WO2012176798A1 - ポリフェニレンエーテル系樹脂組成物及びその製造方法 - Google Patents

ポリフェニレンエーテル系樹脂組成物及びその製造方法 Download PDF

Info

Publication number
WO2012176798A1
WO2012176798A1 PCT/JP2012/065726 JP2012065726W WO2012176798A1 WO 2012176798 A1 WO2012176798 A1 WO 2012176798A1 JP 2012065726 W JP2012065726 W JP 2012065726W WO 2012176798 A1 WO2012176798 A1 WO 2012176798A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
resin composition
mass
parts
barrel
Prior art date
Application number
PCT/JP2012/065726
Other languages
English (en)
French (fr)
Inventor
古河 弘昭
忠幸 石井
Original Assignee
旭化成ケミカルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成ケミカルズ株式会社 filed Critical 旭化成ケミカルズ株式会社
Priority to CN201280030211.9A priority Critical patent/CN103619953B/zh
Priority to EP12802174.8A priority patent/EP2722364B1/en
Priority to JP2013521594A priority patent/JP5978421B2/ja
Priority to US14/127,775 priority patent/US9187640B2/en
Publication of WO2012176798A1 publication Critical patent/WO2012176798A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08L71/12Polyphenylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/521Esters of phosphoric acids, e.g. of H3PO4
    • C08K5/523Esters of phosphoric acids, e.g. of H3PO4 with hydroxyaryl compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes

Definitions

  • the present invention relates to a polyphenylene ether resin composition and a method for producing the same.
  • a polyphenylene ether resin composition (hereinafter also referred to as “m-PPE resin composition”) based on a polyphenylene ether (hereinafter also referred to as “PPE”) resin has improved molding processability, It has heat resistance, and also has excellent electrical characteristics, dimensional stability, impact resistance, acid resistance, alkali resistance, etc., low water absorption, and low specific gravity.
  • the m-PPE resin composition can be made flame retardant without using harmful halogen compounds or antimony compounds, and thus is excellent in terms of environment and safety and health. Therefore, such m-PPE resin compositions are widely used for various electric / electronic parts, office equipment parts, automobile parts, building materials, other various exterior materials, industrial products, and the like.
  • Patent Document 1 discloses a polymer mixture using a hydrogenated styrene-butadiene-styrene block copolymer and not using polystyrene.
  • Patent Document 2 discloses a composition containing a hydrogenated styrene-butadiene-styrene block copolymer having a specific equivalent-circle equivalent particle diameter.
  • Patent Document 3 discloses a flame retardant composition using a hydrogenated styrene-butadiene-styrene block copolymer of 200,000 atomic mass units to 400,000 atomic mass units.
  • Patent Document 4 a flame retardant composition containing a hydrogenated styrene-butadiene-styrene block copolymer having a number average molecular weight of 150,000 to 350,000 is melt-kneaded using an extruder.
  • a manufacturing method is disclosed in which 45 to 75% from the upstream side of the extruder is used as an unmelted mixing zone, and a 5 to 30% melt kneading zone is provided after the unmelted mixing zone.
  • Patent Document 5 discloses a method for producing a specific powder supply equipment arrangement and specific extrusion conditions in a method for producing a resin composition using polyphenylene ether powder.
  • JP 09-227774 A Japanese Patent No. 3735966 Special table 2010-519389 JP 2008-274035 A JP 2004-137450 A
  • Patent Document 5 attempts to improve productivity by dividing the production process of a resin composition mainly composed of polyphenylene ether powder, polystyrene resin, and solid flame retardant into two processes. However, the improvement in physical properties is not sufficient.
  • the present invention has been made in view of the above circumstances, has a high impact resistance, does not easily peel during molding, and has excellent flame retardancy, heat resistance, and long-term heat aging resistance.
  • the purpose is to provide goods.
  • the inventors of the present invention contain polyphenylene ether, a specific hydrogenated block copolymer, and an organic phosphorus flame retardant in a specific ratio, and the resin composition has a frequency of 10 Hz.
  • the above problem can be solved by using a resin composition in which the value of the peak height of the loss tangent (tan ⁇ ) of the hydrogenated block copolymer is in a specific range. It came to make.
  • the peak height value of the loss tangent (tan ⁇ ) of the component (B) represented by the following formula 1 is 0.075-0.
  • the composition further comprises 0.5 to 20 parts by mass of (D) a styrene-based resin with respect to 100 parts by mass of the total amount of the component (A), the component (B), and the component (C). Resin composition.
  • Q 1 , Q 2 , Q 3 and Q 4 each independently represents an alkyl group having 1 to 6 carbon atoms, n is an integer of 1 or more, and n 1 and n 2 are each Independently an integer from 0 to 2, and m 1 , m 2 , m 3 and m 4 are each independently an integer from 0 to 3.
  • (F) Ultraviolet absorber and / or light stabilizer is further contained in a total amount of 0.01 to 3 parts by mass with respect to 100 parts by mass of the total amount of the components (A), (B) and (C).
  • the resin composition according to any one of [1] to [7].
  • a step of melt kneading the component (A), the component (B), and the component (C) using a twin screw extruder The method for producing a resin composition according to any one of [1] to [8], wherein the temperature of the molten resin composition extruded from the die outlet of the twin-screw extruder is 300 to 350 ° C. [10] [9] The method for producing a resin composition according to [9], wherein in the melt-kneading step, the oxygen concentration in at least one raw material supply port of the twin-screw extruder is 3% or less.
  • the barrel total length of the twin-screw extruder is 100%, the range from the upstream side of the barrel to at least 40% is the front stage of the barrel, and the remaining range is the rear stage of the barrel,
  • the barrel set temperature of the previous stage of the barrel is a temperature not higher than the glass transition point (Tg) of the (A) polyphenylene ether,
  • Tg glass transition point
  • the method for producing a resin composition according to [9] or [10], wherein the barrel set temperature of the latter stage of the barrel is 240 to 320 ° C.
  • the screw configuration of the front stage of the barrel is a screw configuration that does not use elements other than a forward feed (positive screw) screw element and a forward feed (phase less than 45 degrees) kneading element
  • the screw configuration at the rear stage of the barrel includes an orthogonal (phase 90 degree) kneading element, a reverse feed (negative phase less than 45 degrees) kneading element, and a reverse feed (reverse screw) screw element in a forward feed (phase 45).
  • the method for producing a resin composition according to any one of [9] to [11], wherein the screw composition has at least any of the kneading elements including two or more.
  • the twin-screw extruder further has a second raw material supply port at the rear stage of the barrel, The method for producing a resin composition according to any one of [9] to [12], wherein the component (D) is supplied from the second raw material supply port.
  • [14] [1] A molded article comprising the resin composition according to any one of [8].
  • [14] A solar cell module component comprising the resin composition according to any one of [1] to [8].
  • a connector comprising the resin composition according to any one of [8].
  • a junction box comprising the resin composition according to any one of [1] to [8].
  • the present invention it is possible to provide a resin composition having high impact resistance, hardly exfoliating at the time of molding, and excellent in flame retardancy, heat resistance and long-term heat aging resistance, and a molded body thereof. Can do.
  • FIG. 2 is a schematic diagram for explaining an example of a method for obtaining the peak height of tan ⁇ of the component (B) in the present embodiment.
  • the resin composition of the present embodiment is obtained by hydrogenating a block copolymer containing (A) polyphenylene ether, (B) polystyrene block and a conjugated diene compound polymer block, and has a weight average molecular weight of 100,000 to 500.
  • a hydrogenated block copolymer of 1,000, and (C) an organophosphorus flame retardant With respect to 100 parts by mass of the total amount of component (A), component (B) and component (C), 57 to 94 parts by mass of the component (A), A resin composition containing 3 to 30 parts by mass of the component (B) and 3 to 30 parts by mass of the component (C).
  • the peak height of the loss tangent (tan ⁇ ) of the component (B) represented by the following formula 1 (hereinafter simply referred to as “tan ⁇ peak”).
  • the resin composition has a value of “height” in the range of 0.075 to 0.120.
  • Peak height of loss tangent (tan ⁇ ) of component (B)) (height of peak in chart) / (content of component (B) in resin composition (mass%)) (formula 1)
  • the polyphenylene ether is a homopolymer or copolymer (non-modified polyphenylene ether) having a repeating unit represented by the following formula (II) and / or formula (III); It is preferable that a part or all of the copolymer is a homopolymer or a copolymer (modified polyphenylene ether) modified with an unsaturated carboxylic acid or a derivative thereof.
  • so-called non-modified polyphenylene ether and modified polyphenylene ether are sometimes collectively referred to as “polyphenylene ether”.
  • R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are each independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or 6 to 6 carbon atoms.
  • 9 represents an aryl group or a halogen atom, provided that R 5 and R 6 are not simultaneously hydrogen atoms, and R 1 to R 6 may be substituted or unsubstituted.
  • non-modified polyphenylene ether homopolymer examples include poly (2,6-dimethyl-1,4-phenylene) ether, poly (2-methyl-6-ethyl-1,4- Phenylene) ether, poly (2,6-diethyl-1,4-phenylene) ether, poly (2-ethyl-6-n-propyl-1,4-phenylene) ether, poly (2,6-di-n-) Propyl-1,4-phenylene) ether, poly (2-methyl-6-n-butyl-1,4-phenylene) ether, poly (2-ethyl-6-isopropyl-1,4-phenylene) ether, poly (2- 2-methyl-6-chloroethyl-1,4-phenylene) ether, poly (2-methyl-6-hydroxyethyl-1,4-phenylene) ether, poly (2-methyl-6- Roroechiru-1,4-phenylene) ether.
  • non-modified polyphenylene ether copolymer examples include a copolymer having a repeating unit represented by the formula (II) and / or the formula (III) as a main repeating unit.
  • the main repeating unit here means a repeating unit contained in the copolymer at 50 mol% or more, preferably 70 mol% or more, more preferably 90 mol% or more.
  • polyphenylene ether copolymer examples are not particularly limited, and are a copolymer of 2,6-dimethylphenol and 2,3,6-trimethylphenol, a copolymer of 2,6-dimethylphenol and o-cresol. Examples thereof include a polymer, a copolymer of 2,6-dimethylphenol, 2,3,6-trimethylphenol and o-cresol.
  • polyphenylene ether copolymer 2- (dialkylaminomethyl) -6-methylphenylene ether monomer unit or 2- (N-alkyl-N-phenylaminomethyl) -6-methylphenylene is used.
  • a polyphenylene ether copolymer having an ether monomer unit or the like as a part of the main repeating unit is preferred.
  • the polyphenylene ether copolymer for example, those described in JP-A-63-301222 can be used.
  • 2- (Dialkylaminomethyl) -6-methylphenylene ether monomer units include 2- (dibutylaminomethyl) -6-methylphenylene ether, 2- (ethylbutylaminomethyl) -6-methylphenylene ether, 2 -(Dipropylaminomethyl) -6-methylphenylene ether, 2- (butylpropylaminomethyl) -6-methylphenylene ether and the like.
  • the reduced viscosity (chloroform solution, measured at 30 ° C.) of the component (A) is preferably 0.25 to 0.6 dL / g, more preferably 0.35 to 0.65 from the viewpoint of productivity, moldability and quality performance. 0.55 dL / g.
  • the resin composition of the present embodiment may contain, as component (A), a modified polyphenylene ether in which a part or all of the above-described non-modified polyphenylene ether is modified with an unsaturated carboxylic acid or a derivative thereof.
  • component (A) may be the above-described non-modified polyphenylene ether, modified polyphenylene ether, or both.
  • the modified polyphenylene ether is not particularly limited, and known modified polyphenylene ether can be used as long as it does not adversely affect the peelability of the resin composition and other physical properties.
  • this modified polyphenylene ether those described in JP-A No. 02-276823, JP-A No. 63-108059, JP-A No. 59-059724 and the like can be used.
  • the production method of the modified polyphenylene ether is not particularly limited, and a known method can be adopted.
  • it can be produced by reacting the above-mentioned unmodified polyphenylene ether with an unsaturated carboxylic acid or a derivative thereof by melt-kneading in the presence or absence of a radical initiator.
  • it can be produced by dissolving a non-modified polyphenylene ether, an unsaturated carboxylic acid or a derivative thereof in an organic solvent in the presence or absence of a radical initiator and reacting in the solution. .
  • unsaturated carboxylic acid or its derivative are not particularly limited, but maleic acid, fumaric acid, itaconic acid, halogenated maleic acid, cis-4-cyclohexene-1,2-dicarboxylic acid, endo-cis-bicyclo Dicarboxylic acids such as (2,2,1) -5-heptene-2,3-dicarboxylic acid, acid anhydrides, esters, amides and imides of these dicarboxylic acids; monocarboxylic acids such as acrylic acid and methacrylic acid And esters and amides of these monocarboxylic acids.
  • saturated carboxylic acid the compound which itself can thermally decompose into an unsaturated carboxylic acid derivative at the reaction temperature at the time of manufacturing modified polyphenylene ether can also be used in this embodiment.
  • saturated carboxylic acids are not particularly limited, and examples thereof include malic acid and citric acid. These may be used alone or in combination of two or more.
  • modified polyphenylene ether examples include maleic acid-modified polyphenylene ether and stearyl acrylate-modified polyphenylene ether.
  • the shape of the component (A) is preferably a powder.
  • the term “powder” as used herein means a powder having an average particle diameter of 1 to 2000 ⁇ m.
  • the average particle diameter of the powder is preferably 1 to 1000 ⁇ m, more preferably 10 to 700 ⁇ m, and still more preferably 100 to 500 ⁇ m.
  • the lower limit of the average particle diameter is preferably 1 ⁇ m or more, and from the viewpoint of suppressing the generation of unmelted material during melt kneading, the upper limit of the average particle diameter is preferably 1000 ⁇ m or less.
  • the average particle diameter here is measured by particle size measurement by sieving.
  • the content of the component (A) is 57 to 94 parts by mass with respect to 100 parts by mass in total of the components (A), (B) and (C), preferably Is 65 to 90 parts by mass.
  • the content of the component (A) is less than 57 parts by mass, the heat resistant temperature is lowered and the heat aging property is inferior.
  • content of (A) component exceeds 94 mass parts, impact resistance and a flame retardance are not enough.
  • the content of the component (A) is the total amount of the components (A), (B), (C) and (D).
  • the amount is preferably 57 to 94 parts by mass, more preferably 65 to 90 parts by mass with respect to 100 parts by mass.
  • the hydrogenated block copolymer is a hydrogenated block copolymer obtained by hydrogenating a block copolymer containing a polystyrene block and a conjugated diene compound polymer block, and has a weight average molecular weight of 100,000 to A hydrogenated block copolymer of 500,000.
  • the weight average molecular weight is the weight average molecular weight of the component (B) in the resin composition after the resin composition, and can be analyzed and measured from the resin composition by the method described later. it can.
  • the structure of the block copolymer before hydrogenation is not particularly limited.
  • SBS styrene block chain
  • B conjugated diene compound polymer block chain
  • SBS SB— A structure represented by S—B, (S—B—) 4 —S, or S—B—S—B—S may be used.
  • the hydrogenation rate of the unsaturated bond derived from the conjugated diene compound is preferably 60% or more, more preferably 80% or more, and still more preferably 95% or more.
  • the hydrogenation rate can be determined by a nuclear magnetic resonance apparatus (NMR).
  • the microstructure of the conjugated diene compound polymer block is not particularly limited and can be arbitrarily selected.
  • the ratio of those incorporated as vinyl bonds) is preferably 2 to 60%, more preferably 8 to 40%.
  • the vinyl bond amount can be determined by a nuclear magnetic resonance apparatus (NMR).
  • the amount of vinyl bonds in the hydrogenated block copolymer can be determined by dissolving the resin composition in a solvent such as chloroform and using a nuclear magnetic resonance apparatus (NMR).
  • the weight average molecular weight of the component (B) in the resin composition after making the resin composition described above is 100,000 to 500,000, preferably 150,000 to 370,000, more preferably. Is 250,000-370,000.
  • the weight average molecular weight of the component (B) is less than 100,000, sufficient impact resistance cannot be obtained.
  • the weight average molecular weight of the component (B) exceeds 500,000, the dispersion state It is not uniform, tends to be peeled off during molding, and the impact resistance tends to decrease.
  • Deterioration here refers to, for example, a phenomenon in which the molecular chain of component (B) is cleaved by a radical reaction or the like, resulting in the generation of a low molecular compound or a decrease in molecular weight.
  • the weight average molecular weight of the component (B) as a raw material before the resin composition is not particularly limited, but is preferably 110,000 to 520,000, and more preferably 160,000 to 400,000. More preferably, it is 300,000 to 400,000. When the weight average molecular weight of the component (B) is equal to or more than the above lower limit value, further excellent impact resistance can be obtained.
  • the weight average molecular weight of the component (B) is not more than the above upper limit, the load at the time of melt extrusion can be further reduced, and the molecular cutting of the component (B) can be further suppressed, and the component (B) It is easy to make the dispersion state of the resin composition uniform, and it is easy to obtain a resin composition exhibiting more excellent impact resistance (however, the operational effects of this embodiment are not limited to this).
  • the weight average molecular weight of the component (B) can be determined as a styrene equivalent molecular weight by gel permeation chromatography (GPC). Specifically, the weight average molecular weight of the component (B) in the resin composition after preparing the resin composition is determined by dissolving the resin composition in a solvent such as chloroform and then subjecting the resulting solution to high performance liquid chromatography (HPLC), the component corresponding to the component (B) is separated from the resin composition, and the component can be determined by GPC. About the weight average molecular weight of (B) component as a raw material before setting it as a resin composition, it melt
  • GPC gel permeation chromatography
  • the weight average molecular weight of at least one polystyrene block chain is preferably 15,000 or more, more preferably 20,000 to 70,000. More preferably, the weight average molecular weight of all the polystyrene block chains in the component (B) is 15,000 or more.
  • the weight average molecular weight of a polystyrene block chain here can be measured as a styrene conversion molecular weight by gel permeation chromatography (GPC).
  • the content of the polystyrene block in the component (B) is not particularly limited, but is preferably 20 to 50% by mass, more preferably 20 to 40% by mass, from the viewpoint of more easily expressing impact resistance.
  • the content of the polystyrene block in the component (B) can be measured, for example, by the following method.
  • a method of oxidative decomposition of a copolymer before hydrogenation with tert-butyl hydroperoxide using osmium tetroxide as a catalyst described in IM Kolthoff, et al., J. Polym. Sci. 1, 429 (1946)).
  • polystyrene block content (mass of polystyrene block in copolymer before hydrogenation / mass of copolymer before hydrogenation) ⁇ 100
  • the content of the conjugated diene compound polymer block affects the value of the peak height of tan ⁇ of the component (B).
  • the component (B) is a hydrogenated block copolymer of a copolymer comprising a polystyrene block and a conjugated diene compound polymer block
  • the content of the polystyrene block is 20 to 50% by mass as described above. If present, the content of the conjugated diene compound polymer block is 50 to 80% by mass.
  • the peak height of tan ⁇ of component (B) is 0.120.
  • the amount of the component (B) is appropriately controlled by controlling the amount of the heat stabilizer and the conditions of the melt kneading as described in detail later. By deteriorating, the value of the peak height of tan ⁇ of the component (B) can be controlled with high accuracy (however, the operational effects of the present embodiment are not limited to this).
  • hydrogenated block copolymers having different compositions and structures may be used in combination.
  • hydrogenated block copolymers having different block contents such as a combined use of a hydrogenated block copolymer having a polystyrene block content of 50% or more and a hydrogenated block copolymer having a polystyrene block content of 30% or less.
  • hydrogenated random block copolymers obtained by hydrogenating a block copolymer containing a random copolymer block of styrene and a conjugated diene may be used in combination.
  • the component (B) may be any component obtained by hydrogenating a block copolymer containing a polystyrene block and a conjugated diene compound polymer block, but a block copolymer composed of a polystyrene block and a conjugated diene compound polymer block is used.
  • a hydrogenated product hydrogenated block copolymer is preferable.
  • the content of the component (B) is 3 to 30 parts by mass with respect to 100 parts by mass of the total amount of the component (A), the component (B) and the component (C), preferably Is 4 to 25 parts by mass, more preferably 5 to 20 parts by mass, and still more preferably 10 to 20 parts by mass.
  • the content of the component (B) is less than 3 parts by mass, sufficient impact resistance cannot be obtained, and when it exceeds 30 parts by mass, not only impact resistance cannot be obtained, but also the flexural modulus and bending The rigidity such as strength is not sufficient.
  • the content of the component (B) is the total amount of the components (A), (B), (C) and (D).
  • the amount is preferably 3 to 30 parts by mass, more preferably 4 to 25 parts by mass, still more preferably 5 to 20 parts by mass, and still more preferably 10 to 20 parts by mass with respect to 100 parts by mass. .
  • the content of the component (B) is not less than the above lower limit value, more excellent impact strength can be obtained, and when the content is not more than the above upper limit value, more excellent impact resistance can be obtained, and flexural modulus and bending strength can be obtained.
  • the rigidity such as is superior.
  • the component (B) and (G) polyolefin described later can be used in combination.
  • the component (B) and the component (G) in combination the releasability at the time of molding is further improved and the impact resistance is further improved. Details of the component (G) will be described later.
  • Organophosphorus flame retardant is a flame retardant containing at least an organophosphorus compound.
  • organic phosphorus compound are not particularly limited, and examples thereof include phosphate ester compounds and phosphazene compounds.
  • the phosphate ester compound is added to improve flame retardancy, and a phosphate ester compound generally used as a flame retardant for the component (A) can also be used.
  • phosphate ester compound examples include triphenyl phosphate, trisnonyl phenyl phosphate, resorcinol bis (diphenyl phosphate), resorcinol bis [di (2,6-dimethylphenyl) phosphate], Examples include 2,2-bis ⁇ 4- [bis (phenoxy) phosphoryloxy] phenyl ⁇ propane, 2,2-bis ⁇ 4- [bis (methylphenoxy) phosphoryloxy] phenyl ⁇ propane, and the like.
  • phosphate ester compounds other than the above are not particularly limited, but are not limited to trimethyl phosphate, triethyl phosphate, tributyl phosphate, trioctyl phosphate, tributoxyethyl phosphate, tricresyl phosphate, cresyl phenyl phosphate, octyl Diphenyl phosphate, diisopropyl phenyl phosphate, diphenyl-4-hydroxy-2,3,5,6-tetrabromobenzyl phosphonate, dimethyl-4-hydroxy-3,5-dibromobenzyl phosphonate, diphenyl-4-hydroxy- 3,5-dibromobenzyl phosphonate, tris (chloroethyl) phosphate, tris (dichloropropyl) phosphate, tris (chloropropyl) phosphate, bis (2 3-dibromopropyl) -2,3-d
  • aromatic condensed phosphoric acid ester compounds are preferred because of less gas generation during processing and excellent thermal stability.
  • a commercial item can also be used for an aromatic condensed phosphate ester compound. Examples of such commercially available products include Daihachi Chemical Industry's trade names “CR741”, “CR733S”, “PX200”, and ADEKA's trade names “ADK STAB FP-600”, “ADK STAB FP-700”, “ ADEKA STAB FP-800 "and so on.
  • a commercial product of an aromatic condensed phosphate ester compound is usually a mixture of a plurality of compounds having different degrees of condensation.
  • the condensed phosphate ester compound represented by the formula (I) does not absorb water and has excellent moisture resistance, it is possible to prevent deterioration of electrical characteristics and mechanical characteristics during use in a humid environment.
