WO2012173088A1 - 含フッ素硬化性樹脂、活性エネルギー線硬化性組成物及びその硬化物 - Google Patents

含フッ素硬化性樹脂、活性エネルギー線硬化性組成物及びその硬化物 Download PDF

Info

Publication number
WO2012173088A1
WO2012173088A1 PCT/JP2012/064903 JP2012064903W WO2012173088A1 WO 2012173088 A1 WO2012173088 A1 WO 2012173088A1 JP 2012064903 W JP2012064903 W JP 2012064903W WO 2012173088 A1 WO2012173088 A1 WO 2012173088A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorine
curable resin
group
meth
acrylate
Prior art date
Application number
PCT/JP2012/064903
Other languages
English (en)
French (fr)
Inventor
悠介 尾崎
鈴木 秀也
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to KR1020137025350A priority Critical patent/KR101764954B1/ko
Priority to JP2012551409A priority patent/JP5187471B2/ja
Priority to US14/125,623 priority patent/US8779065B2/en
Priority to CN201280021212.7A priority patent/CN103502306B/zh
Publication of WO2012173088A1 publication Critical patent/WO2012173088A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F259/00Macromolecular compounds obtained by polymerising monomers on to polymers of halogen containing monomers as defined in group C08F14/00
    • C08F259/08Macromolecular compounds obtained by polymerising monomers on to polymers of halogen containing monomers as defined in group C08F14/00 on to polymers containing fluorine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F114/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F114/16Monomers containing bromine or iodine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/334Polymers modified by chemical after-treatment with organic compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F122/00Homopolymers of compounds having one or more unsaturated aliphatic radicals each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides or nitriles thereof
    • C08F122/10Esters
    • C08F122/12Esters of phenols or saturated alcohols
    • C08F122/20Esters containing oxygen in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • C08F290/062Polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/62Polymers of compounds having carbon-to-carbon double bonds
    • C08G18/6275Polymers of halogen containing compounds having carbon-to-carbon double bonds; halogenated polymers of compounds having carbon-to-carbon double bonds
    • C08G18/6279Polymers of halogen containing compounds having carbon-to-carbon double bonds; halogenated polymers of compounds having carbon-to-carbon double bonds containing fluorine atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/81Unsaturated isocyanates or isothiocyanates
    • C08G18/8108Unsaturated isocyanates or isothiocyanates having only one isocyanate or isothiocyanate group
    • C08G18/8116Unsaturated isocyanates or isothiocyanates having only one isocyanate or isothiocyanate group esters of acrylic or alkylacrylic acid having only one isocyanate or isothiocyanate group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/002Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from unsaturated compounds
    • C08G65/005Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from unsaturated compounds containing halogens
    • C08G65/007Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from unsaturated compounds containing halogens containing fluorine
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D157/00Coating compositions based on unspecified polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C09D157/06Homopolymers or copolymers containing elements other than carbon and hydrogen
    • C09D157/08Homopolymers or copolymers containing elements other than carbon and hydrogen containing halogen atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D157/00Coating compositions based on unspecified polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C09D157/06Homopolymers or copolymers containing elements other than carbon and hydrogen
    • C09D157/12Homopolymers or copolymers containing elements other than carbon and hydrogen containing nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/14Polyurethanes having carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • C09D5/1606Antifouling paints; Underwater paints characterised by the anti-fouling agent
    • C09D5/1637Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • C09D5/1656Antifouling paints; Underwater paints characterised by the film-forming substance
    • C09D5/1662Synthetic film-forming substance
    • C09D5/1668Vinyl-type polymers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0046Photosensitive materials with perfluoro compounds, e.g. for dry lithography
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • G03F7/0388Macromolecular compounds which are rendered insoluble or differentially wettable with ethylenic or acetylenic bands in the side chains of the photopolymer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/30Introducing nitrogen atoms or nitrogen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms

