor has a broad excitation band due to Ce 3+ absorption, and the excitation band preferably has a peak within a range of 400 nm to less than 460 nm.
  • the emission spectrum of the phosphor emits a green fluorescence component due to Tb 3+ and / or a red fluorescence component due to Eu 3+, and the emission intensity at a wavelength of 520 nm in the emission spectrum is smaller than 30% of the maximum value of the emission spectrum. It is preferable.
  • the emission spectrum of the phosphor may have a shape in which a fluorescent component due to Tb 3+ and / or Eu 3+ and a fluorescent component due to Ce 3+ are overlapped.
  • the main fluorescent component due to Ce 3+ is located in a wavelength region of 430 nm or more and less than 550 nm.
  • the phosphor containing Tb 3+ and Eu 3+ should be a phosphor that emits a Tb 3+ fluorescent component and does not emit a Eu 3+ fluorescent component by adjusting the contents of Tb and Eu. You can also. Further, the phosphor may be a phosphor that emits both Tb 3+ and Eu 3+ fluorescence components. Then, the phosphor containing a Tb 3+ and Eu 3+ emits fluorescent component of Eu 3+, further intensity maximum in the fluorescence component of Tb 3+ is less than 10% of the maximum intensity in the fluorescence component of Eu 3+ It can also be. Further, in the phosphor containing Tb 3+ and Eu 3+ , the emission spectrum can be such that the green fluorescence component due to Tb 3+ or the red fluorescence component due to Eu 3+ becomes the maximum value of the emission spectrum.
  • the phosphor of the present embodiment is characterized in that the inorganic oxide functions as a phosphor.
  • a phosphor composed of a solid solution having at least two kinds of compounds of the terbium compound and the europium compound as end components can emit at least a fluorescence component derived from Eu 3+ electron energy transition. Furthermore, a fluorescent component derived from Tb 3+ electron energy transition can also be emitted.
  • the main emission line of the fluorescent component derived from Eu 3+ is preferably in the wavelength range of less than 600 nm 628 nm. And it is preferable that the maximum height of the bright line in the wavelength range of 700 nm or more and less than 720 nm is less than 60%, particularly less than 40% of the maximum height of the main bright line.
  • the Eu 3+ electron energy transition refers to a 5 D 0 ⁇ 7 F j transition due to Eu 3+ 4f 6 electrons.
  • the phosphor of the present embodiment contains at least terbium ions (Tb 3+ ) as the emission center.
  • the emission center preferably contains not only terbium ions (Tb 3+ ) but also cerium ions (Ce 3+ ), and preferably contains europium ions (Eu 3+ ) as necessary.
  • the emission spectrum of the phosphor has a characteristic shape shown in FIGS. 10, 11, and 13 to be described later.
  • the mechanism in which the phosphor of the present embodiment exhibits the characteristic spectra of FIGS. 10, 11 and 13 will be described.
  • Ce 3+ activated phosphors convert absorbed light into long-wavelength light, and the converted light has a wide spectral distribution.
  • Tb 3+ activated phosphor or Eu 3+ activated phosphor converts absorbed light into long-wavelength light, and the converted light consists of a plurality of bright lines.
  • the emission spectrum has a maximum intensity value in a wavelength region of 540 nm or more and less than 560 nm.
  • Eu 3+ activated phosphor has a maximum intensity value in a wavelength region of 580 nm or more and less than 650 nm in an emission spectrum.
  • a light emission component of Tb 3+ and / or Eu 3+ is superimposed on a broad light emission component of Ce 3+ having a peak at 450 nm or more and less than 500 nm and having a relatively low intensity.
  • a characteristic emission spectrum having a linear emission peak in a wavelength region of 535 nm or more and less than 560 nm and / or 580 nm or more and less than 650 nm is shown.
  • Ce 3+ not only acts as a luminescent center, also acts as a sensitizer of Tb 3+, it is possible to increase the emission intensity of Tb 3+ having an emission line shape of the green component. Further, Tb 3+ not only acts as a luminescent center, also acts as a sensitizer of Eu 3+, it is possible to increase the emission intensity of Eu 3+ with bright line shape of the red component. On the other hand, Ce 3+ also has a function of absorbing short-wavelength visible light when present in the crystal lattice of the inorganic oxide.
  • the Ce 3+ and Tb 3+ by the coexistence of the Eu 3+
  • the efficiency of light energy Ce 3+ is absorbed It is often moved to Tb 3+ and / or Eu 3+ .
  • the phosphor according to the present embodiment is a phosphor that emits light by the above-described light emission mechanism, and is a phosphor having a new function that has not existed before.
  • the new function has a broad excitation peak due to Ce 3+ in a short wavelength visible wavelength range, particularly a wavelength range of 400 nm to less than 460 nm, and a green fluorescence component due to Tb 3+ and / or red fluorescence due to Eu 3+. It refers to the function of releasing a component as a main luminescent component.
  • the phosphor of this embodiment preferably absorbs at least one of violet light within a range of 380 nm to less than 420 nm and blue light within a range of 420 nm to less than 470 nm.
  • the wavelength can be converted into light having the maximum value of the emission spectrum within the range of 470 nm to 780 nm.
  • the phosphor of the present embodiment can be used as a slurry, paste, sol, or gel by appropriately mixing with a solvent such as water, an organic solvent, a resin, or water glass.
  • a general phosphor is a compound in which a small amount of an element serving as a luminescent center is added to a compound that functions as a base, and the element added in a small amount emits fluorescence.
  • Ca 2 (Tb, Ce) Zr 2 (AlO 4 ) 3 , Ca 2 (Tb, Ce, Eu) Zr 2 (AlO 4 ) 3, and the like according to this embodiment are inorganic oxides that function as a matrix. It is similar to a general phosphor in that a small amount of specific ions are added.
  • the phosphor of the present embodiment has an unprecedented characteristic that ions (for example, Tb 3+ ions) that form a crystal lattice of the base material emit fluorescence by specific ions (Ce 3+ ions) added in a small amount. It is what has.
  • ions for example, Tb 3+ ions
  • Ce 3+ ions specific ions
  • the light emitting device includes the rare earth aluminum garnet type phosphor.
  • the phosphor of the present embodiment can be excited by short-wavelength visible light and emits light having a narrow-band emission spectrum. For this reason, in the light-emitting device of this embodiment, it becomes possible to output light having a narrow-band emission spectrum component by combining a light-emitting element that emits short-wavelength visible light and the phosphor.
  • the light emitting device widely includes electronic devices having a function of emitting light, and is not particularly limited as long as it is an electronic device that emits some light. That is, the light-emitting device of the present embodiment is a light-emitting device that uses at least the phosphor of the present embodiment and further uses the fluorescence emitted by the phosphor as at least output light.
  • the light-emitting device of this embodiment is a combination of a solid-state light-emitting element that emits short-wavelength visible light and the phosphor. And the said fluorescent substance absorbs the short wavelength visible light which a solid light emitting element emits, and wavelength-converts the absorbed short wavelength visible light into the light of longer wavelength than it.
  • the excitation spectrum of the phosphor preferably has a maximum value in a short wavelength visible range of 380 nm to 470 nm, particularly 400 nm to 460 nm.
  • the excitation spectrum when the excitation spectrum is measured in the range of 220 nm to less than 470 nm, particularly in the range of 300 nm to less than 470 nm, the excitation spectrum may have a maximum value in the short wavelength visible range of 380 nm to less than 470 nm, particularly 400 nm to less than 460 nm preferable.
  • the emission spectrum of the phosphor preferably includes a spectral component derived from Tb 3+ electron energy transition. Further, the emission spectrum of the phosphor preferably has a half-value width of a spectral component in the range of 535 nm or more and less than 560 nm, preferably 1/5 spectral width, more preferably 1/10 spectral width is 3 nm or more and less than 30 nm. . And it is preferable that the maximum intensity
  • the electronic energy transition of Tb 3+ refers to 5 D 4 ⁇ 7 F j transition by 4f 8 electrons Tb 3+.
  • the emission spectrum of the phosphor preferably includes a spectral component derived from the Eu 3+ electron energy transition.
  • the emission spectrum of the phosphor may have a maximum value of the emission spectrum in a range of 600 nm or more and less than 628 nm. That is, the main emission line of the fluorescent component can be red light in the wavelength range of 600 nm or more and less than 628 nm.
  • the Eu 3+ electron energy transition refers to a 5 D 0 ⁇ 7 F j transition by Eu 3+ 4f 6 electrons.
  • LEDs such as fluorescent lamps, electron tubes, plasma display panels (PDPs), white LEDs, and detection devices that use phosphors.
  • illumination light sources, illumination devices, display devices, and the like that use phosphors are also light emitting devices, and projectors equipped with laser diodes and liquid crystal displays equipped with LED backlights are also regarded as light emitting devices.
  • the light-emitting device of this embodiment can be classified according to the type of fluorescence emitted by the phosphor, this classification will be described.
  • Fluorescence phenomena used in electronic devices are academically divided into several categories, and are distinguished by terms such as photoluminescence, cathodoluminescence, and electroluminescence.
  • Photoluminescence is fluorescence emitted from a phosphor when the phosphor is irradiated with electromagnetic waves.
  • electromagnetic wave collectively refers to X-rays, ultraviolet rays, visible light, infrared rays, and the like.
  • Cathodoluminescence is the fluorescence emitted from a phosphor when the phosphor is irradiated with an electron beam.
  • Electroluminescence refers to fluorescence emitted when electrons are injected into a phosphor or an electric field is applied.
  • thermoluminescence fluorescence close to photoluminescence, which means fluorescence emitted by the phosphor when heat is applied to the phosphor.
  • radioluminescence radioluminescence in principle as fluorescence close to cathodoluminescence, which means fluorescence emitted by the phosphor when the phosphor is irradiated with radiation.
  • the light emitting device uses at least the fluorescence emitted from the rare earth aluminum garnet type phosphor as output light. Since the fluorescence here can be classified at least as described above, the fluorescence can be replaced with at least one fluorescence phenomenon selected from the luminescence.
  • Typical examples of the light emitting device that uses the photoluminescence of the phosphor as output light include an X-ray image intensifier, a fluorescent lamp, a white LED, a semiconductor laser projector using a phosphor and a laser diode, and a PDP. .
  • Typical examples of a light emitting device that uses cathodoluminescence as output light include an electron tube, a fluorescent display tube, and a field emission display (FED).
  • typical examples of a light-emitting device that uses electroluminescence as output light include inorganic electroluminescence displays (inorganic EL), light-emitting diodes (LED), semiconductor lasers (LD), and organic electroluminescence elements (OLED).
  • an inorganic electroluminescent display can be mentioned, for example.
  • FIG. 1 schematically shows a light emitting device according to this embodiment.
  • an excitation source 1 is a light source that generates primary light for exciting the phosphor 2 of the present embodiment.
  • the excitation source 1 emits electromagnetic waves such as particle beams such as ⁇ rays, ⁇ rays, electron beams, ⁇ rays, X rays, vacuum ultraviolet rays, ultraviolet rays, visible light (especially short wavelength visible light such as violet light and blue light).
  • a radiating device can be used.
  • various radiation generators, electron beam emitters, discharge light generators, solid state light emitting elements, solid state light emitters, and the like can be used.
  • Typical examples of the excitation source 1 include an electron gun, an X-ray tube, a rare gas discharge device, a mercury discharge device, a light emitting diode, a laser light generator including a semiconductor laser, and an inorganic or organic electroluminescence element. It is done.
  • output light 4 is excitation light emitted by the excitation source 1 or fluorescence emitted by the phosphor 2 excited by the excitation light 3.
  • the output light 4 is used as illumination light or display light in the light emitting device.
  • FIG. 1A shows a light emitting device having a structure in which output light 4 from the phosphor 2 is emitted in a direction in which the phosphor 2 is irradiated with excitation rays or excitation light 3.
  • a white LED light source a fluorescent lamp, an electron tube, etc.
  • FIG. 1B shows a light emitting device having a structure in which the output light 4 from the phosphor 2 is emitted in a direction opposite to the direction in which the phosphor 2 is irradiated with excitation lines or excitation light 3.
  • Examples of the light emitting device shown in FIG. 1B include a plasma display device, a light source device using a phosphor wheel with a reflector, and a projector.
  • Preferred examples of the light emitting device of this embodiment are a semiconductor light emitting device, an illumination light source, an illumination device, a liquid crystal panel with an LED backlight, an LED projector, a laser projector, and the like configured using a phosphor.
  • a particularly preferred light-emitting device has a structure that excites a phosphor with short-wavelength visible light, and the short-wavelength visible light has a structure that a solid-state light emitting element emits.
  • FIG. 2 is a cross-sectional view schematically showing a semiconductor light emitting device which is a specific example of the light emitting device according to the present embodiment.
  • FIG. 2 is a cross-sectional view, hatching indicating a cross section of the translucent resin 10 is omitted in consideration of easy viewing of the drawing.
  • the substrate 5 serves as a base for fixing the solid state light emitting element 6. Then, the substrate 5, ceramics such as Al 2 O 3 and AlN, a metal such as Al and Cu, as well as glass, and a resin such as silicone resin and filler-containing silicone resin.
  • a wiring conductor 7 is provided on the substrate 5, and the solid-state light emitting element 6 is supplied with power by electrically connecting the power supply electrode 8 of the solid-state light emitting element 6 and the wiring conductor 7 using a gold wire or the like. ing.
  • the solid-state light emitting element 6 that is a light source that generates primary light has a power supply that applies at least one of a voltage selected from direct current, alternating current, and pulse to convert electrical energy into light such as near ultraviolet light, purple light, or blue light. It is an electro-optic conversion element that converts energy.
  • a voltage selected from direct current, alternating current, and pulse to convert electrical energy into light such as near ultraviolet light, purple light, or blue light.
  • It is an electro-optic conversion element that converts energy.
  • an LED, an LD, an inorganic electroluminescence (EL) element, an organic EL element, or the like can be used.
  • the solid-state light emitting element 6 is preferably an LED or an LD.
  • FIG. 2 shows a configuration in the case where the solid light emitting element 6 is an LED having an InGaN compound as a light emitting layer.
  • the wavelength conversion layer 9 includes the phosphor 2 made of a fluorescent material, and converts the wavelength of the primary light emitted from the solid light emitting element 6 into light that has moved relatively to the longer wavelength side. As shown in FIG. 2, the wavelength conversion layer 9 is surrounded by the side wall 11, and the phosphor particles according to the present embodiment are dispersed in the translucent resin 10. Note that the wavelength conversion layer 9 in the semiconductor light emitting device of the present embodiment can be configured by including a phosphor in a resin phosphor film, a translucent phosphor ceramic, a phosphor glass, or the like.
  • the phosphor according to the present embodiment can be used alone as the phosphor 2, but if necessary, a phosphor different from the phosphor according to the present embodiment may be included. . Further, a plurality of rare earth aluminum garnet-type phosphors that are different in any one of the emission color and composition may be used in combination.
  • the primary light emitted from the solid light emitting element 6 is absorbed and wavelength-converted to light relatively moved to the longer wavelength side. If it is a fluorescent substance, it will not specifically limit.
  • the light emitting color is appropriately selected from various phosphors that emit blue light, green blue light, blue green light, green light, yellow light, orange light, and red light so that the semiconductor light emitting device emits output light of a desired color. Can be.
  • a phosphor for a semiconductor light emitting device when the solid light emitting element 6 is an LED or an LD not only the phosphor of this embodiment but also an oxide or acid halogen activated by at least one of Eu 2+ and Ce 3+
  • An oxide-based phosphor such as fluoride can be used.
  • a nitride-based phosphor such as nitride or oxynitride activated by at least one of Eu 2+ and Ce 3+
  • a sulfide-based phosphor such as sulfide or oxysulfide is used. be able to.
  • BaMgAl 10 O 17 Eu 2+
  • CaMgSi 2 O 6 Eu 2+
  • Ba 3 MgSi 2 O 8 Eu 2+
  • Sr 10 (PO 4 ) 6 Cl 2 Eu 2+ and the like.
  • Examples of the green-blue or blue-green phosphor include Sr 4 Si 3 O 8 Cl 4 : Eu 2+ , Sr 4 Al 14 O 24 : Eu 2+ , BaAl 8 O 13 : Eu 2+ , and Ba 2 SiO 4 : Eu 2+ .
  • BaZrSi 3 O 9 Eu 2+ , Ca 2 YZr 2 (AlO 4 ) 3 : Ce 3+ , Ca 2 YHf 2 (AlO 4 ) 3 : Ce 3+ , Ca 2 YZr 2 (AlO 4) ) 3 : Ce 3+ , Tb 3+
  • the green phosphor include (Ba, Sr) 2 SiO 4 : Eu 2+ , Ca 8 Mg (SiO 4 ) 4 Cl 2 : Eu 2+ , and Ca 8 Mg (SiO 4 ) 4 Cl 2 : Eu 2+ , Mn 2+. .
  • the green phosphor BaMgAl 10 O 17 : Eu 2+ , Mn 2+ , CeMgAl 11 O 19 : Mn 2+ , Y 3 Al 2 (AlO 4 ) 3 : Ce 3+ , Lu 3 Al 2 (AlO 4 ) 3 : Ce 3+ .
  • Y 3 Ga 2 (AlO 4 ) 3 Ce 3+ , Ca 3 Sc 2 Si 3 O 12 : Ce 3+ , CaSc 2 O 4 : Ce 3+ , ⁇ -Si 3 N 4 : Eu 2+ , SrSi 2 O 2 N 2 : Eu 2+ .
  • Examples of the green phosphor include Ba 3 Si 6 O 12 N 2 : Eu 2+ , Sr 3 Si 13 Al 3 O 2 N 21 : Eu 2+ , YTbSi 4 N 6 C: Ce 3+ , and SrGa 2 S 4 : Eu 2+.
  • Examples of the green phosphor include Ca 2 LaZr 2 (AlO 4 ) 3 : Ce 3+ , Ca 2 TbZr 2 (AlO 4 ) 3 : Ce 3+ , Ca 2 TbZr 2 (AlO 4 ) 3 : Ce 3+ , and Pr 3+ .
  • yellow or orange phosphors examples include (Sr, Ba) 2 SiO 4 : Eu 2+ , (Y, Gd) 3 Al 5 O 12 : Ce 3+ , and ⁇ -Ca—SiAlON: Eu 2+ .
  • yellow or orange phosphors examples include Y 2 Si 4 N 6 C: Ce 3+ , La 3 Si 6 N 11 : Ce 3+ , Y 3 MgAl (AlO 4 ) 2 (SiO 4 ): Ce 3+ .
  • a low-cost semiconductor light emitting device can be realized by using all the phosphors used as oxides.
  • the rare earth aluminum garnet type phosphor of the present embodiment has a peak or maximum value of an excitation spectrum in a wavelength region of 380 nm or more and less than 470 nm. Therefore, the light emitting device according to the present embodiment includes a wavelength conversion layer 9 including at least the solid light emitting element 6 that emits purple or blue light having an emission peak in a wavelength region of 380 nm or more and less than 470 nm, and the phosphor 2 of the present embodiment. It is preferable to comprise.
  • a solid light emitting element and a fluorescent substance.
  • a combination of a blue phosphor, a green phosphor and a red phosphor a combination of a blue green phosphor, a green phosphor and a yellow phosphor, a blue green phosphor and a green phosphor, A combination with a red phosphor and a combination of a green phosphor and a red phosphor are preferred.
  • a combination of a blue-green phosphor, a yellow phosphor, and a red phosphor, and a combination of a yellow phosphor and a red phosphor are preferable for the purple solid light-emitting element.
  • a combination of a green phosphor and a yellow phosphor, a combination of a green phosphor and a red phosphor, a combination with a green phosphor, a combination of a yellow phosphor and a red phosphor, etc. is preferred.
  • the rare earth aluminum garnet type phosphor of this embodiment is used as the green phosphor, blue-green phosphor, or red phosphor.
  • the phosphor of the present embodiment may be a phosphor that emits at least a green light component and a red light component. Therefore, in the semiconductor light emitting device of this embodiment, the above-described combination of the green phosphor and the red phosphor can be replaced with the phosphor of this embodiment. Further, instead of the combination of the green phosphor and the red phosphor, the phosphor of the present embodiment can be used alone. In addition, when the phosphor of this embodiment is used alone, it is not necessary to use a plurality of phosphors, so that the manufacturing process of the semiconductor light emitting device can be simplified.
  • the solid state light emitting element 6 is fixed on the substrate 5 on which the wiring conductor 7 is formed by using a mounting technique.
  • the power supply electrode 8 of the solid light emitting element 6 and the wiring conductor 7 are electrically connected using a wire bonding technique or the like.
  • a light-transmitting resin 10 such as a silicone resin and the phosphor 2 are sufficiently mixed to produce a phosphor paste adjusted to have a predetermined viscosity.
  • the weight ratio of the phosphor 2 in the phosphor paste is set to several% to several tens%.
  • the phosphor paste is dropped on the solid light emitting element 6, the light extraction surface of the solid light emitting element 6 is covered with the phosphor paste, and the phosphor paste is dried to solidify. Thereby, the semiconductor light-emitting device in which the wavelength conversion layer 9 is formed can be obtained.
  • the solid light emitting element 6 when the solid light emitting element 6 is energized and supplied with predetermined power, the solid light emitting element 6 emits primary light of short wavelength visible light. That is, the solid state light emitting device 6 emits violet light having an emission peak in a range of 380 nm to 420 nm, or blue light having an emission peak in a range of 420 nm to less than 470 nm.
  • the primary light is wavelength-converted by the phosphor 2 into light of at least one of blue-green, green and red with high conversion efficiency.
  • the primary light is applied to the phosphor 2 included in the wavelength conversion layer 9 and part of the phosphor is absorbed by the phosphor 2.
  • the primary light absorbed by the phosphor 2 is wavelength-converted by the phosphor 2 into light relatively moved to the longer wavelength side (low energy side). Then, the light wavelength-converted by the phosphor 2 passes through the translucent resin 10 and is emitted from the semiconductor light emitting device.
  • primary light that has not been absorbed by the phosphor 2 also passes through the translucent resin 10 and is emitted from the semiconductor light emitting device.
  • both the wavelength-converted light from the phosphor 2 and the primary light that has not been absorbed by the phosphor 2 are emitted from the semiconductor light emitting device. That is, the semiconductor light emitting device outputs a light component in which both of these are added and mixed.
  • the thickness and light transmittance of the wavelength conversion layer 9, the type and mixing ratio of the phosphors 2 contained in the wavelength conversion layer 9, the wavelength of the primary light emitted from the solid light emitting element, and the like can be adjusted as appropriate. Therefore, the light source may be designed so that illumination light of a desired light source color or white color can be obtained. In some cases, all of the primary light is absorbed by the phosphor and wavelength-converted. In this case, the emitted light from the semiconductor light emitting device is only the light that has been wavelength-converted by the phosphor.
  • FIGS. 3 to 6 show an example of the spectral distribution of the output light emitted by the semiconductor light emitting device of this embodiment.
  • the semiconductor light emitting device of this embodiment preferably emits a violet or blue light component having an emission peak in a wavelength region of 380 nm or more and less than 470 nm by the solid light emitting element.
  • the semiconductor light emitting device preferably emits a green light component having an emission peak in a wavelength region of 535 nm or more and less than 560 nm, particularly 540 nm or more and less than 555 nm, depending on the phosphor. Therefore, in the semiconductor light emitting device shown in FIGS.
  • FIGS. 3 to 6 show a purple light component 12 having an emission peak in the wavelength region of 380 nm to less than 420 nm and a blue light component having an emission peak in the wavelength region of 420 nm to less than 470 nm.
  • the light component 13 is shown.
  • FIGS. 3 to 6 show a green light component 14 having an emission peak in a wavelength region of 535 nm or more and less than 560 nm.
  • FIGS. 3 and 4 show spectral distributions in the case of emitting a three-wavelength white output light having a correlated color temperature of 6700 K corresponding to a daylight color.
  • an InGaN purple LED having an emission layer of an InGaN-based compound that emits purple light is used as the solid-state light emitting element.
  • the output peak wavelength of the InGaN purple LED is 405 nm.
  • the phosphor a rare earth aluminum garnet type phosphor that emits green light by Tb 3+ and a red phosphor are used.
  • 3 and 4 show a case where Eu 3+ activated phosphor and a case where Eu 2+ activated phosphor are used as the red phosphor, respectively.
  • the solid line a shown in FIG. 3 indicates an InGaN purple LED, an Eu 2+ activated phosphor that emits a blue light component, a phosphor of the present embodiment that emits a green light component, and an Eu 3+ activated phosphor that emits a red light component.
  • the spectral distribution in the case of combining (La 2 O 2 S: Eu 3+ ) is shown.
  • BaMgAl 10 O 17 : Eu 2+ is used as the Eu 2+ activated phosphor that emits a blue light component, and has an emission peak in the vicinity of 450 nm.
  • Ca 2 TbZr 2 (AlO 4 ) 3 : Ce 3+ is used and has a main emission peak in the vicinity of 545 nm.
  • La 2 O 2 S: Eu 3+ is used as the Eu 3+ activated phosphor that emits a red light component, and has an emission peak in the vicinity of 625 nm.
  • a broken line b shown in FIG. 3 is a spectral distribution when a pseudo white output light having a correlated color temperature of 6700 K is emitted as a reference example.
  • an InGaN blue LED output peak wavelength: 450 nm
  • a YAG: Ce phosphor that emits a yellow-green light component having an emission peak near 555 nm is used as the phosphor.
  • the white output light shown as a solid line a has an average color rendering index Ra of 87
  • the pseudo white output light of the reference example shown as a broken line b has Ra of 77. Therefore, the white output light indicated by the solid line a in FIG. 3 has a sufficiently high Ra value and can be used as illumination light close to natural light. 3 is similar to the spectral distribution emitted by a three-wavelength fluorescent lamp having a proven track record as a light source that achieves both high color rendering properties and high efficiency. Therefore, according to this embodiment, it is possible to obtain illumination light that is comparable to a three-wavelength fluorescent lamp.
  • a solid line c in FIG. 4 represents an InGaN purple LED, a Eu 2+ activated phosphor that emits a blue light component, a phosphor of the present embodiment that emits a green light component, and an Eu 2+ activated component that emits a red light component.
  • the spectral distribution when combined with a phosphor is shown.
  • BaMgAl 10 O 17 : Eu 2+ is used as the Eu 2+ activated phosphor that emits a blue light component, and has an emission peak in the vicinity of 450 nm.
  • FIG. 4 also shows the spectral distribution (dashed line b) of pseudo white output light having a correlated color temperature of 6700K.
  • the white output light indicated by the solid line c has an average color rendering index Ra of 85, whereas the pseudo white output light of the reference example indicated by the broken line b has Ra of 77. Therefore, the white output light indicated by the solid line c in FIG. 4 has a sufficiently high Ra value and can be used as illumination light close to natural light.
  • the semiconductor light emitting device of FIGS. 5 and 6 includes two InGaN violet LEDs having a light emitting layer of an InGaN compound emitting violet light and InGaN blue LEDs having an light emitting layer of an InGaN compound emitting blue light as solid light emitting elements. It has.
  • the output peak wavelength of the InGaN purple LED is 405 nm
  • the output peak wavelength of the InGaN blue LED is 450 nm.
  • FIG. 5 and FIG. 6 use a phosphor of the present embodiment that emits green light of Tb 3+ and a red phosphor to emit a three-wavelength white output light having a correlated color temperature of 6700 K corresponding to a daylight color.
  • the spectral distribution in the case of FIGS. 5 and 6 show a case where Eu 3+ activated phosphor and Eu 2+ activated phosphor are used as red phosphors, respectively.
  • the solid line d shown in FIG. 5 shows the spectral distribution in the case of combining the InGaN purple LED, the InGaN blue LED, the phosphor of the present embodiment that emits the green light component, and the Eu 3+ activated phosphor that emits the red light component.
  • Ca 2 TbZr 2 (AlO 4 ) 3 uses a Ce 3+, having a main emission peak around 545 nm.
  • La 2 O 2 S: Eu 3+ is used as the Eu 3+ activated phosphor that emits a red light component, and has an emission peak in the vicinity of 625 nm.
  • FIG. 5 also shows the spectral distribution (dashed line b) of pseudo white output light having a correlated color temperature of 6700K.
  • the white color output light shown as a solid line d in FIG. 5 has an average color rendering index Ra of 86. Therefore, since the numerical value of Ra is sufficiently higher than the pseudo white output light of the reference example indicated by the broken line b, the white output light indicated by the solid line d in FIG. 5 can be used as illumination light close to natural light. .
  • the white output light indicated by the solid line d in FIG. 5 is similar to the spectral distribution emitted by the three-wavelength fluorescent lamp. Therefore, according to this embodiment, it is possible to obtain illumination light that is comparable to a three-wavelength fluorescent lamp.
  • the solid line e in FIG. 6 shows the case where the InGaN purple LED, the InGaN blue LED, the phosphor of the present embodiment that emits the green light component, and the Eu 2+ activated phosphor that emits the red light component are combined.
  • the spectral distribution is shown.
  • Ca 2 TbZr 2 (AlO 4 ) 3 uses a Ce 3+, having a main emission peak around 545 nm.
  • the Eu 2+ activated phosphor that emits a red light component CaAlSiN 3 : Eu 2+ is used, and has an emission peak in the vicinity of 650 nm.
  • FIG. 6 also shows the spectral distribution (dashed line b) of pseudo white output light having a correlated color temperature of 6700K.
  • the white output light shown as a solid line e in FIG. 6 has an average color rendering index Ra of 85. Therefore, since the numerical value of Ra is sufficiently higher than the pseudo white output light of the reference example indicated by the broken line b, the white output light indicated by the solid line e in FIG. 6 can be used as illumination light close to natural light. .
  • the white output light of the semiconductor light emitting device according to the present embodiment indicated by a solid line includes a blue wavelength region near 450 nm, a green wavelength region near 540 nm, and a 620 nm or 650 nm region. It becomes a three-wavelength shape having a peak in the red wavelength region. For this reason, it is possible to use a strong light component of red, green and blue as a light source for multicolor display having a wide color gamut and high light output.
  • the white output light indicated by the solid lines a and d in FIGS. 3 and 5 has an optical component with a narrow spectral distribution in the vicinity of 450 nm, 550 nm, and 620 nm, which is advantageous in terms of high output. That is, the white output light indicated by solid lines a and d in FIGS. 3 and 5 has a luminous flux improvement effect of about 25% with respect to the white output light indicated by solid lines c and e in FIGS. . Note that this luminous flux enhancement effect can be calculated by using a calculation formula that considers the visual sensitivity in the spectral distributions of FIGS. 3 to 6 adjusted so that the total number of photons is constant.
  • the light emitting device of this embodiment can be a light emitting device with higher efficiency by using at least the rare earth aluminum garnet type phosphor of this embodiment and the Eu 3+ activated phosphor.
  • CaAlSiN 3 : Eu 2+ can be used as the Eu 2+ activated phosphor having an emission peak near 650 nm, which is used in the semiconductor light emitting device according to FIGS.
  • a nitride silicate phosphor activated with Eu 2+ (Sr 2 Si 5 N 8 : Eu 2+ etc.) or a nitride aluminosilicate phosphor activated with Eu 2+ ((Sr, Ca) AlSiN 3 : Eu 2+ , SrAlSi 4 N 7 : Eu 2+, etc.) can also be used.
  • La 2 O 2 S: Eu 3+ can be used as the Eu 3+ activated red phosphor used in the semiconductor light emitting device according to FIGS. 3 and 5.
  • the phosphor of the present embodiment that emits a Eu 3+ red fluorescent component, and other Eu 3+ activated red phosphors can also be used.
  • the phosphor of the present embodiment may have both Tb 3+ and Eu 3+ fluorescence components.