  • Q 1 , Q 2 , Q 3 and Q 4 each independently represents an alkyl group having 1 to 6 carbon atoms, n is an integer of 1 or more, and n 1 and n 2 are Each independently represents an integer of 0 to 2, and m 1 , m 2 , m 3 and m 4 are each independently an integer of 0 to 3)
  • N in the formula (I) may be an integer of 1 or more, preferably an integer of 1 to 3.
  • a more preferable condensed phosphoric acid ester compound is a condensed phosphoric acid in which m 1 , m 2 , m 3 , m 4 , n 1 and n 2 are 0.
  • An ester compound; and Q 1 , Q 2 , Q 3 , and Q 4 are methyl groups, n 1 and n 2 are 0, and m 1 , m 2 , m 3, and m 4 are integers of 1 to 3
  • trade name “ADEKA STAB FP-800” manufactured by ADEKA can be used.
  • Q 5 , Q 6 , Q 7 and Q 8 each independently represents an alkyl group having 1 to 6 carbon atoms, and R 7 and R 8 each independently represents a hydrogen atom or a methyl group.
  • N 3 is an integer of 1 or more, n 4 and n 5 are each independently an integer of 0 to 2, and m 5 , m 6 , m 7 and m 8 are each independently 0 to 3 (It is an integer.)
  • N 3 in the formula (IV) may be an integer of 1 or more, preferably an integer of 1 to 3.
  • a more preferable condensed phosphate ester is such that R 7 and R 8 are methyl groups, and m 5 , m 6 , m 7 , m 8 , n A condensed phosphate ester in which 4 and n 5 are 0; and Q 5 , Q 6 , Q 7 , Q 8 , R 7 and R 8 are methyl groups, and n 3 is an integer of 1 to 3 (more preferably n 3 is an integer of 1), n 4 and n 5 are 0, and m 5 , m 6 , m 7 and m 8 are integers of 1 to 3, at least one of the condensed phosphate ester compounds, What contains 50 mass% or more in a total amount is mentioned.
  • flame retardants for example, trade names “CR741”, “CR733S”, “PX200” of Daihachi Chemical Industry, “Adekastab FP-600”, “Adekastab FP-700”, etc. of ADEKA Can be used.
  • the acid value (value based on JIS K2501) of these aromatic condensed phosphate ester compounds is not particularly limited, it is preferably 0.1 or less, more preferably from the viewpoint of flame retardancy and hydrolyzability. It is 0.08 or less, more preferably 0.05 or less.
  • phenoxyphosphazene and its crosslinked product are preferable, and from the viewpoint of flame retardancy and hydrolyzability, a phenoxyphosphazene compound having an acid value of 0.1 or less (a value based on JIS K2501) is more preferable.
  • the organophosphorus flame retardant may be used alone or in combination of two or more.
  • the content of the component (C) is 3 to 30 parts by mass with respect to 100 parts by mass of the total amount of the components (A), (B) and (C), preferably Is 5 to 25 parts by mass. If the content of the component (C) is less than 3 parts by mass, the flame retardancy is not sufficient, and if it exceeds 30 parts by mass, the heat resistance decreases.
  • the content of the component (C) is the total amount of the components (A), (B), (C) and (D).
  • the amount is preferably 3 to 30 parts by mass, more preferably 5 to 25 parts by mass with respect to 100 parts by mass.
  • the resin composition of the present embodiment preferably further includes (D) a styrene resin from the viewpoint of processing fluidity.
  • a styrene resin is a polymer obtained by polymerizing a styrene compound or a styrene compound and another compound copolymerizable with the styrene compound in the presence or absence of a rubbery polymer.
  • styrene compound examples include styrene, ⁇ -methylstyrene, 2,4-dimethylstyrene, monochlorostyrene, p-methylstyrene, p-tert-butylstyrene, p-ethylstyrene, and the like. It is done. Among these, styrene is preferable from the viewpoints of availability and economy.
  • Examples of other compounds copolymerizable with the styrenic compound are not particularly limited, and methacrylic acid esters such as methyl methacrylate and ethyl methacrylate; unsaturated nitrile compounds such as acrylonitrile and methacrylonitrile; maleic anhydride And the like.
  • the amount of the other copolymerizable compound is not particularly limited, but from the viewpoint of compatibility with the component (A), it is preferably 20% by mass or less based on the total amount of the monomers of the component (D). Yes, more preferably 15% by mass or less.
  • the rubbery polymer is not particularly limited, and examples thereof include conjugated diene rubbers, copolymers of conjugated dienes and aromatic vinyl compounds, and ethylene-propylene copolymer rubbers.
  • conjugated diene rubbers copolymers of conjugated dienes and aromatic vinyl compounds
  • ethylene-propylene copolymer rubbers ethylene-propylene copolymer rubbers.
  • polybutadiene is preferable as the conjugated diene rubber
  • styrene-butadiene copolymer is preferable as the copolymer rubber of the conjugated diene and the aromatic vinyl compound.
  • the rubbery polymer may be a partially hydrogenated rubbery polymer partially hydrogenated.
  • a partially hydrogenated rubbery polymer a partially hydrogenated polybutadiene having an unsaturation degree of 20 to 80% and a polybutadiene containing 90% or more of 1,4-cis bonds are particularly preferred.
  • the degree of unsaturation and the 1,4-cis bond can be measured by a nuclear magnetic resonance apparatus (NMR).
  • NMR nuclear magnetic resonance apparatus
  • a rubbery polymer is used in the polymerization reaction, its content is not particularly limited, but it is usually preferably 5 to 15% by mass with respect to 100% by mass of the total amount of the styrene compound and the rubbery polymer.
  • component (D) are not particularly limited, and include homopolystyrene, rubber-reinforced polystyrene, styrene-acrylonitrile copolymer (AS resin), rubber-reinforced styrene-acrylonitrile copolymer (ABS resin), and other styrene-based materials.
  • AS resin styrene-acrylonitrile copolymer
  • ABS resin rubber-reinforced styrene-acrylonitrile copolymer
  • component (D) are not particularly limited, and include homopolystyrene, rubber-reinforced polystyrene, styrene-acrylonitrile copolymer (AS resin), rubber-reinforced styrene-acrylonitrile copolymer (ABS resin), and other styrene-based materials.
  • a copolymer is mentioned. These may be used alone or in combination of two or more. Although the combination in the
  • homopolystyrene is preferable as the component (D).
  • the homopolystyrene either atactic polystyrene or syndiotactic polystyrene can be used.
  • rubber-reinforced polystyrene may reduce the heat aging resistance of the resin composition, it is preferable not to add it substantially.
  • the content of the component (D) with respect to 100 parts by mass of the total amount of the components (A), (B) and (C) is preferably 0.5 to 20 parts by mass, more preferably 1 to 10 parts by mass. More preferably 3 to 5 parts by mass.
  • the content of component (D) with respect to 100 parts by mass of the total amount of components (A), (B), (C) and (D) is preferably 0.5 to 20 parts by mass.
  • the upper limit of the content of the component (D) with respect to 100 parts by mass of the total amount of the component (A), the component (B), the component (C) and the component (D) is more preferably 10 parts by mass or less, and still more preferably. 5 parts by mass or less.
  • the lower limit of the content of the component (D) with respect to 100 parts by mass of the total amount of the components (A), (B), (C) and (D) is more preferably 1 part by mass, and still more preferably. 3 parts by mass or more.
  • the component (D) can be simultaneously supplied from the same upstream supply port as the component (A) and / or the component (B). However, it is preferable to supply from the barrel (corresponding to the latter stage of the barrel) at least 40% or more from the upstream side of the extruder barrel. By supplying the component (D) from the rear stage of the barrel, decomposition of the component (D) can be further suppressed. This is preferable because the heat aging resistance is further improved. Details will be described in the manufacturing method described later.
  • the resin composition of this embodiment further contains (E) a heat stabilizer.
  • the addition of the component (E) can further control the deterioration of the component (B) and can suppress peeling during molding.
  • E Although it does not specifically limit as a component and a well-known thing can be used, A hindered phenol-type heat stabilizer (antioxidant) is preferable.
  • hindered phenol heat stabilizer examples are not particularly limited, and 2,6-di-tert-butyl-4-methylphenol, pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4 -Hydroxyphenyl) propionate], n-octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate, 2,2′-methylenebis (4-methyl-6-tert-butylphenol), 2 , 6-Di-tert-butyl-4- (4,6-bis (octylthio) -1,3,5-triazin-2-ylamino) phenol, 2-tert-butyl-6- (3-tert-butyl- 2-hydroxy-5-methylbenzyl) -4-methylphenyl acrylate, 2- [1- (2-hydroxy-3,5-di-t rt-pentylphenyl) ethoxyphen
  • the content of the component (E) is not particularly limited, but is preferably 0.1 parts by mass or less, more preferably 0.001 to 0.1 parts by mass with respect to 100 parts by mass of the component (B). More preferably, it is 0.005 to 0.09 parts by mass, and still more preferably 0.01 to 0.08 parts by mass.
  • a heat stabilizer such as a hindered phenol-based heat stabilizer is preferably added to the hydrogenated block copolymer in an amount of 0. About 2 to 0.3 parts by mass are blended.
  • the peak height of tan ⁇ of the component (B) is related to the degree of deterioration of the component (B).
  • the present inventors have found that it is difficult to control the tan ⁇ peak height of the component (B) to a desired value because it is difficult to moderately degrade the hydrogenated block copolymer.
  • the processing conditions of the polyphenol-based resin composition using a commercially available hydrogenated block copolymer are set to be severer processing conditions, once the deterioration of the hydrogenated block copolymer begins to deteriorate at once. Therefore, the present inventors have also found that it is difficult to control the degree of deterioration, and it is difficult to control the peak height of tan ⁇ of the component (B) to a desired value (however, in this embodiment, The effect is not limited to this.)
  • setting the content of the component (E) in the above range in the present embodiment is less than the blending amount of the heat stabilizer blended in the commercially available hydrogenated block copolymer.
  • the processing can be performed under milder conditions, the degree of deterioration of the component (B) can be easily controlled, and the peak height of the tan ⁇ of the component (B) Control can be performed more efficiently so as to obtain a desired value.
  • the resin composition of the present embodiment preferably further contains (F) (f1) an ultraviolet absorber and / or (f2) a light stabilizer.
  • (F) (f1) an ultraviolet absorber and / or (f2) a light stabilizer By containing the component (F), not only light resistance but also heat aging resistance is improved. The reason for this is not clear, but in the case of the (f1) component, it is possible to efficiently suppress the generation of radicals by ultraviolet irradiation by absorbing ultraviolet rays of a specific wavelength, and in the case of the (f2) component, this is added. This is probably because the radicals generated can be efficiently quenched (however, the operational effects of the present embodiment are not limited to this).
  • the ultraviolet absorber is not particularly limited, and commercially available products can also be used.
  • a benzotriazole-based ultraviolet absorber is preferable.
  • Specific examples of the benzotriazole-based ultraviolet absorber are not particularly limited, and 2- (2′-hydroxy-5′-methylphenyl) benzotriazole, 2- (3-tert-butyl-5-methyl-2-hydroxy) Phenyl) -5-chlorobenzotriazole, 2- (2′-hydroxy-3 ′, 5′-di-tert-butylphenyl) benzotriazole, 2- (2′-hydroxy-5′-tert-octylphenyl) benzo Triazole, 2- (2′-hydroxy-3′-tert-butyl-5′-methylphenyl) -5-chlorobenzotriazole, 2- (2′-hydroxy-3 ′, 5′-di-tert-butylphenyl) ) -5-chlorobenzotriazole, 2- (2′-hydroxy-3 ′, 5′-d
  • the light stabilizer is not particularly limited, and commercially available products can also be used.
  • a hindered amine light stabilizer is preferred.
  • Specific examples of the hindered amine light stabilizer are not particularly limited, and are bis (2,2,6,6-tetramethyl-4-pepyridyl) sebacate, bis (1-octyloxy-2,2,6,6-tetra).
  • Methyl-4-pepyridyl) sebacate polycondensate of dimethyl succinate with 1- (2-hydroxyethyl) -4-hydroxy-2,2,6,6-tetramethylpepyridine, poly [ ⁇ 6- (1 , 1,3,3-tetramethylbutyl) amino-1,3,5-triazine-2,4-diyl ⁇ ⁇ (2,2,6,6-tetramethyl-4-pepyridyl) imino ⁇ hexamethylene ⁇ ( 2,2,6,6-tetramethyl-4-pepyridyl) imino ⁇ ], N, N′-bis (3-aminopropyl) ethylenediamine and 2,4-bis [N-butyl-N- (1,2,2, 2,6,6-penta Til-4-pepyridyl) amino] -6-chloro-1,3,5-triazine, 1,2,3,4-tetra (2,2,6,6-tetramethyl-4-pepyridyl) -Buta
  • the mass ratio of (f1) UV absorber to (f2) light stabilizer ((f1) / (f2)) is preferably 1 / It is 99 to 99/1, more preferably 5/95 to 95/5, still more preferably 10/90 to 50/50.
  • the total amount of component (F) ((f1) ultraviolet absorber and / or (f2) light stabilizer) is the total amount of component (A), component (B), and component (C).
  • the amount is preferably 0.01 to 3 parts by mass, more preferably 0.05 to 3 parts by mass with respect to 100 parts by mass. It is preferable that the total amount of the component (F) is greater than or equal to the above lower limit value, and that a more excellent light fastness effect is exhibited.
  • the total amount of the component (F) ((f1) ultraviolet absorber and / or (f2) light stabilizer) is (A)
  • the amount is preferably 0.01 to 3 parts by mass, more preferably 0.05 to 3 parts by mass with respect to 100 parts by mass of the total amount of the component, the component (B), the component (C) and the component (D).
  • the total amount of the component (F) is greater than or equal to the above lower limit value, thereby exhibiting a more excellent light resistance effect. By making the content less than or equal to the above upper limit value, a more sufficient effect can be obtained and economical. Therefore, it is preferable.
  • the resin composition of the present embodiment may further contain an epoxy compound.
  • the epoxy compound herein may be a compound having an epoxy group, but is preferably an aliphatic epoxy compound, more preferably an aliphatic epoxy compound having 3% or more of oxirane oxygen in terms of molecular structure.
  • Specific examples of such aliphatic epoxy compounds include epoxidized oils and epoxidized fatty acid esters having oxirane oxygen of 3% or more in terms of molecular structure, epoxidized oils and fats having oxirane oxygen of 3% or more in terms of molecular structure are more preferred, and oxiranes.
  • Epoxidized soybean oil having oxygen of 6% or more in terms of molecular structure is more preferable.
  • the content of the epoxy compound is preferably 0.01 to 3 parts by mass, more preferably 0.1 to 2 parts by mass with respect to 100 parts by mass of the resin composition, from the viewpoint of light discoloration resistance.
  • the resin composition of the present embodiment preferably further contains (G) a polyolefin.
  • G By containing polyolefin, the mold release property at the time of shaping
  • Specific examples of the component (G) are not particularly limited, but are low density polyethylene, high density polyethylene, linear low density polyethylene, polypropylene, ethylene-propylene copolymer, ethylene-butene copolymer, ethylene-octene copolymer. And an ethylene-acrylic acid ester copolymer.
  • the ethylene-propylene copolymer, ethylene-butene copolymer, ethylene-octene copolymer, and ethylene-acrylic acid ester copolymer are generally amorphous or low-crystalline copolymers. These copolymers may be copolymerized with other monomers as long as the performance is not affected.
  • the component ratio of the amount of ethylene monomer and the total amount of monomers other than ethylene is not particularly limited, but (G) other than ethylene in component
  • the total amount of other monomers is usually 5 to 50 mol%.
  • low density polyethylene and ethylene-propylene copolymer are preferable from the viewpoint of improvement in impact resistance and releasability during molding.
  • These polyolefins may be used individually by 1 type, and may use 2 or more types together.
  • Component (G) has a melt flow rate (MFR; conforming to ASTM D-1238; 190 ° C., 2.16 kgf load), preferably 0.1 to 50 g / 10 minutes, more preferably 0.2 to 20 g / 10 minutes.
  • MFR melt flow rate
  • the content of the component (G) is preferably 0.05 to 5 parts by mass, more preferably 0.1 parts per 100 parts by mass of the total amount of the components (A), (B) and (C). -3 parts by mass, more preferably 0.5-2 parts by mass. (G)
  • molding improves further, The peeling at the time of shaping
  • the content of the component (G) is the total amount of the components (A), (B), (C) and (D).
  • the amount is preferably 0.05 to 5 parts by mass, more preferably 0.1 to 3 parts by mass, and still more preferably 0.5 to 2 parts by mass with respect to 100 parts by mass.
  • plastic additives for example, an anti-dripping agent, a plasticizer, an antistatic agent, a lubricant, a mold release agent
  • other plastic additives for example, an anti-dripping agent, a plasticizer, an antistatic agent, a lubricant, a mold release agent
  • Dyes and pigments, various inorganic fillers for plastics, etc. can be added.
  • a dripping preventive agent at the time of combustion such as polytetrafluoroethylene can be used, and as a plasticizer, an antistatic agent, a lubricant, a release agent, a dye / pigment, various inorganic fillers for plastics. Those generally used can be appropriately used.
  • polymers and oligomers can be added to the resin composition of the present embodiment.
  • examples thereof include petroleum resins for improving fluidity, terpene resins and hydrogenated resins thereof, coumarone resins, coumarone indene resins; silicone resins and phenol resins for improving flame retardancy.
  • the peak height of tan ⁇ of the component (B) in the resin composition can be obtained as follows. First, the loss tangent (tan ⁇ ) of the component (B) in the resin composition is determined by measuring the dynamic viscoelasticity of the resin composition. Specifically, the resin composition is molded into a test piece, which can be measured using a commercially available viscoelasticity measuring apparatus (for example, “EPLEXOR 500” manufactured by Gabo, Germany). More specifically, the loss tangent (tan ⁇ ) of the test piece can be measured under the condition of increasing the temperature from ⁇ 150 ° C. to 100 ° C. at a frequency of 10 Hz at a temperature increase rate of 2 ° C./min. The tan ⁇ peak of the component (B) usually appears within the range of ⁇ 70 ° C. to + 30 ° C.
  • the dynamic viscoelasticity measurement can be measured by preparing a sample from a molded body or a molded product as long as it can be processed by cutting or the like into a shape that can be attached to a sample mounting jig of a measuring instrument.
  • FIG. 2 is a schematic diagram for explaining an example of a method for obtaining the peak height of tan ⁇ of the component (B) in the present embodiment.
  • peak in the chart the peak of loss tangent appearing in the measured dynamic viscoelastic spectrum chart
  • peak in the chart the tangent line from the start point to the end point of the peak in the chart
  • the height (A) of the perpendicular line from the tangent to the peak top is obtained (hereinafter sometimes simply referred to as “the height of the peak in the chart”).
  • the tangent line drawn from the peak start point to the end point may have a slope.
  • the perpendicular is drawn from the peak top to the tangent perpendicular to the X axis of the chart.
  • the peak height of the loss tangent (tan ⁇ ) of the component (B) is obtained by dividing the peak height in the chart by the content (mass%) of the component (B) in the resin composition. (See Equation 1).
  • content of (B) component in a resin composition can be calculated
  • HPLC high performance liquid chromatography
  • quantitative_assay of each component can be created previously, and the content of each component can be quantified based on the said calibration curve for fixed_quantity
  • the weight average molecular weight of each fractionated component can be measured as a styrene equivalent molecular weight by gel permeation chromatography (GPC).
  • the ratio of the polystyrene block to the conjugated diene compound polymer block in the component (B) is determined by measuring the measurement sample collected by high performance liquid chromatography as described above with a nuclear magnetic resonance apparatus (NMR). Can be sought.
  • NMR nuclear magnetic resonance apparatus
  • the peak height of tan ⁇ of the component (B) is estimated to be affected by the deterioration of the component (B).
  • the peak height of tan ⁇ of the component (B) described above is preferably 0.090 to 0.120 from the viewpoint that peeling does not occur even during the molding of a thin molded article that is considered to be easily peeled during molding. More preferably, it is 0.090 to 0.115.
  • the thermal deterioration of the component (B) may be controlled.
  • the thermal deterioration of the component (B) may be controlled.
  • the thermal deterioration of the component (B) may be controlled.
  • the thermal deterioration of the component (B) may be controlled.
  • the thermal deterioration of the component (B) may be controlled.
  • the thermal deterioration of the component (B) may be controlled.
  • the peak height of tan ⁇ of the component tends to increase.
  • the peak height of tan ⁇ of the component tends to decrease.
  • the peak height of tan ⁇ of component (B) is estimated to correspond to the degree of deterioration of component (B).
  • the impact resistance of the resin composition and the peeling during molding can be controlled by controlling the degree of deterioration of the component (B).
  • the peak height of tan ⁇ of component (B) can be controlled, for example, by controlling the heat history during kneading.
  • the addition amount of the component (E) may affect the peak height of the tan ⁇ of the component (B). If the addition amount of the component (E) is too large, Even if heating is controlled, the peak height of tan ⁇ of component (B) may not be controlled within a desired range.
  • the tan ⁇ peak height of the component (B) may not be controlled within a desired range if the heating during kneading is not appropriate (however, in this embodiment) The effect of is not limited to this.)
  • the resin composition of this embodiment can be obtained by mixing each component with an extruder and melt-kneading. More specifically, when the other components such as the component (A), the component (B), the component (C), and the component (D) added as necessary are melt-kneaded using a twin screw extruder, From the viewpoint of controlling the peak height of tan ⁇ of component (B) to 0.075 to 0.120, there is a method in which the temperature of the molten resin composition extruded from the die outlet of the twin screw extruder is 300 to 350 ° C. preferable.
  • FIG. 1 is a schematic view showing an embodiment of a method for producing a resin composition of the present embodiment.
  • the twin-screw extruder 1 has a drive unit 11 that drives a screw (not shown) and a die 12 that extrudes a resin composition.
  • the twin-screw extruder 1 is provided with a first raw material supply port F1 and a second raw material supply port (side feeder) F2 from the upstream, and the first raw material supply port F1 and the second raw material supply port F2
  • a liquid injection port L1 for injecting a liquid material such as a liquid flame retardant is provided in between.
  • a vent port V1 is provided on the downstream side of the second raw material supply port.
  • the above-described material is supplied from the first raw material supply port F1, the second raw material supply port F2, and the liquid injection port L1, and the screw is driven by the drive unit 11 to drive the screw.
  • the resin composition can be obtained by melt-kneading the obtained material and extruding it from the die 12.
  • twin-screw extruder 1 used for manufacturing the resin composition of the present embodiment
  • a twin-screw extruder rotating in the opposite direction or rotating in the same direction is suitable.
  • a supply facility is necessary as an incidental facility, for example, other raw materials such as other resins and additives can be supplied from the second raw material supply port (side feeder) F2.
  • the supply position of the component (A), the component (B) and the component (C) to the twin-screw extruder 1 is not particularly limited, it is preferably set as follows, and thereby the extrusion conditions of the production method described later In combination, it is possible to impart more excellent heat aging resistance to the resin composition.