Definitions

  • the present invention can impart high antifouling property to the surface of the cured coating film even when it is cured by irradiation with active energy rays in an air atmosphere (in the presence of oxygen), and adheres to the surface of the cured coating film.
  • the present invention relates to a fluorine-containing curable resin that can be used as a fluorine-based surface modifier that can maintain the antifouling property of the surface of a cured coating film even after wiping off dirt.
  • the present invention also relates to an active energy ray-curable composition using the fluorine-containing curable resin and a cured product thereof.
  • Fluorine-based surface modifier is an additive to be added to various paints and coating materials because it has excellent leveling, wettability, permeability, anti-blocking, slipperiness, water and oil repellency, and antifouling properties. Widely used.
  • a cured coating film obtained by applying and curing an active energy ray-curable composition containing this fluorine-based surface modifier exhibits excellent surface properties.
  • heating, humidification, exposure to chemicals such as acids and alkalis, cleaning to remove dirt, etc. make it easy for some of the fluorine-based surface modifiers to be detached or volatilized from the surface of the cured coating film.
  • the production line is contaminated and the antifouling property of the coating film surface is lowered.
  • a fluorine-containing curable resin having a polymerizable group polymerizable with other components therein has been proposed (see, for example, Patent Document 1).
  • this fluorine-containing curable resin has a problem that it cannot exhibit sufficient antifouling properties when cured by irradiation with active energy rays in an air atmosphere (in the presence of oxygen).
  • this fluorine-containing curable resin is inhibited from being polymerized by oxygen, the active energy ray-curable composition is cured when irradiated with active energy rays in an air atmosphere (in the presence of oxygen). Polymerization with other polymerizable components therein does not proceed sufficiently. Therefore, there has been a problem that the poly (perfluoroalkylene ether) chain cannot be sufficiently fixed on the surface of the cured coating film, and sufficient antifouling properties cannot be exhibited.
  • fluorine-containing curable resin capable of imparting a high antifouling property to the surface of a cured coating film even when cured by irradiation with active energy rays in an air atmosphere
  • poly (perfluoroalkylene ether) in the resin structure A fluorine-containing curable resin having a chain and a maleimide group has been proposed (for example, see Patent Document 2).
  • the fluorine-containing curable resin proposed in Patent Document 2 exhibits the above-described effect by a crosslinking reaction of the maleimide group.
  • the cured coating film of the active energy ray-curable composition containing the fluorine-containing curable resin described in Patent Document 2 as a surface modifier has reduced antifouling properties after wiping off once adhered dirt. There was still a problem.
  • the problem to be solved by the present invention is that high antifouling property can be imparted to the surface of a cured coating film even when it is cured by irradiation with active energy rays in an air atmosphere (in the presence of oxygen) and cured.
  • An object of the present invention is to provide a fluorine-containing curable resin capable of maintaining the antifouling property of the cured coating film surface even after wiping off the dirt adhering to the coating film surface.
  • Another object of the present invention is to provide an active energy ray-curable composition capable of exhibiting excellent antifouling properties when cured in an air atmosphere using the fluorine-containing curable resin, and a cured product thereof.
  • a poly (perfluoroalkylene ether) chain a maleimide group in the structure of a polymer of a monomer having a polymerizable unsaturated group or a urethane polymer.
  • a fluorine-containing curable resin having a mercapto group or a compound containing the fluorine-containing curable resin as a fluorine-based surface modifier in an active energy ray curable composition can be suppressed, surface performance such as antifouling properties can be stably imparted to the coating surface, and excellent antifouling properties can be exhibited even when cured in an air atmosphere.
  • the inventors have found that the antifouling property of the cured coating film surface can be maintained even after wiping off the dirt adhering to the cured coating film surface, and completed the present invention.
  • the present invention is characterized by having a poly (perfluoroalkylene ether) chain, a maleimide group, and a mercapto group in the polymer structure of a monomer polymer or urethane polymer having a polymerizable unsaturated group.
  • a fluorine-containing curable resin is provided.
  • the present invention provides a cured product obtained by applying the fluorine-containing curable resin to a substrate and irradiating and curing the active energy ray, and an active energy ray-curable composition containing the fluorine-containing curable resin. And a cured product obtained by applying the coating composition to a substrate and irradiating it with an active energy ray to be cured.
  • the fluorine-containing curable resin of the present invention imparts surface performance such as antifouling property to the cured coating film of the coating composition by blending it into the active energy ray-curable composition as a fluorine-based surface modifier. Can do.
  • the fluorine-containing curable resin of the present invention imparts very stable surface performance such as antifouling property to the coating film surface even when cured by irradiation with ultraviolet rays in an air atmosphere (in the presence of oxygen). Can do.
  • the antifouling property of the cured coating film surface can be maintained even after wiping off the dirt adhering to the cured coating film surface.
  • the fluorine-containing curable resin of the present invention and the active energy ray-curable composition containing the fluorine-containing curable resin are used in a nitrogen atmosphere purged with nitrogen in order to exhaust air from the inside of a curing device that irradiates active energy rays such as ultraviolet rays.
  • active energy rays such as ultraviolet rays.
  • FIG. 1 is an IR spectrum chart of the fluorinated curable resin (1) obtained in Example 1.
  • FIG. 2 is a 13 C-NMR chart of the fluorinated curable resin (1) obtained in Example 1.
  • FIG. 3 is a GPC chart of the fluorinated curable resin (1) obtained in Example 1.
  • the fluorine-containing curable resin of the present invention has a poly (perfluoroalkylene ether) chain, a maleimide group, and a mercapto group in a polymer structure of a monomer polymer having a polymerizable unsaturated group or a urethane polymer. It is. Among these, a fluorine-containing curable resin having a poly (perfluoroalkylene ether) chain, a maleimide group, and a mercapto group in the structure of a monomer polymer having a polymerizable unsaturated group is preferable.
  • a fluorine-containing curable resin having a poly (perfluoroalkylene ether) chain, a maleimide group and a mercapto group in the polymer structure of a monomer polymer having a polymerizable unsaturated group will be described.
  • this fluorine-containing curable resin production method has a polymer structure of a monomer having a polymerizable unsaturated group, and can produce a poly (perfluoroalkylene ether) chain, a maleimide group and a mercapto group, although not particularly limited, for example, a poly (perfluoroalkylene ether) chain, a monomer (A) having a polymerizable unsaturated group at both ends thereof, and a polymerizable unsaturation other than a maleimide group and a maleimide group Examples thereof include a method of copolymerizing a monomer (B) having a group as an essential monomer component in the presence of a polyfunctional thiol (C).
  • the poly (perfluoroalkylene ether) chain which is a raw material for the fluorine-containing curable resin of the present invention, and the monomer (A) having a polymerizable unsaturated group at both ends thereof will be described.
  • the poly (perfluoroalkylene ether) chain of the monomer (A) include those having a structure in which a divalent fluorocarbon group having 1 to 3 carbon atoms and oxygen atoms are alternately connected. It is done.
  • the divalent fluorocarbon group having 1 to 3 carbon atoms may be one kind or a mixture of plural kinds. Specifically, those represented by the following structural formula (a1) may be used. Can be mentioned.
  • X is the following structural formulas (a1-1) to (a1-5), and all X in the structural formula (a1) may have the same structure, Further, a plurality of structures may exist randomly or in a block shape. N is an integer of 1 or more representing the number of repeating units. ]
  • the active energy ray-curable composition to which the fluorine-containing curable resin of the present invention is added has a good leveling property, and a smooth coating film can be obtained, so that the par represented by the structural formula (a1-1) can be obtained.
  • the fluoromethylene structure and the perfluoroethylene structure represented by the structural formula (a1-2) coexist.
  • the abundance ratio between the perfluoromethylene structure represented by the structural formula (a1-1) and the perfluoroethylene structure represented by the structural formula (a1-2) is a molar ratio [structure (a1- The ratio of 1) / structure (a1-2)] is preferably 1/10 to 10/1 from the viewpoint of leveling properties.
  • the value of n in the structural formula (a1) is preferably in the range of 3 to 100, more preferably in the range of 6 to 70.
  • the poly (perfluoroalkylene ether) chain is antifouling of the active energy ray-curable composition of the present invention and dissolved in the non-fluorinated material of the fluorine-containing curable resin of the present invention. Therefore, the total number of fluorine atoms contained in one poly (perfluoroalkylene ether) chain is preferably in the range of 18 to 200, more preferably in the range of 25 to 150.
  • Examples of the method for producing the polymerizable monomer (A) include the following methods. First, as a raw material, a method using a compound having one hydroxyl group at both ends of a poly (perfluoroalkylene ether) chain can be mentioned. Specific examples are shown below. Method 1: A method obtained by dehydrochlorinating a (meth) acrylic acid chloride with respect to a compound having one hydroxyl group at both ends of a poly (perfluoroalkylene ether) chain. Method 2: A method obtained by dehydrating (meth) acrylic acid on a compound having one hydroxyl group at both ends of a poly (perfluoroalkylene ether) chain.
  • Method 3 A method obtained by urethanizing 2- (meth) acryloyloxyethyl isocyanate to a compound having one hydroxyl group at both ends of a poly (perfluoroalkylene ether) chain.
  • Method 4 A method obtained by esterifying itaconic anhydride to a compound having one hydroxyl group at both ends of a poly (perfluoroalkylene ether) chain.
  • Method 5 A method obtained by dehydrochlorinating chloromethylstyrene with respect to a compound having one hydroxyl group at both ends of a poly (perfluoroalkylene ether) chain.
  • Method 6 A method in which (meth) acrylic anhydride is esterified with a compound having one hydroxyl group at both ends of a poly (perfluoroalkylene ether) chain.
  • Method 7 A method obtained by esterifying 4-hydroxybutyl (meth) acrylate glycidyl ether with a compound having one carboxyl group at both ends of a poly (perfluoroalkylene ether) chain.
  • Method 8 A method obtained by esterifying glycidyl (meth) acrylate with a compound having one carboxyl group at both ends of a poly (perfluoroalkylene ether) chain.
  • Method 9 A method obtained by reacting a compound having one isocyanate group at both ends of a poly (perfluoroalkylene ether) chain with 2-hydroxyethyl (meth) acrylate.
  • Method 10 A method in which 2-hydroxyethyl (meth) acrylamide is reacted with a compound having one isocyanate group at both ends of a poly (perfluoroalkylene ether) chain.
  • Method 11 A method in which (meth) acrylic acid is esterified with a compound having one epoxy group at both ends of a poly (perfluoroalkylene ether) chain.
  • a method obtained by reacting with hydrochloric acid is particularly preferable in that it is easily obtained synthetically.
  • Examples of the compound having a poly (perfluoroalkylene ether) chain used in producing the polymerizable monomer (A) are represented by the following general formulas (a2-1) to (a2-6). And a compound having a structure.
  • “—PFPE—” represents the poly (perfluoroalkylene ether) chain.
  • the polymerizable unsaturated groups having both ends of the poly (perfluoroalkylene ether) chain of the polymerizable monomer (A) are, for example, polymerizable unsaturated groups represented by the following structural formulas U-1 to U-5. The thing which has a saturated group is mentioned.
  • the structural formula is derived from the ease of obtaining and producing the polymerizable monomer (A) itself, or the ease of copolymerization with the polymerizable monomer (B) described later.
  • An acryloyloxy group represented by U-1, a methacryloyloxy group represented by Structural Formula U-2, and a styryl group represented by Structural Formula U-5 are preferred.
  • (meth) acryloyl group means one or both of methacryloyl group and acryloyl group
  • (meth) acrylate means one or both of methacrylate and acrylate
  • (meth) “Acrylic acid” refers to one or both of methacrylic acid and acrylic acid.
  • polymerizable monomer (A) examples include those represented by the following structural formulas (A-1) to (A-13).
  • —PFPE— represents a poly (perfluoroalkylene ether) chain.
  • the structural formula (A-1) having (meth) acryloyl groups at both ends of the poly (perfluoroalkylene ether) chain Those represented by (A-2), (A-5), (A-6), (A-11), (A-12) and (A-13) are preferred, and more durable after curing. From the viewpoint of improvement, those having a methacryloyl group or a styryl group at both ends of the poly (perfluoroalkylene ether) chain represented by the structural formulas (A-2) and (A-13) are more preferable.
  • the monomer (B) having a maleimide group and a polymerizable unsaturated group other than the maleimide group will be described.
  • the polymerizable unsaturated group other than the maleimide group that the monomer (B) has include a (meth) acryloyl group and a vinyl group.
  • the polymerizable unsaturated group other than the maleimide group possessed by the monomer (B) is (meta ) An acryloyl group is preferred.
  • the maleimide group of the monomer (B) is a copolymerization reaction between the monomer (A) and the monomer (B), and the carbon-carbon unsaturated double bond of the maleimide group
  • Any carbon-carbon unsaturated dicarboxylic acid as represented by the following general formula (1) can be used as long as it does not participate in the polymerization reaction, that is, has no radical polymerizability in the copolymerization reaction.
  • a disubstituted maleimide group in which a substituent such as an alkyl group is bonded to a carbon of a heavy bond is preferable.
  • the fluorine-containing curable resin of the present invention which is an object, can be obtained.
  • the maleimide group is a functional group that can be photocured by causing a photodimerization reaction upon irradiation with active energy rays, regardless of the presence of a photopolymerization initiator (F) described later.
  • F photopolymerization initiator
  • R 1 and R 2 are each independently an alkyl group having 1 to 6 carbon atoms, or a hydrocarbon in which R 1 and R 2 are combined to form a 5-membered or 6-membered ring. Represents a group.
  • maleimide group represented by the general formula (1) include the following formulas (1-1) to (1-3).
  • monomers (B) include monomers represented by the following formulas (B-1) to (B-6).
  • the compound (A) and the monomer (B) are essential monomer components.
  • a polymerizable unsaturated monomer may be used.
  • examples of such other radically polymerizable unsaturated monomers include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, n-butyl (meth) acrylate, and isobutyl (meth).
  • n-pentyl (meth) acrylate n-hexyl (meth) acrylate, n-heptyl (meth) acrylate, n-octyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, nonyl (meth) acrylate, decyl ( (Meth) acrylates such as (meth) acrylate, dodecyl (meth) acrylate, cyclohexyl (meth) acrylate, isobornyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentenyl (meth) acrylate;
  • Aromatic vinyl compounds such as styrene, ⁇ -methylstyrene, p-methylstyrene, p-methoxystyrene; maleimide, N-methylmaleimide, N-ethylmaleimide, N-propylmaleimide, N-butylmaleimide, N-hexylmaleimide, And maleimide compounds such as N-octylmaleimide, N-dodecylmaleimide, N-stearylmaleimide, N-phenylmaleimide and N-cyclohexylmaleimide.
  • polyfunctional thiol (C) examples include an ester compound (C-1) obtained by reacting a polyol (c-1) having three or more hydroxyl groups with a carboxylic acid (c-2) having a mercapto group. ) And the like.
  • ester compound (C-1) include, for example, trimethylolpropane tristhioglycolate, pentaerythritol tetrakisthioglycolate, dipentaerythritol hexakisthioglycolate, trimethylolpropane tristhiopropionate, penta Erythritol tetrakisthiopropionate, dipentaerythritol hexakisthiopropionate, trimethylolpropane tris (3-mercaptobutyrate), pentaerythritol tetrakis (3-mercaptobutyrate), dipentaerythritol hexakis (3-mercaptobutyrate) Rate), tris (mercaptoglycoloxyethyl) isocyanurate, tris (mercaptopropyloxyethyl) isocyanurate, tris (3-merca) DOO butyloxye
  • pentaerythritol tetrakis (3-mercaptobutyrate), pentaerythritol tetrakisthiopropionate, and tris (3-mercaptobutyloxyethyl) exhibit excellent antifouling properties even when cured in an air atmosphere.
  • One or more compounds selected from the group consisting of isocyanurate and dipentaerythritol hexakisthiopropionate are preferred.
  • the use amount of the polyfunctional thiol (C) is preferably in the range of 0.1 to 50 parts by mass, and 0.5 to 30 parts by mass with respect to 100 parts by mass in total of the monomers having polymerizable unsaturated groups.
  • the range of 1 to 15 parts by mass is more preferable.
  • the amount of the polyfunctional thiol (C) used is the monomer ( A range of 0.1 to 50 parts by mass is preferable with respect to a total of 100 parts by mass of A) and monomer (B), more preferably a range of 0.5 to 30 parts by mass, and a range of 1 to 15 parts by mass. Further preferred.
  • the polyfunctional thiol (C) Is preferably in the range of 0.1 to 50 parts by mass with respect to 100 parts by mass in total of the monomer (A), the monomer (B) and other polymerizable unsaturated monomers.
  • the range of 0.5 to 30 parts by mass is more preferable, and the range of 1 to 15 parts by mass is more preferable.
  • the fluorine-containing curable resin of the present invention has a mercapto group.
  • the polyfunctional thiol (C) is present, and this multifunctional Thiol (C) acts as a chain transfer agent. That is, hydrogen radicals are extracted from the mercapto group of the polyfunctional thiol (C) by radicals generated from the radical polymerization initiator or radicals at the end of the polymer chain generated by polymerization to generate thiyl radicals.
  • the mercapto group becomes a site where the active energy ray can be cured, and its curability is not susceptible to curing inhibition even in an air atmosphere.
  • a fluorine-containing curable resin that can be used as a fluorine-based surface modifier that can maintain the antifouling property of the surface of the cured coating film even after wiping off the dirt adhering to the surface of the cured coating film.
  • the fluorine-containing curable resin of the present invention has a maleimide group.
  • the maleimide group is cross-linked on the surface of the fluorine-containing curable resin layer by dimerization, and the mercapto group becomes a hardened product by cross-linking with another resin.
  • Examples of the copolymerization method of the monomer (A), the monomer (B), and other polymerizable unsaturated monomers added as necessary include, for example, these monomer components in an organic solvent, Examples include a method of polymerizing in the presence of a radical polymerization initiator.
  • organic solvent for example, ketone solvents, ester solvents, amide solvents, sulfoxide solvents, ether solvents, hydrocarbon solvents, and fluorine solvents are preferable.
  • acetone methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, ethyl acetate, butyl acetate, propylene glycol monomethyl ether acetate, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, dimethyl sulfoxide, diethyl ether, diisopropyl ether, tetrahydrofuran, dioxane Toluene, xylene, 1,3-bis (trifluoromethyl) benzene, and the like.
  • These can be appropriately selected in consideration of boiling point, monomer solubility, and polymerizability.
  • examples of the radical polymerization initiator used in the copolymerization include peroxides such as benzoyl peroxide and azo compounds such as azobisisobutyronitrile.
  • the polymerization temperature is preferably set as appropriate according to the type of radical polymerization initiator used.
  • a chain transfer agent such as lauryl mercaptan, 2-mercaptoethanol, thioglycerol, ethylthioglycolic acid, octylthioglycolic acid or the like can be used as necessary.
  • Another fluorine-containing curable resin of the present invention is characterized by having a poly (perfluoroalkylene ether) chain, a maleimide group and a mercapto group in the polymer structure of the urethane polymer.
  • a fluorinated curable resin is prepared, for example, by mixing a poly (perfluoroalkylene ether) chain, a compound having two hydroxyl groups, a maleimide group and a compound having two hydroxyl groups, and then adding two isocyanate groups. Obtained by reacting a polyfunctional thiol compound with an excess mole with respect to the NCO remaining at the terminal after performing a polyaddition reaction under the condition that the isocyanate group is excessive with respect to the hydroxyl group. Can do.
  • the number average molecular weight (Mn) and the weight average molecular weight (Mw) of the fluorine-containing curable resin of the present invention have good compatibility with other compounding components when obtaining the active energy ray-curable composition of the present invention. Since a high leveling property can be realized, the number average molecular weight (Mn) is preferably in the range of 500 to 50,000, more preferably in the range of 1,500 to 20,000. The weight average molecular weight (Mw) is preferably in the range of 2,000 to 100,000, more preferably in the range of 3,000 to 50,000.
  • the number average molecular weight (Mn) and the weight average molecular weight (Mw) are values converted to polystyrene based on gel permeation chromatography (hereinafter abbreviated as “GPC”) measurement.
  • the measurement conditions for GPC are as follows.
  • the fluorine-containing curable resin of the present invention can be used as a main component of the active energy ray curable composition itself, but has an extremely excellent surface modification performance, and therefore the active energy ray curable composition.
  • a fluorine-based surface modifier to be added to the coating film, excellent antifouling properties can be imparted to the cured coating film.
  • the active energy ray-curable composition of the present invention is a blend of the fluorine-containing curable resin of the present invention.
  • the main component thereof is the active energy ray-curable resin (D) or active energy ray-curable property.
  • the active energy ray curable resin (D) and the active energy ray curable monomer (E) may be used alone or in combination. It doesn't matter.
  • the fluorine-containing curable resin of the present invention is preferably used as a fluorine-containing surface modifier in the active energy ray-curable composition.
  • the active energy ray-curable resin (D) is a urethane (meth) acrylate resin, an unsaturated polyester resin, an epoxy (meth) acrylate resin, a polyester (meth) acrylate resin, an acrylic (meth) acrylate resin, or a resin having a maleimide group.
  • a urethane (meth) acrylate resin is particularly preferable from the viewpoint of transparency and low shrinkage.
  • the urethane (meth) acrylate resin used here is a resin having a urethane bond and a (meth) acryloyl group obtained by reacting an aliphatic polyisocyanate compound or an aromatic polyisocyanate compound with a (meth) acrylate compound having a hydroxyl group. Is mentioned.
  • Examples of the aliphatic polyisocyanate compound include tetramethylene diisocyanate, pentamethylene diisocyanate, hexamethylene diisocyanate, heptamethylene diisocyanate, octamethylene diisocyanate, decamethylene diisocyanate, 2-methyl-1,5-pentane diisocyanate, 3-methyl- 1,5-pentane diisocyanate, dodecamethylene diisocyanate, 2-methylpentamethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate, isophorone diisocyanate, norbornane diisocyanate, hydrogenated diphenylmethane diisocyanate , Hydrogenated tolylene diisocyanate, hydrogenated xylylene Diisocyanate, hydrogenated tetramethylxylylene diisocyanate, cyclohexyl diisocyanate
  • examples of the acrylate compound having a hydroxyl group include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, Monohydric alcohol mono (meth) acrylates such as 5-pentanediol mono (meth) acrylate, 1,6-hexanediol mono (meth) acrylate, neopentyl glycol mono (meth) acrylate, hydroxypivalate neopentyl glycol mono (meth) acrylate (Meth) acrylate; trimethylolpropane di (meth) acrylate, ethoxylated trimethylolpropane (meth) acrylate, propoxylated trimethylolpropane di (meth) acrylate, glycerin di (meth) Mono- or di (meth) acrylates of trivalent alcohol
  • a compound having a group, or a polyfunctional (meth) acrylate having a hydroxyl group obtained by modifying the compound with ⁇ -caprolactone; dipropylene glycol mono (meth) acrylate, diethylene glycol mono (meth) acrylate, (Meth) acrylate compounds having an oxyalkylene chain such as propylene glycol mono (meth) acrylate and polyethylene glycol mono (meth) acrylate; polyethylene glycol-polypropylene glycol mono (meth) acrylate, polyoxybutylene-polyoxypropylene mono (meth) (Meth) acrylate compounds having block structure oxyalkylene chains such as acrylate; random structures such as poly (ethylene glycol-tetramethylene glycol) mono (meth) acrylate and poly (propylene glycol-tetramethylene glycol) mono (meth) acrylate And (meth) acrylate compounds having an oxyalkylene chain.
  • urethanization catalysts that can be used here include amines such as pyridine, pyrrole, triethylamine, diethylamine, and dibutylamine, phosphines such as triphenylphosphine and triethylphosphine, dibutyltin dilaurate, octyltin trilaurate, and octyl.
