WO2012173043A1 - 金型清掃用樹脂組成物 - Google Patents

金型清掃用樹脂組成物 Download PDF

Info

Publication number
WO2012173043A1
WO2012173043A1 PCT/JP2012/064709 JP2012064709W WO2012173043A1 WO 2012173043 A1 WO2012173043 A1 WO 2012173043A1 JP 2012064709 W JP2012064709 W JP 2012064709W WO 2012173043 A1 WO2012173043 A1 WO 2012173043A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
cleaning
ethylene
mold
mold cleaning
Prior art date
Application number
PCT/JP2012/064709
Other languages
English (en)
French (fr)
Inventor
太地 佐藤
野村 弘明
吉村 勝則
Original Assignee
日本カーバイド工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本カーバイド工業株式会社 filed Critical 日本カーバイド工業株式会社
Priority to KR1020137032626A priority Critical patent/KR20140033101A/ko
Priority to JP2013520521A priority patent/JP5975991B2/ja
Priority to CN201280028572.XA priority patent/CN103596738A/zh
Publication of WO2012173043A1 publication Critical patent/WO2012173043A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/70Maintenance
    • B29C33/72Cleaning
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/70Maintenance
    • B29C33/72Cleaning
    • B29C33/722Compositions for cleaning moulds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/21Urea; Derivatives thereof, e.g. biuret
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/16Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers

Definitions

  • the present invention relates to a mold cleaning resin composition.
  • a sealing molding material containing a curable resin composition typified by an epoxy resin is used and the sealing molding operation of an integrated circuit element or the like is continued for a long time, the inner surface of the molding die is caused by dirt derived from the sealing molding material.
  • dirt derived from the sealing molding material There is a problem that stains. If such dirt is left as it is, dirt adheres to the surface of a sealing molded product such as an integrated circuit element. Therefore, it is necessary to remove dirt on the inner surface of the molding die in the sealing molding process. Specifically, every time hundreds of shots of sealing molding are performed, a mold cleaning resin composition is molded instead of the sealing molding material at a rate of several shots, and dirt on the inner surface of the molding mold is removed. ing.
  • Such a mold cleaning resin composition has been conventionally proposed.
  • an unvulcanized rubber having a blending ratio of ethylene-propylene rubber and butadiene rubber in a base resin of 90/10 to 50/50 parts by weight is unvulcanized.
  • Rubber system for mold cleaning in which the elongation after vulcanization of rubber, tensile strength, rubber hardness (durometer hardness), and 90% vulcanization time at a mold temperature of 175 ° C. are defined within a specific range.
  • a composition is disclosed. According to this publication, it is said that reduction of voids and chipping can be eliminated together with releasability from the mold.
  • This rubber composition for mold cleaning uses, for example, monoethanolamine as a cleaning agent.
  • Japanese Patent Laid-Open No. 2-20538 discloses a rubber composition for mold cleaning in which 1 to 70 parts by weight of a urea derivative is contained per 100 parts by weight of an ethylene-propylene rubber. According to this publication, it is described that a cleaning effect is obtained by adding urea derivatives such as diphenylurea and dimethylurea in order to reduce odor during the cleaning operation.
  • the shape and structure of sealing molding have been diversified and refined. Therefore, the shape and structure of the molding die are required to be diversified and refined, and at the same time, the conditions in the molding operation, for example, molding conditions such as temperature, and the material of the molding die are being studied. For example, in order to improve wear resistance, a molding die having a hardness increased by using a cemented carbide is widely used.
  • the molding die containing cemented carbide in the material had a problem that the molding die was altered by a small amount of cobalt contained in the cemented carbide. This is because the cobalt contained in the cemented carbide is oxidized by applying heat, the bonding strength becomes weak, and the tungsten carbide of the cemented carbide falls off. Further, in a molding die containing a cemented carbide as a material, discoloration of the molding die occurs with cobalt oxidation. When a sealing molding operation is performed with a modified molding die, an appearance defect may occur in a sealing molded product such as an integrated circuit element, and the mold shape may not be accurately transferred.
  • thermosetting resin molding process in order to improve the workability of the thermosetting resin molding process, it is required to improve the cleaning performance of the mold cleaning resin composition and reduce the number of shots of the mold cleaning resin composition. . Further, not only in the molding process of the thermosetting resin composition using a molding die containing a cemented carbide, but also in the cleaning process, resistance to deterioration of the molding mold is required.
  • the resin composition for mold cleaning described in the pamphlet of International Publication No. 2009/57479 still has room for improvement in cleaning performance.
  • the inventor of this invention discovered that the resin composition for metal mold
  • the rubber composition for mold cleaning described in JP-A-2-20538 has insufficient cleaning performance. Further, the effect of suppressing the deterioration of the molding die containing the cemented carbide in the cleaning process is insufficient.
  • An object of the present invention is to provide a mold cleaning resin composition with improved cleaning performance of the inner surface of the molding die when removing dirt on the inner surface of the molding die generated in the molding step of the curable resin composition. It is to be.
  • the present invention includes the following aspects.
  • the ethylene-propylene rubber (A) is derived from ethylene.
  • the mass ratio of the content of the structural unit to the content of the structural unit derived from propylene is in the range of 55/45 to 60/40, and the content of the ethylene-propylene rubber (A) is the content of the butadiene rubber (B).
  • the mold cleaning resin composition has a mass ratio (A / B) to content of 30/70 to 70/30.
  • the content of the urea derivative (D) is 0.3 to 15 parts by mass with respect to 100 parts by mass of the total content of the ethylene-propylene rubber (A) and the butadiene rubber (B).
  • molding process of a curable resin composition is provided. can do.
  • a numerical range indicated using “to” indicates a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively.
  • the amount of each component in the composition means the total amount of the plurality of substances present in the composition unless there is a specific notice when there are a plurality of substances corresponding to each component in the composition.
  • the mold cleaning resin composition of the present invention removes stains on the mold surface generated in the molding process of a curable resin composition selected from the group consisting of epoxy resins, silicone resins, phenol resins, and polyimide resins. It is used as a compression type mold cleaning resin composition to be removed.
  • a curable resin composition selected from the group consisting of epoxy resins, silicone resins, phenol resins, and polyimide resins.
  • the mold cleaning resin composition of the present invention includes an ethylene-propylene rubber (A), a butadiene rubber (B), an inorganic filler (C), and a urea derivative (D).
  • A has a mass ratio of the content of the structural unit derived from ethylene to the content of the structural unit derived from propylene in the range of 55/45 to 60/40, and the content of the ethylene-propylene rubber (A)
  • the mass ratio (A / B) to the content of the butadiene rubber (B) is in the range of 30/70 to 70/30.
  • the resin composition for mold cleaning includes an ethylene-propylene rubber and a butadiene rubber having a specific configuration in a specific ratio, and further includes a urea derivative. Further, the alteration of the cemented carbide on the inner surface of the molding die is effectively suppressed, and the occurrence of poor appearance of the sealing molded product such as an integrated circuit element during sealing molding is suppressed.
  • the mold cleaning resin composition contains at least one ethylene-propylene rubber (A).
  • ethylene-propylene rubber means at least one of ethylene-propylene rubber and ethylene-propylene-diene rubber.
  • the ethylene-propylene rubber (A) contained in the mold cleaning resin composition has a mass ratio of the content of structural units derived from ethylene to the content of structural units derived from propylene (hereinafter simply referred to as “ethylene / propylene”). The ratio is also called 55/45 (1.22) to 60/40 (1.50).
  • the ethylene / propylene ratio is preferably 55/45 (1.22) to 59/41 (1.44).
  • the ethylene / propylene ratio is less than 55/45, sufficient tensile strength may not be obtained after vulcanization.
  • the ethylene / propylene ratio exceeds 60/40, the temperature dependency of the strength of the raw rubber becomes large and the workability may be lowered.
  • the ethylene / propylene ratio in the ethylene-propylene rubber can be calculated by measuring a 1 H-NMR (proton nuclear magnetic resonance) spectrum at a resonance frequency of 1 H: 500 MHz for the resin composition for mold cleaning. .
  • the 1 H-NMR spectrum is measured in the same manner, thereby making it clearer.
  • the ethylene / propylene ratio can also be calculated.
  • the ethylene-propylene rubber preferably further contains a structural unit derived from a diene component in addition to a structural unit derived from ethylene and a structural unit derived from propylene.
  • the diene component include ethylidene norbornene (ENB), methylidene norbornene, dicyclopentadiene, vinylidene norbornene, and the like.
  • the diene component preferably includes at least one selected from the group consisting of ethylidene norbornene and dicyclopentadiene, and more preferably includes ethylidene norbornene, from the viewpoint of cleaning performance.
  • the content of the structural unit derived from the diene component is 6.5% by mass to 9.5% by mass in the total mass of the ethylene-propylene rubber. It is preferably 7.0% by mass to 9.0% by mass, more preferably 7.5% by mass to 8.5% by mass.
  • the iodine value of the ethylene-propylene rubber is preferably 12-22, and more preferably 14-18.
  • the ethylene-propylene rubber contains 6.5% by mass to 9.5% by mass of a structural unit derived from ethylidene norbornene in addition to a structural unit derived from ethylene and a structural unit derived from propylene. More preferably, the structural unit derived from ethylidene norbornene is contained in an amount of 7.0 to 9.0% by mass in the total mass.
  • the Mooney viscosity ML (1 + 4) 100 ° C. of the ethylene-propylene rubber is not particularly limited. Among these, from the viewpoint of cleaning performance, it is preferably 5 to 40, more preferably 5 to 30.
  • the Mooney viscosity is measured in accordance with JIS K 6300-1, “Unvulcanized rubber—Physical properties—Part 1: Determination of viscosity and scorch time using Mooney viscometer”.
  • the content of the ethylene-propylene rubber is preferably 20% by mass to 80% by mass, and preferably 30% by mass to 70% by mass, based on the total mass of the mold cleaning resin composition, from the viewpoint of cleaning performance. It is more preferable.
  • the mold cleaning resin composition may contain one kind of ethylene-propylene rubber or a combination of two or more kinds.
  • the mold cleaning resin composition contains at least one butadiene rubber.
  • the butadiene rubber is not particularly limited, and can be appropriately selected from commonly used butadiene rubbers. Among these, from the viewpoint of cleaning performance, a butadiene rubber having a high cis structure in which the content of cis 1,4 bonds is 90% by mass or more and a Mooney viscosity ML (1 + 4) of 100 ° C. is 20 to 60 is preferable. A butadiene rubber having a Mooney viscosity ML (1 + 4) of 100 ° C. of 30 to 45 is more preferable.
  • the butadiene rubber may be used alone or in combination of two or more.
  • the mold cleaning resin composition contains the ethylene-propylene rubber (A) and the butadiene rubber (B), when removing dirt on the inner surface of the mold, the mold cleaning resin composition The hardness can be kept appropriate, and the mold cleaning resin can be filled appropriately to the details inside the molding die. Further, since the strength of the mold cleaning resin composition can be maintained, the mold cleaning resin composition does not become brittle, and after removing the dirt, the mold cleaning resin composition is released from the molding die. Work can be done easily. Further, the resin composition for mold cleaning of the present invention contains the ethylene-propylene rubber (A) and the butadiene rubber (B), so that a urea derivative (D) such as 1,3-dimethylurea described later can be obtained.
  • a urea derivative (D) such as 1,3-dimethylurea described later can be obtained.
  • the mass ratio (A) / (B) of the content of the ethylene-propylene rubber (A) contained in the resin composition for mold cleaning to the content of the butadiene rubber (B) is 30/70 to 70/30. Range.
  • the mass ratio (A) / (B) of the ethylene-propylene rubber (A) to the butadiene rubber (B) is less than 30/70, the mold cleaning resin composition tends to be brittle. After the removing operation, it may be difficult to release the cured mold cleaning resin composition from the molding die.