  • the component (A) is supplied to the twin-screw extruder 1 from the uppermost first raw material supply port F1, or in some cases, from the intermediate second raw material supply port F2.
  • the component (B) and the component (C) are the uppermost first raw material supply port F1 and / or the second raw material supply port and the liquid injection port L1 in the middle of the previous stage, and further, if necessary, a third raw material supply port (see FIG. (Not shown) can be provided and fed into the twin screw extruder 1 from there.
  • the temperature of the molten resin composition extruded from the outlet of the die (die outlet) (hereinafter sometimes simply referred to as “resin temperature at the die outlet”) is 300 to 350 ° C.
  • the temperature of the molten resin composition is more preferably 310 to 345 ° C., still more preferably 315 to 340 ° C.
  • the resin composition of the present embodiment can be sufficiently kneaded to exhibit its performance.
  • the preferred die exit may vary depending on the amount of the component (E).
  • the die exit temperature is preferably 300 to 350 ° C., for example, the content of the component (E) with respect to 100 parts by mass of the component (B) is 0.001 to 0.
  • the die outlet temperature is preferably set to 320 to 350 ° C.
  • the resin temperature at the die outlet can be controlled by adjusting the length of the unmelted mixing zone and the melting zone described later, the screw configuration, the barrel set temperature, the screw rotation speed, and the like.
  • the resin temperature at the die outlet can be controlled within the above range by adjusting each condition while monitoring the resin temperature at the die outlet according to the quantity ratio and type of the resin composition.
  • the resin temperature at the die outlet can be measured by inserting a thermometer into the resin strand coming out of the twin screw extruder, but the measured value of the thermometer at the die outlet equipped in the commercially available twin screw extruder. It is also possible to substitute. However, since the temperature measured by the thermometer of the twin screw extruder is often lower than the directly measured temperature, when substituting with the thermometer of the twin screw extruder, grasp this tendency in advance and measure the result. It is preferable to make corrections so as to reflect them.
  • the deterioration of the component (B) can be controlled more effectively, and the peak height of the tan ⁇ of the component (B) can be controlled.
  • the value can be controlled with high accuracy.
  • the residence time of the resin composition in the twin screw extruder 1 is preferably 50 to 90 seconds, more preferably 50 to 80 seconds, and still more preferably 50 to 70 seconds. As the residence time is increased, the hydrogenated block copolymer tends to deteriorate and the molecular weight tends to decrease.
  • the residence time in the extruder can be adjusted by the feed rate of each raw material, the screw rotation speed, and the discharge amount from the extruder.
  • the oxygen concentration at the first raw material supply port F1 is preferably 3% or less, more preferably 1% or less.
  • a method for controlling the oxygen concentration at the first raw material supply port F1 for example, an arbitrary stage of a first raw material supply facility (a hopper, a shooter, a feeder, etc .; not shown) connected to the first raw material supply port F1 And a method of reducing the oxygen concentration by supplying an inert gas.
  • the component (A) is preferably a powder.
  • the twin-screw extruder 1 is supplied by supplying an inert gas such as nitrogen to the supply port. It is possible to suppress the entrainment of oxygen accompanying the water, which is more preferable.
  • the component (A) it is preferable to supply the component (A) to the twin-screw extruder 1 in an inert gas atmosphere having a low oxygen concentration and to supply other components in an inert gas atmosphere having a low oxygen concentration.
  • the whole line which mixes and melt-extrudes each component can be maintained in a low oxygen concentration atmosphere.
  • the total barrel length of the twin-screw extruder 1 is set to 100%, and the barrel set temperature in the previous stage of the barrel of the twin-screw extruder 1 is preferably not more than the glass transition point (Tg) of the component (A), and It is preferable that the barrel set temperature at the rear stage of the barrel of the twin-screw extruder 1 is 240 to 320 ° C.
  • the barrel set temperature at the front stage of the barrel of the twin screw extruder 1 is more preferably 150 to 200 ° C.
  • the barrel set temperature at the rear stage of the barrel of the twin screw extruder 1 is more preferably 250 to 300 ° C.
  • the vicinity of the first raw material supply port F1 is water-cooled, the barrel set temperature at the front stage of the barrel (up to 40% from the upstream) is set to 200 ° C., and the rear stage of the barrel (front stage) This shows the case where the barrel set temperature is 280 ° C. in the range other than (range from downstream to 60%). In this way, the vicinity of the raw material supply port may be water-cooled.
  • the front stage of the barrel is preferably in the range of 40% from the upstream of the twin-screw extruder, more preferably in the range of 50 to 75% from the upstream.
  • the rear stage of the barrel refers to a range other than the front stage (range on the downstream side). That is, the front stage of the barrel preferably occupies an area of 40% or more from the upstream of the twin-screw extruder in the entire length of the barrel, and more preferably occupies an area of 50 to 75% from the upstream. I can say that.
  • the region upstream of the first kneading zone (the zone in which the screw part disk is incorporated) is the front stage of the barrel, and the first kneading zone (the screw part disk is The area downstream of the incorporated zone) is the rear stage of the barrel.
  • the region upstream of the first kneading zone (the zone where the screw part disk is incorporated) is the front stage of the barrel, and the range from the upstream of the twin-screw extruder to 40%, more preferably upstream. To 50-75%.
  • mixing zone (zone in which the disk of the screw parts was incorporated) becomes a back
  • the range from upstream to 40% is illustrated as the front stage of the barrel, and the other range (the downstream range) is illustrated as the rear stage of the barrel. That is, the first raw material supply port F1, the second raw material supply port F2, and the liquid injection port L1 are provided in the front stage of the barrel, and the vent port V1 is provided in the rear stage of the barrel.
  • the barrel set temperature before the barrel of the twin-screw extruder 1 it is preferable to control the barrel set temperature before the barrel of the twin-screw extruder 1 so that the component (A) does not melt. More specifically, it is more preferable that the barrel set temperature in the previous stage is not higher than the glass transition point (Tg) of the component (A).
  • Tg glass transition point
  • each component can be efficiently mixed, and melt kneading at the rear stage of the barrel Can be done smoothly.
  • it will also suppress excessive heating to (B) component, and it is preferable also from being able to control deterioration of (B) component moderately.
  • the glass transition point (Tg) of the (A) component here can be measured with a differential scanning calorimeter (DSC).
  • the screw configuration of the front stage of the barrel of the twin-screw extruder 1 is other than a forward feed (normal screw) screw element and a forward feed (less than 45 degrees phase) kneading element (hereinafter sometimes referred to as “R”). No element is used, and the screw configuration at the rear stage of the barrel is an orthogonal (phase 90 degree) kneading element (hereinafter sometimes referred to as “N”), reverse feed (negative phase less than 45 degrees) A kneading element (hereinafter sometimes referred to as “L”) and a reverse feed (reverse screw) screw element (hereinafter sometimes referred to as “Ls”) are fed forward (less than 45 degrees phase) knee. It is preferable to have a screw configuration having at least two types including a dipping element.
  • each component can be mixed efficiently.
  • the raw materials can be mixed more efficiently by using together with the above condition (3).
  • each component can be completely melted and mixed.
  • a vacuum degassing zone for removing volatile components and decomposition products from the melted resin after the melt-kneading zone.
  • This vacuum degassing zone can be provided, for example, by arranging a vent port V1 at the rear stage of the barrel of the twin screw extruder 1 as shown in FIG.
  • a feed screw element such as a double threaded screw screw so that the screw is less likely to be sheared.
  • the screw rotation speed of the twin screw extruder 1 is preferably 150 to 700 rpm, more preferably 300 to 650 rpm, and still more preferably 400 to 600 rpm.
  • the screw rotation speed is preferably 150 to 700 rpm or less, rapid deterioration of the component (B) due to an increase in the resin temperature can be suppressed.
  • the residence time of the raw material in the twin-screw extruder 1 does not become too long by setting the screw rotation speed to 150 rpm or more, and the deterioration degree of the component (B) can be effectively controlled. It is also possible to effectively control the peak height of the tan ⁇ component.
  • the component (C) is a liquid
  • the component (C) is supplied by premixing with the component (A) or with the component (A) and component (B) upstream of the twin-screw extruder 1.
  • the method for side-feeding the component (C) containing a liquid phosphate ester compound is not particularly limited, and for example, a gear pump, a plunger pump, or the like can be used to feed from the injection nozzle to the side of the extruder. it can.
  • the aromatic condensed phosphate ester compounds also have an effect of plasticizing the component (A).
  • the aromatic condensed phosphate ester compound can plasticize the component (A) at the time of melt kneading in the latter stage of the barrel of the twin-screw extruder 1, so that melt kneading at a lower temperature becomes possible. .
  • deterioration of (B) component can be suppressed effectively and is more preferable.
  • the component (D) When the component (D) is blended, it is preferable to supply the component (D) from the second raw material supply port F2 using the twin screw extruder 1 having the second raw material supply port F2 at the rear stage of the barrel. . That is, when the component (D) is blended, the component (A), the component (B), and the like are supplied from the first raw material supply port F1 at the front stage of the barrel, and the component (D) is the second part at the rear stage of the barrel. It is preferable to supply from the raw material supply port F2. Moreover, when mix
  • the twin screw It is preferable to perform side feed from the second raw material supply port F2 at the rear stage of the barrel of the extruder 1.
  • blending (E) component it is preferable to supply from the 1st raw material supply port F1 of the front
  • the resin composition of this embodiment can be formed into a molded body by molding. Although it does not specifically limit as a shaping
  • the molded body can be suitably used for a solar cell module connection box (junction box), a solar cell module connector, and the like.
  • the resin composition of the present embodiment can be used as a material for various image equipment such as a television and home appliance OA equipment parts.
  • it is a material suitable for electrical / electronic internal parts applications that require high heat resistance, heat aging resistance, flame retardancy, etc., especially for deflection yokes for TV internal parts, solar cell module parts, and the like.
  • the components of the solar cell module include connectors and connection boxes (junction boxes). Since solar cell modules are often installed outdoors for a long period of time, it is desirable to maintain excellent heat resistance, heat aging resistance, and weather resistance over a long period of time. Moreover, the impact resistance which can also endure the impact by the tool at the time of installation or construction is desired.
  • the resin composition of the present embodiment has high impact resistance, is less likely to be peeled off during molding, and further has excellent flame resistance, heat resistance, long-term heat aging resistance, and weather resistance. The characteristics required for these parts can be fully satisfied.
  • a connector and connection box of a solar cell module for example, it can be used for products that meet various UL standards (Underwriters Laboratories Inc.) and TUV standards (TUV Rheinland TM ) required for solar cell module components.
  • UL standards Underwriters Laboratories Inc.
  • TUV standards TUV Rheinland TM
  • PPE Polyphenylene ether
  • Zylon S201A glass transition temperature (Tg): 218 ° C., differential scanning calorimeter (DSC; manufactured by PerkinElmer) Using DSC-7), the temperature was increased from 40 ° C. to 250 ° C. at a rate of temperature increase of 40 ° C./min.
  • (B) Hydrogenated block copolymer Hydrogenated block copolymer (polystyrene-poly (ethylene) obtained by hydrogenating a styrene-butadiene block copolymer (polystyrene-polybutadiene-polystyrene bond structure) shown below. -Butylene) -polystyrene bond structure).
  • SEBS-1 Weight average molecular weight of about 260,000, polystyrene block of about 32 mass%, weight average molecular weight of polystyrene block of about 41,600, hydrogenation rate of butadiene unit of 97% or more, hydrogenation without heat stabilizer Block copolymer.
  • SEBS-5 Polystyrene (1) -hydrogenated polybutadiene-polystyrene (2) -hydrogenated polybutadiene structure, bound styrene content 60%, weight average molecular weight 80,000, molecular weight distribution 05, 44% of 1,2-vinyl bond in polybutadiene before hydrogenation, weight average molecular weight of polystyrene (1) block 24,000, weight average molecular weight of polystyrene (2) block 24,000, polybutadiene block hydrogenation rate 99 A 9% hydrogenated block copolymer was synthesized by a conventional method.
  • the above-described weight average molecular weight of the component (B) as a raw material before making the resin composition was determined as a styrene equivalent molecular weight by gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • the measurement conditions for GPC were as follows. GPC: A calibration curve was prepared and measured using standard polystyrene with gel permeation chromatography “HL-802RTS” manufactured by Toyo Soda Co., Ltd. Standard polystyrenes having a weight average molecular weight of 264, 364, 466, 568, 2,800, 16,700, 186,000, 1,260,000 were used.
  • TSKgel G2500HXL, TSKgelG3000HXL, TSKgelG4000HXL, and TSKgelG5000HXL manufactured by Toyo Soda Co., Ltd. were used in series.
  • the solvent was chloroform
  • the solvent flow rate was 0.9 mL / min
  • the column temperature was 40 ° C.
  • the detector was a differential refractive index detector (RI).
  • the hydrogenation rate was measured with a nuclear magnetic resonance apparatus (NMR; apparatus name: DPX-400, manufactured by BRUKER, Germany).
  • NMR nuclear magnetic resonance apparatus
  • DPX-400 apparatus name: DPX-400, manufactured by BRUKER, Germany.
  • a solution in which a hydrogenated block copolymer was dissolved in deuterated tetrahydrofuran was used.
  • the polystyrene block content was measured by the osmium tetroxide method described above using a block copolymer before hydrogenation.
  • an osmic acid 0.1 g / 125 mL tertiary butanol solution was used.
  • (C) Flame retardant The phosphate ester type flame retardant shown below was used.
  • HALS Light stabilizer
  • JF-90 bis (2,2,6,6-tetramethyl-4-piperidine) sebacate
  • test piece After drying the obtained resin composition pellets at 100 ° C. for 2 hours, using an IS-100GN type injection molding machine (cylinder temperature set to 280 ° C. and mold temperature set to 80 ° C.) manufactured by Toshiba Machine Co., Ltd., Test pieces were prepared according to ISO-15103.
  • Charpy impact strength A test piece with a notch was prepared in accordance with ISO-179 for impact resistance evaluation using the above test piece, and its Charpy impact strength was measured.
  • DTUL Deflection temperature under load
  • V-0 Flame retardance Based on the UL-94 vertical combustion test (V-0, V-1, and V-2 standards), a combustion test was performed using an injection molded test piece having a thickness of 1.5 mm. The five test pieces were subjected to flame contact twice, a total of 10 times, and the average number of seconds and the maximum number of seconds of the flame extinguishing time were measured and ranked based on the following criteria.
  • V-0 Absorbent cotton placed under the sample during combustion, with a total combustion time of 50 seconds or less within the first and second flame contact of the five test pieces, and a maximum combustion time of 10 seconds or less There was no drop of fire to ignite.
  • V-1 Absorbent cotton placed under the sample during combustion, with a total combustion time of less than 250 seconds within the first and second flame contact of the five test pieces and a maximum combustion time of less than 30 seconds There was no drop of fire to ignite.
  • V-2 The total burning time by the first and second flame contact of the five test pieces was within 250 seconds, and the maximum burning time was within 30 seconds.
  • Peak height of loss tangent (tan ⁇ ) of component (B) in resin composition The peak height of loss tangent (tan ⁇ ) of component (B) in the resin composition is measured by a viscoelasticity measuring device (Germany). Measurement was performed using “EPLEXOR 500” manufactured by Republic of Gabo. After the obtained resin composition pellets were dried at 100 ° C. for 2 hours, an IS-100GN type injection molding machine (cylinder temperature set to 300 ° C. and mold temperature set to 80 ° C.) manufactured by Toshiba Machine Co., Ltd. was used.
  • test piece of .57 mm, width of 7.15 mm, and length of 127 mm was prepared, and the loss tangent of the test piece was measured under the condition that the temperature was raised from ⁇ 150 ° C. to 100 ° C. at a rate of 2 ° C./min at a frequency of 10.0 Hz (Tan ⁇ ) was measured.
  • Tean ⁇ the tan ⁇ peak of (B) hydrogenated block copolymer usually appears in the range of ⁇ 70 ° C. to + 30 ° C.
  • Weight average molecular weight of component (B) in resin composition Raw material before making resin composition after measuring weight average molecular weight of component (B) in the resin composition As a weight average molecular weight of the component (B).
  • the weight average molecular weight of the component (B) in the resin composition was measured as follows. First, the resin composition was dissolved in chloroform to prepare a 1% concentration chloroform solution. The resulting chloroform solution was subjected to high performance liquid chromatography (HLPC), whereby the component (B) was separated from the resin composition.
  • the measurement conditions for HLPC were as follows.
  • Main body High pressure gradient system LC-717 (manufactured by Waters) Detector: Evaporative mass detector type 1000 (manufactured by Polymer Laboratory) Column: OASIS column 4.6 mm ⁇ 150 mm Mobile phase solvent: Chloroform Mobile phase flow rate: 1.2 mL / min
  • GPC gel permeation chromatography
  • the component equivalent to component (B) separated by HPLC is subjected to gel permeation chromatography (GPC), and the weight average molecular weight is obtained as the styrene equivalent molecular weight. It was.
  • the GPC measurement conditions were as follows. GPC: A calibration curve was prepared and measured using standard polystyrene with gel permeation chromatography “HL-802RTS” manufactured by Toyo Soda Co., Ltd.
  • the weight average molecular weights of standard polystyrene were 264, 364, 466, 568, 2,800, 16,700, 186,000, 1,260,000.
  • TSKgel G2500HXL, TSKgelG3000HXL, TSKgelG4000HXL, TSKgelG5000HXL manufactured by Toyo Soda Co., Ltd. were used in series.
  • the solvent was chloroform, the solvent flow rate was 0.9 mL / min, the column temperature was 40 ° C., and the detector was a differential refractive index detector (RI).
  • Example 1 A resin composition having the composition shown in Table 1 was produced under the following production conditions. 1 having a structure shown in FIG. 1 and having a screw diameter of 58 mm and a barrel number of 13 and having a decompression vent port twin screw extruder (manufactured by Toshiba Machine Co., Ltd., “TEM58SS”). The mixture was supplied and melt-kneaded under the conditions described in Table 1. The supply of the component (C) is in the barrel 7 on the downstream side from the first supply port (the barrel 7 indicates the seventh barrel counting from the upstream side of the barrel. The method for counting the barrel is the same below). It was fed from a certain injection (liquid) inlet using a gear pump and extruded.
  • TEM58SS decompression vent port twin screw extruder
  • the extruded strand was cut by cooling to obtain a resin composition pellet.
  • the screw configuration of the extruder was such that about 69% of the total barrel length was the former stage (unmelted to semi-melt mixed) zone, and the remaining barrel length of about 31% was the latter stage zone (melt kneading zone).
  • the barrel set temperature is barrel 1: water cooling, barrel 2: 150 ° C, barrel 3-8: 200 ° C, barrel 9: 250 ° C, barrel 10-13: 280 ° C, die: 290 ° C, screw rotation speed 400rpm, discharge amount Melting and kneading and extrusion were performed under conditions of 400 kg / hr to obtain resin composition pellets.
  • the barrels 1 to 9 are the front zone of the barrel, and the barrels 10 to 13 are the rear zone of the barrel.
  • a vacuum degassing port was provided in the barrel 11 and degassed under reduced pressure at about 100 hPa. Nitrogen was supplied from the lower part of the first supply port at a rate of about 30 L / min, and the oxygen concentration in the upper part of the first supply port was about 2.0%. It should be noted that the oxygen concentration is the oxygen concentration after the sensor (with electric wire) of “Digital Oxygen Concentration XO-326ALA” manufactured by As One Co., Ltd. is inserted from the first supply port and sealed. Was measured. It was 324 degreeC when the temperature of the molten resin composition of die exit was measured. Next, the obtained resin composition pellets were evaluated by the above evaluation method, and the results shown in Table 1 were obtained.
  • Example 2 to 18, Comparative Examples 1 to 7, 9 to 12 Resin composition pellets were prepared in the same manner as in Example 1 except that the formulation and conditions described in Tables 1 to 4 were used. However, in Example 13, since the flame retardant is solid (powder), the supply of (C) FR-2 is the first in the barrel 1 upstream of the flow direction of the extruder together with the other components. Supply port. In Example 9, (D) PS was supplied from the second supply port (barrel 9). The obtained resin composition pellets were evaluated in the same manner and the results shown in Tables 1 to 4 were obtained. In addition, the description of the screw element in a table
  • surface is as follows. R: A progressive feed (less than 45 degrees phase) kneading element was used.
  • N An orthogonal (90 degree phase) kneading element was used.
  • L A reverse feed (less than 45 degrees negative phase) kneading element was used.
  • RR Two forward kneading elements (less than 45 degrees in phase) were used.
  • RRNL Two forward feed (less than 45 degrees) kneading elements, one orthogonal (phase 90 degrees) kneading element, and one reverse feed (less negative phase 45 degrees) kneading element were incorporated and used in this order.
  • the resin composition of each example has high impact resistance, no peeling during molding, and excellent flame retardancy, heat resistance, and long-term heat aging resistance. It was confirmed that
  • the resin composition of the present invention is a flame retardant resin composition that is remarkably excellent in heat-resistant temperature and heat aging property, and is environmentally preferable, and is suitably used in the fields of imaging equipment such as television and home appliance OA equipment parts. it can.
  • it is a material suitable for electrical / electronic internal parts applications that require high heat resistance, heat aging resistance, flame retardancy, etc., especially for deflection yokes for TV internal parts, solar cell module parts, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