  • organotin compounds such as tin diacetate, dibutyltin diacetate, and tin octylate, and organometallic compounds such as zinc octylate.
  • urethane acrylate resins those obtained by reacting an aliphatic polyisocyanate compound with a (meth) acrylate compound having a hydroxyl group are excellent in transparency of the cured coating film and have good sensitivity to active energy rays. It is preferable from the viewpoint of excellent curability.
  • the unsaturated polyester resin is a curable resin obtained by polycondensation of ⁇ , ⁇ -unsaturated dibasic acid or its acid anhydride, aromatic saturated dibasic acid or its acid anhydride, and glycols.
  • ⁇ , ⁇ -unsaturated dibasic acid or its acid anhydride include maleic acid, maleic anhydride, fumaric acid, itaconic acid, citraconic acid, chloromaleic acid, and esters thereof.
  • aromatic saturated dibasic acid or acid anhydride thereof phthalic acid, phthalic anhydride, isophthalic acid, terephthalic acid, nitrophthalic acid, tetrahydrophthalic anhydride, endomethylenetetrahydrophthalic anhydride, halogenated phthalic anhydride and these Examples include esters.
  • the aliphatic or alicyclic saturated dibasic acid include oxalic acid, malonic acid, succinic acid, adipic acid, sebacic acid, azelaic acid, glutaric acid, hexahydrophthalic anhydride, and esters thereof.
  • glycols include ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, 1,3-butanediol, 1,4-butanediol, 2-methylpropane-1,3-diol, neopentyl glycol, triethylene glycol, Examples include tetraethylene glycol, 1,5-pentanediol, 1,6-hexanediol, bisphenol A, hydrogenated bisphenol A, ethylene glycol carbonate, 2,2-di- (4-hydroxypropoxydiphenyl) propane, etc.
  • oxides such as ethylene oxide and propylene oxide can be used in the same manner.
  • epoxy vinyl ester resin (meth) acrylic acid is reacted with an epoxy group of an epoxy resin such as a bisphenol A type epoxy resin, a bisphenol F type epoxy resin, a phenol novolac type epoxy resin, or a cresol novolak type epoxy resin. What is obtained is mentioned.
  • an epoxy resin such as a bisphenol A type epoxy resin, a bisphenol F type epoxy resin, a phenol novolac type epoxy resin, or a cresol novolak type epoxy resin. What is obtained is mentioned.
  • the resin having a maleimide group includes a bifunctional maleimide urethane compound obtained by urethanizing N-hydroxyethylmaleimide and isophorone diisocyanate, and a bifunctional maleimide ester compound obtained by esterifying maleimide acetic acid and polytetramethylene glycol.
  • Examples thereof include tetrafunctional maleimide ester compounds obtained by esterification of maleimidocaproic acid and a tetraethylene oxide adduct of pentaerythritol, and polyfunctional maleimide ester compounds obtained by esterification of maleimide acetic acid and a polyhydric alcohol compound.
  • These active energy ray-curable resins (D) can be used alone or in combination of two or more.
  • Examples of the active energy ray-curable monomer (E) include ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, and a number average molecular weight in the range of 150 to 1,000.
  • trimethylolpropane tri (meth) acrylate pentaerythritol tri (meth) acrylate, dipentaerythritol hexa (meth) acrylate, pentaerythritol tetra
  • a trifunctional or higher polyfunctional (meth) acrylate such as (meth) acrylate is preferred.
  • active energy ray-curable monomers (E) can be used alone or in combination of two or more.
  • the amount used thereof is the active energy ray-curable resin (D) and the active energy. It is preferably in the range of 0.01 to 10 parts by mass, more preferably in the range of 0.1 to 5 parts by mass, with respect to 100 parts by mass in total of the linear curable monomer (E). If the amount of the fluorine-containing curable resin of the present invention is in this range, the leveling property, water / oil repellency and antifouling property can be made sufficient, and the hardness and transparency after curing of the composition can be achieved. Can also be sufficient.
  • the fluorine-containing curable resin or active energy ray-curable composition of the present invention can be formed into a cured coating film by irradiating active energy rays after being applied to a substrate.
  • the active energy rays refer to ionizing radiation such as ultraviolet rays, electron beams, ⁇ rays, ⁇ rays, and ⁇ rays.
  • a photopolymerization initiator (F) is added to the fluorine-containing curable resin or active energy ray curable composition to improve curability. It is preferable. Further, if necessary, a photosensitizer can be further added to improve curability.
  • ionizing radiation such as electron beam, ⁇ -ray, ⁇ -ray, and ⁇ -ray
  • F) or a photosensitizer need not be added.
  • Examples of the photopolymerization initiator (F) include intramolecular cleavage type photopolymerization initiators and hydrogen abstraction type photopolymerization initiators.
  • Examples of the intramolecular cleavage type photopolymerization initiator include diethoxyacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, benzyldimethyl ketal, 1- (4-isopropylphenyl) -2-hydroxy.
  • Acetophenone compounds such as propan-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) butanone; benzoins such as benzoin, benzoin methyl ether, benzoin isopropyl ether; 2, 4, 6 -Trimethylbenzoin diphenylphosphine Kishido, bis (2,4,6-trimethylbenzoyl) acyl phosphine oxide-based compounds such as triphenylphosphine oxide; benzyl, and methyl phenylglyoxylate ester.
  • examples of the hydrogen abstraction type photopolymerization initiator include benzophenone, methyl 4-phenylbenzophenone o-benzoylbenzoate, 4,4′-dichlorobenzophenone, hydroxybenzophenone, 4-benzoyl-4′-methyl-diphenyl sulfide.
  • Benzophenone compounds such as acrylated benzophenone, 3,3 ′, 4,4′-tetra (t-butylperoxycarbonyl) benzophenone, 3,3′-dimethyl-4-methoxybenzophenone; 2-isopropylthioxanthone, 2,4 -Thioxanthone compounds such as dimethylthioxanthone, 2,4-diethylthioxanthone, 2,4-dichlorothioxanthone; Aminobenzophenone compounds such as Michler-ketone, 4,4'-diethylaminobenzophenone; -2-chloro acridone, 2-ethyl anthraquinone, 9,10-phenanthrenequinone, camphorquinone, and the like.
  • the compatibility with the active energy ray curable resin (D) and the active energy ray curable monomer (E) in the active energy ray curable composition is excellent. Therefore, 1-hydroxycyclohexyl phenyl ketone and benzophenone are preferable, and 1-hydroxycyclohexyl phenyl ketone is particularly preferable.
  • These photopolymerization initiators (F) can be used alone or in combination of two or more.
  • the photosensitizer examples include amines such as aliphatic amines and aromatic amines, ureas such as o-tolylthiourea, sodium diethyldithiophosphate, s-benzylisothiouronium-p-toluenesulfonate, and the like. And sulfur compounds.
  • photopolymerization initiators and photosensitizers are preferably used in an amount of 0.01 to 20 parts by weight, preferably 0.1 to 15 parts by weight, per 100 parts by weight of the non-volatile component in the active energy ray-curable composition. Part is more preferable, and 0.3 to 7 parts by mass is even more preferable.
  • the active energy ray-curable composition of the present invention is not limited to the effects of the present invention, depending on the purpose of use, characteristics, etc.
  • Various compounding materials for the purpose of adjusting coating properties and coating film properties such as various organic solvents, acrylic resins, phenol resins, polyester resins, polystyrene resins, urethane resins, urea resins, melamine resins, alkyd resins, epoxy resins,
  • Various resins such as polyamide resin, polycarbonate resin, petroleum resin, fluororesin, various organic or inorganic particles such as PTFE (polytetrafluoroethylene), polyethylene, polypropylene, carbon, titanium oxide, alumina, copper, silica fine particles, polymerization start Agent, polymerization inhibitor, antistatic agent, antifoaming agent, viscosity modifier, light stabilizer, weather stabilizer, Stabilizers, antioxidants, rust inhibitors, slip agents, waxes, gloss modifiers, mold release agents, compatibilizers, conduct
  • the organic solvent is useful for appropriately adjusting the solution viscosity of the active energy ray-curable composition of the present invention.
  • the film thickness can be adjusted. It becomes easy.
  • the organic solvent that can be used here include aromatic hydrocarbons such as toluene and xylene; alcohols such as methanol, ethanol, isopropanol and t-butanol; esters such as ethyl acetate and propylene glycol monomethyl ether acetate; methyl ethyl ketone, Examples thereof include ketones such as methyl isobutyl ketone and cyclohexanone. These solvents can be used alone or in combination of two or more.
  • the amount of the organic solvent to be used varies depending on the intended use and the intended film thickness and viscosity, but is preferably in the range of 0.5 to 4 times the mass of the total mass of the curing component.
  • the active energy ray for curing the active energy ray-curable composition of the present invention is an ionizing radiation such as an ultraviolet ray, an electron beam, an ⁇ ray, a ⁇ ray, and a ⁇ ray.
  • an ionizing radiation such as an ultraviolet ray, an electron beam, an ⁇ ray, a ⁇ ray, and a ⁇ ray.
  • a curing device for example, a germicidal lamp, an ultraviolet fluorescent lamp, a carbon arc, a xenon lamp, a high-pressure mercury lamp for copying, a medium or high-pressure mercury lamp, an ultra-high pressure mercury lamp, an electrodeless lamp, a metal halide lamp, natural light, etc.
  • the electron beam include ultraviolet rays, a scanning type, and a curtain type electron beam accelerator.
  • ultraviolet rays are particularly preferable, and ultraviolet rays are preferably irradiated in an inert gas atmosphere such as nitrogen gas in order to avoid curing inhibition due to oxygen or the like. Further, if necessary, heat may be used as an energy source and heat treatment may be performed after curing with ultraviolet rays.
  • the application method of the active energy ray-curable composition of the present invention varies depending on the application.
  • the cured coating film of the fluorine-containing curable resin of the present invention or the active energy ray-curable composition of the present invention has excellent antifouling properties (ink repellency, fingerprint resistance, etc.), scratch resistance, etc. By applying and curing on the surface, antifouling property, scratch resistance and the like can be imparted to the surface of the article.
  • the cured coating film of the fluorine-containing curable resin of the present invention or the active energy ray-curable composition of the present invention can maintain the antifouling property of the cured coating film surface even after wiping off the dirt adhering to the cured coating film surface. .
  • the fluorine-containing curable resin of the present invention can be imparted with leveling properties to the coating material by adding it as a fluorine-containing surface modifier to the coating material, the active energy ray-curable composition of the present invention.
  • the thing has a high leveling property.
  • Examples of articles that can be imparted with antifouling properties (ink repellency, fingerprint resistance, etc.) using the fluorine-containing curable resin or active energy ray-curable composition of the present invention include polarization of liquid crystal displays (LCD) such as TAC films.
  • LCD liquid crystal displays
  • Film for plates Various display screens such as plasma display (PDP) and organic EL display; Touch panel; Case or screen of electronic terminal such as mobile phone; Transparent protection for color filter for liquid crystal display (hereinafter referred to as “CF”) Film: Organic insulating film for liquid crystal TFT array; Ink-jet ink for forming electronic circuit; Optical recording medium such as CD, DVD, Blu-ray disc; Transfer film for insert mold (IMD, IMF); Rubber for OA equipment such as copier and printer Roller; Glass surface of the reading part of OA equipment such as copiers and scanners; Optical lenses such as LA, video camera, glasses, etc .; windshields of watches such as watches, glass surfaces; windows of various vehicles such as automobiles and railway vehicles; cover glasses or films for solar cells; various building materials such as decorative panels; Glass; woodworking materials such as furniture, artificial and synthetic leather, various plastic molded products such as housings for home appliances, FRP bathtubs, and the like.
  • CF Transparent protection for color filter for liquid crystal display
  • antifouling properties can be imparted to the article surfaces.
  • TAC Hard coating materials for polarizing plates of LCD such as films, anti-glare (AG: anti-glare) coating materials or anti-reflection (LR) coating materials; hard coating materials for various display screens such as plasma displays (PDP) and organic EL displays Hard coat material for touch panel; color resist, printing ink, inkjet ink or paint for forming each pixel of RGB used in CF; black resist, printing ink, inkjet ink or paint for black matrix of CF; plasma Resin composition for pixel partition walls of displays (PDP), organic EL displays, etc.
  • PDP plasma displays
  • Coating materials for electronic terminals such as mobile phones or hard coating materials; hard coating materials for mobile phone screens; transparent protective film coatings that protect the CF surface; coatings for organic insulating films of liquid crystal TFT arrays; Ink-jet inks; Hard coating materials for optical recording media such as CDs, DVDs, Blu-ray discs; Hard coating materials for transfer films for insert molds (IMD, IMF); Coating materials for rubber rollers for OA equipment such as copying machines and printers; Glass coating material for reading parts of OA equipment such as copy machines and scanners; Optical lens coating materials for cameras, video cameras, glasses, etc .; Windshields for watches such as watches, glass coating materials; Various types of automobiles, railway vehicles, etc.
  • a prism sheet that is a backlight member of an LCD or Examples thereof include a diffusion sheet. Further, by adding the fluorine-containing curable resin of the present invention to the prism sheet or the diffusion sheet coating material, the leveling property of the coating material is improved and the coating film of the coating material is scratch resistant (scratch resistance). And antifouling property can be provided.
  • optical fiber cladding materials As other applications in which the fluorine-containing curable resin or the active energy ray-curable composition of the present invention can be used, optical fiber cladding materials, waveguides, liquid crystal panel sealing materials, various optical sealing materials, optical Adhesives and the like.
  • the active energy ray-curable composition of the present invention when used as an antiglare coating material among coating materials for protective films for polarizing plates for LCDs, among the above-described compositions, silica fine particles, acrylic resin fine particles, polystyrene resin Excellent anti-glare properties by blending inorganic or organic fine particles such as fine particles at a ratio of 0.1 to 0.5 times the total mass of the curing component in the active energy ray-curable composition of the present invention. Since it becomes a thing, it is preferable.
  • the fluorine-containing curable resin or the active energy ray-curable composition of the present invention is used for an antiglare coating material for a protective film of a polarizing plate for LCD, a mold having an uneven surface shape is formed before the coating material is cured. After the contact, the active energy ray is irradiated from the side opposite to the mold and cured, and the surface of the coating layer can be embossed to apply an antiglare property.
  • Synthesis Example 1 [Synthesis of monomer (A) having a poly (perfluoroalkylene ether) chain and a polymerizable unsaturated group at both terminals thereof]
  • a glass flask equipped with a stirrer, thermometer, condenser, and dropping device has a poly (perfluoroalkylene ether) chain represented by the following formula (a2-1-1), and has hydroxyl groups at both ends.
  • X represents a perfluoromethylene group and a perfluoroethylene group, and the average number of perfluoromethylene groups is 17 and the average number of perfluoroethylene groups is 19 per molecule.
  • the fluoromethylene unit and the oxyperfluoroethylene unit are random bonds.
  • X represents a perfluoromethylene group and a perfluoroethylene group, and the average number of perfluoromethylene groups is 17 and the average number of perfluoroethylene groups is 19 per molecule.
  • the fluoromethylene unit and the oxyperfluoroethylene unit are random bonds.
  • Synthesis example 2 (same as above) A glass flask equipped with a stirrer, thermometer, condenser, and dropping device has a poly (perfluoroalkylene ether) chain represented by the following formula (a2-1-2), and has hydroxyl groups at both ends. 20 parts by mass of a compound, 20 parts by mass of diisopropyl ether as a solvent, 0.02 parts by mass of p-methoxyphenol as a polymerization inhibitor and 3.1 parts by mass of triethylamine as a neutralizing agent, and stirring under an air stream were started. While keeping the inside of the flask at 10 ° C., 2.7 parts by mass of methacrylic acid chloride was added dropwise over 1 hour.
  • a poly (perfluoroalkylene ether) chain represented by the following formula (a2-1-2), and has hydroxyl groups at both ends. 20 parts by mass of a compound, 20 parts by mass of diisopropyl ether as a solvent, 0.02 parts by mass of
  • the mixture was stirred at 10 ° C. for 1 hour, heated, stirred at 30 ° C. for 1 hour, further heated to 50 ° C. and stirred for 10 hours, and then disappearance of methacrylic acid chloride by gas chromatography measurement. The reaction was terminated. Next, after adding 40 parts by mass of diisopropyl ether as a solvent, 80 parts by mass of ion-exchanged water was mixed and stirred, and then left to stand to separate and remove the aqueous layer, and washing was repeated 3 times.
  • X represents a perfluoromethylene group and a perfluoroethylene group, and the average number of perfluoromethylene groups is 7 and the average number of perfluoroethylene groups is 8 per molecule.
  • the fluoromethylene unit and the oxyperfluoroethylene unit are random bonds.
  • X represents a perfluoromethylene group and a perfluoroethylene group, and the average number of perfluoromethylene groups is 7 and the average number of perfluoroethylene groups is 8 per molecule.
  • the fluoromethylene unit and the oxyperfluoroethylene unit are random bonds.
  • Example 1 (Preparation of fluorine-containing curable resin of the present invention) A glass flask equipped with a stirrer, a thermometer, a condenser, and a dropping device was charged with 425 parts by mass of methyl isobutyl ketone and 1,305 parts by mass of 1,3-bis (trifluoromethyl) benzene as a solvent. The temperature was raised to 95 ° C. with stirring.
  • Liquid 3 3 types of dripping solution (Liquid 3) dissolved in each were set in separate dripping devices respectively, while keeping the inside of the flask at 95 ° C. Initiation of dropping, the liquid 1 and liquid 2 is 2 hours, the liquid 3 was added dropwise over 2 hours 20 minutes. After completion of dropping, the mixture was stirred at 95 ° C. for 5 hours.
  • Comparative Example 1 [Preparation of fluorinated curable resin having poly (perfluoroalkylene ether) chain]
  • a glass flask equipped with a stirrer, thermometer, condenser, and dropping device was charged with 146.1 parts by mass of 1,3-bis (trifluoromethyl) benzene as a solvent, and stirred at 105 ° C. while stirring under a nitrogen stream. The temperature rose.
  • HEMA 2-hydroxyethyl methacrylate
  • Comparative Example 2 (same as above) In another glass flask equipped with a stirrer, a thermometer, a condenser, and a dropping device, 63 parts by mass of methyl isobutyl ketone was charged as a solvent, and the temperature was raised to 105 ° C. while stirring in a nitrogen stream.
  • Comparative Example 3 [Preparation of fluorinated curable resin having poly (perfluoroalkylene ether) chain and maleimide group]
  • a glass flask equipped with a stirrer, a thermometer, a condenser, and a dropping device was charged with 3,275 parts by mass of methyl isobutyl ketone as a solvent and heated to 105 ° C. while stirring under a nitrogen stream.
  • 191 parts by mass (Liquid 1) of monomer (A-2-2) obtained in Synthesis Example 2 and 762 parts by mass of 3,4,5,6-tetrahydrophthalimidoethyl acrylate were added to methyl isobutyl ketone 1,288.
  • Liquid 2 Three types of solutions (Liquid 2) dissolved in parts by mass, and a solution (Liquid 3) in which 143 parts by mass of t-butylperoxy-2-ethylhexanoate as a radical polymerization initiator were dissolved in 835 parts by mass of methyl isobutyl ketone
  • the dripping liquids were set in separate dripping apparatuses, respectively, and dropped simultaneously over 2 hours while maintaining the inside of the flask at 105 ° C. After completion of dropping, the mixture was stirred at 105 ° C. for 10 hours.
  • the reaction liquid obtained above was cooled to room temperature, and then insoluble in the solution was filtered off to obtain a solution containing 16% by mass of a comparative fluorine-containing curable resin (3 ′).
  • the molecular weight of the comparative fluorine-containing curable resin (3 ′) was measured by GPC (polystyrene equivalent molecular weight). As a result, the number average molecular weight was 2,000 and the weight average molecular weight was 6,000.
  • base resin composition of active energy ray curable composition 50 parts by mass of pentafunctional non-yellowing urethane acrylate, 50 parts by mass of dipentaerythritol hexaacrylate, 25 parts by mass of butyl acetate, 1-hydroxycyclohexylphenyl as a photopolymerization initiator 5 parts by weight of a ketone (“Irgacure 184” manufactured by BASF Japan Ltd.), 54 parts by weight of toluene as a solvent, 28 parts by weight of 2-propanol, 28 parts by weight of ethyl acetate, 28 parts by weight of propylene glycol monomethyl ether were mixed and dissolved.
  • a base resin composition of an active energy ray curable composition was obtained.
  • Examples 3 and 4 and Comparative Examples 5 to 9 In 268 parts by mass of the base resin composition obtained above, the fluorine-containing curable resin for comparison and the solutions of the fluorine-containing curable resins obtained in Examples 1 and 2 and Comparative Examples 1 to 4 were used. An amount of 1 part by weight of the above solution was added and mixed uniformly to obtain active energy ray-curable compositions 1 and 2 and comparative active energy ray-curable compositions 1 ′ to 4 ′. . Subsequently, these active energy ray-curable compositions were applied to bar coater No. 13 is applied to a polyethylene terephthalate (PET) film having a thickness of 188 ⁇ m, then put into a dryer at 60 ° C.
  • PET polyethylene terephthalate
  • UV ultraviolet rays
  • a film (coated film) on which a cured coating film was laminated was obtained.
  • the ultraviolet irradiation conditions were an air atmosphere (oxygen concentration 21% by volume), a high-pressure mercury lamp, and an ultraviolet irradiation amount of 3.5 kJ / m 2 .
  • the antifouling property of the coated surface of the coated film obtained above was evaluated by the antifouling property, the ease of wiping off the dirt, and the antifouling property after wiping off the dirt.
  • the evaluation method is shown below.
  • Example 3 From the evaluation results shown in Table 1, the active energy ray-curable composition of Example 3 to which the fluorine-containing curable resin (1) obtained in Example 1, which is the fluorine-containing curable resin of the present invention, was added.
  • the cured coating has very good anti-smudge properties, easy wiping of dirt, and anti-smudge properties after wiping off the dirt. It was found that a cured coating film having soiling properties can be obtained. This is because the mercapto group present in the fluorine-containing curable resin of the present invention reacts with an acryloyl group such as urethane acrylate which is a matrix component in the active energy ray-curable composition, thereby the fluorine-containing curable resin of the present invention. This is because the resin is firmly fixed on the surface of the coating film.
  • the characteristic of the reaction between this mercapto group and acryloyl group is that it is less susceptible to polymerization inhibition by oxygen even when UV curing is performed in an air atmosphere. This inhibition of polymerization by oxygen is due to the reaction between the terminal radical of the polymer in the growth process and oxygen in the air. Since the peroxide radical generated at this time does not react with the acryloyl group, the polymerization stops as a result. However, when a mercapto group is present in the polymerization system, the generated peroxide radicals extract the hydrogen of the mercapto group and generate a thiyl radical. This thiyl radical can react with an acryloyl group to initiate polymerization, and the polymerization reaction proceeds favorably.
  • the fluorine-containing curable resin of the present invention is not subjected to polymerization inhibition by oxygen. To be firmly fixed. Furthermore, the maleimide group of the fluorine-containing curable resin of the present invention causes a photodimerization reaction by ultraviolet irradiation, and has a stronger antifouling property by crosslinking the polymer chains of the fluorine-containing curable resin of the present invention. It becomes a cured coating film.
  • the cured coating film of the active energy ray-curable composition of Comparative Example 5 to which the comparative fluorine-containing curable resin (1 ′) obtained in Comparative Example 1 was added had good soil wiping ease.
  • the antifouling property and the antifouling property after wiping off the dirt were insufficient and the antifouling property was slightly inferior.
  • the polymerizable unsaturated group of the fluorine-containing curable resin (1 ′) is an acryloyl group, and the polymerization was subjected to oxygen inhibition, so that the polymerization did not proceed sufficiently and a strong cured coating film was not obtained. It is because.
  • the cured coating films of the comparative active energy ray curable compositions of Comparative Examples 6 to 7 to which the comparative fluorine-containing curable resins (2 ′) to (3 ′) obtained in Comparative Examples 2 to 3 were added It was found that the antifouling property was poor and the antifouling property was inadequate, and the antifouling property after soiling was insufficient.
  • the fluorine-containing curable resin for comparison (2 ′) as in the fluorine-containing curable resin for comparison (1 ′), the polymerizable unsaturated group is an acryloyl group. This is because, due to inhibition, sufficient polymerization did not proceed and a strong cured coating film was not obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Paints Or Removers (AREA)
  • Polyethers (AREA)

