WO2012176902A1 - リチウムイオン二次電池用正極活物質の製造方法、リチウムイオン二次電池用正極およびリチウムイオン二次電池 - Google Patents

リチウムイオン二次電池用正極活物質の製造方法、リチウムイオン二次電池用正極およびリチウムイオン二次電池 Download PDF

Info

Publication number
WO2012176902A1
WO2012176902A1 PCT/JP2012/066060 JP2012066060W WO2012176902A1 WO 2012176902 A1 WO2012176902 A1 WO 2012176902A1 JP 2012066060 W JP2012066060 W JP 2012066060W WO 2012176902 A1 WO2012176902 A1 WO 2012176902A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
positive electrode
active material
electrode active
composite oxide
Prior art date
Application number
PCT/JP2012/066060
Other languages
English (en)
French (fr)
Inventor
角崎 健太郎
海生 曽
河里 健
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to CN201280030965.4A priority Critical patent/CN103650219B/zh
Priority to JP2013521644A priority patent/JP6070551B2/ja
Publication of WO2012176902A1 publication Critical patent/WO2012176902A1/ja
Priority to US14/139,969 priority patent/US9444099B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/19Oil-absorption capacity, e.g. DBP values
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for producing a positive electrode active material for a lithium ion secondary battery, a positive electrode, and a lithium ion secondary battery.
  • Lithium ion secondary batteries are widely used in portable electronic devices such as mobile phones and notebook computers.
  • a positive electrode active material for a lithium ion secondary battery includes a composite oxide of lithium and a transition metal or the like such as LiCoO 2 , LiNiO 2 , LiNi 0.8 Co 0.2 O 2 , LiMn 2 O 4 (hereinafter referred to as lithium Also referred to as a contained complex oxide).
  • lithium also referred to as a contained complex oxide
  • cycle the discharge capacity per unit mass or the characteristic that the discharge capacity does not decrease after repeated charge / discharge cycles
  • As a method for improving the cycle characteristics it is known that it is effective to provide a coating layer on the lithium-containing composite oxide.
  • Patent Document 1 an aqueous solution of ammonium fluoride is added to a dispersion in which a lithium-containing composite oxide is dispersed in an aqueous aluminum nitrate solution, followed by filtration and washing, followed by heating, whereby lithium-containing composite oxidation is performed.
  • a method for forming a coating layer of aluminum fluoride on the surface of an object is described.
  • the steps of filtration and washing are indispensable, and the process is complicated and waste liquid treatment is required, so that there is a problem that productivity is inferior.
  • the wet cake after filtration is dried, there is a problem that the positive electrode active material is aggregated to easily form coarse particles.
  • Patent Document 2 discloses a method of fluorinating a positive electrode material using a fluorinating agent such as fluorine (F 2 ), nitrogen trifluoride, chlorine trifluoride or the like. However, since this method uses a highly toxic gas, special equipment is required.
  • a fluorinating agent such as fluorine (F 2 ), nitrogen trifluoride, chlorine trifluoride or the like.
  • the present invention provides a method for producing a positive electrode active material for a lithium ion secondary battery having excellent cycle characteristics even when charged at a high voltage. Moreover, this invention provides the positive electrode and lithium ion secondary battery using the positive electrode active material obtained by this manufacturing method.
  • Lithium-containing composite oxide containing Li element and transition metal element is brought into contact with the following composition (1) to obtain particles (I) to which a compound containing metal element (M) is attached, Particles (III) in which a coating layer (II) containing a metal element (M) and a fluorine element is formed on the surface of the lithium-containing composite oxide by mixing and heating the particles (I) and the following compound (2) (III A method for producing a positive electrode active material for a lithium ion secondary battery.
  • Composition (1) Li element free, Mg, Ca, Sr, Ba, Y, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Fe, Co, Ni, Pb, A compound containing at least one metal element (M) selected from the group consisting of Cu, Zn, Al, In, Sn, Sb, Bi, La, Ce, Pr, Nd, Gd, Dy, Er, and Yb is used as the solvent. A composition obtained by dissolving or dispersing.
  • Compound (2) A compound that generates HF by heating. [2] The method for producing a positive electrode active material for a lithium ion secondary battery according to [1], wherein the compound (2) is ammonium fluoride or acidic ammonium fluoride.
  • the metal element (M) is at least one selected from the group consisting of Al, Nb, and Zr.
  • a method for producing a positive electrode active material [4] The method for producing a positive electrode active material for a lithium ion secondary battery according to any one of [1] to [3], wherein the heating is performed at 250 to 700 ° C.
  • the molar amount of the metal element (M) in the particles (I) is in the range of 0.001 to 0.05 times the molar amount of the transition metal element of the lithium-containing composite oxide.
  • the particles (I) and the compound (2) so that the amount of fluorine element present in the coating layer (II) is 0.05 to 3% by mass with respect to the total mass of the positive electrode active material. ) Is mixed and heated.
  • [7] The method for producing a positive electrode active material for a lithium ion secondary battery according to any one of [1] to [6], wherein the solvent of the composition (1) is water.
  • the lithium-containing composite in which the contact between the lithium-containing composite oxide and the composition (1) is stirred and the contact between the lithium-containing composite oxide and the composition (1) under stirring is stirred.
  • the composition (1) according to any one of [1] to [7], which is performed by adding the composition (1) to an oxide and mixing the lithium-containing composite oxide and the composition (1).
  • the contact of the lithium-containing composite oxide and the composition (1) is performed by spraying the composition (1) onto the lithium-containing composite oxide.
  • the manufacturing method of the positive electrode active material for lithium ion secondary batteries as described in any one.
  • a positive electrode for a lithium ion secondary battery comprising a positive electrode active material for a lithium ion secondary battery, a conductive material, and a binder obtained by the production method according to any one of [1] to [9].
  • a lithium ion secondary battery including the positive electrode for a lithium ion secondary battery according to [10], a negative electrode, and a nonaqueous electrolyte.
  • the production method of the present invention can produce a positive electrode active material excellent in cycle characteristics with high productivity even when charged at a high voltage.
  • the positive electrode and the lithium ion secondary battery of the present invention are excellent in cycle characteristics even when charged at a high voltage.
  • a lithium-containing composite oxide containing a Li element and a transition metal element is brought into contact with the following composition (1) to obtain particles (I) to which a compound containing a metal element (M) is attached. Thereafter, the particles (I) and the following compound (2) are mixed and heated to form a coating layer (II) containing a metal element (M) and a fluorine element on the surface of the lithium-containing composite oxide.
  • Composition (1) Li element free, Mg, Ca, Sr, Ba, Y, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Fe, Co, Ni, Pb, A compound containing at least one metal element (M) selected from the group consisting of Cu, Zn, Al, In, Sn, Sb, Bi, La, Ce, Pr, Nd, Gd, Dy, Er, and Yb is used as the solvent. A composition obtained by dissolving or dispersing.
  • Compound (2) A compound that generates HF by heating. In the production method of the present invention, first, the lithium-containing composite oxide containing Li element and transition metal element is brought into contact with the composition (1), and the particles (I) coated with the compound containing the metal element (M) are coated. obtain.
  • the lithium-containing composite oxide in the present invention contains a Li element and a transition metal element.
  • the transition metal element for example, at least one selected from the group consisting of Ni, Co, Mn, Fe, Cr, V, and Cu can be used.
  • lithium-containing composite oxide examples include a compound (i) represented by the following formula (A), a substance represented by the following formula (B), or an olivine-type metal lithium salt (ii) that is a composite thereof,
  • the compound (iii) represented by the formula (C-1) or the compound (iv) represented by the following formula (D) is preferable.
  • These materials may be used individually by 1 type, and may use 2 or more types together.
  • the compound (iii) is particularly preferable in view of high capacity, and the compound represented by the following formula (C-1) or (C-2) is most preferable.
  • LiCoO 2 , LiNiO 2 , LiMnO 2 , LiMn 0.5 Ni 0.5 O 2 , LiNi 0.5 Co 0.2 Mn 0.3 O 2 examples include LiNi 0.85 Co 0.10 Al 0.05 O 2 and LiNi 1/3 Co 1/3 Mn 1/3 O 2 .
  • Examples of the olivine-type metal lithium salt (ii) include LiFePO 4 , Li 3 Fe 2 (PO 4 ) 3 , LiFeP 2 O 7 , LiMnPO 4 , LiNiPO 4 , LiCoPO 4 , Li 2 FePO 4 F, Li 2 MnPO 4 F, Examples include Li 2 NiPO 4 F, Li 2 CoPO 4 F, Li 2 FeSiO 4 , Li 2 MnSiO 4 , Li 2 NiSiO 4 , and Li 2 CoSiO 4 .
  • Compound (iii) is a compound represented by the following formula (C-1).
  • the notation of the compound represented by the following formula (C-1) is a composition formula before performing treatments such as charge / discharge and activation.
  • activation means removing lithium oxide (Li 2 O) or lithium and lithium oxide from the lithium-containing composite oxide.
  • electrochemical activation method there is an electrochemical activation method in which charging is performed at a voltage higher than 4.4 V or 4.6 V (a value expressed as a potential difference from the oxidation / reduction potential of Li + / Li). It is done.
  • Me ′ is at least one element selected from the group consisting of Co, Ni, Cr, Fe, Al, Ti, Zr, and Mg.
  • 0.09 ⁇ x ⁇ 0.3, y> 0, z> 0, 1.9 ⁇ p ⁇ 2.1, 0 ⁇ q ⁇ 0.1, and 0.4 ⁇ y / (y + z) ⁇ 0.8, x + y + z 1, 1.2 ⁇ (1 + x) / (y + z).
  • the ratio of Li exceeds 1.2 times mol with respect to the total of Mn and Me ′.
  • the formula (C-1) is also characterized in that it is a compound containing a specific amount of Mn, and the ratio of Mn to the total amount of Mn and Me ′ is preferably 0.4 to 0.8, preferably 0.55 to 0. .75 is more preferred.
  • Mn is in the above range, the discharge capacity becomes high.
  • q represents the ratio of F, but q is 0 when F does not exist.
  • P is a value determined according to x, y, z, and q, and is 1.9 to 2.1.
  • the composition ratio of Li element to the total molar amount of the transition metal element is 1.25 ⁇ (1 + x) / (y + z) ⁇ 1. 75 is preferable, 1.35 ⁇ (1 + x) / (y + z) ⁇ 1.65 is more preferable, and 1.40 ⁇ (1 + x) / (y + z) ⁇ 1.55 is particularly preferable.
  • the composition ratio is in the above range, a positive electrode material having a high discharge capacity per unit mass can be obtained when a high charging voltage of 4.6 V or higher is applied.
  • a compound represented by the following formula (C-2) is more preferable.
  • C-2 Li (Li x Mn y Ni v Co w) O p ⁇ (C-2)
  • 0.09 ⁇ x ⁇ 0.3, 0.36 ⁇ y ⁇ 0.73, 0 ⁇ v ⁇ 0.32, 0 ⁇ w ⁇ 0.32, 1.9 ⁇ p ⁇ 2.1, x + y + v + w 1.
  • the composition ratio of the Li element with respect to the sum of the Mn, Ni, and Co elements is 1.2 ⁇ (1 + x) / (y + v + w) ⁇ 1.8, and 1.35 ⁇ (1 + x) /(Y+v+w) ⁇ 1.65 is preferable, and 1.45 ⁇ (1 + x) / (y + v + w) ⁇ 1.55 is more preferable.
  • the compound represented by the above formula (C-1) or (C-2) preferably has a layered rock salt type crystal structure (space group R-3m).
  • the shape of the lithium-containing composite oxide is preferably particulate.
  • the average particle size (D 50 ) of the lithium-containing composite oxide is preferably 0.03 to 30 ⁇ m, more preferably 0.04 to 25 ⁇ m, and particularly preferably 0.05 to 20 ⁇ m.
  • the average particle size (D 50 ) is a particle size distribution at a point where the particle size distribution is obtained on a volume basis and the cumulative curve is 50% in a cumulative curve where the total volume is 100%. 50% diameter is meant.
  • the particle size distribution is obtained from a frequency distribution and a cumulative volume distribution curve measured with a laser scattering particle size distribution measuring apparatus.
  • the particle size is measured by sufficiently dispersing the powder in an aqueous medium by ultrasonic treatment or the like to measure the particle size distribution (for example, a laser diffraction / scattering particle size distribution measuring device Partica LA-950VII manufactured by HORIBA, etc.). Used).
  • the average particle diameter (D 50 ) is preferably 3 to 30 ⁇ m, more preferably 4 to 25 ⁇ m. Particularly preferred is ⁇ 20 ⁇ m.
  • the average particle diameter (D50) is preferably 0.03 to 5 ⁇ m, more preferably 0.04 to 1 ⁇ m, and particularly preferably 0.05 to 0.5 ⁇ m. preferable.
  • the specific surface area of the lithium-containing composite oxide is preferably 0.1 ⁇ 30m 2 / g, particularly preferably 0.15 ⁇ 25m 2 / g.
  • the specific surface area is 0.1 to 30 m 2 / g, the capacity is high and a dense positive electrode layer can be formed.
  • the specific surface area is preferably 0.1 ⁇ 1m 2 / g, more preferably 0.15 ⁇ 0.6m 2 / g.
  • the specific surface area is preferably 0.3 ⁇ 10m 2 / g, more preferably 0.5 ⁇ 5m 2 / g, 1 ⁇ 4m 2 / g is Particularly preferred.
  • the specific surface area of preferably 1 ⁇ 30m 2 / g, more preferably 10 ⁇ 25m 2 / g.
  • a method for producing a lithium-containing composite oxide a lithium-containing composite oxide precursor obtained by a coprecipitation method and a lithium compound are mixed and fired, a hydrothermal synthesis method, a sol-gel method, a dry mixing method (solid mixing method) Phase method), ion exchange method, or glass crystallization method can be used as appropriate.
  • a hydrothermal synthesis method a sol-gel method, a dry mixing method (solid mixing method) Phase method), ion exchange method, or glass crystallization method
  • the lithium-containing composite oxide precursor (coprecipitation composition) obtained by the coprecipitation method and the lithium compound It is preferable to use a method of mixing and baking.