 高い耐衝撃性を有し、成形時の剥離が生じ難く、かつ、難燃性、耐熱性及び長期の耐熱エージング性に優れた、樹脂組成物を提供すること。(A)ポリフェニレンエーテル、(B)ポリスチレンブロックと共役ジエン化合物重合体ブロックとを含むブロック共重合体を水素添加して得られ、重量平均分子量100,000~500,000である水添ブロック共重合体、及び(C)有機リン系難燃剤を、特定量含有する樹脂組成物であり、前記樹脂組成物を10Hzの振動数で測定した動的粘弾性スペクトルにおいて、前記(B)成分の損失正接(tanδ)のピーク高さの値が、特定の範囲にある、樹脂組成物。

Description

ポリフェニレンエーテル系樹脂組成物及びその製造方法
 本発明は、ポリフェニレンエーテル系樹脂組成物及びその製造方法に関する。
 ポリフェニレンエーテル(以下、「PPE」ともいう。)系樹脂をベースとするポリフェニレンエーテル系樹脂組成物(以下、「m-PPE樹脂組成物」ともいう。)は、成形加工性が改善され、所定の耐熱性を有し、さらには電気特性、寸法安定性、耐衝撃性、耐酸性及び耐アルカリ性等にも優れ、吸水性が低く、低比重である。また、m-PPE樹脂組成物は、有害なハロゲン系化合物やアンチモン化合物を用いずに難燃化を図ることができるため、環境面や安全衛生面にも優れる。そのため、このようなm-PPE樹脂組成物は、各種の電気・電子部品、事務機器部品、自動車部品、建材、その他各種外装材や工業用品等の用途に広範囲に利用されている。
 特許文献1には、水素添加タイプのスチレン-ブタジエン-スチレンブロック共重合体を用いて、ポリスチレンを使用しないポリマー混合物が開示されている。
 特許文献2には、水素添加タイプのスチレン-ブタジエン-スチレンブロック共重合体であって、特定の円相当平均粒子径のものを含有する組成物が開示されている。
 特許文献3には、200,000原子質量単位~400,000原子質量単位の水素添加タイプのスチレン-ブタジエン-スチレンブロック共重合体を用いた難燃組成物が開示されている。
 特許文献4には、数平均分子量が150,000~350,000である水素添加タイプのスチレン-ブタジエン-スチレンブロック共重合体を含む難燃組成物を、押出機を用いて溶融混練りする際に、押出機の上流側から45~75%を未溶融混合ゾーンとして、未溶融混合ゾーンの後に5~30%の溶融混練ゾーンを設ける製造方法が開示されている。
 特許文献5には、ポリフェニレンエーテル粉体を用いた樹脂組成物の製造方法において、特定の粉体供給設備配置と特定の押出条件にする方法が開示されている。
特開平09-227774号公報 特許第3735966号公報 特表2010-519389号公報 特開2008-274035号公報 特開2004-137450号公報
 電気・電子関係の内部部品用途、自動車部品用途に加え、近年開発が進んでいる太陽電池のコネクター及び接続箱(ジャンクションボックス)等の材料には、より高い耐熱エージング性(高温の使用環境下に長時間暴露されても性能を維持する特性)、耐熱性及び難燃性が求められている。しかし、上記したポリフェニレンエーテル系樹脂組成物は、これらの用途としては十分な性能を示すものではない。
 例えば、特許文献1や特許文献2に記載の樹脂組成物の耐衝撃性をより高くしようとすると、上記ブロック共重合体の添加量を増量する必要があるが、ブロック共重合体の添加量が増量するにつれて、成形時の剥離が生じ易くなる。そのため、高衝撃性を有する樹脂組成物が得られたとしても、実用上十分な特性を有しないという問題がある。
 特許文献3に記載の技術によると、難燃組成物に含まれるブロック共重合体の分子量が高分子量であるほど、成形時の剥離が生じ易くなり、実用上十分な特性を有する製品が得られないという問題がある。
 特許文献4に記載の製造方法の場合、押出機に未溶融混合ゾーンとその後に続く溶融混練ゾーンとを設けることにより、耐衝撃性や耐熱エージング性の改善が期待されているが、成形時の剥離防止の観点から、やはり実用上十分ではない。
 特許文献5に記載の技術は、主にポリフェニレンエーテル粉体と、ポリスチレン系樹脂と、固形状難燃剤とからなる樹脂組成物の製造工程を、2つの工程に分けることにより生産性を改良しようとする技術であるが、物性面での改良は十分ではない。
 本発明は、上記事情に鑑みなされたものであり、高い耐衝撃性を有し、成形時の剥離が生じ難く、かつ、難燃性、耐熱性及び長期の耐熱エージング性に優れた、樹脂組成物を提供することを目的とする。
 本発明者らは、上記課題を解決するため鋭意検討した結果、ポリフェニレンエーテル、特定の水添ブロック共重合体及び有機リン系難燃剤を特定の割合で含有し、樹脂組成物を10Hzの振動数で測定した動的粘弾性スペクトルにおいて、水添ブロック共重合体の損失正接(tanδ)のピーク高さの値が特定範囲である樹脂組成物とすることによって上記課題を解決できることを見出し、本発明をなすに至った。
 即ち、本発明は以下の通りである。
〔1〕
 (A)ポリフェニレンエーテル、(B)ポリスチレンブロックと共役ジエン化合物重合体ブロックとを含むブロック共重合体を水素添加して得られ、重量平均分子量が100,000~500,000である水添ブロック共重合体、及び(C)有機リン系難燃剤を含有し、
 前記(A)成分、前記(B)成分、及び前記(C)成分の総量100質量部に対して、
 前記(A)成分57~94質量部、
 前記(B)成分3~30質量部、及び
 前記(C)成分3~30質量部
を含有する樹脂組成物であり、
 前記樹脂組成物を10Hzの振動数で測定した動的粘弾性スペクトルにおいて、下記式1で示される前記(B)成分の損失正接(tanδ)のピーク高さの値が、0.075~0.120の範囲にある、樹脂組成物。
 
 ((B)成分の損失正接(tanδ)のピーク高さ)=(チャート中のピークの高さ)/(樹脂組成物中の(B)成分の含有率(質量%))  ・・・(式1)
 
〔2〕
 前記(A)成分、前記(B)成分、及び前記(C)成分の総量100質量部に対して、(D)スチレン系樹脂0.5~20質量部を更に含有する、〔1〕に記載の樹脂組成物。
〔3〕
 前記(A)成分、前記(B)成分、前記(C)成分、及び前記(D)成分の総量100質量部に対して、
 前記(A)成分65~90質量部、
 前記(B)成分4~25質量部、
 前記(C)成分5~25質量部、及び
 前記(D)成分0.5~20質量部
を含有する、〔1〕又は〔2〕に記載の樹脂組成物。
〔4〕
 前記樹脂組成物を10Hzの振動数で測定した動的粘弾性スペクトルにおいて、前記(B)成分の損失正接(tanδ)のピーク高さの値が、0.090~0.115の範囲にある、〔1〕~〔3〕のいずれかに記載の樹脂組成物。
〔5〕
 前記(B)成分100質量部に対して、(E)熱安定剤0.001~0.1質量部を更に含有する、〔1〕~〔4〕のいずれかに記載の樹脂組成物。
〔6〕
 前記(B)成分中における前記ポリスチレンブロックの含有量が、20~50質量%である、〔1〕~〔5〕のいずれかに記載の樹脂組成物。
〔7〕
 前記(C)成分として、式(I)で表される縮合リン酸エステル化合物を含有する、〔1〕~〔6〕のいずれかに記載の樹脂組成物。
Figure JPOXMLDOC01-appb-C000002
(式(I)中、Q、Q、Q及びQは、各々独立に炭素数1~6のアルキル基を表し、nは1以上の整数であり、n及びnは各々独立に0~2の整数であり、m、m、m及びmは各々独立に0~3の整数である。)
〔8〕
 前記(A)、前記(B)、及び前記(C)成分の総量100質量部に対して、(F)紫外線吸収剤及び/又は光安定剤を総量で0.01~3質量部を更に含有する、〔1〕~〔7〕のいずれかに記載の樹脂組成物。
〔9〕
 前記(A)成分、前記(B)成分、及び前記(C)成分を、二軸押出機を用いて溶融混練する工程を有し、
 前記二軸押出機のダイ出口から押出される溶融樹脂組成物の温度を300~350℃とする、〔1〕~〔8〕のいずれかに記載の樹脂組成物の製造方法。
〔10〕
 前記溶融混練する工程において、前記二軸押出機の少なくとも1つの原料供給口における酸素濃度を3%以下とする、〔9〕に記載の樹脂組成物の製造方法。
〔11〕
 前記二軸押出機のバレル全長を100%として、前記バレルの上流側から少なくとも40%迄の範囲を前記バレルの前段とし、残りの範囲を前記バレルの後段とし、
 前記バレルの前記前段のバレル設定温度を、前記(A)ポリフェニレンエーテルのガラス転移点(Tg)以下の温度とし、
 前記バレルの前記後段のバレル設定温度を、240~320℃とする、〔9〕又は〔10〕に記載の樹脂組成物の製造方法。
〔12〕
 前記バレルの前記前段のスクリュー構成は、順送り(正ネジ)スクリューエレメント及び順送り(位相45度未満)ニーディングエレメント以外のエレメントは使用しないスクリュー構成であり、
 前記バレルの前記後段のスクリュー構成は、直交(位相90度)のニーディングエレメント、逆送り(負位相45度未満)のニーディングエレメント、及び逆送り(逆ネジ)スクリューエレメントを、順送り(位相45度未満)ニーディングエレメントを含めての少なくともいずれかを2種以上を有するスクリュー構成である、〔9〕~〔11〕のいずれかに記載の樹脂組成物の製造方法。
〔13〕
 前記二軸押出機は、前記バレルの前記後段に第2原料供給口を更に有し、
 前記(D)成分を、前記第2原料供給口から供給する、〔9〕~〔12〕のいずれかに記載の樹脂組成物の製造方法。
〔14〕
 〔1〕~〔8〕のいずれかに記載の樹脂組成物を含む、成形体。
〔14〕
 〔1〕~〔8〕のいずれかに記載の樹脂組成物を含む、太陽電池モジュール部品。
〔15〕
 〔1〕~〔8〕のいずれかに記載の樹脂組成物を含む、コネクター。
〔16〕
 〔1〕~〔8〕のいずれかに記載の樹脂組成物を含む、接続箱。
 本発明によれば、高い耐衝撃性を有し、成形時の剥離が生じ難く、かつ、難燃性、耐熱性及び長期の耐熱エージング性に優れた樹脂組成物及びその成形体を提供することができる。
本実施形態の樹脂組成物の製造方法の一実施形態を示す概略図を示す。 本実施形態において(B)成分のtanδのピーク高さを求める方法の一例を説明するための概略図を示す。
 以下、本発明を実施するための形態(以下、単に「本実施形態」という。)について、必要に応じて図面を参照しつつ詳細に説明する。以下の本実施形態は、本発明を説明するための例示であり、本発明を以下の内容に限定する趣旨ではない。本発明はその要旨の範囲内で適宜に変形して実施できる。なお、図面中、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。更に、図面の寸法比率や構成は図示の内容に限られるものではない。
 本実施形態の樹脂組成物は、(A)ポリフェニレンエーテル、(B)ポリスチレンブロックと共役ジエン化合物重合体ブロックとを含むブロック共重合体を水素添加して得られ、重量平均分子量100,000~500,000である水添ブロック共重合体、及び(C)有機リン系難燃剤を含有し、
 前記(A)成分、(B)成分及び(C)成分の総量100質量部に対して、
 前記(A)成分57~94質量部、
 前記(B)成分3~30質量部、及び
 前記(C)成分3~30質量部
を含有する樹脂組成物であり、
 前記樹脂組成物を10Hzの振動数で測定した動的粘弾性スペクトルにおいて、下記式1で表される前記(B)成分の損失正接(tanδ)のピーク高さ(以下、単に、「tanδのピーク高さ」という場合がある。)の値が、0.075~0.120の範囲にある、樹脂組成物である。
 
 ((B)成分の損失正接(tanδ)のピーク高さ)=(チャート中のピークの高さ)/(樹脂組成物中の(B)成分の含有率(質量%))  ・・・(式1)
 
 まず、樹脂組成物に用いられる各成分について説明する。
[(A)ポリフェニレンエーテル]
 (A)ポリフェニレンエーテルは、下記式(II)及び/若しくは式(III)で表される繰り返し単位を有する、単独重合体あるいは共重合体(非変性ポリフェニレンエーテル);又は、前記単独重合体あるいは前記共重合体の一部又は全部が不飽和カルボン酸又はその誘導体で変性された単独重合体あるいは共重合体(変性ポリフェニレンエーテル)であることが好ましい。本明細書では、所謂、非変性ポリフェニレンエーテルと変性ポリフェニレンエーテルとを、「ポリフェニレンエーテル」と総称することがある。非変性ポリフェニレンエーテル及び変性ポリフェニレンエーテルについては、以下詳述する。
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
(式(II)、(III)中、R、R、R、R、R及びRは、各々独立に、水素原子、炭素数1~4のアルキル基、炭素数6~9のアリール基又はハロゲン原子を表す。但し、R及びRは、同時に水素原子ではない。R~Rは、置換されていてもよいし、無置換であってもよい。)
 非変性のポリフェニレンエーテルの単独重合体の具体例としては、特に限定されないが、ポリ(2,6-ジメチル-1,4-フェニレン)エーテル、ポリ(2-メチル-6-エチル-1,4-フェニレン)エーテル、ポリ(2,6-ジエチル-1,4-フェニレン)エーテル、ポリ(2-エチル-6-n-プロピル-1,4-フェニレン)エーテル、ポリ(2,6-ジ-n-プロピル-1,4-フェニレン)エーテル、ポリ(2-メチル-6-n-ブチル-1,4-フェニレン)エーテル、ポリ(2-エチル-6-イソプロピル-1,4-フェニレン)エーテル、ポリ(2-メチル-6-クロロエチル-1,4-フェニレン)エーテル、ポリ(2-メチル-6-ヒドロキシエチル-1,4-フェニレン)エーテル、ポリ(2-メチル-6-クロロエチル-1,4-フェニレン)エーテル等が挙げられる。上記の中でも、生産性、押出性及び成形加工性の観点から、ポリ(2,6-ジメチル-1,4-フェニレン)エーテルが好ましい。
 非変性のポリフェニレンエーテル共重合体としては、式(II)及び/又は式(III)で表される繰り返し単位を主たる繰返し単位として有する共重合体が挙げられる。ここでいう主たる繰り返し単位とは、共重合体中に50モル%以上、好ましくは70モル%以上、より好ましくは90モル%以上含まれる繰り返し単位をいう。
 ポリフェニレンエーテル共重合体の具体例としては、特に限定されず、2,6-ジメチルフェノールと2,3,6-トリメチルフェノールとの共重合体、2,6-ジメチルフェノールとo-クレゾールとの共重合体、2,6-ジメチルフェノールと2,3,6-トリメチルフェノール及びo-クレゾールとの共重合体等が挙げられる。
 また、ポリフェニレンエーテル共重合体の単量体単位として、2-(ジアルキルアミノメチル)-6-メチルフェニレンエーテル単量体単位や2-(N-アルキル-N-フェニルアミノメチル)-6-メチルフェニレンエーテル単量体単位等を主たる繰り返し単位の一部として有するポリフェニレンエーテル共重合体が好ましい。ポリフェニレンエーテル共重合体としては、例えば、特開昭63-301222号公報等に記載されているものを使用することができる。
 2-(ジアルキルアミノメチル)-6-メチルフェニレンエーテル単量体単位としては、2-(ジブチルアミノメチル)-6-メチルフェニレンエーテル、2-(エチルブチルアミノメチル)-6-メチルフェニレンエーテル、2-(ジプロピルアミノメチル)-6-メチルフェニレンエーテル、2-(ブチルプロピルアミノメチル)-6-メチルフェニレンエーテル等が挙げられる。
 (A)成分の還元粘度(クロロホルム溶液、30℃測定)は、生産性、成形性及び品質性能の観点から、好ましくは0.25~0.6dL/gであり、より好ましくは0.35~0.55dL/gである。
 本実施形態の樹脂組成物は、(A)成分として、上述した非変性ポリフェニレンエーテルの一部又は全部が不飽和カルボン酸又はその誘導体等で変性された変性ポリフェニレンエーテルを含んでいてもよい。(A)成分は、上述した非変性ポリフェニレンエーテル、変性ポリフェニレンエーテル、あるいはその両方であってもよい。
 変性ポリフェニレンエーテルとしては、特に限定されず、樹脂組成物の剥離性やその他の物性への悪影響の無い範囲で、公知の変性ポリフェニレンエーテルも使用できる。例えば、この変性ポリフェニレンエーテルとしては、特開平02-276823号公報、特開昭63-108059号公報、特開昭59-059724号公報等に記載されているものを使用することができる。
 変性ポリフェニレンエーテルの製造方法としては、特に限定されず、公知の方法を採用することができる。例えば、ラジカル開始剤の存在下又は非存在下において、上述した非変性のポリフェニレンエーテルに、不飽和カルボン酸やその誘導体を溶融混練して反応させることによって製造することができる。あるいは、非変性のポリフェニレンエーテルと、不飽和カルボン酸やその誘導体とを、ラジカル開始剤存在下又は非存在下で有機溶剤に溶かして溶液とし、当該溶液中で反応させることによって製造することができる。
 不飽和カルボン酸又はその誘導体の具体例としては、特に限定されず、マレイン酸、フマル酸、イタコン酸、ハロゲン化マレイン酸、シス-4-シクロヘキセン-1,2-ジカルボン酸、エンド-シス-ビシクロ(2,2,1)-5-ヘプテン-2,3-ジカルボン酸等のジカルボン酸や、これらジカルボン酸の酸無水物、エステル、アミド、及びイミド等;アクリル酸、メタクリル酸等のモノカルボン酸や、これらモノカルボン酸のエステル、及びアミド等が挙げられる。また、飽和カルボン酸であっても、変性ポリフェニレンエーテルを製造する際の反応温度において、それ自身が熱分解して不飽和カルボン酸誘導体となり得る化合物も、本実施形態で用いることができる。このような飽和カルボン酸の具体例としては、特に限定されず、リンゴ酸、クエン酸等が挙げられる。これらは1種単独で用いてもよいし、2種以上を併用してもよい。
 変性ポリフェニレンエーテルの好ましい具体例としては、マレイン酸変性ポリフェニレンエーテル、ステアリルアクリレート変性ポリフェニレンエーテル等が挙げられる。
 樹脂組成物に配合する前の原料の状態では、(A)成分の形状は、粉体であることが好ましい。ここでいう粉体とは、平均粒子径が1~2000μmであるものをいう。粉体の平均粒子径は、好ましくは1~1000μmであり、より好ましくは10~700μmであり、更に好ましくは100~500μmである。加工時の取り扱い性の観点から、平均粒子径の下限は1μm以上であることが好ましく、溶融混練時に未溶融物の発生を抑制する観点から、平均粒子径の上限は1000μm以下であることが好ましい。ここでいう平均粒子径とは、篩分けによる粒度測定によって測定される。
 本実施形態の樹脂組成物において、(A)成分の含有量は、(A)成分、(B)成分及び(C)成分の総量100質量部に対して、57~94質量部であり、好ましくは65~90質量部である。(A)成分の含有量が57質量部未満であると、耐熱温度が低くなり、耐熱エージング性が劣る。また、(A)成分の含有量が94質量部を超えると、耐衝撃性や難燃性が十分でない。
 本実施形態の樹脂組成物において(A)~(D)成分を含む場合、(A)成分の含有量は、(A)成分、(B)成分、(C)成分及び(D)成分の総量100質量部に対して、好ましくは57~94質量部であり、より好ましくは65~90質量部である。(A)成分の含有量が上記下限値以上であると、より高い耐熱温度とより優れた耐熱エージング性が得られる。また、(A)成分の含有量が上記上限値以下であると、より優れた耐衝撃性や難燃性が得られる。
[(B)水添ブロック共重合体]
 (B)水添ブロック共重合体は、ポリスチレンブロックと共役ジエン化合物重合体ブロックとを含むブロック共重合体を水素添加して得られる水添ブロック共重合体であり、重量平均分子量100,000~500,000である水添ブロック共重合体である。なお、ここでいう重量平均分子量とは、樹脂組成物とした後の、樹脂組成物中の(B)成分の重量平均分子量であり、後述する方法により、樹脂組成物から分析・測定することができる。
 水素添加前のブロック共重合体の構造は、特に限定されず、例えば、スチレンブロック鎖をSと表し、共役ジエン化合物重合体ブロック鎖をBと表す場合、S-B-S、S-B-S-B、(S-B-)-S、S-B-S-B-Sで表される構造等であってもよい。
 共役ジエン化合物由来の不飽和結合の水素添加率は60%以上であることが好ましく、より好ましくは80%以上であり、更に好ましくは95%以上である。ここでいう、水素添加率は、核磁気共鳴装置(NMR)により求めることができる。
 共役ジエン化合物重合体ブロックのミクロ構造は、特に限定されず、任意に選ぶことができる。通常、ビニル結合量(共役ジエンの1,2-ビニル結合、3,4-ビニル結合及び1,4-ビニル結合の結合様式で組み込まれているうちの、1,2-ビニル結合と3,4-ビニル結合として組み込まれているものの割合)は、好ましくは2~60%であり、より好ましくは8~40%である。ここでいう、ビニル結合量は、核磁気共鳴装置(NMR)により求めることができる。水添ブロック共重合体におけるビニル結合量は、樹脂組成物をクロロホルム等の溶剤に溶解し、核磁気共鳴装置(NMR)により求めることができる。
 上述した、樹脂組成物とした後の、樹脂組成物中の(B)成分の重量平均分子量は、100,000~500,000であり、好ましくは150,000~370,000であり、より好ましくは250,000~370,000である。この(B)成分の重量平均分子量が100,000未満であると、十分な耐衝撃性を得ることができず、この(B)成分の重量平均分子量が500,000を超えると、分散状態が均一とならず、成形時に剥離しやすくなり、耐衝撃性も低下する傾向にある。ここでいう劣化とは、例えば、(B)成分の分子鎖がラジカル反応等により切断され、低分子化合物の発生や分子量の低下等が起こる現象等をいう。
 なお、樹脂組成物とする前の、原料としての(B)成分の重量平均分子量は、特に限定されないが、好ましくは110,000~520,000であり、より好ましくは160,000~400,000であり、更に好ましくは300,000~400,000である。(B)成分の重量平均分子量を上記下限値以上であると、一層優れた耐衝撃性を得ることができる。一方、(B)成分の重量平均分子量が上記上限値以下であると、溶融押出時の負荷を一層低減できるとともに、(B)成分の分子切断を一層抑制することができるほか、(B)成分の分散状態が均一化し易く、一層優れた耐衝撃性を示す樹脂組成物を得易い(但し、本実施形態の作用効果はこれに限定されない。)。
 (B)成分の重量平均分子量は、ゲル・パーミエーション・クロマトグラフィー(GPC)によりスチレン換算分子量として求めることができる。具体的には、樹脂組成物とした後の、樹脂組成物中の(B)成分の重量平均分子量は、樹脂組成物をクロロホルム等の溶媒に溶解させ、得られた溶液を高速液体クロマトグラフィー(HPLC)に供し、樹脂組成物から(B)成分に相当する成分を分取し、当該成分をGPCにより測定することで求めることができる。樹脂組成物とする前の、原料としての(B)成分の重量平均分子量については、クロロホルム等の溶媒に溶解し、得られた溶液をGPCにより測定することで求めることができる。
 (B)成分における、少なくとも1個のポリスチレンブロック鎖の重量平均分子量は、好ましくは15,000以上であり、より好ましくは20,000~70,000である。更に好ましくは、(B)成分における、全てのポリスチレンブロック鎖の重量平均分子量が15,000以上である。(B)成分のポリスチレンブロック鎖の重量平均分子量を上記範囲とすることにより、十分な耐衝撃性を得ることができ、かつ、(B)成分の劣化を十分かつ容易に制御することができる。ここでいうポリスチレンブロック鎖の重量平均分子量は、ゲル・パーミエーション・クロマトグラフィー(GPC)によりスチレン換算分子量として測定することができる。
 (B)成分におけるポリスチレンブロックの含有量は、特に限定されないが、より容易に耐衝撃性を発現させる観点から、好ましくは20~50質量%であり、より好ましくは20~40質量%である。(B)成分におけるポリスチレンブロックの含有量は、例えば、以下の方法により測定することができる。四酸化オスミウムを触媒として水添前の共重合体をtert-ブチルハイドロパーオキサイドにより酸化分解する方法(I. M. Kolthoff,et al.,J.Polym.Sci.1,429(1946)に記載の方法、以下、「四酸化オスミウム分解法」ともいう。)により得たポリスチレンブロックの質量(ここで、平均重合度が約30以下のスチレン重合体は除く。)から、下記式に基づき、ポリスチレンブロックの含有量を求めることができる。
 