  • the mass ratio (A) / (B) of the ethylene-propylene rubber (A) and the butadiene rubber (B) exceeds 70/30, the cured mold is removed during the removal of the dirt from the heated mold. Adhesion of the cleaning resin composition to the inner surface of the molding die may occur, and the cleaning time tends to increase. Further, when the mass ratio (A) / (B) is out of the above range, the ethylene-propylene rubber (A) and the butadiene rubber (B) of a urea derivative (D) such as 1,3-dimethylurea described later are used. It is difficult to control the dispersibility in the above), and there is a tendency that the effect of preventing the cleaning performance and the deterioration of the cemented carbide on the inner surface of the molding die cannot be obtained sufficiently.
  • the mass ratio of the content of the ethylene-propylene rubber (A) to the content of the butadiene rubber (B) in the resin composition for mold cleaning is 1 H-NMR (proton) for the resin composition for mold cleaning.
  • Nuclear magnetic resonance) spectrum can be calculated by measuring at 1 H resonance frequency: 500 MHz.
  • the mold cleaning resin composition contains at least one inorganic filler (C).
  • the inorganic filler is not particularly limited and can be appropriately selected from commonly used inorganic fillers.
  • Specific examples of the inorganic filler include silica, alumina, calcium carbonate, aluminum hydroxide, and titanium oxide.
  • the particle size range of the inorganic filler (C) is not particularly limited. Among these, from the viewpoint of cleaning performance, it is preferably 0.1 ⁇ m to 20 ⁇ m, and more preferably 5 ⁇ m to 18 ⁇ m.
  • the particle size range is a volume average particle size measured with a Coulter counter (manufactured by Beckman Coulter) using an aperture diameter of 70 ⁇ m.
  • the mold cleaning resin composition contains 20 to 50 parts by mass of the inorganic filler (C) with respect to a total of 100 parts by mass of the ethylene-propylene rubber (A) and the butadiene rubber (B). It is preferably 20 to 40 parts by mass, more preferably 25 to 40 parts by mass.
  • the mold cleaning resin composition does not extend excessively during cleaning molding, and the mold cleaning resin composition remains on the mold inner surface during cleaning.
  • molding of the resin composition for cleaning is appropriate by containing 50 mass parts or less, and the more outstanding cleaning performance is obtained.
  • the mold cleaning resin composition contains at least one urea derivative.
  • the urea derivative is not particularly limited as long as it is a compound having at least one ureido group.
  • urea derivatives that are solid at normal temperature (25 ° C.) are preferable from the viewpoint of cleaning performance and the effect of suppressing deterioration of the molding die, and are solid at normal temperature and have at least one hydrogen atom on the nitrogen atom of the ureido group. More preferably, it is a compound.
  • the urea derivatives may be used alone or in combination of two or more.
  • the mold cleaning resin composition contains a urea derivative (D).
  • the inventor of the present invention is that the urea derivative (D) is a cleaning component, and the urea derivative (D) acts on the dirt on the inner surface of the heated molding die, thereby contributing to the cleanability of the die surface. I believe. Furthermore, it is thought that the cleaning property of a metal mold
  • the melting point of the urea derivative is preferably 70 ° C. or higher, more preferably 70 ° C. or higher and 200 ° C. or lower, and 90 ° C. or higher and 150 ° C. or lower, from the viewpoint of cleaning performance and the effect of suppressing deterioration of the molding die. More preferably it is. It is preferable that the urea derivative has a melting point of 70 ° C. or higher, that is, a solid at room temperature (25 ° C.), since dispersion of the cleaning component into the mold cleaning resin composition can be more easily controlled.
  • the boiling point of the urea derivative is preferably 90 ° C. or higher, more preferably 150 ° C. or higher and 350 ° C. or lower, and more preferably 180 ° C. or higher and 300 ° C. or lower, from the viewpoint of cleaning performance and the effect of suppressing deterioration of the molding die. More preferably.
  • the boiling point is 90 ° C. or more, sufficient thermal stability can be obtained, and the effect of suppressing deterioration of the molding die containing the cemented carbide can be effectively obtained.
  • the urea derivative is preferably a compound having a melting point of 70 ° C. or higher and a boiling point of 90 ° C. or higher, and a melting point of 70 ° C. or higher and 200 ° C. or lower from the viewpoint of cleaning performance and the effect of suppressing deterioration of the molding die. More preferably, the boiling point is 150 ° C. or higher and 350 ° C. or lower, the melting point is 90 ° C. or higher and 150 ° C. or lower, the boiling point is 180 ° C. or higher and 300 ° C. or lower, and at least one hydrogen atom on the nitrogen atom of the ureido group It is further preferable to have
  • the urea derivative is preferably a compound having an alkyl group having 1 to 15 carbon atoms on the nitrogen atom of the ureido group from the viewpoint of the cleaning performance and the effect of suppressing the deterioration of the molding die, and the urea derivative is preferably on the nitrogen atom of the ureido group.
  • a compound having 1 to 3 alkyl groups having 1 to 15 carbon atoms is more preferable, and a compound having 1 or 2 alkyl groups having 1 to 3 carbon atoms on the nitrogen atom of the ureido group is more preferable.
  • the alkyl group possessed by the urea derivative may be linear or branched.
  • urea derivative examples include monomethyl urea (melting point 93 ° C., boiling point 240 ° C.), monoethyl urea (melting point 90 ° C., boiling point 136 ° C.), 1,1-dimethylurea (melting point 183 ° C., boiling point> 185 ° C.), Examples include 1,3-dimethylurea (melting point 102 ° C., boiling point 268 ° C.), 1,1-diethylurea (melting point 71 ° C.), 1,3-diethylurea (melting point 113 ° C., boiling point 268 ° C.), and the like. Of these, at least one urea derivative selected from the group consisting of monomethylurea and 1,3-dimethylurea is preferable from the viewpoint of cleaning performance and the effect of suppressing deterioration of the molding die.
  • Monomethylurea and 1,3-dimethylurea preferably used as the urea derivative have melting points of 93 ° C. and 102 ° C., respectively, and are solid at room temperature.
  • the cleaning component is a compound that is solid at room temperature because dispersion of the cleaning component into the mold cleaning resin composition can be easily controlled during the production of the mold cleaning resin composition.
  • a cleaning component used in a conventional resin composition for mold cleaning such as monoethanolamine, has a melting point of 10 ° C. and is liquid at room temperature. Dispersibility in the resin composition for mold cleaning may not be sufficiently obtained with a cleaning component that is liquid at room temperature.
  • the mold cleaning resin composition contains an inorganic filler (C) and a urea derivative (D) dispersed in a rubber component containing the ethylene-propylene rubber (A) and the butadiene rubber (B). It is preferable.
  • the present inventor has found that when the urea derivative (D) is sufficiently dispersed in the resin composition in the production of the mold cleaning resin composition, the urea derivative against the stain on the mold surface during cleaning. It is considered that the action (D) is more effectively exhibited and the cleaning property is further improved. Further, if the dispersion into the resin composition is poor, the urea derivative (D) bleeds out after the production of the mold cleaning resin composition, which contributes to the mold surface cleaning property during the cleaning operation. It is considered that there is a case where the cleaning performance is deteriorated.
  • the mold cleaning resin composition preferably has a Mooney viscosity at 100 ° C. of 60 ML (1 + 4) 100 ° C. to 90 ML (1 + 4) 100 ° C., and 60 ML (1 + 4) 100 ° C. to 80 ML (1 + 4) 100 ° C. More preferred is 62ML (1 + 4) 100 ° C. to 80ML (1 + 4) 100 ° C.
  • the Mooney viscosity of the resin composition for mold cleaning is 60 ML (1 + 4) 100 ° C. or more, the moldability of the resin composition for mold cleaning tends to be further improved during the production of the resin composition for mold cleaning. .
  • the Mooney viscosity is 90 ML (1 + 4) 100 ° C.
  • the dispersibility of the urea derivative (D) can be controlled more appropriately.
  • the present inventor has found that the Mooney viscosity of the mold cleaning resin composition increases when the mold cleaning resin composition contains the urea derivative (D). Further, when the Mooney viscosity at 100 ° C. of the mold cleaning resin composition is in the range of 60 ML (1 + 4) 100 ° C. to 90 ML (1 + 4) 100 ° C., the urea derivative (D) into the mold cleaning resin composition It is considered that the dispersion state of the above shows a state more suitable for the cleaning characteristics of the mold.
  • Mooney viscosity is measured in accordance with JIS K 6300-1, “Unvulcanized rubber—physical properties—Part 1: How to determine viscosity and scorch time using Mooney viscometer”.
  • the durometer hardness of the cured product after molding at 175 ° C. for 5 minutes is preferably A70 to A100, more preferably A72 to A95, and more preferably A80 to A95. Is more preferable.
  • the durometer hardness of the cured product after molding at 175 ° C. for 5 minutes is A70 or more, the required molding pressure can be obtained more easily and the cleaning performance tends to be further improved.
  • the durometer hardness is A100 or less, the molded product is suppressed from becoming too brittle, and the cleaning performance tends to be further improved.
  • the method for measuring the durometer hardness at 175 ° C. is as follows.
  • the rubber hardness test piece is produced by molding using a 37T molding machine at a mold temperature of 175 ° C., a molding pressure of 10 MPa (gauge pressure), and a molding time of 5 minutes.
  • the durometer hardness of the obtained rubber hardness test piece is measured by a method according to JIS K 6253 “Method for testing hardness of vulcanized rubber and thermoplastic rubber”. Specifically, three test pieces obtained under the above-mentioned test piece preparation conditions are stacked and measured using a durometer A type.
  • the present inventor further believes that the cleaning component represented by monoethanolamine contained in the conventional resin composition for mold cleaning further promotes the modification of the molding die containing cemented carbide.
  • the sealing molding process for integrated circuit elements or the like is performed at a high temperature of 170 ° C. or higher, and the subsequent molding mold cleaning process is similarly performed at 170 ° C. or higher.
  • the inventor of the present invention has disclosed a molding die cleaning process in which the mold cleaning resin composition containing the urea derivative (D) does not cause deterioration of the molding die containing the cemented carbide and is performed at a high temperature of 170 ° C. or higher.
  • the mold cleaning resin composition containing the urea derivative (D) does not cause deterioration of the molding die containing the cemented carbide and is performed at a high temperature of 170 ° C. or higher.
  • a urea derivative is generally a thermally stable substance having a relatively high melting point and boiling point compared to conventional cleaning components.
  • 1,3-dimethylurea has a melting point of 102 ° C. and a boiling point of 268 ° C.
  • monomethylurea is a thermally stable substance with a melting point of 93 ° C. and a boiling point of 240 ° C. Yes. Therefore, when a cleaning component having a boiling point of, for example, 180 ° C. or more is used, the cleaning property of the molding die is more effectively improved, and further, the effect of suppressing the deterioration of the molding die containing the cemented carbide is obtained more effectively. it is conceivable that.
  • the mold cleaning resin composition contains ethylene-propylene rubber (A) and butadiene rubber (B)
  • the dispersion state of the urea derivative (D) in the mold cleaning resin composition can be made appropriate. It is considered possible.