  • Composition (1) contains no Li element, Mg, Ca, Sr, Ba, Y, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Fe, Co, Ni, Pb
  • the metal element (M) Al, Zr, or Nb is preferable, and Al is particularly preferable.
  • Examples of the compound containing the metal element (M) include inorganic salts such as nitrates, sulfates and chlorides of the metal element (M), acetates, citrates, maleates, formates, lactates, lactates, sulphate Organic salts or organic complexes such as acid salts, oxo acid salts of metal elements (M), ammine complexes of metal elements (M), alkoxides of metal elements (M), carbonates of metal elements (M), metal elements (M ) And metal element (M) hydroxides.
  • Nitrate, organic salt, organic complex, ammonium oxoacid salt, or ammine complex is particularly preferred because it is easily decomposed by heat and has high solubility in a solvent.
  • Examples of the compound containing the metal element (M) include ammonium zirconium carbonate, zirconium ammonium halide, zirconium acetate, zirconium nitrate, aluminum nitrate, aluminum acetate, aluminum oxalate, aluminum citrate, aluminum lactate, basic aluminum lactate, maleic acid Aluminum, niobium nitrate, niobium acetate, niobium citrate, niobium maleate, niobium formate, niobium lactate, niobium oxalate, or ammonium niobium oxalate is preferred.
  • a solvent containing water is preferable in terms of stability and reactivity of the compound containing the metal element (M), and a mixed solvent of water and a water-soluble alcohol and / or polyol is more preferable. Only water is particularly preferred.
  • the water-soluble alcohol include methanol, ethanol, 1-propanol, and 2-propanol.
  • the polyol include ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, polyethylene glycol, butanediol, and glycerin.
  • the total content of the water-soluble alcohol and the polyol contained in the solvent is preferably 0 to 20% by mass, more preferably 0 to 10% by mass with respect to the total amount of the solvent.
  • the solvent is only water, it is particularly preferable because it is excellent in terms of safety, environment, handling, and cost.
  • the composition (1) may contain a pH adjusting agent in order to adjust the solubility of the compound containing the metal element (M).
  • a pH adjuster those that volatilize or decompose upon heating are preferable. Specifically, organic acids such as acetic acid, citric acid, lactic acid, formic acid, maleic acid and oxalic acid or ammonia are preferred.
  • the pH of the composition (1) is preferably 2 to 12, more preferably 3 to 11, and particularly preferably 4 to 10. If the pH is in the above range, there is little elution of Li element or transition metal from the lithium-containing composite oxide when the lithium-containing composite oxide is brought into contact with the composition (1). Therefore, good battery characteristics are easily obtained.
  • a method of spraying the lithium-containing composite oxide by a spray coating method is particularly preferable.
  • the spray coating method is simple in process, and can uniformly coat the compound containing the metal element (M) on the surface of the lithium-containing composite oxide.
  • the concentration of the compound containing the metal element (M) contained in the composition (1) is preferably higher because it is necessary to remove the solvent by heating in the subsequent step. However, if the concentration is too high, the viscosity becomes high and the uniform mixing property between the lithium-containing composite oxide and the composition (1) is lowered, so that the metal element (M) contained in the composition (1) is contained.
  • the concentration of the compound is preferably 0.5 to 30% by mass, particularly preferably 2 to 20% by mass in terms of metal element (M).
  • the amount A (ml / 100 g) of the composition (1) to be contacted per 100 g of the lithium-containing composite oxide is 0.1 ⁇ with respect to the oil absorption B (ml / 100 g) of the lithium-containing composite oxide.
  • a / B ⁇ 5 is preferred.
  • Oil absorption B is determined according to the method shown in JIS-K-5101-13-1: 2004. If 0.1 ⁇ A / B ⁇ 5, the coating layer (I) can be formed uniformly, filtration is unnecessary in the subsequent steps, and productivity is high because less solvent is evaporated during heating. In particular, it is particularly preferable that 0.1 ⁇ A / B ⁇ 0.7 because the lithium-containing composite oxide aggregates and does not agglomerate easily during spray coating.
  • a / B is 0.7 or more, it is preferable to contact the composition (1) with the lithium-containing composite oxide while drying so that the lithium-containing composite oxide does not aggregate and form a lump.
  • Spray coating and drying may be performed alternately, or heating may be performed while spray coating is performed, and drying may be performed simultaneously.
  • the drying temperature is preferably 40 to 200 ° C, more preferably 60 to 150 ° C.
  • the particle size of the composition (1) sprayed by the spray coating method is preferably 0.1 to 250 ⁇ m, and more preferably 1 to 150 ⁇ m. When the particle size of the composition (1) is 250 ⁇ m or less, the composition (1) can be more uniformly coated on the lithium-containing composite oxide powder.
  • the particle size of the sprayed composition (1) is 0.1 ⁇ m or more, the particle size after spraying can be easily controlled.
  • the amount of the composition (1) released in the spray coating method is preferably 0.005 to 0.1 g / min with respect to 1 g of the lithium-containing composite oxide.
  • the composition (1) is added to the lithium-containing composite oxide under stirring and mixed with the lithium-containing composite oxide, whereby the composition (1) is mixed with the lithium-containing composite oxide.
  • the stirring device a drum mixer or a solid-air low shear stirring device can be used.
  • particles (I) in which the compound containing the metal element (M) is more uniformly attached to the surface of the lithium-containing composite oxide can be obtained.
  • the particles (I) in the present invention are particles in which a compound containing a metal element (M) is attached to the surface of a lithium-containing composite oxide.
  • the adhesion means a state in which the compound containing the metal element (M) is chemically adsorbed or physically adsorbed on part or all of the surface of the lithium-containing composite oxide.
  • the ratio (molar ratio) of the metal element (M) is preferably 0.001 to 0.05 times, preferably 0.003 to 0.04 times the transition metal element of the lithium-containing composite oxide. Is more preferable, and 0.005 to 0.03 times is particularly preferable.
  • the proportion of the metal element (M) present in the particles (I) can be measured by dissolving the positive electrode active material in an acid and performing ICP (high frequency inductively coupled plasma) measurement.
  • ICP high frequency inductively coupled plasma
  • the surface of the lithium-containing composite oxide is coated with the metal element (M) and the fluorine element by mixing and heating the particles (I) and the following compound (2). Particles (III) in which layer (II) is formed are obtained.
  • Compound (2) is a compound that generates HF by heating.
  • Compounds (2) include inorganic substances such as NH 4 F (ammonium fluoride), NH 4 F.HF (acidic ammonium fluoride), NaF.HF (acidic sodium fluoride), and KaF.HF (acidic potassium fluoride).
  • Fluorine-containing polymers such as salts, polyvinylidene fluoride, polytetrafluoroethylene, and ethylenetetrafluoroethylene copolymers, and fluorine-containing organic compounds such as trifluoroacetic acid, trifluoroethanol, pentafluoropropanol, hydrofluorocarbon, and hydrofluoroether It is done.
  • Inorganic salts such as NH 4 F, NH 4 F ⁇ HF, NaF ⁇ HF, KaF ⁇ HF are preferred in that they decompose at a low temperature of 250 ° C. or lower to generate HF, and further, no alkali component remains after heating. And NH 4 F or NH 4 F ⁇ HF is particularly preferred.
  • One type of compound that generates HF by heating may be used, or two or more types may be combined.
  • the amount of the compound (2) is preferably 0.1 to 10 parts by mass, and more preferably 0.2 to 5 parts by mass with respect to the lithium-containing composite oxide (100 parts by mass).
  • Compound (2) is preferably mixed with the lithium-containing composite oxide by adding compound (2) while stirring the lithium-containing composite oxide in contact with composition (1).
  • a stirring device a drum mixer or a solid-air low shear stirring device can be used.
  • the heating after mixing may be performed in a nitrogen atmosphere or an oxygen-containing atmosphere. Heating is preferably performed by putting the mixture of the lithium-containing composite oxide and the compound (2) in a sealed container excellent in HF corrosion resistance, for example, a ceramic container with a lid. HF generated by using a ceramic container with a lid is not volatilized and can be reacted efficiently with the metal element (M) on the surface of the lithium-containing composite oxide. Further, when heating, in order to promote the reaction between the metal element (M) on the surface of the lithium-containing composite oxide and HF, the temperature of the compound (2) is maintained near the temperature at which HF is generated, It is also considered effective to slow the heating rate.
  • the heating temperature is preferably 250 to 700 ° C, more preferably 350 to 600 ° C.
  • the heating temperature is 250 ° C. or higher, it is easy to form the coating layer (I) containing the metal element (M) and the fluorine element, and further, volatile impurities such as residual moisture are reduced, so that deterioration of cycle characteristics can be suppressed.
  • the heating temperature is 700 ° C. or lower, the metal element (M) diffuses into the lithium-containing composite oxide, and a decrease in charge / discharge capacity can be prevented.
  • the heating temperature is preferably 250 ° C. to 550 ° C., more preferably 350 to 500 ° C. If the heating temperature is less than 550 ° C., the coating layer (II) is difficult to crystallize.
  • the heating time is preferably 0.5 to 24 hours, more preferably 0.5 to 18 hours, and particularly preferably 1 to 10 hours.
  • the coating layer (II) is Li, Mg, Ca, Sr, Ba, Y, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Fe, Co, Ni, Pb, Cu, Zn And at least one metal element (M) selected from the group consisting of Al, In, Sn, Sb, Bi, La, Ce, Pr, Nd, Gd, Dy, Er, and Yb and a fluorine element. All of the metal element (M) may be combined with F to form a fluoride, and a part of the metal element (M) may form an oxide or a hydroxide.
  • AlF 3 , ZrF 4 , NbF 3 , or NbF 5 is preferable, and AlF 3 is particularly preferable.
  • the coating layer (II) contains an oxide, Al 2 O 3 , ZrO 2 , Nb 2 O 3 and Nb 2 O 5 are preferable, and Al 2 O 3 is particularly preferable.
  • the coating layer (II) contains a hydroxide, Al (OH) 3 , Zr (OH) 4 , Nb (OH) 3 , or Nb (OH) 5 is preferable, and Al (OH) 3 is particularly preferable.
  • the positive electrode active material in the present invention can reduce the contact between the lithium-containing composite oxide and the electrolytic solution by coating the lithium-containing composite oxide with the coating layer (II), It is considered that elution of transition metal elements such as Mn into the electrolytic solution can be suppressed, and the cycle characteristics are improved. Moreover, it can suppress that the decomposition product of electrolyte solution adheres to the lithium containing complex oxide surface.
  • the coating layer (II) may be crystalline, amorphous, or amorphous.
  • amorphous means that a peak attributed to the coating layer (II) is not observed in the X-ray diffraction measurement (hereinafter also referred to as XRD).
  • XRD X-ray diffraction measurement
  • the shape of the coating layer formed on the surface of the lithium-containing composite oxide may be a particle shape, a film shape, a fiber shape, a lump shape, or the like.
  • the average particle diameter D 50 of the coating layer is preferably 0.1 to 100 nm, more preferably 0.1 to 50 nm, and particularly preferably 0.1 to 30 nm.
  • the shape and average particle diameter of the coating layer can be evaluated from an electron microscope such as SEM (scanning electron microscope) or TEM (transmission electron microscope). The average particle diameter is expressed as an average particle diameter of particles covering the surface of the lithium-containing composite oxide.
  • the particles (III) in the present invention are particles in which the coating layer (II) is formed on the surface of the lithium-containing composite oxide.
  • “formed” means a state in which the coating layer (II) is chemically adsorbed or physically adsorbed on part or all of the surface of the lithium-containing composite oxide.
  • the shape of the particles (III) may be particles, films, fibers, lumps, or the like.
  • the average particle size of the particles (III) is preferably 3 to 30 ⁇ m, more preferably 4 to 25 ⁇ m, and particularly preferably 5 to 20 ⁇ m.
  • the coating layer (II) may be formed at least partially on the surface of the lithium-containing composite oxide.
  • the particles (III) are preferably particles in which the amorphous layer of the coating layer (II) is formed on a part or all of the surface of the particles (III).
  • the ratio (molar ratio) of the metal element (M) in the coating layer (II) is 0.001 to 0.001 with respect to the transition metal element of the lithium-containing composite oxide. 05 times is preferable, 0.003 to 0.04 times is more preferable, and 0.005 to 0.03 times is particularly preferable. If it is the said range, discharge capacity is large and it is excellent in cycling characteristics.
  • the amount of the metal element (M) is adjusted so that the molar amount of the metal element (M) in the particles (I) is in the range of 0.001 to 0.05 times the molar amount of the transition metal element of the lithium-containing composite oxide. And the lithium-containing composite oxide and the composition (1) may be brought into contact with each other.
  • the amount of fluorine element present in the coating layer (II) in the particles (III) is preferably 0.05 to 3.0% by mass, and preferably 0.1 to 2.0% by mass with respect to the total mass of the positive electrode active material. Is more preferable, and 0.1 to 1.0% by mass is particularly preferable.
  • the amount of the fluorine element is in the above range, a positive electrode active material is obtained from which a battery having further excellent initial capacity and cycle characteristics is obtained.