  • the present embodiment has a combination of phosphors emitting green light by Tb 3+ and Eu 3+ activated phosphors used in the semiconductor light emitting device according to FIGS. 3 and 5 together with Tb 3+ and Eu 3+ fluorescence components. It is also possible to substitute the phosphor.
  • the light emitting device of the present embodiment uses the rare earth aluminum garnet type phosphor of the present embodiment, particularly the aluminum garnet type phosphor that emits fluorescence by at least one of Tb 3+ and Eu 3+ .
  • the means for obtaining the spectral distribution shown in FIGS. 3 to 6 is not particularly limited.
  • the spectral distribution shown in FIGS. 3 and 4 can be obtained by a semiconductor light emitting device in which a purple LED and a fluorescent film are combined so that the fluorescent film includes a plurality of phosphors.
  • the phosphor for example, a combination of a blue phosphor, a green phosphor and a red phosphor, or a combination of a blue phosphor and a phosphor emitting a green fluorescence component and a red fluorescence component is used. can do.
  • the spectral distribution shown in FIGS. 3 and 4 can be obtained by combining semiconductor light-emitting devices that are composed of a purple LED and a fluorescent film, and phosphors contained in the fluorescent film are different from each other.
  • the former is a simple semiconductor light emitting device in terms of configuration, and the latter is a semiconductor light emitting device with easy color tone control.
  • the spectral distribution shown in FIGS. 5 and 6 is obtained by a semiconductor light emitting device in which a purple LED, a blue LED, and a fluorescent film are combined, and the purple LED and the blue LED simultaneously excite phosphors in the fluorescent film. be able to.
  • a semiconductor light emitting device in which a purple LED, a blue LED, and a fluorescent film are combined, and the purple LED and the blue LED simultaneously excite phosphors in the fluorescent film.
  • the phosphor film for example, a combination of a green phosphor and a red phosphor, or a phosphor that emits a green phosphor component and a red phosphor component can be used.
  • the former is a semiconductor light emitting device that is easy to manufacture, and the latter is a semiconductor light emitting device that is easy to control color tone.
  • the semiconductor light emitting device includes a solid-state light emitting element that emits purple and / or blue light, and light of a bright line-like green light component and / or red light component that absorbs the light. Combined with a phosphor that emits light. Therefore, at least one of the bright line-shaped green light component having an emission peak at 535 nm to less than 560 nm and the bright line-shaped red light component having an emission peak at 600 nm to less than 628 nm is emitted.
  • the bright-line green light component has high visibility. And since the semiconductor light-emitting device of this embodiment can discharge
  • the bright line-shaped red light component has a spectrum concentrated in a wavelength region having relatively high visibility among red light.
  • the semiconductor light-emitting device of this embodiment can discharge
  • the illumination device that emits warm-colored light promotes a high luminous flux.
  • the semiconductor light emitting device of this embodiment can be widely used for illumination light sources, backlights for liquid crystal displays, light sources for display devices, and the like.
  • the phosphor according to the present embodiment can emit light having a bright green light component and a red light component, unlike the green phosphor and the red phosphor exclusively used in the conventional solid state illumination. . Therefore, when the phosphor is used as an illumination light source or the like, it is possible to provide an illumination light source with high color rendering properties and high efficiency, and a display device capable of displaying a wide color gamut on a high luminance screen.
  • Such an illumination light source can be configured by combining the semiconductor light-emitting device of the present embodiment, a lighting circuit for operating the semiconductor light-emitting device, and a connection component for a lighting fixture such as a base. Moreover, if a lighting fixture is combined as needed, it will also comprise an illuminating device and an illumination system.
  • the display device can be configured by combining the semiconductor light emitting device of this embodiment arranged in a matrix and a signal circuit for turning on and off these semiconductor light emitting devices.
  • examples of the display device include a liquid crystal panel with an LED backlight function. That is, the display device uses the semiconductor light emitting device of the present embodiment as a backlight by arranging the semiconductor light emitting device in a line shape or a matrix shape. A backlight, a lighting circuit for turning on the backlight, or a control circuit for ON / OFF control of the backlight, and a liquid crystal panel are combined.
  • FIG. 7 is a diagram schematically showing a light source device 100 which is a specific example of the light emitting device according to the present embodiment.
  • a fluorescent plate 15 is a fluorescent plate using the phosphor 2 of the present embodiment. That is, the fluorescent plate 15 is formed by forming the phosphor 2 layer on one surface of the substrate 16.
  • the first light source 17a is a light source for exciting the phosphor, and is, for example, the solid state light emitting element 6 having an emission peak at 380 nm or more and less than 470 nm.
  • the short wavelength visible light emitted from the first light source 17 a is directly or indirectly applied to the phosphor 2 formed on the fluorescent plate 15. And the green or red light component wavelength-converted by the fluorescent substance 2 is output.
  • a plurality of first light sources 17a are provided.
  • the short wavelength visible light emitted from the first light source 17 a is reflected by the reflection mirror 18, collected by the first lens 19 a, and then irradiated to the phosphor 2 formed on one side of the fluorescent plate 15.
  • a reflective surface 20 is provided on the surface of the fluorescent plate 15 where the phosphor 2 is not provided.
  • the reflection surface 20 reflects the light component emitted from the phosphor 2 (for example, the bright line-like green or red light component) in the direction opposite to the direction of the short wavelength visible light emitted from the first light source 17a.
  • the light component emitted from the phosphor 2 reflected by the reflecting surface 20 is condensed by the first condenser lens 20a. Thereafter, the light component is repeatedly converted and condensed by the first optical axis conversion mirror 21a, the second lens 19b, the second optical axis conversion mirror 21b, the third lens 19c, and the third optical axis conversion mirror 21c. Made. The light component is emitted from the light source device 100 after entering the incident lens 22.
  • the phosphor 2 is sufficiently absorbed by the phosphor 2 by increasing the thickness of the film so that the violet light emitted by the first light source 17a is sufficiently absorbed. As a result, a green or red light component with good color purity is emitted from the light source device 100.
  • a blue light component and a red or green light component may be emitted through the incident lens 22.
  • the blue light component can be emitted from the light source device 100 as follows. First, after the first light source 17a is divided into a purple LD and a blue LD, the blue light component emitted by the blue LD is transmitted through the fluorescent plate 15. Then, after the blue light component is condensed and optical axis converted by the second condenser lens 20b, the fourth optical axis conversion mirror 21d, and the fourth lens 19d, the blue light component may be emitted from the incident lens 22.
  • the fluorescent plate 15 can be rotated by using a motor 23 or the like.
  • the fluorescent plate 15 is divided into a region in which the phosphor 2 is irradiated with short-wavelength visible light emitted from the first light source 17a and a region that passes through the phosphor plate 15 without irradiating the phosphor 2 with the short-wavelength visible light. It is preferable.
  • the first light source 17a divided into the purple LD and the blue LD is controlled to emit purple light and blue light alternately. Then, the alternating light and the two regions are synchronized, and the fluorescent plate 15 is rotated so that the violet light is applied to the phosphor 2 and the blue light passes through the fluorescent plate 15. Thereby, blue light and green light or red light resulting from the phosphor 2 can be emitted from the light source device 100.
  • the red light component can be emitted from the light source device 100 as follows. First, as shown in FIG. 7, a second light source 17b such as a red LED that emits red light is provided. Next, the red light component emitted from the second light source 17b is repeatedly collected and converted by the second lens 19b, the second optical axis conversion mirror 21b, the third lens 19c, and the third optical axis conversion mirror 21c. Is made. Then, the red light component is emitted from the light source device 100.
  • a second light source 17b such as a red LED that emits red light
  • the red light component emitted from the second light source 17b is repeatedly collected and converted by the second lens 19b, the second optical axis conversion mirror 21b, the third lens 19c, and the third optical axis conversion mirror 21c. Is made. Then, the red light component is emitted from the light source device 100.
  • a light source device for multicolor display by controlling the output of the first light source 17a, the output of the second light source 17b, and the rotation speed of the fluorescent plate 15, the light components of red, green, and blue that are the three primary colors of light are controlled and emitted.
  • Such a light source device can be used for a projector type display device (LED projector or laser projector). That is, the light emitted from the light source device 100 is collected on a micromirror display element called a light modulation element (digital micromirror device: DMD) (not shown) or a liquid crystal plate. Then, by projecting the light-modulated light onto a screen (not shown) or the like, a display image synchronized with the modulation signal can be obtained. Since such a display device has a high proportion of green light component or red light component having high visibility, it is possible to display a bright and excellent image.
  • a light modulation element digital micromirror device: DMD
  • DMD digital micromirror device
  • the light source device of this embodiment is not limited to the light source device of FIG.
  • the first light source 17a can be configured as an LED that emits short-wavelength visible light
  • the second light source 17b can be configured as a red LD.
  • the fluorescent plate 15 is divided into a region having a phosphor and a region through which short-wavelength visible light passes without being irradiated to the phosphor, and the fluorescent plate 15 can be rotated.
  • the first light source 17a is an LD that emits short-wavelength visible light.
  • green light and red light are emitted by irradiating the phosphor with the short-wavelength visible light, and further blue light is emitted from the blue LD. Therefore, the controlled red, green, and blue light components, respectively. Can be released.
  • the first light source 17a may be a purple LD
  • the fluorescent plate 15 may be provided with a region including a blue phosphor, a green phosphor, and a red phosphor.
  • the blue light, the green phosphor, and the red phosphor are irradiated with the purple light emitted from the purple LD, so that blue light, green light, and red light can be emitted.
  • the light emitting device of the present embodiment has good characteristics in terms of visibility and visibility of the green or red light component, and thus can be widely used in addition to the semiconductor light emitting device and the light source device described above. .
  • the rare earth aluminum garnet-type phosphors of Examples and Comparative Examples were synthesized using a preparation method using a solid phase reaction, and their characteristics were evaluated.
  • the following compound powder was used as a raw material.
  • Yttrium oxide (Y 2 O 3 ) purity 3N, manufactured by Shin-Etsu Chemical Co., Ltd.
  • Cerium oxide (CeO 2 ) purity 4N, manufactured by Shin-Etsu Chemical Co., Ltd.
  • Europium oxide (Eu 2 O 3 ) purity 3N, Shin-Etsu Chemical Co., Ltd.
  • Company-made terbium oxide (Tb 4 O 7 ) purity 4N, Shin-Etsu Chemical Co., Ltd. aluminum oxide ( ⁇ -Al 2 O 3 ): purity 4N5, Sumitomo Chemical Co., Ltd.
  • AKP-G008 manufactured by Sumitomo Chemical Co., Ltd. was used as the aluminum oxide for the purpose of increasing the reactivity between raw materials.
  • the following compound powder was used as a reaction accelerator.
  • Example 1 and Example 2 First, each raw material and reaction accelerator were weighed at the ratio shown in Table 1. Next, using a ball mill, these raw materials and reaction accelerator were sufficiently wet mixed with an appropriate amount of pure water. And the raw material after mixing was moved to the container, and was dried at 120 degreeC overnight using the dryer. The mixed raw material after drying was pulverized using a mortar and pestle to obtain a baking raw material. Thereafter, the firing raw material was transferred to an alumina crucible with a lid, and fired in a 1600 ° C. atmosphere for 4 hours using a box-type electric furnace. In this way, the compounds of Examples 1 and 2 were prepared.
  • a known YAG (Y 3 Al 2 (AlO 4 ) 3 ) was prepared in the same manner as in Examples 1 and 2.
  • FIG. 8 shows X-ray diffraction (XRD) patterns of the compounds of Examples 1 and 2 and YAG as a comparative example.
  • the XRD pattern was evaluated using an X-ray diffractometer (product name: MultiFlex, manufactured by Rigaku Corporation).
  • Example 1 the XRD pattern of Example 1 is shown as (a), and the XRD pattern of Example 2 is shown as (b). Further, the XRD pattern of the comparative example is shown as (c), and the Al 5 Y 3 O 12 pattern (PDF No. 33-0040) registered in PDF (Power Diffraction Files) is shown as (d).
  • the XRD patterns of Examples 1 and 2 are the XRD pattern of YAG and Al 5 Y 3 O 12 as a comparative example.
  • the pattern features coincide with the features of the shape. That is, in the XRD patterns of the compounds of Examples 1 and 2, although the diffraction peak intensity ratio is different from that of the comparative example and Al 5 Y 3 O 12 , the number of diffraction peaks is not excessive or insufficient.
  • the XRD patterns of Examples 1 and 2 have shapes in which each diffraction peak in the XRD pattern of Comparative Example and Al 5 Y 3 O 12 is moved to the lower angle side as a whole. In FIG. 8, the correspondence between the diffraction peaks is indicated by an arrow.
  • Such coincidence of XRD patterns indicates that the compounds of Examples 1 and 2 are compounds having the same meteorite structure as Y 3 Al 2 (AlO 4 ) 3 .
  • the compound of Example 1 is a compound represented by Ca 2 TbZr 2 (AlO 4 ) 3
  • the compound of Example 2 is a compound represented by Ca 2 TbHf 2 (AlO 4 ) 3. Is.
  • Example 1 and Example 2 When the compounds of Example 1 and Example 2 were irradiated with ultraviolet rays (wavelength 365 nm), bright green fluorescence was visually observed in both cases.
  • the excitation characteristics and emission characteristics of the compound of Example 1 were measured using a spectrofluorometer (FP-6500 (product name: manufactured by JASCO Corporation) and an instantaneous multiphotometry system (QE-1100: manufactured by Otsuka Electronics Co., Ltd.)).
  • FP-6500 product name: manufactured by JASCO Corporation
  • QE-1100 manufactured by Otsuka Electronics Co., Ltd.
  • an instantaneous multiphotometry system is used for the measurement of the emission spectrum (24a ′)
  • a spectrofluorophotometer is used for the measurement of the excitation spectrum (25a ′).
  • the excitation wavelength when measuring the emission spectrum was 250 nm
  • the monitor wavelength when measuring the excitation spectrum was the emission peak wavelength.
  • FIG. 9 shows an excitation spectrum 25a ′ and an emission spectrum 24a ′ of the compound of Example 1 (Ca 2 TbZr 2 (AlO 4 ) 3 ).
  • FIG. 9 shows that the compound of Example 1 is excited by light around 250 nm. Further, it can be seen that the green phosphor emits light derived from Tb 3+ electron energy transition having a main emission line near 550 nm, and sub-emission lines near 480 nm, 590 nm, and 620 nm.
  • the emission spectrum and the excitation spectrum are both shown with the maximum intensity as 100.
  • the excitation spectrum and emission spectrum of the compound of Example 2 (Ca 2 TbHf 2 (AlO 4 ) 3 ) were omitted, but the same spectrum as that of the compound of Example 1 was shown.
  • Example 3 and Example 4 First, each raw material and reaction accelerator were weighed at the ratio shown in Table 2. Next, the compounds of Example 3 and Example 4 were prepared by mixing and firing these raw materials and reaction accelerators in the same manner as in Examples 1 and 2.
  • the compound of Example 3 is a compound represented by Ca 2 (Tb 0.98 Ce 0.02 ) Zr 2 (AlO 4 ) 3
  • the compound of Example 4 is Ca 2 (Tb 0.98 Ce 0 0.02 ) Hf 2 (AlO 4 ) 3 was found to be a compound.
  • FIG. 10 shows an emission spectrum 24a and an excitation spectrum 25a of the compound of Example 3 (Ca 2 (Tb 0.98 Ce 0.02 ) Zr 2 (AlO 4 ) 3 ).
  • FIG. 11 shows an emission spectrum 24b and an excitation spectrum 25b of the compound of Example 4 (Ca 2 (Tb 0.98 Ce 0.02 ) Hf 2 (AlO 4 ) 3 ).
  • the excitation wavelength at the time of emission spectrum measurement was the excitation peak wavelength
  • the monitor wavelength at the time of excitation spectrum measurement was the emission peak wavelength.
  • both the emission spectrum and the excitation spectrum are shown with the maximum intensity as 100.
  • the excitation spectra of the compounds of Example 3 and Example 4 have an excitation peak on the longest wavelength side in the purple wavelength region of 400 nm or more and less than 420 nm. Specifically, the excitation spectrum of the compound of Example 3 has an excitation peak at 417 nm, and the excitation spectrum of the compound of Example 4 has an excitation peak at 412 nm.
  • the emission spectra of the compounds of Examples 3 and 4 contain spectral components derived from the electronic energy transition of Tb 3+ .
  • the emission spectra of the compounds of Example 3 and Example 4 have a shape mainly composed of the emission spectrum derived from the electronic energy transition of Tb 3+ .
  • This shape has been conventionally used in a three-wavelength fluorescent lamp (La, Ce) PO 4 : Tb 3+ , CeMgAl 11 O 19 : Tb 3+ , (Gd, Ce) MgB 5 O 10 : Tb 3+, etc.
  • This is similar to the typical green phosphor for lamps. That is, the phosphor of the present embodiment has a remarkable effect that it can excite green light having a spectral shape that has been conventionally optimized for an illumination light source with short-wavelength visible light.
  • the emission spectra of the compounds of Examples 3 and 4 have an emission peak wavelength of 544 nm.
  • the half width of the spectral component in the range of 535 nm or more and less than 560 nm is 3 nm or more and less than 30 nm.
  • the 1/5 spectral width and 1/10 spectral width of the spectral components in this range are also 3 nm or more and less than 30 nm.
  • the maximum intensity of the spectral component of 450 nm or more and less than 500 nm is less than 40% of the maximum intensity of the spectral component in the range of 535 nm or more and less than 560 nm. This indicates that the compounds of Example 3 and Example 4 can efficiently absorb violet or blue light around 415 nm and convert the wavelength to green light containing a green luminous line with high visibility.
  • cerium (Ce) is contained in the compound.
  • the spectral intensity in the short wavelength visible light region in the excitation spectrum is related to light absorption by Ce 3+ electron energy transition (4f 1 ⁇ 5d 1 electron energy transition).
  • the optical absorption is increased or decreased depending on the content of Ce 3+ in the phosphor, it is also known to increase the strength of the excitation spectrum content of Ce 3+ increases. Therefore, it is presumed that the excitation spectrum intensity in the wavelength region of short-wavelength visible light is increased by increasing the Ce 3+ content in the compound of this example.
  • the compounds of Examples 3 and 4 contain at least Ca, Tb, Zr or Hf, Al, and oxygen, and Tb is 0.98 mol in 1 mol of the compound. Furthermore, the compounds of Examples 3 and 4 are compounds having a meteorite structure with the compounds of Examples 1 and 2 as end components, respectively. In addition, the compound of Example 3 is different from the compound of Example 1 (Ca 2 TbZr 2 (AlO 4 ) 3 ), and is similar to the similar compound Ca 2 CeZr 2 (AlO) having a meteorite structure. 4 ) A solid solution with 3 .
  • the compound of Example 4 is also a compound of Example 2 (Ca 2 TbHf 2 (AlO 4) 3), different in composition and which, with a garnet structure, the compounds of class quality the image Ca 2 CeHf 2 (AlO 4 It can be said to be a solid solution with 3 .
  • Such compounds of Examples 3 and 4 are artificial fluorescent minerals that function as phosphors.
  • the compounds of Examples 3 and 4 contain Ce, emit at least a Tb 3+ light emitting component, and are phosphors that can be excited by short-wavelength visible light. Moreover, from a more bird's-eye view, the compounds of Examples 3 and 4 are rare earth compound phosphors having a rare earth element as the main skeleton of the compound. A part of the elements constituting the rare earth compound is substituted with fluorescent auxiliary ions (Ce 3+ ions). The fluorescence auxiliary ion enhances fluorescence composed of a plurality of emission lines based on energy transition of trivalent rare earth ions (Tb 3+ ions) originally contained in the rare earth compound.
  • Tb 3+ ions trivalent rare earth ions
  • the number of fluorescent auxiliary ions is smaller than the number of trivalent rare earth ions originally contained in the rare earth compound. Further, the brightest line with the highest intensity is a phosphor having a 1/5 spectral width of 3 nm or more and less than 30 nm and excited by short-wavelength visible light.
  • each raw material and reaction accelerator were weighed at the ratio shown in Table 3.
  • these raw materials and reaction accelerators were mixed and baked to prepare the compounds of Examples 5 to 11.
  • a compound represented by Ca 2 EuZr 2 (AlO 4 ) 3 serving as a red phosphor was also adjusted at a ratio shown in Table 3.
  • Example 5 was a compound represented by Ca 2 (Tb 0.99 Eu 0.01 ) Zr 2 (AlO 4 ) 3 . It was also found that a compound compound of Example 6 is represented by Ca 2 (Tb 0.98 Eu 0.02) Zr 2 (AlO 4) 3. It was found that the compound of Example 7 was a compound represented by Ca 2 (Tb 0.96 Eu 0.04 ) Zr 2 (AlO 4 ) 3 .
  • Example 8 was a compound represented by Ca 2 (Tb 0.92 Eu 0.08 ) Zr 2 (AlO 4 ) 3 . It was found that the compound of Example 9 was a compound represented by Ca 2 (Tb 0.75 Eu 0.25 ) Zr 2 (AlO 4 ) 3 . It was found that the compound of Example 10 was a compound represented by Ca 2 (Tb 0.5 Eu 0.5 ) Zr 2 (AlO 4 ) 3 . It was found that the compound of Example 11 was a compound represented by Ca 2 (Tb 0.25 Eu 0.75 ) Zr 2 (AlO 4 ) 3 .
  • excitation characteristics and emission characteristics of the compounds of Examples 5 to 11 were evaluated in the same manner as in Example 1.
  • 12 (a), (b), (c), (d), (e), (f), (g), (h), and (i) are respectively a reference example, an example 11, and an example 10.
  • the emission spectrum and the excitation spectrum of the compounds of Example 9, Example 8, Example 7, Example 6, Example 5, Example 1 and Example 1 are shown.
  • emission spectra are denoted by reference numerals 24c to 24j and 24a '
  • excitation spectra are denoted by reference numerals 25c to 25j and 25a'.
  • the excitation wavelength at the time of emission spectrum measurement was 254 nm
  • the monitor wavelength at the time of excitation spectrum measurement was the emission peak wavelength (610 nm).
  • the emission spectrum and the excitation spectrum are shown with the maximum intensity as 100.
  • the fluorescence component near 550 nm decreases rapidly.
  • the fluorescent component in the wavelength range of 580 to 620 nm is dominant.
  • the fluorescent component near 550 nm shows a green bright line, and the fluorescent component in the wavelength range of 580 to 620 nm shows a red bright line.
  • the green bright line in FIG. 12 can be regarded as a spectral component derived from the Tb 3+ electron energy transition.
  • the red bright line can be regarded as a spectral component derived from the electron energy transition of Eu 3+ .
  • the excitation spectra (25d to 25j) of Examples 5 to 11 are Ca 2 EuZr 2 (AlO 4 ) as a reference example. 3 is similar to the excitation spectrum (25c).
  • the excitation spectra (25j, 25i, 25h, 25g) of Examples 5, 6, 7 and 8 are similar to the excitation spectrum (25a ′) of Example 1, and are around 260 nm, around 310 nm and 375 nm. Has a peak in the vicinity.
  • the phosphors of Examples 5 to 8 contained a large amount of terbium, the luminescence derived from a small amount of Eu 3+ was dominant. Although the emission derived from Eu 3+ is dominant, the shape of the excitation spectrum (25g to 25j) is not the excitation spectrum (25c) of the reference example, but the excitation spectrum (25a ′ of Example 1). ). The change in the shape of the excitation spectrum and emission spectrum shown in FIG. 12 confirms that energy transfer from Tb to Eu occurs efficiently, particularly in a composition region where the terbium content is high and the europium content is low. is there.
  • the phosphor of the present embodiment has such a composition.
  • the phosphor of the present embodiment can emit fluorescence including at least one of a green spectrum component and a red spectrum component, which has been conventionally optimized for an illumination light source. It also shows that it has a remarkable effect.
  • Example 12 First, each raw material and reaction accelerator were weighed at the ratio shown in Table 4. Next, the compound of Example 12 was prepared by mixing and firing these raw materials and reaction accelerators in the same manner as in Examples 1 and 2.
  • the crystal structure analysis of the compound of Example 12 was performed in the same manner as in Examples 1 and 2. As a result, the compound of Example 12 showed the same XRD pattern as in Examples 1 and 2. Therefore, it was found that the compound of Example 12 was a compound represented by Ca 2 (Tb 0.93 Ce 0.06 Eu 0.01 ) Zr 2 (AlO 4 ) 3 .
  • FIG. 13 shows the emission spectrum 24k and excitation spectra 25k and 25k ′ of the compound of Example 12.
  • the excitation wavelength at the time of measuring the emission spectrum was 254 nm.
  • the monitor wavelength at the time of excitation spectrum measurement is the emission peak wavelength (543 nm) of the green spectral component derived from the electron energy transition of Tb 3+ and the emission peak wavelength of the red spectral component derived from the electron energy transition of Eu 3+ (610 nm).
  • an excitation spectrum with a monitor wavelength of 543 nm and an excitation spectrum with a monitor wavelength of 610 nm are indicated by reference numerals 25 k and 25 k ′, respectively.
  • the emission spectrum 24k shows the maximum intensity as 100.
  • the excitation spectrum 25k ′ having a monitor wavelength of 610 nm is shown with a maximum intensity of 100.
  • the excitation spectrum 25k with a monitor wavelength of 543 nm is shown such that the intensity of the excitation peak near 420 nm in the excitation spectrum 25k ′ has the same value.
  • the excitation spectrum of the compound of Example 12 has an excitation peak on the longest wavelength side in the purple-blue wavelength region of 400 nm or more and less than 430 nm.
  • the excitation spectrum 25k having a monitor wavelength of 543 nm has an excitation peak on the longest wavelength side at 419 nm.
  • the excitation spectrum 25k ′ having a monitor wavelength of 610 nm has an excitation peak on the longest wavelength side at 421 nm.
  • the excitation peak on the longest wavelength side is 420 nm.
  • the excitation peak on the longest wave side in Example 12 is an excitation band derived from Ce 3+ electron energy transition, and is an excitation band due to light absorption of Ce 3+ .
  • the excitation band derived from the electron energy transition of Ce 3+ can move the excitation peak wavelength within a range of several nm to several tens of nm by slightly changing the composition.
  • the emission spectrum of Example 12 includes a spectral component derived from the electronic energy transition of Tb 3+ and a spectral component derived from the electronic energy transition of Eu 3+ .
  • the emission spectrum of Example 12 has a shape having both an emission spectrum derived from the electron energy transition of Tb 3+ and a spectrum component derived from the electron energy transition of Eu 3+ .
  • This shape is a shape in which the spectrum shape of a green phosphor and the spectrum shape of a red phosphor, which have been put to practical use in a conventional three-wavelength fluorescent lamp, overlap each other. Then, due to the additive color mixture of the green light component and the red light component, the apparent fluorescent color becomes yellow.
  • the intensity of the luminescent component having a wavelength of 575 nm, for example, in the yellow wavelength range that causes the illuminated object to turn yellow is less than 10% of the maximum value of the luminescence intensity. Therefore, the yellow light of the object to be illuminated becomes inconspicuous yellow light.
  • the phosphor of this embodiment does not mix a plurality of phosphors, and the green and red mixed color light, which has been conventionally optimized for an illumination light source, is excited by short-wavelength visible light. It has a remarkable effect that it can be obtained.
  • the emission spectrum of the compound of Example 12 has an emission peak wavelength of 543 nm.
  • the half width of the spectral component in the range of 535 nm or more and less than 560 nm is 3 nm or more and less than 30 nm.
  • the 1/5 spectral width and 1/10 spectral width of the spectral components in this range are also 3 nm or more and less than 30 nm.
  • the maximum intensity of the spectral component of 450 nm or more and less than 500 nm is less than 40% of the maximum intensity of the spectral component in the range of 535 nm or more and less than 560 nm.
  • a main emission line (hereinafter also referred to as Eu main emission line) of a spectral component derived from Eu 3+ electron energy transition is in a wavelength range of 600 nm or more and less than 628 nm. Furthermore, the maximum height of the bright line in the wavelength range of 700 nm or more and less than 720 nm derived from the Eu 3+ electron energy transition is less than 60%, particularly 40% or less, of the maximum height of the Eu main bright line. This is because the compound of Example 12 efficiently absorbs purple or blue light at around 420 nm and includes a green luminous line having a high visibility and a red luminous line having a good color tone. This indicates that wavelength conversion to mixed color light is possible.
  • Example 12 when the total number of rare earth atoms (the number of Tb atoms + the number of Ce atoms + the number of Eu atoms) is 100, the number of Ce atoms and the number of Eu atoms are 6 and 1, respectively.
  • the green spectral component derived from the electronic energy transition of Tb 3+ is a dominant yellow light than the red spectral component derived from the electronic energy transition of Eu 3+. It was.
  • the red spectral component derived from the Eu 3+ electronic energy transition is more dominant than the green spectral component derived from the Tb 3+ electronic energy transition (yellow, orange or red). It is also possible to use a phosphor that emits light. It is also possible to make a phosphor that emits red light having substantially only a red spectral component derived from the Eu 3+ electron energy transition.
  • cerium (Ce) is contained in the compound.
  • the spectral intensity in the short wavelength visible light region in the excitation spectrum is related to light absorption by Ce 3+ electron energy transition (4f 1 ⁇ 5d 1 electron energy transition).
  • the optical absorption is increased or decreased depending on the content of Ce 3+ in the phosphor, it is also known to increase the strength of the excitation spectrum content of Ce 3+ increases. Therefore, it is presumed that the excitation spectrum intensity in the wavelength region of short-wavelength visible light is increased by increasing the Ce 3+ content in the compound of this example.
  • the compound of Example 12 is a solid solution having a meteorite structure in which at least two kinds of compounds are used as end components. That is, the first compound serving as an end component is a terbium compound represented by Ca 2 TbZr 2 (AlO 4 ) 3 . Further, the second compound comprising an end component is a europium compound represented by Ca 2 EuZr 2 (AlO 4) 3. And the said solid solution contains Ce. Therefore, the solid solution has an excitation band derived from the electron energy transition of Ce 3+ and emits fluorescence.
  • the first compound serving as an end component is a terbium compound represented by Ca 2 TbZr 2 (AlO 4 ) 3 .
  • the second compound comprising an end component is a europium compound represented by Ca 2 EuZr 2 (AlO 4) 3.
  • the said solid solution contains Ce. Therefore, the solid solution has an excitation band derived from the electron energy transition of Ce 3+ and emits fluorescence.
  • the inorganic oxide of the present invention has a meteorite structure, it can be used for artificial gems, abrasives, ceramic materials, electronic materials, and the like.
  • the phosphor of the present invention can be excited with short-wavelength visible light, and can emit a narrow-band light component.
  • a light-emitting device using this phosphor is useful as an illumination light source, a light-emitting light source, and an electronic device.