 ポリスチレンブロックの含有量(質量%)=(水添前の共重合体中のポリスチレンブロックの質量/水添前の共重合体の質量)×100
 
 共役ジエン化合物重合体ブロックの含有量は、(B)成分のtanδのピーク高さの値に影響する。例えば、(B)成分が、ポリスチレンブロックと共役ジエン化合物重合体ブロックからなる共重合体の水添ブロック共重合体である場合、上述したように、ポリスチレンブロックの含有量が20~50質量%であるならば、共役ジエン化合物重合体ブロックの含有量は、50~80質量%となる。このような水添ブロック共重合体に、(E)熱安定剤を通常使用される程度に多量添加して、溶融混練すると、(B)成分のtanδのピーク高さの値は0.120を超える傾向にある。一方、共役ジエン化合物重合体ブロックの含有量が同じであっても、後で詳述するように(E)熱安定剤の量や溶融混練の条件等を制御して(B)成分を適度に劣化させることによって、(B)成分のtanδのピーク高さの値を所望の値となるよう、高い精度で制御することができる(但し、本実施形態の作用効果はこれに限定されない)。
 (B)成分は、組成や構造の異なる2種以上の水添ブロック共重合体を併用することもできる。例えば、ポリスチレンブロック含有量が50%以上の水添ブロック共重合体と、ポリスチレンブロック含有量が30%以下の水添ブロック共重合体との併用といったようなブロック含有量が異なる水添ブロック共重合体の併用;あるいはスチレンと共役ジエンのランダム共重合体ブロックを含有するブロック共重合体を水添して得られる水添ランダムブロック共重合体同士を併用することが可能である。(B)成分は、ポリスチレンブロックと共役ジエン化合物重合体ブロックとを含むブロック共重合体を水素添加したものであればよいが、ポリスチレンブロックと共役ジエン化合物重合体ブロックとからなるブロック共重合体を水素添加したもの(水添ブロック共重合体)であることが好ましい。
 本実施形態の樹脂組成物において、(B)成分の含有量は、(A)成分、(B)成分及び(C)成分の総量100質量部に対して、3~30質量部であり、好ましくは4~25質量部であり、より好ましくは5~20質量部であり、更に好ましくは10~20質量部である。(B)成分の含有量が3質量部未満であると、十分な耐衝撃性を得ることができず、30質量部を超えると耐衝撃性が得られないばかりでなく、曲げ弾性率や曲げ強度等の剛性が十分でなくなってしまう。
 本実施形態の樹脂組成物において(A)~(D)成分を含む場合、(B)成分の含有量は、(A)成分、(B)成分、(C)成分及び(D)成分の総量100質量部に対して、好ましくは3~30質量部であり、より好ましくは4~25質量部であり、更に好ましくは5~20質量部であり、より更に好ましくは10~20質量部である。(B)成分の含有量が上記下限値以上であると、より優れた衝撃強度が得られ、上記上限値以下であると、より優れた耐衝撃性が得られ、かつ曲げ弾性率や曲げ強度等の剛性がより優れる。
 本実施形態の樹脂組成物では、(B)成分と後述する(G)ポリオレフィンとを併用することもできる。(B)成分と(G)成分とを併用することにより、成形時の離型性が一層向上するとともに、耐衝撃性も一層向上する。(G)成分の詳細は後述する。
[(C)有機リン系難燃剤]
 (C)有機リン系難燃剤とは、有機リン化合物を少なくとも含む難燃剤である。有機リン化合物の具体例としては、特に限定されず、リン酸エステル化合物、ホスファゼン化合物等が挙げられる。
 リン酸エステル化合物は、難燃性を向上するために添加されるものであり、(A)成分の難燃剤として一般的に用いられるリン酸エステル化合物を用いることもできる。
 リン酸エステル化合物の具体例としては、特に限定されず、トリフェニルフォスフェート、トリスノニルフェニルフォスフェート、レゾルシノールビス(ジフェニルフォスフェート)、レゾルシノールビス[ジ(2,6-ジメチルフェニル)フォスフェート]、2,2-ビス{4-[ビス(フェノキシ)ホスホリルオキシ]フェニル}プロパン、2,2-ビス{4-[ビス(メチルフェノキシ)ホスホリルオキシ]フェニル}プロパン等が挙げられる。
 さらに、上記以外のリン酸エステル化合物の具体例としては、特に限定されず、トリメチルホスフェート、トリエチルホスフェート、トリブチルホスフェート、トリオクチルフォスフェート、トリブトキシエチルホスフェート、トリクレジルホスフェート、クレジルフェニルホスフェート、オクチルジフェニルホスフェート、ジイソプロピルフェニルホスフェート、ジフェニル-4-ヒドロキシ-2,3,5,6-テトラブロモベンジルホスフォネート、ジメチル-4-ヒドロキシ-3,5-ジブロモベンジルホスフォネート、ジフェニル-4-ヒドロキシ-3,5-ジブロモベンジルホスフォネート、トリス(クロロエチル)ホスフェート、トリス(ジクロロプロピル)ホスフェート、トリス(クロロプロピル)ホスフェート、ビス(2、3-ジブロモプロピル)-2,3-ジクロロプロピルホスフェート、トリス(2,3-ジブロモプロピル)ホスフェート、ビス(クロロプロピル)モノオクチルホスフェートハイドロキノニルジフェニルホスフェート、フェニルノニルフェニルハイドロキノニルホスフェート、フェニルジノニルフェニルホスフェート等が挙げられる。これらは1種単独で用いてもよいし、2種以上を併用してもよい。
 リン酸エステル化合物の中でも、加工時のガス発生が少なく、熱安定性等に優れることから、芳香族縮合リン酸エステル化合物が好ましい。芳香族縮合リン酸エステル化合物は、市販品を使用することもできる。このような市販品としては、例えば、大八化学工業社の商品名「CR741」、「CR733S」、「PX200」、ADEKA社の商品名「アデカスタブ FP-600」、「アデカスタブ FP-700」、「アデカスタブ FP-800」等が挙げられる。芳香族縮合リン酸エステル化合物の市販品は、通常、縮合度の異なる複数の化合物の混合物である。
 芳香族縮合リン酸エステル化合物の中でも、特に好ましいのは、下記式(I)で表される縮合リン酸エステル化合物、又は、下記式(IV)で表される縮合リン酸エステルである。とりわけ、式(I)で表される縮合リン酸エステル化合物は、吸水せず、耐湿性に優れるため、多湿環境下における使用時における電気特性や機械特性の低下を防ぐことができる。
Figure JPOXMLDOC01-appb-C000005
(式(I)中、Q、Q、Q及びQは、各々独立に炭素数1~6のアルキル基を表し、nは1以上の整数であり、n及びnは、各々独立に0~2の整数であり、m、m、m及びmは、各々独立に0~3の整数である。)
 式(I)のnは、1以上の整数であればよく、好ましくは1~3の整数である。
 式(I)で表される縮合リン酸エステル化合物の中で、より好ましい縮合リン酸エステル化合物は、m、m、m、m、n及びnが0である縮合リン酸エステル化合物;並びにQ、Q、Q、及びQがメチル基であり、n及びnが0であり、m、m、m及びmが1~3の整数であり、nが1~3の整数(更に好ましくはnが1の整数)である縮合リン酸エステル化合物、の少なくともいずれかを、総量で50質量%以上含有するものが挙げられる。このような難燃剤としては、ADEKA社の商品名「アデカスタブ FP-800」等を用いることができる。
Figure JPOXMLDOC01-appb-C000006
(式(IV)中、Q、Q、Q及びQは、各々独立に炭素数1~6のアルキル基を表し、R及びRは、各々独立に水素原子又はメチル基を表し、nは1以上の整数であり、n及びnは、各々独立に0~2の整数であり、m、m、m及びmは、各々独立に0~3の整数である。)
 式(IV)のnは、1以上の整数であればよく、好ましくは1~3の整数である。
 上記式(IV)で表される縮合リン酸エステル化合物の中で、より好ましい縮合リン酸エステルは、R及びRがメチル基であり、m、m、m、m、n及びnが0である縮合リン酸エステル;並びにQ、Q、Q、Q、R及びRがメチル基であり、nが1~3の整数(更に好ましくはnが1の整数)であり、n及びnが0であり、m、m、m及びmは1~3の整数である縮合リン酸エステル化合物、の少なくともいずれかを、総量で50質量%以上含有するものが挙げられる。このような難燃剤としては、例えば、大八化学工業社の商品名「CR741」、「CR733S」、「PX200」、ADEKA社の商品名「アデカスタブ FP-600」、「アデカスタブ FP-700」等を用いることができる。
 これらの芳香族縮合リン酸エステル化合物の酸価(JIS K2501に準拠する値)は、特に限定されないが、難燃性及び加水分解性の観点から、好ましくは0.1以下であり、より好ましくは0.08以下であり、更に好ましくは0.05以下である。
 ホスファゼン化合物としては、フェノキシホスファゼン及びその架橋体が好ましく、難燃性及び加水分解性の観点から、酸価が0.1以下(JIS K2501に準拠する値)であるフェノキシホスファゼン化合物がより好ましい。
 (C)有機リン系難燃剤は、1種単独で用いてもよいし、2種以上を併用してもよい。本実施形態の樹脂組成物において、(C)成分の含有量は、(A)成分、(B)成分及び(C)成分の総量100質量部に対して、3~30質量部であり、好ましくは5~25質量部である。(C)成分の含有量が3質量部未満であれば難燃性が十分でなく、30質量部を超えれば耐熱性が低下する。
 本実施形態の樹脂組成物において(A)~(D)成分を含む場合、(C)成分の含有量は、(A)成分、(B)成分、(C)成分及び(D)成分の総量100質量部に対して、好ましくは3~30質量部であり、より好ましくは5~25質量部である。(C)成分の含有量が、上記下限値以上であるとより優れた難燃性が得られ、上記上限値以下であるとより優れた耐熱性が得られる。
[(D)スチレン系樹脂]
 本実施形態の樹脂組成物は、加工流動性の観点から、(D)スチレン系樹脂を更に含むことが好ましい。
 (D)スチレン系樹脂とは、スチレン系化合物、又はスチレン系化合物とスチレン系化合物と共重合可能な他の化合物とを、ゴム質重合体存在下又は非存在下に重合して得られる重合体をいう。
 スチレン系化合物の具体例としては、特に限定されず、スチレン、α-メチルスチレン、2,4-ジメチルスチレン、モノクロロスチレン、p-メチルスチレン、p-tert-ブチルスチレン、p-エチルスチレン等が挙げられる。これらの中でも、入手容易性や経済性等の観点から、スチレンが好ましい。
 スチレン系化合物と共重合可能な他の化合物の具体例としては、特に限定されず、メチルメタクリレート、エチルメタクリレート等のメタクリル酸エステル類;アクリロニトリル、メタクリロニトリル等の不飽和ニトリル化合物類;無水マレイン酸等の酸無水物が挙げられる。共重合可能な他の化合物の使用量は、特に限定されないが、(A)成分との相溶性の観点から、(D)成分の単量体の総量に対して、好ましくは20質量%以下であり、より好ましくは15質量%以下である。
 ゴム質重合体としては、特に限定されず、共役ジエン系ゴム、共役ジエンと芳香族ビニル化合物との共重合体、エチレン-プロピレン共重合体ゴム等が挙げられる。具体的には、入手容易性及び経済性の観点から、共役ジエン系ゴムとしてはポリブタジエンが好ましく、共役ジエンと芳香族ビニル化合物との共重合体ゴムとしてはスチレン-ブタジエン共重合体が好ましい。
 ゴム質重合体は、部分的に水素添加された部分水添ゴム質重合体であってもよい。かかる部分水添ゴム質重合体としては、部分的に水素添加された不飽和度20~80%のポリブタジエン、1,4-シス結合を90%以上含有するポリブタジエンが特に好ましい。ここでいう、不飽和度及び1,4-シス結合は、核磁気共鳴装置(NMR)により測定することができる。重合反応においてゴム質重合体を用いる場合、その含有量は特に限定されないが、通常、スチレン系化合物とゴム質重合体の総量100質量%に対して、5~15質量%であることが好ましい。
 (D)成分の具体例としては、特に限定されず、ホモポリスチレン、ゴム補強ポリスチレン、スチレン-アクリロニトリル共重合体(AS樹脂)、ゴム補強スチレン-アクリロニトリル共重合体(ABS樹脂)、その他のスチレン系共重合体が挙げられる。これらは1種単独で用いてもよいし、2種以上を併用してもよい。2種以上を併用する場合の組合せは、特に限定されないが、例えば、ホモポリスチレンとゴム補強ポリスチレンとの組合せが好ましい。より具体的には、ホモポリスチレンと部分的に水素添加された不飽和度20~80%のポリブタジエンを用いたゴム補強ポリスチレンの組合せが好ましい。
 上記の中でも、(D)成分としては、ホモポリスチレンが好ましい。ホモポリスチレンは、アタクチックポリスチレン、シンジオタクチックポリスチレンのどちらも使用できる。しかしながら、ゴム補強ポリスチレンは、樹脂組成物の耐熱エージング性を低下させる恐れがあるため、実質的に添加しないことが好ましい。
 (A)成分、(B)成分及び(C)成分の総量100質量部に対する(D)成分の含有量は、好ましくは0.5~20質量部であり、より好ましくは1~10質量部であり、更に好ましくは3~5質量部である。
 (A)成分、(B)成分、(C)成分及び(D)成分の総量100質量部に対する(D)成分の含有量は、0.5~20質量部であることが好ましい。(A)成分、(B)成分、(C)成分及び(D)成分の総量100質量部に対する(D)成分の含有量の上限値は、より好ましくは10質量部以下であり、更に好ましくは5質量部以下である。(A)成分、(B)成分、(C)成分及び(D)成分の総量100質量部に対する(D)成分の含有量の下限値は、より好ましくは1質量部以上であり、更に好ましくは3質量部以上である。(D)成分の含有量を上記上限値以下とすることで一層優れた耐熱性と難燃性を得ることができ、上記下限値以上とすることで流動性を一層向上させることができる。
 二軸押出機を用いて本実施形態の樹脂組成物を製造するに際して、(D)成分は、(A)成分及び/又は(B)成分と同じ上流側の供給口から同時供給することも可能であるが、押出機バレルの上流側から少なくとも40%以降のバレル(バレルの後段に相当する。)から供給することが好ましい。(D)成分をバレルの後段から供給することにより、(D)成分の分解をより抑制できる。これにより、耐熱エージング性が一層向上するため好ましい。詳細は後述する製造方法において説明する。
[(E)熱安定剤]
 本実施形態の樹脂組成物は、(E)熱安定剤を更に含有することが好ましい。(E)成分の添加により(B)成分の劣化をより制御することができるとともに、成形時の剥離を抑制できる。(E)成分としては、特に限定されず、公知のものを使用することができるが、ヒンダードフェノール系熱安定剤(酸化防止剤)が好ましい。
 ヒンダードフェノール系熱安定剤の具体例は、特に限定されず、2,6-ジ-tert-ブチル-4-メチルフェノール、ペンタエリスリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、n-オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート、2,2’-メチレンビス(4-メチル-6-tert-ブチルフェノール)、2,6-ジ-tert-ブチル-4-(4,6-ビス(オクチルチオ)-1,3,5-トリアジン-2-イルアミノ)フェノール、2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート、2-[1-(2-ヒドロキシ-3,5-ジ-tert-ペンチルフェニル)エチル]-4,6-ジ-tert-ペンチルフェニルアクリレート、4,4’-ブチリデンビス(3-メチル-6-tert-ブチルフェノール)、4,4’-チオビス(3-メチル-6-tert-ブチルフェノール)、アルキレイテッドビスフェノール、テトラキス[メチレン-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]メタン、3,9-ビス[2-〔3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)-プロピオニロキシ〕-1,1-ジメチルエチル]-2,4,8,10-テトラオキシスピロ〔5・5〕ウンデカン等が挙げられる。これらは1種を単独で用いてもよいし、2種以上を併用してもよい。
 (E)成分の含有量は、特に限定されないが、(B)成分100質量部に対して、好ましくは0.1質量部以下であり、より好ましくは0.001~0.1質量部であり、更に好ましくは0.005~0.09質量部であり、より更に好ましくは0.01~0.08質量部である。
 通常市販されている水添ブロック共重合体には、熱安定性を担保する観点から、ヒンダードフェノール系熱安定剤等の熱安定剤が水添ブロック共重合体100質量部に対して0.2~0.3質量部程度配合されている。詳細は後述するが、(B)成分のtanδのピーク高さは、(B)成分の劣化度に関係するものである。このような水添ブロック共重合体の市販品を用いたポリフェノール系樹脂組成物では、加工温度をより高温にするといったような過酷な加工条件を採用しなければ、ポリフェノール系樹脂組成物に配合した水添ブロック共重合体を適度に劣化させることは難しいため、(B)成分のtanδのピーク高さを所望の値に制御することが困難であることを本発明者らは見出した。一方、水添ブロック共重合体の市販品を用いたポリフェノール系樹脂組成物の加工条件をより過酷な加工条件とした場合、一旦水添ブロック共重合体の劣化が始まると一気に劣化が進んでしまうため、劣化度を制御が困難であり、(B)成分のtanδのピーク高さを所望の値に制御することが困難であるということも本発明者らは見出した(但し、本実施形態の作用効果はこれに限定されない。)。
 かかる観点から、本実施形態において(E)成分の含有量を上記範囲とすることは、通常市販されている水添ブロック共重合体に配合されている熱安定剤の配合量よりも少量又は配合しない程度とすることに相当し、その結果、よりマイルドな条件下で加工することが可能であり、かつ(B)成分の劣化度を制御し易く、(B)成分のtanδのピーク高さが所望の値となるように一層効率よく制御することができる。
[(F)紫外線吸収剤、光安定剤]
 本実施形態の樹脂組成物は、(F)(f1)紫外線吸収剤及び/又は(f2)光安定剤を更に含有することが好ましい。(F)成分を含有することにより、耐光性だけでなく、耐熱エージング性も向上する。その理由としては定かではないが、(f1)成分の場合、特定波長の紫外線を吸収することで、少量で効率よく紫外線照射によるラジカル生成を抑制でき、(f2)成分の場合、これを添加することで生成するラジカルを効率よくクエンチできるからだと考えられる(但し、本実施形態の作用効果はこれに限定されない。)。
 (f1)紫外線吸収剤は、特に限定されず、一般に市販されているものも使用できる。紫外線吸収剤としては、ベンゾトリアゾール系紫外線吸収剤が好ましい。ベンゾトリアゾール系紫外線吸収剤の具体例としては、特に限定されず、2-(2’-ヒドロキシ-5’-メチルフェニル)ベンゾトリアゾール、2-(3-tert-ブチル-5-メチル-2-ヒドロキシフェニル)-5-クロロベンゾトリアゾール、2-(2’-ヒドロキシ-3’,5’-ジ-tert-ブチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-5’-tert-オクチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-3’-tert-ブチル-5’-メチルフェニル)-5-クロロベンゾトリアゾール、2-(2’-ヒドロキシ-3’,5’-ジ-tert-ブチルフェニル)-5-クロロベンゾトリアゾール、2-(2’-ヒドロキシ-3’,5’-ジ-tert-アミノフェニル)ベンゾトリアゾール、2-{2’-ヒドロキシ-3’-(3’’,4’’,5’’,6’’-テトラヒドロフタルイミドメチル)-5’-メチルフェニル}ベンゾトリアゾール、2,2-メチレンビス{4-(1,1,3,3-テトラメチルブチル)-6-(2H-ベンゾトリアゾール-2-イル)フェノール}、6-(2-ベンゾトリアゾリル)-4-tert-オクチル-6’-tert-ブチル-4’-メチル-2,2’-メチレンビスフェノール等が挙げられる。これらは1種単独で用いてもよいし、2種以上を併用してもよい。
 (f2)光安定剤は、特に限定されず、一般に市販されているものも使用できる。光安定剤としては、ヒンダードアミン系光安定剤が好ましい。ヒンダードアミン系光安定剤の具体例としては、特に限定されず、ビス(2,2,6,6-テトラメチル-4-ペピリジル)セバケート、ビス(1-オクチロキシ-2,2,6,6-テトラメチル-4-ペピリジル)セバケート、コハク酸ジメチルと1-(2-ヒドロキシエチル)-4-ヒドロキシ-2,2,6,6-テトラメチルペピリジンとの重縮合物、ポリ[{6-(1,1,3,3-テトラメチルブチル)アミノ-1,3,5-トリアジン-2,4-ジイル}{(2,2,6,6-テトラメチル-4-ペピリジル)イミノ}ヘキサメチレン{(2,2,6,6-テトラメチル-4-ペピリジル)イミノ}]、N,N’-ビス(3-アミノプロピル)エチレンジアミンと2,4-ビス[N-ブチル-N-(1,2,2,6,6-ペンタメチル-4-ペピリジル)アミノ]-6-クロロ-1,3,5-トリアジンとの縮合物、1,2,3,4-テトラ(2,2,6,6-テトラメチル-4-ペピリジル)-ブタンテトラカルボキシレート、1,4-ビス(2,2,6,6-テトラメチル-4-ペピリジル)-2,3-ブタンジオン、トリス-(2,2,6,6-テトラメチル-4-ペピリジル)トリメリテート、1,2,2,6,6-ペンタメチル-4-ペピリジル-n-オクトエート、1,2,2,6,6-ペンタメチル-4-ペピリジルステアレート、4-ヒドロキシ-1,2,2,6,6-ペンタメチルペピリジン、ビス(1,2,2,6,6-ペンタメチル-4-ペピリジニル)セバケート、2-(3,5-tert-ブチル-4-ヒドロキシベンジル)-2-n-ブチルマロン酸ビス(1,2,2,6,6-ペンタメチル-4-ペピリジル)が挙げられる。これらは1種単独で用いてもよいし、2種以上を併用してもよい。
 本実施形態においては、(F)成分として(f1)紫外線吸収剤と(f2)光安定剤を併用することが好ましい。これにより、耐光性の中でも特に耐光変色性が一段と向上し、かつ、耐熱エージング性が一層改善される。(f1)紫外線吸収剤と(f2)光安定剤とを併用する場合、(f2)光安定剤に対する(f1)紫外線吸収剤の質量比率((f1)/(f2))は、好ましくは1/99~99/1であり、より好ましくは5/95~95/5であり、更に好ましくは10/90~50/50である。
 本実施形態の樹脂組成物において、(F)成分((f1)紫外線吸収剤及び/又は(f2)光安定剤)の総量は、(A)成分、(B)成分及び(C)成分の総量100質量部に対して、好ましくは0.01~3質量部であり、より好ましくは0.05~3質量部である。(F)成分の総量を上記下限値以上とすることで一層優れた耐光性効果を発揮し、上記上限値以下とすることで十分な効果を得られ、かつ、経済的であるので好ましい。
 また、本実施形態の樹脂組成物において(A)~(D)成分を含む場合、(F)成分((f1)紫外線吸収剤及び/又は(f2)光安定剤)の総量は、(A)成分、(B)成分、(C)成分及び(D)成分の総量100質量部に対して、好ましくは0.01~3質量部であり、より好ましくは0.05~3質量部である。(F)成分の含有量を、総量で、上記下限値以上とすることで一層優れた耐光性効果を発揮し、上記上限値以下とすることで一層十分な効果を得られ、かつ、経済的であるので好ましい。
 本実施形態の樹脂組成物は、更にエポキシ化合物を含有してもよい。それによって、耐光変色性が一層向上し、かつ耐熱エージング性が一層改善される。ここでいうエポキシ化合物とは、エポキシ基を有する化合物であればよいが、脂肪族エポキシ化合物が好ましく、オキシラン酸素を分子構造上3%以上有する脂肪族エポキシ化合物がより好ましい。かかる脂肪族エポキシ化合物の具体例としては、オキシラン酸素を分子構造上3%以上有するエポキシ化油脂やエポキシ化脂肪酸エステルが好ましく、オキシラン酸素を分子構造上3%以上有するエポキシ化油脂がより好ましく、オキシラン酸素を分子構造上6%以上有するエポキシ化大豆油が更に好ましい。
 エポキシ化合物の含有量は、樹脂組成物100質量部に対して、耐光変色性の観点から、好ましくは0.01~3質量部であり、より好ましくは0.1~2質量部である。
[(G)ポリオレフィン]
 本実施形態の樹脂組成物は、(G)ポリオレフィンを更に含有することが好ましい。(G)ポリオレフィンを含有することにより、成形時の離型性が一層向上するとともに、耐衝撃性も一層向上する。(G)成分の具体例としては、特に限定されず、低密度ポリエチレン、高密度ポリエチレン、線状低密度ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体、エチレン-ブテン共重合体、エチレン-オクテン共重合体、エチレン-アクリル酸エステル共重合体等が挙げられる。エチレン-プロピレン共重合体、エチレン-ブテン共重合体、エチレン-オクテン共重合体、エチレン-アクリル酸エステル共重合体は、一般に、非晶性又は低結晶性の共重合体である。これらの共重合体には、さらに性能に影響を与えない範囲で、その他のモノマーが共重合されていてもよい。例えば、エチレン単量体の量と、エチレン以外の他の単量体(例えば、プロピレン、ブテン、オクテン等)の総量との成分比率は、特に限定されないが、(G)成分中におけるエチレン以外の他の単量体の総量は、通常、5~50モル%である。
 上記の中でも、耐衝撃性の向上と成形時の離型性の向上の観点から、低密度ポリエチレン、エチレン-プロピレン共重合体が好ましい。これらのポリオレフィンは、1種単独で用いてもよいし、2種以上を併用してもよい。
 (G)成分のメルトフローレート(MFR;ASTM D-1238に準拠;190℃、2.16kgf荷重)は、好ましくは0.1~50g/10分であり、より好ましくは0.2~20g/10分である。
 (G)成分の含有量は、(A)成分、(B)成分及び(C)成分の総量100質量部に対して、好ましくは0.05~5質量部であり、より好ましくは0.1~3質量部であり、更に好ましくは0.5~2質量部である。(G)成分の含有量を上記下限値以上とすることで成形時の離型性が一層向上し、上記上限値以下とすることで成形時の剥離を一層抑制することができ、かつ優れた機械特性を発揮することができる。
 本実施形態の樹脂組成物において(A)~(D)成分を含む場合、(G)成分の含有量は、(A)成分、(B)成分、(C)成分及び(D)成分の総量100質量部に対して、好ましくは0.05~5質量部であり、より好ましくは0.1~3質量部であり、更に好ましくは0.5~2質量部である。(G)成分の含有量を上記下限値以上とすることで、成形時の離型性が一層向上し、上記上限値以下とすることで成形時の剥離を一層抑制することができ、かつ優れた機械特性を発揮することができる。
 本実施形態の樹脂組成物には、本実施形態の効果を損なわない範囲で、必要に応じて、他のプラスチック添加剤(例えば、滴下防止剤、可塑剤、帯電防止剤、滑剤、離型剤、染顔料、プラスチック用各種無機充填剤等)を添加することができる。滴下防止剤としては、例えば、ポリテトラフルオロエチレン等の燃焼時の滴下防止剤を使用することができ、可塑剤、帯電防止剤、滑剤、離型剤、染顔料、プラスチック用各種無機充填剤としては、通常汎用されるものを適宜使用することができる。
 本実施形態の樹脂組成物には、更に他のポリマーやオリゴマーを添加することができる。例えば、流動性を改善するための石油樹脂、テルペン樹脂及びその水添樹脂、クマロン樹脂、クマロンインデン樹脂;難燃性を改善するためのシリコーン樹脂やフェノール樹脂が挙げられる。
[樹脂組成物中の水添ブロック共重合体の損失正接(tanδ)]
 本実施形態の樹脂組成物では、樹脂組成物を10Hzの振動数で測定した動的粘弾性スペクトルにおいて、下記式1で示される(B)成分の損失正接(tanδ)のピーク高さ(「tanδのピーク高さ」)の値が0.075~0.120の範囲にある。
 