  • the amount of fluorine element present in the coating layer (II) is determined by dispersing the positive electrode active material in ion-exchanged water, measuring the concentration of fluorine ion eluted using a fluorine ion electrode, It can be calculated from the concentration and the total amount of the positive electrode active material.
  • the adjustment of the amount of fluorine element present in the coating layer (II) is 0.05 to 3% by mass with respect to the total mass of the positive electrode active material for a lithium ion secondary battery. What is necessary is just to mix and heat a compound (2).
  • the positive electrode for a lithium ion secondary battery of the present invention is formed by forming a positive electrode active material layer containing the positive electrode active material of the present invention, a conductive material, and a binder on a positive electrode current collector.
  • a manufacturing method of the positive electrode for lithium ion secondary batteries the method of carrying
  • the conductive material and binder are dispersed in a solvent and / or dispersion medium to prepare a slurry, or a kneaded material kneaded with the solvent and / or dispersion medium is prepared, and then a positive electrode current collector is collected by a method such as a coating method. It can be carried on a plate.
  • Examples of the conductive material include carbon black such as acetylene black, graphite, and ketjen black.
  • fluorine-containing resins such as polyvinylidene fluoride and polytetrafluoroethylene, polyolefins such as polyethylene and polypropylene, polymers having unsaturated bonds such as styrene / butadiene rubber, isoprene rubber and butadiene rubber, and copolymers thereof,
  • acrylic acid-based polymers such as acrylic acid copolymers and methacrylic acid copolymers, and copolymers thereof.
  • the positive electrode current collector may be aluminum or an aluminum alloy.
  • the lithium ion secondary battery of this invention contains the said positive electrode for lithium ion secondary batteries, a negative electrode, and a nonaqueous electrolyte.
  • the negative electrode is formed by forming a negative electrode active material layer containing a negative electrode active material on a negative electrode current collector.
  • a slurry can be prepared by kneading a negative electrode active material with an organic solvent, and the prepared slurry can be applied to a negative electrode current collector, dried, and pressed.
  • the negative electrode current collector plate for example, a metal foil such as a nickel foil or a copper foil can be used.
  • the negative electrode active material may be any material that can occlude and release lithium ions at a relatively low potential.
  • Carbon compounds, silicon carbide compounds, silicon oxide compounds, titanium sulfide, boron carbide compounds, and the like can be used.
  • Examples of the carbon material for the negative electrode active material include non-graphitizable carbon, artificial graphite, natural graphite, pyrolytic carbon, coke such as pitch coke, needle coke, petroleum coke, graphite, glassy carbon, phenol Organic polymer compound fired bodies, carbon fibers, activated carbon, carbon blacks, etc., obtained by firing and carbonizing a resin, furan resin or the like at an appropriate temperature can be used.
  • the group 14 metal of the periodic table is silicon or tin, with silicon being preferred.
  • Other materials that can be used as the negative electrode active material include oxides such as iron oxide, ruthenium oxide, molybdenum oxide, tungsten oxide, titanium oxide, and tin oxide, and nitrides such as Li 2.6 Co 0.4 N. It is done.
  • non-aqueous electrolyte one prepared by appropriately combining an organic solvent and an electrolyte can be used.
  • organic solvent known organic solvents for electrolyte solutions can be used, such as propylene carbonate, ethylene carbonate, diethyl carbonate, dimethyl carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, diglyme, triglyme, ⁇ -Butyrolactone, diethyl ether, sulfolane, methyl sulfolane, acetonitrile, acetate ester, butyrate ester, propionate ester, and the like can be used.
  • cyclic carbonates such as propylene carbonate and chain carbonates such as dimethyl carbonate and diethyl carbonate.
  • An organic solvent may be used individually by 1 type, and may mix and use 2 or more types.
  • non-aqueous electrolyte a solid electrolyte containing an electrolyte salt, a polymer electrolyte, a solid electrolyte obtained by mixing or dissolving an electrolyte in a polymer compound, or the like can be used.
  • the solid electrolyte may be any material having lithium ion conductivity, and an inorganic solid electrolyte and a polymer solid electrolyte can be used.
  • an inorganic solid electrolyte lithium nitride, lithium iodide, or the like can be used.
  • an electrolyte salt and a polymer compound that dissolves the electrolyte salt can be used.
  • electrolyte salt and the polymer compound that dissolves the electrolyte salt examples include polyethylene oxide, polypropylene oxide, polyphosphazene, polyaziridine, polyethylene sulfide, polyvinyl alcohol, polyvinylidene fluoride, and polyhexafluoropropylene, or derivatives, mixtures thereof, And composites can be used.
  • the gel electrolyte or the like various polymer compounds that absorb the nonaqueous electrolyte and gelate can be used.
  • the polymer compound used in the gel electrolyte fluorine-based polymers such as poly (vinylidene fluoride) and poly (vinylidene fluoride-co-hexafluoropropylene) can be used.
  • an ether polymer such as polyacrylonitrile, a polyacrylonitrile copolymer, polyethylene oxide, a polyethylene oxide copolymer, and a crosslinked product thereof can be used.
  • Examples of the monomer used in the copolymer include polypropylene oxide, methyl methacrylate, butyl methacrylate, methyl acrylate, and butyl acrylate.
  • a fluorine-based polymer is particularly preferable from the viewpoint of stability against redox reaction.
  • LiClO 4 LiPF 6 , LiBF 4 , CF 3 SO 3 Li, LiCl, LiBr, or the like
  • the shape of the lithium ion secondary battery of the present invention can be appropriately selected from coin shapes, sheet shapes (film shapes), folded shapes, wound bottomed cylindrical shapes, button shapes, and the like depending on the application.
  • Distilled water (1920.8 g) was added to ammonium sulfate (79.2 g) and dissolved uniformly to obtain a mother liquor.
  • Distilled water (600 g) was added to sodium hydroxide (400 g) and dissolved uniformly to obtain a pH adjusting solution.
  • the mother liquor was placed in a 2 L baffled glass reaction vessel, heated to 50 ° C. with a mantle heater, and a pH adjusting solution was added so that the pH was 11.0.
  • a raw material solution was added at a rate of 5.0 g / min and an ammonia source solution was added at a rate of 1.0 g / min, and a composite hydroxide of nickel, cobalt, and manganese was added.
  • the pH adjusting solution was added so as to keep the pH in the reaction vessel at 11.0.
  • nitrogen gas was flowed at a flow rate of 0.5 L / min in the reaction tank so that the precipitated hydroxide was not oxidized. Further, the liquid was continuously extracted so that the amount of the liquid in the reaction tank did not exceed 2 L.
  • the precursor (20 g) and lithium carbonate (12.6 g) having a lithium content of 26.9 mol / kg were mixed and baked at 900 ° C. for 12 hours in an oxygen-containing atmosphere to obtain a lithium-containing composite oxide of a synthesis example.
  • the composition of the lithium-containing composite oxide of the obtained synthesis example is Li (Li 0.2 Ni 0.137 Co 0.125 Mn 0.538 ) O 2 .
  • the average particle diameter D50 of the lithium-containing composite oxides of the examples was 5.9 ⁇ m, and the specific surface area measured using the BET (Brunauer, Emmett, Teller) method was 2.6 m 2 / g.
  • the amount of oil absorption measured using refined sesame oil according to JIS-K-5101-13-1: 2004 was 44 (g / 100 g).
  • Example 1 a positive electrode active material of Example 1 comprising particles (III) in which the surface of the lithium-containing composite oxide was coated with the coating layer (II) containing the metal element Al and fluorine.
  • the calculated value of the fluorine content on the surface of the positive electrode active material (hereinafter also referred to as the amount of fluorine charged) is the total mass of the positive electrode active material.
  • aluminum coated with the Al aqueous solution is ⁇ (coating amount) in molar ratio (coating amount) with respect to the total of nickel, cobalt, and manganese, which are the transition metal elements of the lithium-containing composite oxide of the synthesis example.
  • the number of moles of Al) / (total number of moles of Ni, Co, and Mn of the lithium-containing composite oxide before addition) ⁇ 0.025.
  • the fluorine content on the surface of the positive electrode active material was quantified by the following method.
  • the positive electrode active material 0.5 g
  • 50 mL of 20 ° C. ion-exchanged water was added, and ultrasonic treatment (As One ultrasonic cleaning machine, frequency 28 kHz) was performed for 60 minutes.
  • the material was dispersed in ion exchange water. After standing still for 16 hours, the supernatant was collected and added with the total ionic strength adjusting buffer TISB, and the fluorine eluted into the dispersion of the positive electrode active material using a fluorine ion electrode (manufactured by Toko Chemical Laboratory Co., Ltd.).
  • the ion concentration was measured.
  • the fluorine content present in the coating layer (II) of the positive electrode active material was calculated from the fluorine ion concentration, it was 0.42% by mass relative to the total mass of the positive electrode active material.
  • Example 2 The same procedure as in Example 1 was performed except that 0.33 g of NH 4 F was used as the compound (2).
  • the amount of fluorine charged is 1.69% by mass with respect to the total mass of the positive electrode active material.
  • the fluorine content present in the coating layer (II) of the obtained positive electrode active material was quantified, it was 1.42% by mass relative to the total mass of the positive electrode active material.
  • the obtained positive electrode active material was aggregated and formed into a lump, it was pulverized in a mortar.
  • the amount of fluorine charged is 1.33% by mass with respect to the total mass of the positive electrode active material.
  • the fluorine content present in the coating layer of the obtained positive electrode active material was quantified, it was 0.26% by mass relative to the total mass of the positive electrode active material.
  • Example of positive electrode production As the positive electrode active material, a polyvinylidene fluoride solution (solvent N—) containing 12.1% by mass of the positive electrode active materials of Examples 1 and 2 and Comparative Examples 1 and 2, acetylene black (conductive material) and polyvinylidene fluoride (binder), respectively. Methylpyrrolidone) was mixed, and N-methylpyrrolidone was further added to prepare a slurry. The positive electrode active material, acetylene black, and polyvinylidene fluoride were in a mass ratio of 82/10/8. One side of the slurry was applied to a 20 ⁇ m thick aluminum foil (positive electrode current collector) using a doctor blade.
  • the positive electrode sheets obtained from the positive electrode active materials of Examples 1 and 2 were respectively positive electrode sheets 1 and 2
  • the positive electrode sheets obtained from the positive electrode active materials of Comparative Examples 1 and 2 were respectively positive electrode sheets 3 and 4. To do.
  • Example of battery production Using the positive electrode sheets 1 to 4 manufactured as described above for the positive electrode, a stainless steel simple sealed cell type lithium ion secondary battery was assembled in an argon glove box. A metal lithium foil having a thickness of 500 ⁇ m is used for the negative electrode, a stainless steel plate having a thickness of 1 mm is used for the negative electrode current collector, porous polypropylene having a thickness of 25 ⁇ m is used for the separator, and a concentration of 1 (mol) is used for the electrolyte.
  • LiPF 6 / EC ethylene carbonate
  • DEC diethyl carbonate
  • Lithium ion secondary batteries using the positive electrode sheets 1 to 4 are referred to as lithium batteries 1 to 4.
  • the lithium batteries 1 to 4 that have been charged and discharged are continuously charged to 4.6 V at a load current of 200 mA per 1 g of the charge / discharge positive electrode active material, and discharged to 2.5 V at a load current of 100 mA per 1 g of the positive electrode active material.
  • the discharge capacity of the positive electrode active material at 4.6 to 2.5 V is set to 4.6 V initial capacity.
  • a charge / discharge cycle of charging to 4.6 V at a load current of 200 mA per 1 g of the charge / discharge positive electrode active material and discharging to 2.5 V at a load current of 100 mA per 1 g of the positive electrode active material is repeated 50 times.
  • the value obtained by dividing the discharge capacity at the 50th 4.6 V charge / discharge cycle by the initial capacity of 4.6 V is defined as the cycle maintenance ratio.
  • Table 1 summarizes the cycle maintenance rates of the lithium batteries 1 to 3.
  • the fluorine content / fluorine charge was defined as the fluorination efficiency.
  • the case where the cycle maintenance ratio is improved as compared with the lithium battery 4 is marked with ⁇ .
  • the lithium batteries 1 to 3 have improved battery characteristics as compared with the case where the untreated positive electrode active material (Comparative Example 2) was used.
  • the fluorination efficiency of the positive electrode active materials of Example 1 and Example 2 is 80% or more, and fluorine derived from NH 4 F and aluminum which is the metal element (M) on the surface of the lithium-containing composite oxide efficiently react. It was confirmed that On the other hand, the positive electrode active material of Comparative Example 1 has a fluorination efficiency of 20% or less, and most of NH 4 F is considered to flow out during the filtration and washing processes.
  • a positive electrode active material for a lithium ion secondary battery having a high discharge capacity per unit mass and excellent cycle characteristics can be obtained.
  • the positive electrode active material can be used for lithium-ion secondary batteries for electronic devices such as small and light mobile phones, in-vehicle batteries, and the like.
  • the productivity is excellent.