Abstract

 本発明の無機酸化物は、一般式(1):MLnX(AlO(式中、MはCaを含有し、LnはTbを含有し、XはZr及びHfの少なくともいずれか一方を含有する)で示される組成を有する。そして、一般式(1)におけるTbの原子数は0.1個以上1個以下である。さらに、無機酸化物の結晶構造は柘榴石構造である。この無機酸化物からなる蛍光体は、短波長可視光で励起可能であり、さらに狭帯域性の緑色光を放射することができる。

Description

希土類アルミニウムガーネットタイプ無機酸化物、蛍光体及びこれを用いた発光装置
 本発明は、希土類アルミニウムガーネットタイプ無機酸化物、蛍光体及びこれを用いた発光装置に関する。
 従来より、柘榴石(ガーネット)の結晶構造(以下、柘榴石構造ともいう。)を持つ化合物が多く知られている。天然の柘榴石は珪酸塩鉱物であり、透明度の高いものは古代から宝石として重宝され、柘榴石の砂は研磨剤として工業的に利用されている。
 有名な柘榴石としては、鉄礬柘榴石(almandine:Fe2+ Al(SiO)、灰礬柘榴石(grossular:CaAl(SiO)、灰鉄柘榴石(andradite:CaFe3+ (SiO)がある。また、苦礬柘榴石(pyrope:MgAl(SiO)、満礬柘榴石(spessartine:MnAl(SiO)、灰クロム柘榴石(uvarovite:CaCr(SiO)などがある。
 ここで、YAl(AlOで表される化合物(以下、YAGともいう。)は、柘榴石をベースに合成された人工鉱物であり、イットリウムアルミニウムガーネットの呼称で広く知られる。そしてYAGは、固体レーザー、透光性セラミックス及び蛍光体などの用途に利用されている(例えば、非特許文献1参照)。また、YAGには変形例が数多く存在することが知られている。代表的なYAGの変形例としては、TbAl(AlO(例えば、特許文献1参照)、YGa(AlO(例えば、非特許文献1参照)、YMg(AlO)(SiO(例えば、特許文献2参照)などが挙げられる。
 ここで、蛍光体とは、紫外線励起などの刺激を与えることによって、蛍光を放つ化合物を指すものである。そして、当該化合物を構成する特定の原子の核外電子が紫外線などによって励起され、基底状態に戻るときにエネルギーレベルの差が可視光として放出される。例えば、発光中心として機能する希土類イオンや遷移金属イオン(Ce3+、Tb3+、Eu3+、Mn2+、Mn4+、Fe3+、Cr3+など)をYAGなどの化合物に含ませることによって蛍光体になる。
 そして、Ce3+で付活したYAG:Ce蛍光体やTb3+で付活したYAG:Tb蛍光体などの柘榴石構造を持つ蛍光体(以下、ガーネットタイプ蛍光体ともいう。)は、高効率蛍光体として知られている。そして、このようなガーネットタイプ蛍光体は、数多くの発光装置で利用されている(例えば、特許文献3,4及び非特許文献1参照)。
 なお、Ce3+で付活したガーネットタイプ蛍光体の特徴は、粒子線又は電磁波を照射すると励起され、超短残光性の青緑~緑~黄~赤の可視光を放つことである(例えば、非特許文献1、特許文献2参照)。一方、Eu3+で付活したYAG:Eu蛍光体も知られており、プラズマディスプレイ装置(PDP)用の赤色蛍光体としての研究がなされている(例えば、非特許文献1参照)。
特表2003-505582号公報 国際公開第2010/043287号 特許第3503139号明細書 米国特許第6812500号明細書
蛍光体同学会編、「蛍光体ハンドブック」、株式会社オーム社、1987年12月、P12,237~238,268~278,332
 柘榴石構造である従来のCe3+付活蛍光体は、短波長可視光(380nm以上470nm未満の波長)で励起され、発光の色調制御も可能である。しかしながら、従来のCe3+付活蛍光体は発光スペクトルの半値幅が広いことから、これを応用した照明光源の光束及び演色性が低下するという問題があった。
 また、柘榴石構造である従来のTb3+付活蛍光体及びEu3+付活蛍光体は、短波長可視光で殆ど励起されない。そのため、短波長可視光を放つ固体発光素子を励起源とし、緑色光や赤色光を放つ発光装置を提供することが困難であった。
 本発明は、このような従来技術の有する課題に鑑みてなされたものである。そして本発明の目的は、短波長可視光で励起可能であって、さらに狭帯域性の緑色光及び/又は赤色光を放出し得る希土類アルミニウムガーネットタイプ無機酸化物、蛍光体及びこれを用いた発光装置を提供することにある。
 本発明の第1の態様に係る無機酸化物は、一般式:
 MLnX(AlO  (1)
 (式中、MはCaを含有し、LnはTbを含有し、XはZr及びHfの少なくともいずれか一方を含有する)で示される組成を有する。そして、一般式(1)におけるTbの原子数は0.1個以上1個以下であり、結晶構造が柘榴石構造である。
 本発明の第2の態様に係る無機酸化物は、第1の態様に係る無機酸化物において、Mが、Caと、アルカリ土類金属、Fe、Mn、Zn、Cd、Co及びCuからなる群より選ばれる少なくとも一つの元素とを含有する。そしてLnが、Tbと、Sc、Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Dy、Ho、Er、Tm、Yb、Lu、In、Sb及びBiからなる群より選ばれる少なくとも一つの元素とを含有する。またXが、Zr及びHfの少なくともいずれか一方と、Si、Ge、Ti、Sn及びPbからなる群より選ばれる少なくとも一つの元素とを含有する。
 本発明の第3の態様に係る無機酸化物は、第1の態様に係る無機酸化物において、MがCaであり、LnがTbである。
 本発明の第4の態様に係る無機酸化物は、第1の態様に係る無機酸化物において、MがCaであり、LnがTbであり、XがZr又はHfのいずれか一方である。
 本発明の第5の態様に係る固溶体は、第1乃至第4の態様のいずれかに係る無機酸化物と、前記無機酸化物と固溶し、かつ、無機酸化物とは組成が異なる無機化合物との固溶体である。そして、固溶体1モル中におけるTbのモル数は0.1モル以上3モル未満であり、固溶体の結晶構造は柘榴石構造である。
 本発明の第6の態様に係る固溶体は、第5の態様に係る固溶体において、無機化合物が一般式(2):CaEuX(AlOで示される組成を有する。
 本発明の第7の態様に係る固溶体は、第5の態様に係る固溶体において、無機化合物が一般式(3):MZr(AlO(SiO)で示される組成を有する。
 本発明の第8の態様に係る固溶体は、第5の態様に係る固溶体が一般式(4):A(EGで示される組成を有する。なお式中、Aは、Ca及びTbと、アルカリ金属、アルカリ土類金属及び希土類元素から選ばれる少なくとも一つの元素とを含有する。Dは、Xで表される元素と、Mg、Sc、Y、Ti、V、Zr、Hf、Zn、Al、Ga、In、Ge及びSnから選ばれる少なくとも一つの元素とを含有する。Eは、Alと、Zn、Al、Si、Ge及びPから選ばれる少なくとも一つの元素とを含有する。GはOを含有する。
 本発明の第9の態様に係る蛍光体は、第1乃至第4の態様のいずれかに係る無機酸化物又は第5乃至第8の態様のいずれかに係る固溶体からなる。
 本発明の第10の態様に係る蛍光体は、第9の態様に係る蛍光体において、無機酸化物又は固溶体が結晶の主骨格をなしている。
 本発明の第11の態様に係る蛍光体は、第9又は第10の態様に係る蛍光体において、無機酸化物又は固溶体のいずれかに含まれるTb3+が蛍光成分を放つ。
 本発明の第12の態様に係る蛍光体は、第9乃至第11の態様のいずれかに係る蛍光体において、付活剤としてCe3+をさらに含有する。
 本発明の第13の態様に係る蛍光体は、第12の態様に係る蛍光体において、付活剤としてEu3+をさらに含有する。さらに、無機酸化物又は固溶体に含まれるEu3+が蛍光成分を放つ。
 本発明の第14の態様に係る蛍光体は、第13の態様に係る蛍光体に関し、蛍光体1モル中においてEuの原子数はTbの原子数よりも少ない。
 本発明の第15の態様に係る蛍光体は、第12の態様に係る蛍光体において、蛍光体の励起スペクトルがCe3+による励起帯を持つ。
 本発明の第16の態様に係る蛍光体は、第9乃至第15の態様のいずれかに係る蛍光体が380nm以上470nm未満の波長で励起する。
 本発明の第17の態様に係る蛍光体は、第9乃至第16の態様のいずれかに係る蛍光体において、発光スペクトルの波長が535nm以上560nm未満の範囲内に最大値を持つ。さらに、535nm以上560nm未満の範囲内における発光スペクトルの1/5スペクトル幅が、3nm以上30nm未満である。
 本発明の第18の態様に係る蛍光体は、第13の態様に係る蛍光体において、発光スペクトルの波長が600nm以上628nm未満の範囲内に最大値を持つ。
 本発明の第19の態様に係る蛍光体は、第9の態様に係る蛍光体において、蛍光体がTbとCeとEuとを含有し、かつ、単相の化合物からなる。また、蛍光体の励起スペクトルがCe3+の吸収によるブロードな励起帯を有し、励起帯が400nm以上460nm未満の範囲内に励起ピークを持つ。さらに、蛍光体の発光スペクトルは、Tb3+及びEu3+の少なくともいずれか一方による蛍光成分を有しており、発光スペクトルにおける波長575nmの強度は当該発光スペクトルにおける最大値の10%よりも小さい。
 本発明の第20の態様に係る蛍光体は、第19の態様に係る蛍光体において、発光スペクトルにおける波長520nmの強度が発光スペクトルの最大値の30%よりも小さい。
 本発明の第21の態様に係る蛍光体は、第19の態様に係る蛍光体において、蛍光体は、Tb3+の蛍光成分を放出し、Eu3+の蛍光成分を放出しない。
 本発明の第22の態様に係る蛍光体は、第19の態様に係る蛍光体において、蛍光体は、Tb3+及びEu3+の両方の蛍光成分を放出する。
 本発明の第23の態様に係る蛍光体は、第19の態様に係る蛍光体において、蛍光体がEu3+の蛍光成分を放出し、Tb3+の蛍光成分における最大値がEu3+の蛍光成分における最大値の10%未満である。
 本発明の第24の態様に係る蛍光体は、第19の態様に係る蛍光体において、蛍光体に含有されるEuの原子数がTbの原子数よりも少ない。
 本発明の第25の態様に係る蛍光体は、発光中心として、少なくともCe3+とTb3+とを含有する蛍光体である。そして、蛍光体の励起スペクトルはCe3+の吸収によるブロードな励起帯を有し、励起帯は400nm以上460nm未満の範囲内にピークを有する。さらに蛍光体の発光スペクトルはTb3+による緑色蛍光成分を放出し、発光スペクトルにおける波長520nmの発光強度は発光スペクトルの最大値の30%よりも小さい。
 本発明の第26の態様に係る蛍光体は、発光中心として、少なくともCe3+とTb3+とEu3+とを含有する蛍光体である。そして、蛍光体の励起スペクトルはCe3+の吸収によるブロードな励起帯を有し、励起帯は400nm以上460nm未満の範囲内にピークを有する。さらに蛍光体の発光スペクトルはTb3+による緑色蛍光成分及び/又はEu3+による赤色蛍光成分を放出し、発光スペクトルにおける波長520nmの発光強度は発光スペクトルの最大値の30%よりも小さい。
 本発明の第27の態様に係る蛍光体は、第25又は第26の態様に係る蛍光体において、発光スペクトルにおける波長520nmの強度は、発光スペクトルにおける最大値の10%よりも小さい。
 本発明の第28の態様に係る蛍光体は、第25乃至第27の態様のいずれかに係る蛍光体において、発光スペクトルにおける波長575nmの強度は、発光スペクトルにおける最大値の10%よりも小さい。
 本発明の第29の態様に係る蛍光体は、第26の態様に係る蛍光体において、発光スペクトルは、Tb3+による緑色蛍光成分又はEu3+による赤色蛍光成分が発光スペクトルの最大値となる。
 本発明の第30の態様に係る発光装置は、第9乃至第29の態様のいずれかに係る蛍光体を備える。
 本発明の第31の態様に係る発光装置は、第30の態様に係る発光装置において、Eu3+付活蛍光体をさらに備える。
 本発明の第32の態様に係る発光装置は、第30又は第31の態様に係る発光装置において、蛍光体が380nm以上470nm未満の範囲内に波長ピークを持つ短波長可視光によって励起する。
 本発明の第33の態様に係る発光装置は、第32の態様に係る発光装置において、短波長可視光を放つ固体発光素子をさらに備える。
 本発明の無機酸化物は、短波長可視光で励起可能であって、狭帯域性の緑色光及び/又は赤色光を放ち得る蛍光体となる。また、当該無機酸化物を使用した本発明の発光装置は、短波長可視光を放つ固体発光素子を励起源として、狭帯域性の緑色光成分及び/又は赤色光成分を含む強い光を放つことが可能である。
図1は、本発明の実施形態に係る発光装置を説明するための概略図である。 図2は、本発明の実施形態に係る半導体発光装置の一例を模式的に示す断面図である。 図3は、本発明の実施形態に係る半導体発光装置が放つ出力光の分光分布を示す図である。 図4は、本発明の実施形態に係る半導体発光装置が放つ出力光の分光分布を示す図である。 図5は、本発明の実施形態に係る半導体発光装置が放つ出力光の分光分布を示す図である。 図6は、本発明の実施形態に係る半導体発光装置が放つ出力光の分光分布を示す図である。 図7は、本発明の実施形態に係る光源装置の構成を示す図である。 図8は、実施例1及び2の化合物のXRDパターンを示す図である。 図9は、実施例1の蛍光体の励起スペクトル及び発光スペクトルを示す図である。 図10は、実施例3の蛍光体の励起スペクトル及び発光スペクトルを示す図である。 図11は、実施例4の蛍光体の励起スペクトル及び発光スペクトルを示す図である。 図12は、実施例5~11の蛍光体の励起スペクトル及び発光スペクトルを示す図である。 図13は、実施例12の蛍光体の励起スペクトル及び発光スペクトルを示す図である。
 以下、本発明の実施形態に係る希土類アルミニウムガーネットタイプ無機酸化物、蛍光体及び当該蛍光体を用いた発光装置について詳細に説明する。なお図面の寸法比率は説明の都合上誇張されており、実際の比率とは異なる場合がある。
 まず、一般的に「鉱物」とは、天然に産出する固体無機物質であり、その組成が化学式によって記述でき、構成元素の配列が規則的、つまり結晶質であって、物理的な性質が狭い範囲に収まるものをいう。これに対応する用語として、人造鉱物(man-made mineral)とも呼ばれる人工鉱物(artificial mineral)がある。人工鉱物は、天然に産出する鉱物と同一の成分、構造及び組織を、化学的・物理的手法で達成したものをいう。なお人工鉱物には、構造及び基本組成が天然鉱物と同一で、成分又は組成が異なる無機固体を含める場合があり、加えて、さらに広く一般の無機固体も含める場合がある。
 一方、電荷又はイオン半径が類似の元素同士は、同じ結晶構造を保ったまま、互いに置換可能であることから、相似的な化学式を持った一群の鉱物をつくることが知られている。類似した化学組成を持つ物質が同一の結晶構造を取ることを、岩石学や鉱物学の分野では、「類質同像」という。そのため、柘榴石のグループに属する鉱物種同士は、互いに類質同像の化合物である。
 また、結晶構造中の特定のサイトに異種のイオンが置き換えて入り、鉱物種が幅広い組成変化を見せることも知られている。その鉱物の組成は、組成変化の両端の組成を持つ鉱物の混合比率をもって容易に表現することができる。このような鉱物は、固体でありながら溶液を混合するような均一な相を生ずることから、「固溶体」という。
 そして本明細書では、柘榴石構造を持つ化合物であり、かつ、少なくとも希土類元素とアルミニウムと酸素とを主成分として含む化合物を、「希土類アルミニウムガーネットタイプ無機酸化物」という。また、蛍光体として機能する希土類アルミニウムガーネットタイプ無機酸化物を、「希土類アルミニウムガーネットタイプ蛍光体」という。
[希土類アルミニウムガーネットタイプ無機酸化物]
 まず、本発明の実施形態に係る希土類アルミニウムガーネットタイプ無機酸化物を説明する。
 本実施形態に係る希土類アルミニウムガーネットタイプ無機酸化物は、天然の鉱物を参考にして人為的に創作した無機の化学物質である。そして、当該無機酸化物は、一般式(1)で示される組成を有し、結晶構造が柘榴石構造である。
 MLnX(AlO  (1)
 式中、Mはカルシウム(Ca)を含有し、Lnはテルビウム(Tb)を含有し、Xはジルコニウム(Zr)及びハフニウム(Hf)の少なくともいずれか一方を含有する。このような一般式(1)で表される本実施形態の無機酸化物は、後述するように新規な蛍光特性を発揮することができる。
 さらに、本実施形態の無機酸化物において、一般式(1)におけるTbの原子数は0.1個以上1個以下であることを特徴とする。Tbの原子数をこの範囲とした無機酸化物を蛍光体として用いた場合、後述するようにTbが発光中心又はEuにエネルギーを伝達する媒体として機能する。そのため、当該蛍光体は、緑色光及び/又は赤色光を効率的に放出することが可能となる。
 詳述すると、本実施形態の希土類アルミニウムガーネットタイプ無機酸化物は、高濃度のTbを含むことにより、蛍光鉱物、つまり、無機の蛍光体として機能する。そして、一般式(1)におけるTbの原子数を、0.1個以上1個以下に限定することによって、当該機能を発揮することが可能となる。なお、「一般式(1)におけるTbの原子数が、0.1個以上1個以下」との表現は、「一般式(1)で表される無機酸化物1モル中におけるTbのモル数が、0.1モル以上1モル以下」と表現することも可能である。
 ここで、一般に無機化合物は、数多くの変形例を持つものである。さらに上述のように、柘榴石構造を持つ鉱物も数多くの変形例を持つ。このため、本実施形態に係る希土類アルミニウムガーネットタイプ無機酸化物も、柘榴石構造を損ねない範囲で、一般式(1)とは若干異なる数多くの変形例を包含するものである。つまり、本実施形態に係る無機酸化物の基本組成は、例えばCaTbX(AlOである。しかし、本実施形態に係る無機酸化物は、CaTbX(AlOと類質同像であり、固溶体の端成分となる変形例を含むものとして解される。なお、「端成分」は岩石学の用語であり、固溶体の組成の極限をなす成分のことである。
 そして、上述のように、一般式(1)における元素Mは、少なくともカルシウム(Ca)を含有する。しかし、カルシウムは、カルシウム以外の二価のイオンと成り得る元素で部分置換し得るものである。そのため、一般式(1)における元素Mは、Caと、アルカリ土類金属、Fe(II)、Mn、Zn、Cd、Co及びCuからなる群より選ばれる少なくとも一つの元素とを含有するものであってもよい。また、アルカリ土類金属としては、特にMg、Sr及びBaが好ましい。
 本実施形態の無機酸化物において、一般式(1)における元素Mの過半数をカルシウム(Ca)で占めることが好ましい。ここで、元素Mの過半数をCaで占めるとは、元素Mを占める原子群の中の過半数をCa原子が占めることを意味する。このような組成にすることで、より高効率の蛍光体の母体又は蛍光体自体として機能し得るものとなる。なお、元素Mはカルシウムのみで占められていてもよい。
 また、上述のように、一般式(1)における元素Lnは、少なくともテルビウム(Tb)を含有する。しかし、テルビウムは、テルビウム以外の三価のイオンと成り得る元素、特に希土類元素で部分置換し得るものである。三価のイオンと成り得る元素としては、Sc、Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Dy、Ho、Er、Tm、Yb、Lu、In、Sb及びBiなどが挙げられる。好ましくは、Sc、Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Dy、Ho、Er、Tm、Yb及びLuから選ばれる少なくとも一つである。そのため、一般式(1)における元素Lnは、Tbと、Sc、Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Dy、Ho、Er、Tm、Yb、Lu、In、Sb及びBiからなる群より選ばれる少なくとも一つの元素とを含有するものであってもよい。
 上述と同様に、本実施形態の無機酸化物において、一般式(1)における元素Lnの過半数をテルビウム(Tb)で占めることが好ましい。ここで、元素Lnの過半数をTbで占めるとは、元素Lnを占める原子群の中の過半数をTb原子が占めることを意味する。このような組成にすることで、Tb自体が発光中心となるため、より高効率の蛍光体の母体又は蛍光体自体として機能し得るものになる。
 また、一般式(1)における元素Lnが、Tbだけでなく、Euも含むようにした場合には、Euの周囲に数多くのTbが存在することになる。そのため、TbからEuにエネルギーを伝達する効率が高まり、Euの発光強度を増加させることが可能となる。なお、元素Lnはテルビウムのみで占められていてもよい。
 さらに上述のように、一般式(1)における元素Xはジルコニウム(Zr)及びハフニウム(Hf)の少なくともいずれか一方を含有する。しかし、ジルコニウム及びハフニウムは、これらの元素以外の四価のイオンと成り得る元素で部分置換し得るものである。四価のイオンと成り得る元素としては、Si、Ge、Ti、Sn及びPbなどが挙げられるが、好ましくはSnである。そのため、一般式(1)における元素Xは、Zr及びHfの少なくともいずれか一方と、Si、Ge、Ti、Sn及びPbからなる群より選ばれる少なくとも一つの元素とを含有するものであってもよい。
 上述と同様に、前記無機酸化物において、一般式(1)における元素Xの過半数をジルコニウム(Zr)及び/又はハフニウム(Hf)で占めることが好ましい。ここで、元素Xの過半数をZr及び/又はHfで占めるとは、元素Xを占める原子群の中の過半数をZr原子及び/又はHf原子が占めることを意味する。このような組成にすることで、より高効率の蛍光体の母体又は蛍光体自体として機能し得るものになる。なお元素Xは、Zr及び/又はHfのみで占められていてもよい。
 なお、本実施形態の無機酸化物に係る一般式(1)において、元素MはCaであり、元素LnはTbであってもよい。また、一般式(1)において、元素MはCaであり、元素LnはTbであり、元素XはZr又はHfのいずれか一方であってもよい。
 蛍光物質として好ましく、本実施形態の無機酸化物と類質同像の化合物としては、Ca(Tb,Ce)Zr(AlO、Ca(Y,Tb)Zr(AlOなどが例示される。また、Ca(La,Tb)Hf(AlO、(Ca,Sr)(Y,Tb)(Zr,Hf)(AlO、(Ca,Mg)TbZr(AlO、Ca(Tb,Pr)Zr(AlOなども例示される。さらに、Ca(Tb,Ce,Eu)Zr(AlO、Ca(Tb,Eu)Zr(AlOなども例示される。
 本実施形態の無機酸化物は、当該無機酸化物と固溶し、かつ、無機酸化物とは組成が異なる無機化合物と固溶体を形成してもよい。そして、この固溶体は、本実施形態の無機酸化物と同様に、柘榴石構造であることが好ましい。このような固溶体も新規な蛍光特性を持つ希土類アルミニウムガーネットタイプ蛍光体と成り得る。
 なお、上述のように、当該固溶体に含まれるTbを発光中心として機能させるためには、前記固溶体1モル中におけるTbのモル数は、0.1モル以上3モル未満であることが好ましい。
 ここで、本実施形態の無機酸化物に被固溶する無機化合物としては、柘榴石構造を持つ化合物が好ましく、特に前記無機酸化物と類質同像の化合物であることがより好ましい。これにより、無機化合物の持つ性質が無機酸化物と類似することとなるため、柘榴石構造を持つ本実施形態の固溶体を容易に形成することが可能となる。
 なお、被固溶する無機化合物としては、一般式(2):CaEuX(AlOで示される組成を有するユーロピウム化合物が好ましい。このような無機化合物が上記無機酸化物と固溶することにより、Eu3+の蛍光成分を放出する固溶体に成り得る。なお、一般式(2)の元素Xは、一般式(1)の元素Xと同じである。
 また、被固溶する無機化合物としては、一般式(3):MZr(AlO(SiO)で示される組成を有する化合物も好ましい。このような無機化合物が上記無機酸化物と固溶することにより、励起スペクトルや発光スペクトルのピーク波長を、数nm~数10nm程度移動させることが可能となる。なお、一般式(3)の元素Mは、一般式(1)の元素Mと同じである。
 上述のように、天然の柘榴石は、通常、端成分となる複数種の柘榴石の固溶体として存在することが知られている。また、本実施形態の無機酸化物におけるCaTbZr(AlOやCaTbHf(AlOなどは、端成分とみなすことができる。そのため、本実施形態の無機酸化物と、当該無機酸化物とは別の柘榴石構造を持ち、かつ、端成分と成り得る無機化合物との固溶体は、数多くの種類を得ることが可能である。
 そして、上述のように、本実施形態の固溶体も柘榴石構造であることから、当該固溶体は、一般式(4)で示される組成を有するものになる。
 A(EG  (4)
 式中、元素Aは、Ca及びTbを含有する。また、元素A中のCa及びTbの少なくとも一方は、二価又は三価のイオンと成り得る元素と部分置換することができる。さらに、元素A中のCa及びTbの少なくとも一方は、二価又は三価のイオンと成り得る元素以外の元素とも置換することができる。
 Ca及びTbと部分置換できる元素としては、一般式(1)中の元素X及び(AlO)四面体以外の四面体の少なくとも一方による電荷補償を伴いながら、一~三価のイオンと成り得る元素が好ましい。加えて、イオン半径が0.6Å以上1.7Å未満、特に0.8Å以上1.4Å未満である元素が好ましい。
 Ca及びTbと部分置換でき、イオン半径が0.6Å以上1.7Å未満となる元素としては、Li、Na、K、Rb及びCsなどのアルカリ金属、並びにMg、Ca、Sr及びBaなどのアルカリ土類金属を挙げることができる。さらに、このような元素としては、Sc、Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb,Dy、Ho、Er、Tm、Yb及びLuなどの希土類元素、並びにMn、Fe、Co、Cu及びZnなどの遷移金属元素も挙げられる。なお、本明細書において、「イオン半径」はAhrensのイオン半径を意味する。
 そのため、一般式(4)における元素Aは、Ca及びTbと、アルカリ金属、アルカリ土類金属及び希土類元素から選ばれる少なくとも一つの元素とを含有することが好ましい。
 一般式(4)中の元素Dに相当する元素は、一般式(1)中の元素Xである。上述のように、元素XはZr及びHfの少なくともいずれか一方を含有する。そして、元素Dは、四価のイオンと成り得る元素と部分置換することができる。さらに元素Dは、四価のイオンと成り得る元素以外の元素とも置換することができる。元素Dと部分置換できる元素としては、Ca、Tb及び(AlO)四面体以外の四面体の少なくともいずれかによる電荷補償を伴いながら、二価又は三価のイオンと成り得る元素が好ましい。加えて、イオン半径が0.4Å以上0.95Å未満、特に0.5Å以上0.8Å未満である元素が好ましい。
 イオン半径が0.4Å以上0.95Å未満となる元素としては、Mg、Sc及びYなどの希土類元素、並びにTi、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Al、Ga及びInなどの遷移金属や典型元素金属が挙げられる。
 そのため、一般式(4)における元素Dは、一般式(1)中の元素Xと、Mg、Sc、Y、Ti、V、Zr、Hf、Zn、Al、Ga、In、Ge及びSnから選ばれる少なくとも一つの元素とを含有することが好ましい。
 一般式(4)中の四面体(EG)に相当するのが、一般式(1)で示される無機酸化物中の(AlO)四面体である。そして、前記四面体(EG)は、(AlO)四面体以外の四面体と部分置換することができる。前記(AlO)四面体以外の四面体としては、(SiO)、(GeO)、(SiON)、(ZnO)、(FeO)、(VO)及び(PO)などの四面体が挙げられる。なお、固溶体の形態に応じて四面体の価数が、(AlO)四面体の価数、つまりマイナス5価からずれる場合には、Ca、Tb又は元素Xのいずれかによる電荷補償を伴って固溶体を構成することになる。
 そのため、一般式(4)における元素Eは、Alと、Zn、Al、Si、Ge及びPから選ばれる少なくとも一つの元素とを含有し、元素GはOを含有することが好ましい。
 なお、一般式(4)で示される固溶体において、A、D及び(EG)の部分置換の目安は、被置換元素1つに対して半数以下であることが好ましく、また(AlO)四面体1つに対して半数以下であることが好ましい。言い換えると、一般式(4)における元素Aの過半数をCa及びTbで占めることが好ましく、元素Dの過半数を元素Xで占めることが好ましく、さらに(EG)の過半数を(AlO)で占めることが好ましい。
 このように、本実施形態に係る無機酸化物は、無機酸化物と類質同像の化合物と固溶体を形成することが可能である。そして、上述のように、固溶体1モル中におけるTbのモル数は、0.1モル以上3モル未満であることが好ましい。しかし、発光効率を向上させる観点から、前記固溶体1モル中のTbのモル数は、0.2モル以上2モル未満であることがより好ましく、0.4モル以上1モル以下が特に好ましい。
 このように本実施形態に係る無機酸化物と固溶体を形成する無機化合物としては、YAl(AlO、TbAl(AlO、YGa(AlOを挙げることができる。また、CaYZr(AlO、CaEuZr(AlO、CaYHf(AlO、CaZr(AlO(SiO)も挙げることができる。さらに、CaLaZr(AlO、CaLuZr(AlO、CaLuHf(AlO、CaYSn(AlO、CaLaSn(AlOなども挙げることができる。ただ、固溶体を形成する無機化合物はこれらに限定されるものではない。