Abstract

 本発明は硬化塗膜表面に優れた防汚性を付与することができ、かつ空気雰囲気下(酸素存在下)で硬化した場合においても優れた防汚性を発揮できる含フッ素硬化性樹脂を提供する。また、該含フッ素硬化性樹脂を用いて、空気雰囲気下で硬化した場合においても優れた防汚性を発揮できる活性エネルギー線硬化性組成物及びその硬化物を提供することを目的とし、この目的を達成すべく重合性不飽和基を有する単量体の重合体またはウレタン重合体の構造中にポリ(パーフルオロアルキレンエーテル)鎖、マレイミド基及びメルカプト基を有することを特徴とする含フッ素硬化性樹脂を提供する。

Description

含フッ素硬化性樹脂、活性エネルギー線硬化性組成物及びその硬化物
 本発明は、空気雰囲気下(酸素存在下)で活性エネルギー線を照射して硬化させた場合でも高い防汚性を硬化塗膜表面に付与することができ、且つ、硬化塗膜表面に付着した汚れをふき取った後も硬化塗膜表面の防汚性を維持できるフッ素系表面改質剤として用いることができる含フッ素硬化性樹脂に関する。また、該含フッ素硬化性樹脂を用いた活性エネルギー線硬化性組成物及びその硬化物に関する。
 フッ素系表面改質剤は、レベリング性、濡れ性、浸透性、ブロッキング防止性、滑り性、撥水撥油性、防汚性などに優れる点から、各種塗料、コーティング材料等に添加する添加剤として広く使用されている。
 例えば、このフッ素系表面改質剤を配合した活性エネルギー線硬化性組成物を塗布、硬化させて得られる硬化塗膜は、優れた表面特性を発現する。しかしながら、加熱、加湿、酸・アルカリ等の薬品への暴露、汚れ除去のための洗浄等によって、フッ素系表面改質剤の一部が硬化塗膜表面から脱離又は揮発しやすくなり、その結果、製造ラインが汚染されたり、塗膜表面の防汚性が低下したりするという問題があった。
 この硬化塗膜表面からの脱離を抑制し、かつ高い防汚性を硬化塗膜表面に付与できる添加剤として、ポリ(パーフルオロアルキレンエーテル)鎖を有し、かつ活性エネルギー線硬化性組成物中の他の成分と重合可能な重合性基を有する含フッ素硬化性樹脂が提案されている(例えば、特許文献1参照。)。しかしながら、この含フッ素硬化性樹脂は、空気雰囲気下(酸素存在下)で活性エネルギー線を照射して硬化させた場合、十分な防汚性を発揮できない問題があった。具体的には、この含フッ素硬化性樹脂は、酸素により重合が阻害される為、空気雰囲気下(酸素存在下)で活性エネルギー線を照射して硬化させた場合、活性エネルギー線硬化性組成物中の他の重合性成分との重合が十分に進まない。その為、硬化塗膜表面にポリ(パーフルオロアルキレンエーテル)鎖が十分に固定化できず、十分な防汚性を発揮できない問題があった。
 空気雰囲気下で活性エネルギー線を照射して硬化させた場合でも高い防汚性を硬化塗膜表面に付与することができる含フッ素硬化性樹脂として、例えば、樹脂構造中にポリ(パーフルオロアルキレンエーテル)鎖とマレイミド基とを有する含フッ素硬化性樹脂が提案されている(例えば、特許文献2参照。)。該特許文献2で提案された含フッ素硬化性樹脂は、マレイミド基が架橋反応することで、上記効果を発現している。しかしながら、特許文献2に記載された含フッ素硬化性樹脂を表面改質剤として配合した活性エネルギー線硬化性組成物の硬化塗膜は、一度付着した汚れをふき取った後は防汚性が低下してしまう問題がまだあった。
 そこで、空気雰囲気下(酸素存在下)でも、高い防汚性を発揮し、しかも硬化塗膜表面に付着した汚れをふき取った後も硬化塗膜表面の防汚性を維持できる表面改質剤が求められていた。
国際公開WO2009/133770号パンフレット 特開2011-093978号公報
 本発明が解決しようとする課題は、空気雰囲気下(酸素存在下)で活性エネルギー線を照射して硬化させた場合でも高い防汚性を硬化塗膜表面に付与することができ、且つ、硬化塗膜表面に付着した汚れをふき取った後も硬化塗膜表面の防汚性を維持できる含フッ素硬化性樹脂を提供することである。また、該含フッ素硬化性樹脂を用いて、空気雰囲気下で硬化した場合において優れた防汚性を発揮できる活性エネルギー線硬化性組成物及びその硬化物を提供することである。
 本発明者等は上記課題を解決すべく鋭意研究を重ねた結果、重合性不飽和基を有する単量体の重合体またはウレタン重合体の構造中にポリ(パーフルオロアルキレンエーテル)鎖、マレイミド基に加えて、更に、メルカプト基を有する含フッ素硬化性樹脂や該含フッ素硬化性樹脂をフッ素系表面改質剤として活性エネルギー線硬化性組成物に配合したものは、硬化塗膜からの含フッ素硬化性樹脂又はその分解物の揮発や脱離が抑制でき、塗膜表面に防汚性等の表面性能を安定よく付与できること、空気雰囲気下で硬化した場合においても優れた防汚性を発揮できること、硬化塗膜表面に付着した汚れをふき取った後も硬化塗膜表面の防汚性を維持できること等を見出し、本発明を完成した。
 すなわち、本発明は、重合性不飽和基を有する単量体の重合体またはウレタン重合体の重合体構造中にポリ(パーフルオロアルキレンエーテル)鎖、マレイミド基及びメルカプト基を有することを特徴とする含フッ素硬化性樹脂を提供するものである。
 さらに、本発明は、前記含フッ素硬化性樹脂を基材に塗布し、活性エネルギー線を照射して硬化させてなる硬化物、並びに前記含フッ素硬化性樹脂を配合した活性エネルギー線硬化性組成物、及び該塗料組成物を基材に塗布し、活性エネルギー線を照射して硬化させてなる硬化物を提供するものである。
 本発明の含フッ素硬化性樹脂は、フッ素系表面改質剤として活性エネルギー線硬化性組成物に配合することにより、該塗料組成物の硬化塗膜に防汚性等の表面性能を付与することができる。また、本発明の含フッ素硬化性樹脂は、空気雰囲気下(酸素存在下)で紫外線照射して硬化した場合においても、非常に安定した防汚性等の表面性能を塗膜表面に付与することができる。加えて、硬化塗膜表面に付着した汚れをふき取った後も硬化塗膜表面の防汚性を維持できる。
 したがって、本発明の含フッ素硬化性樹脂及びそれを配合した活性エネルギー線硬化性組成物は、紫外線等の活性エネルギー線を照射する硬化装置内から空気を排出するため窒素パージした窒素雰囲気下での硬化のみならず、製造コスト、装置上の制約等により窒素パージが困難な場合においても十分な性能を発揮することができるという利点がある。
図1は、実施例1で得られた含フッ素硬化性樹脂(1)のIRスペクトルのチャート図である。 図2は、実施例1で得られた含フッ素硬化性樹脂(1)の13C-NMRのチャート図である。 図3は、実施例1で得られた含フッ素硬化性樹脂(1)のGPCのチャート図である。
 本発明の含フッ素硬化性樹脂は、重合性不飽和基を有する単量体の重合体またはウレタン重合体の重合体構造中にポリ(パーフルオロアルキレンエーテル)鎖、マレイミド基及びメルカプト基を有するものである。中でも、重合性不飽和基を有する単量体の重合体の構造中にポリ(パーフルオロアルキレンエーテル)鎖、マレイミド基及びメルカプト基を有する含フッ素硬化性樹脂が好ましい。
 まず、重合性不飽和基を有する単量体の重合体の重合体構造中にポリ(パーフルオロアルキレンエーテル)鎖、マレイミド基及びメルカプト基を有する含フッ素硬化性樹脂について説明する。この含フッ素硬化性樹脂の製造方法は、重合性不飽和基を有する単量体の重合体構造を有し、ポリ(パーフルオロアルキレンエーテル)鎖、マレイミド基及びメルカプト基を有するものが製造できれば、特に限定されるものではないが、例えば、ポリ(パーフルオロアルキレンエーテル)鎖とその両末端に重合性不飽和基を有する単量体(A)と、マレイミド基及びマレイミド基以外の重合性不飽和基を有する単量体(B)とを必須の単量体成分として、多官能チオール(C)の存在下で共重合させる方法等が挙げられる。
 まず、本発明の含フッ素硬化性樹脂の原料となるポリ(パーフルオロアルキレンエーテル)鎖とその両末端に重合性不飽和基を有する単量体(A)について説明する。前記単量体(A)が有するポリ(パーフルオロアルキレンエーテル)鎖としては、例えば、炭素原子数1~3の2価フッ化炭素基と酸素原子が交互に連結した構造を有するもの等が挙げられる。炭素原子数1~3の2価フッ化炭素基は、一種類であってもよいし複数種の混合であってもよく、具体的には、下記構造式(a1)で表されるものが挙げられる。
Figure JPOXMLDOC01-appb-C000002
〔上記構造式(a)中、Xは下記構造式(a1-1)~(a1-5)であり、構造式(a1)中の全てのXが同一構造のものであってもよいし、また、複数の構造がランダムに又はブロック状に存在していてもよい。また、nは繰り返し単位数を表す1以上の整数である。〕
Figure JPOXMLDOC01-appb-C000003
 これらの中でも本発明の含フッ素硬化性樹脂を添加した活性エネルギー線硬化性組成物のレベリング性が良好となり、平滑な塗膜が得られる点から前記構造式(a1-1)で表されるパーフルオロメチレン構造と、前記構造式(a1-2)で表されるパーフルオロエチレン構造とが共存するものが特に好ましい。ここで、前記構造式(a1-1)で表されるパーフルオロメチレン構造と、前記構造式(a1-2)で表されるパーフルオロエチレン構造との存在比率は、モル比率[構造(a1-1)/構造(a1-2)]が1/10~10/1となる割合であることがレベリング性の点から好ましい。また、前記構造式(a1)中のnの値は3~100の範囲であることが好ましく、6~70の範囲がより好ましい。
 また、前記ポリ(パーフルオロアルキレンエーテル)鎖は、本発明の活性エネルギー線硬化性組成物の防汚性と、本発明の含フッ素硬化性樹脂の該組成物中の非フッ素系材料への溶解性とを両立できることからポリ(パーフルオロアルキレンエーテル)鎖1本に含まれるフッ素原子の合計が18~200個の範囲であることが好ましく、25~150個の範囲であることがより好ましい。
 前記重合性単量体(A)の製造方法としては、例えば、以下の方法等が挙げられる。まず、原料として、ポリ(パーフルオロアルキレンエーテル)鎖の両末端に水酸基を1つずつ有する化合物を用いる方法が挙げられる。具体例を以下に示す。
 方法1:ポリ(パーフルオロアルキレンエーテル)鎖の両末端に水酸基を1つずつ有する化合物に対して(メタ)アクリル酸クロライドを脱塩酸反応させて得る方法。
 方法2:ポリ(パーフルオロアルキレンエーテル)鎖の両末端に水酸基を1つずつ有する化合物に対して(メタ)アクリル酸を脱水反応させて得る方法。
 方法3:ポリ(パーフルオロアルキレンエーテル)鎖の両末端に水酸基を1つずつ有する化合物に対して2-(メタ)アクリロイルオキシエチルイソシアネートをウレタン化反応させて得る方法。
 方法4:ポリ(パーフルオロアルキレンエーテル)鎖の両末端に水酸基を1つずつ有する化合物に対して無水イタコン酸をエステル化反応させて得る方法。
 方法5:ポリ(パーフルオロアルキレンエーテル)鎖の両末端に水酸基を1つずつ有する化合物に対してクロロメチルスチレンを脱塩酸反応させて得る方法。
 方法6:ポリ(パーフルオロアルキレンエーテル)鎖の両末端に水酸基を1つずつ有する化合物に対して(メタ)アクリル酸無水物をエステル化反応させる方法。
 次に、原料として、ポリ(パーフルオロアルキレンエーテル)鎖の両末端にカルボキシル基を1つずつ有する化合物を用いる方法が挙げられる。具体例を以下に示す。
 方法7:ポリ(パーフルオロアルキレンエーテル)鎖の両末端にカルボキシル基を1つずつ有する化合物に対して4-ヒドロキシブチル(メタ)アクリレートグリシジルエーテルをエステル化反応させて得る方法。
 方法8:ポリ(パーフルオロアルキレンエーテル)鎖の両末端にカルボキシル基を1つずつ有する化合物に対してグリシジル(メタ)アクリレートをエステル化反応させて得る方法。
 更に、原料として、ポリ(パーフルオロアルキレンエーテル)鎖の両末端にイソシアネート基を1つずつ有する化合物を1つずつ有する化合物を用いる方法が挙げられる。具体例を以下に示す。
 方法9:ポリ(パーフルオロアルキレンエーテル)鎖の両末端にイソシアネート基を1つずつ有する化合物に対して2-ヒドロキシエチル(メタ)アクリレートを反応させて得る方法。
 方法10:ポリ(パーフルオロアルキレンエーテル)鎖の両末端にイソシアネート基を1つずつ有する化合物に対して2-ヒドロキシエチル(メタ)アクリルアミドを反応させる方法。
 更に、原料として、ポリ(パーフルオロアルキレンエーテル)鎖の両末端にエポキシ基を1つずつ有する化合物を1つずつ有する化合物を用いる方法が挙げられる。具体例を以下に示す。
 方法11:ポリ(パーフルオロアルキレンエーテル)鎖の両末端にエポキシ基を1つずつ有する化合物に対して(メタ)アクリル酸をエステル化反応させる方法。
 上記に記載した方法の中でもポリ(パーフルオロアルキレンエーテル)鎖の両末端に水酸基を1つずつ有する化合物に対して(メタ)アクリル酸クロライドを脱塩酸反応させて得る方法と、ポリ(パーフルオロアルキレンエーテル)鎖の両末端に水酸基を1つずつ有する化合物に対して2-(メタ)アクリロイルオキシエチルイソシアネートをウレタン化反応させて得る方法と、ポリ(パーフルオロアルキレンエーテル)鎖の両末端に水酸基を1つずつ有する化合物に対して(メタ)アクリル酸無水物をエステル化反応させる方法と、ポリ(パーフルオロアルキレンエーテル)鎖の両末端に水酸基を1つずつ有する化合物に対してクロロメチルスチレンを脱塩酸反応させて得る方法が合成上得られやすい点で特に好ましい。
 前記した重合性単量体(A)を製造する際に用いるポリ(パーフルオロアルキレンエーテル)鎖を有する化合物としては、例えば、以下の一般式(a2-1)~(a2-6)で表される構造を有する化合物等が挙げられる。なお、下記の各構造式中における「-PFPE-」は、上記のポリ(パーフルオロアルキレンエーテル)鎖を表す。
Figure JPOXMLDOC01-appb-C000004
 また、前記重合性単量体(A)のポリ(パーフルオロアルキレンエーテル)鎖の両末端に有する重合性不飽和基は、例えば、下記構造式U-1~U-5で示される重合性不飽和基を有するものが挙げられる。
Figure JPOXMLDOC01-appb-C000005
 これらの重合性不飽和基の中でも特に重合性単量体(A)自体の入手や製造の容易さ、あるいは、後述する重合性単量体(B)との共重合の容易さから、構造式U-1で表されるアクリロイルオキシ基、構造式U-2で表されるメタクリロイルオキシ基、構造式U-5で表されるスチリル基が好ましい。
 なお、本発明において、「(メタ)アクリロイル基」とは、メタクリロイル基とアクリロイル基の一方又は両方をいい、「(メタ)アクリレート」とは、メタクリレートとアクリレートの一方又は両方をいい、「(メタ)アクリル酸」とは、メタクリル酸とアクリル酸の一方又は両方をいう。
 前記重合性単量体(A)の具体例としては、下記構造式(A-1)~(A-13)で表されるものが挙げられる。なお、下記の各構造式中における「-PFPE-」は、ポリ(パーフルオロアルキレンエーテル)鎖を示す。
Figure JPOXMLDOC01-appb-C000006
 これらの中でも重合性単量体(A)の工業的製造が容易である点から、ポリ(パーフルオロアルキレンエーテル)鎖の両末端に(メタ)アクリロイル基を有する前記構造式(A-1)、(A-2)、(A-5)、(A-6)、(A-11)、(A-12)及び(A-13)で表されるものが好ましく、硬化後の耐久性をより向上させることができる点から、前記構造式(A-2)、(A-13)で表されるポリ(パーフルオロアルキレンエーテル)鎖の両末端にメタクリロイル基またはスチリル基を有するものがより好ましい。
 次に、マレイミド基及びマレイミド基以外の重合性不飽和基を有する単量体(B)について説明する。前記単量体(B)が有するマレイミド基以外の重合性不飽和基としては、例えば、(メタ)アクリロイル基、ビニル基等が挙げられる。また、前記単量体(A)と同様に、重合性が高く、共重合が容易であることから、前記単量体(B)が有するマレイミド基以外の重合性不飽和基としては、(メタ)アクリロイル基が好ましい。
 また、前記単量体(B)が有するマレイミド基は、前記単量体(A)と単量体(B)との共重合反応で、マレイミド基の炭素-炭素不飽和二重結合がこの共重合反応に関与しない、すなわち共重合反応でのラジカル重合性を有しないものであれば、特に制限なく用いることができるが、下記一般式(1)で表されるような炭素-炭素不飽和二重結合の炭素にアルキル基等の置換基が結合した2置換マレイミド基が好ましい。このような2置換マレイミド基を有する単量体(B)を用いることで、前記単量体(A)と共重合する際に、マレイミド基の二重結合を共重合反応に消費されることを抑制することができ、目的物である本発明の含フッ素硬化性樹脂を得ることができる。なお、このマレイミド基は、後述する光重合開始剤(F)の存在にかかわらず、活性エネルギー線の照射により光二量化反応を生じて光硬化可能な官能基である。また、この光二量化反応は酸素による反応阻害を受けないため、空気中での塗膜硬化においても十分に反応が進行する。したがって、マレイミド基は、本発明の含フッ素硬化性樹脂のポリマー鎖同士を光二量化反応により、架橋することができるため、空気中での塗膜硬化においても、強固な硬化塗膜を得ることができる。
Figure JPOXMLDOC01-appb-C000007
(式中、R及びRは、それぞれ独立して、炭素原子数1~6のアルキル基、又はRとRとが1つとなって5員環もしくは6員環を形成する炭化水素基を表す。)
 上記一般式(1)で表されるマレイミド基の具体例としては、例えば、下記式(1-1)~(1-3)等が挙げられる。
Figure JPOXMLDOC01-appb-C000008
 さらに、前記単量体(B)の具体例として、下記式(B-1)~(B-6)で表される単量体等が挙げられる。
Figure JPOXMLDOC01-appb-C000009
 また、上記で例示した本発明の含フッ素硬化性樹脂を製造方法において、前記化合物(A)及び単量体(B)を必須の単量体成分とするが、これらと共重合し得るその他の重合性不飽和単量体を用いても構わない。このようなその他のラジカル重合性不飽和単量体としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、n-ペンチル(メタ)アクリレート、n-ヘキシル(メタ)アクリレート、n-ヘプチル(メタ)アクリレート、n-オクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレート、ドデシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート等の(メタ)アクリル酸エステル;