Abstract

 高電圧で充電を行ってもサイクル特性に優れるリチウムイオン二次電池用の正極活物質およびその製造方法を提供する。 遷移金属元素を含むリチウム含有複合酸化物と、組成物(1)とを接触させ、金属元素(M)を含む化合物が付着した粒子(I)を得た後に、加熱によりHFを発生する化合物を混合して加熱することで、リチウム含有複合酸化物の表面に金属元素(M)とフッ素元素を含む被覆層(II)が形成されている粒子(III)を得る。組成物(1):Li元素を含まず、Mg、Ca、Sr、Ba、Y、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Fe、Co、Ni、Pb、Cu、Zn、Al、In、Sn、Sb、Bi、La、Ce、Pr、Nd、Gd、Dy、Er、およびYbからなる群より選ばれる少なくとも一種の金属元素(M)を含む化合物が溶媒に溶解または分散してなる組成物。

Description

リチウムイオン二次電池用正極活物質の製造方法、リチウムイオン二次電池用正極およびリチウムイオン二次電池
 本発明は、リチウムイオン二次電池用の正極活物質の製造方法、正極およびリチウムイオン二次電池に関する。
 リチウムイオン二次電池は、携帯電話やノート型パソコン等の携帯型電子機器に広く用いられている。リチウムイオン二次電池用の正極活物質には、LiCoO、LiNiO、LiNi0.8Co0.2、LiMn等のリチウムと遷移金属等との複合酸化物(以下、リチウム含有複合酸化物ともいう。)が用いられている。近年、携帯型電子機器や車載用のリチウムイオン二次電池として小型化・軽量化が求められ、単位質量あたりの放電容量、または充放電サイクルを繰り返した後に放電容量が低下しない特性(以下、サイクル特性ともいう。)の更なる向上が望まれている。
 サイクル特性を向上させる方法としては、リチウム含有複合酸化物に被覆層を設けることが有効であることが知られている。
 特許文献1には、リチウム含有複合酸化物を硝酸アルミニウム水溶液中に分散させた分散液にフッ化アンモニウム水溶液を添加して、つぎにろ過と洗浄を行った後に加熱することにより、リチウム含有複合酸化物表面にフッ化アルミニウムの被覆層を形成する方法が記載されている。しかし該方法では、ろ過と洗浄を行う工程が必須であり、プロセスが煩雑である上に廃液処理が必要となるため、生産性に劣るという問題があった。また、ろ過後のウェットケーキを乾燥させると、正極活物質が凝集して粗大粒子を形成しやすいという問題があった。
 特許文献2には、フッ素(F)、三フッ化窒素、三フッ化塩素等のフッ素化剤を用いて正極材をフッ素化する方法が示されている。しかし該方法では毒性の強いガスを用いるため特殊な設備が必要である。
 特許文献3には、Li元素のモル量が遷移金属元素の総モル量に対して0.9-1.1倍モルである式Li(0.9≦p≦1.1、0.965≦x<1.00、0<y≦0.035、1.9≦z≦2.1、x+y=1、0≦a≦0.02)で表わされるリチウム含有複合酸化物と、ジルコニウムを含む水溶液とを撹拌、混合し、酸素雰囲気下450℃以上で高温焼成することにより、酸化ジルコニウムがリチウム含有複合酸化物の表面層に被覆された正極活物質を得る方法が記載されている。該方法ではリチウム含有複合酸化物を酸化物以外の化合物で被覆することは難しかった。
日本特表2008-536285号公報 日本特開2009-110952号公報 国際公開第2007/102407号
 本発明は、高電圧で充電を行ってもサイクル特性に優れたリチウムイオン二次電池用の正極活物質の製造方法を提供する。また、本発明はこの製造方法により得られる正極活物質を用いた正極およびリチウムイオン二次電池を提供する。
 本発明は、以下を提供する。
[1] Li元素及び遷移金属元素を含むリチウム含有複合酸化物と、下記組成物(1)とを接触させ、金属元素(M)を含む化合物が付着した粒子(I)を得た後に、該粒子(I)と下記化合物(2)を混合して加熱することにより、リチウム含有複合酸化物の表面に金属元素(M)とフッ素元素を含む被覆層(II)が形成されている粒子(III)を得ることを特徴とする、リチウムイオン二次電池用正極活物質の製造方法。
 組成物(1):Li元素を含まず、Mg、Ca、Sr、Ba、Y、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Fe、Co、Ni、Pb、Cu、Zn、Al、In、Sn、Sb、Bi、La、Ce、Pr、Nd、Gd、Dy、Er、およびYbからなる群より選ばれる少なくとも一種の金属元素(M)を含む化合物が溶媒に溶解または分散してなる組成物。
 化合物(2):加熱によりHFを発生する化合物。
[2] 前記化合物(2)がフッ化アンモニウムまたは酸性フッ化アンモニウムであることを特徴とする[1]に記載のリチウムイオン二次電池用正極活物質の製造方法。
[3] 前記組成物(1)において、金属元素(M)が、Al、Nb、およびZrからなる群より選ばれる少なくとも一種である[1]または[2]に記載のリチウムイオン二次電池用正極活物質の製造方法。
[4] 前記加熱を250~700℃で行う[1]~[3]のいずれか一項に記載のリチウムイオン二次電池用正極活物質の製造方法。
[5] 前記粒子(I)における前記金属元素(M)のモル量が前記リチウム含有複合酸化物の前記遷移金属元素のモル量の0.001~0.05倍の範囲になるように、前記リチウム含有複合酸化物と前記組成物(1)とを接触させる[1]~[4]のいずれか一項に記載のリチウムイオン二次電池用正極活物質の製造方法。
[6] 前記被覆層(II)中に存在するフッ素元素の量が、正極活物質の全質量に対して0.05~3質量%となるように、前記粒子(I)と前記化合物(2)を混合して加熱する[1]~[5]のいずれか一項に記載のリチウムイオン二次電池用正極活物質の製造方法。
[7] 前記組成物(1)の前記溶媒が水である[1]~[6]のいずれか一項に記載のリチウムイオン二次電池用正極活物質の製造方法。
[8] 前記リチウム含有複合酸化物と前記組成物(1)との接触を、撹拌下の前記リチウム含有複合酸化物と前記組成物(1)との接触を、撹拌している前記リチウム含有複合酸化物に前記組成物(1)を添加して、前記リチウム含有複合酸化物と前記組成物(1)とを混合することにより行う、[1]~[7]のいずれか一項に記載のリチウムイオン二次電池用正極活物質の製造方法。
[9] 前記リチウム含有複合酸化物と、前記組成物(1)との接触を、該組成物(1)を前記リチウム含有複合酸化物に噴霧することにより行う、[1]~[7]のいずれか一項に記載のリチウムイオン二次電池用正極活物質の製造方法。
[10] [1]~[9]のいずれか一項に記載の製造方法によって得られたリチウムイオン二次電池用正極活物質と導電材とバインダーとを含むリチウムイオン二次電池用正極。
[11] [10]に記載のリチウムイオン二次電池用正極と負極と非水電解質とを含むリチウムイオン二次電池。
 本発明の製造方法は、高電圧で充電を行ってもサイクル特性に優れる正極活物質を生産性よく製造できる。本発明の正極、およびリチウムイオン二次電池は、高電圧で充電を行ってもサイクル特性に優れる。
 <正極活物質の製造方法>
 本発明の製造方法は、Li元素及び遷移金属元素を含むリチウム含有複合酸化物と、下記組成物(1)とを接触させ、金属元素(M)を含む化合物が付着した粒子(I)を得た後に、該粒子(I)と下記化合物(2)を混合して加熱することにより、リチウム含有複合酸化物の表面に金属元素(M)とフッ素元素を含む被覆層(II)が形成されている粒子(III)を得る製造方法である。
 組成物(1):Li元素を含まず、Mg、Ca、Sr、Ba、Y、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Fe、Co、Ni、Pb、Cu、Zn、Al、In、Sn、Sb、Bi、La、Ce、Pr、Nd、Gd、Dy、Er、およびYbからなる群より選ばれる少なくとも一種の金属元素(M)を含む化合物が溶媒に溶解または分散してなる組成物。
 化合物(2):加熱によりHFを発生する化合物。
 本発明の製造方法において、まず、Li元素及び遷移金属元素を含むリチウム含有複合酸化物と、組成物(1)とを接触させ、金属元素(M)を含む化合物が被覆した粒子(I)を得る。
 (リチウム含有複合酸化物)
 本発明におけるリチウム含有複合酸化物は、Li元素と遷移金属元素とを含む。
 遷移金属元素としては、例えば、Ni、Co、Mn、Fe、Cr、V、およびCuからなる群より選ばれる少なくとも一種を用いることができる。
 リチウム含有複合酸化物としては、例えば、下記式(A)で表される化合物(i)、下記式(B)で示される物質またはこれらの複合体であるオリビン型金属リチウム塩(ii)、下記式(C-1)で表される化合物(iii)、または下記式(D)で表わされる化合物(iv)が好ましい。これらの材料は一種を単独で用いてもよく、二種以上を併用してもよい。
 リチウム含有複合酸化物としては、高容量であるという点で化合物(iii)が特に好ましく、下記式(C-1)または(C-2)で表わされる化合物が最も好ましい。
(化合物(i))
 Li(NiMnCo)Me ・・・ (A)
 ただし、0.95≦a≦1.1、0≦x≦1、0≦y≦1、0≦z≦1、0≦b≦0.3、0.90≦x+y+z+b≦1.05、Meは、Mg、Ca、Sr、Ba、およびAlからなる群より選ばれる少なくとも一種である。
 式(A)で表される化合物(i)としては、LiCoO、LiNiO、LiMnO、LiMn0.5Ni0.5、LiNi0.5Co0.2Mn0.3、LiNi0.85Co0.10Al0.05、LiNi1/3Co1/3Mn1/3が挙げられる。
(オリビン型金属リチウム塩(ii))
 Lix’y’z’ ・・・ (B)
 ただし、XはFe(II)、Co(II)、Mn(II)、Ni(II)、V(II)、またはCu(II)を示し、YはPまたはSiを示し、0<L≦3、1≦x’≦2、1≦y’≦3、4≦z’≦12、0≦g≦1である。
 オリビン型金属リチウム塩(ii)としては、LiFePO、LiFe(PO、LiFeP、LiMnPO、LiNiPO、LiCoPO、LiFePOF、LiMnPOF、LiNiPOF、LiCoPOF、LiFeSiO、LiMnSiO、LiNiSiO、LiCoSiOが挙げられる。
(化合物(iii))
 化合物(iii)は、下式(C-1)で表される化合物である。下式(C-1)で表される化合物の表記は、充放電や活性化等の処理を行う前の組成式である。ここで、活性化とは、酸化リチウム(LiO)、または、リチウムおよび酸化リチウムを、リチウム含有複合酸化物から取り除くことをいう。通常の活性化方法としては、4.4Vもしくは4.6V(Li/Liの酸化還元電位との電位差として表わされる値である。)より、大きな電圧で充電する電気化学的活性化法が挙げられる。また、硫酸、塩酸もしくは硝酸等の酸を用いた化学反応を行うことにより、化学的に行う活性化方法が挙げられる。
 Li(LiMnMe´)O ・・・ (C-1)
 式(C-1)において、Me´は、Co、Ni、Cr、Fe、Al、Ti、Zr、およびMgからなる群より選ばれる少なくとも一種の元素である。また、式(C-1)において、0.09<x<0.3、y>0、z>0、1.9<p<2.1、0≦q≦0.1であり、かつ、0.4≦y/(y+z)≦0.8、x+y+z=1、1.2<(1+x)/(y+z)である。すなわち、式(C-1)で表わされる化合物は、Liの割合が、MnとMe´の合計に対して1.2倍モルを超える。また、式(C-1)はMnを特定量含む化合物である点も特徴であり、MnとMe´の総量に対するMnの割合は、0.4~0.8が好ましく、0.55~0.75がより好ましい。Mnが前記の範囲であれば、放電容量が高容量となる。ここで、qはFの割合を示すが、Fが存在しない場合にはqは0である。また、pは、x、y、zおよびqに応じて決まる値であり、1.9~2.1である。