 本実施形態の固溶体は、上述の元素のほかに、H、B、C、S、F及びClなどから選ばれる少なくとも一つの元素を含有してもよい。また、本実施形態の固溶体は、窒素を含有してもよい。つまり、一般式(4)中の四面体(EG)における元素Gは酸素の他に窒素を含有し、固溶体が酸窒化物であっても構わない。
 ここで、本実施形態の固溶体は、少なくとも二種類の化合物を端成分としてなる柘榴石構造の固溶体であることが好ましい。端成分となる第一の化合物(無機酸化物)は、例えば一般式(1A):CaTbX(AlOで表されるテルビウム化合物を使用することができる。そして、端成分となる第二の化合物(無機化合物)は、例えば一般式(2):CaEuX(AlOで表されるユーロピウム化合物を使用することができる。なお、元素Xは、一般式(1)の元素Xと同じである。
 また、本実施形態の固溶体は、少なくとも三種類の化合物を端成分としてなる柘榴石構造の固溶体であることも好ましい。端成分となる第一の化合物(無機酸化物)は、例えば、一般式(1A):CaTbX(AlOで表されるテルビウム化合物を使用することができる。また、端成分となる第二の化合物(無機化合物)は、例えば一般式(2):CaEuX(AlOで表されるユーロピウム化合物を使用することができる。そして、端成分となる第三の化合物(無機化合物)は、例えば一般式(2A):CaLn’X(AlOで表される希土類化合物を使用することができる。ここで、元素Ln’は、Sc、Y、La、Ce、Pr、Nd、Sm、Gd、Dy、Ho、Er、Tm、Yb及びLuからなる群より選ばれる少なくとも一つの元素である。また、元素Xは、一般式(1)の元素Xと同じである。
 さらに、本実施形態の固溶体は、少なくとも次の三種類の化合物を端成分としてなる柘榴石構造の固溶体であることも好ましい。端成分となる第一の化合物(無機酸化物)は、例えば一般式(1A):CaTbX(AlOで表されるテルビウム化合物を使用することができる。端成分となる第二の化合物(無機化合物)は、例えば一般式(2):CaEuX(AlOで表されるユーロピウム化合物を使用することができる。端成分となる第三の化合物(無機化合物)は、例えば一般式(3):MZr(AlO(SiO)で表されるジルコニウム化合物を使用することができる。なお、元素X及びMは、一般式(1)の元素X及びMと同じである。
 なお、固溶体が、上記テルビウム化合物、ユーロピウム化合物及びジルコニウム化合物からなる場合、固溶体は一般式(5):M2+xLn1-xZr(AlO3-x(SiOで表すことができる。ここで、元素Lnは、Tb及びEuと、Sc、Y、La、Ce、Pr、Nd、Sm、Gd、Dy、Ho、Er、Tm、Yb及びLuからなる群より選ばれる少なくとも一つの希土類であることが好ましい。特に元素Lnは、TbとEuとCeとであることが好ましい。また、前記xは0≦x<1を満足する数値、特に0≦x<0.3を満足する数値であることが好ましい。
 なお、上記固溶体中のテルビウム化合物はCaTbZr(AlOであることが好ましく、ユーロピウム化合物はCaEuZr(AlOであることが好ましい。そして、このような固溶体は、Ceを含むことができる。そのため、当該固溶体は、Ce3+の電子エネルギー遷移に由来する励起帯を持つようになり、蛍光を放つことが可能となる。
 本実施形態の希土類アルミニウムガーネットタイプ無機酸化物及び固溶体の形状は、特に限定されるものではない。つまり、従来のYAGなどと同様に、単結晶、薄膜状、厚膜状、塊状、粒状、粉末状、ナノ粒子状、セラミックス状、透光性セラミックス状など、様々な形状の化合物とすることが可能である。また、本実施形態の無機酸化物及び固溶体は、天然の柘榴石同様に、人造宝石や研磨剤、セラミックス材料、電子材料など新しい工業材料として多岐にわたる用途に利用することが可能である。
 本実施形態の希土類アルミニウムガーネットタイプ無機酸化物は、公知の手法により製造することが可能である。具体的には、YAGと同様に、公知の固相反応を用いて合成することができる。
 まず、普遍的なセラミックス原料粉末である希土類酸化物(Sc、Y、La、CeO、Pr11、Eu、Gd、Tb、Lu)を準備する。さらに、アルカリ土類炭酸塩(CaCO)、Al、Ga、ZrO、HfOなどを準備する。次に、所望の無機酸化物の化学量論的組成又はこれに近い組成となるように原料粉末を調合し、乳鉢やボールミルなどを用いて十分に混合する。その後、アルミナるつぼなどの焼成容器を用いて、電気炉などにより混合原料を焼成することで、本実施形態の無機酸化物を調製することができる。なお、混合原料を焼成する際には、大気中又は弱還元雰囲気下、1500~1700℃の焼成温度にて数時間加熱することが好ましい。
[希土類アルミニウムガーネットタイプ蛍光体]
 次に、本発明の実施形態に係る希土類アルミニウムガーネットタイプ蛍光体を説明する。
 本実施形態に係る蛍光体は、希土類アルミニウムガーネットタイプ無機酸化物又は固溶体を含有している。そして、当該蛍光体は、希土類アルミニウムガーネットタイプ無機酸化物又は固溶体を結晶の主骨格をなしていることが好ましい。つまり、上述の無機酸化物は、後述するように無機酸化物自体が蛍光を放つ機能を有するため、本実施形態の蛍光体は当該無機酸化物の性質を専ら利用するものである。換言すると、本実施形態の蛍光体は、上記無機酸化物又は固溶体を主体にしてなり、蛍光を放つ化合物である。
 一般に蛍光体は、化合物の結晶を構成する元素の一部を、蛍光を放つイオンとなる元素で置換した化合物を指す。このような特性を持つイオンは、通常「発光中心」と呼ばれる。そして上述のように、本実施形態の無機酸化物は、少なくともカルシウム(Ca)と、所定量以上のテルビウム(Tb)と、ジルコニウム(Zr)及び/又はハフニウム(Hf)と、アルミニウム(Al)と、酸素(O)とを結晶の構成元素として含む。Tbは、緑色光を放つ発光中心として知られるTb3+を形成し得る元素である。またTb3+は、高濃度にしても消光しにくく、濃度消光の小さな発光中心として知られるイオンである。さらに、Tb3+はEu3+へとエネルギーを伝達し、Eu3+の発光を可能にする増感剤としての機能を持つイオンである。そのため、本実施形態の無機酸化物及びそれを含有する固溶体は、無機酸化物自体が蛍光を放つ機能を有している。つまり、本実施形態の蛍光体は、少なくともTb3+又はEu3+が発光中心となり、Tb3+又はEuが蛍光成分を放つ特性を有する。
 従来より発光装置用として広く利用され、Tb3+を付活した緑色蛍光体としては、YGa(AlO:Tb3+、YSiO:Tb3+などが存在する。また緑色蛍光体としては、(La,Ce)PO:Tb3+、CeMgAl1119:Tb3+、(Gd,Ce)MgB10:Tb3+なども存在する。そして、本実施形態の蛍光体におけるTb3+が発光中心として機能する場合には、従来のTb3+付活緑色蛍光体などと同等の発光スペクトルを有する緑色蛍光体を実現することが可能となる。
 また、従来より発光装置用として広く利用され、Eu3+を付活した赤色蛍光体としては、Y:Eu3+、YS:Eu3+、Y(P,V):Eu3+などが存在する。そして、本実施形態の蛍光体におけるEu3+が発光中心として機能する場合には、従来のEu3+付活赤色蛍光体などと同等の発光スペクトルを有する赤色蛍光体を実現することが可能となる。
 このように、本実施形態の無機酸化物は、それ自体が少なからず蛍光を放つ機能を備えている。しかしながら、より高効率の蛍光体を得る観点から、次のように改変することが好ましい。
 例えば、Fe、Co、Ni、V、Cu、Cr及びTiなどの遷移金属は、蛍光体の発光強度の低下を誘引するイオンを形成する元素として知られている。そして、このようなイオンは通常キラーセンターと呼ばれている。そのため、本実施形態の蛍光体では、これら遷移金属を含まないことが好ましい。
 また、本実施形態の蛍光体は、前記無機酸化物又は固溶体に発光中心となるイオンを含ませることがより好ましい。つまり、本実施形態の無機酸化物及びそれを含有する固溶体は、発光中心又は増感剤としてのTb3+を少なくとも含むものである。ただ、蛍光体をより高効率に発光させる場合、又は発光色を変える場合には、Tb3+に加え、他の発光中心を添加することが好ましい。また、仮にTb3+が蛍光を放射しない場合であっても、Tb3+以外の発光中心イオンが蛍光を放射するのであれば、本発明の技術的範囲に包含される。
 Tb3+以外の発光中心としては、蛍光体の母体として機能する化合物、すなわち上記無機酸化物及び固溶体の結晶中で、電子エネルギー遷移によって蛍光を放ち得るイオンであればよい。具体的には、ns形イオン発光中心と呼ばれるSn2+、Sb3+、Tl、Pb2+及びBi3+や、遷移金属イオン発光中心と呼ばれるCr3+,Mn4+,Mn2+及びFe3+の少なくとも一つを使用することが好ましい。また、希土類イオン発光中心と呼ばれるCe3+、Pr3+、Nd3+、Sm3+、Eu3+、Gd3+、Dy3+、Ho3+、Er3+、Tm3+、Yb3+、Sm2+、Eu2+及びYb2+の少なくとも一つを使用することも好ましい。
 なお、本実施形態の蛍光体における発光中心は、Tb3+並びにMn4+、Mn2+、Ce3+、Pr3+及びEu3+から選ばれる少なくとも一つのイオンであることがより好ましい。この場合、用途が多い可視光成分、すなわち青、青緑、緑、黄、橙、赤、白を放つ蛍光体を容易に得ることが可能となる。発光中心は、Tb3+並びにMn2+、Ce3+、Pr3+及びEu3+から選ばれる少なくとも一つのイオンであることが特に好ましい。この場合、表示装置や照明装置用としての用途がより多い、青緑色光、緑色光、橙色光、赤色光又は白色光を放つ蛍光体を得ることが可能となる。
 上述のように、本実施形態の蛍光体においては、Tb3+だけでなくTb3+とは別の発光中心、特にCe3+、Pr3+、Eu3+及びMn2+から選ばれる少なくとも一つのイオンを付活剤として含むことが好ましい。例えば、Ce3+は発光中心として作用するだけでなく、Tb3+の増感剤としても作用し、輝線状の緑色成分を持つTb3+の発光強度を増すことができる。また、Ce3+は前記無機酸化物及び固溶体の結晶格子中に存在する場合、短波長可視光を吸収する機能も持つ。そのため、本実施形態の蛍光体では、Tb3+だけでなく、さらにCe3+を含ませることがより好ましい。これにより、蛍光体の励起スペクトルは、Ce3+による励起帯を持つようになる。そして、短波長可視光をCe3+が吸収し、Ce3+が吸収した光エネルギーを効率よくTb3+に移動させるため、短波長可視光を輝線状の緑色光へ波長変換することが可能となる。
 また、Ce3+はPr3+の増感剤としても作用し、輝線状の赤色成分を持つPr3+の発光強度を増すことができる。そのため、本実施形態の蛍光体では、Tb3+及びCe3+だけでなく、Pr3+を含ませることも好ましい。これにより、Tb3+だけでなく、Pr3+の発光成分も放つ蛍光体を得ることが可能となる。つまり、短波長可視光を、Tb3+による輝線状の緑色光とPr3+による輝線状の赤色光とに効率よく波長変換することが可能となる。
 さらに、Ce3+はMn2+の増感剤としても作用し、スペクトル幅の広い橙色成分を持つMn2+の発光強度を増すことができる。そのため、本実施形態の蛍光体では、Tb3+及びCe3+だけでなく、Mn2+を含ませることも好ましい。これにより、Tb3+だけでなくMn2+の発光成分も放つ蛍光体を得ることが可能となる。
 一方で、Tb3+は発光中心として作用するだけでなく、Eu3+にエネルギーを伝達する媒体、つまりEu3+の増感剤としても作用する。そのため、本実施形態の蛍光体では、Tb3+とは別の発光中心となる共付活剤として、Eu3+をさらに含有することも好ましい。これにより、蛍光体を構成する無機酸化物又は固溶体に含まれるTb3+だけでなく、Eu3+の発光成分も放つことが可能となる。
 また、Tb3+からEu3+へのエネルギー伝達は効率よく行われるため、少量のEu3+の添加によって、輝線状の赤色成分を含有する発光を得ることができる。そして、例えば、蛍光体1モル中のEuの原子数がTbの原子数よりも少ない組成物であっても、実質的にEu3+だけの蛍光成分を放出させることが可能となる。つまり、本実施形態の蛍光体は、少なくともEu3+が発光中心となり、Eu3+が蛍光成分を放つ特性を有するものとすることもできる。
 なお、上述のように、本実施形態の蛍光体において、Tb3+だけでなくCe3+を含有させた場合、短波長可視光をCe3+が吸収し、Ce3+が吸収した光エネルギーを効率よくTb3+に移動させることができる。このため、Tb3+とEu3+を含む蛍光体において、さらにCe3+を含ませると、短波長可視光をCe3+が吸収し、Ce3+が吸収した光エネルギーを効率よくTb3+に移動させることができる。加えて、Tb3+に移動させた当該光エネルギーを、効率よくEu3+にも移動させることができる。このため、Ce3+が吸収した短波長可視光を、Tb3+を介してEu3+に移動させることによって、輝線状の赤色光へ波長変換することが可能となる。そして、この場合でも、Eu3+による輝線状の赤色光を放つ蛍光体の励起スペクトルは、Ce3+による励起帯を持つ形状となる。
 このように、本実施形態の希土類アルミニウムガーネットタイプ蛍光体は、Tbを含む前記無機酸化物又は固溶体に、上述の発光中心を含有することが好ましい。これにより、前記無機酸化物及び固溶体は、外部刺激、例えば粒子線(α線、β線、電子線)や電磁波(γ線、X線、真空紫外線、紫外線、可視光線)の照射などによって容易に励起され、蛍光を放つことが可能となる。なお、本実施形態の蛍光体から放出される蛍光は、紫外線、可視光線及び赤外線から選ばれるいずれかの電磁波であれは、後述する発光装置用として用いることができるが、実用面で好ましい蛍光は可視光である。放出される蛍光が可視光であれば、表示装置や照明装置用の発光装置として広範囲に利用できるものになる。
 そして、上述のように、本実施形態の蛍光体は、Tb以外の希土類元素として、結晶格子中にCe、Pr、Eu、Mnを含むことが好ましい。これにより、紫~青色光の短波長可視光を照射した場合、Tb3+の発光成分に、Ce3+、Pr3+、Eu3+及びMn2+の少なくとも一つの発光成分が加わった光を放つ蛍光体を得ることができる。その結果、本実施形態の蛍光体では、発光色の色調を任意に制御することが可能となる。
 なお、Ce3+を含む蛍光体は、程度の差こそあれ、通常Ce3+の発光成分が認められることが多い。本実施形態の蛍光体がCeを含有する場合、Ce3+による蛍光成分の主体は、430nm以上550nm未満の波長領域にある。そして、当該蛍光体の発光スペクトルにおける、例えば波長520nmの強度は、発光スペクトルの強度最大値の30%より小さくすることができ、特に10%よりも小さくすることができる。このことは、当該蛍光体では、Ce3+による青緑色蛍光成分の割合が低く、Tb3+による緑色蛍光成分の割合又はEu3+による赤色蛍光成分の割合を多くすることができることを意味している。
 また、本実施形態の蛍光体がEuを含有する場合、Tb3+の発光成分が実質的に認められないことがある。このことは、当該蛍光体では、Tb3+からEu3+へのエネルギー伝達が効率よく行われることを意味する。
 上述のように、蛍光体となる無機酸化物1モルあたり、Tbのモル数は0.1モル以上1個未満の原子数である。そして、前記付活剤として蛍光体中に含ませる元素のモル数は、無機酸化物のモル数よりも少なく、無機酸化物1モルあたり、0.01モル以上0.3モル未満であることが好ましい。
 上述のように、本実施形態の蛍光体は、短波長可視光によって励起可能であることが好ましい。当該短波長可視光としては、380nm以上470nm未満の範囲内にある光が好ましい。特に、短波長可視光としては、380nm以上420nm未満の範囲内に分光分布の最大値を持つ紫色光、又は420nm以上470nm未満の範囲内に分光分布の最大値を持つ青色光のいずれかであることが好ましい。これによって、後述するように、固体発光素子と組み合わせた発光装置の提供が容易になる。
 また、本実施形態の蛍光体は、放出する光の発光スペクトルが535nm以上560nm未満、特に540nm以上555nm未満の範囲内に最大値を持つことが好ましい。光の見た目の明るさは視感度に依存し、人の目の視感度は555nmに最大値を持つ。そして、光のエネルギー強度が等しくとも上記範囲内にある緑色光は相対的に明るく感じることから、この範囲内に最大値を持つことにより視認性のよい蛍光体を得ることができる。
 さらに本実施形態の蛍光体は、535nm以上560nm未満の範囲内における発光スペクトルの半値幅(FWHM)が、3nm以上30nm未満であることが好ましい。特に、535nm以上560nm未満の範囲内における発光スペクトルの1/5スペクトル幅が3nm以上30nm未満であることがより好ましく、1/10スペクトル幅が3nm以上30nm未満であることが特に好ましい。また当該蛍光体は、535nm以上560nm未満の範囲内における発光スペクトルの半値幅が10nm以上20nm未満であることが好ましく、発光スペクトルの1/5スペクトル幅又は1/10スペクトル幅も15nm以上25nm未満であることが好ましい。このような発光スペクトルは、輝線状の緑色光成分を有するものであり、視感度の高い波長領域に光成分が集中している。そのため、このような蛍光体は、緑色の色純度が良好で明るさが際立つ光成分を放つことが可能となる。なお、1/5スペクトル幅及び1/10スペクトル幅は、発光スペクトルの強度最大値を1として、その強度が、各々1/5及び1/10の強度となる位置における前記発光スペクトルの幅を指す。
 ここで、本実施形態の蛍光体において、発光スペクトルにおける波長575nmの強度は、発光スペクトルの強度最大値の10%、特に5%よりも小さいことが好ましい。さらに、当該蛍光体がCe3+及びTb3+を含有し、Ce3+及びTb3+の両方の発光成分を放出する場合、発光スペクトルは、450nm以上500nm未満の範囲内の最大強度が、Tb3+による主輝線の最大強度の50%よりも小さいという特徴を有する。ここで、Tb3+による主輝線とは、535nm以上560nm未満の範囲内に最大値を持つ輝線をいう。
 一方で、本実施形態の蛍光体は、発光スペクトルが600nm以上628nm未満、特に600nm以上620nm未満の範囲内に最大値を持つことも好ましい。赤色光成分の割合の多い光は、暖色系の光となることから、この範囲内に最大値を持つことにより、従来から好まれてきた白熱電球に近い光を放つ蛍光体を得ることができる。
 ここで、本実施形態の蛍光体は、柘榴石構造を持ち、テルビウム(Tb)とセリウム(Ce)とを含有する、単相の化合物からなる蛍光体とすることができる。また、本実施形態の蛍光体は、柘榴石構造を持ち、テルビウム(Tb)とセリウム(Ce)とユーロピウム(Eu)とを含有する、単相の化合物からなる蛍光体とすることができる。そして、Ce3+を含有する本実施形態の蛍光体において、励起スペクトルはCe3+の吸収によるブロードな励起帯を有し、当該励起帯は400nm以上460nm未満の範囲内にピークを持つものになる。
 また、本実施形態の蛍光体において、Tb3+とCe3+とを含有する蛍光体、又はTb3+とCe3+とEu3+とを含有する蛍光体の発光スペクトルは、Tb3+及びEu3+の少なくともいずれか一方による蛍光成分を有するものになる。そして、当該発光スペクトルにおける、例えば波長575nmの強度は、発光スペクトルの強度最大値の10%、特に5%よりも小さいことが好ましい。さらに、当該発光スペクトルにおける、例えば波長520nmの強度は、発光スペクトルの強度最大値の30%、特に10%よりも小さいことが好ましい。このような蛍光体は、紫色又は青色光を放出する固体発光素子と組み合わせることにより、Tb3+に由来する輝線状の緑色蛍光成分及び/又はEu3+に由来する輝線状の赤色蛍光成分を放出する光源を提供することが可能となる。
 このように本実施形態の蛍光体は、発光中心として、少なくともCe3+とTb3+とを含有する蛍光体とすることができる。そして、当該蛍光体の励起スペクトルはCe3+の吸収によるブロードな励起帯を有し、前記励起帯は400nm以上460nm未満の範囲内にピークを有することが好ましい。さらに、前記蛍光体の発光スペクトルは、Tb3+による緑色蛍光成分を放出し、前記発光スペクトルにおける波長520nmの発光強度は、発光スペクトルの最大値の30%よりも小さいことが好ましい。
 また本実施形態の蛍光体は、発光中心として、少なくともCe3+とTb3+とEu3+とを含有する蛍光体とすることができる。そして、当該蛍光体の励起スペクトルはCe3+の吸収によるブロードな励起帯を有し、前記励起帯は400nm以上460nm未満の範囲内にピークを有することが好ましい。さらに前記蛍光体の発光スペクトルは、Tb3+による緑色蛍光成分及び/又はEu3+による赤色蛍光成分を放出し、前記発光スペクトルにおける波長520nmの発光強度は、発光スペクトルの最大値の30%よりも小さいことが好ましい。
 なお、上記蛍光体の発光スペクトルは、Tb3+及び/又はEu3+による蛍光成分と、Ce3+による蛍光成分とが重なり合った形状を有するものになることもある。この場合、Ce3+による蛍光成分の主体は、430nm以上550nm未満の波長領域に位置するものとなる。
 また、Tb3+とEu3+とを含有する上記蛍光体は、Tb及びEuの含有量を調整することにより、Tb3+の蛍光成分を放出し、Eu3+の蛍光成分を放出しない蛍光体とすることもできる。さらに、当該蛍光体は、Tb3+とEu3+の両方の蛍光成分を放出する蛍光体とすることもできる。そして、Tb3+とEu3+とを含有する上記蛍光体は、Eu3+の蛍光成分を放出し、さらにTb3+の蛍光成分における強度最大値は、Eu3+の蛍光成分における強度最大値の10%未満とすることもできる。また、Tb3+とEu3+とを含有する上記蛍光体において、発光スペクトルは、Tb3+による緑色蛍光成分又はEu3+による赤色蛍光成分が発光スペクトルの最大値となるようにすることも可能である。
 上述のように、ユーロピウムを含み、Eu3+の蛍光成分を放つ本実施形態の蛍光体では、Tb3+からEu3+へのエネルギー伝達が効率よく生じる。そのため、蛍光体に含有されるユーロピウムの原子数がテルビウムの原子数よりも少ない場合であっても、輝線状の赤色蛍光成分を効率よく発光することができる。
 本実施形態の蛍光体は、上記無機酸化物が蛍光体として機能することを特徴としている。そして、前記テルビウム化合物と前記ユーロピウム化合物の少なくとも二種類の化合物を端成分とする固溶体からなる蛍光体では、Eu3+の電子エネルギー遷移に由来する蛍光成分を少なくとも放出することができる。さらに、Tb3+の電子エネルギー遷移に由来する蛍光成分を放出することもできる。
 なお、Eu3+の電子エネルギー遷移に由来する蛍光成分に関し、Eu3+に由来する蛍光成分の主輝線は、600nm以上628nm未満の波長範囲内にあることが好ましい。そして、700nm以上720nm未満の波長範囲内にある輝線の最大高さは、前記主輝線の最大高さの60%未満、特に40%未満とすることが好ましい。なお、前記Eu3+の電子エネルギー遷移は、Eu3+の4f電子による遷移をいう。
 上述のように、本実施形態の蛍光体は、発光中心として少なくともテルビウムイオン(Tb3+)を含有している。ただ、発光中心としては、テルビウムイオン(Tb3+)だけでなく、セリウムイオン(Ce3+)も含有することが好ましく、必要に応じてユーロピウムイオン(Eu3+)を含有していることが好ましい。この場合、当該蛍光体の発光スペクトルは、後述の図10,図11及び図13に示す特徴的な形状を有する。ここで本実施形態の蛍光体が図10,図11及び図13の特徴的なスペクトルを示すメカニズムについて説明する。
 一般に、Ce3+付活蛍光体は吸収した光を長波長の光に変換し、その変換光は幅の広い分光分布を持つことが知られている。それに対して、Tb3+付活蛍光体又はEu3+付活蛍光体は吸収した光を長波長の光に変換するが、その変換光は複数の輝線からなる。Tb3+付活蛍光体の場合は、発光スペクトルにおける540nm以上560nm未満の波長領域に強度最大値を持つことが知られている。また、Eu3+付活蛍光体の場合は、発光スペクトルにおける580nm以上650nm未満の波長領域に強度最大値を持つことが知られている。
 また、例えばCe3+とTb3+の両方を付活した蛍光体では、共鳴伝達と呼ばれるメカニズムによって、Ce3+が吸収したエネルギーの少なくとも一部がTb3+へ移動することも知られている。共鳴伝達によるエネルギー移動が生じるためには、通常、Ce3+の発光スペクトルとTb3+の吸収スペクトルが重なっている必要がある。そして従来より、このCe3+からTb3+へのエネルギー伝達を利用して、ランプ用の緑色蛍光体が開発されている。このような緑色蛍光体としては、例えば、(La,Ce,Tb)PO、(Ce,Tb)MgAl1119、及び(Gd,Ce,Tb)MgB10が挙げられる。ただし、当該ランプ用の緑色蛍光体の場合、励起スペクトルのピークは254nm付近にあり、Ce3+の発光成分のピークは450nm未満の波長域に位置する。
 なお、Ce3+からTb3+への共鳴伝達については、Ce3+が波長450nm以上500nm以下の青乃至青緑色光を放つときであっても、Ce3+の発光スペクトルとTb3+の吸収スペクトルとは重なりを持つことができる。そのため、原理的にCe3+からTb3+へのエネルギー伝達が可能である。つまり、450nm以上500nm以下の範囲に発光ピークを持つCe3+付活蛍光体にTb3+を共付活した場合であっても、Ce3+の発光スペクトルとTb3+の吸収スペクトルとが重なりを持つため、Ce3+からTb3+への共鳴伝達が生じる。さらにTb3+の濃度が高い場合には、Tb3+とCe3+の間のイオン間距離が近くなるため、Ce3+が吸収したエネルギーの殆ど全てがTb3+に移動し、Tb3+に起因する線状の発光が主体として現れる。また、Tb3+の濃度が低い場合であっても、Ce3+が吸収したエネルギーの多くがTb3+に移動する。そのため、Ce3+に起因する450nm以上500nmにピークを有するブロードな発光成分と、Tb3+に起因する540nm以上560nm未満の線状の発光成分とが認められるようになる。
 一方で、例えば、Tb3+とEu3+の両方を付活した蛍光体でも、共鳴伝達によってTb3+からEu3+へとエネルギー移動することが知られている。なお、一般に、Tb3+の発光スペクトルとEu3+の吸収スペクトルとの重なりは小さいことが知られている。そこで、Tb3+からEu3+へのエネルギー伝達確率を上げるには、Tb3+とEu3+の距離が短くなるように、いずれか一方の蛍光体中の含有量を高める必要が生じる。
 このようにCe3+からTb3+へは共鳴伝達が生じ、Tb3+からEu3+へも共鳴伝達が生じる。このために、Ce3+とTb3+とEu3+とを一緒に付活した蛍光体においては、Ce3+からTb3+、さらにはTb3+からEu3+へのエネルギー伝達によって、Tb3+を媒体としてCe3+からEu3+へのエネルギー伝達が生じることになる。
 本実施形態の蛍光体の場合では、このメカニズムにより、450nm以上500nm未満にピークを有し、比較的強度が小さいCe3+のブロードな発光成分にTb3+及び/又はEu3+の発光成分が重畳する。その結果、535nm以上560nm未満及び/又は580nm以上650nm未満の波長領域に、線状の発光ピークを有する特徴的な発光スペクトルを示す。
 さらにCe3+は発光中心として作用するだけでなく、Tb3+の増感剤としても作用し、輝線状の緑色成分を持つTb3+の発光強度を増すことができる。また、Tb3+は発光中心として作用するだけでなく、Eu3+の増感剤としても作用し、輝線状の赤色成分を持つEu3+の発光強度を増すことができる。一方で、Ce3+は、無機酸化物の結晶格子中に存在する場合、短波長可視光を吸収する機能も持つ。そのため、本実施形態の蛍光体では、Ce3+とTb3+と、必要に応じてEu3+とを共存させることにより、短波長可視光をCe3+が吸収し、Ce3+が吸収した光エネルギーを効率よくTb3+及び/又はEu3+に移動させる。その結果、短波長可視光を輝線状の緑色光及び/又は輝線状の赤色光へ波長変換することが可能となる。
 本実施形態の蛍光体は、上記した発光メカニズムによって発光することを特徴とする蛍光体であり、従来に無かった新たな機能を持つ蛍光体である。ここで、前記新たな機能とは、短波長可視の波長域、特に400nm以上460nm未満の波長域にCe3+によるブロードな励起ピークを持ち、Tb3+による緑色蛍光成分及び/又はEu3+による赤色蛍光成分を主発光成分として放出する機能を指す。
 本実施形態の蛍光体は、380nm以上420nm未満の範囲内にある紫色光、及び420nm以上470nm未満の範囲内にある青色光の少なくともいずれか一方の光を吸収することが好ましい。これにより、470nm以上780nm以下の範囲内に発光スペクトルの最大値を持つ光に波長変換することができる。
 なお、本実施形態の蛍光体は、水、有機溶剤、樹脂などの溶媒や水ガラスなどと適宜混合して、スラリー状、ペースト状、ゾル状、ゲル状としたものとして利用することができる。