スチレン、α-メチルスチレン、p-メチルスチレン、p-メトキシスチレン等の芳香族ビニル化合物;マレイミド、N-メチルマレイミド、N-エチルマレイミド、N-プロピルマレイミド、N-ブチルマレイミド、N-ヘキシルマレイミド、N-オクチルマレイミド、N-ドデシルマレイミド、N-ステアリルマレイミド、N-フェニルマレイミド、N-シクロヘキシルマレイミド等のマレイミド化合物などが挙げられる。
 次に、多官能チオール(C)について説明する。前記多官能チオール(C)としては、例えば、水酸基を3つ以上有するポリオール(c-1)とメルカプト基を有するカルボン酸(c-2)とを反応させて得られたエステル化合物(C-1)等が挙げられる。
 前記エステル化合物(C-1)の具体例としては、例えば、トリメチロールプロパントリスチオグリコレート、ペンタエリスリトールテトラキスチオグリコレート、ジペンタエリスリトールヘキサキスチオグリコレート、トリメチロールプロパントリスチオプロピオネート、ペンタエリスリトールテトラキスチオプロピオネート、ジペンタエリスリトールヘキサキスチオプロピオネート、トリメチロールプロパントリス(3-メルカプトブチレート)、ペンタエリスリトールテトラキス(3-メルカプトブチレート)、ジペンタエリスリトールヘキサキス(3-メルカプトブチレート)、トリス(メルカプトグリコールオキシエチル)イソシアヌレート、トリス(メルカプトプロピルオキシエチル)イソシアヌレート、トリス(3-メルカプトブチルオキシエチル)イソシアヌレート等が挙げられる。これらの中でも、空気雰囲気下での硬化においても優れた防汚性を発揮することから、ペンタエリスリトールテトラキス(3-メルカプトブチレート)、ペンタエリスリトールテトラキスチオプロピオネート、トリス(3-メルカプトブチルオキシエチル)イソシアヌレート及びジペンタエリスリトールヘキサキスチオプロピオネートからなる群から選ばれる1種以上の化合物が好ましい。
 前記多官能チオール(C)の使用量としては、重合性不飽和基を有する単量体の合計100質量部に対して0.1~50質量部の範囲が好ましく、0.5~30質量部の範囲がより好ましく、1~15質量部の範囲がさらに好ましい。
 ここで、重合性不飽和基を有する単量体として、前記単量体(A)、単量体(B)のみを用いる場合、多官能チオール(C)の使用量としては、単量体(A)と単量体(B)の合計100質量部に対して0.1~50質量部の範囲が好ましく、0.5~30質量部の範囲がより好ましく、1~15質量部の範囲がさらに好ましい。
 また、重合性不飽和基を有する単量体として、前記単量体(A)、単量体(B)に加え、その他の重合性不飽和単量体を用いる場合、多官能チオール(C)の使用量としては、前記単量体(A)、単量体(B)及びその他の重合性不飽和単量体の合計100質量部に対して、0.1~50質量部の範囲が好ましく、0.5~30質量部の範囲がより好ましく、1~15質量部の範囲がさらに好ましい。
 なお、本発明の含フッ素硬化性樹脂は、メルカプト基を有するものである。前記単量体(A)、単量体(B)、さらに必要により加えるその他の重合性不飽和単量体を共重合する際に、前記多官能チオール(C)を存在させると、この多官能チオール(C)が連鎖移動剤として働く。すなわち、ラジカル重合開始剤から発生するラジカル、又は重合により生じたポリマー鎖末端のラジカルにより、多官能チオール(C)のメルカプト基から水素ラジカルが引き抜かれてチイルラジカルが発生する。このチイルラジカルを重合の起点として前記単量体(A)等の重合が開始されるため、ポリマー鎖の末端又はポリマー鎖中に多官能チオール(C)が結合した樹脂が得られる。多官能チオール(C)は、複数のメルカプト基を有するため、チイルラジカルとならなかったメルカプト基も存在し、それがそのままポリマー鎖の末端又はポリマー鎖中に残るため、結果としてポリマー鎖の末端又はポリマー鎖中にメルカプト基を有する本発明の含フッ素硬化性樹脂が得られる。このように、ポリマー鎖の末端又はポリマー鎖中にメルカプト基を含有させることにより、メルカプト基が活性エネルギー線硬化可能な部位となり、その硬化性は空気雰囲気化においても硬化阻害を受けにくい為、硬化が良好に進行することとなり硬化塗膜表面に付着した汚れをふき取った後も硬化塗膜表面の防汚性を維持できるフッ素系表面改質剤として用いることができる含フッ素硬化性樹脂となる。また、本発明の含フッ素硬化性樹脂は、マレイミド基を有する。マレイミド基は二量化によって含フッ素硬化性樹脂層の表面で架橋し、前記メルカプト基は他の樹脂と架橋をすることで強固な硬化物となる。
 前記単量体(A)、単量体(B)、さらに必要により加えるその他の重合性不飽和単量体の共重合の方法としては、例えば、これらの単量体成分を有機溶剤中で、ラジカル重合開始剤の存在下で重合させる方法等が挙げられる。ここで用いる有機溶媒としては、例えば、ケトン系溶剤、エステル系溶剤、アミド系溶剤、スルホキシド系溶剤、エーテル系溶剤、炭化水素系溶剤、フッ素系溶剤が好ましい。具体的には、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、酢酸エチル、酢酸ブチル、プロピレングリコールモノメチルエーテルアセテート、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン、ジメチルスルホキシド、ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、ジオキサン、トルエン、キシレン、1,3-ビス(トリフルオロメチル)ベンゼン等が挙げられる。これらは、沸点、単量体の溶解性、重合性を考慮して適宜選択することができる。
 また、共重合の際に用いるラジカル重合開始剤としては、例えば、過酸化ベンゾイル等の過酸化物、アゾビスイソブチロニトリル等のアゾ化合物などが挙げられる。また、重合温度は、使用するラジカル重合開始剤の種類に応じて、適宜設定することが好ましい。さらに必要に応じてラウリルメルカプタン、2-メルカプトエタノ-ル、チオグリセロール、エチルチオグリコ-ル酸、オクチルチオグリコ-ル酸等の連鎖移動剤を使用することもできる。
 本発明のもう一つの含フッ素硬化性樹脂はウレタン重合体の重合体構造中にポリ(パーフルオロアルキレンエーテル)鎖、マレイミド基及びメルカプト基を有することを特徴とする。このような含フッ素硬化性樹脂は、例えば、前記ポリ(パーフルオロアルキレンエーテル)鎖と水酸基を二つ有する化合物とマレイミド基と水酸基を二つ有する化合物とを混合させたのち、イソシアネート基を二つ有する化合物を水酸基に対してイソシアネート基が過剰となるような条件で重付加反応を行った後、末端に残存するNCOに対して過剰モルとなるように多官能チオール化合物を反応させることにより得ることができる。
 本発明の含フッ素硬化性樹脂の数平均分子量(Mn)及び重量平均分子量(Mw)は、本発明の活性エネルギー線硬化性組成物を得る際に他の配合成分との相溶性が良好であり、高度なレベリング性を実現することができることから、数平均分子量(Mn)は、500~50,000の範囲が好ましく、1,500~20,000の範囲がより好ましい。また、重量平均分子量(Mw)は、2,000~100,000の範囲が好ましく、3,000~50,000の範囲がより好ましい。なお、数平均分子量(Mn)及び重量平均分子量(Mw)は、ゲル浸透クロマトグラフィー(以下、「GPC」と略記する。)測定に基づきポリスチレン換算した値である。なお、GPCの測定条件は以下の通りである。
 [GPC測定条件]
 測定装置:東ソー株式会社製「HLC-8220 GPC」、
 カラム:東ソー株式会社製ガードカラム「HHR-H」(6.0mmI.D.×4cm)
+東ソー株式会社製「TSK-GEL GMHHR-N」(7.8mmI.D.×30cm)
+東ソー株式会社製「TSK-GEL GMHHR-N」(7.8mmI.D.×30cm)
+東ソー株式会社製「TSK-GEL GMHHR-N」(7.8mmI.D.×30cm)
+東ソー株式会社製「TSK-GEL GMHHR-N」(7.8mmI.D.×30cm)
 検出器:ELSD(オルテック製「ELSD2000」)
 データ処理:東ソー株式会社製「GPC-8020モデルIIデータ解析バージョン4.30」
 測定条件:カラム温度  40℃
      展開溶媒   テトラヒドロフラン(THF)
      流速     1.0ml/分
 試料:樹脂固形分換算で1.0質量%のテトラヒドロフラン溶液をマイクロフィルターでろ過したもの(5μl)。
 標準試料:前記「GPC-8020モデルIIデータ解析バージョン4.30」の測定マニュアルに準拠して、分子量が既知の下記の単分散ポリスチレンを用いた。
 (単分散ポリスチレン)
 東ソー株式会社製「A-500」
 東ソー株式会社製「A-1000」
 東ソー株式会社製「A-2500」
 東ソー株式会社製「A-5000」
 東ソー株式会社製「F-1」
 東ソー株式会社製「F-2」
 東ソー株式会社製「F-4」
 東ソー株式会社製「F-10」
 東ソー株式会社製「F-20」
 東ソー株式会社製「F-40」
 東ソー株式会社製「F-80」
 東ソー株式会社製「F-128」
 東ソー株式会社製「F-288」
 東ソー株式会社製「F-550」
 本発明の含フッ素硬化性樹脂は、それ自体を活性エネルギー線硬化性組成物の主剤として用いることができるが、極めて優れた表面改質性能を有しているため、活性エネルギー線硬化性組成物に添加するフッ素系表面改質剤として用いることで、硬化塗膜に優れた防汚性を付与できる。
 本発明の活性エネルギー線硬化性組成物は、本発明の含フッ素硬化性樹脂を配合したものであるが、その主成分しては、活性エネルギー線硬化性樹脂(D)又は活性エネルギー線硬化性単量体(E)を含有する。なお、本発明の活性エネルギー線硬化性組成物において、活性エネルギー線硬化性樹脂(D)と活性エネルギー線硬化性単量体(E)とは、それぞれ単独で用いてもよいが、併用しても構わない。また、本発明の含フッ素硬化性樹脂は、当該活性エネルギー線硬化性組成物において、含フッ素表面改質剤として用いることが好ましい。
 前記活性エネルギー線硬化性樹脂(D)は、ウレタン(メタ)アクリレート樹脂、不飽和ポリエステル樹脂、エポキシ(メタ)アクリレート樹脂、ポリエステル(メタ)アクリレート樹脂、アクリル(メタ)アクリレート樹脂、マレイミド基を有する樹脂等が挙げられるが、本発明では、特に透明性や低収縮性等の点からウレタン(メタ)アクリレート樹脂が好ましい。
 ここで用いるウレタン(メタ)アクリレート樹脂は、脂肪族ポリイソシアネート化合物又は芳香族ポリイソシアネート化合物と水酸基を有する(メタ)アクリレート化合物とを反応させて得られるウレタン結合と(メタ)アクリロイル基とを有する樹脂が挙げられる。
 前記脂肪族ポリイソシアネート化合物としては、例えば、テトラメチレンジイソシアネート、ペンタメチレンジイソシアネート、ヘキサメチレンジイソシアネート、ヘプタメチレンジイソシアネート、オクタメチレンジイソシアネート、デカメチレンジイソシアネート、2-メチル-1,5-ペンタンジイソシアネート、3-メチル-1,5-ペンタンジイソシアネート、ドデカメチレンジイソシアネート、2-メチルペンタメチレンジイソシアネート、2,2,4-トリメチルヘキサメチレンジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシアネート、イソホロンジイソシアネート、ノルボルナンジイソシアネート、水素添加ジフェニルメタンジイソシアネート、水素添加トリレンジイソシアネート、水素添加キシリレンジイソシアネート、水素添加テトラメチルキシリレンジイソシアネート、シクロヘキシルジイソシアネート等が挙げられ、また、芳香族ポリイソシアネート化合物としては、トリレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、キシリレンジイソシアネート、1,5-ナフタレンジイソシアネート、トリジンジイソシアネート、p-フェニレンジイソシアネート等が挙げられる。
 一方、水酸基を有するアクリレート化合物としては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、1,5-ペンタンジオールモノ(メタ)アクリレート、1,6-ヘキサンジオールモノ(メタ)アクリレート、ネオペンチルグリコールモノ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールモノ(メタ)アクリレート等の2価アルコールのモノ(メタ)アクリレート;トリメチロールプロパンジ(メタ)アクリレート、エトキシ化トリメチロールプロパン(メタ)アクリレート、プロポキシ化トリメチロールプロパンジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、ビス(2-(メタ)アクリロイルオキシエチル)ヒドロキシエチルイソシアヌレート等の3価のアルコールのモノ又はジ(メタ)アクリレート、あるいは、これらのアルコール性水酸基の一部をε-カプロラクトンで変性した水酸基を有するモノ及びジ(メタ)アクリレート;ペンタエリスリトールトリ(メタ)アクリレート、ジトリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート等の1官能の水酸基と3官能以上の(メタ)アクリロイル基を有する化合物、あるいは、該化合物をさらにε-カプロラクトンで変性した水酸基を有する多官能(メタ)アクリレート;ジプロピレングリコールモノ(メタ)アクリレート、ジエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート等のオキシアルキレン鎖を有する(メタ)アクリレート化合物;ポリエチレングリコール-ポリプロピレングリコールモノ(メタ)アクリレート、ポリオキシブチレン-ポリオキシプロピレンモノ(メタ)アクリレート等のブロック構造のオキシアルキレン鎖を有する(メタ)アクリレート化合物;ポリ(エチレングリコール-テトラメチレングリコール)モノ(メタ)アクリレート、ポリ(プロピレングリコール-テトラメチレングリコール)モノ(メタ)アクリレート等のランダム構造のオキシアルキレン鎖を有する(メタ)アクリレート化合物等が挙げられる。
 上記した脂肪族ポリイソシアネート化合物又は芳香族ポリイソシアネート化合物と水酸基を有するアクリレート化合物との反応は、ウレタン化触媒の存在下、常法により行うことができる。ここで使用し得るウレタン化触媒は、具体的には、ピリジン、ピロール、トリエチルアミン、ジエチルアミン、ジブチルアミンなどのアミン類、トリフェニルホスフィン、トリエチルホスフィンなどのホフィン類、ジブチル錫ジラウレート、オクチル錫トリラウレート、オクチル錫ジアセテート、ジブチル錫ジアセテート、オクチル酸錫などの有機錫化合物、オクチル酸亜鉛などの有機金属化合物が挙げられる。
 これらのウレタンアクリレート樹脂の中でも特に脂肪族ポリイソシアネート化合物と水酸基を有する(メタ)アクリレート化合物とを反応させて得られるものが硬化塗膜の透明性に優れ、かつ、活性エネルギー線に対する感度が良好で硬化性に優れる点から好ましい。
 次に、不飽和ポリエステル樹脂は、α,β-不飽和二塩基酸又はその酸無水物、芳香族飽和二塩基酸又はその酸無水物、及び、グリコール類の重縮合によって得られる硬化性樹脂であり、α,β-不飽和二塩基酸又はその酸無水物としては、マレイン酸、無水マレイン酸、フマル酸、イタコン酸、シトラコン酸、クロロマレイン酸、及びこれらのエステル等が挙げられる。芳香族飽和二塩基酸又はその酸無水物としては、フタル酸、無水フタル酸、イソフタル酸、テレフタル酸、ニトロフタル酸、テトラヒドロ無水フタル酸、エンドメチレンテトラヒドロ無水フタル酸、ハロゲン化無水フタル酸及びこれらのエステル等が挙げられる。脂肪族あるいは脂環族飽和二塩基酸としては、シュウ酸、マロン酸、コハク酸、アジピン酸、セバシン酸、アゼライン酸、グルタル酸、ヘキサヒドロ無水フタル酸及びこれらのエステル等が挙げられる。グリコール類としては、エチレングリコール、プロピレングリコール、ジエチレングリコール、ジプロピレングリコール、1,3-ブタンジオール、1,4-ブタンジオール、2-メチルプロパン-1,3-ジオール、ネオペンチルグリコール、トリエチレングリコール、テトラエチレングリコール、1,5-ペンタンジオール、1,6-ヘキサンジオール、ビスフェノールA、水素化ビスフェノールA、エチレングリコールカーボネート、2,2-ジ-(4-ヒドロキシプロポキシジフェニル)プロパン等が挙げられ、その他にエチレンオキサイド、プロピレンオキサイド等の酸化物も同様に使用できる。
 次に、エポキシビニルエステル樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂等のエポキシ樹脂のエポキシ基に(メタ)アクリル酸を反応させて得られるものが挙げられる。
 また、マレイミド基を有する樹脂としては、N-ヒドロキシエチルマレイミドとイソホロンジイソシアネートとをウレタン化して得られる2官能マレイミドウレタン化合物、マレイミド酢酸とポリテトラメチレングリコールとをエステル化して得られる2官能マレイミドエステル化合物、マレイミドカプロン酸とペンタエリスリトールのテトラエチレンオキサイド付加物とをエステル化して得られる4官能マレイミドエステル化合物、マレイミド酢酸と多価アルコール化合物とをエステル化して得られる多官能マレイミドエステル化合物等が挙げられる。これらの活性エネルギー線硬化性樹脂(D)は、単独で用いることも2種以上併用することもできる。