 リチウム含有複合酸化物が式(C-1)で表される化合物である場合、前記遷移金属元素の総モル量に対するLi元素の組成比は1.25≦(1+x)/(y+z)≦1.75が好ましく、1.35≦(1+x)/(y+z)≦1.65がより好ましく、1.40≦(1+x)/(y+z)≦1.55が特に好ましい。この組成比が前記の範囲であれば、4.6V以上の高い充電電圧を印加した場合に、単位質量あたりの放電容量が高い正極材料が得られる。
 化合物(iii)としては、下式(C-2)で表される化合物がより好ましい。
 Li(LiMnNiCo)O・・・ (C-2)
 式(C-2)において、0.09<x<0.3、0.36<y<0.73、0<v<0.32、0<w<0.32、1.9<p<2.1、x+y+v+w=1である。
 式(C-2)において、Mn、Ni、およびCo元素の合計に対するLi元素の組成比は、1.2<(1+x)/(y+v+w)<1.8であり、1.35<(1+x)/(y+v+w)<1.65が好ましく、1.45<(1+x)/(y+v+w)<1.55がより好ましい。
 化合物(iii)としては、Li(Li0.16Ni0.17Co0.08Mn0.59)O、Li(Li0.17Ni0.17Co0.17Mn0.49)O、Li(Li0.17Ni0.21Co0.08Mn0.54)O、Li(Li0.17Ni0.14Co0.14Mn0.55)O、Li(Li0.18Ni0.12Co0.12Mn0.58)O、Li(Li0.18Ni0.16Co0.12Mn0.54)O、Li(Li0.20Ni0.12Co0.08Mn0.60)O、Li(Li0.20Ni0.16Co0.08Mn0.56)O、またはLi(Li0.20Ni0.13Co0.13Mn0.54)O、が特に好ましい。
 上式(C-1)または(C-2)で表わされる化合物は、層状岩塩型結晶構造(空間群R-3m)であることが好ましい。また、遷移金属元素に対するLi元素の比率が高いため、XRD(X線回折:CuKα)測定では層状LiMnOと同様に2θ=20~25°の範囲にピークが観察される。
(化合物(iv))
 Li(Mn2-xMe´´)O ・・・ (D)
 式(D)において、0≦x<2、Me´´はCo、Ni、Fe、Ti、Cr,Mg、Ba、Nb、Ag、またはAlである。
 式(D)で表される化合物(iv)としては、LiMn、LiMn1.5Ni0.5、LiMn1.0Co1.0、LiMn1.85Al0.15、LiMn1.9Mg0.1が挙げられる。
 リチウム含有複合酸化物の形状は、粒子状であることが好ましい。リチウム含有複合酸化物の平均粒子径(D50)は、0.03~30μmが好ましく、0.04~25μmがより好ましく、0.05~20μmが特に好ましい。ここで、平均粒子径(D50)とは、体積基準で粒度分布を求め、全体積を100%とした累積カーブにおいて、その累積カーブが50%となる点の粒子径である、体積基準累積50%径を意味する。粒度分布は、レーザー散乱粒度分布測定装置で測定した頻度分布および累積体積分布曲線で求められる。粒子径の測定は、粉末を水媒体中に超音波処理などで充分に分散させて粒度分布を測定する(例えば、HORIBA社製レーザー回折/散乱式粒子径分布測定装置Partica LA-950VII、などを用いる)ことで行なわれる。
 リチウム複合酸化物が化合物(i)、化合物(iii)、または化合物(iv)より選ばれる化合物である場合、平均粒子径(D50)は3~30μmが好ましく、4~25μmがより好ましく、5~20μmが特に好ましい。リチウム複合酸化物が化合物(ii)より選ばれる化合物である場合、平均粒子径(D50)は0.03~5μmが好ましく、0.04~1μmがより好ましく、0.05~0.5μmが特に好ましい。
 リチウム含有複合酸化物の比表面積は、0.1~30m/gであることが好ましく、0.15~25m/gが特に好ましい。該比表面積が、0.1~30m/gであると容量が高く、緻密な正極電極層が形成できる。
 リチウム複合酸化物が化合物(i)または化合物(iv)より選ばれる化合物である場合、比表面積は0.1~1m/gが好ましく、0.15~0.6m/gがより好ましい。リチウム複合酸化物が化合物(iii)より選ばれる化合物である場合、比表面積は0.3~10m/gが好ましく、0.5~5m/gがより好ましく、1~4m/gが特に好ましい。リチウム複合酸化物が化合物(ii)より選ばれる化合物である場合、比表面積は1~30m/gが好ましく、10~25m/gがより好ましい。
 リチウム含有複合酸化物の製造方法としては、共沈法により得られたリチウム含有複合酸化物の前駆体とリチウム化合物を混合して焼成する方法、水熱合成法、ゾルゲル法、乾式混合法(固相法)、イオン交換法、またはガラス結晶化法を適宜用いることができる。なお、リチウム含有複合酸化物中に遷移金属元素が均一に含有されると放電容量が向上するため、共沈法により得られたリチウム含有複合酸化物の前駆体(共沈組成物)とリチウム化合物とを混合して焼成する方法を用いることが好ましい。
(組成物(1))
 組成物(1)は、Li元素を含まず、Mg、Ca、Sr、Ba、Y、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Fe、Co、Ni、Pb、Cu、Zn、Al、In、Sn、Sb、Bi、La、Ce、Pr、Nd、Gd、Dy、Er、およびYbからなる群より選ばれる少なくとも一種の金属元素(M)を含む化合物が溶媒に溶解または分散した水溶液である。
 金属元素(M)としては、Al、Zr、またはNbが好ましく、Alが特に好ましい。
 金属元素(M)を含む化合物としては、金属元素(M)の硝酸塩、硫酸塩、塩化物等の無機塩、酢酸塩、クエン酸塩、マレイン酸塩、ギ酸塩、乳酸塩、乳酸塩、シュウ酸塩等の有機塩または有機錯体、金属元素(M)のオキソ酸塩、金属元素(M)のアンミン錯体、金属元素(M)のアルコキシド、金属元素(M)の炭酸塩、金属元素(M)の酸化物、金属元素(M)の水酸化物等が挙げられる。熱により分解しやすく、溶媒への溶解性が高いことから、硝酸塩、有機塩、有機錯体、オキソ酸アンモニウム塩、またはアンミン錯体が特に好ましい。
 金属元素(M)を含む化合物としては、炭酸ジルコニウムアンモニウム、ハロゲン化ジルコニウムアンモニウム、酢酸ジルコニウム、硝酸ジルコニウム、硝酸アルミニウム、酢酸アルミニウム、シュウ酸アルミニウム、クエン酸アルミニウム、乳酸アルミニウム、塩基性乳酸アルミニウム、マレイン酸アルミニウム、硝酸ニオブ、酢酸ニオブ、クエン酸ニオブ、マレイン酸ニオブ、ギ酸ニオブ、乳酸ニオブ、シュウ酸ニオブ、またはシュウ酸ニオブアンモニウムが好ましい。
 組成物(1)の溶媒としては、金属元素(M)を含む化合物の安定性や反応性の点で水を含む溶媒が好ましく、水と水溶性アルコールおよび/またはポリオールとの混合溶媒がより好ましく、水のみが特に好ましい。水溶性アルコールとしては、メタノール、エタノール、1-プロパノール、2-プロパノールが挙げられる。ポリオールとしては、エチレングリコール、プロピレングリコール、ジエチレングリコール、ジプロピレングリコール、ポリエチレングリコール、ブタンジオール、グリセリンが挙げられる。溶媒中に含まれる水溶性アルコールとポリオールの合計の含有量としては、溶媒全量に対して0~20質量%が好ましく、0~10質量%がより好ましい。溶媒が水だけの場合は、安全面、環境面、取扱い性、コストの点で優れているため特に好ましい。
 さらに組成物(1)には、金属元素(M)を含む化合物の溶解度を調整するために、pH調整剤が含まれていてもよい。pH調整剤としては、加熱時に揮発または分解するものが好ましい。具体的には、酢酸、クエン酸、乳酸、ギ酸、マレイン酸、シュウ酸などの有機酸またはアンモニアが好ましい。揮発または分解するpH調整剤を用いると不純物が残留しにくいため、良好な電池特性が得られやすい。
 組成物(1)のpHとしては、2~12が好ましく、3~11がより好ましく、4~10が特に好ましい。pHが上記の範囲にあれば、リチウム含有複合酸化物と組成物(1)とを接触させたときにリチウム含有複合酸化物からのLi元素や遷移金属の溶出が少なく、また、pH調整剤等の不純物が少ないため良好な電池特性が得られやすい。
 本発明の製造方法において、リチウム含有複合酸化物と組成物(1)との接触方法としては、スプレーコート法によりリチウム含有複合酸化物に噴霧する方法が特に好ましい。スプレーコート法はプロセスが簡便であり、かつリチウム含有複合酸化物の表面に金属元素(M)を含む化合物を均一に被覆させることができる。
 組成物(1)中に含まれる金属元素(M)を含む化合物の濃度は、後の工程で加熱により溶媒を除去する必要がある点から高濃度の方が好ましい。しかし、該濃度が高すぎると粘度が高くなり、リチウム含有複合酸化物と組成物(1)との均一混合性が低下するため、組成物(1)中に含まれる金属元素(M)を含む化合物の濃度は、金属元素(M)換算で0.5~30質量%が好ましく、2~20質量%が特に好ましい。
 本発明において、リチウム含有複合酸化物100g当たりに接触させる組成物(1)の量A(ml/100g)は、リチウム含有複合酸化物の吸油量B(ml/100g)に対して0.1<A/B<5であることが好ましい。吸油量BはJIS-K-5101-13-1:2004で示される方法に従って求める。0.1<A/B<5であれば被覆層(I)を均一に形成することができ、後の工程においてろ過が不要になり、さらに加熱時に蒸発させる溶媒が少ないため生産性が高い。また、特に0.1<A/B<0.7であるとスプレーコートする際にリチウム含有複合酸化物が凝集して塊にならず撹拌しやすいため特に好ましい。
 A/Bが0.7以上である場合は、リチウム含有複合酸化物が凝集して塊にならないように乾燥させながら組成物(1)をリチウム含有複合酸化物に接触させることが好ましい。スプレーコートと乾燥は交互に行っても良く、スプレーコートを行いながら加熱をして同時に乾燥を行ってもよい。乾燥温度は40~200℃が好ましく、60~150℃がより好ましい。
 スプレーコート法によって噴霧される組成物(1)の粒径は、0.1~250μmであることが好ましく、1~150μmであることがより好ましい。組成物(1)の粒径が250μm以下である場合、リチウム含有複合酸化物の粉末に組成物(1)をより一層均一に被覆できる。また、噴霧される組成物(1)の粒径が0.1μm以上である場合、噴霧後の粒径を容易に制御できる。スプレーコート法における組成物(1)の放出量は、リチウム含有複合酸化物1gに対して、0.005~0.1g/分が好ましい。
 また、本発明の製造方法においては、撹拌下のリチウム含有複合酸化物に組成物(1)を添加してリチウム含有複合酸化物と混合することにより、組成物(1)をリチウム含有複合酸化物に接触させることもできる。撹拌装置としては、ドラムミキサーまたはソリッドエアーの低剪断力の撹拌機を用いることができる。撹拌混合しながらリチウム含有複合酸化物を接触させることで、より均一にリチウム含有複合酸化物の表面に金属元素(M)を含む化合物が付着した粒子(I)を得ることができる。(粒子(I))
 本発明における粒子(I)は、リチウム含有複合酸化物の表面に金属元素(M)を含む化合物が付着した粒子である。ここで、付着とは、金属元素(M)を含む化合物がリチウム含有複合酸化物の表面の一部または全部に、化学吸着、または物理吸着している状態をいう。
 粒子(I)において、金属元素(M)の割合(モル比)は、リチウム含有複合酸化物の遷移金属元素に対して0.001~0.05倍が好ましく、0.003~0.04倍がより好ましく、0.005~0.03倍が特に好ましい。
 粒子(I)に存在する金属元素(M)の割合は、正極活物質を酸に溶解してICP(高周波誘導結合プラズマ)測定を行うことによって測定できる。なお、ICP測定によって被覆層(I)の割合を求めることができない場合には、リチウム含有複合酸化物と金属元素(M)を含む化合物の仕込み量に基づいて算出してもよい。