((B)成分の損失正接(tanδ)のピークの高さ)=(チャート中のピークの高さ)/(樹脂組成物中の(B)成分の含有量(質量%))        ・・・(式1)
 
 樹脂組成物中の(B)成分のtanδのピーク高さは、以下のようにして求めることができる。まず、樹脂組成物中の(B)成分の損失正接(tanδ)は、樹脂組成物の動的粘弾性測定により求められる。具体的には、樹脂組成物を成形して試験片とし、市販の粘弾性測定装置(例えば、ドイツ連邦共和国ガボ社製、「EPLEXOR 500」等)を用いて測定することができる。より具体的には、周波数10Hzで-150℃から100℃まで2℃/分の昇温速度で昇温させる条件で、試験片の損失正接(tanδ)を測定することができる。なお、(B)成分のtanδピークは、通常、-70℃~+30℃の範囲内で出現する。
 動的粘弾性測定は、測定機器のサンプル取り付け治具に取り付け可能な形状に切削等により加工できれば、成形体や成形された製品からサンプルを調製することにより測定することも可能である。
 続いて、(B)成分のtanδのピーク高さを求める方法を、図面を参照しつつ説明する。図2は、本実施形態において(B)成分のtanδのピーク高さを求める方法の一例を説明するための概略図を示す。測定した動的粘弾性スペクトルチャート中に現れる損失正接(tanδ)のピーク(以下、単に「チャート中のピーク」という場合がある。)において、チャート中のピークの開始点から終了点までの接線を引き、接線からピークトップまでの垂線の高さ(A)を求める(以下、単に「チャート中のピークの高さ」という場合がある。)。なお、ピーク開始点から終了点まで引いた接線は、傾きを持った状態でも構わない。垂線は、チャートのX軸と垂直にピークトップから接線へ描くものとする。
 そして、チャート中のピークの高さを、樹脂組成物中の(B)成分の含有量(質量%)で除することで、(B)成分の損失正接(tanδ)のピーク高さを求めることができる(式1参照)。
 なお、樹脂組成物中の(B)成分の含有量は、樹脂組成物や成形体、成形された製品の組成解析から求めることができる。例えば、(A)成分、(B)成分、(C)成分を含有する樹脂組成物の組成解析を行う場合、樹脂組成物をクロロホルムに溶解させ、高速液体クロマトグラフィー(HPLC)により各成分を分取する。そして、予め、各成分の定量用検量線を作成しておき、当該定量用検量線に基づき各成分の含有量の定量を行うことができる。具体的には、後述する実施例に記載の方法によって測定することができる。
 分取した各成分の重量平均分子量は、ゲル・パーミエーション・クロマトグラフィー(GPC)により、スチレン換算分子量として測定することができる。
 そして、(B)成分におけるポリスチレンブロックと共役ジエン化合物重合体ブロックの比率は、上述のように高速液体クロマトグラフィーにて分取した測定試料を、核磁気共鳴装置(NMR)にて測定することで、求めることができる。
 (B)成分のtanδのピーク高さは、(B)成分の劣化の影響を受けると推定される。(B)成分のtanδのピーク高さを上記範囲にすることにより、樹脂組成物に高い耐衝撃性を発現させつつ、樹脂組成物の成形時の剥離を効果的に抑制することができる(但し、本実施形態の作用効果はこれに限定されない。)。
 さらに、成形時に剥離が生じ易いとされる薄肉成形体の成形時にも剥離を生じさせないという観点から、上記した(B)成分のtanδのピーク高さは、好ましくは0.090~0.120であり、より好ましくは0.090~0.115である。
 本実施形態において、(B)成分のtanδのピーク高さを制御するには、例えば、(B)成分の熱的劣化を制御すればよい。例えば、(E)成分の添加量を増やすこと、押出し加工時の溶融樹脂の温度を低くすること、(B)成分の分子量を大きくすること、スチレンブロックの含有量を少なくすること等により、(B)成分のtanδのピーク高さが増大する傾向にある。例えば、(E)成分の添加量を減らすこと、押出し加工時の溶融樹脂の温度を高くすること、(B)成分の分子量を小さくすること、スチレンブロックの含有量を多くすること等により、(B)成分のtanδのピーク高さが減少する傾向にある。
 上記したように、(B)成分のtanδのピーク高さは、(B)成分の劣化度に相当するものと推定される。本実施形態では、(B)成分の劣化度を制御することにより、樹脂組成物の耐衝撃性と成形時の剥離を制御することができる。(B)成分のtanδのピーク高さは、例えば、混練時の熱履歴を制御することで制御することができる。この種の樹脂組成物では、(E)成分の添加量も(B)成分のtanδのピーク高さに影響を及ぼす場合があるため、(E)成分の添加量が多すぎると、混練時の加熱を制御しても、(B)成分のtanδのピーク高さを所望の範囲に制御できない場合がある。あるいは、(E)成分を配合しないようにしても、混練時の加熱が適正でなければ、(B)成分のtanδのピーク高さを所望の範囲に制御できない場合がある(但し、本実施形態の作用効果はこれに限定されない。)。
 上述した通り、市販の水添ブロック共重合体には比較的多量の熱安定剤が配合されていることが多く、熱安定剤の含有量が多すぎると水添ブロック共重合体を適度に劣化させることが困難となり、(B)成分のtanδのピーク高さを制御することが難しい傾向にある。熱安定剤が配合されていない(あるいは、熱安定剤が少量配合されている)(B)成分を用いた上で、混練時の熱履歴を制御するのは、(B)成分のtanδのピーク高さを、0.075~0.120の範囲に制御するための好ましい実施態様の一つである。
[樹脂組成物の製造方法]
 本実施形態の樹脂組成物は、各成分を押出機で混合して溶融混練することにより得ることができる。より具体的には、(A)成分、(B)成分、(C)成分、及び必要に応じて添加する(D)成分等の他の成分を二軸押出機を用いて溶融混練する際、(B)成分のtanδのピーク高さを0.075~0.120に制御する観点から、二軸押出機のダイ出口から押出される溶融樹脂組成物の温度を300~350℃とする方法が好ましい。
 図1は、本実施形態の樹脂組成物の製造方法の一実施形態を示す概略図である。二軸押出機1は、スクリュー(図示せず)を駆動させる駆動部11と、樹脂組成物を押出すダイ12とを有している。そして、二軸押出機1には、その上流から第1原料供給口F1、第2原料供給口(サイドフィーダ)F2が設けられており、第1原料供給口F1と第2原料供給口F2の間に、必要に応じて、液状の難燃剤等の液体材料を注入する液体注入口L1が設けられている。第2原料供給口の下流側にベント口V1が設けられている。二軸押出機1を用いた押出しプロセスとしては、上記した材料を第1原料供給口F1、第2原料供給口F2及び液体注入口L1から供給し、駆動部11によりスクリューを駆動させることで上記した材料を溶融混練し、ダイ12から押出すことにより、樹脂組成物を得ることができる。
 本実施形態の樹脂組成物の製造に用いる二軸押出機1としては、異方向回転又は同方向回転の二軸押出機が好適である。また、付帯設備として供給設備が必要であるが、たとえば、第2原料供給口(サイドフィーダ)F2から、その他の樹脂や添加剤等の副原材料を供給することができる。
 (A)成分、(B)成分及び(C)成分の二軸押出機1への供給位置は、特に限定されないが、以下のように設定することが好ましく、これにより後述する製造方法の押出条件と相まって、より優れた耐熱エージング性を樹脂組成物に付与することができる。
 (A)成分は、最上部の第1原料供給口F1から、場合によってはその一部を途中の第2原料供給口F2から二軸押出機1に供給する。(B)成分及び(C)成分は、最上部の第1原料供給口F1及び/又は前段途中の第2原料供給口や液体注入口L1、さらには必要に応じて第3原料供給口(図示せず)を設け、そこから二軸押出機1内に供給することができる。
 以下、本実施形態の樹脂組成物の好ましい製造方法における押出条件について詳述する。(B)成分の劣化をより効果的に制御し、樹脂組成物の劣化度を適度に調整することができ、(B)成分のtanδのピーク高さを制御するには、樹脂組成物中の(E)熱安定剤を少量又は配合しない(例えば、(B)成分100質量部に対して0.1質量部以下が好ましい)ように組成を設定した上で、二軸押出機1のダイ12の出口(ダイ出口)から押出される溶融樹脂組成物の温度(以下、単に「ダイ出口の樹脂温度」という場合がある。)を、300~350℃にすることが好ましい。溶融樹脂組成物の温度は、より好ましくは310~345℃であり、更に好ましくは315~340℃である。溶融樹脂組成物の温度を上記範囲とすることにより、(B)成分の劣化を一層制御することができる。ダイ出口の樹脂温度を上記上限値以下とすることで、水添ブロック共重合体を劣化させた際であっても、一気に劣化が進むことを効果的に制御できる。ダイ出口の樹脂温度を上記下限値以上とすることで、本実施形態の樹脂組成物を十分に混練し、その性能を発揮させることができる。上述したように、(E)成分の量も(B)成分の劣化に影響を与える場合があるので、(E)成分の量によって好ましいダイ出口が異なる場合がある。例えば、(E)成分を含有しない組成の場合、ダイ出口温度を300~350℃にすることが好ましく、例えば、(B)成分100質量部に対する(E)成分の含有量が0.001~0.1質量部の場合、ダイ出口温度を320~350℃にすることが好ましい。
 ダイ出口の樹脂温度は、後述の未溶融混合ゾーンと溶融ゾーンの長さ、スクリュー構成、バレル設定温度、スクリュー回転数等を調整することで制御することができる。例えば、樹脂組成物の量比や種類に応じて、ダイ出口の樹脂温度をモニタしながら各条件を調整すること等により、ダイ出口の樹脂温度を上記範囲に制御することができる。
 ダイ出口の樹脂温度は、二軸押出機から出てくる樹脂ストランドに温度計を差し込んで測定することができるが、市販の二軸押出機に装備されているダイ出口の温度計の測定値で代用することも可能である。ただし、二軸押出機の温度計で測定される温度は、直接測定した温度より低いことが多いので、二軸押出機の温度計で代用する場合には、予めこの傾向を把握し、測定結果に反映させるように補正をすることが好ましい。
 以下の(1)~(8)の条件の少なくともいずれかを調整することによって、(B)成分の劣化をより効果的に制御することができ、上記(B)成分のtanδのピーク高さの値を高い精度で制御することができる。
 (1)樹脂組成物の二軸押出機1での滞留時間を50~90秒とすることが好ましく、50~80秒とすることがより好ましく、50~70秒とすることが更に好ましい。滞留時間を長くするほど、水添ブロック共重合体が劣化しやすく、分子量が低下しやすい傾向がある。押出機内での滞留時間は、各原料の供給速度、スクリュー回転数、押出機からの吐出量により調整することができる。
 (2)第1原料供給口F1における酸素濃度を3%以下とすることが好ましく、1%以下とすることがより好ましい。第1原料供給口F1における酸素濃度を制御する方法としては、例えば、第1原料供給口F1に接続されている第1原料供給設備(ホッパー、シューター、フィーダー等;図示せず)の任意の段階で不活性ガスを供給することにより、酸素濃度を低下させる方法が挙げられる。前述の通り、(A)成分は粉体であることが好ましいが、粉体状のポリフェニレンエーテルを用いる場合には、供給口に窒素等の不活性ガスを供給することにより、二軸押出機1に同伴する酸素の巻き込みを抑えることができ、より好ましい。
 また、(A)成分を低酸素濃度の不活性ガス雰囲気下で二軸押出機1に供給し、かつ低酸素濃度の不活性ガス雰囲気下で他の成分も供給することが好ましい。これにより、各成分を混合・溶融押出するライン全体を低酸素濃度雰囲気下に保つことができる。第1原料供給口F1における酸素濃度が低いほど、(A)成分の酸化による分子量変化を抑制することが可能であり、酸化劣化による異物の生成を抑制することができる。
 (3)二軸押出機1のバレル全長を100%として、二軸押出機1のバレルの前段のバレル設定温度を(A)成分のガラス転移点(Tg)以下とすることが好ましく、かつ、二軸押出機1のバレルの後段のバレル設定温度を240~320℃とすることが好ましい。二軸押出機1のバレルの前段のバレル設定温度は、150~200℃であることがより好ましい。二軸押出機1のバレルの後段のバレル設定温度は、250~300℃であることがより好ましい。なお、図1に示す二軸押出機1では、第1原料供給口F1付近を水冷し、バレルの前段(上流から40%迄の範囲)のバレル設定温度を200℃とし、バレルの後段(前段以外の範囲;下流から60%迄の範囲)のバレル設定温度を280℃とした場合を示している。このように、原料供給口付近を水冷してもよい。
 ここでいうバレルの前段とは、好ましくは二軸押出機の上流から40%迄の範囲、より好ましくは上流から50~75%迄の範囲をいう。バレルの後段とは、前段以外の範囲(より下流側の範囲)をいう。すなわち、バレルの前段は、バレルの全長において、二軸押出機の上流から40%以上の領域を占めていることが好ましく、上流から50~75%の領域を占めていることがより好ましいものといえる。本実施形態では、二軸押出機において、第一の混練ゾーン(スクリューパーツのディスクが組み込まれたゾーン)よりも上流側の領域をバレルの前段とし、第一の混練ゾーン(スクリューパーツのディスクが組み込まれたゾーン)よりも下流側の領域をバレルの後段とする。このような場合、第一の混練ゾーン(スクリューパーツのディスクが組み込まれたゾーン)よりも上流側の領域がバレルの前段となり、二軸押出機の上流から40%迄の範囲、より好ましくは上流から50~75%迄の範囲となる。そして、第一の混練ゾーン(スクリューパーツのディスクが組み込まれたゾーン)よりも下流側の領域がバレルの後段となる。
 なお、図1では、二軸押出機1において上流から40%迄の範囲をバレルの前段とし、それ以外の範囲(より下流の範囲)をバレルの後段とした場合を例示している。すなわち、バレルの前段には第1原料供給口F1、第2原料供給口F2及び液体注入口L1が設けられ、バレルの後段にはベント口V1が設けられている。
 二軸押出機1のバレルの前段のバレル設定温度は(A)成分が溶融しない状態となるように制御することが好ましい。より具体的には、前段のバレル設定温度を(A)成分のガラス転移点(Tg)以下とすることがより好ましい。二軸押出機1のバレルの前段のバレル設定温度を(A)成分のガラス転移点(Tg)以下に抑えることにより、各成分を効率的に混合することができ、バレルの後段での溶融混練をスムーズに行うことができる。また、(B)成分への過度な加熱を抑えることにもなり、(B)成分の劣化を適度に制御できることからも好ましい。なお、ここでいう(A)成分のガラス転移点(Tg)は、示差走査熱量分析計(DSC)により測定することができる。
 (4)二軸押出機1のバレルの前段のスクリュー構成は順送り(正ネジ)スクリューエレメント及び順送り(位相45度未満)ニーディングエレメント(以下、「R」と表示する場合がある。)以外のエレメントは使用せず、かつ、バレルの後段のスクリュー構成は直交(位相90度)のニーディングエレメント(以下、「N」と表示する場合がある。)、逆送り(負位相45度未満)のニーディングエレメント(以下、「L」と表示する場合がある。)及び逆送り(逆ネジ)スクリューエレメント(以下、「Ls」と表示する場合がある。)を、順送り(位相45度未満)ニーディングエレメントを含めて少なくとも2種以上を有するスクリュー構成とすることが好ましい。
 二軸押出機1のバレルの前段で順送りのエレメントを用いることにより、各成分を効率的に混合することができる。特に、上記の(3)の条件と合わせて用いることにより、より効率的に原料を混合することができる。また、(B)成分への過度な加熱を抑えることができ、(B)成分の劣化を適度に制御できることからも好ましい。また、バレルの後段で上記した2個以上のエレメントを用いることにより、各成分を完全に溶融混合させることができる。
 (5)溶融混練ゾーンの後には溶融した樹脂から揮発成分や分解物を除去するための真空脱気ゾーンを設けることが好ましい。この真空脱気ゾーンは、例えば、図1に示すように、二軸押出機1のバレルの後段にベント口V1を配置すること等により設けることができる。真空脱気ゾーンのスクリューには、二条の正ネジスクリュー等の送りスクリューエレメントを用いて、シェアが掛かりにくいスクリュー構成とすることが好ましい。
 (6)二軸押出機1のスクリュー回転数は、好ましくは150~700rpmであり、より好ましくは300~650rpmであり、更に好ましくは400~600rpmである。スクリュー回転数を700rpm以下とすることにより、樹脂温度の上昇による(B)成分の急激な劣化を抑制することができる。また、スクリュー回転数を150rpm以上とすることにより二軸押出機1での原料の滞留時間が長くなり過ぎることがなく、(B)成分の劣化度を効果的に制御することができ、(B)成分のtanδのピーク高さを効果的に制御することもできる。
 (7)(C)成分の供給方法は、(C)成分が液体の場合には、(A)成分と予備混合するか、(A)成分と(B)成分を二軸押出機1の上流側にある第1原料供給口F1から供給した後、(C)成分を第1原料供給口F1より下流側の液体供給口L1より圧入添加して供給(サイドフィード)することが好ましい。
 例えば、液体の有機リン酸エステル化合物を含む(C)成分を、圧入添加でサイドフィードする場合は、ニーディングディスクR(捻れ角度15~75度で組み合わせた、L/D=1.0~1.5正ネジスクリューエレメント)を使用して、(A)成分と液体のリン酸エステル化合物の難燃剤を混合することが好ましい。また、液体のリン酸エステル化合物を含む(C)成分をサイドフィードする方法は、特に限定されず、例えば、ギアポンプ、プランジャーポンプ等を使って、押出機のサイドに注入ノズルからフィードすることができる。固体のリン酸エステル化合物の難燃剤を配合する場合は、二軸押出機1の上流側にある第1原料供給口F1より、他の成分と一緒に供給するか、あるいは第1原料供給口F1より下流側に設けた第2原料供給口F2よりサイドフィードする。ここでは液体のリン酸エステル化合物を含む有機リン系難燃剤を用いた場合を一例として説明したが、難燃剤の種類や形状(液状・固体状等)に応じて、適宜好適な方法にてフィードすることができる。
 また、上記の芳香族縮合リン酸エステル化合物の中には、(A)成分を可塑化する効果も有しているものがあり、かかる化合物を用いる場合には、上記(4)の条件と組み合わせて用いることにより、二軸押出機1のバレルの後段での溶融混練時に芳香族縮合リン酸エステル化合物が(A)成分を可塑化することができるので、より低温での溶融混練が可能となる。これにより(B)成分の劣化を効果的に抑制することができ、より好ましい。
 (8)(D)成分を配合する場合、バレルの後段に第2原料供給口F2を有する二軸押出機1を用いて、(D)成分を第2原料供給口F2から供給することが好ましい。すなわち、(D)成分を配合する場合は、上記した(A)成分や(B)成分等はバレルの前段の第1原料供給口F1から供給し、(D)成分はバレルの後段の第2原料供給口F2から供給することが好ましい。また、(D)成分及び(G)成分を配合する場合は、(D)成分及び(G)成分を第2原料供給口F2から供給することが好ましい。もちろん、(A)成分や(B)成分と一緒に二軸押出機1の上流側にある第1原料供給口F1から供給することも可能であるが、熱分解を抑制する観点から、二軸押出機1のバレルの後段の第2原料供給口F2からサイドフィードすることが好ましい。また、(E)成分を配合する場合は、(A)成分や(B)成分等と一緒に、二軸押出機1のバレルの前段の第1原料供給口F1から供給することが好ましい。
 本実施形態の樹脂組成物は、成形することにより成形体とすることができる。成形方法としては、特に限定されないが、射出成形機により射出成形することが好ましい。成形体は、太陽電池モジュール用接続箱(ジャンクションボックス)、太陽電池モジュール用コネクター等に好適に用いることができる。
 本実施形態の樹脂組成物は、テレビ等の各種画像機器及び家電OA機器部品等の材料として用いることができる。特に、高い耐熱性、耐熱エージング性、難燃性等を必要としている電気・電子関係の内部部品用途、とりわけテレビ内部部品の偏向ヨーク、太陽電池モジュールの部品等に適した材料である。太陽電池モジュールの部品としては、例えば、コネクターや接続箱(ジャンクションボックス)等が挙げられる。太陽電池モジュールは屋外に長期間設置されることが多いため、長期にわたり優れた耐熱性や耐熱エージング性、耐候性を維持することが望まれる。また、設置や施工時の工具等による衝撃にも耐え得るだけの耐衝撃性も望まれる。本実施形態の樹脂組成物は、高い耐衝撃性を有し、かつ成形時の剥離の生じにくく、更には、難燃性、耐熱性及び長期の耐熱エージング性、耐候性にも優れるため、これらの部品に要求される特性を十分に満たすことができる。
 太陽電池モジュールのコネクター及び接続箱としては、例えば、太陽電池モジュールの部品に要求される、各種のUL規格(Underwriters Laboratories Inc.)やTUV規格(TUV RheinlandTM)に適合する製品に使用できる。
 以下、本発明を実施例に基づいて説明するが、本発明は以下の実施例に限定されるものではない。実施例及び比較例で用いた各成分は以下のものである。
(A)ポリフェニレンエーテル(PPE)
 ポリ-2,6-ジメチル-1,4-フェニレンエーテル、旭化成ケミカルズ社製、商品名「ザイロン S201A」(ガラス転移点温度(Tg):218℃、示差走査熱量分析計(DSC;パーキンエルマー社製 DSC-7)を用いて、40℃/分の昇温速度で、40℃から250℃まで昇温させて測定した。
(B)水添ブロック共重合体
 以下に示す、スチレン-ブタジエンブロック共重合体(ポリスチレン-ポリブタジエン-ポリスチレンの結合構造)を水素添加して得られた水添ブロック共重合体(ポリスチレン-ポリ(エチレン-ブチレン)-ポリスチレンの結合構造)を用いた。
 (SEBS-1):重量平均分子量約260,000、ポリスチレンブロック約32質量%、ポリスチレンブロックの重量平均分子量約41,600、ブタジエンユニットの水素添加率97%以上、熱安定剤を含まない水添ブロック共重合体。TSRC社製、商品名「TAIPOL SEBS-6151」
 (SEBS-2):重量平均分子量約390,000、ポリスチレンブロック約31質量%、ポリスチレンブロックの重量平均分子量約60,450、ブタジエンユニットの水素添加率98%以上、熱安定剤を含まない水添ブロック共重合体。TSRC社製、商品名「TAIPOL SEBS-6159」
 (SEBS-3):重量平均分子量約80,000、ポリスチレンブロック約29質量%、ポリスチレンブロックの重量平均分子量約11,600、ブタジエンユニットの水素添加率97%以上、熱安定剤を含まない水添ブロック共重合体。TSRC社製、商品名「TAIPOL SEBS-6152」
(SEBS-4):ポリスチレン(1)-水素添加されたポリブタジエン-ポリスチレン(2)の構造を有し、結合スチレン量33%、重量平均分子量170,000、分子量分布1.10、水素添加前のポリブタジエンの1,2-ビニル結合量46%、ポリスチレン(1)ブロックの重量平均分子量28,000、ポリスチレン(2)ブロックの重量平均分子量28,000、ポリブタジエンブロックの水素添加率99.9%の水添ブロック共重合体を、常法によって、合成した。
 (SEBS-5):ポリスチレン(1)-水素添加されたポリブタジエン-ポリスチレン(2)-水素添加されたポリブタジエンの構造を有し、結合スチレン量60%、重量平均分子量80,000、分子量分布1.05、水素添加前のポリブタジエンの1,2ービニル結合量44%、ポリスチレン(1)ブロックの重量平均分子量24,000、ポリスチレン(2)ブロックの重量平均分子量24,000、ポリブタジエンブロックの水素添加率99.9%の水添ブロック共重合体を、常法によって、合成した。
 上記した、樹脂組成物とする前の、原料としての(B)成分の重量平均分子量は、ゲル・パーミエーション・クロマトグラフィー(GPC)によりスチレン換算分子量として求めた。GPCの測定条件は以下の通りであった。
 GPC:東洋曹達社製ゲル・パーミエーション・クロマトグラフィー「HL-802RTS」で標準ポリスチレンを用いて検量線を作成し、測定した。標準ポリスチレンは、その重量平均分子量が、264、364、466、568、2,800、16,700、186,000、1,260,000であるものを用いた。カラムは、東洋曹達社製TSKgelG2500HXL、TSKgelG3000HXL、TSKgelG4000HXL、TSKgelG5000HXLを直列につないで使用した。また、溶媒はクロロホルム、溶媒の流量は0.9mL/分、カラムの温度は40℃、検出器は示差屈折率検出器(R.I)を用いて測定した。
 水素添加率は、核磁気共鳴装置(NMR;装置名:DPX-400、ドイツ国BRUKER社製)によって測定した。測定試料は、水添ブロック共重合体を重水素化テトラヒドロフランに溶解した溶液を用いた。
 ポリスチレンブロックの含有量は、水添前のブロック共重合体を用い、上述の四酸化オスミウム酸法で測定した。ブロック共重合体の分解には、オスミウム酸0.1g/125mL第3級ブタノール溶液を用いた。
(C)難燃剤
 以下に示すリン酸エステル系難燃剤を用いた。
 (FR-1)主成分がビスフェノールA系縮合リン酸エステル(芳香族縮合リン酸エステル化合物;上述した式(IV)に相当)である難燃剤:大八化学工業社製、商品名「CR-741」
 (FR-2)主成分がビフェール系縮合リン酸エステル(芳香族縮合リン酸エステル化合物;上述した式(I)に相当)である難燃剤:ADEKA社製、商品名「アデカスタブ FP-800」、なお、FR-2は、FR-1と比較して、耐加水分解性に特に優れる。
(D)ポリスチレン
 (PS)ホモポリスチレン:PSジャパン社製、商品名「PSJ-ポリスチレン 685」
(E)熱安定剤
 (STB)ヒンダードフェノール系熱安定剤(酸化防止剤):豊通ケミプラス社より入手、商品名「IRGANOX 1076」(オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート)
(F)光安定剤
 (HALS)ヒンダードアミン系光安定剤:城北化学社製、商品名「JF-90」(ビス(2,2,6,6-テトラメチル-4-ピペリジン)セバケート)
(G)ポリオレフィン;
 (LDPE)低密度ポリエチレン;旭化成ケミカルズ社製、商品名「サンテックLD M2004」(ASTM D-1238に準拠し、190℃、2.16kgf荷重で測定したメルトフローレート0.4g/10分)を用いた。
[特性評価方法等]
 得られた樹脂組成物の特性評価は、以下の方法及び条件で行った。
(試験片の作製)
 得られた樹脂組成物ペレットを100℃で2時間乾燥させた後、東芝機械社製、IS-100GN型射出成形機(シリンダー温度を280℃、金型温度を80℃に設定)を用いて、ISO-15103に準じて試験片を作製した。
(1)シャルピー衝撃強度:上記試験片を用い、耐衝撃性評価として、ISO-179に準拠してノッチ付き試験片を作製し、そのシャルピー衝撃強度を測定した。
(2)耐熱エージング性
 上記試験片を用い、120℃に設定した空気循環オーブン内で500時間のエージングを実施した後、室温23℃,湿度50%の状態に24時間放置後、試験片にISO-179に準拠したノッチ付き試験片を作製し、そのシャルピー衝撃強度を測定して、耐衝撃性の変化の程度(熱エージング前のシャルピー衝撃強度に対する保持率;%)を求めた。
(3)曲げ弾性率:上記試験片を用い、曲げ弾性率評価として、ISO-178に準拠し、試験速度2mm/分にて曲げ弾性率を測定した。
(4)荷重たわみ温度(DTUL):上記試験片を用い、耐熱性評価として、ISO-75-1に準拠し、1.8MPa下にて荷重たわみ温度を測定した。
(5)難燃性
 UL-94垂直燃焼試験(V-0、V-1、V-2規格)に基づき、1.5mm厚みの射出成形試験片を用いて燃焼試験を行った。上記試験片5本について、接炎を各2回、合計10回行い、消炎時間の平均秒数及び最大秒数を測定し、下記基準に基づきランク付けした。
(UL94 垂直燃焼性試験(V))
 V-0:5本の試験片の1回目と、2回目の接炎による合計燃焼時間が50秒以内であり、かつ最大燃焼時間が10秒以内であり、燃焼において試料下方に設置された脱脂綿を発火させる火種の落下がなかった。
 V-1:5本の試験片の1回目と、2回目の接炎による合計燃焼時間が250秒以内であり、かつ最大燃焼時間が30秒以内であり、燃焼において試料下方に設置された脱脂綿を発火させる火種の落下がなかった。
 V-2:5本の試験片の1回目と、2回目の接炎による合計燃焼時間が250秒以内であり、かつ最大燃焼時間が30秒以内であった。
(6)成形時の剥離性
 得られた樹脂組成物ペレットを100℃で2時間乾燥した後、東芝機械社製IS-100GN型射出成形機(シリンダー温度を300℃、金型温度を80℃に設定)を用いて、金型上部に直径2mmのピンゲートを有する厚み2mm、150mm四方の金型にて、射出速度95%で射出成形し、6ショット目から15ショット目までの10枚の試験片ゲート部の状態を目視観察し、以下の基準に基づき剥離性を評価した。
(基準)
 A:全く剥離なし。
 B:剥離面積が1mm未満であった。
 C:剥離面積が1~10mmであった。
 D:剥離面積が10mmを超えた。
 
 なお、上記評価が「B」以上であれば、剥離性については実用上問題ない程度であると判断される。特に、評価が「A」であれば、樹脂組成物の成形体における剥離現象が検知されなかったことを意味する。
(7)樹脂組成物中の(B)成分の損失正接(tanδ)のピーク高さ
 樹脂組成物中の(B)成分の損失正接(tanδ)のピーク高さは、粘弾性測定装置(ドイツ連邦共和国ガボ社製、「EPLEXOR 500」)を用いて測定した。得られた樹脂組成物ペレットを100℃で2時間乾燥した後、東芝機械社製IS-100GN型射出成形機(シリンダー温度を300℃、金型温度を80℃に設定)を用いて、厚み1.57mm、幅7.15mm、長さ127mmの試験片を作製し、周波数10.0Hzで-150℃から100℃まで2℃/分の昇温速度で昇温させる条件で、試験片の損失正接(tanδ)を測定した。なお、(B)水添ブロック共重合体のtanδピークは、通常、-70℃~+30℃の範囲内で出現する。
 まず、測定した動的粘弾性スペクトルチャート中に現れる(B)水添ブロック共重合体の損失正接(tanδ)のピーク(チャート中のピーク)において、チャート中のピークの開始点温度から終了点温度までの接線を引き、接線からピークトップまでの垂線の高さ(チャート中のピークの垂線の高さ)を求めた。そして、下記式(1)に示すように、この垂線の高さを樹脂組成物中の(B)水添ブロック共重合体の重量比率((B)水添ブロック共重合体重量/樹脂組成物重量)で除したものを、(B)水添ブロック共重合体の損失正接(tanδ)のピーク高さ(tanδのピーク高さ)とした。
 