 前記活性エネルギー線硬化性単量体(E)としては、例えば、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、数平均分子量が150~1000の範囲にあるポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、数平均分子量が150~1000の範囲にあるポリプロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,3-ブタンジオールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ヒドロキシピバリン酸エステルネオペンチルグリコールジ(メタ)アクリレート、ビスフェノールAジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスルトールトリ(メタ)アクリレート、ジペンタエリスルトールヘキサ(メタ)アクリレート、ペンタエリスルトールテトラ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、ジペンタエリスルトールペンタ(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、メチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート、デシル(メタ)アクリレート、イソデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソステアリル(メタ)アクリレート等の脂肪族アルキル(メタ)アクリレート、グリセロール(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、3-クロロ-2-ヒドロキシプロピル(メタ)アクリレート、グリシジル(メタ)アクリレート、アリル(メタ)アクリレート、2-ブトキシエチル(メタ)アクリレート、2-(ジエチルアミノ)エチル(メタ)アクリレート、2-(ジメチルアミノ)エチル(メタ)アクリレート、γ-(メタ)アクリロキシプロピルトリメトキシシラン、2-メトキシエチル(メタ)アクリレート、メトキシジエチレングリコール(メタ)アクリレート、メトキシジプロピレングリコール(メタ)アクリレート、ノニルフェノキシポリエチレングリコール(メタ)アクリレート、ノニルフェノキシポリプロピレングリコール(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、フェノキシジプロピレングルリコール(メタ)アクリレート、フェノキシポリプロピレングリコール(メタ)アクリレート、ポリブタジエン(メタ)アクリレート、ポリエチレングリコール-ポリプロピレングリコール(メタ)アクリレート、ポリエチレングリコール-ポリブチレングリコール(メタ)アクリレート、ポリスチリルエチル(メタ)アクリレート、ベンジル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、イソボルニル(メタ)アクリレート、メトキシ化シクロデカトリエン(メタ)アクリレート、フェニル(メタ)アクリレート;マレイミド、N-メチルマレイミド、N-エチルマレイミド、N-プロピルマレイミド、N-ブチルマレイミド、N-ヘキシルマレイミド、N-オクチルマレイミド、N-ドデシルマレイミド、N-ステアリルマレイミド、N-フェニルマレイミド、N-シクロヘキシルマレイミド、2-マレイミドエチル-エチルカーボネート、2-マレイミドエチル-プロピルカーボネート、N-エチル-(2-マレイミドエチル)カーバメート、N,N-ヘキサメチレンビスマレイミド、ポリプロピレングリコール-ビス(3-マレイミドプロピル)エーテル、ビス(2-マレイミドエチル)カーボネート、1,4-ジマレイミドシクロヘキサン等のマレイミド類などが挙げられる。
 これらのなかでも特に硬化塗膜の硬度に優れる点からトリメチロールプロパントリ(メタ)アクリレート、ペンタエリスルトールトリ(メタ)アクリレート、ジペンタエリスルトールヘキサ(メタ)アクリレート、ペンタエリスルトールテトラ(メタ)アクリレート等の3官能以上の多官能(メタ)アクリレートが好ましい。これらの活性エネルギー線硬化性単量体(E)は、単独で用いることも2種以上併用することもできる。
 本発明の活性エネルギー線硬化性組成物において、本発明の含フッ素硬化性樹脂を含フッ素表面改質剤として使用する場合、その使用量は、前記活性エネルギー線硬化性樹脂(D)及び活性エネルギー線硬化性単量体(E)の合計100質量部に対して、0.01~10質量部の範囲であることが好ましく、0.1~5質量部の範囲であることがより好ましい。本発明の含フッ素硬化性樹脂の使用量がこの範囲であれば、レベリング性、撥水撥油性、防汚性を十分なものにすることができ、該組成物の硬化後の硬度や透明性も十分なものとすることができる。
 本発明の含フッ素硬化性樹脂又は活性エネルギー線硬化性組成物は、基材に塗布後、活性エネルギー線を照射することで硬化塗膜とすることができる。この活性エネルギー線とは、紫外線、電子線、α線、β線、γ線のような電離放射線をいう。活性エネルギー線として紫外線を照射して硬化塗膜とする場合には、該含フッ素硬化性樹脂又は活性エネルギー線硬化性組成物中に光重合開始剤(F)を添加し、硬化性を向上することが好ましい。また、必要であればさらに光増感剤を添加して、硬化性を向上することもできる。一方、電子線、α線、β線、γ線のような電離放射線を用いる場合には、光重合開始剤や光増感剤を用いなくても速やかに硬化するので、特に光重合開始剤(F)や光増感剤を添加する必要はない。
 前記光重合開始剤(F)としては、分子内開裂型光重合開始剤及び水素引き抜き型光重合開始剤が挙げられる。分子内開裂型光重合開始剤としては、例えば、ジエトキシアセトフェノン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、ベンジルジメチルケタール、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、4-(2-ヒドロキシエトキシ)フェニル(2-ヒドロキシ-2-プロピル)ケトン、1-ヒドロキシシクロヘキシルフェニルケトン、2-メチル-2-モルホリノ(4-チオメチルフェニル)プロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)ブタノン等のアセトフェノン系化合物;ベンゾイン、ベンゾインメチルエーテル、ベンゾインイソプロピルエーテル等のベンゾイン類;2,4,6-トリメチルベンゾインジフェニルホスフィンオキシド、ビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキシド等のアシルホスフィンオキシド系化合物;ベンジル、メチルフェニルグリオキシエステル等が挙げられる。
 一方、水素引き抜き型光重合開始剤としては、例えば、ベンゾフェノン、o-ベンゾイル安息香酸メチル-4-フェニルベンゾフェノン、4,4’-ジクロロベンゾフェノン、ヒドロキシベンゾフェノン、4-ベンゾイル-4’-メチル-ジフェニルサルファイド、アクリル化ベンゾフェノン、3,3’,4,4’-テトラ(t-ブチルペルオキシカルボニル)ベンゾフェノン、3,3’-ジメチル-4-メトキシベンゾフェノン等のベンゾフェノン系化合物;2-イソプロピルチオキサントン、2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン、2,4-ジクロロチオキサントン等のチオキサントン系化合物;ミヒラ-ケトン、4,4’-ジエチルアミノベンゾフェノン等のアミノベンゾフェノン系化合物;10-ブチル-2-クロロアクリドン、2-エチルアンスラキノン、9,10-フェナンスレンキノン、カンファーキノン等が挙げられる。
 上記の光重合開始剤(F)の中でも、活性エネルギー線硬化性組成物中の前記活性エネルギー線硬化性樹脂(D)及び活性エネルギー線硬化性単量体(E)との相溶性に優れる点から、1-ヒドロキシシクロヘキシルフェニルケトン、及びベンゾフェノンが好ましく、特に、1-ヒドロキシシクロヘキシルフェニルケトンが好ましい。これらの光重合開始剤(F)は、単独で用いることも、2種以上を併用することもできる。
 また、前記光増感剤としては、例えば、脂肪族アミン、芳香族アミン等のアミン類、o-トリルチオ尿素等の尿素類、ナトリウムジエチルジチオホスフェート、s-ベンジルイソチウロニウム-p-トルエンスルホネート等の硫黄化合物などが挙げられる。
 これらの光重合開始剤及び光増感剤の使用量は、活性エネルギー線硬化性組成物中の不揮発成分100質量部に対し、各々0.01~20質量部が好ましく、0.1~15質量部がより好ましく、0.3~7質量部がさらに好ましい。
 さらに、本発明の活性エネルギー線硬化性組成物は、用途、特性等の目的に応じ、本発明の効果を損なわない範囲で、粘度や屈折率の調整、あるいは、塗膜の色調の調整やその他の塗料性状や塗膜物性の調整を目的に各種の配合材料、例えば、各種有機溶剤、アクリル樹脂、フェノール樹脂、ポリエステル樹脂、ポリスチレン樹脂、ウレタン樹脂、尿素樹脂、メラミン樹脂、アルキド樹脂、エポキシ樹脂、ポリアミド樹脂、ポリカーボネート樹脂、石油樹脂、フッ素樹脂等の各種樹脂、PTFE(ポリテトラフルオロエチレン)、ポリエチレン、ポリプロピレン、カーボン、酸化チタン、アルミナ、銅、シリカ微粒子等の各種の有機又は無機粒子、重合開始剤、重合禁止剤、帯電防止剤、消泡剤、粘度調整剤、耐光安定剤、耐候安定剤、耐熱安定剤、酸化防止剤、防錆剤、スリップ剤、ワックス、艶調整剤、離型剤、相溶化剤、導電調整剤、顔料、染料、分散剤、分散安定剤、シリコーン系、炭化水素系界面活性剤等を併用することができる。
 上記の各配合成分中、有機溶媒は、本発明の活性エネルギー線硬化性組成物の溶液粘度を適宜調整する上で有用であり、特に薄膜コーティングを行うためには、膜厚を調整することが容易となる。ここで使用できる有機溶媒としては、例えば、トルエン、キシレン等の芳香族炭化水素;メタノール、エタノール、イソプロパノール、t-ブタノール等のアルコール類;酢酸エチル、プロピレングリコールモノメチルエーテルアセテート等のエステル類;メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類などが挙げられる。これらの溶剤は、単独で用いることも、2種以上を併用することもできる。
 ここで有機溶媒の使用量は、用途や目的とする膜厚や粘度によって異なるが、硬化成分の全質量に対して、質量基準で、0.5~4倍量の範囲であることが好ましい。
 本発明の活性エネルギー線硬化性組成物を硬化させる活性エネルギー線としては、上記の通り、紫外線、電子線、α線、β線、γ線のような電離放射線であるが、具体的なエネルギー源又は硬化装置としては、例えば、殺菌灯、紫外線用蛍光灯、カーボンアーク、キセノンランプ、複写用高圧水銀灯、中圧又は高圧水銀灯、超高圧水銀灯、無電極ランプ、メタルハライドランプ、自然光等を光源とする紫外線、又は走査型、カーテン型電子線加速器による電子線等が挙げられる。
 これらの中でも特に紫外線であることが好ましく、酸素等による硬化阻害を避けるため、窒素ガス等の不活性ガス雰囲気下で、紫外線を照射することが好ましい。また、必要に応じて熱をエネルギー源として併用し、紫外線にて硬化した後、熱処理を行ってもよい。
 本発明の活性エネルギー線硬化性組成物の塗工方法は用途により異なるが、例えば、グラビアコーター、ロールコーター、コンマコーター、ナイフコーター、エアナイフコーター、カーテンコーター、キスコーター、シャワーコーター、ホイーラーコーター、スピンコーター、ディッピング、スクリーン印刷、スプレー、アプリケーター、バーコーター等を用いた塗布方法、あるいは各種金型を用いた成形方法等が挙げられる。
 本発明の含フッ素硬化性樹脂や本発明の活性エネルギー線硬化性組成物の硬化塗膜は、優れた防汚性(撥インク性、耐指紋性等)、耐擦傷性等を有するため、物品の表面に塗布・硬化することで、物品の表面に防汚性、耐擦傷性等を付与することができる。加えて、本発明の含フッ素硬化性樹脂や発明の活性エネルギー線硬化性組成物の硬化塗膜は硬化塗膜表面に付着した汚れをふき取った後も硬化塗膜表面の防汚性を維持できる。また、本発明の含フッ素硬化性樹脂は、塗材に含フッ素表面改質剤として添加することで、その塗材にレベリング性を付与することもできるため、本発明の活性エネルギー線硬化性組成物は、高いレベリング性を有する。
 本発明の含フッ素硬化性樹脂又は活性エネルギー線硬化性組成物を用いて防汚性(撥インク性、耐指紋性等)を付与できる物品としては、TACフィルム等の液晶ディスプレイ(LCD)の偏光板用フィルム;プラズマディスプレイ(PDP)、有機ELディスプレイ等の各種ディスプレイ画面;タッチパネル;携帯電話等の電子端末の筐体又は画面;液晶ディスプレイ用カラーフィルター(以下、「CF」という。)用透明保護膜;液晶TFTアレイ用有機絶縁膜;電子回路形成用インクジェットインク;CD、DVD、ブルーレイディスク等の光学記録媒体;インサートモールド(IMD、IMF)用転写フィルム;コピー機、プリンター等のOA機器用ゴムローラー;コピー機、スキャナー等のOA機器の読み取り部のガラス面;カメラ、ビデオカメラ、メガネ等の光学レンズ;腕時計等の時計の風防、ガラス面;自動車、鉄道車輌等の各種車輌のウインドウ;太陽電池用カバーガラス又はフィルム;化粧板等の各種建材;住宅の窓ガラス;家具等の木工材料、人工・合成皮革、家電の筐体等の各種プラスチック成形品、FRP浴槽などが挙げられる。これらの物品表面に本発明の活性エネルギー線硬化性組成物を塗布し、紫外線等の活性エネルギー線を照射して硬化塗膜を形成することで、物品表面に防汚性を付与することができる。また、本発明の含フッ素スチレン化合物を各物品に適した各種塗料に添加し、塗布・乾燥することで、物品表面に防汚性を付与することも可能である。
 また、本発明の含フッ素硬化性樹脂を添加し、レベリング性を向上するとともに、塗膜に防汚性(撥インク性、耐指紋性等)や耐薬品性を付与できる塗材としては、TACフィルム等のLCDの偏光板用フィルムのハードコート材、アンチグレア(AG:防眩)コート材又は反射防止(LR)コート材;プラズマディスプレイ(PDP)、有機ELディスプレイ等の各種ディスプレイ画面用ハードコート材;タッチパネル用ハードコート材;CFに使用されるRGBの各画素を形成するためのカラーレジスト、印刷インク、インクジェットインク又は塗料;CFのブラックマトリックス用のブラックレジスト、印刷インク、インクジェットインク又は塗料;プラズマディスプレイ(PDP)、有機ELディスプレイ等の画素隔壁用樹脂組成物;携帯電話の等の電子端末筐体用塗料又はハードコート材;携帯電話の画面用ハードコート材;CF表面を保護する透明保護膜用塗料;液晶TFTアレイの有機絶縁膜用塗料;電子回路形成用インクジェットインク;CD、DVD、ブルーレイディスク等の光学記録媒体用ハードコート材;インサートモールド(IMD、IMF)用転写フィルム用ハードコート材;コピー機、プリンター等のOA機器用ゴムローラー用コート材;コピー機、スキャナー等のOA機器の読み取り部のガラス用コート材;カメラ、ビデオカメラ、メガネ等の光学レンズ用コート材;腕時計等の時計の風防、ガラス用コート材;自動車、鉄道車輌等の各種車輌のウインドウ用コート材;太陽電池用カバーガラス又はフィルムの反射防止膜用塗料;化粧板等の各種建材用印刷インキ又は塗料;住宅の窓ガラス用コート材;家具等の木工用塗料;人工・合成皮革用コート材;家電の筐体等の各種プラスチック成形品用塗料又はコート材;FRP浴槽用塗料又はコート材などが挙げられる。
 さらに、本発明の含フッ素硬化性樹脂又は活性エネルギー線硬化性組成物を用いて耐擦傷性(耐スクラッチ性)及び防汚性を付与できる物品としては、LCDのバックライト部材であるプリズムシート又は拡散シート等が挙げられる。また、プリズムシート又は拡散シート用コート材に本発明の含フッ素硬化性樹脂を添加することで、該コート材のレベリング性を向上するとともに、コート材の塗膜に耐擦傷性(耐スクラッチ性)及び防汚性を付与することができる。
 また、本発明の含フッ素硬化性樹脂の硬化塗膜は低屈折率であるため、LCD等の各種ディスプレイ表面への蛍光灯等の映り込みを防止する反射防止層中の低屈折率層用塗材としても用いることができる。また、反射防止層用の塗材、特に反射防止層中の低屈折率層用塗材に本発明の含フッ素硬化性樹脂を添加することで、塗膜の低屈折率を維持しつつ、塗膜表面に防汚性を付与することもできる。
 さらに、本発明の含フッ素硬化性樹脂又は活性エネルギー線硬化性組成物を用いることができるその他の用途として、光ファイバクラッド材、導波路、液晶パネルの封止材、各種光学用シール材、光学用接着剤等が挙げられる。
 特に、LCD用偏光板の保護フィルム用コート材用途のうち、アンチグレアコート材として本発明の活性エネルギー線硬化性組成物を用いる場合、上記した各組成のうち、シリカ微粒子、アクリル樹脂微粒子、ポリスチレン樹脂微粒子等の無機又は有機微粒子を、本発明の活性エネルギー線硬化性組成物中の硬化成分の全質量の0.1~0.5倍量となる割合で配合することで防眩性に優れたものとなるため好ましい。
 また、本発明の含フッ素硬化性樹脂又は活性エネルギー線硬化性組成物を、LCD用偏光板の保護フィルム用アンチグレアコート材に用いる場合、コート材を硬化させる前に凹凸の表面形状の金型に接触させた後、金型と反対側から活性エネルギー線を照射して硬化し、コート層の表面をエンボス加工して防眩性を付与する転写法にも適用できる。
 以下に本発明を具体的な実施例を挙げてより詳細に説明する。なお、IRスペクトル、13C-NMR及びGPCの測定は下記の条件で行った。
 [IRスペクトル測定条件]
 装置:フーリエ変換赤外分光装置(サーモエレクトロン株式会社製「NICOLET380」)
 方法:KBr法
 [13C-NMR測定条件]
 装置:日本電子株式会社製「AL-400」
 溶媒:クロロホルム-d
 [GPC測定条件]
 測定装置:東ソー株式会社製「HLC-8220 GPC」、
 カラム:東ソー株式会社製ガードカラム「HHR-H」(6.0mmI.D.×4cm)
+東ソー株式会社製「TSK-GEL GMHHR-N」(7.8mmI.D.×30cm)
+東ソー株式会社製「TSK-GEL GMHHR-N」(7.8mmI.D.×30cm)
+東ソー株式会社製「TSK-GEL GMHHR-N」(7.8mmI.D.×30cm)
+東ソー株式会社製「TSK-GEL GMHHR-N」(7.8mmI.D.×30cm)
 検出器:ELSD(オルテック製「ELSD2000」)
 データ処理:東ソー株式会社製「GPC-8020モデルIIデータ解析バージョン4.30」
 測定条件:カラム温度  40℃