 次に、本発明の製造方法においては、前記粒子(I)と下記化合物(2)を混合して加熱することにより、リチウム含有複合酸化物の表面に金属元素(M)とフッ素元素を含む被覆層(II)が形成されている粒子(III)を得る。
 (化合物(2))
 化合物(2)は加熱によりHFを発生する化合物である。化合物(2)としては、NHF(フッ化アンモニウム)、NHF・HF(酸性フッ化アンモニウム)、NaF・HF(酸性フッ化ナトリウム)、KaF・HF(酸性フッ化カリウム)等の無機塩、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、エチレンテトラフルオロエチレン共重合体等の含フッ素ポリマー、トリフルオロ酢酸、トリフルオロエタノール、ペンタフルオロプロパノール、ハイドロフルオロカーボン、ハイドロフルオロエーテル等の含フッ素有機化合物が挙げられる。250℃以下の低温で分解してHFを発生するという点でNHF、NHF・HF、NaF・HF、KaF・HF等の無機塩が好ましく、さらに加熱後にアルカリ成分が残らないという点でNHFまたはNHF・HFが特に好ましい。加熱によりHFを発生する化合物は一種を用いてもよく、二種以上を組み合わせてもよい。
 化合物(2)の量は、リチウム含有複合酸化物(100質量部)に対して、0.1~10質量部が好ましく、0.2~5質量部がより好ましい。
 化合物(2)の混合方法は、組成物(1)を接触させたリチウム含有複合酸化物を撹拌させながら、化合物(2)を添加してリチウム含有複合酸化物と混合することが好ましい。撹拌装置としては、ドラムミキサーまたはソリッドエアーの低剪断力の撹拌機を用いることができる。
 混合後の加熱は、窒素雰囲気下で行っても酸素含有雰囲気下で行ってもよい。加熱はリチウム含有複合酸化物と化合物(2)の混合物を、HFの耐腐食性に優れた密閉容器、例えば蓋のあるセラミックス製容器に入れて行うことが好ましい。蓋のあるセラミックス製容器を用いることで発生したHFが揮散せず、リチウム含有複合酸化物の表面の金属元素(M)と効率良く反応させることができる。また、加熱する際は、リチウム含有複合酸化物の表面の金属元素(M)とHFとの反応を促進するために、化合物(2)がHFを発生する温度付近で温度を保持することや、昇温速度を遅くすることも有効であると考えられる。
 加熱温度は、250~700℃が好ましく、350~600℃がより好ましい。加熱温度が250℃以上であれば、金属元素(M)とフッ素元素を含む被覆層(I)を形成させやすく、さらに残留水分等の揮発性の不純物が少なくなるためサイクル特性の低下が抑制できる。加熱温度が700℃以下であればリチウム含有複合酸化物の内部に金属元素(M)が拡散して充放電容量の低下を防ぐことができる。
 リチウム含有複合酸化物の表面に非晶質である被覆層(II)を被覆させる場合、加熱温度は、250℃~550℃が好ましく、350~500℃がより好ましい。加熱温度が550℃未満であれば被覆層(II)が結晶化しにくい。
 加熱時間は、0.5~24時間が好ましく、0.5~18時間がより好ましく、1~10時間が特に好ましい。
 (被覆層(II))
 被覆層(II)は、Li、Mg、Ca、Sr、Ba、Y、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Fe、Co、Ni、Pb,Cu、Zn、Al、In、Sn、Sb、Bi、La、Ce、Pr、Nd、Gd、Dy、Er、およびYbからなる群より選ばれる少なくとも一種の金属元素(M)とフッ素元素を含む。金属元素(M)はすべてがFと結合しフッ化物を形成していても良く、金属元素(M)の一部が酸化物または水酸化物を形成してもよい。
 被覆層(II)としては、MgF、CaF、SrF、BaF、YF、TiF、ZrF、HfF、VF、VF、NbF、NbF、TaF、CrF、MoF、WF、MnF、FeF、CoF、NiF、PbF、PbF、CuF、ZnF、AlF、InF、SnF、SbF、BiF、LaF、CeF、PrF、NdF、GdF、DyF、ErF、YbF等が挙げられる。被覆層(I)としては、AlF、ZrF、NbF、またはNbFが好ましく、AlFが特に好ましい。
 被覆層(II)が酸化物を含む場合はAlO、ZrO、Nb、Nbが好ましく、AlOが特に好ましい。被覆層(II)が水酸化物を含む場合はAl(OH)、Zr(OH)、Nb(OH)、またはNb(OH)、が好ましく、Al(OH)が特に好ましい。
 本発明における正極活物質は、前記被覆層(II)でリチウム含有複合酸化物を被覆することでリチウム含有複合酸化物と電解液との接触を減らすことができるため、リチウム含有複合酸化物表面から電解液へのMn等の遷移金属元素の溶出が抑制でき、サイクル特性が向上すると考えられる。また、リチウム含有複合酸化物表面に電解液の分解生成物が付着することを抑制することができる。
 被覆層(II)は、結晶性であっても良く、非晶質であってもよく、非晶質であることが好ましい。ここで、非晶質とはX線回折測定(以下、XRDとも言う。)において被覆層(II)に帰属されるピークが観察されないことをいう。理由は明確ではないが、被覆層(II)が非晶質である場合、被覆層(II)が電解液へ溶出しやすく、被覆層(II)が犠牲層として働いていると考えられる。これによって、リチウム含有複合酸化物表面のMn等の遷移金属元素が電解液へ溶出することを抑制でき、サイクル特性が向上するものと考えられる。
 リチウム含有複合酸化物の表面に形成する被覆層の形状は、粒子状、膜状、繊維状、塊状等であってもよい。被覆層が粒子状である場合、被覆層の平均粒子径D50は、0.1~100nmが好ましく、0.1~50nmがより好ましく、0.1~30nmが特に好ましい。被覆層の形状および平均粒子径は、SEM(走査型電子顕微鏡)またはTEM(透過型電子顕微鏡)等の電子顕微鏡より評価できる。平均粒子径は、リチウム含有複合酸化物の表面を被覆している粒子の粒子径の平均として表される。
 (粒子(III))
 本発明における粒子(III)は、リチウム含有複合酸化物の表面に被覆層(II)が形成されている粒子である。ここで、「前記形成されている」とは、被覆層(II)がリチウム含有複合酸化物の表面の一部または全部に、化学吸着、または物理吸着している状態をいう。
 粒子(III)の形状は、粒子状、膜状、繊維状、塊状等であってもよい。粒子(III)が粒子状である場合、粒子(III)の平均粒子径は、3~30μmが好ましく、4~25μmがより好ましく、5~20μmが特に好ましい。
 粒子(III)において、被覆層(II)はリチウム含有複合酸化物の表面に少なくとも一部に形成されていればよい。なかでも、粒子(III)が、被覆層(II)の非晶質層が、粒子(III)表面の一部または全部に形成されている粒子であることが好ましい。
 粒子(III)における被覆層(II)として、被覆層(II)中の金属元素(M)の割合(モル比)は、リチウム含有複合酸化物の遷移金属元素に対して0.001~0.05倍が好ましく、0.003~0.04倍がより好ましく、0.005~0.03倍が特に好ましい。前記範囲であれば、放電容量が大きく、サイクル特性に優れる。
 金属元素(M)量の調整は、粒子(I)における金属元素(M)のモル量がリチウム含有複合酸化物の遷移金属元素のモル量の0.001~0.05倍の範囲になるように、リチウム含有複合酸化物と組成物(1)とを接触させればよい。
 粒子(III)における被覆層(II)中に存在するフッ素元素の量は、正極活物質の全質量に対して0.05~3.0質量%が好ましく、0.1~2.0質量%がより好ましく、0.1~1.0質量%が特に好ましい。フッ素元素量が上記範囲である場合、より一層初期容量とサイクル特性に優れた電池が得られる正極活物質となる。
 被覆層(II)中に存在するフッ素元素の量は、正極活物質をイオン交換水に分散させ、フッ素イオン電極を用いて溶出したフッ素イオンの濃度を測定し、得られた溶出したフッ素イオンの濃度と正極活物質の全体量とから算出できる。
 被覆層(II)中に存在するフッ素元素量の調整は、リチウムイオン二次電池用正極活物質の全質量に対して0.05~3質量%となるように、前記粒子(I)と前記化合物(2)を混合して加熱すればよい。
 <正極>
 本発明のリチウムイオン二次電池用正極は、本発明の正極活物質と導電材とバインダーとを含む正極活物質層が、正極集電体上に形成されてなる。リチウムイオン二次電池用正極の製造方法としては、本発明の正極活物質、導電材およびバインダーを正極集電板上に担持させる方法が挙げられる。導電材およびバインダーは溶媒および/または分散媒中に分散することによってスラリーを調製し、または溶媒および/または分散媒と混練した混錬物を調製し、つぎに塗布法等の方法により正極集電板に担持させうる。
 導電材としては、アセチレンブラック、黒鉛、ケッチェンブラックなどのカーボンブラック等が挙げられる。
 バインダーとしては、ポリフッ化ビニリデン、ポリテトラフルオロエチレン等のフッ素系樹脂、ポリエチレン、ポリプロピレン等のポリオレフィン、スチレン・ブタジエンゴム、イソプレンゴム、ブタジエンゴム等の不飽和結合を有する重合体およびその共重合体、アクリル酸共重合体、メタクリル酸共重合体等のアクリル酸系重合体およびその共重合体等が挙げられる。
 正極集電体としては、アルミニウムまたはアルミニウム合金が挙げられる。
 <リチウムイオン二次電池>
 本発明のリチウムイオン二次電池は、前記のリチウムイオン二次電池用正極、負極、および非水電解質を含む。
 負極は、負極集電体上に、負極活物質を含有する負極活物質層が形成されてなる。例えば、負極活物質を有機溶媒と混錬することによってスラリーを調製し、調製したスラリーを負極集電体に塗布、乾燥、プレスすることによって、製造できる。
 負極集電板としては、例えばニッケル箔、銅箔等の金属箔を用いることができる。
 負極活物質としては、比較的低い電位でリチウムイオンを吸蔵、放出可能な材料であればよく、例えば、リチウム金属、リチウム合金、炭素材料、周期表14、15族の金属を主体とする酸化物、炭素化合物、炭化ケイ素化合物、酸化ケイ素化合物、硫化チタンおよび炭化ホウ素化合物等を用いることができる。
 負極活物質の炭素材料としては、例えば、難黒鉛化性炭素、人造黒鉛、天然黒鉛、熱分解炭素類、ピッチコークス、ニードルコークス、石油コークス等のコークス類、グラファイト類、ガラス状炭素類、フェノール樹脂やフラン樹脂等を適当な温度で焼成し炭素化した有機高分子化合物焼成体、炭素繊維、活性炭、カーボンブラック類等を用いることができる。
 周期表14族の金属としては、ケイ素あるいはスズであり、ケイ素が好ましい。
 その他に負極活物質として用いることができる材料としては酸化鉄、酸化ルテニウム、酸化モリブデン、酸化タングステン、酸化チタン、酸化スズ等の酸化物やLi2.6Co0.4N等の窒化物が挙げられる。
 非水電解液としては、有機溶媒と電解質とを適宜組み合わせて調製されたものを用いることができる。有機溶媒としては、電解液用の有機溶媒として公知のものが使用でき、プロピレンカーボネート、エチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、1,2-ジメトキシエタン、1,2-ジエトキシエタン、ジグライム、トリグライム、γ-ブチロラクトン、ジエチルエーテル、スルホラン、メチルスルホラン、アセトニトリル、酢酸エステル、酪酸エステル、プロピオン酸エステル等を用いることができる。特に、電圧安定性の点からは、プロピレンカーボネート等の環状カーボネート類、ジメチルカーボネート、ジエチルカーボネート等の鎖状カーボネート類を使用することが好ましい。有機溶媒は、1種類を単独で用いてもよく、2種類以上を混合して用いてもよい。
 非水電解質としては、電解質塩を含有させた固体電解質、高分子電解質、高分子化合物などに電解質を混合または溶解させた固体状もしくはゲル状電解質等を用いることができる。