  • a mold cleaning resin composition containing ethylene-propylene rubber (A) and urea derivative (D) and not containing butadiene rubber (B) a molding die containing cemented carbide at a high temperature of 175 ° C. or higher. It is considered that the effect of inhibiting the deterioration of the material decreases. This is considered to be because, for example, poor dispersion of the urea derivative (D) in the mold cleaning resin composition occurs, so that the effect of suppressing deterioration is reduced.
  • the content of the urea derivative in the mold cleaning resin composition is not particularly limited.
  • the urea derivative (D) is preferably contained in an amount of 0.1 to 20 parts by mass with respect to a total of 100 parts by mass of the ethylene-propylene rubber (A) and the butadiene rubber (B). More preferably, it is contained in an amount of ⁇ 17 parts by mass, and still more preferably in an amount of 0.3-15 parts by mass.
  • the content of the urea derivative (D) is 0.1 parts by mass or more, the cleaning performance is further improved, and when removing dirt on the inner surface of the molding die generated in the molding step of the curable resin composition, Alteration of the cemented carbide on the inner surface of the molding die is more effectively suppressed.
  • the content of the urea derivative (D) is 20 parts by mass or less, the moldability of the mold cleaning resin composition is further improved, and stains on the inner surface of the mold can be efficiently removed.
  • the urea derivative content in the mold cleaning resin composition is 0.1 parts by mass with respect to 100 parts by mass of the ethylene-propylene rubber (A) from the viewpoint of cleaning performance and the effect of suppressing deterioration of the mold. It is preferably ⁇ 30 parts by mass, more preferably 0.2 to 25 parts by mass, and still more preferably 0.4 to 22 parts by mass. Further, the content of the urea derivative in the mold cleaning resin composition is from 0.2 parts by mass to 67 parts by mass with respect to 100 parts by mass of the butadiene rubber (B) from the viewpoint of the cleaning performance and the effect of suppressing deterioration of the mold.
  • the mass is preferably 0.7 parts by mass, more preferably 0.7 parts by mass to 57 parts by mass, and still more preferably 1 part by mass to 50 parts by mass.
  • the resin composition for mold cleaning has a melting point of 70 ° C. or higher, a boiling point of 90 ° C. or higher, a urea derivative having an alkyl group having 1 to 15 carbon atoms, an ethylene-propylene rubber (A) and a butadiene rubber. It is preferable to contain 0.1 to 20 parts by mass with respect to 100 parts by mass in total with (B), the melting point is 70 ° C. or higher and 200 ° C. or lower, the boiling point is 150 ° C. or higher and 350 ° C.
  • the urea derivative having an alkyl group of several 1 to 15 is contained in an amount of 0.2 to 17 parts by mass with respect to 100 parts by mass in total of the ethylene-propylene rubber (A) and the butadiene rubber (B).
  • the content of the urea derivative in the mold cleaning resin composition is determined by measuring a 1 H-NMR (proton nuclear magnetic resonance) spectrum at a resonance frequency of 1 H: 500 MHz for the resin composition for mold cleaning. Can be calculated.
  • the urea derivatives (D) such as monomethylurea and 1,3-dimethylurea preferably used in the resin composition for mold cleaning are, for example, N-methylurea commercially available from Wako Pure Chemical Industries, Ltd., 1 , 3-dimethylurea and the like can be preferably used.
  • the mold cleaning resin composition may further contain other cleaning agent other than the urea derivative in addition to the urea derivative as necessary.
  • Other cleaning agents can be appropriately selected from commonly used cleaning agents. Examples of other cleaning agents include surfactants and alkali metal salts.
  • the content thereof is preferably 50% by mass or less, more preferably 30% by mass or less, based on the urea derivative. More preferably, it is at most mass%.
  • the mold cleaning resin composition preferably contains at least one vulcanizing agent.
  • the vulcanizing agent can be appropriately selected from commonly used vulcanizing agents.
  • Dialkyl peroxides such as di-t-butyl peroxide, di-t-amyl peroxide, dicumyl peroxide, and 2,5-dimethyl-2,5-di (t-butylperoxy) hexane Peroxide, 1,1-di (t-butylperoxy) -3,3,5-trimethylcyclohexane, 1,1-di (t-butylperoxy) cyclohexane, 2,2-di (t-butylperoxy) And peroxyketals organic peroxides such as oxy) octane, n-butyl-4,4-di (t-butylperoxy) valerate, 2,2-di (t-butylperoxy) butane, and the like. These may be used singly or in combination
  • the content can be appropriately selected according to the type of the vulcanizing agent.
  • the vulcanizing agent is preferably contained in an amount of 0.1 to 6 parts by mass with respect to a total of 100 parts by mass of the ethylene-propylene rubber (A) and the butadiene rubber (B). More preferably, it is more preferably 2 to 4 parts by mass.
  • the content of the vulcanizing agent is 0.1 parts by mass or more, the cleaning performance is further improved, and when removing the dirt on the inner surface of the molding die generated in the molding step of the curable resin composition, the molding die Deterioration of the cemented carbide on the inner surface is more effectively suppressed.
  • the mold cleaning resin composition preferably includes at least one mold release agent.
  • the release agent include fatty acid ester release agents, synthetic waxes, and fatty acid amide release agents.
  • the metal soap release agent include calcium stearate, zinc stearate, and zinc myristate.
  • fatty acid ester release agents examples include Ricowax OP (Montannic acid partially saponified ester manufactured by Clariant Japan Co., Ltd.), Roxyol G-78 (polymeric composite manufactured by Cognis Japan Co., Ltd.) Ester), Recolve H-4 (modified hydrocarbon manufactured by Clariant Japan Co., Ltd.), Roxyol VPN881 (mineral oil synthetic wax manufactured by Cognis Japan Co., Ltd.), fatty acid amide S (fatty acid amide manufactured by Kao Corporation), Kao wax EB-P ( Examples include fatty acid amides manufactured by Kao Corporation, Alfro HT-50 (fatty acid amides manufactured by Nippon Oil & Fats Co., Ltd.)
  • the content can be appropriately selected according to the type of the release agent.
  • the release agent is preferably contained in an amount of 0.1 to 5 parts by mass, and 0.5 to 3 parts by mass with respect to 100 parts by mass in total of the ethylene-propylene rubber (A) and the butadiene rubber (B). It is more preferable to include parts by mass.
  • the mold cleaning resin composition may further include other additives such as a cleaning aid, a vulcanization aid, a vulcanization accelerator, and a vulcanization acceleration aid, as necessary, as long as the effects of the present invention are not hindered. Can be included.
  • a cleaning aid include various surfactants.
  • the vulcanization aid include acrylic acid monomer and sulfur.
  • vulcanization accelerator examples include guanidine series such as diphenylguanidine and triphenylguanidine, aldehyde-amine series such as formaldehyde-paratoluidine condensate, acetaldehyde-aniline reactant, and aldehyde-ammonia series, 2-mercaptobenzothiazole, dibenzo Examples include thiazoles such as thiazyl disulfide. Examples of the vulcanization acceleration aid include magnesia, resurge, lime and the like.
  • the mold cleaning resin composition is, for example, inorganic such as a petal, bitumen, iron black, ultramarine, carbon black, lithopone, titanium yellow, cobalt blue, Hansa yellow, quinacridone red, etc.
  • organic pigments may further be included.
  • the method for preparing the mold cleaning resin composition is not particularly limited.
  • it can be prepared by adding an inorganic filler (C) and a urea derivative (D) to a mixed dough containing ethylene-propylene rubber (A) and butadiene rubber (B) and kneading.
  • an additive typified by a release agent or the like can also be added.
  • the kneading means is not particularly limited, and can be appropriately selected from commonly used kneading means methods.
  • examples of the kneading means include a pressure kneader, a Banbury mixer, and a roll mixer.
  • the form of the mold cleaning resin composition is not particularly limited.
  • a sheet shape is preferable. Since the mold cleaning resin composition is in sheet form, it can be easily cooled in a short time, and by quickly cooling the kneaded resin composition, vulcanization due to preheating during kneading can be suppressed. Stable performance can be obtained.
  • the thickness and size thereof are not particularly limited and can be appropriately selected depending on the purpose. For example, the thickness can be 3 mm to 10 mm, and preferably 5 mm to 7 mm.
  • the usage pattern of the mold cleaning resin composition is not particularly limited. For example, it is preferable to use it as a compression type. Thereby, after removal of dirt, the mold cleaning resin composition can be easily released from the mold.
  • the cemented carbide in the mold in which the mold cleaning resin composition is used include, for example, a WC—Co alloy, a WC—TiC—Co alloy, a WC—TaC—Co alloy, and a WC—TiC—TaC— Examples thereof include a Co-based alloy, a WC-Ni-based alloy, and a WC-Ni-Cr-based alloy. Among these, at least one selected from the group consisting of WC—Ni alloys and WC—Ni—Cr alloys is preferable.
  • EPT4021 ethylene-propylene rubber
  • butadiene rubber manufactured by JSR Corporation, product
  • 1,3-dimethylurea manufactured by Wako Pure Chemical Industries, Ltd.
  • 75 g of titanium oxide (trade name: CR-80, manufactured by Ishihara Sangyo Co., Ltd.) were added and kneaded for about 3 minutes.
  • 48 g of 2,5-dimethyl-2,5-di (t-butylperoxy) hexane was added and kneaded for about 1 minute.
  • the temperature of the kneaded product was adjusted so as not to exceed 100 ° C.
  • the obtained kneaded material was quickly passed through a pressure roll, processed into a sheet shape and cooled to 25 ° C. or lower to obtain a sheet-shaped mold cleaning resin composition having a thickness of 6 mm.
  • PDIP-14L (8 pots-48 cavities) mold with a commercially available biphenyl-based epoxy resin molding material (EME-7351T manufactured by Sumitomo Bakelite Co., Ltd.) and a plunger with a tip made of cemented carbide. Then, 500 shots were molded to form a stain on the inner surface of the molding die. Using the molding die having the dirt on the inner surface of the molding die, molding was repeatedly performed on the mold cleaning resin composition obtained above, and molding required until the dirt on the inner surface of the molding die could be removed. The cleaning performance was evaluated by the number of times (number of shots). In addition, the removal state of the stain
  • Example 2 In Example 1, except that the composition of the mold cleaning resin composition was changed to the formulation shown in Table 1, a mold cleaning resin composition was obtained in the same manner as in Example 1 and evaluated in the same manner.
  • Example 10 In the preparation of the mold cleaning resin composition of Example 4, a mold cleaning resin composition was obtained in the same manner as in Example 4 except that monomethylurea was used instead of 1,3-dimethylurea. Evaluation was performed in the same manner.
  • Example 2 In Example 1, except that the composition of the mold cleaning resin composition was changed to the formulation shown in Table 2, a mold cleaning resin composition was obtained in the same manner as in Example 1 and evaluated in the same manner. .
  • the sheet-shaped mold cleaning resin composition according to the embodiment of the present invention is a stain on the inner surface of the molding die generated in the molding step of the curable resin composition. Can be removed with a small number of shots, and excellent cleaning performance was exhibited. Furthermore, the deterioration of the cemented carbide member on the inner surface of the molding die could be suppressed. On the other hand, it turns out that sufficient cleaning performance cannot be obtained with the resin composition for mold cleaning according to the comparative example.
  • the mold cleaning resin composition shown in Comparative Example 1 using monoethanolamine as a cleaning agent is inferior in cleaning property to the mold cleaning resin composition according to the present invention, and is further made of cemented carbide. It was found that the material was altered. Moreover, it turned out that the cleaning property which the resin composition for mold cleaning shown in the comparative example 2 which does not contain a butadiene rubber is inferior to the resin composition for metal mold cleaning concerning this invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