      展開溶媒   テトラヒドロフラン(THF)
      流速     1.0ml/分
 試料:樹脂固形分換算で1.0質量%のテトラヒドロフラン溶液をマイクロフィルターでろ過したもの(5μl)。
 標準試料:前記「GPC-8020モデルIIデータ解析バージョン4.30」の測定マニュアルに準拠して、分子量が既知の下記の単分散ポリスチレンを用いた。
 (単分散ポリスチレン)
 東ソー株式会社製「A-500」
 東ソー株式会社製「A-1000」
 東ソー株式会社製「A-2500」
 東ソー株式会社製「A-5000」
 東ソー株式会社製「F-1」
 東ソー株式会社製「F-2」
 東ソー株式会社製「F-4」
 東ソー株式会社製「F-10」
 東ソー株式会社製「F-20」
 東ソー株式会社製「F-40」
 東ソー株式会社製「F-80」
 東ソー株式会社製「F-128」
 東ソー株式会社製「F-288」
 東ソー株式会社製「F-550」
 合成例1〔ポリ(パーフルオロアルキレンエーテル)鎖とその両量末端に重合性不飽和基を有する単量体(A)の合成〕
 撹拌装置、温度計、冷却管、滴下装置を備えたガラスフラスコに、下記式(a2-1-1)で表されるポリ(パーフルオロアルキレンエーテル)鎖を有し、その両末端に水酸基を有する化合物20質量部、溶媒として1,3-ビス(トリフルオロメチル)ベンゼン10質量部、重合禁止剤としてp-メトキシフェノール0.02質量部及び中和剤としてトリエチルアミン1.5質量部を仕込み、空気気流下にて攪拌を開始し、フラスコ内を10℃に保ちながらメタクリル酸クロライド1.3質量部を1時間かけて滴下した。滴下終了後、10℃で1時間攪拌し、昇温して30℃で1時間攪拌して、さらに50℃に昇温して10時間撹拌した後、ガスクロマトグラフィー測定にてメタクリル酸クロライドの消失を確認し反応を終了した。次いで、溶媒として1,3-ビス(トリフルオロメチル)ベンゼン70質量部を追加した後、イオン交換水80質量部を混合して攪拌してから静置し水層を分離させて取り除く方法による洗浄を3回繰り返した。次いで、重合禁止剤としてp-メトキシフェノール0.02質量部を添加し、脱水剤として硫酸マグネシウム8質量部を添加して1日間静置することで完全に脱水した後、脱水剤を濾別した。
Figure JPOXMLDOC01-appb-C000010
(式中、Xはパーフルオロメチレン基及びパーフルオロエチレン基であり、1分子あたり、パーフルオロメチレン基の数が平均17個、パーフルオロエチレン基の数が平均19個である。なお、オキシパーフルオロメチレン単位とオキシパーフルオロエチレン単位とはランダム結合である。)
 次いで、減圧下で溶媒を留去することによって、下記構造式(A-2-1)で表されるポリ(パーフルオロアルキレンエーテル)鎖を有する単量体(以下、「単量体(A-2-1)」と略記する。)を得た。
Figure JPOXMLDOC01-appb-C000011
(式中、Xはパーフルオロメチレン基及びパーフルオロエチレン基であり、1分子あたり、パーフルオロメチレン基の数が平均17個、パーフルオロエチレン基の数が平均19個である。なお、オキシパーフルオロメチレン単位とオキシパーフルオロエチレン単位とはランダム結合である。)
 合成例2(同上)
 撹拌装置、温度計、冷却管、滴下装置を備えたガラスフラスコに、下記式(a2-1-2)で表されるポリ(パーフルオロアルキレンエーテル)鎖を有し、その両末端に水酸基を有する化合物20質量部、溶媒としてジイソプロピルエーテル20質量部、重合禁止剤としてp-メトキシフェノール0.02質量部及び中和剤としてトリエチルアミン3.1質量部を仕込み、空気気流下にて攪拌を開始し、フラスコ内を10℃に保ちながらメタクリル酸クロライド2.7質量部を1時間かけて滴下した。滴下終了後、10℃で1時間攪拌し、昇温して30℃で1時間攪拌して、さらに50℃に昇温して10時間撹拌した後、ガスクロマトグラフィー測定にてメタクリル酸クロライドの消失を確認し反応を終了した。次いで、溶媒としてジイソプロピルエーテル40質量部を追加した後、イオン交換水80質量部を混合して攪拌してから静置し水層を分離させて取り除く方法による洗浄を3回繰り返した。次いで、重合禁止剤としてp-メトキシフェノール0.02質量部を添加し、脱水剤として硫酸マグネシウム8質量部を添加して1日間静置することで完全に脱水した後、脱水剤を濾別した。
Figure JPOXMLDOC01-appb-C000012
(式中、Xはパーフルオロメチレン基及びパーフルオロエチレン基であり、1分子あたり、パーフルオロメチレン基の数が平均7個、パーフルオロエチレン基の数が平均8個である。なお、オキシパーフルオロメチレン単位とオキシパーフルオロエチレン単位とはランダム結合である。)
 次いで、減圧下で溶媒を留去することによって、下記構造式(A-2-2)で表されるポリ(パーフルオロアルキレンエーテル)鎖を有する単量体(以下、「単量体(A-2-2)」と略記する。)を得た。
Figure JPOXMLDOC01-appb-C000013
(式中、Xはパーフルオロメチレン基及びパーフルオロエチレン基であり、1分子あたり、パーフルオロメチレン基の数が平均7個、パーフルオロエチレン基の数が平均8個である。なお、オキシパーフルオロメチレン単位とオキシパーフルオロエチレン単位とはランダム結合である。)
 実施例1(本発明の含フッ素硬化性樹脂の調製)
 撹拌装置、温度計、冷却管、滴下装置を備えたガラスフラスコに、溶媒としてメチルイソブチルケトン425質量部と1,3-ビス(トリフルオロメチル)ベンゼン1,305質量部を仕込み、窒素気流下にて攪拌しながら95℃に昇温した。次いで、上記合成例1で得られた単量体(A-2-1)209質量部を1,3-ビス(トリフルオロメチル)ベンゼン145質量部に溶解した溶液(液1)と、3,4,5,6-テトラヒドロフタルイミドエチルアクリレート836質量部をメチルイソブチルケトン643質量部及び1,3-ビス(トリフルオロメチル)ベンゼン200質量部の混合溶媒に溶解した溶液(液2)と、ラジカル重合開始剤であるt-ブチルペルオキシ-2-エチルヘキサノエート11質量部及び下記式(B-1)で表されるペンタエリスリトールテトラキス(3-メルカプトブチレート)53質量部をメチルイソブチルケトン420質量部に溶解した溶液(液3)の3種類の滴下液をそれぞれ別々の滴下装置にセットし、フラスコ内を95℃に保ちながら同時に滴下を開始し、液1と液2は2時間、液3は2時間20分かけて滴下した。滴下終了後、95℃で5時間攪拌した。
Figure JPOXMLDOC01-appb-C000014
 上記の反応液を室温に冷却後、濾過によって溶液に不溶な物は濾別して、本発明の含フッ素硬化性樹脂(1)を14.9質量%含有する溶液を得た。この含フッ素硬化性樹脂(1)の分子量をGPC(ポリスチレン換算分子量)で測定した結果、数平均分子量2,000、重量平均分子量4,000であった。なお、得られた含フッ素硬化性樹脂(1)のIRスペクトルのチャート図を図1に、13C-NMRのチャート図を図2に、GPCのチャート図を図3にそれぞれ示す。
 比較例1〔ポリ(パーフルオロアルキレンエーテル)鎖を有する含フッ素硬化性樹脂の調製〕
 撹拌装置、温度計、冷却管、滴下装置を備えたガラスフラスコに、溶媒として1,3-ビス(トリフルオロメチル)ベンゼン146.1質量部を仕込み、窒素気流下にて攪拌しながら105℃に昇温した。次いで、上記合成例1で得られた単量体(A-2-1)83.5質量部(液1)と、2-ヒドロキシエチルメタクリレート(以下、「HEMA」と略記する。)160質量部(液2)と、ラジカル重合開始剤であるt-ブチルペルオキシ-2-エチルヘキサノエート36.5質量部を1,3-ビス(トリフルオロメチル)ベンゼン306.2質量部に溶解した溶液(液3)の3種類の滴下液をそれぞれ別々の滴下装置にセットし、フラスコ内を105℃に保ちながら同時に2時間かけて滴下した。滴下終了後、105℃で5時間攪拌して、単量体(A-2-1)とHEMAとの共重合体を得た。
 次いで、重合禁止剤としてp-メトキシフェノール0.17質量部、ウレタン化触媒としてオクチル酸錫0.13質量部を仕込み、空気気流下で攪拌を開始し、60℃を保ちながら、2-アクリロイルオキシエチルイソシアネート169.9質量部を1時間で滴下した。滴下終了後、60℃で2時間攪拌し、さらに80℃に昇温して4時間攪拌した後、IRスペクトル測定でイソシアネート基由来の2360cm-1付近の吸収ピークの消失を確認した。次いで、1,3-ビス(トリフルオロメチル)ベンゼンを加えて、比較対照用含フッ素硬化性樹脂(1´)を50質量%含有する溶液を得た。得られた比較対照用含フッ素硬化性樹脂(1´)の分子量をGPC(ポリスチレン換算分子量)で測定した結果、数平均分子量1,200、重量平均分子量6,300であった。
 比較例2(同上)
 撹拌装置、温度計、冷却管、滴下装置を備えた別のガラスフラスコに、溶媒としてメチルイソブチルケトン63質量部を仕込み、窒素気流下にて攪拌しながら105℃に昇温した。次いで、上記合成例2で得られた単量体(A-2-2)21.5質量部(液1)、HEMA41.3質量部(液2)、ラジカル重合開始剤であるt-ブチルペルオキシ-2-エチルヘキサノエート9.4質量部をメチルイソブチルケトン126質量部に溶解した溶液135.4質量部(液3)の3種類の滴下液をそれぞれ別々の滴下装置にセットし、フラスコ内を105℃に保ちながら同時に2時間かけて滴下した。滴下終了後、105℃で10時間攪拌した後、減圧下で溶媒を留去することによって、単量体(A-2-2)とHEMAとの共重合体を得た。
 次いで、溶媒としてメチルエチルケトン74.7質量部、重合禁止剤としてp-メトキシフェノール0.1質量部、ウレタン化触媒としてジブチル錫ジラウレート0.06質量部を仕込み、空気気流下で攪拌を開始し、60℃を保ちながら2-アクリロイルオキシエチルイソシアネート44.8質量部を1時間で滴下した。滴下終了後、60℃で1時間攪拌した後、80℃に昇温して10時間攪拌することにより反応を行った結果、IRスペクトル測定によりイソシアネート基の消失が確認された。次いで、溶媒としてメチルエチルケトン37.4質量部を加えて、比較対照用含フッ素硬化性樹脂(2´)を50質量%含有する溶液を得た。この比較対照用含フッ素硬化性樹脂(2´)の分子量をGPC(ポリスチレン換算分子量)で測定した結果、数平均分子量2,400、重量平均分子量7,100であった。
 比較例3〔ポリ(パーフルオロアルキレンエーテル)鎖及びマレイミド基を有する含フッ素硬化性樹脂の調製〕
 撹拌装置、温度計、冷却管、滴下装置を備えたガラスフラスコに、溶媒としてメチルイソブチルケトン3,275質量部を仕込み、窒素気流下にて攪拌しながら105℃に昇温した。次いで、上記合成例2で得られた単量体(A-2-2)191質量部(液1)、3,4,5,6-テトラヒドロフタルイミドエチルアクリレート762質量部をメチルイソブチルケトン1,288質量部に溶解した溶液(液2)、ラジカル重合開始剤であるt-ブチルペルオキシ-2-エチルヘキサノエート143質量部をメチルイソブチルケトン835質量部に溶解した溶液(液3)の3種類の滴下液をそれぞれ別々の滴下装置にセットし、フラスコ内を105℃に保ちながら同時に2時間かけて滴下した。滴下終了後、105℃で10時間攪拌した。
 上記で得られた反応液を室温に冷却後、濾過によって溶液に不溶な物は濾別して、比較対照用含フッ素硬化性樹脂(3´)を16質量%含有する溶液を得た。この比較対照用含フッ素硬化性樹脂(3´)の分子量をGPC(ポリスチレン換算分子量)で測定した結果、数平均分子量2,000、重量平均分子量6,000であった。
 活性エネルギー線硬化性組成物のベース樹脂組成物の調製
 5官能無黄変型ウレタンアクリレート50質量部、ジペンタエリスリトールヘキサアクリレート50質量部、酢酸ブチル25質量部、光重合開始剤として1-ヒドロキシシクロヘキシルフェニルケトン(BASFジャパン株式会社製「イルガキュア184」)5質量部、溶剤としてトルエン54質量部、2-プロパノール28質量部、酢酸エチル28質量部、プロピレングリコールモノメチルエーテル28質量部を混合し溶解させて、活性エネルギー線硬化性組成物のベース樹脂組成物を得た。
 実施例3、4及び比較例5~9
 上記で得られたベース樹脂組成物268質量部に、実施例1、実施例2で得られた含フッ素硬化性樹脂の溶液及び比較例1~4で得られた比較対照用含フッ素硬化性樹脂の溶液を樹脂分として1質量部となる量を加えて均一に混合して、活性エネルギー線硬化性組成
物1、2及び比較対照用活性エネルギー線硬化性組成物1´~4´を得た。次いで、これらの活性エネルギー線硬化性組成物をバーコーターNo.13を用いて、厚さ188μmのポリエチレンテレフタレート(PET)フィルムに塗布した後、60℃の乾燥機に5分間入れて溶剤を揮発させ、紫外線硬化装置にて紫外線(UV)を照射して硬化させ、硬化塗膜が積層したフィルム(塗工フィルム)を得た。なお、紫外線の照射条件は、空気雰囲気下(酸素濃度21容量%)、高圧水銀灯使用、紫外線照射量3.5kJ/mとした。
 上記で得られた塗工フィルムの塗工表面の防汚性を、汚れ付着防止性及び汚れ拭き取り容易性及び汚れ拭き取り後の汚れ付着防止性で評価した。評価方法を以下に示す。
 [汚れ付着防止性の評価]
 塗工フィルムの塗工表面に、フェルトペン(寺西化学工業株式会社製「マジックインキ大型黒色」)で線を描き、その黒色インクの付着状態を目視で観察することで汚れ付着防止性の評価を行った。なお、評価基準は下記の通りである。
 A:防汚性が最も良好で、インクが玉状にはじくもの。
 B:インクが玉状にはじかず、線状のはじきが生じるもの(線幅がフェルトペンのペン先の幅の50%未満)。
 C:インクの線状のはじきが生じ、線幅がフェルトペンのペン先の幅の50%以上100%未満であったもの。
 D:インクがまったくはじかずに表面にきれいに描けてしまうもの。
 [汚れ拭き取り容易性の評価]
 上記の汚れ付着防止性の試験後、付着したインクを荷重500gにてティッシュペーパーですべて拭き取るのに要した拭き取り回数を測定し、その結果から下記の基準にしたがって汚れ拭き取り容易性を評価した。
 A:1回の拭き取りで完全にインクを除去できたもの。
 B:2~10回の拭き取りで完全にインクを除去できたもの。
 C:10回の拭き取り操作で完全にはインクを除去できなかったもの。
 [汚れ拭き取り後の汚れ付着防止性の評価]
 上記の汚れ拭き取り容易性の試験後、再び、フェルトペン(寺西化学工業株式会社製「マジックインキ大型黒色」)で線を描き、その黒色インクの付着状態を目視で観察することで汚れ付着防止性の評価を行った。なお、評価基準は下記の通りである。
 A:防汚性が最も良好で、インクが玉状にはじくもの。
 B:インクが玉状にはじかず、線状のはじきが生じるもの(線幅がフェルトペンのペン先の幅の50%未満)。
 C:インクの線状のはじきが生じ、線幅がフェルトペンのペン先の幅の50%以上100%未満であったもの。
 D:インクがまったくはじかずに表面にきれいに描けてしまうもの。
 上記の評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000015
 第1表に示した評価結果から、本発明の含フッ素硬化性樹脂である実施例1で得られた含フッ素硬化性樹脂(1)を添加した実施例3の活性エネルギー線硬化性組成物の硬化塗膜は、汚れ付着防止性、汚れ拭き取り容易性及び汚れ拭き取り後の汚れ付着防止性が非常に良好であり、空気雰囲気下で紫外線を照射して硬化したのにも係わらず、優れた防汚性を有する硬化塗膜が得られることが分かった。これは、本発明の含フッ素硬化性樹脂の中に存在するメルカプト基が活性エネルギー線硬化組成物中のマトリックス成分であるウレタンアクリレート等のアクリロイル基と反応することで、本発明の含フッ素硬化性樹脂が塗膜表面に強固に固定化されることによるものである。
 このメルカプト基とアクリロイル基との反応の特徴は、空気雰囲気下で紫外線硬化を行った場合でも、酸素による重合阻害を受けにくいことである。この酸素による重合阻害は、生長過程にある重合体の末端ラジカルと空気中の酸素とが反応することによるものである。この際に生成する過酸化ラジカルは、アクリロイル基と反応しないため、結果的に重合が停止することになる。しかしながら、重合系中にメルカプト基が存在すると、生じた過酸化ラジカルは、メルカプト基の水素を引き抜き、チイルラジカルを生成する。このチイルラジカルはアクリロイル基と反応して重合を開始することができ、良好に重合反応が進行するため、結果として酸素による重合阻害が受けずに、本発明の含フッ素硬化性樹脂は、硬化塗膜へ強固に固定化される。さらに、本発明の含フッ素硬化性樹脂が有するマレイミド基が紫外線照射により光二量化反応を生じ、本発明の含フッ素硬化性樹脂のポリマー鎖同士を架橋することにより、より強固な防汚性を有する硬化塗膜となる。
 一方、比較例1で得られた比較対照用含フッ素硬化性樹脂(1´)を添加した比較例5の活性エネルギー線硬化性組成物の硬化塗膜は、汚れ拭き取り容易性は良好であったが、汚れ付着防止性及び汚れ拭き取り後の汚れ付着防止性が不十分で、防汚性にやや劣ることが分かった。これは、含フッ素硬化性樹脂(1´)の重合性不飽和基がアクリロイル基であるため、その重合が酸素阻害を受けたため、十分な重合が進まずに強固な硬化塗膜とならなかったことによるものである。
 比較例2~3で得られた比較対照用含フッ素硬化性樹脂(2´)~(3´)を添加した比較例6~7の比較対照用活性エネルギー線硬化性組成物の硬化塗膜は、汚れ付着防止性、汚れ拭き取り容易性及び汚れ拭き取り後の汚れ付着防止性が不十分で、防汚性に劣ることが分かった。これは、比較対照用含フッ素硬化性樹脂(2´)については、比較対照用含フッ素硬化性樹脂(1´)と同様に、重合性不飽和基がアクリロイル基であるため、その重合が酸素阻害を受けたため、十分な重合が進まずに強固な硬化塗膜とならなかったことによるものである。また、比較対照用含フッ素硬化性樹脂(3´)については、重合に関与するのがマレイミド基のみであるため、マレイミド基同士の光二量化反応は生じるものの、マトリックス成分であるウレタンアクリレート等と十分に重合できず、比較対照用含フッ素硬化性樹脂(3´)が硬化塗膜中に固定されなかったことによるものである。そして、何も添加しなかった比較例8は、全く汚れの付着を防止できないことが分かった