 固体電解質としては、リチウムイオン伝導性を有する材料であればよく、無機固体電解質および高分子固体電解質を用いることができる。
 無機固体電解質としては、窒化リチウム、ヨウ化リチウム等を用いることができる。
 高分子固体電解質としては、電解質塩と該電解質塩を溶解する高分子化合物等を用いることができる。電解質塩と該電解質塩を溶解する高分子化合物としては、ポリエチレンオキサイド、ポリプロピレンオキサイド、ポリホスファゼン、ポリアジリジン、ポリエチレンスルフィド、ポリビニルアルコール、ポリフッ化ビニリデン、およびポリヘキサフルオロプロピレン、もしくはこれらの誘導体、混合物、および複合体を用いることができる。
 ゲル状電解質等としては、前記の非水電解液を吸収してゲル化する種々の高分子化合物を用いることができる。ゲル状電解質に用いられる高分子化合物としては、ポリ(ビニリデンフルオロライド)、ポリ(ビニリデンフルオロライド-co-ヘキサフルオロプロピレン)などのフッ素系高分子等を用いることができる。また、ゲル状電解質に用いられる高分子化合物としては、ポリアクリロニトリル、ポリアクリロニトリルの共重合体、ポリエチレンオキサイド、ポリエチレンオキサイドの共重合体、同架橋体などのエーテル系高分子を用いることができる。前記共重合体に用いるモノマーとしては、ポリプロピレンオキサイド、メタクリル酸メチル、メタクリル酸ブチル、アクリル酸メチル、アクリル酸ブチル等を挙げることができる。
 ゲル状電解質のマトリックスとしては、酸化還元反応に対する安定性の観点から、特にフッ素系高分子が好ましい。
 前記の電解質中で用いられる電解質塩としては、LiClO、LiPF、LiBF、CFSOLi、LiCl、LiBr等を用いることができる。
 本発明のリチウムイオン二次電池の形状は、コイン型、シート状(フィルム状)、折り畳み状、巻回型有底円筒型、ボタン型等の形状を、用途に応じて適宜選択できる。
 以下に実施例を用いて本発明をさらに詳しく説明するが、本発明はこれら実施例に限定されるものではない。
 (リチウム含有複合酸化物の合成例)
 硫酸ニッケル(II)六水和物(140.6g)、硫酸コバルト(II)七水和物(131.4g)、および硫酸マンガン(II)五水和物(482.2g)に蒸留水(1245.9g)を加えて均一に溶解させて原料溶液とした。硫酸アンモニウム(79.2g)に蒸留水(320.8g)を加えて均一に溶解させてアンモニア源溶液とした。硫酸アンモニウム(79.2g)に蒸留水(1920.8g)を加えて均一に溶解させて母液とした。水酸化ナトリウム(400g)に蒸留水(600g)を加えて均一に溶解させてpH調整液とした。
 2Lのバッフル付きガラス製反応槽に母液を入れてマントルヒーターで50℃に加熱し、pHが11.0となるようにpH調整液を加えた。反応槽内の溶液をアンカー型の撹拌翼で撹拌しながら原料溶液を5.0g/分、アンモニア源溶液を1.0g/分の速度で添加し、ニッケル、コバルト、およびマンガンの複合水酸化物を析出させた。原料溶液を添加している間、反応槽内のpHを11.0に保つようにpH調整溶液を添加した。また、析出した水酸化物が酸化しないように反応槽内に窒素ガスを流量0.5L/分で流した。また、反応槽内の液量が2Lを超えないように連続的に液の抜き出しを行った。
 得られたニッケル、コバルト、マンガンの複合水酸化物から不純物イオンを取り除くため、加圧ろ過と蒸留水への分散を繰返して洗浄した。ろ液の電気伝導度が25μS/cmとなった時点で洗浄を終了し、120℃で15時間乾燥させて前駆体とした。
 ICPで前駆体のニッケル、コバルト、およびマンガンの含有量を測定したところ、それぞれ11.6質量%、10.5質量%、および42.3質量%であった(モル比でニッケル:コバルト:マンガン=0.172:0.156:0.672)。
 前駆体(20g)とリチウム含有量が26.9mol/kgの炭酸リチウム(12.6g)を混合して酸素含有雰囲気下900℃で12時間焼成し、合成例のリチウム含有複合酸化物を得た。得られた合成例のリチウム含有複合酸化物の組成はLi(Li0.2Ni0.137Co0.125Mn0.538)Oとなる。実施例のリチウム含有複合酸化物の平均粒子径D50は5.9μmであり、BET(Brunauer,Emmett,Teller)法を用いて測定した比表面積は2.6m/gであった。JIS-K-5101-13-1:2004に従って精製あまに油を用いて吸油量を測定したところ44(g/100g)であった。
 (実施例1)
 7.0gの乳酸アルミニウム水溶液(Al含量4.5質量%、pH4.6)に3.0gの蒸留水を加えてAl水溶液(組成物(1))を調製した。
 次に、撹拌下の前記合成例のリチウム含有複合酸化物10gに対して、調製したAl水溶液2gを噴霧して添加し、前記合成例のリチウム含有複合酸化物とAl水溶液とを混合させながら接触させた。{(リチウム含有複合酸化物100g当たりに接触させる組成物(1)と化合物(2)の合計量A)/(リチウム含有複合酸化物の吸油量B)}=20/44=0.45である。リチウム含有複合酸化物は塊にならず、撹拌等の取り扱いが容易であった。
 次に、得られた混合物を90℃で2時間乾燥した後に粒状のNHF(化合物(2))0.10gを加えて混合し、セラミックス製のるつぼに入れて蓋をして酸素含有雰囲気下400℃で8時間加熱し、リチウム含有複合酸化物の表面に金属元素Alとフッ素を含む被覆層(II)が被覆された粒子(III)からなる実施例1の正極活物質を得た。NHFに含まれるすべてのFがリチウム含有複合酸化物と反応したと仮定した場合に正極活物質の表面におけるフッ素含量の計算値(以下フッ素仕込み量とも言う。)は正極活物質の全質量に対して0.51質量%となる。
 正極活物質において、前記Al水溶液によって被覆したアルミニウムは、前記合成例のリチウム含有複合酸化物の遷移金属元素であるニッケル、コバルト、マンガンの合計に対して、モル比(被覆量)で{(被覆したAlのモル数)/(付加する前のリチウム含有複合酸化物のNi、Co、Mnの合計モル数)}=0.025である。
 次に正極活物質の表面におけるフッ素含量を次の方法により定量した。まず、正極活物質(0.5g)を精秤して20℃のイオン交換水を50mL添加し、超音波処理(アズワン社製超音波洗浄機、周波数28kHz)を60分実施して、正極活物質をイオン交換水に分散させた。その後16時間静置した後に、上澄みを採取して全イオン強度調整緩衝液TISABを加え、フッ素イオン電極(東興化学研究所社製社製)を用いて、正極活物質の分散液に溶出したフッ素イオンの濃度を測定した。フッ素イオン濃度から正極活物質の被覆層(II)中に存在するフッ素含量を計算したところ、正極活物質の全質量に対して0.42質量%であった。
 (実施例2)
 化合物(2)としてNHFを0.33gとした以外は実施例1と同様に行った。フッ素仕込み量は正極活物質の全質量に対して1.69質量%となる。
 得られた正極活物質の被覆層(II)中に存在するフッ素含量を定量したところ、正極活物質の全質量に対して1.42質量%であった。
 (比較例1)
 特許文献1で示されている方法を参考にして、湿式法によるAlFコート処理を行った。すなわち、2.64gのAl(NO)・9HOを150mlの蒸溜水に溶解させ、前記合成例のリチウム含有複合酸化物を30g加えた後、撹拌した。次に反応器の温度を80℃に維持しながら、0.78gのNHFを蒸溜水150mlに溶解させた溶液を1ml/分の流量で連続的に添加した後、80℃で24時間撹拌した。その後110℃の温風恒温槽で12時間乾燥させた後、不活性雰囲気下で400℃に熱処理した。得られた正極活物質は凝集して塊状になっていたため、乳鉢で粉砕した。
 フッ素仕込み量は正極活物質の全質量に対して1.33質量%となる。
 得られた正極活物質の被覆層中に存在するフッ素含量を定量したところ、正極活物質の全質量に対して0.26質量%であった。
 (比較例2)
 先に合成したリチウム含有複合酸化物をそのまま正極活物質とした。
 (正極の製造例)
 正極活物質として、それぞれ実施例1~2、比較例1~2の正極活物質とアセチレンブラック(導電材)とポリフッ化ビニリデン(バインダー)を12.1質量%含むポリフッ化ビニリデン溶液(溶媒N-メチルピロリドン)とを混合し、さらにN-メチルピロリドンを添加してスラリーを作製した。正極活物質と、アセチレンブラックと、ポリフッ化ビニリデンは質量比で82/10/8とした。スラリーを厚さ20μmのアルミニウム箔(正極集電体)にドクターブレードを用いて片面塗工した。120℃で乾燥し、ロールプレス圧延を2回行うことにより正極体シートを作製した。実施例1~2の正極活物質から得た正極体シートを、それぞれ正極体シート1~2と、比較例1~2の正極活物質から得た正極体シートを、正極体シート3~4とする。
 (電池の製造例)
 前記で製造した正極体シート1~4を正極に用い、ステンレス鋼製簡易密閉セル型のリチウムイオン二次電池をアルゴングローブボックス内で組み立てた。厚さ500μmの金属リチウム箔を負極に用い、負極集電体に厚さ1mmのステンレス板を使用し、セパレータには厚さ25μmの多孔質ポリプロピレンを用い、さらに電解液には、濃度1(mol/dm)のLiPF/EC(エチレンカーボネート)+DEC(ジエチルカーボネート)(1:1)溶液(LiPFを溶質とするECとDECとの体積比(EC:DEC=1:1)の混合溶液を意味する。)を用いた。
 正極体シート1~4を用いたリチウムイオン二次電池をリチウム電池1~4とする。
 (電池特性評価例1~4)初期容量、およびサイクル特性の評価例
 前記で製造したリチウム電池1~4を用いて下記評価を行う。すなわち、正極活物質1gにつき200mAの負荷電流で4.7Vまで充電し、正極活物質1gにつき50mAの負荷電流にて2.5Vまで放電した。続いて正極活物質1gにつき200mAの負荷電流で4.3Vまで充電し、正極活物質1gにつき100mAの負荷電流にて2.5Vまで放電する。
 このような充放電を行ったリチウム電池1~4について引き続き充放電正極活物質1gにつき200mAの負荷電流で4.6Vまで充電し、正極活物質1gにつき100mAの負荷電流にて2.5Vまで放電する。4.6~2.5Vにおける正極活物質の放電容量を4.6V初期容量とする。
 次いで充放電正極活物質1gにつき200mAの負荷電流で4.6Vまで充電し、正極活物質1gにつき100mAの負荷電流にて2.5Vまで放電する充放電サイクルを50回繰返す。4.6V充放電サイクル50回目の放電容量を4.6V初期容量で割った値をサイクル維持率とする。
 リチウム電池1~3のサイクル維持率を表1にまとめる。フッ素含量/フッ素仕込み量をフッ素化効率とした。サイクル維持率はリチウム電池4と比較して向上している場合を○とする。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、リチウム電池1~3は、未処理の正極活物質(比較例2)を用いた場合と比較していずれも電池特性が向上している。実施例1と実施例2の正極活物質のフッ素化効率は80%以上で、NHFに由来するフッ素とリチウム含有複合酸化物の表面の金属元素(M)であるアルミニウムが効率良く反応していることが確認できた。一方で比較例1の正極活物質はフッ素化効率が20%以下であり、大部分のNHFがろ過と洗浄の過程で流出していると考えられる。
 本発明によれば、単位質量あたりの放電容量が高く、かつサイクル特性に優れるリチウムイオン二次電池用の正極活物質が得られる。該正極活物質は、小型・軽量な携帯電話等の電子機器、車載用のバッテリー等へのリチウムイオン二次電池に利用できる。
 本発明の製造方法によれば、特殊な設備を用いずに、簡便な方法で正極活物質表面に被覆層を形成できるため生産性に優れる。
 なお、2011年6月24日に出願された日本特許出願2011-140494号の明細書、特許請求の範囲、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。