 上述のように、一般的な蛍光体は、母体として機能する化合物中に発光中心としての元素を少量添加し、その少量添加した元素が蛍光を放つものである。しかし、本実施形態に係る、例えばCa(Tb,Ce)Zr(AlOやCa(Tb,Ce,Eu)Zr(AlO等は、母体として機能する無機酸化物中に特定のイオンを少量添加してなる点は、一般的な蛍光体と類似している。しかし、本実施形態の蛍光体は、少量添加した特定のイオン(Ce3+イオン)によって、母体の結晶格子を形成するイオン(例えばTb3+イオン)が蛍光を放つようになるという従来にはない特性を有するものである。
[発光装置]
 次に、本発明の実施形態に係る発光装置を説明する。本実施形態の発光装置は、上記希土類アルミニウムガーネットタイプ蛍光体を備えることを特徴とする。上述のように、本実施形態の蛍光体は、短波長可視光で励起可能であり、かつ、狭帯域性の発光スペクトルの光を放出する。このため、本実施形態の発光装置では、短波長可視光を放つ発光素子と、上記蛍光体とを組み合わせることによって、狭帯域性の発光スペクトル成分を持つ光を出力することが可能となる。
 本実施形態に係る発光装置は、発光する機能を備えた電子装置を広く包含するものであり、何らかの光を発する電子装置であれば特に限定されない。つまり、本実施形態の発光装置は、少なくとも本実施形態の蛍光体を利用しており、さらに当該蛍光体が放つ蛍光を少なくとも出力光として利用する発光装置である。
 より詳細に説明すると、本実施形態の発光装置は、短波長可視光を放つ固体発光素子と、上記蛍光体とを組み合わせている。そして、当該蛍光体は、固体発光素子が放つ短波長可視光を吸収し、吸収した短波長可視光をそれよりも長波長の光に波長変換するものである。
 さらに、蛍光体の励起スペクトルは、380nm以上470nm未満、特に400nm以上460nm未満の短波長可視域に極大値を持つことが好ましい。詳細には、220nm以上470nm未満、特に300nm以上470nm未満の範囲内で励起スペクトルを測定した場合、380nm以上470nm未満、特に400nm以上460nm未満の短波長可視域に励起スペクトルの最大値を持つことが好ましい。
 また、蛍光体の発光スペクトルは、Tb3+の電子エネルギー遷移に由来するスペクトル成分を含むことが好ましい。さらに、前記蛍光体の発光スペクトルは、535nm以上560nm未満の範囲にあるスペクトル成分の半値幅、好ましくは1/5スペクトル幅、より好ましくは1/10スペクトル幅が3nm以上30nm未満であることが好ましい。そして、450nm以上500nm未満の発光スペクトル成分の最大強度が、535nm以上560nm未満の範囲にあるスペクトル成分の最大強度の50%、特に40%よりも小さいことが好ましい。なお、Tb3+の電子エネルギー遷移は、Tb3+の4f電子による遷移をいう。
 一方、蛍光体の発光スペクトルは、Eu3+の電子エネルギー遷移に由来するスペクトル成分を含むことも好ましい。また、前記蛍光体の発光スペクトルは、600nm以上628nm未満の範囲に発光スペクトルの最大値を有することもできる。つまり、蛍光成分の主輝線が、600nm以上628nm未満の波長範囲内にある赤色光とすることもできる。なお、Eu3+の電子エネルギー遷移は、Eu3+の4f電子による遷移をいう。
 従来より、蛍光体を利用する発光装置は数多くあり、例えば蛍光灯や電子管、プラズマディスプレイパネル(PDP)、白色LED、さらには蛍光体を利用する検出装置などがこれに該当する。広義には、蛍光体を利用する照明光源や照明装置、表示装置なども発光装置であり、レーザーダイオードを備えるプロジェクターやLEDバックライトを備える液晶ディスプレイなども発光装置とみなされる。ここで、本実施形態の発光装置は、蛍光体が放つ蛍光の種別によって分類できるため、この分類について説明する。
 電子装置に利用される蛍光現象は、学術的に幾つかに区分されており、フォトルミネッセンス、カソードルミネッセンス、エレクトロルミネッセンスなどの用語で区別されている。
 フォトルミネッセンス(photoluminescence)とは、蛍光体に電磁波を照射したときに蛍光体が放つ蛍光をいう。なお、「電磁波」という用語は、X線、紫外線、可視光及び赤外線などを総称して指す。カソードルミネッセンス(Cathodeluminescence)とは、蛍光体に電子線を照射したときに蛍光体が放つ蛍光をいう。また、エレクトロルミネッセンス(electroluminescence)とは、蛍光体に電子を注入したり電界をかけたりしたときに放つ蛍光をいう。原理的にフォトルミネッセンスに近い蛍光として、サーモルミネッセンス(thermoluminescence)という用語もあるが、これは蛍光体に熱を加えたときに蛍光体が放つ蛍光をいう。また、原理的にカソードルミネッセンスに近い蛍光として、ラジオルミネッセンス(radioluminescence)という用語もあるが、これは蛍光体に放射線を照射したときに蛍光体が放つ蛍光をいう。
 先に説明したように、本実施形態の発光装置は、上述の希土類アルミニウムガーネットタイプ蛍光体が放つ蛍光を少なくとも出力光として利用するものである。そして、ここでいう蛍光は少なくとも上述のように区分することができるから、当該蛍光は、上記ルミネッセンスから選ばれる少なくとも一つの蛍光現象として置き換えることができる。
 なお、蛍光体のフォトルミネッセンスを出力光として利用する発光装置の典型例としては、X線イメージインテンシファイア、蛍光灯、白色LED、蛍光体とレーザーダイオードを利用する半導体レーザープロジェクター及びPDPが挙げられる。また、カソードルミネッセンスを出力光とする発光装置の典型例としては、電子管、蛍光表示管及びフィールドエミッションディスプレイ(FED)が挙げられる。さらに、エレクトロルミネッセンスを出力光とする発光装置の典型例としては、無機エレクトロルミネッセンスディスプレイ(無機EL)、発光ダイオード(LED)、半導体レーザー(LD)及び有機エレクトロルミネッセンス素子(OLED)が挙げられる。そして、本実施形態の蛍光体からのエレクトロルミネッセンスを利用する発光装置としては、例えば無機エレクトロルミネッセンスディスプレイを挙げることができる。
 以下、図面を参考に本実施形態の発光装置を説明する。図1は、本実施形態に係る発光装置の概略を示す。図1(a)及び(b)において、励起源1は、本実施形態の蛍光体2を励起するための一次光を生成する光源である。励起源1は、α線、β線、電子線などの粒子線や、γ線、X線、真空紫外線、紫外線、可視光(特に紫色光や青色光などの短波長可視光)などの電磁波を放つ放射装置を用いることができる。また励起源1としては、各種の放射線発生装置や電子ビーム放射装置、放電光発生装置、固体発光素子、固体発光装置なども用いることができる。励起源1の代表的なものとしては、電子銃、X線管球、希ガス放電装置、水銀放電装置、発光ダイオード、半導体レーザーを含むレーザー光発生装置、無機又は有機のエレクトロルミネッセンス素子などが挙げられる。
 また、図1(a)及び図1(b)において、出力光4は、励起源1が放つ励起線、又は励起光3によって励起された蛍光体2が放つ蛍光である。そして出力光4は、発光装置において照明光や表示光として利用されるものである。
 図1(a)では、励起線又は励起光3を蛍光体2に照射する方向に、蛍光体2からの出力光4が放出される構造の発光装置を示す。なお、図1(a)に示す発光装置としては、白色LED光源や蛍光ランプ、電子管などが挙げられる。一方、図1(b)では、励起線又は励起光3を蛍光体2に照射する方向とは逆の方向に、蛍光体2からの出力光4が放出される構造の発光装置を示す。図1(b)に示す発光装置としては、プラズマディスプレイ装置や反射板付き蛍光体ホイールを利用する光源装置、プロジェクターなどが挙げられる。
 本実施形態の発光装置の具体例として好ましいものは、蛍光体を利用して構成した半導体発光装置、照明光源、照明装置、LEDバックライト付き液晶パネル、LEDプロジェクター、レーザープロジェクターなどである。そして特に好ましい発光装置は、短波長可視光によって蛍光体を励起する構造を持ち、短波長可視光は固体発光素子が放つようにした構造を有するものである。
 以下、本実施形態に係る発光装置としての半導体発光装置、及びプロジェクター用の光源装置の具体例を詳細に説明する。
 <半導体発光装置>
 図2は、本実施形態に係る発光装置の具体例である半導体発光装置を模式的に示す断面図である。図2は断面図であるが、図面の見易さを考慮して透光性樹脂10の断面を示すハッチングは省略している。
 図2において、基板5は、固体発光素子6を固定するための基台となるものである。そして、基板5は、Al及びAlNなどのセラミックス、Al及びCuなどの金属、並びにガラス、シリコーン樹脂及びフィラー入りシリコーン樹脂などの樹脂から構成される。
 また、基板5上には配線導体7が設けられ、固体発光素子6の給電電極8と配線導体7とを、金線などを用いて電気的に接続することによって、固体発光素子6に給電している。
 一次光を生成する光源である固体発光素子6は、直流、交流及びパルスの中から選ばれる少なくともいずれかの電圧を印加する電力供給によって、電気エネルギーを近紫外線、紫色光又は青色光などの光エネルギーに変換する電光変換素子である。固体発光素子6としては、LED、LD、無機エレクトロルミネッセンス(EL)素子、有機EL素子などを用いることができる。特に、高出力かつ狭スペクトル半値幅の一次光を得るためには、固体発光素子6はLED又はLDが好ましい。なお、図2は、固体発光素子6を、InGaN系化合物を発光層とするLEDとした場合の構成を示している。
 波長変換層9は、蛍光物質からなる蛍光体2を含み、固体発光素子6が放つ一次光を、相対的に長波長側に移動した光に波長変換する。また、図2に示すように、波長変換層9は、側壁11により囲まれており、さらに本実施形態に係る蛍光体の粒子が透光性樹脂10中に分散している。なお、本実施形態の半導体発光装置における波長変換層9としては、樹脂蛍光膜、透光性蛍光セラミックス、蛍光ガラスなどに蛍光体を含ませて構成することもできる。
 波長変換層9には、蛍光体2として本実施形態に係る蛍光体を単独で使用することもできるが、必要に応じて、本実施形態に係る蛍光体とは異なる蛍光体を含むようにしてもよい。また、発光色又は組成のいずれかの面で異なる希土類アルミニウムガーネットタイプ蛍光体を複数種組み合わせて用いるようにしてもよい。
 波長変換層9に用いることができる、本実施形態の蛍光体とは異なる蛍光体としては、固体発光素子6が放つ一次光を吸収して相対的に長波長側に移動した光に波長変換する蛍光体であれば、特に限定されない。発光色として、青色光、緑青光、青緑色光、緑色光、黄色光、橙色光、赤色光を放つ各種の蛍光体から適宜選択して、半導体発光装置が所望の色の出力光を放つようにすることができる。
 固体発光素子6をLED又はLDとした場合の半導体発光装置用の蛍光体としては、本実施形態の蛍光体のみならず、Eu2+又はCe3+の少なくともいずれかで付活した酸化物や酸ハロゲン化物などの酸化物系蛍光体を用いることができる。また、蛍光体としては、Eu2+又はCe3+の少なくともいずれかで付活した窒化物や酸窒化物などの窒化物系蛍光体、又は硫化物や酸硫化物などの硫化物系蛍光体を用いることができる。
 具体的には、青色蛍光体として、BaMgAl1017:Eu2+、CaMgSi:Eu2+、BaMgSi:Eu2+、Sr10(POCl:Eu2+などが挙げられる。緑青又は青緑色蛍光体として、SrSiCl:Eu2+、SrAl1424:Eu2+、BaAl13:Eu2+、BaSiO:Eu2+が挙げられる。さらに緑青又は青緑色蛍光体として、BaZrSi:Eu2+、CaYZr(AlO:Ce3+、CaYHf(AlO:Ce3+、CaYZr(AlO:Ce3+,Tb3+が挙げられる。緑色蛍光体として、(Ba,Sr)SiO:Eu2+、CaMg(SiOCl:Eu2+、CaMg(SiOCl:Eu2+,Mn2+が挙げられる。また、緑色蛍光体として、BaMgAl1017:Eu2+,Mn2+、CeMgAl1119:Mn2+、YAl(AlO:Ce3+、LuAl(AlO:Ce3+が挙げられる。さらに緑色蛍光体として、YGa(AlO:Ce3+、CaScSi12:Ce3+、CaSc:Ce3+、β-Si:Eu2+、SrSi:Eu2+が挙げられる。緑色蛍光体として、BaSi12:Eu2+、SrSi13Al21:Eu2+、YTbSiC:Ce3+、SrGa:Eu2+が挙げられる。緑色蛍光体として、CaLaZr(AlO:Ce3+、CaTbZr(AlO:Ce3+、CaTbZr(AlO:Ce3+,Pr3+が挙げられる。黄又は橙色蛍光体として、(Sr,Ba)SiO:Eu2+、(Y,Gd)Al12:Ce3+、α-Ca-SiAlON:Eu2+が挙げられる。黄又は橙色蛍光体として、YSiC:Ce3+、LaSi11:Ce3+、YMgAl(AlO(SiO):Ce3+が挙げられる。赤色蛍光体としては、SrSi:Eu2+、CaAlSiN:Eu2+、SrAlSi:Eu2+、CaS:Eu2+、LaS:Eu3+、YMg(AlO)(SiO:Ce3+が挙げられる。
 なお、利用する蛍光体を全て酸化物とすることで、低コストな半導体発光装置を実現することができる。
 上述のように、本実施形態の希土類アルミニウムガーネットタイプ蛍光体は、380nm以上470nm未満の波長領域内に励起スペクトルのピーク又は最大値を持つ。そのため、本実施形態に係る発光装置は、380nm以上470nm未満の波長領域内に発光ピークを持つ紫又は青色光を発する固体発光素子6と、本実施形態の蛍光体2を少なくとも含む波長変換層9とを備えることが好ましい。
 なお、固体発光素子と蛍光体の好ましい組み合わせとしては、次のようなものが挙げられる。例えば、紫色固体発光素子に対して、青色蛍光体と緑色蛍光体と赤色蛍光体との組み合わせ、青緑色蛍光体と緑色蛍光体と黄色蛍光体との組み合わせ、青緑色蛍光体と緑色蛍光体と赤色蛍光体との組み合わせ、緑色蛍光体と赤色蛍光体との組み合わせが好ましい。また、紫色固体発光素子に対して、青緑色蛍光体と黄色蛍光体と赤色蛍光体との組み合わせ、黄色蛍光体と赤色蛍光体との組み合わせが好ましい。さらに、青色固体発光素子に対して、緑色蛍光体と黄色蛍光体との組み合わせ、緑色蛍光体と赤色蛍光体との組み合わせ、緑色蛍光体との組み合わせ、黄色蛍光体と赤色蛍光体との組み合わせなどが好ましい。
 そして、これらの組み合わせのいずれかを用いて半導体発光装置を構成するか、又はこれらの組み合わせに基づく出力光を最終的に放つようにすることが好ましい。なお、本実施形態の半導体発光装置では、緑色蛍光体、青緑色蛍光体又は赤色蛍光体として、本実施形態の希土類アルミニウムガーネットタイプ蛍光体を用いるものである。
 ただ、本実施形態の蛍光体は、少なくとも緑色光成分と赤色光成分とを共に放出する蛍光体とすることもできる。そのため、本実施形態の半導体発光装置では、上記した緑色蛍光体と赤色蛍光体との組み合わせを、本実施形態の蛍光体で置き換えることもできる。また、緑色蛍光体と赤色蛍光体との組み合わせの代わりに、本実施形態の蛍光体を単独で用いることもできる。なお、本実施形態の蛍光体を単独で用いる場合には、複数の蛍光体を使用する必要性がなくなるので、半導体発光装置の製造工程の簡略化を図ることが可能となる。
 ここで、図2に示す半導体発光装置の製造方法の一例を説明する。まず、配線導体7を形成した基板5上に実装技術を用いて固体発光素子6を固定する。次に、ワイヤーボンディング技術等を用いて、固体発光素子6の給電電極8と配線導体7とを電気的に接続する。
 一方で、シリコーン樹脂などの透光性樹脂10と蛍光体2とを十分に混合し、所定の粘度となるように調整した蛍光体ペーストを作製する。蛍光体ペースト中の蛍光体2の重量割合は、数%~数10%程度となるようにする。その後、固体発光素子6上に蛍光体ペーストを滴下するなどして、固体発光素子6の光取り出し面を蛍光体ペーストで覆って、蛍光体ペーストを乾燥させるなどして固化する。これにより、波長変換層9が形成された半導体発光装置を得ることができる。
 このようにして形成された半導体発光装置では、固体発光素子6に通電して所定の電力を供給すると、固体発光素子6が短波長可視光の一次光を発光する。つまり、固体発光素子6は、380nm以上420nm未満の範囲内に発光ピークを有する紫色光、又は420nm以上470nm未満の範囲内に発光ピークを有する青色光を発光する。この一次光は、蛍光体2によって、高い変換効率で青緑、緑色及び赤色の少なくともいずれか一つの光に波長変換される。
 一次光は波長変換層9に含まれた蛍光体2に照射され、一部が蛍光体2に吸収される。蛍光体2に吸収された一次光は、蛍光体2によって、相対的に長波長側(低エネルギー側)に移動した光に波長変換される。そして、蛍光体2によって波長変換された光が透光性樹脂10を通り抜けて半導体発光装置から出射する。一方、蛍光体2に吸収されなかった一次光も、透光性樹脂10を通り抜けて半導体発光装置から出射される。この結果、半導体発光装置からは、蛍光体2による波長変換光と、蛍光体2に吸収されなかった一次光の両方が出射することになる。つまり、半導体発光装置からは、これら双方が加色混合された光成分が出力される。
 なお、波長変換層9の厚みや光透過率、波長変換層9に含まれる蛍光体2の種類や混合割合、固体発光素子が放つ一次光の波長などは適宜調整できるものである。そのため、所望とする光源色や白色などの照明光が得られるように光源設計すればよい。なお一次光が全て蛍光体に吸収されて波長変換される場合もあり、この場合には半導体発光装置からの出射光は蛍光体で波長変換された光のみとなる。
 ここで図3乃至6では、本実施形態の半導体発光装置が放つ出力光の分光分布の一例を示す。本実施形態の半導体発光装置は、上述の通り、固体発光素子によって、380nm以上470nm未満の波長領域内に発光ピークを有する紫又は青色の光成分を放出することが好ましい。さらに、当該半導体発光装置は、蛍光体によって535nm以上560nm未満、特に540nm以上555nm未満の波長領域内に発光ピークを有する緑色の光成分を放出することが好ましい。このため、図3乃至6に示される半導体発光装置では、380nm以上420nm未満の波長領域内に発光ピークを有する紫色の光成分12と、420nm以上470nm未満の波長領域内に発光ピークを有する青色の光成分13とを示している。さらに図3乃至6では、535nm以上560nm未満の波長領域に発光ピークを有する緑色の光成分14を示している。
 図3及び4は、昼光色相当となる相関色温度6700Kの三波長形の白色系出力光を放つようにした場合の分光分布を示している。そして、この分光分布では、固体発光素子として、紫色光を放つInGaN系化合物を発光層とするInGaN紫色LEDを用いている。なお、InGaN紫色LEDの出力ピーク波長は405nmである。さらに蛍光体として、Tb3+による緑色光を放つ希土類アルミニウムガーネットタイプ蛍光体と、赤色蛍光体とを用いている。なお、図3及び図4は、赤色蛍光体として、各々Eu3+付活蛍光体を用いた場合とEu2+付活蛍光体を用いた場合とを示している。
 図3に示す実線aは、InGaN紫色LEDと、青色光成分を放つEu2+付活蛍光体と、緑色光成分を放つ本実施形態の蛍光体と、赤色光成分を放つEu3+付活蛍光体(LaS:Eu3+)を組み合わせた場合の分光分布を示す。なお、青色光成分を放つEu2+付活蛍光体としては、BaMgAl1017:Eu2+を用いており、450nm付近に発光ピークを持つ。また、本実施形態の蛍光体としては、CaTbZr(AlO:Ce3+を用いており、545nm付近に主発光ピークを持つ。さらに、赤色光成分を放つEu3+付活蛍光体としては、LaS:Eu3+を用いており、625nm付近に発光ピークを持つ。
 また、図3に示す破線bは、参考例として、相関色温度6700Kの擬似白色の出力光を放つようにした場合の分光分布である。そして、この分光分布では、固体発光素子として、InGaN青色LED(出力ピーク波長:450nm)を用いている。さらに蛍光体として、555nm付近に発光ピークを持つ黄緑色光成分を放つYAG:Ce系蛍光体を用いている。
 図3中に実線aとして示した白色系出力光は、平均演色評価数Raが87であるのに対し、破線bとして示した参考例の擬似白色の出力光はRaが77である。そのため、図3中に実線aで示した白色系出力光は、Raの数値が十分高く、自然光に近い照明光として利用できる。なお、図3中の実線aの白色系出力光は、高演色性と高効率を両立する光源として高い実績を持つ三波長形の蛍光ランプが放つ分光分布に類似している。そのため、本実施形態によれば、三波長形の蛍光ランプと遜色のない照明光を得ることができる。
 一方、図4中の実線cは、InGaN紫色LEDと、青色光成分を放つEu2+付活蛍光体と、緑色光成分を放つ本実施形態の蛍光体と、赤色光成分を放つEu2+付活蛍光体とを組み合わせた場合の分光分布を示している。なお、青色光成分を放つEu2+付活蛍光体としては、BaMgAl1017:Eu2+を用いており、450nm付近に発光ピークを持つ。また、本実施形態の蛍光体としては、CaTbZr(AlO:Ce3+を用いており、545nm付近に主発光ピークを持つ。さらに、赤色光成分を放つEu2+付活蛍光体としては、CaAlSiN:Eu2+を用いており、650nm付近に発光ピークを持つ。なお、参考のため、図4中にも相関色温度が6700Kである擬似白色の出力光の分光分布(破線b)を示している。
 図4中に実線cとして示した白色系出力光は、平均演色評価数Raが85であるのに対し、破線bとして示した参考例の擬似白色の出力光はRaが77である。そのため、図4中に実線cで示した白色系出力光は、Raの数値が十分高く、自然光に近い照明光として利用できる。
 図5及び6の半導体発光装置は、固体発光素子として、紫色光を放つInGaN系化合物を発光層とするInGaN紫色LEDと、青色光を放つInGaN系化合物を発光層とするInGaN青色LEDの二つを備えている。ここで、InGaN紫色LEDの出力ピーク波長は405nmであり、InGaN青色LEDの出力ピーク波長は450nmである。そして、図5及び6は、Tb3+による緑色光を放つ本実施形態の蛍光体と赤色蛍光体とを用いて、昼光色相当となる相関色温度6700Kの三波長形の白色系出力光を放つようにした場合の分光分布を示している。なお、図5及び図6は、赤色蛍光体として、各々Eu3+付活蛍光体を用いた場合とEu2+付活蛍光体を用いた場合を示している。
 図5に示す実線dは、InGaN紫色LEDと、InGaN青色LEDと、緑色光成分を放つ本実施形態の蛍光体と、赤色光成分を放つEu3+付活蛍光体とを組み合わせた場合の分光分布を示す。なお、本実施形態の蛍光体としては、CaTbZr(AlO:Ce3+を用いており、545nm付近に主発光ピークを持つ。また、赤色光成分を放つEu3+付活蛍光体としては、LaS:Eu3+を用いており、625nm付近に発光ピークを持つ。なお、参考のため、図5中にも相関色温度が6700Kである擬似白色の出力光の分光分布(破線b)を示している。
 図5中に実線dとして示した白色系出力光は、平均演色評価数Raが86である。そのため、破線bとして示した参考例の擬似白色の出力光に比べてRaの数値が十分高いことから、図5中に実線dで示した白色系出力光は、自然光に近い照明光として利用できる。なお、図5中の実線dの白色系出力光も、三波長形の蛍光ランプが放つ分光分布に類似している。そのため、本実施形態によれば、三波長形の蛍光ランプと遜色のない照明光を得ることができる。
 一方、図6中の実線eは、InGaN紫色LEDと、InGaN青色LEDと、緑色光成分を放つ本実施形態の蛍光体と、赤色光成分を放つEu2+付活蛍光体とを組み合わせた場合の分光分布を示している。なお、本実施形態の蛍光体としては、CaTbZr(AlO:Ce3+を用いており、545nm付近に主発光ピークを持つ。また、赤色光成分を放つEu2+付活蛍光体としては、CaAlSiN:Eu2+を用いており、650nm付近に発光ピークを持つ。なお、参考のため、図6中にも相関色温度が6700Kである擬似白色の出力光の分光分布(破線b)を示している。
 図6中実線eとして示した白色系出力光は、平均演色評価数Raが85である。そのため、破線bとして示した参考例の擬似白色の出力光に比べてRaの数値が十分高いことから、図6中に実線eで示した白色系出力光は、自然光に近い照明光として利用できる。
 なお、図3乃至6中に実線で示した本実施形態に係る半導体発光装置の白色系出力光は、450nm付近の青色の波長領域と、540nm付近の緑色の波長領域と、620nm又は650nm付近の赤色の波長領域に各々ピークを持つ三波長形となる。そのため、赤緑青の強い光成分を利用して、広色域で高光出力の多色表示用光源として利用することができる。
 また、図3及び5中に実線a及びdで示す白色系出力光は、450nmと550nmと620nm付近に、狭い分光分布の光成分を持つため、高出力化の面で有利である。つまり、図3及び5中に実線a及びdで示す白色系出力光は、図4及び図6中に実線c及びeで示す白色系出力光に対して、約25%の光束向上効果を持つ。なお、この光束向上効果は、総光子数が一定となるように調整した図3乃至6の分光分布に、視感度を考慮した算出式を用いることによって算出することができる。
 このように、本実施形態の発光装置は、本実施形態の希土類アルミニウムガーネットタイプ蛍光体と、Eu3+付活蛍光体とを少なくとも用いることによって、一層高効率の発光装置とすることができる。
 なお、図4及び6に係る半導体発光装置に用いられる、650nm付近に発光ピークを持つEu2+付活蛍光体としては、上述のようにCaAlSiN:Eu2+を用いることができる。また、Eu2+で付活したニトリドシリケート系蛍光体(SrSi:Eu2+など)や、Eu2+で付活したニトリドアルミノシリケート系蛍光体((Sr,Ca)AlSiN:Eu2+、SrAlSi:Eu2+など)も用いることができる。
 また、図3及び5に係る半導体発光装置に用いられる、Eu3+付活赤色蛍光体としては、LaS:Eu3+を用いることができる。また、Eu3+の赤色蛍光成分を放出する本実施形態の蛍光体や、これ以外のEu3+付活赤色蛍光体も用いることができる。
 ここで、先に説明したように、本実施形態の蛍光体は、Tb3+及びEu3+の蛍光成分を併せ持つものとすることもできる。このため、図3及び5に係る半導体発光装置に用いられる、Tb3+による緑色光を放つ蛍光体とEu3+付活蛍光体との組み合わせを、Tb3+及びEu3+の蛍光成分を併せ持つ本実施形態の蛍光体に置換することもできる。
 このように、本実施形態の発光装置は、本実施形態の希土類アルミニウムガーネットタイプ蛍光体、特にTb3+及びEu3+の少なくともいずれか一方による蛍光を放つアルミニウムガーネットタイプ蛍光体を利用している。しかし、図3乃至6に示した分光分布を得る手段については、特に限定されるものではない。
 つまり、図3及び4に示す分光分布は、紫色LEDと蛍光膜とを組み合わせ、蛍光膜が複数の蛍光体を含むようにした半導体発光装置により得ることができる。なお、当該蛍光体としては、例えば、青色蛍光体、緑色蛍光体及び赤色蛍光体を組み合わせたものや、青色蛍光体と緑色蛍光成分及び赤色蛍光成分を放出する蛍光体とを組み合わせたものを使用することができる。また、図3及び4に示す分光分布は、紫色LEDと蛍光膜とで構成し、蛍光膜に含有される蛍光体が互いに異なる半導体発光装置を組み合わせることにより得ることができる。前者は構成の面で単純な半導体発光装置になり、後者は色調制御が容易な半導体発光装置になる。
 また、図5及び6に示す分光分布は、紫色LEDと青色LEDと蛍光膜とを組み合わせ、さらに紫色LEDと青色LEDとが同時に蛍光膜中の蛍光体を励起するようにした半導体発光装置により得ることができる。なお、当該蛍光膜は、例えば、緑色蛍光体と赤色蛍光体とを組み合わせたものや、緑色蛍光成分と赤色蛍光成分とを放出する蛍光体を使用することができる。また、図5及び6に示す分光分布は、紫色LEDと蛍光膜とで構成した半導体発光装置、及び青色LEDと蛍光膜とで構成した半導体発光装置を予め準備し、これらの半導体発光装置を組み合わせることにより得ることができる。前者は製造が容易な半導体発光装置になり、後者は色調制御が容易な半導体発光装置になる。
 以上説明したように、本実施形態に係る半導体発光装置は、紫色及び/又は青色の光を発する固体発光素子と、当該光を吸収して輝線状の緑色光成分及び/又は赤色光成分の光を放つ蛍光体とを組み合わせている。そのため、535nm以上560nm未満に発光ピークを有する輝線状の緑色光成分、又は600nm以上628nm未満に発光ピークを有する輝線状の赤色光成分のいずれかを少なくとも放つものになる。
 ここで、前記輝線状の緑色光成分は、視感度が高い。そして、本実施形態の半導体発光装置は高光束の光と高出力の緑色光成分を放出できることから、表示装置における緑色画素の高輝度化を促すものになる。
 一方、前記輝線状の赤色光成分は、赤色光の中でも比較的視感度が高い波長領域にスペクトルが集中している。そして、本実施形態の半導体発光装置は高光束の光と高出力の赤色光成分とを放出できることから、表示装置における赤色画素の高輝度化を促すものとなる。また、暖色系の光を放つ照明装置における高光束化を促すものにもなる。
 なお、本実施形態の半導体発光装置は、照明光源用や液晶ディスプレイのバックライト用、表示装置用の光源など広く利用可能である。つまり上述のように、本実施形態の蛍光体は、従来における固体照明などで専ら利用する緑色蛍光体や赤色蛍光体とは異なり、輝線状の緑色光成分や赤色光成分を持つ光を放ち得る。そのため、当該蛍光体を照明光源等に用いた場合、高演色性かつ高効率の照明光源や、高輝度画面の広色域表示が可能な表示装置を提供することができる。