((B)成分の損失正接(tanδ)のピークの高さ)=(チャート中のピークの高さ)/(樹脂組成物中の(B)成分の含有量(質量%))   ・・・(式1)
(8)樹脂組成物中の(B)成分の重量平均分子量
 樹脂組成物とした後の、当該樹脂組成物中の(B)成分の重量平均分子量を測定し、樹脂組成物とする前の原料としての(B)成分の重量平均分子量と比較した。樹脂組成物中の(B)成分の重量平均分子量は、以下のように測定した。
 まず、樹脂組成物をクロロホルムに溶解し、1%濃度のクロロホルム溶液を作製した。得られたクロロホルム溶液を高速液体クロマトグラフィー(HLPC)に供することで、樹脂組成物中から(B)成分を分取した。なお、HLPCの測定条件は以下の通りであった。
本体:高圧グラジエントシステムLC-717(ウォータズ社製)
検出器:エバポレイティブマスディテクター1000型(ポリマーラボラトリー社製)
カラム:OASISカラム 4.6mm×150mm
移動相溶媒:クロロホルム
移動相流量:1.2mL/分
 HPLCにより分取した(B)成分相当の成分を、ゲル・パーミエーション・クロマトグラフィー(GPC)に供し、スチレン換算分子量として重量平均分子量を求めた。なお、GPCの測定条件は以下の通りであった。
 GPC:東洋曹達社製ゲル・パーミエーション・クロマトグラフィー「HL-802RTS」で標準ポリスチレンを用いて検量線を作成し、測定した。標準ポリスチレンの重量平均分子量は、264、364、466、568、2,800、16,700、186,000、1,260,000のものを用いた。カラムは東洋曹達社製TSKgelG2500HXL、TSKgelG3000HXL、TSKgelG4000HXL、TSKgelG5000HXLを直列につないで使用した。また、溶媒はクロロホルム、溶媒の流量は0.9mL/分、カラムの温度は40℃、検出器は示差屈折率検出器(R.I)を用い測定した。
[実施例1]
 表1に示した配合の樹脂組成物を以下の製造条件にて作製した。図1に示す構造を有し、スクリュー直径58mm、バレル数13である、減圧ベント口付二軸押出機(東芝機械社製、「TEM58SS」)に、表1に記載の配合組成の材料を、表1に記載する条件で供給して溶融混練した。なお、(C)成分の供給は、第1供給口より下流側のバレル7(バレル7は、バレルの上流側から数えて7番目のバレルを示す。バレルの数え方については以下同様。)にある圧入(液体)注入口よりギアポンプを使ってフィードして押出した。押出されたストランドを冷却裁断して樹脂組成物ペレットを得た。
 押出機のスクリュー構成は全バレル長の約69%を前段(未溶融~半溶融混合)ゾーン、残りのバレル長約31%をバレルの後段ゾーン(溶融混練ゾーン)とした。バレル設定温度をバレル1:水冷、バレル2:150℃、バレル3~8:200℃、バレル9:250℃、バレル10~13:280℃、ダイス:290℃として、スクリュー回転数400rpm、吐出量400kg/時の条件で、溶融混練及び押出しを行い、樹脂組成物ペレットを得た。この場合、バレル1~9までがバレルの前段ゾーンであり、バレル10~13までをバレルの後段ゾーンとした。その際、真空脱気口をバレル11に設け、約100hPaで減圧脱気した。また、窒素を第1供給口下部から約30L/分で供給し、第1供給口上部の酸素濃度は約2.0%であった。なお、なお、酸素濃度は、なお、酸素濃度は、アズワン社製、「デジタル酸素濃度 XO-326ALA」のセンサー(電線付き)を第一供給口から投入し、密閉状態とした上で、酸素濃度を測定した。ダイ出口の溶融樹脂組成物の温度を実測したところ324℃であった。次に、得られた樹脂組成物ペレットを、上記評価法にて評価を行い、表1の結果を得た。
[実施例2~18、比較例1~7、9~12]
 表1~4に記載の配合及び条件とした点以外は、実施例1と同様の操作で、樹脂組成物ペレットを作製した。ただし、実施例13では難燃剤が固体(粉体)であるため(C)FR-2の供給は、他の成分と一緒に押出機の流れ方向に対して上流側のバレル1にある第1供給口とした。また、実施例9では、(D)PSを第2供給口(バレル9)から供給した。得られた樹脂組成物ペレットについて、同様に評価して表1~4の結果を得た。なお、表中のスクリューエレメントの説明は以下の通りである。
R:順送り(位相45度未満)ニーディングエレメントを使用した。
N:直交(位相90度)ニーディングエレメントを使用した。
L:逆送り(負位相45度未満)ニーディングエレメントを使用した。
RR:順送り(位相45度未満)ニーディングエレメントを2個使用した。
RRNL:順送り(位相45度未満)ニーディングエレメントを2個、直交(位相90度)ニーディングエレメント1個、逆送り(負位相45度未満)ニーディングエレメント1個の順に組み込み使用した。
[比較例8]
 特開平10-087984号公報に記載の方法に順じ(A)ポリフェニレンエーテル、(B)水添ブロック共重合体、(C)リン酸エステル系化合物を表4に示した組成及び供給方法、押出し条件で溶融混練しベレットとして得た。なおスクリュー回転数、吐出量は押出機のサイズを勘案し、特開平10-087984号公報に相当する条件として、吐出量に関しては押出し機サイズの違いを容積比率の倍数分増量し、スクリュー回転数はスクリューの最外面の線速度を同じくするように適応させた。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
 表1~4から明らかなように、各実施例の樹脂組成物は、高い耐衝撃性を有し、成形時の剥離がなく、かつ、難燃性、耐熱性及び長期の耐熱エージング性に優れていることが確認された。
 本出願は、2011年6月20日に日本国特許庁へ出願された日本特許出願(特願2011-136688)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明の樹脂組成物は、耐熱温度、熱エージング性に著しく優れた難燃性の樹脂組成物であり、環境上好ましく、テレビ等の画像機器及び、家電OA機器部品等の分野で好適に利用できる。特に高い耐熱性、耐熱エージング性、難燃性等を必要としている電気・電子関係の内部部品用途、とりわけテレビ内部部品の偏向ヨーク、太陽電池モジュールの部品等に適した材料である。
1…二軸押出機、11…駆動部、12…ダイ、F1…第1原料供給口、F2…第2原料供給口、L1…液体注入口、V1…ベント口

Claims (17)

  1.  (A)ポリフェニレンエーテル、(B)ポリスチレンブロックと共役ジエン化合物重合体ブロックとを含むブロック共重合体を水素添加して得られ、重量平均分子量が100,000~500,000である水添ブロック共重合体、及び(C)有機リン系難燃剤を含有し、
     前記(A)成分、前記(B)成分、及び前記(C)成分の総量100質量部に対して、
     前記(A)成分57~94質量部、
     前記(B)成分3~30質量部、及び
     前記(C)成分3~30質量部
    を含有する樹脂組成物であり、
     前記樹脂組成物を10Hzの振動数で測定した動的粘弾性スペクトルにおいて、下記式1で示される前記(B)成分の損失正接(tanδ)のピーク高さの値が、0.075~0.120の範囲にある、樹脂組成物。
     
     ((B)成分の損失正接(tanδ)のピーク高さ)=(チャート中のピークの高さ)/(樹脂組成物中の(B)成分の含有率(質量%))  ・・・(式1)
     
  2.  前記(A)成分、前記(B)成分、及び前記(C)成分の総量100質量部に対して、(D)スチレン系樹脂0.5~20質量部を更に含有する、請求項1に記載の樹脂組成物。
  3.  前記(A)成分、前記(B)成分、前記(C)成分、及び前記(D)成分の総量100質量部に対して、
     前記(A)成分65~90質量部、
     前記(B)成分4~25質量部、
     前記(C)成分5~25質量部、及び
     前記(D)成分0.5~20質量部
    を含有する、請求項1又は2に記載の樹脂組成物。
  4.  前記樹脂組成物を10Hzの振動数で測定した動的粘弾性スペクトルにおいて、前記(B)成分の損失正接(tanδ)のピーク高さの値が、0.090~0.115の範囲にある、請求項1~3のいずれかに記載の樹脂組成物。
  5.  前記(B)成分100質量部に対して、(E)熱安定剤0.001~0.1質量部を更に含有する、請求項1~4のいずれかに記載の樹脂組成物。
  6.  前記(B)成分中における前記ポリスチレンブロックの含有量が、20~50質量%である、請求項1~5のいずれかに記載の樹脂組成物。
  7.  前記(C)成分として、式(I)で表される縮合リン酸エステル化合物を含有する、請求項1~6のいずれかに記載の樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式(I)中、Q、Q、Q及びQは、各々独立に炭素数1~6のアルキル基を表し、nは1以上の整数であり、n及びnは各々独立に0~2の整数であり、m、m、m及びmは各々独立に0~3の整数である。)
  8.  前記(A)、前記(B)、及び前記(C)成分の総量100質量部に対して、(F)紫外線吸収剤及び/又は光安定剤を総量で0.01~3質量部を更に含有する、請求項1~7のいずれかに記載の樹脂組成物。
  9.  前記(A)成分、前記(B)成分、及び前記(C)成分を、二軸押出機を用いて溶融混練する工程を有し、
     前記二軸押出機のダイ出口から押出される溶融樹脂組成物の温度を300~350℃とする、請求項1~8のいずれかに記載の樹脂組成物の製造方法。
  10.  前記溶融混練する工程において、前記二軸押出機の少なくとも1つの原料供給口における酸素濃度を3%以下とする、請求項9に記載の樹脂組成物の製造方法。
  11.  前記二軸押出機のバレル全長を100%として、前記バレルの上流側から少なくとも40%迄の範囲を前記バレルの前段とし、残りの範囲を前記バレルの後段とし、
     前記バレルの前記前段のバレル設定温度を、前記(A)ポリフェニレンエーテルのガラス転移点(Tg)以下の温度とし、
     前記バレルの前記後段のバレル設定温度を、240~320℃とする、請求項9又は10に記載の樹脂組成物の製造方法。
  12.  前記バレルの前記前段のスクリュー構成は、順送り(正ネジ)スクリューエレメント及び順送り(位相45度未満)ニーディングエレメント以外のエレメントは使用しないスクリュー構成であり、
     前記バレルの前記後段のスクリュー構成は、直交(位相90度)のニーディングエレメント、逆送り(負位相45度未満)のニーディングエレメント、及び逆送り(逆ネジ)スクリューエレメントを、順送り(位相45度未満)ニーディングエレメントを含めての少なくともいずれかを2種以上を有するスクリュー構成である、請求項9~11のいずれかに記載の樹脂組成物の製造方法。
  13.  前記二軸押出機は、前記バレルの前記後段に第2原料供給口を更に有し、
     前記(D)成分を、前記第2原料供給口から供給する、請求項9~12のいずれかに記載の樹脂組成物の製造方法。
  14.  請求項1~8のいずれかに記載の樹脂組成物を含む、成形体。
  15.  請求項1~8のいずれかに記載の樹脂組成物を含む、太陽電池モジュール部品。
  16.  請求項1~8のいずれかに記載の樹脂組成物を含む、コネクター。
  17.  請求項1~8のいずれかに記載の樹脂組成物を含む、接続箱。
PCT/JP2012/065726 2011-06-20 2012-06-20 ポリフェニレンエーテル系樹脂組成物及びその製造方法 WO2012176798A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201280030211.9A CN103619953B (zh) 2011-06-20 2012-06-20 聚苯醚系树脂组合物及其制造方法
EP12802174.8A EP2722364B1 (en) 2011-06-20 2012-06-20 Polyphenylene ether-based resin composition and method for producing the same
JP2013521594A JP5978421B2 (ja) 2011-06-20 2012-06-20 ポリフェニレンエーテル系樹脂組成物及びその製造方法
US14/127,775 US9187640B2 (en) 2011-06-20 2012-06-20 Polyphenylene ether-based resin composition and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011136688 2011-06-20
JP2011-136688 2011-06-20

Publications (1)

Publication Number Publication Date
WO2012176798A1 true WO2012176798A1 (ja) 2012-12-27

Family

ID=47422630

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/065726 WO2012176798A1 (ja) 2011-06-20 2012-06-20 ポリフェニレンエーテル系樹脂組成物及びその製造方法

Country Status (6)

Country Link
US (1) US9187640B2 (ja)
EP (1) EP2722364B1 (ja)
JP (1) JP5978421B2 (ja)
CN (1) CN103619953B (ja)
TW (1) TWI471378B (ja)
WO (1) WO2012176798A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014176119A1 (en) * 2013-04-25 2014-10-30 Polyone Corporation Flame retardant thermoplastic elastomers
JP2015189910A (ja) * 2014-03-28 2015-11-02 旭化成ケミカルズ株式会社 樹脂組成物、成形体、太陽電池モジュール部品、コネクター及び接続箱
JP2015199889A (ja) * 2014-04-10 2015-11-12 旭化成ケミカルズ株式会社 成形体
JP2016094614A (ja) * 2015-12-03 2016-05-26 三菱エンジニアリングプラスチックス株式会社 太陽光発電モジュール用接続構造体
JP2018048227A (ja) * 2016-09-20 2018-03-29 旭化成株式会社 熱可塑性樹脂組成物の製造方法
JP2018087321A (ja) * 2016-11-22 2018-06-07 旭化成株式会社 樹脂組成物
JP7409900B2 (ja) 2019-04-19 2024-01-09 旭化成株式会社 ポリフェニレンエーテル系樹脂組成物の製造方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10584809B2 (en) 2015-10-14 2020-03-10 Sabic Global Technologies B.V. Water pipe for mining operations
JP6647003B2 (ja) * 2015-10-16 2020-02-14 旭化成株式会社 配管用成形品
US10707531B1 (en) 2016-09-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes
JP7053138B2 (ja) * 2016-10-05 2022-04-12 旭化成株式会社 積層成形体
CN107962697A (zh) * 2016-10-25 2018-04-27 昆山台益塑胶科技有限公司 Pom/ppo嵌段共聚物的生产方法
CN107962698A (zh) * 2016-10-25 2018-04-27 昆山台益塑胶科技有限公司 Pom/pbt嵌段共聚物的生产方法
WO2018136207A2 (en) 2016-12-28 2018-07-26 Sabic Global Technologies B.V. Sheets including polyphenylene and an aryl salicylate and methods of making thereof
WO2018125855A1 (en) 2016-12-28 2018-07-05 Sabic Global Technologies B.V. Multilayer sheets including polyphenylene and polypropylene and methods of making thereof
CN114174434B (zh) * 2019-08-06 2024-03-08 日本曹达株式会社 聚苯醚树脂组合物、预浸料坯、及覆金属层叠板

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5959724A (ja) 1982-09-29 1984-04-05 Unitika Ltd 熱可塑性樹脂変性体の製造方法
JPS63108059A (ja) 1986-08-28 1988-05-12 ゼネラル・エレクトリック・カンパニイ 加工性と酸化安定性が改良された改質ポリフェニレンエ−テル樹脂
JPS63301222A (ja) 1987-06-01 1988-12-08 Asahi Chem Ind Co Ltd ポリフェニレンエ−テル共重合体
JPH02276823A (ja) 1989-01-27 1990-11-13 Asahi Chem Ind Co Ltd 安定化ポリフェニレンエーテル樹脂とその組成物、フイルム及びその製法
JPH09227774A (ja) 1996-02-08 1997-09-02 General Electric Co <Ge> ポリフェニレンエーテルと水素化ジエン‐ビニル芳香族ブロックコポリマーを含むポリマー混合物、およびそれから成形される物体
JPH1087984A (ja) 1996-09-12 1998-04-07 Asahi Chem Ind Co Ltd 樹脂組成物およびその製法
JP2001139798A (ja) * 1999-08-27 2001-05-22 Asahi Kasei Corp 制振性を有するポリフェニレンエーテル樹脂組成物
JP2004137450A (ja) 2002-08-22 2004-05-13 Asahi Kasei Chemicals Corp 製造方法及びその樹脂組成物
JP2006299235A (ja) * 2005-03-23 2006-11-02 Asahi Kasei Chemicals Corp 電線被覆用材料
JP2008274035A (ja) 2007-04-26 2008-11-13 Asahi Kasei Chemicals Corp ポリフェニレンエーテル系樹脂組成物の製造方法
JP2009197196A (ja) * 2008-02-25 2009-09-03 Asahi Kasei Chemicals Corp 樹脂組成物
WO2010047122A1 (ja) * 2008-10-24 2010-04-29 旭化成ケミカルズ株式会社 太陽光発電モジュール用接続構造体
JP2010519389A (ja) 2007-02-23 2010-06-03 サビック イノベーティブ プラスチックス イーペー ベスローテン フェンノートシャップ 電気絶縁フィルムおよびその製法
JP2011252097A (ja) * 2010-06-02 2011-12-15 Asahi Kasei Chemicals Corp 制振性難燃樹脂組成物

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5214109A (en) 1986-08-28 1993-05-25 General Electric Company Modified polyphenylene ether resins having improved processability and oxidative stability
US5216089A (en) 1986-08-28 1993-06-01 General Electric Company Modified polyphenylene ether resins having improved processability and oxidative stability
JPH051253A (ja) 1991-06-24 1993-01-08 Taniguchi Ink Seizo Kk 印刷インキ
US5397822A (en) 1993-08-18 1995-03-14 General Electric Company Thermoplastic compositions containing polyphenylene ether resin and characterized by improved elongation and flexibility employing a blend of multiblock copolymers
EP1278799A1 (en) 2000-03-30 2003-01-29 General Electric Company Transparent, flame retardant poly(arylene ether) blends
DE10297213B4 (de) * 2001-09-14 2010-07-01 Asahi Kasei Chemicals Corp. Polyphenylenehter-Zusammensetzung
JP2004161929A (ja) * 2002-11-14 2004-06-10 Ge Plastics Japan Ltd ワイヤ・ケーブル被覆材用樹脂組成物
US20050080185A1 (en) 2003-10-10 2005-04-14 Mhetar Vijay R. Poly(arylene ether) composition and method of making
WO2005117141A1 (ja) 2004-05-25 2005-12-08 Kitani Electric Co., Ltd. 太陽電池モジュール用端子ボックス
KR101200214B1 (ko) 2006-08-03 2012-11-09 아사히 가세이 케미칼즈 가부시키가이샤 난연성 수지 조성물
US7494548B2 (en) 2007-02-08 2009-02-24 Rebecca Ann Simonette Method of cleaning contact lenses via sonication
US7585906B2 (en) * 2007-02-28 2009-09-08 Sabic Innovative Plastics Ip B.V. Poly(arylene ether) composition, method, and article
JP2008299235A (ja) 2007-06-04 2008-12-11 Seiko Epson Corp 撮像装置、および焦点合わせ方法
JP5393411B2 (ja) * 2009-11-13 2014-01-22 三菱エンジニアリングプラスチックス株式会社 ポリフェニレンエーテル系樹脂組成物成形体の製造方法
JP5875225B2 (ja) * 2010-12-22 2016-03-02 三菱エンジニアリングプラスチックス株式会社 太陽光発電モジュール用接続構造体
US8653167B2 (en) * 2011-05-26 2014-02-18 Sabic Innovative Plastics Ip Molding composition for photovoltaic junction boxes and connectors

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5959724A (ja) 1982-09-29 1984-04-05 Unitika Ltd 熱可塑性樹脂変性体の製造方法
JPS63108059A (ja) 1986-08-28 1988-05-12 ゼネラル・エレクトリック・カンパニイ 加工性と酸化安定性が改良された改質ポリフェニレンエ−テル樹脂
JPS63301222A (ja) 1987-06-01 1988-12-08 Asahi Chem Ind Co Ltd ポリフェニレンエ−テル共重合体
JPH02276823A (ja) 1989-01-27 1990-11-13 Asahi Chem Ind Co Ltd 安定化ポリフェニレンエーテル樹脂とその組成物、フイルム及びその製法
JPH09227774A (ja) 1996-02-08 1997-09-02 General Electric Co <Ge> ポリフェニレンエーテルと水素化ジエン‐ビニル芳香族ブロックコポリマーを含むポリマー混合物、およびそれから成形される物体
JP3735966B2 (ja) 1996-09-12 2006-01-18 旭化成ケミカルズ株式会社 樹脂組成物およびその製法
JPH1087984A (ja) 1996-09-12 1998-04-07 Asahi Chem Ind Co Ltd 樹脂組成物およびその製法
JP2001139798A (ja) * 1999-08-27 2001-05-22 Asahi Kasei Corp 制振性を有するポリフェニレンエーテル樹脂組成物
JP2004137450A (ja) 2002-08-22 2004-05-13 Asahi Kasei Chemicals Corp 製造方法及びその樹脂組成物
JP2006299235A (ja) * 2005-03-23 2006-11-02 Asahi Kasei Chemicals Corp 電線被覆用材料
JP2010519389A (ja) 2007-02-23 2010-06-03 サビック イノベーティブ プラスチックス イーペー ベスローテン フェンノートシャップ 電気絶縁フィルムおよびその製法
JP2008274035A (ja) 2007-04-26 2008-11-13 Asahi Kasei Chemicals Corp ポリフェニレンエーテル系樹脂組成物の製造方法
JP2009197196A (ja) * 2008-02-25 2009-09-03 Asahi Kasei Chemicals Corp 樹脂組成物
WO2010047122A1 (ja) * 2008-10-24 2010-04-29 旭化成ケミカルズ株式会社 太陽光発電モジュール用接続構造体
JP2011252097A (ja) * 2010-06-02 2011-12-15 Asahi Kasei Chemicals Corp 制振性難燃樹脂組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
I. M. KOLTHOFF ET AL., J. POLYM. SCI., vol. 1, 1946, pages 429

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014176119A1 (en) * 2013-04-25 2014-10-30 Polyone Corporation Flame retardant thermoplastic elastomers
JP2015189910A (ja) * 2014-03-28 2015-11-02 旭化成ケミカルズ株式会社 樹脂組成物、成形体、太陽電池モジュール部品、コネクター及び接続箱
JP2015199889A (ja) * 2014-04-10 2015-11-12 旭化成ケミカルズ株式会社 成形体
JP2016094614A (ja) * 2015-12-03 2016-05-26 三菱エンジニアリングプラスチックス株式会社 太陽光発電モジュール用接続構造体
JP2018048227A (ja) * 2016-09-20 2018-03-29 旭化成株式会社 熱可塑性樹脂組成物の製造方法
JP2018087321A (ja) * 2016-11-22 2018-06-07 旭化成株式会社 樹脂組成物
JP7010666B2 (ja) 2016-11-22 2022-02-10 旭化成株式会社 樹脂組成物
JP7409900B2 (ja) 2019-04-19 2024-01-09 旭化成株式会社 ポリフェニレンエーテル系樹脂組成物の製造方法

Also Published As

Publication number Publication date
CN103619953A (zh) 2014-03-05
CN103619953B (zh) 2016-10-12
EP2722364A4 (en) 2015-10-07
US20140200294A1 (en) 2014-07-17
TWI471378B (zh) 2015-02-01
EP2722364A1 (en) 2014-04-23
US9187640B2 (en) 2015-11-17
JP5978421B2 (ja) 2016-08-24
TW201305276A (zh) 2013-02-01
EP2722364B1 (en) 2016-11-30
JPWO2012176798A1 (ja) 2015-02-23

Similar Documents

Publication Publication Date Title
JP5978421B2 (ja) ポリフェニレンエーテル系樹脂組成物及びその製造方法
JP5704936B2 (ja) 耐熱難燃樹脂組成物およびその製造方法
JP4330085B2 (ja) 難燃性樹脂組成物
JP5196630B2 (ja) ポリフェニレンエーテル系樹脂組成物の製造方法
US9991622B2 (en) Electrical component comprising insulating resin molded article, and method for stabilizing flame retardance
JP2010189517A (ja) ポリフェニレンエーテル系樹脂組成物、ポリフェニレンエーテル系樹脂組成物の製造方法、ポリフェニレンエーテル系樹脂組成物の成形体
US7544728B2 (en) Production process of polyphenylene ether composition
JP4467274B2 (ja) 耐光変色性に優れた未溶融物のない樹脂組成物の製造方法
JP5558146B2 (ja) 樹脂組成物
CN108084691B (zh) 树脂组合物
JP5461298B2 (ja) ポリフェニレンエーテル系樹脂組成物の製造方法及びこれを用いた成形体
KR100727693B1 (ko) 난염제 조성물 및 제품
JP2015127357A (ja) 難燃性樹脂組成物
JP6990571B2 (ja) 樹脂組成物、樹脂組成物の製造方法、及び成形体
JP6234304B2 (ja) 樹脂組成物、成形体、太陽電池モジュール部品、コネクター及び接続箱
JP6059053B2 (ja) 樹脂組成物の製造方法
JP6279402B2 (ja) 難燃樹脂組成物及びその製造方法
JP6181478B2 (ja) 樹脂組成物
JP2022106668A (ja) 樹脂組成物、太陽光発電モジュール用接続構造体、及び太陽光発電モジュール用ジャンクションボックス
JP2009249515A (ja) ポリフェニレンエーテル系樹脂フィルム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12802174

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013521594

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2012802174

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012802174

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14127775

Country of ref document: US