Claims (11)

  1.  Li元素及び遷移金属元素を含むリチウム含有複合酸化物と、下記組成物(1)とを接触させ、金属元素(M)を含む化合物が付着した粒子(I)を得た後に、該粒子(I)と下記化合物(2)を混合して加熱することにより、リチウム含有複合酸化物の表面に金属元素(M)とフッ素元素を含む被覆層(II)が形成されている粒子(III)を得ることを特徴とする、リチウムイオン二次電池用正極活物質の製造方法。
     組成物(1):Li元素を含まず、Mg、Ca、Sr、Ba、Y、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Fe、Co、Ni、Pb、Cu、Zn、Al、In、Sn、Sb、Bi、La、Ce、Pr、Nd、Gd、Dy、Er、およびYbからなる群より選ばれる少なくとも一種の金属元素(M)を含む化合物が溶媒に溶解または分散してなる組成物。
     化合物(2):加熱によりHFを発生する化合物。
  2.  前記化合物(2)がフッ化アンモニウムまたは酸性フッ化アンモニウムであることを特徴とする請求項1に記載のリチウムイオン二次電池用正極活物質の製造方法。
  3.  前記組成物(1)において、金属元素(M)が、Al、Nb、およびZrからなる群より選ばれる少なくとも一種である請求項1または2に記載のリチウムイオン二次電池用正極活物質の製造方法。
  4.  前記加熱を250~700℃で行う請求項1~3のいずれか一項に記載のリチウムイオン二次電池用正極活物質の製造方法。
  5.  前記粒子(I)における前記金属元素(M)のモル量が前記リチウム含有複合酸化物の前記遷移金属元素のモル量の0.001~0.05倍の範囲になるように、前記リチウム含有複合酸化物と前記組成物(1)とを接触させる請求項1~4のいずれか一項に記載のリチウムイオン二次電池用正極活物質の製造方法。
  6.  前記被覆層(II)中に存在するフッ素元素の量が、正極活物質の全質量に対して0.05~3質量%となるように、前記粒子(I)と前記化合物(2)を混合して加熱する請求項1~5のいずれか一項に記載のリチウムイオン二次電池用正極活物質の製造方法。
  7.  前記組成物(1)の前記溶媒が水である請求項1~6のいずれか一項に記載のリチウムイオン二次電池用正極活物質の製造方法。
  8.  前記リチウム含有複合酸化物と前記組成物(1)との接触を、撹拌下の前記リチウム含有複合酸化物に前記組成物(1)を添加して、前記リチウム含有複合酸化物と前記組成物(1)とを混合することにより行う、請求項1~7のいずれか一項に記載のリチウムイオン二次電池用正極活物質の製造方法。
  9.  前記リチウム含有複合酸化物と、前記組成物(1)との接触を、該組成物(1)を前記リチウム含有複合酸化物に噴霧することにより行う、請求項1~7のいずれか一項に記載のリチウムイオン二次電池用正極活物質の製造方法。
  10.  請求項1~9のいずれか一項に記載の製造方法によって得られたリチウムイオン二次電池用正極活物質と導電材とバインダーとを含むリチウムイオン二次電池用正極。
  11.  請求項10に記載のリチウムイオン二次電池用正極と負極と非水電解質とを含むリチウムイオン二次電池。
PCT/JP2012/066060 2011-06-24 2012-06-22 リチウムイオン二次電池用正極活物質の製造方法、リチウムイオン二次電池用正極およびリチウムイオン二次電池 WO2012176902A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280030965.4A CN103650219B (zh) 2011-06-24 2012-06-22 锂离子二次电池用正极活性物质的制造方法、锂离子二次电池用正极及锂离子二次电池
JP2013521644A JP6070551B2 (ja) 2011-06-24 2012-06-22 リチウムイオン二次電池用正極活物質の製造方法、リチウムイオン二次電池用正極の製造方法およびリチウムイオン二次電池の製造方法
US14/139,969 US9444099B2 (en) 2011-06-24 2013-12-24 Process for producing cathode active material for lithium ion secondary battery, cathode for lithium ion secondary battery, and lithium ion secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011140494 2011-06-24
JP2011-140494 2011-06-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/139,969 Continuation US9444099B2 (en) 2011-06-24 2013-12-24 Process for producing cathode active material for lithium ion secondary battery, cathode for lithium ion secondary battery, and lithium ion secondary battery

Publications (1)

Publication Number Publication Date
WO2012176902A1 true WO2012176902A1 (ja) 2012-12-27

Family

ID=47422729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/066060 WO2012176902A1 (ja) 2011-06-24 2012-06-22 リチウムイオン二次電池用正極活物質の製造方法、リチウムイオン二次電池用正極およびリチウムイオン二次電池

Country Status (4)

Country Link
US (1) US9444099B2 (ja)
JP (1) JP6070551B2 (ja)
CN (1) CN103650219B (ja)
WO (1) WO2012176902A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103474648A (zh) * 2013-09-26 2013-12-25 上海动力储能电池系统工程技术有限公司 一种锂离子电池正极材料表面氟化方法
WO2014156992A1 (ja) * 2013-03-25 2014-10-02 旭硝子株式会社 正極活物質の製造方法
CN105453313A (zh) * 2013-08-22 2016-03-30 株式会社Lg化学 正极活性材料和包含其的锂二次电池以及制备正极活性材料的方法
WO2016056586A1 (ja) * 2014-10-09 2016-04-14 日立化成株式会社 リチウムイオン二次電池用正極活物質、及びリチウムイオン二次電池
JP2017043496A (ja) * 2015-08-24 2017-03-02 新日本電工株式会社 リチウム遷移金属複合酸化物及びその製造方法
WO2017099001A1 (ja) * 2015-12-10 2017-06-15 日立オートモティブシステムズ株式会社 二次電池
US10903483B2 (en) 2015-08-27 2021-01-26 Wildcat Discovery Technologies, Inc High energy materials for a battery and methods for making and use
CN115181289A (zh) * 2022-09-02 2022-10-14 南阳理工学院 一种钴基金属有机框架材料的制备方法及应用

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6663172B2 (ja) 2014-05-12 2020-03-11 住友化学株式会社 正極活物質、その製造方法、正極およびリチウムイオン二次電池
JP6471025B2 (ja) 2014-06-27 2019-02-13 住友化学株式会社 リチウム含有複合酸化物およびその製造方法
US20180145317A1 (en) * 2016-11-18 2018-05-24 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material, method for manufacturing positive electrode active material, and secondary battery
CN110024171B (zh) * 2016-11-29 2022-04-08 株式会社村田制作所 二次电池
WO2020158051A1 (ja) * 2019-01-28 2020-08-06 パナソニック株式会社 活物質、負極活物質、およびフッ化物イオン二次電池

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008536285A (ja) * 2005-04-15 2008-09-04 エナーセラミック インコーポレイテッド フッ素化合物でコーティングされたリチウム二次電池用正極活物質及びその製造方法
JP2010086922A (ja) * 2008-10-02 2010-04-15 Toda Kogyo Corp リチウム複合化合物粒子粉末及びその製造方法、非水電解質二次電池

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7294435B2 (en) * 2003-05-15 2007-11-13 Nichia Corporation Positive electrode active material for nonaqueous electrolyte secondary battery, positive electrode mixture for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
KR101131479B1 (ko) * 2003-09-16 2012-03-30 에이지씨 세이미 케미칼 가부시키가이샤 리튬-니켈-코발트-망간-불소 함유 복합 산화물 및 그제조방법과 그것을 사용한 리튬 이차 전지
KR101278376B1 (ko) * 2006-03-02 2013-06-25 에이지씨 세이미 케미칼 가부시키가이샤 비수 전해질 2 차 전지용 양극 활물질 및 그 제조 방법
CN100490226C (zh) * 2007-09-14 2009-05-20 中南大学 一种有效改善锂镍钴锰氧倍率性能的多孔包覆材料的包覆方法
JP5586837B2 (ja) 2007-10-11 2014-09-10 国立大学法人福井大学 非水電解質二次電池用正極材料
JP5193223B2 (ja) * 2008-06-26 2013-05-08 Agcセイミケミカル株式会社 リチウムイオン二次電池用正極活物質用の表面修飾リチウム含有複合酸化物及びその製造方法
KR20130139941A (ko) 2010-10-29 2013-12-23 아사히 가라스 가부시키가이샤 리튬 이온 이차 전지용 정극 활물질, 정극, 전지 및 제조 방법
JP5931750B2 (ja) * 2011-01-28 2016-06-08 三洋電機株式会社 非水電解液二次電池用正極活物質、その製造方法、当該正極活物質を用いた非水電解液二次電池用正極、及び、当該正極を用いた非水電解液二次電池
WO2012108513A1 (ja) 2011-02-09 2012-08-16 旭硝子株式会社 リチウムイオン二次電池用の正極活物質の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008536285A (ja) * 2005-04-15 2008-09-04 エナーセラミック インコーポレイテッド フッ素化合物でコーティングされたリチウム二次電池用正極活物質及びその製造方法
JP2010086922A (ja) * 2008-10-02 2010-04-15 Toda Kogyo Corp リチウム複合化合物粒子粉末及びその製造方法、非水電解質二次電池

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014156992A1 (ja) * 2013-03-25 2014-10-02 旭硝子株式会社 正極活物質の製造方法
US9905841B2 (en) 2013-08-22 2018-02-27 Lg Chem, Ltd. Cathode active material and lithium secondary battery including the same, and method of manufacturing cathode active material
CN105453313A (zh) * 2013-08-22 2016-03-30 株式会社Lg化学 正极活性材料和包含其的锂二次电池以及制备正极活性材料的方法
JP2016528686A (ja) * 2013-08-22 2016-09-15 エルジー・ケム・リミテッド 正極活物質及びそれを含むリチウム二次電池とその製造方法
CN103474648A (zh) * 2013-09-26 2013-12-25 上海动力储能电池系统工程技术有限公司 一种锂离子电池正极材料表面氟化方法
WO2016056586A1 (ja) * 2014-10-09 2016-04-14 日立化成株式会社 リチウムイオン二次電池用正極活物質、及びリチウムイオン二次電池
JP2016076454A (ja) * 2014-10-09 2016-05-12 日立化成株式会社 リチウムイオン二次電池用正極活物質、及びリチウムイオン二次電池
JP2017043496A (ja) * 2015-08-24 2017-03-02 新日本電工株式会社 リチウム遷移金属複合酸化物及びその製造方法
US10903483B2 (en) 2015-08-27 2021-01-26 Wildcat Discovery Technologies, Inc High energy materials for a battery and methods for making and use
WO2017099001A1 (ja) * 2015-12-10 2017-06-15 日立オートモティブシステムズ株式会社 二次電池
CN108370027A (zh) * 2015-12-10 2018-08-03 日立汽车系统株式会社 二次电池
CN108370027B (zh) * 2015-12-10 2022-11-29 日本汽车能源株式会社 二次电池
CN115181289A (zh) * 2022-09-02 2022-10-14 南阳理工学院 一种钴基金属有机框架材料的制备方法及应用
CN115181289B (zh) * 2022-09-02 2023-06-13 南阳理工学院 一种钴基金属有机框架材料的制备方法及应用

Also Published As

Publication number Publication date
JPWO2012176902A1 (ja) 2015-02-23
JP6070551B2 (ja) 2017-02-01
CN103650219B (zh) 2016-09-28
CN103650219A (zh) 2014-03-19
US20140113194A1 (en) 2014-04-24
US9444099B2 (en) 2016-09-13

Similar Documents

Publication Publication Date Title
JP6070551B2 (ja) リチウムイオン二次電池用正極活物質の製造方法、リチウムイオン二次電池用正極の製造方法およびリチウムイオン二次電池の製造方法
JP6253408B2 (ja) リチウムイオン二次電池用正極活物質の製造方法
WO2012176903A1 (ja) リチウムイオン二次電池用正極活物質の製造方法
JP5928445B2 (ja) リチウムイオン二次電池用の正極活物質およびその製造方法
JP6382810B2 (ja) リチウムイオン二次電池用正極活物質の製造方法
WO2013047877A1 (ja) リチウムイオン二次電池用正極活物質、およびその製造方法
JP5253808B2 (ja) リチウム二次電池正極用のリチウム含有複合酸化物の製造方法
WO2012108513A1 (ja) リチウムイオン二次電池用の正極活物質の製造方法
WO2012102354A1 (ja) リチウムイオン二次電池用の正極活物質およびその製造方法
JP2012169217A (ja) リチウムイオン二次電池用の正極活物質およびその製造方法
JP2012138197A (ja) リチウムイオン二次電池用の正極活物質、正極、リチウムイオン二次電池、および、リチウムイオン二次電池用正極活物質の製造方法
WO2012176901A1 (ja) リチウムイオン二次電池用活物質粒子の製造方法、電極およびリチウムイオン二次電池
KR20120098591A (ko) 리튬 이온 이차 전지용 정극 재료의 제조 방법
CN105390670A (zh) 含锂复合氧化物的制造方法和含锂复合氧化物
JP2014116162A (ja) 正極活物質
US20150024272A1 (en) Cathode active material for lithium ion secondary battery
WO2013115336A1 (ja) リチウムイオン二次電池用正極活物質
TWI536645B (zh) 鋰離子二次電池用正極材料、鋰離子二次電池用正極構件及鋰離子二次電池
JP2015056275A (ja) リチウムイオン二次電池用正極活物質の製造方法およびリチウムイオン二次電池用正極の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12803452

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013521644

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12803452

Country of ref document: EP

Kind code of ref document: A1