 このような照明光源としては、本実施形態の半導体発光装置と、当該半導体発光装置を動作させる点灯回路と、口金など照明器具との接続部品とを組み合わせて構成することができる。また、必要に応じて照明器具を組み合わせれば、照明装置や照明システムを構成することにもなる。
 表示装置としては、マトリックス状に配置した本実施形態の半導体発光装置と、これら半導体発光装置をON-OFFする信号回路とを組み合わせて構成することができる。また、表示装置としては、LEDバックライト機能付き液晶パネルを挙げることができる。つまり、当該表示装置は、本実施形態の半導体発光装置をライン状又はマトリックス状に配置してバックライトとして利用する。そして、バックライトと、バックライトを点灯する点灯回路又はバックライトをON-OFF制御する制御回路と、液晶パネルとを組み合わせて構成されるものである。
 <光源装置>
 図7は、本実施形態に係る発光装置の具体例である光源装置100を模式的に示す図である。図7において、蛍光板15は、本実施形態の蛍光体2を使用した蛍光板である。つまり蛍光板15は、基材16の片面に蛍光体2の層を形成してなるものである。また第一光源17aは、当該蛍光体を励起するための光源であり、例えば380nm以上470nm未満に発光ピークを持つ固体発光素子6である。そして、光源装置100では、図7に示すように、第一光源17aが放つ短波長可視光を、蛍光板15に形成した蛍光体2に直接又は間接的に照射するようにする。そして、蛍光体2によって波長変換された緑色又は赤色の光成分を出力する。
 図7では第一光源17aを複数設けている。そして、第一光源17aが放つ短波長可視光は、反射ミラー18によって反射され、第一レンズ19aで集光された後、蛍光板15の片面に形成した蛍光体2に照射される。また、蛍光板15の蛍光体2を設けていない面には反射面20を設けられている。反射面20により、蛍光体2が放つ光成分(例えば、輝線状の緑色又は赤色の光成分)は、第一光源17aが放つ短波長可視光が照射する向きとは逆向きに反射する。
 光源装置100の場合、反射面20によって反射された蛍光体2が放つ光成分は、第一集光レンズ20aによって集光される。その後、光成分は、第一光軸変換ミラー21a、第二レンズ19b、第二光軸変換ミラー21b、第三レンズ19c及び第三光軸変換ミラー21cによって、光軸変換と集光の繰り返しがなされる。そして当該光成分は、入射レンズ22への入射を経て、光源装置100から出射される。
 蛍光体2は、膜の厚みを厚くするなどして、第一光源17aが放つ紫色光が蛍光体2に十分吸収されるようにすることが好ましい。これにより、色純度の良好な緑色又は赤色の光成分が光源装置100から出射されることとなる。
 一方で、多色表示のための光源装置100とするには、入射レンズ22を通して、青色の光成分及び赤色又は緑色の光成分を出射するようにすればよい。具体的には、青色光成分は、次のようにして光源装置100から出射させることができる。まず、第一光源17aを紫色LDと青色LDに分けた上で、青色LDが放つ青色光成分が、蛍光板15を透過するようにする。そして、青色光成分を第二集光レンズ20b、第四光軸変換ミラー21d及び第四レンズ19dにより集光と光軸変換を行った後、入射レンズ22から出射されるようにすればよい。
 このような光源装置100では、モーター23などを利用して、蛍光板15を回転可能なものとすることが好ましい。そして蛍光板15には、第一光源17aが放つ短波長可視光を蛍光体2に照射する領域と、当該短波長可視光を蛍光体2に照射することなく、蛍光板15を通過する領域とに分けることが好ましい。さらに、紫色LDと青色LDに分けた第一光源17aを、紫色光と青色光を交互に放つように制御する。そして、これら交互の光と二つの領域とを同期させ、紫色光は蛍光体2に照射し、青色光は蛍光板15を通過するように、蛍光板15を回転させる。これにより、青色光と、蛍光体2に起因する緑色光又は赤色光とを光源装置100から出射させることができる。
 上記以外にも赤色光成分は、次のようにして光源装置100から出射させることができる。まず、図7に示すように、赤色光を放つ赤色LEDなどの第二光源17bを設ける。次に、第二光源17bが放つ赤色光成分を、第二レンズ19b、第二光軸変換ミラー21b、第三レンズ19c、第三光軸変換ミラー21cによって、集光と光軸変換との繰り返しがなされる。そして、当該赤色光成分は、光源装置100から出射される。
 このように、第一光源17aの出力、第二光源17bの出力、及び蛍光板15の回転速度を制御することによって、光の三原色となる赤・緑・青の光成分が各々制御されて放射される多色表示用の光源装置になる。
 このような光源装置は、プロジェクタータイプの表示装置(LEDプロジェクターやレーザープロジェクター)に利用可能である。つまり、光源装置100から出射された光を、図示しない光変調素子(デジタルマイクロミラーデバイス:DMD)と呼ばれるマイクロミラー表示素子や液晶板などに集光する。そして、光変調した光を図示しないスクリーンなどに投影することにより、変調信号に同期した表示画像を得ることができる。このような表示装置は、視感度が大きな緑色光成分又は赤色光成分の割合が多いので、明るく視認性に優れる画像を表示することが可能となる。
 なお、本実施形態の光源装置は、図7の光源装置に限定されない。具体的には、第一光源17aは短波長可視光を放つLEDとして構成することもできるし、第二光源17bは赤色LDとして構成することもできる。
 また、蛍光板15には、蛍光体を備える領域と、短波長可視光が当該蛍光体に照射されることなく通過する領域とに分け、蛍光板15を回転可能なものとする。そして、第一光源17aは短波長可視光を放つLDとする。これにより、当該短波長可視光が蛍光体に照射されることで緑色光及び赤色光が放射され、さらに青色LDから青色光が放射されるため、各々制御された赤・緑・青の光成分を放つことが可能となる。
 さらに、第一光源17aは紫色LDとし、蛍光板15には、青色蛍光体、緑色蛍光体及び赤色蛍光体を備える領域を設けてもよい。これにより、紫色LDが放つ紫色光が青色蛍光体、緑色蛍光体及び赤色蛍光体に照射されることで、青色光、緑色光及び赤色光を放射することが可能となる。
 このように、本実施形態の発光装置は、緑色又は赤色光成分の視感度や視認性の面で良好な特性を有するため、上述の半導体発光装置や光源装置以外にも広く利用することができる。
 以下、本発明を実施例及び比較例によりさらに詳細に説明するが、本発明はこれら実施例に限定されるものではない。
 固相反応を利用する調製手法を用いて、実施例及び比較例の希土類アルミニウムガーネットタイプ蛍光体を合成し、その特性を評価した。なお本実施例では、以下の化合物粉末を原料として使用した。
 酸化イットリウム(Y):純度3N、信越化学工業株式会社製
 酸化セリウム(CeO):純度4N、信越化学工業株式会社製
 酸化ユーロピウム(Eu):純度3N、信越化学工業株式会社製
 酸化テルビウム(Tb):純度4N、信越化学工業株式会社製
 酸化アルミニウム(θ-Al):純度4N5、住友化学株式会社製
 炭酸カルシウム(CaCO):純度2N5、関東化学株式会社製
 酸化ジルコニウム(ZrO):純度3N、関東化学株式会社製
 酸化ハフニウム(HfO):純度98.5%、第一稀元素化学工業株式会社製
 原料同士の反応性を高める目的で、上記酸化アルミニウムとしては、住友化学株式会社製のAKP-G008を使用した。
 また本実施例では、反応促進剤として、以下の化合物粉末を使用した。
 フッ化アルミニウム(AlF):純度3N、株式会社高純度化学研究所製
 炭酸カリウム(KCO):純度2N5、関東化学株式会社製
 [実施例1,実施例2]
 まず、表1に示す割合で、各原料及び反応促進剤を秤量した。次に、ボールミルを用いて、これらの原料及び反応促進剤を適量の純水と共に、十分に湿式混合した。そして、混合後の原料を容器に移し、乾燥機を用いて120℃で一晩乾燥させた。乾燥後の混合原料を乳鉢と乳棒を用いて粉砕し、焼成原料とした。その後、焼成原料を蓋付きのアルミナるつぼに移し、箱型電気炉を用いて、1600℃の大気中で4時間焼成した。このようにして、実施例1及び2の化合物を調製した。
 比較例として、公知のYAG(YAl(AlO)を、実施例1及び2と同様に調製した。
Figure JPOXMLDOC01-appb-T000001
 次に、実施例1及び2の化合物並びにYAGの結晶構造解析を行った。図8は、実施例1及び2の化合物、並びに比較例たるYAGのX線回折(XRD)パターンを示す。なお、XRDパターンは、X線回折装置(製品名:MultiFlex、株式会社リガク製)を用いて評価した。
 図8において、実施例1のXRDパターンを(a)、実施例2のXRDパターンを(b)として示す。また、比較例のXRDパターンを(c)、PDF(Power Diffraction Files)に登録されているAl12のパターン(PDF No.33-0040)を(d)として示す。
 図8より、(a)及び(b)と、(c)及び(d)とを比べると、実施例1及び2のXRDパターンは、比較例としたYAGのXRDパターン及びAl12のパターンと、形状面での特徴が一致している。すなわち、実施例1及び2の化合物のXRDパターンは、回折ピークの強度比が比較例及びAl12と異なっているものの、回折ピークの数に過不足がない。また、実施例1及び2のXRDパターンの形状は、比較例及びAl12のXRDパターンにおける各々の回折ピークが、全体的に低角側に移動した形状となっている。なお、図8では、回折ピークの対応関係を矢印で示した。
 このようなXRDパターンの一致は、実施例1及び2の化合物が、YAl(AlOと同じ柘榴石構造を有する化合物であることを示す。そして、実施例1の化合物がCaTbZr(AlOで表される化合物であり、実施例2の化合物がCaTbHf(AlOで表される化合物であることを示すものである。
 なお、実施例1及び実施例2の化合物に紫外線(波長365nm)を照射したところ、いずれも明るい緑色の蛍光が目視観察された。
 さらに、実施例1の化合物の励起特性と発光特性を、分光蛍光光度計(FP-6500(製品名:日本分光株式会社製)と、瞬間マルチ測光システム(QE-1100:大塚電子株式会社製)とを併用して評価した。なお、測定精度を高める目的で、発光スペクトル(24a’)の測定には瞬間マルチ測光システムを利用し、励起スペクトル(25a’)の測定には分光蛍光光度計を利用した。そして、発光スペクトル測定時の励起波長は250nmとし、励起スペクトル測定時のモニタ波長については発光ピーク波長とした。
 図9は、実施例1の化合物(CaTbZr(AlO)の励起スペクトル25a’と発光スペクトル24a’とを示す。図9より、実施例1の化合物は、250nm付近の光によって励起されることが分かる。さらに、550nm付近の主輝線と、480nm付近と590nm付近と620nm付近とに副輝線を持つ、Tb3+の電子エネルギー遷移に由来する発光を放つ緑色蛍光体であることも分かる。なお、図9において、発光スペクトル及び励起スペクトルは、いずれも最大強度を100として示している。また、都合上、実施例2の化合物(CaTbHf(AlO)の励起スペクトルと発光スペクトルについては省略したが、実施例1の化合物と同様のスペクトルを示した。
 [実施例3,実施例4]
 まず、表2に示す割合で、各原料及び反応促進剤を秤量した。次に、実施例1及び2と同様にこれら原料及び反応促進剤を混合し、焼成することにより、実施例3及び実施例4の化合物を調製した。
Figure JPOXMLDOC01-appb-T000002
 次に、実施例1及び2と同様に、実施例3及び4の化合物の結晶構造解析を行った。その結果、実施例3及び4の化合物は、実施例1及び2と同様のXRDパターンを示した。そのため、実施例3の化合物がCa(Tb0.98Ce0.02)Zr(AlOで表される化合物であり、実施例4の化合物がCa(Tb0.98Ce0.02)Hf(AlOで表される化合物であることが分かった。
 さらに、実施例3及び実施例4の化合物の励起特性と発光特性を、実施例1と同様に評価した。図10は、実施例3の化合物(Ca(Tb0.98Ce0.02)Zr(AlO)の発光スペクトル24aと励起スペクトル25aと示している。図11は、実施例4の化合物(Ca(Tb0.98Ce0.02)Hf(AlO)の発光スペクトル24bと励起スペクトル25bと示している。なお、発光スペクトル測定時の励起波長については励起ピーク波長とし、励起スペクトル測定時のモニタ波長については発光ピーク波長とした。また、図10及び11において、発光スペクトル及び励起スペクトルは、いずれも最大強度を100として示している。
 図10及び11から分かるように、実施例3及び実施例4の化合物の励起スペクトルは、400nm以上420nm未満の紫色の波長領域に最長波長側の励起ピークを持つ。具体的には、実施例3の化合物の励起スペクトルは417nmに励起ピークを有し、実施例4の化合物の励起スペクトルは412nmに励起ピークを有する。
 さらに図10及び11から、実施例3及び実施例4の化合物の発光スペクトルは、Tb3+の電子エネルギー遷移に由来するスペクトル成分を含んでいることが分かる。また、実施例3及び実施例4の化合物の発光スペクトルは、Tb3+の電子エネルギー遷移に由来する発光スペクトルを主体にしてなる形状である。この形状は、従来より三波長形の蛍光ランプで実用化されている(La,Ce)PO:Tb3+、CeMgAl1119:Tb3+、(Gd,Ce)MgB10:Tb3+などの典型的なランプ用緑色蛍光体と類似である。つまり、本実施形態の蛍光体は、従来、照明光源用として最適とされてきたスペクトル形状の緑色光を、短波長可視光で励起できるという顕著な効果を有するものである。
 図10及び11より、実施例3及び実施例4の化合物の発光スペクトルは、発光ピーク波長が544nmである。さらに、535nm以上560nm未満の範囲にあるスペクトル成分の半値幅は、3nm以上30nm未満である。また、この範囲にあるスペクトル成分の1/5スペクトル幅及び1/10スペクトル幅も3nm以上30nm未満である。加えて、450nm以上500nm未満のスペクトル成分の最大強度は、535nm以上560nm未満の範囲にあるスペクトル成分の最大強度の40%未満である。このことは、実施例3及び実施例4の化合物が、415nm付近の紫又は青色光を効率よく吸収して、視感度の高い緑色輝線を含む緑色光へと波長変換できることを示すものである。
 上述のように、実施例3及び4では、化合物中にセリウム(Ce)が含まれている。ここで、励起スペクトルにおける短波長可視光領域のスペクトル強度は、Ce3+の電子エネルギー遷移(4f→5d電子エネルギー遷移)による光吸収が関与することが知られている。そして、当該光吸収は蛍光体中のCe3+の含有量によって増減し、Ce3+の含有量が増すと励起スペクトルの強度も増すことも知られている。そのため、本実施例の化合物においてもCe3+の含有量を増すことによって、短波長可視光の波長領域における励起スペクトル強度が増すと推測される。
 実施例3及び4の化合物は、少なくともCaと、Tbと、Zr又はHfと、Alと、酸素とを含有し、化合物1モル中Tbが0.98モルの化合物である。さらに、実施例3及び4の化合物は、各々実施例1及び2の化合物を端成分として、柘榴石構造を持つ化合物である。また、実施例3の化合物は、実施例1の化合物(CaTbZr(AlO)と、これと組成が異なり、柘榴石構造を持つ類質同像の化合物CaCeZr(AlOとの固溶体といえるものである。実施例4の化合物も、実施例2の化合物(CaTbHf(AlO)と、これと組成が異なり、柘榴石構造を持つ、類質同像の化合物CaCeHf(AlOとの固溶体といえるものである。そして、このような実施例3及び4の化合物は、蛍光体として機能する人造蛍光鉱物である。
 ここで見方を変えると、実施例3及び4の化合物は、Ceを含有し、少なくともTb3+の発光成分を放つものであり、さらに短波長可視光によって励起可能な蛍光体である。また、より俯瞰的に見ると、実施例3及び4の化合物は、希土類元素を化合物の主骨格とする希土類化合物の蛍光体である。そして、前記希土類化合物を構成する元素の一部は、蛍光補助イオン(Ce3+イオン)によって置換されている。蛍光補助イオンは、前記希土類化合物が元々含む3価の希土類イオン(Tb3+イオン)のエネルギー遷移に基づく複数の輝線からなる蛍光を増強する。そして、前記蛍光補助イオンの数は、希土類化合物が元々含む3価の希土類イオンの数よりも少ない。さらに、最も強度が大きな輝線は、1/5スペクトル幅が3nm以上30nm未満であり、短波長可視光で励起される蛍光体である。
 [実施例5~11]
 まず、表3に示す割合で、各原料及び反応促進剤を秤量した。次に、実施例1及び2と同様にこれら原料及び反応促進剤を混合し、焼成することにより、実施例5~11の化合物を調製した。なお、参考例として、赤色蛍光体となるCaEuZr(AlOで表される化合物も、表3に示す割合で調整した。
Figure JPOXMLDOC01-appb-T000003
 次に、実施例1及び2と同様に、実施例5~11の化合物の結晶構造解析を行った。その結果、実施例5~11の化合物は、実施例1及び2と同様のXRDパターンを示した。そのため、実施例5の化合物がCa(Tb0.99Eu0.01)Zr(AlOで表される化合物であることが分かった。また、実施例6の化合物がCa(Tb0.98Eu0.02)Zr(AlOで表される化合物であることが分かった。実施例7の化合物がCa(Tb0.96Eu0.04)Zr(AlOで表される化合物であることが分かった。実施例8の化合物がCa(Tb0.92Eu0.08)Zr(AlOで表される化合物であることが分かった。実施例9の化合物がCa(Tb0.75Eu0.25)Zr(AlOで表される化合物であることが分かった。実施例10の化合物がCa(Tb0.5Eu0.5)Zr(AlOで表される化合物であることが分かった。実施例11の化合物がCa(Tb0.25Eu0.75)Zr(AlOで表される化合物であることが分かった。
 さらに、実施例5~11の化合物の励起特性と発光特性を、実施例1と同様に評価した。図12(a)、(b)、(c)、(d)、(e)、(f)、(g)、(h)及び(i)は、それぞれ参考例、実施例11、実施例10、実施例9、実施例8、実施例7、実施例6、実施例5及び実施例1の化合物の発光スペクトル及び励起スペクトルを示している。なお図12において、発光スペクトルは符号24c~24j及び24a’であり、励起スペクトルは符号25c~25j及び25a’である。
 また、発光スペクトル測定時の励起波長は254nmとし、励起スペクトル測定時のモニタ波長については発光ピーク波長(610nm)とした。また、図12において、発光スペクトル及び励起スペクトルは、いずれも最大強度を100として示している。
 図12より、実施例5~11の発光スペクトルは、実施例5(24j)から実施例11(24d)へとTbに対するEuの置換量が増すにつれて、550nm付近の蛍光成分が急激に減少し、580~620nmの波長範囲内の蛍光成分が優勢となっている。なお、550nm付近の蛍光成分は緑色輝線を示し、580~620nmの波長範囲内の蛍光成分は赤色輝線を示している。
 また、図12から分かるように、Euの置換量が1~2原子%の実施例5及び6の発光スペクトル(24j及び24i)には、緑色輝線と赤色輝線が明らかに混在している。しかし、Euの置換量が4~8原子%の実施例7及び8の発光スペクトル(24h及び24g)では、緑色輝線が殆ど観察されなくなっている。さらに、Euの置換量が8原子%を超える実施例9~11の発光スペクトル(24g~24d)では、緑色輝線は実質的に消失している。つまり、テルビウムの一部を、テルビウムの原子数の10原子%に満たないユーロピウムで置換することによって、テルビウムによる蛍光成分が観察されなくなった。
 なお、図12中の緑色輝線は、Tb3+の電子エネルギー遷移に由来するスペクトル成分だとみなすことができる。また、赤色輝線は、Eu3+の電子エネルギー遷移に由来するスペクトル成分だとみなすことができる。
 一方、実施例5~11の励起スペクトル(25d~25j)に注目すると、実施例9、10及び11の励起スペクトル(25f、25e、25d)は、参考例としたCaEuZr(AlOの励起スペクトル(25c)と類似している。これに対し、実施例5、6、7及び8の励起スペクトル(25j、25i、25h、25g)は、実施例1の励起スペクトル(25a’)と類似しており、260nm付近、310nm付近及び375nm付近にピークを持っている。
 このように、実施例5~8の蛍光体は、多量のテルビウムを含有するにも関わらず、少量のEu3+に由来する発光が優勢であった。そして、Eu3+に由来する発光が優勢であるにも関わらず、その励起スペクトルの形状(25g~25j)は、参考例の励起スペクトル(25c)よりも、むしろ実施例1の励起スペクトル(25a’)に近いものであった。そして、図12に示す励起スペクトルと発光スペクトルの形状変化は、TbからEuへのエネルギー伝達が、特にテルビウム含有量が多くユーロピウム含有量が少ない組成領域において、効率よく生じていることを裏付けるものである。
 なお、TbからEuのエネルギー伝達は、蛍光体1モル中におけるTbのモル数が0.5を超え、かつ、Euのモル数が0.25未満となる組成物において効率よく生じている。このため、本実施形態の蛍光体はこのような組成物にすることが好ましい。
 一方で、図12の発光スペクトルは、本実施形態の蛍光体が、従来、照明光源用として最適とされてきた緑色のスペクトル成分と、赤色のスペクトル成分の少なくとも一方を含む蛍光を放つことができるという顕著な効果を有することも示している。
 [実施例12]
 まず、表4に示す割合で、各原料及び反応促進剤を秤量した。次に、実施例1及び2と同様にこれら原料及び反応促進剤を混合し、焼成することにより、実施例12の化合物を調製した。
Figure JPOXMLDOC01-appb-T000004
 次に、実施例1及び2と同様に、実施例12の化合物の結晶構造解析を行った。その結果、実施例12の化合物は、実施例1及び2と同様のXRDパターンを示した。そのため、実施例12の化合物がCa(Tb0.93Ce0.06Eu0.01)Zr(AlOで表される化合物であることが分かった。
 さらに、実施例12の化合物の励起特性と発光特性を、実施例1と同様に評価した。図13は、実施例12の化合物の発光スペクトル24kと励起スペクトル25k及び25k’と示している。なお、発光スペクトル測定時の励起波長は、254nmとした。また、励起スペクトル測定時のモニタ波長は、Tb3+の電子エネルギー遷移に由来する緑色のスペクトル成分の発光ピーク波長(543nm)と、Eu3+の電子エネルギー遷移に由来する赤色のスペクトル成分の発光ピーク波長(610nm)の二つとした。そして、図13において、モニタ波長が543nmの励起スペクトルと、モニタ波長が610nmの励起スペクトルを、それぞれ符号25k及び25k’として示した。
 また、図13において、発光スペクトル24kは最大強度を100として示している。さらに、モニタ波長が610nmの励起スペクトル25k’は、最大強度を100として示している。そして、モニタ波長が543nmの励起スペクトル25kは、励起スペクトル25k’における420nm付近の励起ピークの強度が同じ値になるように示している。
 図13から分かるように、実施例12の化合物の励起スペクトルは、400nm以上430nm未満の紫青色の波長領域に最長波長側の励起ピークを持つ。具体的には、モニタ波長が543nmの励起スペクトル25kは、419nmに最長波長側の励起ピークを有する。さらに、モニタ波長が610nmの励起スペクトル25k’は、421nmに最長波長側の励起ピークを有する。測定誤差を考慮すると、最長波長側の励起ピークは420nmとなる。
 なお、実施例12における最長波側の励起ピークは、Ce3+の電子エネルギー遷移に由来する励起帯であり、Ce3+の光吸収による励起帯である。Ce3+の電子エネルギー遷移に由来する励起帯は、組成を若干変えることによって、励起ピーク波長を数nmから数10nmの範囲内で移動させることができる。
 さらに図13から、実施例12の発光スペクトルは、Tb3+の電子エネルギー遷移に由来するスペクトル成分と、Eu3+の電子エネルギー遷移に由来するスペクトル成分とを含んでいることが分かる。
 また、実施例12の発光スペクトルは、Tb3+の電子エネルギー遷移に由来する発光スペクトルと、Eu3+の電子エネルギー遷移に由来するスペクトル成分とを併せ持つ形状である。この形状は、従来より三波長形の蛍光ランプで実用化されている緑色蛍光体のスペクトル形状と赤色蛍光体のスペクトル形状とが重なり合った形状である。そして、緑色光成分と赤色光成分の加法混色によって、見た目の蛍光色は黄色となる。また、照らしたものが黄ばむ原因となる黄色の波長域の、例えば波長575nmの発光成分の強度は、発光強度の最大値の10%未満である。そのため、被照明物の黄ばみが目立たない黄色光になる。
 つまり、本実施形態の蛍光体は、複数の蛍光体を混合することなく、従来、照明光源用として最適とされてきたスペクトル形状の緑色と赤色の混色光を、短波長可視光での励起によって得ることができるという顕著な効果を有するものである。
 また、図13より、実施例12の化合物の発光スペクトルは、発光ピーク波長が543nmである。さらに、535nm以上560nm未満の範囲にあるスペクトル成分の半値幅は、3nm以上30nm未満である。また、この範囲にあるスペクトル成分の1/5スペクトル幅及び1/10スペクトル幅も3nm以上30nm未満である。加えて、450nm以上500nm未満のスペクトル成分の最大強度は、535nm以上560nm未満の範囲にあるスペクトル成分の最大強度の40%未満である。
 そして、Eu3+の電子エネルギー遷移に由来するスペクトル成分の主輝線(以下、Eu主輝線ともいう。)は、600nm以上628nm未満の波長範囲内にある。さらに、Eu3+の電子エネルギー遷移に由来する700nm以上720nm未満の波長範囲内にある輝線の最大高さは、Eu主輝線の最大高さの60%未満、特に40%以下である。このことは、実施例12の化合物が、420nm付近の紫又は青色光を効率よく吸収して、視感度の高い緑色輝線と色調のよい赤色輝線とを含む、緑色光成分と赤色光成分との混色光へと波長変換できることを示すものである。
 なお、実施例12では、希土類原子の総数(Tbの原子数+Ceの原子数+Euの原子数)を100としたときのCeの原子数とEuの原子数とを、それぞれ6個と1個とした例を説明した。そして、この組成物では、図13に示すように、Tb3+の電子エネルギー遷移に由来する緑色のスペクトル成分が、Eu3+の電子エネルギー遷移に由来する赤色のスペクトル成分よりも優勢な黄色光であった。
 しかし、本実施形態の蛍光体では、Tb3+からEu3+へのエネルギー伝達は効率よく生じる。そのため、Euの原子数を増すことによって、Eu3+の電子エネルギー遷移に由来する赤色のスペクトル成分が、Tb3+の電子エネルギー遷移に由来する緑色のスペクトル成分よりも優勢な光(黄、橙又は赤色光)を放出する蛍光体にすることもできる。また、実質的に、Eu3+の電子エネルギー遷移に由来する赤色のスペクトル成分だけを持つ赤色光を放出する蛍光体にすることも可能である。
 また、上述のように、実施例12は、化合物中にセリウム(Ce)が含まれている。ここで、励起スペクトルにおける短波長可視光領域のスペクトル強度は、Ce3+の電子エネルギー遷移(4f→5d電子エネルギー遷移)による光吸収が関与することが知られている。そして、当該光吸収は蛍光体中のCe3+の含有量によって増減し、Ce3+の含有量が増すと励起スペクトルの強度も増すことも知られている。そのため、本実施例の化合物においてもCe3+の含有量を増すことによって、短波長可視光の波長領域における励起スペクトル強度が増すと推測される。
 なお、実施例12の化合物は、少なくとも二種類の化合物を端成分としてなる、柘榴石構造を持つ固溶体である。つまり、端成分となる第一の化合物は、CaTbZr(AlOで表されるテルビウム化合物である。また、端成分となる第二の化合物は、CaEuZr(AlOで表されるユーロピウム化合物である。そして、当該固溶体は、Ceを含んでいる。そのため、前記固溶体は、Ce3+の電子エネルギー遷移に由来する励起帯を持つようになり、蛍光を放つようになる。
 特願2012-278132号(出願日:2012年12月20日)及び特願2013-094497号(出願日:2013年4月26日)の全内容は、ここに援用される。
 以上、本発明を実施例及び比較例によって説明したが、本発明はこれらに限定されるものではなく、本発明の要旨の範囲内で種々の変形が可能である。また、上述の実施例は本発明の一例に過ぎず、上述したメカニズムに基づく、変形例としての蛍光体が数多く存在することは、当業者が容易に推察できることである。今後の技術進展に伴い、数多くの当該変形例が見つけ出されることと予想できる。
 本発明の無機酸化物は、柘榴石構造を持つことから、人造宝石や研磨剤、セラミックス材料、電子材料などに利用できる。また、本発明の蛍光体は、短波長可視光で励起可能であり、さらに狭帯域性の光成分を放射することができる。また、この蛍光体を用いた発光装置は、照明光源や発光光源、電子機器として有用である。
 2 蛍光体
 6 固体発光素子