 本発明は、エチレン-プロピレンゴム(A)と、ブタジエンゴム(B)と、無機充填材(C)と、尿素誘導体(D)とを含む金型清掃用樹脂組成物を提供する。前記エチレン-プロピレンゴム(A)は、エチレンに由来する構成単位の含有量のプロピレンに由来する構成単位含有量に対する質量比が55/45~60/40の範囲であり、前記エチレン-プロピレンゴム(A)の含有量の前記ブタジエンゴム(B)の含有量に対する質量比(A/B)が、30/70~70/30の範囲である。

Description

金型清掃用樹脂組成物
 本発明は、金型清掃用樹脂組成物に関する。
 エポキシ樹脂に代表される硬化性樹脂組成物を含む封止成形材料を用い、集積回路素子等の封止成形作業を長時間続けると、封止成形材料に由来する汚れにより、成形金型内部表面が汚れる不具合が発生する。このような汚れを放置すると、集積回路素子等の封止成形物の表面に汚れが付着する。そのため、封止成形工程で成形金型内部表面の汚れを取り除く必要がある。具体的には、数百ショットの封止成形を実施するごとに数ショットの割合で、封止成形材料の代わりに金型清掃用樹脂組成物を成形し、成形金型内部表面の汚れを取り除いている。
 このような金型清掃用樹脂組成物は、従来より提案されている。例えば、国際公開第2009/57479号パンフレットには、基材樹脂にエチレン-プロピレンゴムとブタジエンゴムとの配合割合が、90/10~50/50重量部の未加硫ゴムであり、未加硫ゴムの加硫硬化後の伸び率と、引張強度と、ゴム硬度(デュロメータ硬さ)と、金型温度175℃における90%加硫時間とが特定の範囲で規定された金型清掃用ゴム系組成物が開示されている。この公報によれば、金型からの離型性とともにボイドやチッピングの低減が解消できるとされている。この金型清掃用ゴム系組成物は、洗浄剤として例えばモノエタノールアミンを用いている。
 特開平2-20538号公報には、エチレン-プロピレンゴム100重量部に対し、尿素誘導体1~70重量部を含ませた金型クリーニング用ゴム組成物が開示されている。この公報によれば、クリーニング作業中の臭気を低減させるために、ジフェニル尿素、ジメチル尿素等の尿素誘導体を添加することで、クリーニング効果を得ることが記載されている。
 近年、集積回路素子等の高性能化に対応するため、封止成形形状及び構造が多様化、精密化しつつある。そのため、成形金型の形状及び構造も多様化、精密化が求められると同時に、成形作業における条件、例えば温度などの成形条件や、成形金型の材質の検討が進められている。例えば、摩耗耐性を向上させるため、超硬合金を用いて硬度をあげた成形金型が広く使われている。
 材料に超硬合金を含む成形金型は、超硬合金に含まれる少量のコバルトにより、成形金型が変質する不具合があった。これは、熱を加えることで超硬合金が含むコバルトが酸化され、結合力が弱くなり、超硬合金のタングステンカーバイトの脱落が発生するためとされている。さらに、材料に超硬合金を含む成形金型は、コバルトの酸化に伴い、成形金型の変色が発生する。変質した成形金型で封止成形作業を行うと、集積回路素子等の封止成形物に外観不良が発生し、さらに金型形状の転写が正確にできない可能性がある。
 近年、熱硬化性樹脂の成形工程の作業性を向上させるため、金型清掃用樹脂組成物のクリーニング性能を向上させ、金型清掃用樹脂組成物のショット数を低減することが求められている。また、超硬合金を含む成形金型を用いる熱硬化性樹脂組成物の成形工程のみならず、清掃工程においても、成形金型の耐変質性が求められている。
 しかしながら、国際公開第2009/57479号パンフレットに記載の金型清掃用樹脂組成物は、クリーニング性能にまだ改善の余地がある。また当該文献に記載の金型清掃用樹脂組成物は、超硬合金を含む成形金型の変質を促進する場合があることを本発明の発明者は見出した。
 さらに、特開平2-20538号公報に記載の金型クリーニング用ゴム組成物は、クリーニング性能が不十分である。また、清掃工程における超硬合金を含む成形金型の変質抑制効果は不十分である。
 本発明の課題は、硬化性樹脂組成物の成形工程で発生する成形金型内部表面の汚れを取り除く際における、成形金型内部表面のクリーニング性能が改善された金型清掃用樹脂組成物を提供することである。
 本発明は、以下の態様を包含する。
(1) エチレン-プロピレンゴム(A)と、ブタジエンゴム(B)と、無機充填材(C)と、尿素誘導体(D)とを含み、前記エチレン-プロピレンゴム(A)は、エチレンに由来する構成単位の含有量のプロピレンに由来する構成単位の含有量に対する質量比が55/45~60/40の範囲であり、前記エチレン-プロピレンゴム(A)の含有量の前記ブタジエンゴム(B)の含有量に対する質量比(A/B)が、30/70~70/30の範囲である金型清掃用樹脂組成物である。
(2) 前記尿素誘導体(D)は、1,3-ジメチル尿素及びモノメチル尿素からなる群から選択される少なくとも1種である(1)に記載の金型清掃用樹脂組成物である。
(3) 前記尿素誘導体(D)の含有量は、前記エチレン-プロピレンゴム(A)及びブタジエンゴム(B)の総含有量100質量部に対して、0.3質量部~15質量部である(1)又は(2)に記載の金型清掃用樹脂組成物である。
(4)100℃におけるムーニー粘度が60ML(1+4)100℃~90ML(1+4)100℃である(1)~(3)のいずれか1つに記載の金型清掃用樹脂組成物である。
(5)175℃で5分の成形後におけるデュロメータ硬度がA70~A100である(1)~(4)のいずれか1つに記載の金型清掃用樹脂組成物である。
 (6)前記無機充填材(C)は、シリカを含む(1)~(5)のいずれか1つに記載の金型清掃用樹脂組成物である。
 本発明によれば、硬化性樹脂組成物の成形工程で発生する成形金型内部表面の汚れを取り除く際における、成形金型内部表面のクリーニング性能が改善された金型清掃用樹脂組成物を提供することができる。
 本明細書において「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。さらに組成物中の各成分の量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。
[金型清掃用樹脂組成物]
 本発明の金型清掃用樹脂組成物は、例えば、エポキシ樹脂、シリコーン樹脂、フェノール樹脂、及びポリイミド樹脂からなる群から選択される硬化性樹脂組成物の成形工程で発生する金型表面の汚れを取り除く、コンプレッションタイプの金型清掃用樹脂組成物として用いられる。以下、本発明の実施形態である金型清掃用樹脂組成物について詳細に説明する。
 本発明の金型清掃用樹脂組成物は、エチレン-プロピレンゴム(A)と、ブタジエンゴム(B)と、無機充填材(C)と、尿素誘導体(D)とを含み、前記エチレン-プロピレンゴム(A)は、エチレンに由来する構成単位の含有量のプロピレンに由来する構成単位の含有量に対する質量比が55/45~60/40の範囲であり、前記エチレン-プロピレンゴム(A)の含有量の前記ブタジエンゴム(B)の含有量に対する質量比(A/B)が、30/70~70/30の範囲である。前記金型清掃用樹脂組成物は、特定の構成を有するエチレン-プロピレンゴムとブタジエンゴムとを特定の比率で含み、さらに尿素誘導体を含むことで、成形金型内部表面のクリーニング性能に優れる。また成形金型内部表面の超硬合金の変質が効果的に抑制され、封止成形時に集積回路素子等の封止成形物の外観不良の発生が抑制される。
(A)エチレン-プロピレンゴム
 前記金型清掃用樹脂組成物は、少なくとも1種のエチレン-プロピレンゴム(A)を含む。本明細書において、エチレン-プロピレンゴムとは、エチレン-プロピレンゴム及びエチレン-プロピレン-ジエンゴムの少なくとも一方を意味する。前記金型清掃用樹脂組成物に含まれるエチレン-プロピレンゴム(A)は、エチレンに由来する構成単位の含有量のプロピレンに由来する構成単位の含有量に対する質量比(以下、単に「エチレン/プロピレン比」ともいう)が55/45(1.22)~60/40(1.50)の範囲である。前記エチレン/プロピレン比は55/45(1.22)~59/41(1.44)であることが好ましい。エチレン/プロピレン比が55/45未満では、加硫後に充分な引張強度が得られない場合がある。またエチレン/プロピレン比が60/40を超えると、原料ゴム強度の温度依存性が大きくなり加工性が低下する場合がある。
 前記エチレン-プロピレンゴムにおけるエチレン/プロピレン比は、金型清掃用樹脂組成物について、H-NMR(プロトン核磁気共鳴)スペクトルをHの共鳴周波数:500MHzで測定することで算出することができる。なお、金型清掃用樹脂組成物からHPLC(高速液体クロマトグラフ)を用いて常法によりエチレン-プロピレンゴムを単離してから、同様にしてH-NMRスペクトルを測定することで、より明確にエチレン/プロピレン比を算出することもできる。
 前記エチレン-プロピレンゴムは、エチレンに由来する構成単位及びプロピレンに由来する構成単位に加えて、ジエン成分に由来する構成単位を更に含むことが好ましい。ジエン成分としては例えば、エチリデンノルボルネン(ENB)、メチリデンノルボルネン、ジシクロペンタジエン、ビニリデンノルボルネン等を挙げることができる。中でもジエン成分は、クリーニング性能の観点から、エチリデンノルボルネン及びジシクロペンタジエンからなる群より選択される少なくとも1種を含むことが好ましく、エチリデンノルボルネンを含むことがより好ましい。
 前記エチレン-プロピレンゴムがジエン成分に由来する構成単位を更に含む場合、ジエン成分に由来する構成単位の含有率は、エチレン-プロピレンゴムの総質量中に6.5質量%~9.5質量%であることが好ましく、7.0質量%~9.0質量%であることがより好ましく、7.5質量%~8.5質量%であることが更に好ましい。また前記エチレン-プロピレンゴムがジエン成分に由来する構成単位を更に含む場合、エチレン-プロピレンゴムのヨウ素価は、12~22であることが好ましく、14~18であることがより好ましい。
 前記エチレン-プロピレンゴムは、エチレン由来する構成単位及びプロピレンに由来する構成単位に加えて、エチリデンノルボルネンに由来する構成単位を、総質量中に6.5質量%~9.5質量%含むことが好ましく、エチリデンノルボルネンに由来する構成単位を、総質量中に7.0質量%~9.0質量%含むことがより好ましい。
 前記エチレン-プロピレンゴムのムーニー粘度ML(1+4)100℃は特に制限されない。中でもクリーニング性能の観点から、5~40であることが好ましく、5~30であることがより好ましい。ムーニー粘度は、JIS K 6300-1「未加硫ゴム―物理特性―第1部:ムーニー粘度計による粘度及びスコーチタイムの求め方」に準拠して測定される。
 前記エチレン-プロピレンゴムの含有率は、クリーニング性能の観点から、金型清掃用樹脂組成物の総質量中に20質量%~80質量%であることが好ましく、30質量%~70質量%であることがより好ましい。前記金型清掃用樹脂組成物は、エチレン-プロピレンゴムを1種単独でも、また2種以上を組み合わせて含んでいてもよい。
(B)ブタジエンゴム
 金型清掃用樹脂組成物は、ブタジエンゴムの少なくとも1種を含む。前記ブタジエンゴムは特に制限されず、通常用いられるブタジエンゴムから適宜選択することができる。中でもクリーニング性能の観点から、シス1,4結合の含有率が90質量%以上であるハイシス構造を有し、ムーニー粘度ML(1+4)100℃が20~60であるブタジエンゴムが好ましく、前記ハイシス構造を有し、ムーニー粘度ML(1+4)100℃が30~45であるブタジエンゴムがより好ましい。前記ブタジエンゴムは1種単独でも2種以上を組み合わせて用いてもよい。
 前記金型清掃用樹脂組成物は、前記エチレン-プロピレンゴム(A)と、前記ブタジエンゴム(B)とを含むため、成形金型内部表面の汚れを取り除く際、金型清掃用樹脂組成物の硬度を適切に保つことが可能であり、成形金型内部の細部まで金型清掃用樹脂が適切に充填できる。また、金型清掃用樹脂組成物の強度を保つことができるため、金型清掃用樹脂組成物がもろくならず、汚れの除去後、金型清掃用樹脂組成物を成形金型からの離型作業が容易に行うことができる。さらに、本発明の金型清掃用樹脂組成物は前記エチレン-プロピレンゴム(A)と、前記ブタジエンゴム(B)とを含むことで、後述する1,3-ジメチル尿素等の尿素誘導体(D)の樹脂組成物への分散を制御することができるため、クリーニング性能が改善され、成形金型内部表面の超硬合金の変質防止効果が得られる。1,3-ジメチル尿素等の尿素誘導体(D)の樹脂組成物への分散の制御についての詳細は後述する。
 前記金型清掃用樹脂組成物に含まれる前記エチレン-プロピレンゴム(A)の含有量の前記ブタジエンゴム(B)の含有量に対する質量比(A)/(B)は30/70~70/30の範囲である。前記エチレン-プロピレンゴム(A)とブタジエンゴム(B)の質量比(A)/(B)が30/70未満であると、金型清掃用樹脂組成物がもろくなる傾向があり、例えば汚れの除去作業後、硬化した金型清掃用樹脂組成物を成形金型からの離型作業が困難になる場合がある。また前記エチレン-プロピレンゴム(A)とブタジエンゴム(B)の質量比(A)/(B)が70/30を超えると、加熱した成形金型の汚れの除去作業の際、硬化した金型清掃用樹脂組成物の成形金型内部表面への付着が発生する場合があり、清掃時間が増大する傾向がある。さらに前記質量比(A)/(B)が前記範囲外であると、後述する1,3-ジメチル尿素等の尿素誘導体(D)の、前記エチレン-プロピレンゴム(A)及び前記ブタジエンゴム(B)への分散性の制御が困難になり、クリーニング性能や成形金型内部表面の超硬合金の変質防止という効果が充分に得られなくなる傾向がある。