Claims (10)

  1.  重合性不飽和基を有する単量体の重合体またはウレタン重合体の重合体構造中にポリ(パーフルオロアルキレンエーテル)鎖、マレイミド基及びメルカプト基を有することを特徴とする含フッ素硬化性樹脂。
  2.  前記重合体が重合性不飽和基を有する単量体の重合体である請求項1記載の含フッ素硬化性樹脂。
  3.  ポリ(パーフルオロアルキレンエーテル)鎖とその両末端に重合性不飽和基を有する単量体(A)と、マレイミド基及びマレイミド基以外の重合性不飽和基を有する単量体(B)とを必須の単量体成分として、多官能チオール(C)の存在下で共重合させて得られる請求項1記載の含フッ素硬化性樹脂。
  4.  前記単量体(B)が有するマレイミド基が、下記一般式(1)で表されるマレイミド基である請求項3記載の含フッ素硬化性樹脂。
    Figure JPOXMLDOC01-appb-C000001
    (式中、R及びRは、それぞれ独立して、炭素原子数1~6のアルキル基、又はRとRとが1つとなって5員環もしくは6員環を形成する炭化水素基を表す。)
  5.  前記単量体(A)が有する重合性不飽和基が(メタ)アクリロイル基である請求項3記載の含フッ素硬化性樹脂。
  6.  前記多官能チオール(C)が、ペンタエリスリトールテトラキス(3-メルカプトブチレート)、ペンタエリスリトールテトラキスチオプロピオネート、トリス(3-メルカプトブチルオキシエチル)イソシアヌレート及びジペンタエリスリトールヘキサキスチオプロピオネートからなる群から選ばれる1種以上の化合物である請求項3記載の含フッ素硬化性樹脂。
  7.  前記多官能チオール(C)の使用量が、重合性不飽和基を有する単量体の合計100質量部に対して0.1~50質量部の範囲である請求項3記載の含フッ素硬化性樹脂。
  8.  請求項1~7のいずれか1項記載の含フッ素硬化性樹脂を、基材に塗布し、活性エネルギー線を照射して硬化させてなることを特徴とする硬化物。
  9.  請求項1~7のいずれか1項記載の含フッ素硬化性樹脂、及び、活性エネルギー線硬化性樹脂(D)又は活性エネルギー線硬化性単量体(E)を含有することを特徴とする活性エネルギー線硬化性組成物。
  10.  請求項9記載の活性エネルギー線硬化性組成物を、基材に塗布し、活性エネルギー線を照射して硬化させてなることを特徴とする硬化物。
PCT/JP2012/064903 2011-06-17 2012-06-11 含フッ素硬化性樹脂、活性エネルギー線硬化性組成物及びその硬化物 WO2012173088A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020137025350A KR101764954B1 (ko) 2011-06-17 2012-06-11 불소 함유 경화성 수지, 활성 에너지선 경화성 조성물 및 그 경화물
JP2012551409A JP5187471B2 (ja) 2011-06-17 2012-06-11 含フッ素硬化性樹脂、活性エネルギー線硬化性組成物及びその硬化物
US14/125,623 US8779065B2 (en) 2011-06-17 2012-06-11 Fluorine-containing curable resin, active energy beam-curable composition, and cured product thereof
CN201280021212.7A CN103502306B (zh) 2011-06-17 2012-06-11 含氟固化性树脂、活性能量射线固化性组合物及其固化物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011135145 2011-06-17
JP2011-135145 2011-06-17

Publications (1)

Publication Number Publication Date
WO2012173088A1 true WO2012173088A1 (ja) 2012-12-20

Family

ID=47357075

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/064903 WO2012173088A1 (ja) 2011-06-17 2012-06-11 含フッ素硬化性樹脂、活性エネルギー線硬化性組成物及びその硬化物

Country Status (6)

Country Link
US (1) US8779065B2 (ja)
JP (1) JP5187471B2 (ja)
KR (1) KR101764954B1 (ja)
CN (1) CN103502306B (ja)
TW (1) TWI547505B (ja)
WO (1) WO2012173088A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019004274A1 (ja) * 2017-06-30 2019-01-03 昭和電工株式会社 有機フッ素化合物、潤滑剤および磁気記録媒体の処理方法
WO2021033441A1 (ja) * 2019-08-20 2021-02-25 東京応化工業株式会社 硬化性組成物、硬化物、及び絶縁膜の形成方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AR100804A1 (es) * 2014-06-23 2016-11-02 Nippon Steel & Sumitomo Metal Corp Conexión roscada para tuberías de la industria del petróleo y composición para recubrimiento fotocurable
JPWO2016002335A1 (ja) * 2014-07-02 2017-04-27 横浜ゴム株式会社 反応性ホットメルト接着剤組成物
WO2016104377A1 (ja) * 2014-12-25 2016-06-30 旭硝子株式会社 硬化性樹脂組成物
WO2019129691A1 (en) * 2017-12-26 2019-07-04 Akzo Nobel Coatings International B.V. A fluorinated ether polymer, the preparation method therefore and use thereof
KR20210151878A (ko) * 2019-06-06 2021-12-14 디아이씨 가부시끼가이샤 함불소 수지, 활성 에너지선 경화형 조성물, 열경화형 조성물, 및 상기 조성물의 경화물
CN112898461B (zh) * 2021-01-22 2023-11-03 严小红 一种抗划伤镜片及其生产工艺

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009132773A (ja) * 2007-11-29 2009-06-18 Agc Seimi Chemical Co Ltd 樹脂組成物ならびにそれを用いた樹脂成形体、塗料および物品
JP2009256597A (ja) * 2008-03-26 2009-11-05 Jsr Corp パーフルオロポリエーテル基、ウレタン基及び(メタ)アクリロイル基を有する化合物
JP2011093978A (ja) * 2009-10-28 2011-05-12 Dic Corp 含フッ素硬化性樹脂、活性エネルギー線硬化型塗料組成物及びその硬化物
JP2011208046A (ja) * 2010-03-30 2011-10-20 Dic Corp 含フッ素多官能チオール、活性エネルギー線硬化型塗料組成物及びその硬化物
JP2011213989A (ja) * 2010-03-15 2011-10-27 Nidek Co Ltd ハードコート用樹脂組成物の製造方法、及びハードコート用樹脂組成物

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6426505A (en) * 1987-07-22 1989-01-27 Showa Denko Kk Photo-setting composition for dental material
US6306563B1 (en) * 1999-06-21 2001-10-23 Corning Inc. Optical devices made from radiation curable fluorinated compositions
US6778753B2 (en) 2001-07-25 2004-08-17 E. I. Du Pont De Nemours And Company Halogenated optical polymer composition
JP2004091479A (ja) * 2002-07-09 2004-03-25 Dainippon Ink & Chem Inc マレイミド化合物、それを含有する活性エネルギー線硬化性組成物、低屈折光学材料用重合体、及びマレイミド化合物の製造方法
DE10260067A1 (de) * 2002-12-19 2004-07-01 Röhm GmbH & Co. KG Beschichtungsmittel zur Herstellung von umformbaren Kratzfestbeschichtungen mit schmutzabweisender Wirkung, kratzfeste umformbare schmutzabweisende Formkörper sowie Verfahrn zu deren Herstellung
US20090163615A1 (en) * 2005-08-31 2009-06-25 Izhar Halahmi Uv curable hybridcuring ink jet ink composition and solder mask using the same
US9243083B2 (en) * 2008-04-03 2016-01-26 Henkel IP & Holding GmbH Thiol-ene cured oil-resistant polyacrylate sealants for in-place gasketing applications
TWI422656B (zh) * 2008-04-30 2014-01-11 Dainippon Ink & Chemicals 活性能量線硬化型塗料組成物、其硬化物及新穎硬化性樹脂
CN101294046B (zh) * 2008-06-19 2011-07-27 同济大学 一种紫外光固化聚氨酯水性涂料及其制备方法
JP4556151B2 (ja) * 2008-08-08 2010-10-06 Dic株式会社 フッ素化合物及びそれを用いた活性エネルギー線硬化型樹脂組成物
TWI464224B (zh) * 2009-05-14 2014-12-11 Dainippon Ink & Chemicals A fluoropolymerizable polymer and an active energy ray hardening type composition using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009132773A (ja) * 2007-11-29 2009-06-18 Agc Seimi Chemical Co Ltd 樹脂組成物ならびにそれを用いた樹脂成形体、塗料および物品
JP2009256597A (ja) * 2008-03-26 2009-11-05 Jsr Corp パーフルオロポリエーテル基、ウレタン基及び(メタ)アクリロイル基を有する化合物
JP2011093978A (ja) * 2009-10-28 2011-05-12 Dic Corp 含フッ素硬化性樹脂、活性エネルギー線硬化型塗料組成物及びその硬化物
JP2011213989A (ja) * 2010-03-15 2011-10-27 Nidek Co Ltd ハードコート用樹脂組成物の製造方法、及びハードコート用樹脂組成物
JP2011208046A (ja) * 2010-03-30 2011-10-20 Dic Corp 含フッ素多官能チオール、活性エネルギー線硬化型塗料組成物及びその硬化物

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019004274A1 (ja) * 2017-06-30 2019-01-03 昭和電工株式会社 有機フッ素化合物、潤滑剤および磁気記録媒体の処理方法
US11525032B2 (en) 2017-06-30 2022-12-13 Showa Denko K.K. Organic fluorine compound, lubricant, and processing method of magnetic recording medium
US11820862B2 (en) 2017-06-30 2023-11-21 Resonac Corporation Organic fluorine compound, lubricant, and processing method of magnetic recording medium
WO2021033441A1 (ja) * 2019-08-20 2021-02-25 東京応化工業株式会社 硬化性組成物、硬化物、及び絶縁膜の形成方法
JP2021031541A (ja) * 2019-08-20 2021-03-01 東京応化工業株式会社 硬化性組成物、硬化物、及び絶縁膜の形成方法
JP7428491B2 (ja) 2019-08-20 2024-02-06 東京応化工業株式会社 硬化性組成物、硬化物、及び絶縁膜の形成方法

Also Published As

Publication number Publication date
JP5187471B2 (ja) 2013-04-24
KR101764954B1 (ko) 2017-08-03
KR20140037059A (ko) 2014-03-26
CN103502306A (zh) 2014-01-08
US8779065B2 (en) 2014-07-15
JPWO2012173088A1 (ja) 2015-02-23
US20140107278A1 (en) 2014-04-17
TWI547505B (zh) 2016-09-01
TW201305225A (zh) 2013-02-01
CN103502306B (zh) 2016-04-06

Similar Documents

Publication Publication Date Title
JP4547642B2 (ja) 活性エネルギー線硬化型塗料組成物、その硬化物、及び新規硬化性樹脂
JP4873107B2 (ja) 含フッ素硬化性樹脂及びそれを用いた活性エネルギー線硬化性組成物
JP5794474B2 (ja) 含フッ素重合性樹脂、それを用いた活性エネルギー線硬化型組成物及びその硬化物
JP5187471B2 (ja) 含フッ素硬化性樹脂、活性エネルギー線硬化性組成物及びその硬化物
TWI464224B (zh) A fluoropolymerizable polymer and an active energy ray hardening type composition using the same
JP5581943B2 (ja) 含フッ素重合性樹脂、活性エネルギー線硬化型塗料組成物及びその硬化物
JP5397686B2 (ja) 含フッ素硬化性樹脂、活性エネルギー線硬化型塗料組成物及びその硬化物
JP5720921B2 (ja) 含フッ素多官能チオール、活性エネルギー線硬化型塗料組成物及びその硬化物
JP5887834B2 (ja) 含フッ素重合性樹脂、それを用いた活性エネルギー線硬化性組成物及びその硬化物
JP2013095817A (ja) アルコキシシラン縮合物及びそれを用いた活性エネルギー線硬化型組成物
JP5939419B2 (ja) フッ素原子含有シリコーン系重合性樹脂、それを用いた活性エネルギー線硬化性組成物、その硬化物及び物品
JP2011213818A (ja) 含フッ素硬化性樹脂及びそれを用いた活性エネルギー線硬化型塗料組成物
JP2013032443A (ja) シリコーン系重合性樹脂、それを用いた活性エネルギー線硬化性組成物及びその硬化物
JP5854303B2 (ja) 重合性樹脂、活性エネルギー線硬化性組成物及び物品
JP5353632B2 (ja) 含フッ素硬化性樹脂、活性エネルギー線硬化型塗料組成物及びその硬化物
JP5487860B2 (ja) 含フッ素硬化性樹脂、活性エネルギー線硬化型塗料組成物及びその硬化物
JP5487859B2 (ja) 含フッ素硬化性樹脂、活性エネルギー線硬化型塗料組成物及びその硬化物
JP6405647B2 (ja) 重合性樹脂、活性エネルギー線硬化性組成物及び物品。
WO2011122392A1 (ja) 含フッ素スチレン化合物及びそれを用いた活性エネルギー線硬化性組成物
JP5605305B2 (ja) 重合性フッ素表面修飾シリカ粒子及びそれを用いた活性エネルギー線硬化性組成物
WO2021256131A1 (ja) 含フッ素重合性樹脂、活性エネルギー線硬化性組成物、硬化塗膜及び物品
JP2013040317A (ja) シリコーン系重合性樹脂、それを用いた活性エネルギー線硬化性組成物及びその硬化物
JP2013087213A (ja) 含フッ素重合性樹脂、それを用いた活性エネルギー線硬化性組成物及びその硬化物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280021212.7

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2012551409

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12801108

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137025350

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14125623

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12801108

Country of ref document: EP

Kind code of ref document: A1