Claims (33)

  1.  一般式:
     MLnX(AlO  (1)
     (式中、MはCaを含有し、LnはTbを含有し、XはZr及びHfの少なくともいずれか一方を含有する)で示される組成を有し、一般式(1)におけるTbの原子数は0.1個以上1個以下であり、結晶構造が柘榴石構造であることを特徴とする無機酸化物。
  2.  前記Mは、Caと、アルカリ土類金属、Fe、Mn、Zn、Cd、Co及びCuからなる群より選ばれる少なくとも一つの元素とを含有し、
     前記Lnは、Tbと、Sc、Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Dy、Ho、Er、Tm、Yb、Lu、In、Sb及びBiからなる群より選ばれる少なくとも一つの元素とを含有し、
     前記Xは、Zr及びHfの少なくともいずれか一方と、Si、Ge、Ti、Sn及びPbからなる群より選ばれる少なくとも一つの元素とを含有することを特徴とする請求項1に記載の無機酸化物。
  3.  前記MはCaであり、前記LnはTbであることを特徴とする請求項1に記載の無機酸化物。
  4.  前記MはCaであり、前記LnはTbであり、前記XはZr又はHfのいずれか一方であることを特徴とする請求項1又は3に記載の無機酸化物。
  5.  請求項1乃至4のいずれか一項に記載の無機酸化物と、前記無機酸化物と固溶し、かつ、前記無機酸化物とは組成が異なる無機化合物との固溶体であって、
     前記固溶体1モル中におけるTbのモル数は、0.1モル以上3モル未満であり、
     前記固溶体の結晶構造は、柘榴石構造であることを特徴とする固溶体。
  6.  前記無機化合物は、一般式(2):CaEuX(AlOで示される組成を有することを特徴とする請求項5に記載の固溶体。
  7.  前記無機化合物は、一般式(3):MZr(AlO(SiO)で示される組成を有することを特徴とする請求項5に記載の固溶体。
  8.  前記固溶体は、一般式(4):A(EG
     (式中、Aは、Ca及びTbと、アルカリ金属、アルカリ土類金属及び希土類元素から選ばれる少なくとも一つの元素とを含有し、Dは、前記Xで表される元素と、Mg、Sc、Y、Ti、V、Zr、Hf、Zn、Al、Ga、In、Ge及びSnから選ばれる少なくとも一つの元素とを含有し、Eは、Alと、Zn、Al、Si、Ge及びPから選ばれる少なくとも一つの元素とを含有し、GはOを含有する)で示される組成を有することを特徴とする請求項5に記載の固溶体。
  9.  請求項1乃至4のいずれか一項に記載の無機酸化物又は請求項5乃至8のいずれか一項に記載の固溶体からなることを特徴とする蛍光体。
  10.  前記無機酸化物又は前記固溶体は、結晶の主骨格をなしていることを特徴とする請求項9に記載の蛍光体。
  11.  前記無機酸化物又は前記固溶体のいずれかに含まれるTb3+は、蛍光成分を放つことを特徴とする請求項9又は10に記載の蛍光体。
  12.  付活剤としてCe3+をさらに含有することを特徴とする請求項9乃至11のいずれか一項に記載の蛍光体。
  13.  付活剤としてEu3+をさらに含有し、
     前記無機酸化物又は前記固溶体に含まれるEu3+は、蛍光成分を放つことを特徴とする請求項12に記載の蛍光体。
  14.  前記蛍光体1モル中において、Euの原子数はTbの原子数よりも少ないことを特徴とする請求項13に記載の蛍光体。
  15.  前記蛍光体の励起スペクトルは、Ce3+による励起帯を持つことを特徴とする請求項12に記載の蛍光体。
  16.  380nm以上470nm未満の波長で励起することを特徴とする請求項9乃至15のいずれか一項に記載の蛍光体。
  17.  発光スペクトルの波長が、535nm以上560nm未満の範囲内に最大値を持ち、
     535nm以上560nm未満の範囲内における発光スペクトルの1/5スペクトル幅は、3nm以上30nm未満であることを特徴とする請求項9乃至16のいずれか一項に記載の蛍光体。
  18.  発光スペクトルの波長が、600nm以上628nm未満の範囲内に最大値を持つことを特徴とする請求項13に記載の蛍光体。
  19.  前記蛍光体は、TbとCeとEuとを含有し、かつ、単相の化合物からなり、
     前記蛍光体の励起スペクトルはCe3+の吸収によるブロードな励起帯を有し、前記励起帯は400nm以上460nm未満の範囲内に励起ピークを持ち、
     前記蛍光体の発光スペクトルは、Tb3+及びEu3+の少なくともいずれか一方による蛍光成分を有しており、前記発光スペクトルにおける波長575nmの強度は当該発光スペクトルにおける最大値の10%よりも小さいことを特徴とする請求項9に記載の蛍光体。
  20.  前記発光スペクトルにおける波長520nmの強度は、発光スペクトルの最大値の30%よりも小さいことを特徴とする請求項19に記載の蛍光体。
  21.  前記蛍光体は、Tb3+の蛍光成分を放出し、Eu3+の蛍光成分を放出しないことを特徴とする請求項19に記載の蛍光体。
  22.  前記蛍光体は、Tb3+及びEu3+の両方の蛍光成分を放出することを特徴とする請求項19に記載の蛍光体。
  23.  前記蛍光体は、Eu3+の蛍光成分を放出し、
     Tb3+の蛍光成分における最大値は、Eu3+の蛍光成分における最大値の10%未満であることを特徴とする請求項19に記載の蛍光体。
  24.  前記蛍光体に含有されるEuの原子数は、Tbの原子数よりも少ないことを特徴とする請求項19に記載の蛍光体。
  25.  発光中心として、少なくともCe3+とTb3+とを含有する蛍光体であって、
     前記蛍光体の励起スペクトルはCe3+の吸収によるブロードな励起帯を有し、前記励起帯は400nm以上460nm未満の範囲内にピークを有し、
     前記蛍光体の発光スペクトルは、Tb3+による緑色蛍光成分を放出し、
     前記発光スペクトルにおける波長520nmの発光強度は、発光スペクトルの最大値の30%よりも小さいことを特徴とする蛍光体。
  26.  発光中心として、少なくともCe3+とTb3+とEu3+とを含有する蛍光体であって、
     前記蛍光体の励起スペクトルはCe3+の吸収によるブロードな励起帯を有し、前記励起帯は400nm以上460nm未満の範囲内にピークを有し、
     前記蛍光体の発光スペクトルは、Tb3+による緑色蛍光成分及び/又はEu3+による赤色蛍光成分を放出し、
     前記発光スペクトルにおける波長520nmの発光強度は、発光スペクトルの最大値の30%よりも小さいことを特徴とする蛍光体。
  27.  前記発光スペクトルにおける波長520nmの強度は、前記発光スペクトルにおける最大値の10%よりも小さいことを特徴とする請求項25又は26に記載の蛍光体。
  28.  前記発光スペクトルにおける波長575nmの強度は、前記発光スペクトルにおける最大値の10%よりも小さいことを特徴とする請求項25乃至27のいずれか一項に記載の蛍光体。
  29.  前記発光スペクトルは、Tb3+による緑色蛍光成分又はEu3+による赤色蛍光成分が前記発光スペクトルの最大値となることを特徴とする請求項26に記載の蛍光体。
  30.  請求項9乃至29のいずれか一項に記載の蛍光体を備えることを特徴とする発光装置。
  31.  Eu3+付活蛍光体をさらに備えることを特徴とする請求項30に記載の発光装置。
  32.  前記蛍光体は、380nm以上470nm未満の範囲内にピークを持つ短波長可視光によって励起することを特徴とする請求項30又は31に記載の発光装置。
  33.  前記短波長可視光を放つ固体発光素子をさらに備えることを特徴とする請求項32に記載の発光装置。
PCT/JP2013/006461 2012-12-20 2013-10-31 希土類アルミニウムガーネットタイプ無機酸化物、蛍光体及びこれを用いた発光装置 WO2014097527A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201380067342.9A CN104918892B (zh) 2012-12-20 2013-10-31 稀土类铝石榴石型无机氧化物、荧光体以及使用了该荧光体的发光装置
US14/652,313 US9732271B2 (en) 2012-12-20 2013-10-31 Rare earth aluminum garnet-type inorganic oxide, phosphor and light-emitting device using same
EP13865579.0A EP2937315B1 (en) 2012-12-20 2013-10-31 Rare earth aluminum garnet-type inorganic oxide, phosphor and light-emitting device using same
JP2014552893A JP5991684B2 (ja) 2012-12-20 2013-10-31 希土類アルミニウムガーネットタイプ無機酸化物、蛍光体及びこれを用いた発光装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-278132 2012-12-20
JP2012278132 2012-12-20
JP2013094497 2013-04-26
JP2013-094497 2013-04-26