 前記金型清掃用樹脂組成物における前記エチレン-プロピレンゴム(A)の含有量の前記ブタジエンゴム(B)の含有量に対する質量比は、金型清掃用樹脂組成物について、H-NMR(プロトン核磁気共鳴)スペクトルをHの共鳴周波数:500MHzで測定することで算出することができる。
(C)無機充填材
 前記金型清掃用樹脂組成物は、少なくとも1種の無機充填材(C)を含む。前記無機充填材は特に制限されず、通常用いられる無機充填材から適宜選択することができる。無機充填材として具体的には、シリカ、アルミナ、炭酸カルシウム、水酸化アルミニウム、酸化チタン等があげられる。中でも無機充填材(C)としてシリカ及び酸化チタンからなる群より選択される少なくとも1種を用いることが、金型への傷つけが軽微であり、金型清掃用樹脂組成物のクリーニング成形時の伸びを適度に制御できるため好ましい。
 前記無機充填材(C)の粒径範囲は特に制限されない。中でもクリーニング性能の観点から、0.1μm~20μmであることが好ましく、5μm~18μmであることがより好ましい。前記粒径範囲は、コールターカウンター(ベックマン・コールター製)にて、アパーチャー径70μmを使用して測定される体積平均粒子径である。
 前記金型清掃用樹脂組成物は、前記エチレン-プロピレンゴム(A)と、前記ブタジエンゴム(B)との合計100質量部に対し前記無機充填材(C)を20質量部~50質量部含むことが好ましく、20質量部~40質量部含むことがより好ましく、25質量部~40質量部含むことが更に好ましい。前記無機充填材(C)を20質量部以上含むことで、クリーニング成形時に金型清掃用樹脂組成物が伸びすぎず、クリーニング時に金型清掃用樹脂組成物が金型内部表面にとどまる。また、50質量部以下含むことで、清掃用樹脂組成物のクリーニング成形時の伸びが適正であり、より優れたクリーニング性能が得られる。
(D)尿素誘導体
 前記金型清掃用樹脂組成物は、少なくとも1種の尿素誘導体を含む。尿素誘導体としては少なくとも1つのウレイド基を有する化合物であれば特に制限はない。中でも、クリーニング性能と成形金型の変質抑制効果の観点から、常温(25℃)で固体である尿素誘導体が好ましく、常温で固体であり且つウレイド基の窒素原子上に少なくとも1つの水素原子を有する化合物であることがより好ましい。前記尿素誘導体は1種単独でも2種以上を組み合わせて用いてもよい。
 前記金型清掃用樹脂組成物は、尿素誘導体(D)を含む。本発明者は、前記尿素誘導体(D)は洗浄成分であり、前記尿素誘導体(D)が加熱した成形金型内部表面の汚れに作用することで、金型表面のクリーニング性に寄与していると考えている。さらに、金型清掃用樹脂組成物における前記尿素誘導体(D)の分散を制御することで、金型のクリーニング性をより改善できると考えられる。また、後述するように、クリーニング性には、金型清掃用樹脂組成物自体の流動性、具体的には粘度と伸びが重要である。本発明の発明者は、金型清掃用樹脂組成物における前記尿素誘導体(D)の分散状態が、金型清掃用樹脂組成物自体の流動性に影響を与えていると考えている。
 前記尿素誘導体の融点は、クリーニング性能と成形金型の変質抑制効果の観点から、70℃以上であることが好ましく、70℃以上200℃以下であることがより好ましく、90℃以上150℃以下であることが更に好ましい。前記尿素誘導体の融点が70℃以上、すなわち常温(25℃)で固体であると、洗浄成分の金型清掃用樹脂組成物への分散がより容易に制御できるため好ましい。
 また前記尿素誘導体の沸点は、クリーニング性能と成形金型の変質抑制効果の観点から、90℃以上であることが好ましく、150℃以上350℃以下であることがより好ましく、180℃以上300℃以下であることが更に好ましい。沸点が90℃以上であると、熱的安定性が充分に得られ、超硬合金を含む成形金型の変質抑制効果により効果的に得られる。
 前記尿素誘導体は、クリーニング性能と成形金型の変質抑制効果の観点から、融点が70℃以上であり、沸点が90℃以上の化合物であることが好ましく、融点が70℃以上200℃以下であり、沸点が150℃以上350℃以下であることがより好ましく、融点が90℃以上150℃以下であり、沸点が180℃以上300℃以下であり、ウレイド基の窒素原子上に少なくとも1つの水素原子を有することが更に好ましい。
 前記尿素誘導体は、クリーニング性能と成形金型の変質抑制効果の観点から、ウレイド基の窒素原子上に炭素数1~15のアルキル基を有する化合物であることが好ましく、ウレイド基の窒素原子上に炭素数1~15のアルキル基を1~3個有する化合物であることがより好ましく、ウレイド基の窒素原子上に炭素数1~3のアルキル基を1又は2個有する化合物であることが更に好ましい。なお、尿素誘導体が有するアルキル基は、直鎖状でも分岐鎖状であってもよい。
 前記尿素誘導体の具体例としては、モノメチル尿素(融点93℃、沸点240℃)、モノエチル尿素(融点90℃、沸点136℃)、1,1-ジメチル尿素(融点183℃、沸点>185℃)、1,3-ジメチル尿素(融点102℃、沸点268℃)、1,1-ジエチル尿素(融点71℃)、1,3-ジエチル尿素(融点113℃、沸点268℃)等を挙げることができる。中でもクリーニング性能と成形金型の変質抑制効果の観点から、モノメチル尿素及び1,3-ジメチル尿素からなる群より選択される少なくとも1種の尿素誘導体であることが好ましい。
 前記尿素誘導体として好ましく用いられるモノメチル尿素及び1,3-ジメチル尿素は融点がそれぞれ93℃及び102℃であり、常温では固体である。洗浄成分が常温で固体の化合物であると、金型清掃用樹脂組成物の製造時に洗浄成分の金型清掃用樹脂組成物への分散が容易に制御できるため好ましい。一方、従来の金型清掃用樹脂組成物に用いられている洗浄成分、例えばモノエタノールアミンは、融点が10℃であり、常温では液体である。常温で液体の洗浄成分では、金型清掃用樹脂組成物における分散性が充分に得られない場合がある。
 前記金型清掃用樹脂組成物は、前記エチレン-プロピレンゴム(A)及び前記ブタジエンゴム(B)を含むゴム成分中に、無機充填材(C)及び尿素誘導体(D)を分散した状態で含むことが好ましい。本発明者は、金型清掃用樹脂組成物の製造に際し、尿素誘導体(D)の樹脂組成物への分散が十分であると、クリーニング時において、金型表面への汚れに対し、前記尿素誘導体(D)の作用がより効果的に発揮され、クリーニング性がより向上すると考えている。また、樹脂組成物への分散が不良であると、金型清掃用樹脂組成物の製造後に、前記尿素誘導体(D)がブリードアウトしてしまい、清掃作業時に金型表面のクリーニング性に寄与することができず、クリーニング性が低下する場合があると考えている。
 前記金型清掃用樹脂組成物は、100℃におけるムーニー粘度が、60ML(1+4)100℃~90ML(1+4)100℃であることが好ましく、60ML(1+4)100℃~80ML(1+4)100℃であることがより好ましく、62ML(1+4)100℃~80ML(1+4)100℃であることが更に好ましい。金型清掃用樹脂組成物のムーニー粘度が60ML(1+4)100℃以上であると、金型清掃用樹脂組成物の製造時における金型清掃用樹脂組成物の成形性がより向上する傾向がある。またムーニー粘度が90ML(1+4)100℃以下であると、金型清掃用樹脂組成物の製造時において前記エチレン-プロピレンゴム(A)及び前記ブタジエンゴム(B)に対する、無機充填材(C)及び尿素誘導体(D)の分散性をより適切に制御できる。
 本発明者は、金型清掃用樹脂組成物が尿素誘導体(D)を含むことで、金型清掃用樹脂組成物のムーニー粘度が上昇することを見出した。更に金型清掃用樹脂組成物が100℃におけるムーニー粘度が、60ML(1+4)100℃~90ML(1+4)100℃の範囲である場合に、金型清掃用樹脂組成物への尿素誘導体(D)の分散状態が、金型のクリーニング特性により適した状態を示すと考えている。
 本明細書において、ムーニー粘度は、JIS K 6300-1「未加硫ゴム―物理特性―第1部:ムーニー粘度計による粘度及びスコーチタイムの求め方」に準拠して測定される。
 前記金型清掃用樹脂組成物は、175℃で5分の成形後における硬化物のデュロメータ硬度がA70~A100であることが好ましく、A72~A95であることがより好ましく、A80~A95であることが更に好ましい。175℃で5分の成形後における硬化物のデュロメータ硬度がA70以上であると、必要な成形圧をより容易に得ることができ、クリーニング性能がより向上する傾向がある。また、前記デュロメータ硬度がA100以下であると、成形物が脆くなり過ぎることが抑制され、クリーニング性能がより向上する傾向がある。
 ここで、175℃におけるデュロメータ硬度の測定方法は、以下のとおりである。ゴム硬度用試験片は、37T成形機を使用し、金型温度175℃、成形圧10MPa(ゲージ圧)、成形時間5分にて成形して作製する。得られたゴム硬度用試験片のデュロメータ硬度の測定は、JIS K 6253「加硫ゴム及び熱可塑性ゴムの硬さ試験方法」に準拠した方法で測定する。具体的には、上記の試験片作製条件にて得られた試験片を3枚重ねにし、デュロメータAタイプを使用して測定する。
 本発明者はさらに、従来の金型清掃用樹脂組成物に含まれるモノエタノールアミンに代表される洗浄成分が、超硬合金を含む成形金型の変質をより進めると考えている。通常、集積回路素子等の封止成形工程は170℃以上の高温で行われ、その後の成形金型の清掃工程も同様に170℃以上で行われる。本発明者は、尿素誘導体(D)を含む金型清掃用樹脂組成物が、超硬合金を含む成形金型の変質を起こさず、また170℃以上の高温で行われる成形金型の清掃工程においても、分解や揮発に伴う性能低下を起こさないことを見出した。これは例えば、一般的に尿素誘導体は、融点及び沸点が従来の洗浄成分に比べて比較的高く、熱的に安定な物質であるためと考えている。具体的には、1,3-ジメチル尿素は、融点が102℃、沸点が268℃であり、モノメチル尿素は融点が93℃、沸点が240℃と熱的に安定な物質であるためと考えている。従って、沸点が、例えば180℃以上の洗浄成分を用いると、成形金型のクリーニング特性がより効果的に向上し、さらに超硬合金を含む成形金型の変質抑制効果がより効果的に得られると考えられる。
 前記金型清掃用樹脂組成物は、エチレン-プロピレンゴム(A)及びブタジエンゴム(B)を含むため、尿素誘導体(D)の金型清掃用樹脂組成物への分散状態を適正にすることができると考えられる。例えばエチレン-プロピレンゴム(A)と、尿素誘導体(D)とを含み、ブタジエンゴム(B)を含まない金型清掃用樹脂組成物では、175℃以上の高温において超硬合金を含む成形金型の変質抑制効果は低下すると考えられる。これは例えば、前記尿素誘導体(D)の金型清掃用樹脂組成物中における分散不良が発生するため、変質抑制効果が低下すると考えている。
 前記金型清掃用樹脂組成物における尿素誘導体の含有量は特に制限されない。中でも前記エチレン-プロピレンゴム(A)とブタジエンゴム(B)との合計100質量部に対して、尿素誘導体(D)を0.1質量部~20質量部含むことが好ましく、0.2質量部~17質量部含むことがより好ましく、0.3質量部~15質量部含むことが更に好ましい。前記尿素誘導体(D)の含有量が0.1質量部以上であると、クリーニング性能がより向上し、かつ硬化性樹脂組成物の成形工程で発生する成形金型内部表面の汚れを取り除く際、成形金型内部表面の超硬合金の変質がより効果的に抑制される。また前記尿素誘導体(D)の含有量が20質量部以下であると、金型清掃用樹脂組成物の成形性がより向上し、効率よく成形金型内部表面の汚れを取り除くことができる。
 前記金型清掃用樹脂組成物における尿素誘導体の含有量は、クリーニング性能と成形金型の変質抑制効果の観点から、前記エチレン-プロピレンゴム(A)100質量部に対して、0.1質量部~30質量部であることが好ましく、0.2質量部~25質量部であることがより好ましく、0.4質量部~22質量部であることが更に好ましい。更に金型清掃用樹脂組成物における尿素誘導体の含有量は、クリーニング性能と成形金型の変質抑制効果の観点から、前記ブタジエンゴム(B)100質量部に対して、0.2質量部~67質量部であることが好ましく、0.7質量部~57質量部であることがより好ましく、1質量部~50質量部であることが更に好ましい。
 前記金型清掃用樹脂組成物は、融点が70℃以上であり、沸点が90℃以上であり、炭素数1~15のアルキル基を有する尿素誘導体を、エチレン-プロピレンゴム(A)とブタジエンゴム(B)との合計100質量部に対して、0.1質量部~20質量部含むことが好ましく、融点が70℃以上200℃以下であり、沸点が150℃以上350℃以下であり、炭素数1~15のアルキル基を有する尿素誘導体を、エチレン-プロピレンゴム(A)とブタジエンゴム(B)との合計100質量部に対して、0.2質量部~17質量部含むことがより好ましく、融点が150℃以上350℃以下であり、沸点が180℃以上300℃以下であり、炭素数1~3のアルキル基を有する尿素誘導体を、エチレン-プロピレンゴム(A)とブタジエンゴム(B)との合計100質量部に対して、0.3質量部~15質量部含むことが更に好ましい。
 前記金型清掃用樹脂組成物における前記尿素誘導体の含有量は、金型清掃用樹脂組成物について、H-NMR(プロトン核磁気共鳴)スペクトルをHの共鳴周波数:500MHzで測定することで算出することができる。
 前記金型清掃用樹脂組成物に好ましく用いられるモノメチル尿素、1,3-ジメチル尿素等の尿素誘導体(D)はそれぞれ、例えば和光純薬工業株式会社製として市販されているN-メチル尿素、1,3-ジメチル尿素等を好適に使用することができる。
 前記金型清掃用樹脂組成物は、必要に応じて前記尿素誘導体に加えて、尿素誘導体以外のその他の洗浄剤を更に含んでいてもよい。その他の洗浄剤としては通常用いられる洗浄剤から適宜選択することができる。その他の洗浄剤としては、例えば、界面活性剤、アルカリ金属塩等を挙げることができる。前記金型清掃用樹脂組成物がその他の洗浄剤を含む場合、その含有量は、前記尿素誘導体に対して50質量%以下であることが好ましく、30質量%以下であることがより好ましく、1質量%以下であることが更に好ましい。
(加硫剤)
 前記金型清掃用樹脂組成物は、少なくとも1種の加硫剤を含むことが好ましい。加硫剤は通常用いられる加硫剤から適宜選択することができる。例えば、ジ-t-ブチルパーオキサイド、ジ-t-アミルパーオキサイド、ジクミルパーオキサイド、及び2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン等のジアルキルパーオキサイド類有機過酸化物、1,1-ジ(t-ブチルパーオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ジ(t-ブチルパーオキシ)シクロヘキサン、2,2-ジ(t-ブチルパーオキシ)オクタン、n-ブチル-4,4-ジ(t-ブチルパーオキシ)バレレート、2,2-ジ(t-ブチルパーオキシ)ブタン等のパーオキシケタール類有機過酸化物などが挙げられる。これらは1種単独で使用してもよいし、2種以上を併用して加硫速度を調整してもよい。
 金型清掃用樹脂組成物が加硫剤を含む場合、その含有量は加硫剤の種類等に応じて適宜選択することができる。中でも前記エチレン-プロピレンゴム(A)とブタジエンゴム(B)との合計100質量部に対して、加硫剤を0.1質量部~6質量部含むことが好ましく、1質量部~5質量部含むことがより好ましく、2質量部~4質量部含むことが更に好ましい。加硫剤の含有量が0.1質量部以上であると、クリーニング性能がより向上し、かつ硬化性樹脂組成物の成形工程で発生する成形金型内部表面の汚れを取り除く際、成形金型内部表面の超硬合金の変質がより効果的に抑制される。また加硫剤の含有量が6質量部以下であると、臭気の発生をより抑制できる傾向がある。
(離型剤)
 前記金型清掃用樹脂組成物は、少なくとも1種の離型剤を含むことが好ましい。離型剤として、脂肪酸エステル系離型剤、合成ワックス、及び脂肪酸アミド系離型剤等があげられる。金属石鹸系離型剤の例としては、例えばステアリン酸カルシウム、ステアリン酸亜鉛、及びミリスチン酸亜鉛等を例示できる。脂肪酸エステル系離型剤、合成ワックス、脂肪酸アミド系離型剤としては、リコワックスO P(クラリアントジャパン株式会社製 モンタン酸部分ケン化エステル)、ロキシオールG-78(コグニスジャパン株式会社製 高分子複合エステル)、リコルブH-4(クラリアントジャパン株式会社製 変性炭化水素)、ロキシオールVPN881(コグニスジャパン株式会社製 鉱油系合成ワックス)、脂肪酸アマイドS(花王株式会社製 脂肪酸アミド)、カオーワックスEB-P(花王株式会社製 脂肪酸アミド)、及びアルフローHT-50(日本油脂株式会社製 脂肪酸アミド)等を例示できる。
 前記金型清掃用樹脂組成物が離型剤を含む場合、その含有量は離型剤の種類等に応じて適宜選択することができる。中でも前記エチレン-プロピレンゴム(A)とブタジエンゴム(B)との合計100質量部に対して、離型剤を0.1質量部~5質量部含むことが好ましく、0.5質量部~3質量部含むことがより好ましい。
(その他の成分)
 前記金型清掃用樹脂組成物は、本発明の効果を妨げない限り必要に応じて、洗浄助剤、加硫助剤、加硫促進剤、加硫促進助剤等のその他の添加剤を更に含むことができる。洗浄助剤としては、各種界面活性剤が挙げられる。加硫助剤として、アクリル酸モノマー、硫黄等を挙げることができる。加硫促進剤としては例えば、ジフェニルグアニジン、トリフェニルグアニジン等のグアニジン系、ホルムアルデヒド-パラトルイジン縮合物、アセトアルデヒド-アニリン反応物等のアルデヒド-アミン系及びアルデヒド-アンモニア系、2-メルカプトベンゾチアゾール、ジベンゾチアジル・ジスルフィド等のチアゾール系等が挙げられる。また加硫促進助剤としては、マグネシア、リサージ、石灰等を挙げることができる。
 前記金型清掃用樹脂組成物は、本発明の効果を妨げない限り、例えば、弁柄、紺青、鉄黒、群青、カーボンブラック、リトポン、チタンイエロー、コバルトブルー、ハンザイエロー、キナクリドンレッド等の無機もしくは有機の顔料類を更に含んでいてもよい。
 前記金型清掃用樹脂組成物の調製方法は特に制約されない。例えば、エチレン-プロピレンゴム(A)及びブタジエンゴム(B)を含む混合生地に、無機充填材(C)と、尿素誘導体(D)とを添加して、混練を行うことで調製することができる。またその際、離型剤等に代表される添加剤を添加することもできる。混練手段は特に制限されず、通常用いられる混練手段方法から適宜選択することができる。例えば混練手段としては、加圧型ニーダー、バンバリーミキサー、ロールミキサー等を挙げることができる。
 前記金型清掃用樹脂組成物の形態は特に制限されない。例えばシート状であることが好ましい。金型清掃用樹脂組成物の形態がシート状であることで、短時間で容易に冷却が可能になり、混練した樹脂組成物を速やかに冷却することで混練時の予熱による加硫を抑制でき、安定した性能を得ることができる。前記金型清掃用樹脂組成物をシート状に成形する場合、その厚さ及び大きさは特に制限されず、目的に応じて適宜選択することができる。例えば、厚さは3mm~10mmとすることができ、5mm~7mmであることが好ましい。
 前記金型清掃用樹脂組成物の使用形態は特に制限されない。例えば、コンプレッションタイプとして使用することが好ましい。これにより、汚れの除去後、金型清掃用樹脂組成物を成形金型からの離型作業が容易に行うことができる。また前記金型清掃用樹脂組成物が用いられる金型における超硬金属としては例えば、WC-Co系合金、WC-TiC-Co系合金、WC-TaC-Co系合金、WC-TiC-TaC-Co系合金、WC-Ni系合金、WC-Ni-Cr系合金等を挙げることができる。中でもWC-Ni系合金及びWC-Ni-Cr系合金からなる群より選択される少なくとも1種であることが好ましい。
 以下に実施例及び比較例を挙げ、本発明の効果を具体的に説明するが、本発明はこれらの実施例に制限されるものではない。
[実施例1]
 3000mlのジャケット付き加圧型ニーダー中に、エチレン-プロピレンゴム(三井化学株式会社製 商品名 EPT4021、エチレン/プロピレン比=55.5/44.5)の1050gと、ブタジエンゴム(JSR株式会社製、商品名:JSR BR01)の450gとを添加し、冷却しながら約3分間加圧混練した。混合生地はモチ状になり、その温度は約80℃となった。次いで1,3-ジメチル尿素(和光純薬工業株式会社製)7.5g(エチレン-プロピレンゴムとブタジエンゴムとの合計100質量部に対し0.5質量部)、ステアリン酸15g、ホワイトカーボン(東ソー・シリカ株式会社製、商品名:Nipsil LP)525g及び酸化チタン(石原産業株式会社製、商品名:CR-80)75gを加えて約3分間混練した。最後に2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン48gを加えて引続き約1分間混練した。この間の混練物温度が100℃を超えないように調節した。得られた混練物を速やかに加圧ロールに通し、シート状に加工すると共に25℃以下に冷却することにより、厚さ6mmのシート状の金型清掃用樹脂組成物を得た。
[評価]
 得られた金型清掃用樹脂組成物について、以下のようにしてクリーニング性能及び成形金型の変質抑制性(腐食性)について評価を行った。評価結果を表1及び表2に示す。いずれも金型温度を175℃とする条件でクリーニング性を評価した。なお、表1及び表2の組成における単位は、質量部であり、「-」は未配合であることを示す。
〔クリーニング性試験〕
 市販のビフェニル系エポキシ樹脂成形材料(住友ベークライト株式会社製 EME-7351T)を用い、先端に超硬合金製のチップが付いたプランジャーを備えたPDIP-14L(8ポット-48キャビティ)の金型で500ショットの成形を行い、成形金型内部表面の汚れを形成した。
 この成形金型内部表面に汚れを有する成形金型を用いて、上記で得られた金型清掃用樹脂組成物について繰り返し成形を行い、成形金型内部表面の汚れが除去できるまでに要した成形回数(ショット数)により、クリーニング性能を評価した。なお、成形金型内部表面の汚れの除去状態は目視により判定した。また金型内部表面の汚れが除去できるまでに要した金型清掃用樹脂組成物を繰り返し成形する回数(クリーニング完了ショット数)が4回以下であるものが合格である。
〔成形金型の変質抑制試験〕
 成形金型の一部であるプランジャーの先端についている超硬合金製チップと、金型清掃用樹脂組成物を接触させた状態で20℃に保持した。1週間放置後、目視にて金型清掃用樹脂組成物及びこれと接していたプランジャーの先端についている超硬合金製のチップを目視で観察して変色発生の有無を確認し、以下の評価基準に従って評価した。
-評価基準-
 A(優良):金型清掃用樹脂組成物及びチップに変色が発生していなかった。
 B(良):金型清掃用樹脂組成物又はチップに変色がわずかに発生していたが、実用上問題のないレベルであった。
 C(不可):金型清掃用樹脂組成物又はチップに変色が発生していた。
〔作業安定性評価〕
 金型清掃用樹脂組成物の製造時における作業安定性について、混練時における洗浄剤の分散が容易であった場合を「良」とし、混練時における洗浄剤の分散がやや困難であった場合を「可」として評価した。
 また金型清掃時における作業安定性について、金型清掃用樹脂組成物を金型温度175℃で成形圧力15MPa、成形時間300秒で成形した後、成形物を取り出す際に成形物が一体で容易に除去できたものを「良」とし、一部分離したが貼り付きなく成形物が除去できたものを「可」として評価した。
[実施例2~9]
 実施例1において、金型清掃用樹脂組成物の組成を表1記載の配合に代えた以外は、実施例1と同様にして金型清掃用樹脂組成物を得て、同様にして評価した。
[実施例10]
 実施例4の金型清掃用樹脂組成物の調製において、1,3-ジメチル尿素の代わりにモノメチル尿素を用いた以外は、実施例4と同様にして金型清掃用樹脂組成物を得て、同様にして評価した。
[実施例11]
 実施例4の金型清掃用樹脂組成物の調製において、エチレン-プロピレンゴムとしてEPT4021(三井化学株式会社製)の代わりにEPT4010(三井化学株式会社製、エチレン/プロピレン比=58.4/41.6)を用いた以外は、実施例4と同様にして金型清掃用樹脂組成物を得て、同様にして評価した。
[比較例1]
 実施例4の金型清掃用樹脂組成物の調製において、1,3-ジメチル尿素の代わりに2-アミノエタノールを用いた以外は、実施例4と同様にして金型清掃用樹脂組成物を得て、同様にして評価した。
[比較例2~4]
 実施例1において、金型清掃用樹脂組成物の組成を表2に記載の配合に代えた以外は、実施例1と同様にして金型清掃用樹脂組成物を得て、同様にして評価した。
[比較例5~7]
 実施例4の金型清掃用樹脂組成物の調製において、エチレン-プロピレンゴムとしてEPT4021(三井化学株式会社製)の代わりに、EPT4070(三井化学株式会社製、エチレン/プロピレン比=60.9/39.1)、EPT3090(三井化学株式会社製、エチレン/プロピレン比=50.6/49.4)及びEPT3091(三井化学株式会社製、エチレン/プロピレン比=64.5/35.5)をそれぞれ用いた以外は、実施例4と同様にして金型清掃用樹脂組成物を得て、同様にして評価した。
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
 表1及び表2の評価結果から判るように、本発明の実施形態であるシート状の金型清掃用樹脂組成物は、硬化性樹脂組成物の成形工程で発生する成形金型内部表面の汚れを少ないショット数で取り除くことができ、優れたクリーニング性能を示した。さらに成形金型内部表面の超硬合金部材の変質を抑えることができた。
 一方、比較例にかかる金型清掃用樹脂組成物では、充分なクリーニング性能が得られないことが判る。特に洗浄剤としてモノエタノールアミンを用いている比較例1に示した金型清掃用樹脂組成物は、本発明にかかる金型清掃用樹脂組成物と比べてクリーニング性が劣り、更に超硬合金製部材を変質させることがわかった。またブタジエンゴムを含まない比較例2に示した金型清掃用樹脂組成物は、本発明にかかる金型清掃用樹脂組成物と比べてクリーニング性が劣ることがわかった。
 日本国特許出願2011-131709号の開示はその全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書に参照により取り込まれる。

Claims (6)

  1.  エチレン-プロピレンゴム(A)と、ブタジエンゴム(B)と、無機充填材(C)と、尿素誘導体(D)とを含み、
     前記エチレン-プロピレンゴム(A)は、エチレンに由来する構成単位の含有量のプロピレンに由来する構成単位の含有量に対する質量比が55/45~60/40の範囲であり、
     前記エチレン-プロピレンゴム(A)の含有量の前記ブタジエンゴム(B)の含有量に対する質量比(A/B)が、30/70~70/30の範囲である金型清掃用樹脂組成物。
  2.  前記尿素誘導体(D)は、1,3-ジメチル尿素及びモノメチル尿素からなる群から選択される少なくとも1種である請求項1に記載の金型清掃用樹脂組成物。
  3.  前記尿素誘導体(D)の含有量は、前記エチレン-プロピレンゴム(A)及びブタジエンゴム(B)の総含有量100質量部に対して、0.3質量部~15質量部である請求項1又は請求項2に記載の金型清掃用樹脂組成物。
  4.  100℃におけるムーニー粘度が60ML(1+4)100℃~90ML(1+4)100℃である請求項1~請求項3のいずれか1項に記載の金型清掃用樹脂組成物。
  5.  175℃で5分の成形後におけるデュロメータ硬度がA70~A100である請求項1~請求項4のいずれか1項に記載の金型清掃用樹脂組成物。
  6.  前記無機充填材(C)は、シリカを含む請求項1~請求項5のいずれか1項に記載の金型清掃用樹脂組成物。
PCT/JP2012/064709 2011-06-13 2012-06-07 金型清掃用樹脂組成物 WO2012173043A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020137032626A KR20140033101A (ko) 2011-06-13 2012-06-07 금형 청소용 수지 조성물
JP2013520521A JP5975991B2 (ja) 2011-06-13 2012-06-07 金型清掃用樹脂組成物
CN201280028572.XA CN103596738A (zh) 2011-06-13 2012-06-07 模具清扫用树脂组合物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-131709 2011-06-13
JP2011131709 2011-06-13

Publications (1)

Publication Number Publication Date
WO2012173043A1 true WO2012173043A1 (ja) 2012-12-20

Family

ID=47357032

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/064709 WO2012173043A1 (ja) 2011-06-13 2012-06-07 金型清掃用樹脂組成物

Country Status (5)

Country Link
JP (1) JP5975991B2 (ja)
KR (1) KR20140033101A (ja)
CN (1) CN103596738A (ja)
TW (1) TW201307026A (ja)
WO (1) WO2012173043A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150115739A (ko) * 2013-01-31 2015-10-14 닛뽕 카바이도 고교 가부시키가이샤 금형 청소용 수지 조성물 및 금형 청소 방법

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107022424A (zh) * 2017-03-08 2017-08-08 安徽国晶微电子有限公司 一种用于集成电路封装模具的清洗试剂

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01297442A (ja) * 1988-05-26 1989-11-30 Denki Kagaku Kogyo Kk 金型クリーニング用ゴム組成物
JPH0220538A (ja) * 1988-07-08 1990-01-24 Denki Kagaku Kogyo Kk 金型クリーニング用ゴム組成物
WO2009057479A1 (ja) * 2007-10-29 2009-05-07 Nippon Carbide Kogyo Kabushiki Kaisha 金型清掃用ゴム系組成物

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01297442A (ja) * 1988-05-26 1989-11-30 Denki Kagaku Kogyo Kk 金型クリーニング用ゴム組成物
JPH0220538A (ja) * 1988-07-08 1990-01-24 Denki Kagaku Kogyo Kk 金型クリーニング用ゴム組成物
WO2009057479A1 (ja) * 2007-10-29 2009-05-07 Nippon Carbide Kogyo Kabushiki Kaisha 金型清掃用ゴム系組成物

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150115739A (ko) * 2013-01-31 2015-10-14 닛뽕 카바이도 고교 가부시키가이샤 금형 청소용 수지 조성물 및 금형 청소 방법
JPWO2014119485A1 (ja) * 2013-01-31 2017-01-26 日本カーバイド工業株式会社 金型清掃用樹脂組成物及び金型清掃方法
KR102161835B1 (ko) 2013-01-31 2020-10-05 닛뽕 카바이도 고교 가부시키가이샤 금형 청소용 수지 조성물 및 금형 청소 방법

Also Published As

Publication number Publication date
JP5975991B2 (ja) 2016-08-23
JPWO2012173043A1 (ja) 2015-02-23
CN103596738A (zh) 2014-02-19
KR20140033101A (ko) 2014-03-17
TW201307026A (zh) 2013-02-16

Similar Documents

Publication Publication Date Title
KR101491757B1 (ko) 금형 청소용 고무계 조성물
JP5975991B2 (ja) 金型清掃用樹脂組成物
JP6002065B2 (ja) 金型清掃用樹脂組成物及び金型清掃方法
JP6351586B2 (ja) ゴム組成物及びその加硫成形体
TWI449615B (zh) 模具脫模回復用橡膠系組合物
KR100701917B1 (ko) 환경친화적이며 내굴곡성이 우수한 고비중 고무 조성물
JP2974267B2 (ja) 金型清掃用ゴム系組成物
TW201420303A (zh) 模具脫模復原用樹脂組成物及模具脫模復原方法
JP2844366B2 (ja) 金型清浄化用ゴム系組成物
JP6265918B2 (ja) 金型清掃用樹脂組成物及び金型清掃方法
KR20060136221A (ko) 환경친화적이며 내굴곡성이 우수한 고비중 고무 조성물
JP6289203B2 (ja) 金型離型回復用樹脂組成物およびそれを用いた金型離型回復方法
EP3896129A1 (fr) Composition activatrice de vulcanisation
JP5765104B2 (ja) 防振ゴム組成物及び防振ゴム
JP6333010B2 (ja) シール材の製造方法
JPH05262917A (ja) スコーチ防止剤及び低スコーチ性ゴム組成物
JP2015199204A (ja) 金型清掃用樹脂組成物及びそれを用いる金型清掃方法
JPS6114239A (ja) 硬化ゴム配合物ならびにその製造法
JP4366749B2 (ja) ゴム用架橋剤及びそれを用いる架橋ゴムの製造方法
JP2022021189A (ja) ジアルキルペルオキシド化合物、ゴム組成物、ならびに架橋ゴムおよびその製造方法
JP2013123552A (ja) ゴルフボール用ゴム組成物及びゴルフボールの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12800648

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013520521

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137032626

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12800648

Country of ref document: EP

Kind code of ref document: A1