Publications (1)

Publication Number Publication Date
WO2014097527A1 true WO2014097527A1 (ja) 2014-06-26

Family

ID=50977896

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/006461 WO2014097527A1 (ja) 2012-12-20 2013-10-31 希土類アルミニウムガーネットタイプ無機酸化物、蛍光体及びこれを用いた発光装置

Country Status (5)

Country Link
US (1) US9732271B2 (ja)
EP (1) EP2937315B1 (ja)
JP (2) JP5991684B2 (ja)
CN (1) CN104918892B (ja)
WO (1) WO2014097527A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104152147A (zh) * 2014-08-15 2014-11-19 王海容 一种稀土含氧酸盐荧光体及其应用
WO2016058439A1 (zh) * 2014-10-15 2016-04-21 有研稀土新材料股份有限公司 石榴石型荧光粉和制备方法及包含该荧光粉的装置
JP2016152398A (ja) * 2015-02-19 2016-08-22 株式会社エルム 発光装置およびそれに用いられる蛍光体層の作成方法
WO2017154830A1 (ja) * 2016-03-08 2017-09-14 パナソニックIpマネジメント株式会社 蛍光体及び発光装置
JP2018141044A (ja) * 2017-02-27 2018-09-13 パナソニックIpマネジメント株式会社 蛍光体及び発光装置
US20220398987A1 (en) * 2019-04-11 2022-12-15 PixelDisplay, Inc. Method and apparatus of multi-modal illumination and display for improved color rendering, power efficiency, health and eye-safety

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104968763B (zh) * 2013-03-08 2016-12-21 松下知识产权经营株式会社 稀土类铝石榴石型无机氧化物、荧光体以及使用了该荧光体的发光装置
EP3480904B1 (en) * 2016-07-04 2020-11-11 Panasonic Intellectual Property Management Co., Ltd. Projector device
CN106520119B (zh) * 2016-10-24 2018-12-07 兰州大学 一种可发出青色光的荧光粉及其制备方法
EP3637158A4 (en) * 2017-06-06 2020-06-10 Panasonic Intellectual Property Management Co., Ltd. WAVELENGTH CONVERTER AND MANUFACTURING METHOD THEREOF, AND LIGHT EMITTING DEVICE USING THE WAVELENGTH CONVERTER
CN109467453B (zh) * 2017-09-07 2021-12-07 中国科学院上海硅酸盐研究所 一种具有特征微观结构的荧光陶瓷及其制备方法和应用
WO2019053242A1 (de) 2017-09-18 2019-03-21 Merck Patent Gmbh Mehrkomponentenleuchtstoffe als farbkonverter für festkörperlichtquellen
KR20190081087A (ko) * 2017-12-29 2019-07-09 주식회사 루멘스 발광소자
DE102018213377A1 (de) * 2018-08-09 2020-02-13 Robert Bosch Gmbh Spektrometer und Verfahren zur Kalibrierung des Spektrometers
CN112882284B (zh) * 2019-11-29 2023-03-24 隆达电子股份有限公司 光转换材料、其制造方法、包含其的发光装置及背光模组
CN111203286B (zh) * 2020-03-06 2024-04-16 内蒙古蒙维科技有限公司 一种乙炔法生产醋酸乙烯所用催化剂的制备装置及方法
CN114149259A (zh) * 2021-11-24 2022-03-08 海南钇坤智能科技有限公司 一种抑制离子转变的激光陶瓷材料
CN114854413B (zh) * 2022-04-08 2023-08-22 渤海大学 一种无掺杂激活剂的基质发光近红外荧光材料及其制备方法
CN116496783B (zh) * 2023-06-26 2023-09-26 内蒙古科技大学 一种发光增强的镓酸盐荧光粉的制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001192655A (ja) * 1999-10-27 2001-07-17 Patent Treuhand Ges Elektr Gluehlamp Mbh 光源用の発光物質及び該発光物質を含む光源
JP2003505582A (ja) 1999-07-23 2003-02-12 パテント−トロイハント−ゲゼルシヤフト フユール エレクトリツシエ グリユーラムペン ミツト ベシユレンクテル ハフツング 光源用発光物質および発光物質を有する光源
JP3503139B2 (ja) 1996-07-29 2004-03-02 日亜化学工業株式会社 発光装置と表示装置
US6812500B2 (en) 1996-06-26 2004-11-02 Osram Opto Semiconductors Gmbh & Co. Ohg. Light-radiating semiconductor component with a luminescence conversion element
WO2009041297A1 (ja) * 2007-09-25 2009-04-02 Kabushiki Kaisha Toshiba 蛍光体およびそれを用いたledランプ
JP2009544791A (ja) * 2006-07-26 2009-12-17 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 少なくとも一つのマルチサイト元素を含有するyagベースのセラミックガーネット材料
WO2010043287A1 (de) 2008-10-13 2010-04-22 Merck Patent Gmbh Dotierte granat-leuchtstoffe mit rotverschiebung für pcleds
WO2012009455A1 (en) * 2010-07-14 2012-01-19 Intematix Corporation Green-emitting, garnet-based phosphors in general and backlighting applications
WO2013005356A1 (ja) * 2011-07-05 2013-01-10 パナソニック株式会社 希土類アルミニウムガーネットタイプ蛍光体およびこれを用いた発光装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4757232A (en) * 1985-01-16 1988-07-12 American Telephone And Telegraph Company, At&T Bell Laboratories Visual display system comprising epitaxial terbium-activated garnet material
DE3904868A1 (de) * 1989-02-17 1990-08-23 Philips Patentverwaltung Verfahren zur zuechtung von mischkristallen aus schmelzen oxidischer vielstoffsysteme
JPH0540720A (ja) * 1991-08-06 1993-02-19 Nec Software Kansai Ltd ネツトワーク構成情報生成装置
US6252254B1 (en) * 1998-02-06 2001-06-26 General Electric Company Light emitting device with phosphor composition
US7410138B2 (en) * 2003-03-14 2008-08-12 Tgr Intellectual Properties, Llc Display adjustably positionable about swivel and pivot axes
US7713441B2 (en) 2004-10-15 2010-05-11 Mitsubishi Chemical Corporation Fluorescent material, fluorescent device using the same, and image display device and lighting equipment
US8133461B2 (en) 2006-10-20 2012-03-13 Intematix Corporation Nano-YAG:Ce phosphor compositions and their methods of preparation
JPWO2011027511A1 (ja) * 2009-09-02 2013-01-31 株式会社東芝 白色ledおよびそれを用いたバックライト並びに液晶表示装置
JP2011213552A (ja) * 2010-03-31 2011-10-27 Oxide Corp 磁気光学素子用ガーネット結晶

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6812500B2 (en) 1996-06-26 2004-11-02 Osram Opto Semiconductors Gmbh & Co. Ohg. Light-radiating semiconductor component with a luminescence conversion element
JP3503139B2 (ja) 1996-07-29 2004-03-02 日亜化学工業株式会社 発光装置と表示装置
JP2003505582A (ja) 1999-07-23 2003-02-12 パテント−トロイハント−ゲゼルシヤフト フユール エレクトリツシエ グリユーラムペン ミツト ベシユレンクテル ハフツング 光源用発光物質および発光物質を有する光源
JP2001192655A (ja) * 1999-10-27 2001-07-17 Patent Treuhand Ges Elektr Gluehlamp Mbh 光源用の発光物質及び該発光物質を含む光源
JP2009544791A (ja) * 2006-07-26 2009-12-17 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 少なくとも一つのマルチサイト元素を含有するyagベースのセラミックガーネット材料
WO2009041297A1 (ja) * 2007-09-25 2009-04-02 Kabushiki Kaisha Toshiba 蛍光体およびそれを用いたledランプ
WO2010043287A1 (de) 2008-10-13 2010-04-22 Merck Patent Gmbh Dotierte granat-leuchtstoffe mit rotverschiebung für pcleds
WO2012009455A1 (en) * 2010-07-14 2012-01-19 Intematix Corporation Green-emitting, garnet-based phosphors in general and backlighting applications
WO2013005356A1 (ja) * 2011-07-05 2013-01-10 パナソニック株式会社 希土類アルミニウムガーネットタイプ蛍光体およびこれを用いた発光装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KEIKOUTAIDOUGAKUKAI: "Phosphor Handbook", December 1987, OHMSHA, LTD., article "Pages from 237 to 238, 268 to 278, 332"
See also references of EP2937315A4

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104152147A (zh) * 2014-08-15 2014-11-19 王海容 一种稀土含氧酸盐荧光体及其应用
CN105567236B (zh) * 2014-10-15 2018-07-20 有研稀土新材料股份有限公司 石榴石型荧光粉和制备方法及包含该荧光粉的装置
WO2016058439A1 (zh) * 2014-10-15 2016-04-21 有研稀土新材料股份有限公司 石榴石型荧光粉和制备方法及包含该荧光粉的装置
CN105567236A (zh) * 2014-10-15 2016-05-11 有研稀土新材料股份有限公司 石榴石型荧光粉和制备方法及包含该荧光粉的装置
JP2017521524A (ja) * 2014-10-15 2017-08-03 有研稀土新材料股▲フン▼有限公司 柘榴石型蛍光粉と調製方法及びこの蛍光粉を含有する装置
KR101918018B1 (ko) 2014-10-15 2018-11-13 그리렘 어드밴스드 머티리얼스 캄파니 리미티드 석류석형 형광가루와 제조방법 및 이 형광가루를 함유하는 장치
JP2016152398A (ja) * 2015-02-19 2016-08-22 株式会社エルム 発光装置およびそれに用いられる蛍光体層の作成方法
JP6273595B1 (ja) * 2016-03-08 2018-02-07 パナソニックIpマネジメント株式会社 蛍光体及び発光装置
WO2017154830A1 (ja) * 2016-03-08 2017-09-14 パナソニックIpマネジメント株式会社 蛍光体及び発光装置
US11050005B2 (en) 2016-03-08 2021-06-29 Panasonic Intellectual Property Management Co., Ltd. Phosphor and light emitting device
JP2018141044A (ja) * 2017-02-27 2018-09-13 パナソニックIpマネジメント株式会社 蛍光体及び発光装置
US20220398987A1 (en) * 2019-04-11 2022-12-15 PixelDisplay, Inc. Method and apparatus of multi-modal illumination and display for improved color rendering, power efficiency, health and eye-safety
US11842699B2 (en) * 2019-04-11 2023-12-12 PixelDisplay, Inc. Method and apparatus of multi-modal illumination and display for improved color rendering, power efficiency, health and eye-safety

Also Published As

Publication number Publication date
JPWO2014097527A1 (ja) 2017-01-12
JP2016201569A (ja) 2016-12-01
CN104918892B (zh) 2017-03-22
EP2937315B1 (en) 2018-02-14
US9732271B2 (en) 2017-08-15
CN104918892A (zh) 2015-09-16
US20150344775A1 (en) 2015-12-03
JP5991684B2 (ja) 2016-09-14
EP2937315A1 (en) 2015-10-28
EP2937315A4 (en) 2016-03-30
JP6372764B2 (ja) 2018-08-15

Similar Documents

Publication Publication Date Title
JP6372764B2 (ja) 発光装置
JP5672619B2 (ja) 希土類アルミニウムガーネットタイプ蛍光体およびこれを用いた発光装置
JP6008307B2 (ja) 希土類アルミニウムガーネットタイプ無機酸化物、蛍光体及びこれを用いた発光装置
JP4733535B2 (ja) 酸窒化物蛍光体、酸窒化物蛍光体の製造方法、半導体発光装置、発光装置、光源、照明装置、及び画像表示装置
JP2014210684A (ja) アルミニウムガーネットタイプ無機酸化物、蛍光体及びこれを用いた発光装置
JP2013028667A (ja) イットリウムアルミニウムガーネットタイプの蛍光体とこれを用いた発光装置
JP6890299B2 (ja) ガーネット珪酸塩、ガーネット珪酸塩蛍光体、並びにガーネット珪酸塩蛍光体を用いた波長変換体及び発光装置
JP6820536B2 (ja) 波長変換部材、波長変換体及び発光装置
US9840666B2 (en) Phosphor having inorganic oxide with cerium and terbium activators, light-emitting device illumination light source, and illumination device using same
WO2015029284A1 (ja) 蛍光体及びこれを用いた発光装置
JP2016176017A5 (ja)
JP6692053B2 (ja) 蛍光体及び発光装置
JP6788872B2 (ja) 蛍光体及び発光装置
JP7464959B1 (ja) 発光装置、照明装置、画像表示装置及び車両用表示灯
JP6839891B2 (ja) 発光装置
JP2017088428A (ja) 酸フッ化物ガーネット化合物、蛍光体及びこれを用いた発光装置
JP2017002211A (ja) 蛍光体、その製造方法及び発光装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13865579

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014552893

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14652313

Country of ref document: US

Ref document number: 2013865579

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE