WO2012172717A1 - Vリブドベルトの製造方法 - Google Patents

Vリブドベルトの製造方法 Download PDF

Info

Publication number
WO2012172717A1
WO2012172717A1 PCT/JP2012/002393 JP2012002393W WO2012172717A1 WO 2012172717 A1 WO2012172717 A1 WO 2012172717A1 JP 2012002393 W JP2012002393 W JP 2012002393W WO 2012172717 A1 WO2012172717 A1 WO 2012172717A1
Authority
WO
WIPO (PCT)
Prior art keywords
rubber sheet
manufacturing
rib
ribbed belt
extruder
Prior art date
Application number
PCT/JP2012/002393
Other languages
English (en)
French (fr)
Inventor
貴幸 大久保
寛之 尻池
Original Assignee
バンドー化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by バンドー化学株式会社 filed Critical バンドー化学株式会社
Priority to CN201280027924.XA priority Critical patent/CN103596749B/zh
Priority to JP2012547377A priority patent/JP5156881B2/ja
Priority to EP12799846.6A priority patent/EP2722161B1/en
Priority to KR1020147000540A priority patent/KR101422450B1/ko
Publication of WO2012172717A1 publication Critical patent/WO2012172717A1/ja
Priority to US14/108,788 priority patent/US20140103562A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0012Combinations of extrusion moulding with other shaping operations combined with shaping by internal pressure generated in the material, e.g. foaming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • B29C48/18Articles comprising two or more components, e.g. co-extruded layers the components being layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/022Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/12Articles with an irregular circumference when viewed in cross-section, e.g. window profiles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/13Articles with a cross-section varying in the longitudinal direction, e.g. corrugated pipes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/15Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor incorporating preformed parts or layers, e.g. extrusion moulding around inserts
    • B29C48/151Coating hollow articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/15Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor incorporating preformed parts or layers, e.g. extrusion moulding around inserts
    • B29C48/154Coating solid articles, i.e. non-hollow articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • B29C48/18Articles comprising two or more components, e.g. co-extruded layers the components being layers
    • B29C48/21Articles comprising two or more components, e.g. co-extruded layers the components being layers the layers being joined at their surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/90Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/90Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article
    • B29C48/908Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article characterised by calibrator surface, e.g. structure or holes for lubrication, cooling or venting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/91Heating, e.g. for cross linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D29/00Producing belts or bands
    • B29D29/10Driving belts having wedge-shaped cross-section
    • B29D29/103Multi-ribbed driving belts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G5/00V-belts, i.e. belts of tapered cross-section
    • F16G5/04V-belts, i.e. belts of tapered cross-section made of rubber
    • F16G5/06V-belts, i.e. belts of tapered cross-section made of rubber with reinforcement bonded by the rubber
    • F16G5/08V-belts, i.e. belts of tapered cross-section made of rubber with reinforcement bonded by the rubber with textile reinforcement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G5/00V-belts, i.e. belts of tapered cross-section
    • F16G5/20V-belts, i.e. belts of tapered cross-section with a contact surface of special shape, e.g. toothed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9115Cooling of hollow articles
    • B29C48/912Cooling of hollow articles of tubular films
    • B29C48/913Cooling of hollow articles of tubular films externally
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9135Cooling of flat articles, e.g. using specially adapted supporting means

Definitions

  • the present invention relates to a method for manufacturing a V-ribbed belt.
  • the V-ribbed belt from the viewpoint of suppressing noise during power transmission while ensuring sufficient power transmission capability, the V-rib is formed by a short fiber-blended rubber composition in which short fibers are oriented in the belt width direction. The surface friction coefficient is adjusted.
  • an uncrosslinked rubber sheet for forming the V-rib is produced by extrusion molding.
  • Patent Document 1 discloses a short fiber having a V-rib portion preliminarily formed in a shape slightly larger than a V-rib on an outer peripheral portion or an inner peripheral portion by an extruder provided with an expansion die having a V-rib portion forming groove.
  • a cylindrical rib rubber tube made of the compounded rubber composition is extruded, and a V-ribbed belt molded body is molded on a vulcanization mold using the cylindrical rib rubber tube and vulcanized.
  • a method for manufacturing a V-ribbed belt in which the surface of the rib portion is ground to form a V-rib is disclosed.
  • an extruder provided with an expansion die is extruded into a two-layer cylindrical molded body in which a short fiber compounded rubber composition is laminated on the inner layer and another rubber composition on the surface layer, and The two-layer cylindrical molded body is interposed between an inner mold having a flexible jacket on the outer peripheral surface and an outer mold in which a rib mold is engraved on the inner peripheral surface.
  • a method for manufacturing a V-ribbed belt is disclosed in which a tubular molded body is brought into close contact with an outer rib mold by expansion to produce an unvulcanized preform having a V-rib portion.
  • the present invention is a method for producing a V-ribbed belt, in which a plurality of V-ribs each extending in the belt length direction and having a plurality of small holes formed on the surface thereof are arranged in parallel in the belt width direction,
  • a rubber sheet production step of producing an uncrosslinked rubber sheet for V-rib formation by extruding an uncrosslinked rubber composition containing no short fibers with an extruder In the rubber sheet preparation step, at least one of the hollow particles and the foaming agent for forming small holes on the surface of the V rib is blended with the surface layer on the side of forming the V rib in the uncrosslinked rubber sheet. It is formed from a crosslinked rubber composition.
  • FIG. 3 is a perspective view of a V-ribbed belt according to Embodiment 1.
  • FIG. It is a side view which shows schematic structure of an extruder. It is a front view of the die of the 1st example. It is a perspective view of the uncrosslinked rubber sheet for flat plate-like compression rubber layers in which V rib formation part is not formed. It is a front view of the die of the 2nd example. It is a perspective view of the uncrosslinked rubber sheet for flat plate-like compression rubber layers in which V rib formation part was formed. It is a front view of the die of the 3rd example. It is a perspective view of the uncrosslinked rubber sheet for cylindrical compression rubber layers.
  • (A) is a front view of the die of the third example
  • (b) is a front view of the die of the fourth example. It is a longitudinal cross-sectional view of a belt vulcanization mold. It is an enlarged vertical sectional view of a part of a belt vulcanization mold.
  • (A) And (b) is explanatory drawing which shows the process of forming a laminated body.
  • (A) And (b) is explanatory drawing which shows the process of setting a laminated body to an outer mold
  • (A) And (b) is explanatory drawing which shows the process of providing an outer type
  • FIG. 6 is a perspective view of a V-ribbed belt according to Embodiment 2.
  • FIG. It is explanatory drawing of extrusion molding of the uncrosslinked rubber sheet for compression rubber layers.
  • (A) to (c) are perspective views of an uncrosslinked rubber sheet for a compressed rubber layer.
  • FIG. 1 shows a V-ribbed belt B according to the first embodiment.
  • the V-ribbed belt B according to the first embodiment is used, for example, in an auxiliary machine drive belt transmission provided in an engine room of an automobile.
  • the V-ribbed belt B according to Embodiment 1 has, for example, a belt length of 700 to 3000 mm, a belt width of 10 to 36 mm, and a belt thickness of 4.0 to 5.0 mm.
  • the V-ribbed belt B includes a belt main body 10 configured as a triple layer of a compressed rubber layer 11 on the inner peripheral side of the belt, an intermediate adhesive rubber layer 12 and a back rubber layer 13 on the outer peripheral side of the belt.
  • a core wire 14 is embedded so as to form a spiral having a pitch in the belt width direction.
  • the compression rubber layer 11 is provided so that a plurality of V ribs 15 constituting a pulley contact portion hang down to the belt inner peripheral side.
  • the plurality of V-ribs 15 are each formed in a ridge having a substantially inverted triangular cross section extending in the belt length direction and provided in parallel in the belt width direction.
  • Each V-rib 15 has, for example, a rib height of 2.0 to 3.0 mm and a width between rib base ends of 1.0 to 3.6 mm.
  • the number of ribs is 3 to 6, for example (the number of ribs is 6 in FIG. 1).
  • the compressed rubber layer 11 is formed of a rubber composition in which an uncrosslinked rubber composition obtained by mixing and kneading various compounding agents including a crosslinking agent in raw rubber is heated and pressurized and crosslinked by the crosslinking agent.
  • Short rubber is not blended in the rubber composition forming the compressed rubber layer 11.
  • the rubber composition forming the compressed rubber layer 11 at least one of hollow particles and a foaming agent is blended, whereby a large number of pores are formed inside the V rib 15 and on the surface.
  • a large number of small holes 16 are formed.
  • the density of the holes and the small holes 16 is preferably higher on the surface side than on the inner side of the compressed rubber layer 11.
  • the average pore diameter of the small holes 16 is preferably 70 to 120 ⁇ m, and more preferably 100 to 120 ⁇ m.
  • the average pore diameter of the small holes 16 can be obtained as the number average of 50 to 100 measured by the surface image.
  • the adhesive rubber layer 12 is formed in a band shape having a horizontally long cross section, and has a thickness of, for example, 1.0 to 2.5 mm.
  • the back rubber layer 13 is also formed in a band shape having a horizontally long cross section, and has a thickness of, for example, 0.4 to 0.8 mm.
  • the surface of the back rubber layer 13 is preferably formed in a form in which the texture of the woven fabric is transferred from the viewpoint of suppressing the sound generated between the back rubber layer 13 and the flat pulley in contact with the belt back surface.
  • Each of the adhesive rubber layer 12 and the back rubber layer 13 is a rubber composition in which an uncrosslinked rubber composition obtained by mixing and kneading various compounding agents including a crosslinking agent in a raw rubber is heated and pressurized to be crosslinked by the crosslinking agent. It is preferable that it is formed of a product.
  • the back rubber layer 13 is preferably formed of a rubber composition that is slightly harder than the adhesive rubber layer 12 from the viewpoint of suppressing the occurrence of adhesion due to contact with the flat pulley with which the belt back contacts.
  • the core wire 14 is composed of a twisted yarn 14 ′ that has been subjected to adhesion treatment with rubber.
  • the manufacturing method of the V-ribbed belt B according to the first embodiment includes a material preparation process, a material setting process, and a vulcanization molding / finishing process.
  • the uncrosslinked rubber sheet 11 ′ for the compression rubber layer is prepared by putting the raw rubber and the compounding agent into the extruder 20, kneading and extrusion molding (rubber sheet production step).
  • Examples of the raw rubber of the uncrosslinked rubber sheet 11 ′ for the compression rubber layer include ethylene / propylene copolymer (EPR), ethylene / propylene / diene terpolymer (EPDM), ethylene / octene copolymer, ethylene / butene copolymer, and other ethylene.
  • EPR ethylene / propylene copolymer
  • EPDM ethylene / propylene / diene terpolymer
  • ethylene / octene copolymer ethylene / butene copolymer
  • - ⁇ -olefin elastomer examples include ethylene / propylene copolymer (EPR), ethylene / propylene / diene terpolymer (EPDM), ethylene / octene copolymer, ethylene / butene copolymer, and other ethylene.
  • - ⁇ -olefin elastomer chloroprene
  • the compounding agent contains at least one of hollow particles and a foaming agent for forming the small holes 16 on the surface of the V-rib 15. Therefore, only one of the hollow particles and the foaming agent may be included, or both of them may be included.
  • the hollow particles include thermally expandable hollow particles in which a solvent is enclosed.
  • the average particle diameter of the hollow particles before expansion is preferably 15 to 50 ⁇ m, and more preferably 25 to 35 ⁇ m.
  • the expansion start temperature of the hollow particles is, for example, 140 to 180 ° C, and preferably 160 to 180 ° C.
  • the expansion ratio of the hollow particles is, for example, 2 to 10 times the particle diameter (cell diameter).
  • the hollow particles may be composed of a single species or a plurality of species.
  • the compounding amount of the hollow particles is preferably 0.5 to 15 parts by mass, more preferably 1 to 5 parts by mass with respect to 100 parts by mass of the raw rubber.
  • hollow particles include, for example, trade names manufactured by Sekisui Chemical Co., Ltd .: Advancel EHM303 (particle diameter 29 ⁇ m), Advancel EHM302 (particle diameter 21 ⁇ m), Advancel EHM204 (particle diameter 40 ⁇ m), and Advancel EM501 (particle size 27 ⁇ m) and the like.
  • the foaming agent may be composed of a single species or a plurality of species.
  • the foaming start temperature of the foaming agent is, for example, 80 to 180 ° C., preferably 140 to 170 ° C.
  • the blending amount of the foaming agent is preferably 1 to 20 parts by mass and more preferably 5 to 15 parts by mass with respect to 100 parts by mass of the raw rubber.
  • the product name: Neocerbon N # 1000M by Eiwa Kasei Kogyo Co., Ltd. etc. are mentioned, for example.
  • the compounding agent contains powdery or granular montmorillonite or powdery or granular ultrahigh molecular weight polyethylene resin having a weight average molecular weight of 1 million or more as a friction coefficient reducing material from the viewpoint of enhancing wear resistance. It is preferable.
  • the blending amount of the friction coefficient reducing material is, for example, 10 to 40 parts by mass with respect to 100 parts by mass of the raw rubber.
  • the particle size of the friction coefficient reducing material is, for example, 1 to 150 ⁇ m.
  • the compounding agent examples include a reinforcing material such as carbon black, a softening agent, a processing aid, a vulcanization aid, a crosslinking agent, a vulcanization accelerator, and a rubber compounding resin.
  • a short fiber is not contained in a compounding agent.
  • a reinforcing material for example, carbon black, channel black; furnace black such as SAF, ISAF, N-339, HAF, N-351, MAF, FEF, SRF, GPF, ECF, N-234; FT, MT, etc. Thermal black; acetylene black and the like.
  • Silica is also mentioned as the reinforcing material.
  • the reinforcing material may be composed of a single species or a plurality of species.
  • the blending amount of the reinforcing material is preferably 30 to 80 parts by mass with respect to 100 parts by mass of the raw rubber from the viewpoint that the balance between wear resistance and bending fatigue resistance is good.
  • the softener examples include petroleum-based softeners; mineral oil-based softeners such as paraffin wax; castor oil, cottonseed oil, sesame oil, rapeseed oil, soybean oil, palm oil, palm oil, fallen raw oil, waxy wax, rosin And vegetable oil-based softeners such as pine oil.
  • the softener may be composed of a single species or a plurality of species.
  • the blending amount of the softening agent is, for example, 2 to 30 parts by mass with respect to 100 parts by mass of the raw rubber.
  • processing aids include stearic acid.
  • the processing aid may be composed of a single species or a plurality of species.
  • the blending amount of the processing aid is, for example, 0.5 to 5 parts by mass with respect to 100 parts by mass of the raw rubber.
  • the vulcanization aid examples include metal oxides such as magnesium oxide and zinc oxide (zinc white).
  • the vulcanization aid may be composed of a single species or a plurality of species.
  • the compounding amount of the vulcanization aid is, for example, 1 to 10 parts by mass with respect to 100 parts by mass of the raw rubber.
  • crosslinking agent examples include sulfur and organic peroxides.
  • sulfur may be used alone, an organic peroxide may be used alone, or both of them may be used in combination.
  • the amount of the crosslinking agent is, for example, 0.5 to 4.0 parts by mass with respect to 100 parts by mass of the raw rubber. 5 to 8 parts by mass.
  • Examples of the vulcanization accelerator include metal oxides, metal carbonates, fatty acids and derivatives thereof.
  • the vulcanization accelerator may be composed of a single species or a plurality of species.
  • the blending amount of the vulcanization accelerator is, for example, 0.5 to 8 parts by mass with respect to 100 parts by mass of the raw rubber.
  • the rubber compounding resin examples include phenol resin.
  • the rubber compounding resin may be composed of a single species or a plurality of species.
  • the amount of the rubber compounding resin is, for example, 0 to 20 parts by mass with respect to 100 parts by mass of the raw rubber.
  • FIG. 2 shows the extruder 20 used in this process.
  • the extruder 20 includes a cylinder 23 into which a material supply hopper 21 is provided on the upstream side and a screw 22 is inserted therein.
  • the raw rubber and the compounding agent charged from the hopper 21 are supplied to the cylinder 23.
  • the cylinder 23 is divided into a plurality of zones along the length direction, and is configured such that an independent processing temperature can be set for each zone.
  • the inner diameter and the inner length of the cylinder 23 are not particularly limited.
  • a die 24 for extrusion molding is provided at the downstream end of the cylinder 23, and an uncrosslinked rubber sheet 11 'for a compressed rubber layer as a molded body is extruded from a discharge port 24a of the die 24.
  • the die 24 is configured so that the processing temperature can be set independently of the cylinder 23.
  • the discharge port 24a of the die 24 may be formed in an elongated rectangular slit shape as shown in FIG.
  • a long flat uncrosslinked rubber sheet 11 ' is extruded as a molded body. That is, in this rubber sheet manufacturing step, the extruder 20 is provided with a die 24 having a discharge port 24a formed in the shape of an elongated rectangular slit, whereby the flat uncrosslinked rubber sheet 11 ′ is formed by the extruder 20. It may be extruded.
  • the width and thickness of the uncrosslinked rubber sheet 11 ' are not particularly limited.
  • the discharge port 24 a of the die 24 may be an elongated slit, and may be formed by connecting V-rib-shaped grooves along one long side thereof. .
  • a long flat uncrosslinked rubber formed as a molded body so that a plurality of V-rib forming portions 15 'extending in the extrusion direction are arranged in parallel on one surface.
  • Sheet 11 ' is extruded.
  • a flat uncrosslinked rubber sheet 11 ′ formed so that a plurality of V rib forming portions 15 ′ extending in the extrusion direction are arranged in parallel may be extruded by the extruder 20.
  • the V rib forming portion 15 ′ may be formed to have the same size as the V rib 15, may be formed to a size larger than the V rib 15, and hollow particles and When spraying a foaming agent or laminating other materials, it may be formed in a size smaller than the V-rib 15.
  • the discharge port 24a of the die 24 may be formed in a circumferential shape as shown in FIG.
  • a long cylindrical uncrosslinked rubber sheet 11 ' is extruded as a molded body.
  • an uncrosslinked rubber sheet 11 ′ is provided on a cylindrical rubber sleeve 35, but a cylindrical uncrosslinked rubber sheet 11 ′ shown in FIG. 8 may be used as it is. That is, in this rubber sheet manufacturing step, the extruder 20 is provided with a die 24 having a discharge port 24a formed in a circumferential shape, so that the cylindrical uncrosslinked rubber sheet 11 ′ is extruded by the extruder 20.
  • the tubular uncrosslinked rubber sheet 11 ′ produced in the rubber sheet producing step is covered with the tubular rubber sleeve 35, and the V vulcanization molding die 30 has the V
  • the V ribs 15 may be formed by bringing the rib forming grooves 33 into contact with the molding surface on which the rib forming grooves 33 are formed and crosslinking by heating and pressing. Further, this tubular uncrosslinked rubber sheet 11 'may be cut in the length direction and used as a flat uncrosslinked rubber sheet 11' as shown in FIG.
  • the extruder 20 is provided with a die 24 having a discharge port 24a that is formed in a circumferential shape and has V-rib-shaped grooves continuously provided along the inner periphery thereof.
  • the extruder 20 extrudes a cylindrical uncrosslinked rubber sheet 11 ′ formed so that a plurality of V rib forming portions 15 ′ extending in the extrusion direction are arranged in parallel on the inner peripheral surface, and is formed in the length direction. It may be cut into a flat plate shape.
  • the circumferential length and thickness of the cylindrical uncrosslinked rubber sheet 11 ' are not particularly limited.
  • the discharge port 24a of the die 24 may have a circumferential shape and may be formed by connecting V-rib-shaped grooves along the inner periphery thereof. Further, as shown in FIG. 9 (b), it may have a circumferential shape, and V-rib shaped grooves may be formed continuously along the outer periphery thereof.
  • a long cylindrical uncrosslinked rubber sheet 11 ′ formed such that a plurality of V rib forming portions 15 ′ extending in the extrusion direction are arranged in parallel on the inner peripheral surface or the outer peripheral surface as the molded body. Is extruded.
  • the uncrosslinked rubber sheet 11 ′ needs to be provided on the cylindrical rubber sleeve 35 so that the plurality of V rib forming portions 15 ′ extend in the circumferential direction.
  • These cylindrical uncrosslinked rubber sheets 11 ′ extruded and cut in the length direction were formed so that a plurality of V rib forming portions 15 ′ were juxtaposed on one surface as shown in FIG. 6. It is used as a flat uncrosslinked rubber sheet 11 ′. That is, in this rubber sheet manufacturing step, the die 24 having a discharge port 24a that is formed in a circumferential shape and has V-shaped grooves continuously provided along the inner periphery or the outer periphery of the extruder 20 is provided.
  • the processing temperature of the cylinder 23 and the die 24 at the time of extrusion molding is not particularly limited, and may be equal to or higher than the expansion start temperature of the hollow particles and / or the expansion start temperature of the foaming agent. And / or lower than the foaming start temperature of the foaming agent.
  • the hollow particles are heated during extrusion to expand and / or the foaming agent is heated and foamed to form voids in the uncrosslinked rubber composition. Therefore, the uncrosslinked rubber sheet is extruded.
  • a large number of small holes 16 are formed on the surface of 11 '. In the latter case, there is no expansion of the hollow particles and / or foaming of the foaming agent at the time of extrusion molding, and the small holes 16 are not formed on the surface of the uncrosslinked rubber sheet 11 'to be extruded.
  • the expansion start temperature of the hollow particles and / or Heating is performed at a vulcanization molding temperature equal to or higher than the foaming start temperature of the foaming agent, thereby expanding the hollow particles and / or foaming the foaming agent, thereby generating pores in the rubber composition and forming on the surface of the V rib 15.
  • a large number of small holes 16 may be formed.
  • the extruded uncrosslinked rubber sheet 11 ′ is not less than the expansion start temperature of the hollow particles and / or the foaming start temperature of the foaming agent and higher than the vulcanization molding temperature.
  • Preheating the surface at a low temperature, thereby expanding the hollow particles and / or foaming the blowing agent to create voids in the uncrosslinked rubber sheet 11 'and to form a large number of small holes 16 on the surface And vulcanization molding may be performed using the same.
  • the uncrosslinked rubber sheet 11 ′ after extrusion molding and before V-rib formation in the rubber sheet manufacturing step is higher than the expansion start temperature of the hollow particles and / or the foaming start temperature of the foaming agent and the temperature at the time of V-rib formation.
  • the surface may be preheated at a lower temperature, thereby expanding the hollow particles and / or expanding the blowing agent.
  • a small amount of hollow particles and / or foaming agent initially blended in the uncrosslinked rubber composition is placed and extruded to form an uncrosslinked rubber sheet 11.
  • the hollow particles and / or the foaming agent are sprayed or applied on the surface of 'and the hollow particles are expanded by heating at the vulcanization molding temperature during the vulcanization molding and / or the foaming agent is foamed. It is preferable to generate pores.
  • the hollow particles and / or the foaming agent are sprayed or applied to the surface of the uncrosslinked rubber sheet 11 ′ after the extrusion molding and before the V-rib formation in the rubber sheet manufacturing step, and the hollow particles are expanded by heating during the V-rib formation. And / or foaming the foaming agent.
  • the generation mechanism of the small holes 16 by the hollow particles will be described.
  • the hollow particles blended in the rubber composition expand, but exist in the vicinity of the surface. Some of them expand and rupture or deform to form a concave portion on the surface, and the concave portion constitutes the small hole 16. Therefore, the small holes 16 can be formed on the rubber surface without polishing the rubber surface layer and cutting away some of the hollow particles.
  • the small holes 16 may be formed on the rubber surface by polishing the rubber surface layer or the like to excise a part of the hollow particles.
  • a hollow particle shell may be attached to the inner wall of the small hole 16 formed by the hollow particle.
  • the number of rotations of the screw 22 during extrusion molding and the discharge amount per hour of the molded body are not particularly limited.
  • the uncrosslinked rubber composition containing the short fibers is kneaded, and then calendered to form an uncrosslinked rubber sheet in which the short fibers are oriented in the length direction,
  • the uncrosslinked rubber sheet is cut at a certain length in a direction perpendicular to the length direction to form rubber pieces, and the short fibers are formed into a width by jointing the sides of the rubber pieces.
  • An uncrosslinked rubber sheet is formed to form V-ribs oriented in the direction.
  • the uncrosslinked rubber sheet 11 ′ for the compressed rubber layer is not blended with short fibers, and instead, hollow particles and Since an uncrosslinked rubber composition containing at least one of the foaming agents is used and is produced by extrusion molding, expensive short fibers are not used, and there is no need to control the orientation, thus reducing the cost.
  • the V-ribbed belt B can be manufactured with fewer steps.
  • the uncrosslinked rubber sheet 12 ′ for the adhesive rubber layer is made into a sheet form using raw material rubber and compounding agent in a kneader such as a kneader or a Banbury mixer and kneaded. It is made by molding into.
  • the uncrosslinked rubber sheet 13 ′ for the back rubber layer is produced in the same manner.
  • the uncrosslinked rubber sheets 12 ′ and 13 ′ for the adhesive rubber layer and the back rubber layer may be produced by extrusion molding in the same manner as the uncrosslinked rubber sheet 11 ′ for the compression rubber layer.
  • raw rubbers for the uncrosslinked rubber sheets 12 ′ and 13 ′ for the adhesive rubber layer and the back rubber layer include, for example, ethylene- ⁇ -olefin elastomer, chloroprene rubber (CR), chlorosulfonated polyethylene rubber (CSM), hydrogen Examples thereof include an added acrylonitrile rubber (H-NBR).
  • the uncrosslinked rubber sheets 12 'and 13' for the adhesive rubber layer and the back rubber layer are preferably the same as the raw rubber of the uncrosslinked rubber sheet 11 'for the compression rubber layer.
  • Examples of the compounding agent include those similar to the uncrosslinked rubber sheet 11 'for the compressed rubber layer. However, it is preferable that the compounding agent of the uncrosslinked rubber sheet 12 'for the adhesive rubber layer does not contain hollow particles and a foaming agent.
  • the uncrosslinked rubber sheets 11 ′, 12 ′, and 13 ′ for the compression rubber layer, the adhesive rubber layer, and the back rubber layer may be composed of a rubber composition having a different composition. You may be comprised with the composition.
  • the strand 14 ′ for the core wire is subjected to an adhesive treatment in which it is immersed in an RFL aqueous solution and heated, and then is subjected to an adhesive treatment in which it is immersed in rubber glue and dried by heating.
  • Examples of the constituent fiber of the strand 14 'for the core wire include polyester fiber (PET), polyethylene naphthalate fiber (PEN), aramid fiber, vinylon fiber, and the like.
  • ⁇ Material setting process> 10 and 11 show a belt vulcanization mold 30 used in this step.
  • the belt vulcanization mold 30 includes a cylindrical inner mold 31 and an outer mold 32, which are provided concentrically.
  • the inner mold 31 is made of a flexible material such as rubber.
  • the outer mold 32 is formed of a rigid material such as metal.
  • the inner peripheral surface of the outer mold 32 is formed as a molding surface, and V rib forming grooves 33 are provided on the inner peripheral surface of the outer mold 32 at a constant pitch in the axial direction.
  • the outer mold 32 is provided with a temperature control mechanism that controls the temperature by circulating a heat medium such as water vapor or a coolant such as water.
  • the belt vulcanization mold 30 is provided with a pressurizing means for pressurizing and expanding the inner mold 31 from the inside.
  • a rubber sleeve 35 is first placed on a cylindrical drum 34 having a smooth surface.
  • the outer peripheral surface of the rubber sleeve 35 is configured as a molding surface, and a texture forming pattern of a woven fabric is provided on the outer peripheral surface.
  • an uncrosslinked rubber sheet 13 ′ for the back rubber layer and an uncrosslinked rubber sheet 12 ′ for the adhesive rubber layer are sequentially wound and laminated thereon, and the twisted yarn 14 ′ for the core wire is cylindrically formed thereon.
  • the rubber sleeve 35 is spirally wound, and an uncrosslinked rubber sheet 12 ′ for the adhesive rubber layer is wound around the rubber sleeve 35 in turn.
  • an uncrosslinked rubber sheet 11 ′ for the compressed rubber layer is provided thereon to form a laminate 10 ′.
  • the uncrosslinked rubber sheet 11 ′ for the compression rubber layer is wound around the uncrosslinked rubber sheet 12 ′ for the adhesive rubber layer, and both ends thereof are joined by a butt joint or a lap joint.
  • the uncrosslinked rubber sheet 11 'for the compression rubber layer is wound around the uncrosslinked rubber sheet 12' for the adhesive rubber layer so that the V rib forming portion 15 'extends in the circumferential direction, and both ends thereof are wound. Join by butt joint or lap joint.
  • the uncrosslinked rubber sheet 11 ′ for the cylindrical compressed rubber layer as shown in FIG. 8 is used, the uncrosslinked rubber sheet 11 ′ for the compressed rubber layer from above the uncrosslinked rubber sheet 12 ′ for the adhesive rubber layer Cover the rubber sheet 11 '.
  • the form is the same as in FIG.
  • the rubber sleeve 35 provided with the laminated body 10 ′ formed by setting each material is removed from the cylindrical drum 34, and it is set in an internally fitted state on the inner peripheral surface side of the outer mold 32.
  • An uncrosslinked rubber sheet 11 ′ for the outermost compressed rubber layer of the laminate 10 ′ is formed on the molding surface of the inner peripheral surface of the outer mold 32 in the belt vulcanization mold 30, and a V-rib is formed on the uncrosslinked rubber sheet 11 ′.
  • the opening end of the groove 33 is brought into contact with each other.
  • an uncrosslinked rubber sheet 11 ′ for a compressed rubber layer having a V-rib forming portion 15 ′ as shown in FIG. 6 is used, the outermost layer of the laminate 10 ′ is used as shown in FIG.
  • the uncrosslinked rubber sheet 11 ′ for the compressed rubber layer is fitted into the molding surface of the inner peripheral surface of the outer mold 32 in the belt vulcanization mold 30, and the V rib forming portion 15 ′ is fitted into the V rib forming groove 33. Make contact.
  • the inner mold 31 is positioned in the rubber sleeve 35 set in the outer mold 32 and sealed.
  • 14A and 14B correspond to FIGS. 13A and 13B, respectively.
  • the outer mold 32 is heated, and high-pressure air or the like is injected into the sealed interior of the inner mold 31 to pressurize it.
  • the uncrosslinked rubber sheets 11 ′, 12 ′, and 13 ′ constituting the laminated body 10 ′ are pressed against the molding surface of the outer mold 32 by the expansion of the inner mold 31, By heating and pressurizing, the cross-linking progresses and integrates and is combined with the twisted yarn 14 ′.
  • the cylindrical belt slab S in which V ribs 15 extending in the circumferential direction are formed on the outer peripheral surface is vulcanized. Molded (V-rib forming step).
  • the belt slab S has a vulcanization molding temperature of, for example, 100 to 180 ° C., a vulcanization molding pressure of, for example, 0.5 to 2.0 MPa, and a vulcanization molding time of, for example, 10 to 60 minutes.
  • the V-ribbed belt B is obtained by turning the front and back.
  • the surface of the V-rib 15 formed as necessary may be ground, but in the case of the V-ribbed belt B according to Embodiment 1, it is not necessary to project short fibers from the surface of the V-rib 15, so Grinding is basically unnecessary. Therefore, compared with the conventional method of manufacturing a V-ribbed belt that grinds V-ribs formed of a short fiber compounded rubber composition, the grinding process is unnecessary, so that the process can be simplified. This equipment is unnecessary, and material loss due to disposal by grinding can be prevented.
  • FIG. 16 shows a V-ribbed belt B according to the second embodiment.
  • the part of the same name as Embodiment 1 is shown with the same code
  • FIG. 16 shows a V-ribbed belt B according to the second embodiment.
  • the compressed rubber layer 11 has a two-layer structure of a surface rubber layer 11a formed in a layer shape along the entire pulley contact surface and an inner rubber layer 11b inside thereof.
  • the surface rubber layer 11a is formed of a rubber composition having a configuration similar to that of the compression rubber layer 11 of the V-ribbed belt B according to the first embodiment, whereby a large number of holes are formed inside the V-rib 15.
  • a large number of small holes 16 are formed on the surface.
  • the density of the holes and the small holes 16 is preferably higher on the surface side than on the inner side of the surface rubber layer 11a.
  • the inner rubber layer 11b is formed of a rubber composition having the same configuration as that of the surface rubber layer 11a except that neither hollow particles nor a foaming agent is blended.
  • the thickness of the surface rubber layer 11a is, for example, 0.3 to 0.6 mm, and the thickness of the inner rubber layer 11b is, for example, 1.6 to 2.0 mm.
  • the uncrosslinked rubber sheet 11 ′ to be extruded is a first layer 11a ′ formed of the first uncrosslinked rubber composition R1 and a second uncrosslinked rubber composition provided so as to be laminated thereon. It will have a two-layer structure with the second layer 11b 'formed of R2. Specifically, in the case of a flat plate-like uncrosslinked rubber sheet 11 ′ in which the V-rib forming portion 15 ′ is not formed, as shown in FIG. The surface layer is composed of the first layer 11a ′, and the other layer is composed of the second layer 11b ′. In the case of the flat uncrosslinked rubber sheet 11 ′ having the V-rib forming portion 15 ′ formed therein, as shown in FIG.
  • the V-rib forming portion 15 ′ to be brought into contact with the belt vulcanization mold 30 is formed.
  • the layer on the formed side is constituted by the first layer 11a ′, and the layer on the other side is constituted by the second layer 11b ′.
  • the outer surface layer on the side to be brought into contact with the belt vulcanization mold 30 is formed as shown in FIG.
  • the first layer 11a ′ is configured, and the inner layer is configured by the second layer 11b ′.
  • the thickness of the first layer 11a ' is, for example, 0.05 to 1 mm
  • the thickness of the second layer 11b' is, for example, 2 to 3 mm.
  • the belt main body 10 is configured by the compressed rubber layer 11, the adhesive rubber layer 12, and the back rubber layer 13.
  • the present invention is not particularly limited thereto, and the compressed rubber layer 11 is not limited thereto.
  • the adhesive rubber layer 12 constitutes the belt main body 10 and, instead of the back rubber layer 13, for example, a woven fabric, a knitted fabric, a non-woven fabric or the like formed of yarns such as cotton, polyamide fiber, polyester fiber, and aramid fiber. A reinforcing cloth may be provided.
  • the belt vulcanization mold 30 is used for the vulcanization molding.
  • the present invention is not particularly limited to this, and the laminated body 10 ′ is continuously vulcanized by the rot cure. Molding may be performed.
  • the present invention is useful for a method for producing a V-ribbed belt.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Textile Engineering (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

Vリブドベルトの製造方法では、短繊維が配合されていない未架橋ゴム組成物を押出機で押出成形することによりVリブ形成用の未架橋ゴムシートを作製する。その未架橋ゴムシートにおける少なくともVリブを形成する側の表面層を、Vリブの表面に小孔を形成するための中空粒子及び発泡剤のうち少なくとも一方が配合された未架橋ゴム組成物で形成する。

Description

Vリブドベルトの製造方法
 本発明は、Vリブドベルトの製造方法に関する。
 Vリブドベルトでは、十分な動力伝達能力を確保しつつ動力伝達時の騒音を抑制する観点から、短繊維がベルト幅方向に配向した短繊維配合ゴム組成物によってVリブが形成され、それによってVリブ表面の摩擦係数の調整が図られている。そして、Vリブドベルトの製造工程において、Vリブを形成するための未架橋ゴムシートを押出成形により作製することが知られている。
 例えば、特許文献1には、Vリブ部成形溝を有する拡張ダイが設けられた押出機により、Vリブより若干大きい形状に予備成形されたVリブ部を外周部又は内周部に有する短繊維配合ゴム組成物からなる円筒状リブゴムチューブを押出成形し、そして、その円筒状リブゴムチューブを用いて加硫金型上にVリブドベルト成形体を成形して加硫した後、Vリブドベルト成形体のVリブ部の表面を研削してVリブを形成するVリブドベルトの製造方法が開示されている。
 特許文献2には、拡張ダイが設けられた押出機により、短繊維配合ゴム組成物を内層に他のゴム組成物を表面層に積層した2層の筒状成形体に押出成形し、そして、その2層の筒状成形体を、外周面に可撓性ジャケットを装着した内型と内周面にリブ型を刻印した外型との間に介在させると共に、内型の可撓性ジャケットを膨張させることにより筒状成形体を外型のリブ型に密着させてVリブ部を有する未加硫の予備成形体を作製するVリブドベルトの製造方法が開示されている。
特開平08-074936号公報 特開2004-216857号公報
 本発明は、各々、ベルト長さ方向に延び且つ表面に多数の小孔が形成された複数のVリブがベルト幅方向に並列するように設けられたVリブドベルトの製造方法であって、
 短繊維が配合されていない未架橋ゴム組成物を押出機で押出成形することによりVリブ形成用の未架橋ゴムシートを作製するゴムシート作製ステップを備え、
 上記ゴムシート作製ステップでは、未架橋ゴムシートにおける少なくともVリブを形成する側の表面層を、Vリブの表面に小孔を形成するための中空粒子及び発泡剤のうち少なくとも一方が配合された未架橋ゴム組成物で形成するものである。
実施形態1に係るVリブドベルトの斜視図である。 押出機の概略構成を示す側面図である。 第1の例のダイの正面図である。 Vリブ形成部が形成されていない平板状の圧縮ゴム層用の未架橋ゴムシートの斜視図である。 第2の例のダイの正面図である。 Vリブ形成部が形成された平板状の圧縮ゴム層用の未架橋ゴムシートの斜視図である。 第3の例のダイの正面図である。 筒状の圧縮ゴム層用の未架橋ゴムシートの斜視図である。 (a)は第3の例のダイの正面図であり、(b)は第4の例のダイの正面図である。 ベルト加硫成形型の縦断面図である。 ベルト加硫成形型の一部分の拡大縦断面図である。 (a)及び(b)は積層体を形成する工程を示す説明図である。 (a)及び(b)は積層体を外型にセットする工程を示す説明図である。 (a)及び(b)は外型を内型の外側に設ける工程を示す説明図である。 ベルトスラブを成型する工程を示す説明図である。 実施形態2に係るVリブドベルトの斜視図である。 圧縮ゴム層用の未架橋ゴムシートの押出成形の説明図である。 (a)~(c)は圧縮ゴム層用の未架橋ゴムシートの斜視図である。
 以下、実施形態について図面に基づいて詳細に説明する。
 [実施形態1]
 (VリブドベルトB)
 図1は実施形態1に係るVリブドベルトBを示す。実施形態1に係るVリブドベルトBは、例えば、自動車のエンジンルーム内に設けられる補機駆動ベルト伝動装置等に用いられるものである。実施形態1に係るVリブドベルトBは、例えば、ベルト長さが700~3000mm、ベルト幅が10~36mm、及びベルト厚さが4.0~5.0mmである。
 実施形態1に係るVリブドベルトBは、ベルト内周側の圧縮ゴム層11と中間の接着ゴム層12とベルト外周側の背面ゴム層13との三重層に構成されたベルト本体10を備えており、そのベルト本体10の接着ゴム層12には、ベルト幅方向にピッチを有する螺旋を形成するように配された心線14が埋設されている。
 圧縮ゴム層11は、プーリ接触部分を構成する複数のVリブ15がベルト内周側に垂下するように設けられている。複数のVリブ15は、各々がベルト長さ方向に延びる断面略逆三角形の突条に形成されていると共にベルト幅方向に並列するように設けられている。各Vリブ15は、例えば、リブ高さが2.0~3.0mm、及びリブ基端間の幅が1.0~3.6mmである。リブ数は例えば3~6個である(図1ではリブ数が6)。
 圧縮ゴム層11は、原料ゴムに架橋剤を含む種々の配合剤が配合されて混練された未架橋ゴム組成物が加熱及び加圧されて架橋剤により架橋したゴム組成物で形成されている。
 圧縮ゴム層11を形成するゴム組成物には短繊維が配合されていない。一方、圧縮ゴム層11を形成するゴム組成物には、中空粒子及び発泡剤のうち少なくとも一方が配合されており、それによってVリブ15の内部には多数の空孔が形成されると共に表面には多数の小孔16が形成されている。空孔及び小孔16の密度は、圧縮ゴム層11の内部側よりも表面側の方が高いことが好ましい。小孔16の平均孔径は70~120μmであることが好ましく、100~120μmであることがより好ましい。小孔16の平均孔径は、表面画像で測定される50~100個の数平均として求めることができる。
 接着ゴム層12は、断面横長矩形の帯状に構成されており、厚さが例えば1.0~2.5mmである。背面ゴム層13も、断面横長矩形の帯状に構成されており、厚さが例えば0.4~0.8mmである。背面ゴム層13の表面は、ベルト背面が接触する平プーリとの間で生じる音を抑制する観点から、織布の布目が転写された形態に形成されていることが好ましい。
 接着ゴム層12及び背面ゴム層13のそれぞれは、原料ゴムに架橋剤を含む種々の配合剤が配合されて混練された未架橋ゴム組成物が加熱及び加圧されて架橋剤により架橋したゴム組成物で形成されていることが好ましい。背面ゴム層13は、ベルト背面が接触する平プーリとの接触で粘着が生じるのを抑制する観点から、接着ゴム層12よりもやや硬めのゴム組成物で形成されていることが好ましい。
 心線14はゴムとの接着処理が施された撚り糸14’で構成されている。
 (VリブドベルトBの製造方法)
 実施形態1に係るVリブドベルトBの製造方法は、材料準備工程、材料セット工程、及び加硫成形・仕上げ工程からなる。
 <材料準備工程>
 -圧縮ゴム層用の未架橋ゴムシート11’-
 圧縮ゴム層用、つまり、Vリブ形成用の未架橋ゴムシート11’は、原料ゴム及び配合剤を押出機20に投入し、混練して押出成形することにより作製する(ゴムシート作製ステップ)。なお、押出機20には、予め原料ゴム及び配合剤をニーダー、バンバリーミキサー等の混練機に投入して混練して得られた未架橋ゴム組成物を投入してもよい。
 圧縮ゴム層用の未架橋ゴムシート11’の原料ゴムとしては、例えば、エチレン・プロピレンコポリマー(EPR)、エチレン・プロピレン・ジエンターポリマー(EPDM)、エチレン・オクテンコポリマー、エチレン・ブテンコポリマーなどのエチレン-α-オレフィンエラストマー;クロロプレンゴム(CR);クロロスルホン化ポリエチレンゴム(CSM);水素添加アクリロニトリルゴム(H-NBR)等が挙げられる。原料ゴムは、これらのうちエチレン-α-オレフィンエラストマーであることが好ましい。原料ゴムは、単一種で構成されていてもよく、また、複数種がブレンドされて構成されていてもよい。
 配合剤には、Vリブ15の表面に小孔16を形成するための中空粒子及び発泡剤のうち少なくとも一方が含まれる。従って、中空粒子及び発泡剤のうち一方だけが含まれていてもよく、また、それらの両方が含まれていてもよい。
 中空粒子としては、例えば、内部に溶剤が封入された熱膨張性の中空粒子が挙げられる。中空粒子の膨張前の平均粒径は15~50μmであることが好ましく、25~35μmであることがより好ましい。中空粒子の膨張開始温度は例えば140~180℃であり、160~180℃であることが好ましい。中空粒子の膨張倍率は例えば粒径(セル径)の2~10倍である。中空粒子は、単一種で構成されていてもよく、また、複数種で構成されていてもよい。中空粒子の配合量は、原料ゴム100質量部に対して0.5~15質量部であることが好ましく、1~5質量部であることがより好ましい。なお、市販の中空粒子としては、例えば、積水化学工業社製の商品名:アドバンセルEHM303(粒径29μm)、アドバンセルEHM302(粒径21μm)、アドバンセルEHM204(粒径40μm)、及びアドバンセルEM501(粒径27μm)等が挙げられる。
 発泡剤は、単一種で構成されていてもよく、また、複数種で構成されていてもよい。発泡剤の発泡開始温度は例えば80~180℃であり、140~170℃であることが好ましい。発泡剤の配合量は、原料ゴム100質量部に対して1~20質量部であることが好ましく、5~15質量部であることがより好ましい。なお、市販の発泡剤としては、例えば、永和化成工業社製の商品名:ネオセルボンN#1000M等が挙げられる。
 配合剤には、耐摩耗性を高める観点から、摩擦係数低減材として、粉状乃至粒状のモンモリロナイトや重量平均分子量が100万以上である粉状乃至粒状の超高分子量ポリエチレン樹脂が含まれていることが好ましい。摩擦係数低減材の配合量は、原料ゴム100質量部に対して例えば10~40質量部である。摩擦係数低減材の粒径は例えば1~150μmである。
 配合剤としては、その他に、カーボンブラックなどの補強材、軟化剤、加工助剤、加硫助剤、架橋剤、加硫促進剤、ゴム配合用樹脂等が挙げられる。なお、圧縮ゴム層11を形成するゴム組成物には短繊維が配合されていないので、配合剤には短繊維は含まれない。
 補強材としては、カーボンブラックでは、例えば、チャネルブラック;SAF、ISAF、N-339、HAF、N-351、MAF、FEF、SRF、GPF、ECF、N-234などのファーネスブラック;FT、MTなどのサーマルブラック;アセチレンブラック等が挙げられる。補強材としてはシリカも挙げられる。補強材は、単一種で構成されていてもよく、また、複数種で構成されていてもよい。補強材の配合量は、耐摩耗性及び耐屈曲疲労性のバランスが良好となるという観点から、原料ゴム100質量部に対して30~80質量部であることが好ましい。
 軟化剤としては、例えば、石油系軟化剤;パラフィンワックスなどの鉱物油系軟化剤;ひまし油、綿実油、あまに油、なたね油、大豆油、パーム油、やし油、落下生油、木ろう、ロジン、パインオイルなどの植物油系軟化剤等が挙げられる。軟化剤は、単一種で構成されていてもよく、また、複数種で構成されていてもよい。軟化剤の配合量は、原料ゴム100質量部に対して例えば2~30質量部である。
 加工助剤としては、例えば、ステアリン酸等が挙げられる。加工助剤は、単一種で構成されていてもよく、また、複数種で構成されていてもよい。加工助剤の配合量は、原料ゴム100質量部に対して例えば0.5~5質量部である。
 加硫助剤としては、酸化マグネシウムや酸化亜鉛(亜鉛華)などの金属酸化物等が挙げられる。加硫助剤は、単一種で構成されていてもよく、また、複数種で構成されていてもよい。加硫助剤の配合量は、原料ゴム100質量部に対して例えば1~10質量部である。
 架橋剤としては、例えば、硫黄、有機過酸化物が挙げられる。架橋剤は、硫黄が単独で使用されていてもよく、また、有機過酸化物が単独で使用されていてもよく、さらには、それらの両方が併用されていてもよい。架橋剤の配合量は、硫黄の場合、原料ゴム100質量部に対して例えば0.5~4.0質量部であり、有機過酸化物の場合、原料ゴム100質量部に対して例えば0.5~8質量部である。
 加硫促進剤としては、金属酸化物、金属炭酸塩、脂肪酸及びその誘導体等が挙げられる。加硫促進剤は、単一種で構成されていてもよく、また、複数種で構成されていてもよい。加硫促進剤の配合量は、原料ゴム100質量部に対して例えば0.5~8質量部である。
 ゴム配合用樹脂としては、例えば、フェノール樹脂等が挙げられる。ゴム配合用樹脂は、単一種で構成されていてもよく、また、複数種で構成されていてもよい。ゴム配合用樹脂の配合量は、原料ゴム100質量部に対して例えば0~20質量部である。
 図2はこの工程で用いる押出機20を示す。
 この押出機20は、上流側に材料供給用のホッパー21が設けられていると共に内部にスクリュー22が挿通されたシリンダ23を備えており、ホッパー21から投入された原料ゴム及び配合剤をシリンダ23内においてスクリュー22の翼により混練して未加硫ゴム組成物に形成すると共に、それを下流側に送るように構成されている。また、シリンダ23は、長さ方向に沿って複数のゾーンに分割されており、各ゾーン毎に独立した加工温度の設定ができるように構成されている。シリンダ23の内径及び内部の長さは特に限定されない。
 シリンダ23の下流端には押出成形用のダイ24が設けられており、このダイ24が有する吐出口24aから成形体としての圧縮ゴム層用の未架橋ゴムシート11’を押出成形するように構成されている。また、ダイ24は、シリンダ23とは独立した加工温度の設定ができるように構成されている。
 ダイ24の吐出口24aは、図3に示すように、細長矩形のスリット状に形成されたものであってもよい。この場合、図4に示すように、成形体として長尺の平板状の未架橋ゴムシート11’が押出成形される。つまり、このゴムシート作製ステップでは、押出機20に、細長矩形のスリット状に形成された吐出口24aを有するダイ24を設けることにより、押出機20で、平板状の未架橋ゴムシート11’を押出成形してもよい。未架橋ゴムシート11’の幅及び厚さは特に限定されない。
 ダイ24の吐出口24aは、図5に示すように、細長のスリット状であって、その一方の長辺に沿ってVリブ形状の溝が連設して形成されたものであってもよい。この場合、図6に示すように、成形体として、一方の面に、各々、押出方向に延びる複数のVリブ形成部15’が並列するように形成された長尺の平板状の未架橋ゴムシート11’が押出成形される。つまり、このゴムシート作製ステップでは、押出機20に、細長のスリット状であって、その一方の長辺に沿ってVリブ形状の溝が連設されて形成された吐出口24aを有するダイ24を設けることにより、押出機20で、押出方向に延びる複数のVリブ形成部15’が並列するように形成された平板状の未架橋ゴムシート11’を押出成形してもよい。Vリブ形成部15’は、Vリブ15と同一寸法に形成されていてもよく、また、Vリブ15よりも大きめの寸法に形成されていてもよく、さらに、押出成形後に表面に中空粒子及び/又は発泡剤を散布する場合や他の材料を積層する場合には、Vリブ15よりも小さめの寸法に形成されていてもよい。
 ダイ24の吐出口24aは、図7に示すように、円周形状に形成されたものであってもよい。この場合、図8に示すように、成形体として長尺の筒状の未架橋ゴムシート11’が押出成形される。後述の成形加硫時には、円筒状のゴムスリーブ35上に未架橋ゴムシート11’を設けるが、図8に示す筒状の未架橋ゴムシート11’をそのまま被せて使用してもよい。つまり、このゴムシート作製ステップでは、押出機20に、円周形状に形成された吐出口24aを有するダイ24を設けることにより、押出機20で、筒状の未架橋ゴムシート11’を押出成形し、続くVリブ形成ステップにおいて、後述の通り、このゴムシート作製ステップで作製した筒状の未架橋ゴムシート11’を、筒状のゴムスリーブ35に被せて、ベルト加硫成形型30におけるVリブ形成溝33が形成された成形面に当接させると共に加熱及び加圧して架橋させることによりVリブ15を形成してもよい。また、この筒状の未架橋ゴムシート11’を長さ方向に切断し、図4に示すような平板状の未架橋ゴムシート11’として使用してもよい。つまり、このゴムシート作製ステップでは、押出機20に、円周形状であって、その内周に沿ってVリブ形状の溝が連設して形成された吐出口24aを有するダイ24を設けることにより、押出機20で、内周面に押出方向に延びる複数のVリブ形成部15’が並列するように形成された筒状の未架橋ゴムシート11’を押出成形し、それを長さ方向に切断して平板状に形成してもよい。筒状の未架橋ゴムシート11’の周長及び厚さは特に限定されない。
 ダイ24の吐出口24aは、図9(a)に示すように、円周形状であって、その内周に沿ってVリブ形状の溝が連設して形成されたものであってもよく、また、図9(b)に示すように、円周形状であって、その外周に沿ってVリブ形状の溝が連設して形成されたものであってもよい。これらの場合、成形体として、内周面又は外周面に、各々、押出方向に延びる複数のVリブ形成部15’が並列するように形成された長尺の筒状の未架橋ゴムシート11’が押出成形される。但し、後述の成形加硫時には、円筒状のゴムスリーブ35上に、未架橋ゴムシート11’を、複数のVリブ形成部15’が周方向に延びるように設ける必要があるので、押出機20で押出成形した、これらの筒状の未架橋ゴムシート11’を長さ方向に切断し、図6に示すような一方の面に複数のVリブ形成部15’が並列するように形成された平板状の未架橋ゴムシート11’として使用する。つまり、このゴムシート作製ステップでは、押出機20に、円周形状であって、その内周又は外周に沿ってVリブ形状の溝が連設して形成された吐出口24aを有するダイ24を設けることにより、押出機20で、内周面又は外周面に押出方向に延びる複数のVリブ形成部15’が並列するように形成された筒状の未架橋ゴムシート11’を押出成形し、それを長さ方向に切断して平板状に形成してもよい。
 押出成形時のシリンダ23及びダイ24の加工温度は、特に限定されず、中空粒子の膨張開始温度及び/又は発泡剤の発泡開始温度以上であってもよく、また、中空粒子の膨張開始温度よりも低く及び/又は発泡剤の発泡開始温度よりも低くてもよい。前者の場合、押出成形時において中空粒子が加熱されて膨張及び/又は発泡剤が加熱されて発泡することにより未架橋ゴム組成物内に空孔が形成され、そのため押出成形される未架橋ゴムシート11’の表面に多数の小孔16が形成される。後者の場合、押出成形時において中空粒子の膨張及び/又は発泡剤の発泡は無く、押出成形される未架橋ゴムシート11’の表面に小孔16は形成されない。
 押出成形時に未架橋ゴムシート11’の表面に形成された小孔16が潰れるのを抑制する観点からは後者が好ましく、その場合、後述の加硫成形時において中空粒子の膨張開始温度及び/又は発泡剤の発泡開始温度以上の加硫成形温度で加熱し、それによって中空粒子を膨張させ及び/又は発泡剤を発泡させることによりゴム組成物内に空孔を生成させると共にVリブ15の表面に多数の小孔16を形成させてもよい。
 また、押出成形した未架橋ゴムシート11’を、加硫成形によりVリブ15を形成する前に、中空粒子の膨張開始温度及び/又は発泡剤の発泡開始温度以上で且つ加硫成形温度よりも低い温度で表面を予備加熱し、それによって中空粒子を膨張させ及び/又は発泡剤を発泡させることにより未架橋ゴムシート11’内に空孔を生成させると共にその表面に多数の小孔16を形成させ、それを用いて加硫成形を行ってもよい。つまり、ゴムシート作製ステップにおける押出成形後で且つVリブ形成前の未架橋ゴムシート11’を、中空粒子の膨張開始温度及び/又は発泡剤の発泡開始温度以上で且つVリブ形成時の温度よりも低い温度で表面を予備加熱し、それによって中空粒子を膨張させ及び/又は発泡剤を発泡させてもよい。
 さらに、Vリブ15の表面に多数の小孔16を形成させる観点からは、当初に未架橋ゴム組成物に配合する中空粒子及び/又は発泡剤を少量としておき、押出成形した未架橋ゴムシート11’の表面に中空粒子及び/又は発泡剤を散布または塗布し、加硫成形時における加硫成形温度での加熱によって中空粒子を膨張させ及び/又は発泡剤を発泡させることによりゴム組成物内に空孔を生成させることが好ましい。つまり、ゴムシート作製ステップにおける押出成形後で且つVリブ形成前の未架橋ゴムシート11’の表面に中空粒子及び/又は発泡剤を散布又は塗布し、Vリブ形成時の加熱によって中空粒子を膨張させ及び/又は発泡剤を発泡させることが好ましい。
 ここで、中空粒子による小孔16の生成メカニズムについて説明すると、押出成型時、加硫成型時、又は、予備加熱時に、ゴム組成物に配合された中空粒子は膨張するが、表面近傍に存在するものの中には膨張して破裂や変形して表面に凹部を形成するものが含まれ、その凹部が小孔16を構成することとなる。従って、ゴム表層を研磨等して中空粒子の一部を切除することなく、ゴム表面に小孔16を形成することができる。勿論、ゴム表層を研磨等して中空粒子の一部を切除することによりゴム表面に小孔16を形成してもよい。なお、中空粒子によって形成された小孔16の内壁には中空粒子の殻(シェル)が付着する場合がある。
 押出成形時のスクリュー22の回転数及び成形体の時間当たりの吐出量は特に限定されない。
 ところで、短繊維が配合された未架橋ゴム組成物を押出成形する場合、短繊維の配向が不十分となるため、得られた未架橋ゴムシートを用いても実使用に耐え得るVリブドベルトを製造することは困難である。そのため、実際には、短繊維が配合された未架橋ゴム組成物を混練し、次いで、それをカレンダで圧延して短繊維が長さ方向に配向した未架橋ゴムシートに成形し、続いて、その未架橋ゴムシートを一定長さ毎に長さ方向に対して直交する方向に切断してゴム片を形成し、そして、それらのゴム片の側辺同士をジョイントすることにより、短繊維が幅方向に配向したVリブを形成するための未架橋ゴムシートを作製している。
 しかしながら、実施形態1に係るVリブドベルトBの製造方法によれば、以上のように、圧縮ゴム層用の未架橋ゴムシート11’を、短繊維が配合されておらず、その代わりに中空粒子及び発泡剤のうち少なくとも一方が配合された未架橋ゴム組成物を用い、しかも押出成形により作製するので、高価な短繊維を使用せず、また、その配向制御を行う必要もなく、従って、低コストで且つ少ない工程でVリブドベルトBを製造することができる。
 -接着ゴム層用及び背面ゴム層用の未架橋ゴムシート12’,13’-
 接着ゴム層用の未架橋ゴムシート12’は、原料ゴム及び配合剤をニーダー、バンバリーミキサー等の混練機に投入して混練し、得られた未架橋ゴム組成物をカレンダ等を用いてシート状に成形して作製する。背面ゴム層用の未架橋ゴムシート13’も同様にして作製する。なお、接着ゴム層用及び背面ゴム層用の未架橋ゴムシート12’,13’は、圧縮ゴム層用の未架橋ゴムシート11’と同様に押出成形で作製してもよい。
 接着ゴム層用及び背面ゴム層用の未架橋ゴムシート12’,13’の原料ゴムとしては、例えば、エチレン-α-オレフィンエラストマー、クロロプレンゴム(CR)、クロロスルホン化ポリエチレンゴム(CSM)、水素添加アクリロニトリルゴム(H-NBR)等が挙げられる。接着ゴム層用及び背面ゴム層用の未架橋ゴムシート12’,13’は圧縮ゴム層用の未架橋ゴムシート11’の原料ゴムと同一であることが好ましい。
 配合剤としては、圧縮ゴム層用の未架橋ゴムシート11’と同様のものが挙げられる。但し、接着ゴム層用の未架橋ゴムシート12’の配合剤には中空粒子及び発泡剤が含まれていないことが好ましい。
 圧縮ゴム層用、接着ゴム層用、及び背面ゴム層用の未架橋ゴムシート11’,12’,13’は、別配合のゴム組成物で構成されていてもよく、また、同じ配合のゴム組成物で構成されていてもよい。
 -心線用の撚り糸14’-
 心線用の撚り糸14’には、RFL水溶液に浸漬して加熱する接着処理を行った後、ゴム糊に浸漬して加熱乾燥する接着処理を行う。
 心線用の撚り糸14’の構成繊維としては、例えば、ポリエステル繊維(PET)、ポリエチレンナフタレート繊維(PEN)、アラミド繊維、ビニロン繊維等が挙げられる。
 <材料セット工程>
 図10及び11はこの工程で用いるベルト加硫成形型30を示す。
 このベルト加硫成形型30は、同心状に設けられた、各々、円筒状の内型31及び外型32からなる。内型31は、ゴム等の可撓性材料で形成されている。外型32は、金属等の剛性材料で形成されている。外型32の内周面は成型面に構成されており、その外型32の内周面には、Vリブ形成溝33が軸方向に一定ピッチで設けられている。また、外型32には、水蒸気等の熱媒体や水等の冷媒体を流通させて温調する温調機構が設けられている。そして、このベルト加硫成形型30では、内型31を内部から加圧膨張させるための加圧手段が設けられている。
 ベルト成形のための材料セットとして、図12(a)及び(b)に示すように、まず、表面が平滑な円筒ドラム34上にゴムスリーブ35を被せる。なお、ゴムスリーブ35の外周面は成型面に構成されており、その外周面には、織布の布目形成模様等が設けられている。
 次いで、その上に、背面ゴム層用の未架橋ゴムシート13’、及び接着ゴム層用の未架橋ゴムシート12’を順に巻き付けて積層し、その上から心線用の撚り糸14’を円筒状のゴムスリーブ35に対して螺旋状に巻き付け、さらにその上から接着ゴム層用の未架橋ゴムシート12’を順に巻き付ける。
 そして、その上から圧縮ゴム層用の未架橋ゴムシート11’を設けて積層体10’を形成する。このとき、図4に示すようなVリブ形成部15’が形成されていない平板状の圧縮ゴム層用の未架橋ゴムシート11’を用いる場合には、図12(a)に示すように、接着ゴム層用の未架橋ゴムシート12’の上から圧縮ゴム層用の未架橋ゴムシート11’を巻き付け、その両端を突き合わせジョイント又はラップジョイント等により接合する。また、図6に示すような一方の面に複数のVリブ形成部15’が並列するように形成された圧縮ゴム層用の未架橋ゴムシート11’を用いる場合には、図12(b)に示すように、接着ゴム層用の未架橋ゴムシート12’の上から圧縮ゴム層用の未架橋ゴムシート11’を、Vリブ形成部15’が周方向に延びるように巻き付け、その両端を突き合わせジョイント又はラップジョイント等により接合する。図8に示すような筒状の圧縮ゴム層用の未架橋ゴムシート11’を用いる場合には、接着ゴム層用の未架橋ゴムシート12’の上から筒状の圧縮ゴム層用の未架橋ゴムシート11’を被せる。なお、この場合、形態は図12(a)と同様になる。
 <加硫成形・仕上げ工程>
 各材料をセットして形成した積層体10’を設けたゴムスリーブ35を円筒ドラム34から外し、それを外型32の内周面側に内嵌め状態にセットする。このとき、図4及び図8に示すようなVリブ形成部15’が形成されていない圧縮ゴム層用の未架橋ゴムシート11’を用いる場合には、図13(a)に示すように、積層体10’の最外層の圧縮ゴム層用の未架橋ゴムシート11’を、ベルト加硫成形型30における外型32の内周面の成形面に、未架橋ゴムシート11’にVリブ形成溝33の開口端部が接触するように当接させる。図6に示すようなVリブ形成部15’が形成された圧縮ゴム層用の未架橋ゴムシート11’を用いる場合には、図13(b)に示すように、積層体10’の最外層の圧縮ゴム層用の未架橋ゴムシート11’を、ベルト加硫成形型30における外型32の内周面の成形面に、Vリブ形成部15’をVリブ形成溝33に嵌め入れるように当接させる。
 次いで、図14(a)及び(b)に示すように、内型31を外型32にセットされたゴムスリーブ35内に位置付けて密閉する。なお、図14(a)及び(b)はそれぞれ図13(a)及び(b)に対応する。
 続いて、外型32を加熱すると共に、内型31の密封された内部に高圧空気等を注入して加圧する。このとき、図15に示すように、内型31が膨張することにより、外型32の成型面に、積層体10’を構成する未架橋ゴムシート11’,12’,13’が圧接され、加熱及び加圧によりそれらの架橋が進行して一体化すると共に撚り糸14’と複合化し、最終的に、外周面に周方向に延びるVリブ15が形成された円筒状のベルトスラブSが加硫成形される(Vリブ形成ステップ)。このベルトスラブSの加硫成形温度は例えば100~180℃、加硫成形圧力は例えば0.5~2.0MPa、加硫成形時間は例えば10~60分である。
 そして、内型31の内部を減圧して密閉を解き、内型31と外型32との間でゴムスリーブ35を介して加硫成形されたベルトスラブSを取り出し、それを所定幅に輪切りして表裏を裏返すことによりVリブドベルトBが得られる。
 なお、必要に応じて形成されたVリブ15の表面を研削してもよいが、実施形態1に係るVリブドベルトBの場合、Vリブ15の表面から短繊維を突出させる必要はないので、かかる研削は基本的に不要である。従って、短繊維配合ゴム組成物で形成されたVリブを研削する従来のVリブドベルトの製造方法に比べ、研削工程が不要であることから工程の簡略化を図ることができ、また、研削のための設備が不要であり、さらに、研削により廃棄することによる材料ロスを防止することができる。
 [実施形態2]
 (VリブドベルトB)
 図16は実施形態2に係るVリブドベルトBを示す。なお、実施形態1と同一名称の部分は実施形態1と同一符号で示す。
 実施形態2に係るVリブドベルトBでは、圧縮ゴム層11は、プーリ接触表面全体に沿うように層状に形成された表面ゴム層11aとその内側の内部ゴム層11bとの2層構造を有する。表面ゴム層11aは、実施形態1に係るVリブドベルトBの圧縮ゴム層11と同様の構成のゴム組成物で形成されており、それによってVリブ15の内部には多数の空孔が形成されると共に表面には多数の小孔16が形成されている。空孔及び小孔16の密度は、表面ゴム層11aの内部側よりも表面側の方が高いことが好ましい。内部ゴム層11bは、中空粒子及び発泡剤のいずれもが配合されていないことを除いて表面ゴム層11aと同様の構成のゴム組成物で形成されている。表面ゴム層11aの厚さは例えば0.3~0.6mm、及び内部ゴム層11bの厚さは例えば1.6~2.0mmである。
 その他の構成は実施形態1と同一である。
 (VリブドベルトBの製造方法)
 実施形態2に係るVリブドベルトBの製造方法では、圧縮ゴム層用の未架橋ゴムシート11’の押出成形において、図17に示すように、中空粒子及び発泡剤のうち少なくとも一方が配合された第1の未架橋ゴム組成物R1及び中空粒子及び発泡剤のいずれもが配合されていない第2の未架橋ゴム組成物R2の2種類の未加硫ゴム組成物をそれぞれシリンダ23内で混練し、それらをダイ24内において積層する。
 そして、押出成形される未架橋ゴムシート11’は、第1の未架橋ゴム組成物R1で形成された第1層11a’とそれに積層されるように設けられた第2の未架橋ゴム組成物R2で形成された第2層11b’との2層構造を有することとなる。具体的には、Vリブ形成部15’が形成されていない平板状の未架橋ゴムシート11’の場合、図18(a)に示すように、ベルト加硫成形型30に当接させる側の表面層を第1層11a’で構成し、他方側の層を第2層11b’で構成する。Vリブ形成部15’が形成された平板状の未架橋ゴムシート11’の場合、図18(b)に示すように、ベルト加硫成形型30に当接させるVリブ形成部15’が形成された側の層を第1層11a’で構成し、他方側の層を第2層11b’で構成する。Vリブ形成部15’が形成されていない筒状の未架橋ゴムシート11’の場合、図18(c)に示すように、ベルト加硫成形型30に当接させる側の外側表面層を第1層11a’で構成し、内側層を第2層11b’で構成する。第1層11a’の厚さは例えば0.05~1mmであり、第2層11b’の厚さは例えば2~3mmである。
 その他の構成、作用効果は実施形態1と同一である。
 [その他の実施形態]
 上記実施形態1及び2では、圧縮ゴム層11、接着ゴム層12、及び背面ゴム層13によりベルト本体10が構成されたものとしたが、特にこれに限定されるものではなく、圧縮ゴム層11及び接着ゴム層12によりベルト本体10が構成され、背面ゴム層13の代わりに、例えば、綿、ポリアミド繊維、ポリエステル繊維、アラミド繊維等の糸で形成された織布、編物、不織布等で構成された補強布が設けられたものであってもよい。
 上記実施形態1及び2では、ベルト加硫成形型30を用いて加硫成形を行う構成としたが、特にこれに限定されるものではなく、積層体10’をロートキュアにより連続して加硫成形を行ってもよい。
 本発明は、Vリブドベルトの製造方法について有用である。
B Vリブドベルト
R1 第1の未架橋ゴム組成物
R2 第2の未架橋ゴム組成物
S ベルトスラブ
10 ベルト本体
10’ 積層体
11 圧縮ゴム層
11’,12’,13’ 未架橋ゴムシート
11a 表面ゴム層
11a’ 第1層
11b 内部ゴム層
11b’ 第2層
12 接着ゴム層
13 背面ゴム層
14 心線
14’ 撚り糸
15 Vリブ
15’ Vリブ形成部
16 小孔
20 押出機
21 ホッパー
22 スクリュー
23 シリンダ
24 ダイ
24a 吐出口
30 ベルト加硫成形型
31 内型
32 外型
33 Vリブ形成溝
34 円筒ドラム
35 ゴムスリーブ

Claims (15)

  1.  各々、ベルト長さ方向に延び且つ表面に多数の小孔が形成された複数のVリブがベルト幅方向に並列するように設けられたVリブドベルトの製造方法であって、
     短繊維が配合されていない未架橋ゴム組成物を押出機で押出成形することによりVリブ形成用の未架橋ゴムシートを作製するゴムシート作製ステップを備え、
     上記ゴムシート作製ステップでは、未架橋ゴムシートにおける少なくともVリブを形成する側の表面層を、Vリブの表面に小孔を形成するための中空粒子及び発泡剤のうち少なくとも一方が配合された未架橋ゴム組成物で形成するVリブドベルトの製造方法。
  2.  請求項1に記載されたVリブドベルトの製造方法において、
     上記ゴムシート作製ステップでは、上記押出機に、Vリブ形状が形成された吐出口を有するダイを設けることにより、該押出機で押出成形する未架橋ゴムシートに複数のVリブ形成部を並列するように形成するVリブドベルトの製造方法。
  3.  請求項2に記載されたVリブドベルトの製造方法において、
     上記ゴムシート作製ステップでは、上記押出機に、細長のスリット状であって、その一方の長辺に沿ってVリブ形状の溝が連設されて形成された吐出口を有するダイを設けることにより、該押出機で、押出方向に延びる複数のVリブ形成部が並列するように形成された平板状の未架橋ゴムシートを押出成形するVリブドベルトの製造方法。
  4.  請求項2に記載されたVリブドベルトの製造方法において、
     上記ゴムシート作製ステップでは、上記押出機に、円周形状であって、その内周に沿ってVリブ形状の溝が連設して形成された吐出口を有するダイを設けることにより、該押出機で、内周面に押出方向に延びる複数のVリブ形成部が並列するように形成された筒状の未架橋ゴムシートを押出成形し、それを長さ方向に切断して平板状に形成するVリブドベルトの製造方法。
  5.  請求項2に記載されたVリブドベルトの製造方法において、
     上記ゴムシート作製ステップでは、上記押出機に、円周形状であって、その外周に沿ってVリブ形状の溝が連設して形成された吐出口を有するダイを設けることにより、該押出機で、外周面に押出方向に延びる複数のVリブ形成部が並列するように形成された筒状の未架橋ゴムシートを押出成形し、それを長さ方向に切断して平板状に形成するVリブドベルトの製造方法。
  6.  請求項2乃至5のいずれかに記載されたVリブドベルトの製造方法において、
     上記ゴムシート作製ステップで作製した複数のVリブ形成部が形成された平板状の未架橋ゴムシートを、成形型におけるVリブ形成溝が形成された成形面に、Vリブ形成部をVリブ形成溝に嵌め入れるように当接させると共に加熱及び加圧して架橋させることによりVリブを形成するVリブ形成ステップをさらに備えたVリブドベルトの製造方法。
  7.  請求項1に記載されたVリブドベルトの製造方法において、
     上記ゴムシート作製ステップでは、上記押出機に、細長矩形のスリット状に形成された吐出口を有するダイを設けることにより、該押出機で、平板状の未架橋ゴムシートを押出成形するVリブドベルトの製造方法。
  8.  請求項1に記載されたVリブドベルトの製造方法において、
     上記ゴムシート作製ステップでは、上記押出機に、円周形状に形成された吐出口を有するダイを設けることにより、該押出機で、筒状の未架橋ゴムシートを押出成形し、それを長さ方向に切断して平板状に形成するVリブドベルトの製造方法。
  9.  請求項7又は8に記載されたVリブドベルトの製造方法において、
     上記ゴムシート作製ステップで作製した平板状の未架橋ゴムシートを、成形型におけるVリブ形成溝が形成された成形面に当接させると共に加熱及び加圧して架橋させることによりVリブを形成するVリブ形成ステップをさらに備えたVリブドベルトの製造方法。
  10.  請求項1に記載されたVリブドベルトの製造方法において、
     上記ゴムシート作製ステップでは、上記押出機に、円周形状に形成された吐出口を有するダイを設けることにより、該押出機で、筒状の未架橋ゴムシートを押出成形し、
     上記ゴムシート作製ステップで作製した筒状の未架橋ゴムシートを、筒状のゴムスリーブに被せて、成形型におけるVリブ形成溝が形成された成形面に当接させると共に加熱及び加圧して架橋させることによりVリブを形成するVリブ形成ステップをさらに備えたVリブドベルトの製造方法。
  11.  請求項1乃至10のいずれかに記載されたVリブドベルトの製造方法において、
     上記ゴムシート作製ステップでは、上記押出機で押出成形する未架橋ゴムシートを、Vリブを形成する側の表面層を構成し且つ中空粒子及び発泡剤のうち少なくとも一方が配合された未架橋ゴム組成物で形成された第1層と、該第1層に積層されるように設けられ且つ中空粒子及び発泡剤のいずれもが配合されていない未架橋ゴム組成物で形成された第2層と、を有するように形成するVリブドベルトの製造方法。
  12.  請求項1乃至11のいずれかに記載されたVリブドベルトの製造方法において、
     上記ゴムシート作製ステップでは、上記押出機における加工温度を、中空粒子の膨張開始温度及び/又は発泡剤の発泡開始温度よりも低く設定するVリブドベルトの製造方法。
  13.  請求項12に記載されたVリブドベルトの製造方法において、
     上記ゴムシート作製ステップにおける押出成形後で且つVリブ形成前の未架橋ゴムシートを、中空粒子の膨張開始温度及び/又は発泡剤の発泡開始温度以上で且つVリブ形成時の温度よりも低い温度で表面を予備加熱し、それによって中空粒子を膨張させ及び/又は発泡剤を発泡させるVリブドベルトの製造方法。
  14.  請求項12又は13に記載されたVリブドベルトの製造方法において、
     上記ゴムシート作製ステップにおける押出成形後で且つVリブ形成前の未架橋ゴムシートの表面に中空粒子及び/又は発泡剤を散布又は塗布し、Vリブ形成時の加熱によって中空粒子を膨張させ及び/又は発泡剤を発泡させるVリブドベルトの製造方法。
  15.  請求項6、9、又は10に記載されたVリブドベルトの製造方法において、
     上記Vリブ形成ステップの後、形成されたVリブの表面を研削するステップを有さないVリブドベルトの製造方法。
PCT/JP2012/002393 2011-06-17 2012-04-05 Vリブドベルトの製造方法 WO2012172717A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201280027924.XA CN103596749B (zh) 2011-06-17 2012-04-05 多楔带的制造方法
JP2012547377A JP5156881B2 (ja) 2011-06-17 2012-04-05 Vリブドベルトの製造方法
EP12799846.6A EP2722161B1 (en) 2011-06-17 2012-04-05 Method for manufacturing a v-ribbed belt
KR1020147000540A KR101422450B1 (ko) 2011-06-17 2012-04-05 V 리브드 벨트의 제조방법
US14/108,788 US20140103562A1 (en) 2011-06-17 2013-12-17 Fabrication method of v-ribbed belt

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-135515 2011-06-17
JP2011135515 2011-06-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/108,788 Continuation US20140103562A1 (en) 2011-06-17 2013-12-17 Fabrication method of v-ribbed belt

Publications (1)

Publication Number Publication Date
WO2012172717A1 true WO2012172717A1 (ja) 2012-12-20

Family

ID=47356738

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/002393 WO2012172717A1 (ja) 2011-06-17 2012-04-05 Vリブドベルトの製造方法

Country Status (6)

Country Link
US (1) US20140103562A1 (ja)
EP (1) EP2722161B1 (ja)
JP (1) JP5156881B2 (ja)
KR (1) KR101422450B1 (ja)
CN (1) CN103596749B (ja)
WO (1) WO2012172717A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016031112A1 (ja) * 2014-08-26 2016-03-03 バンドー化学株式会社 伝動ベルト及びその製造方法
JP6159907B1 (ja) * 2016-03-30 2017-07-05 バンドー化学株式会社 ベルトの製造方法及び二層貼合せ機
WO2017163763A1 (ja) * 2016-03-23 2017-09-28 バンドー化学株式会社 ローエッジvベルトの製造方法
WO2017169361A1 (ja) * 2016-03-30 2017-10-05 バンドー化学株式会社 Vリブドベルトの製造方法
WO2017168920A1 (ja) * 2016-03-30 2017-10-05 バンドー化学株式会社 ベルトの製造方法、それに使用する円筒金型及び架橋装置
WO2017168919A1 (ja) * 2016-03-30 2017-10-05 バンドー化学株式会社 ベルトの製造方法及び二層貼合せ機
US10309487B2 (en) 2016-03-28 2019-06-04 Bando Chemical Industries, Ltd. Friction transmission belt
US10323717B2 (en) 2016-03-28 2019-06-18 Bando Chemical Industries, Ltd. Friction transmission belt
JP2019147376A (ja) * 2018-02-27 2019-09-05 三ツ星ベルト株式会社 歯付ベルトの製造方法、及び、歯付ベルトの製造装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015194116A1 (ja) * 2014-06-18 2017-04-20 バンドー化学株式会社 伝動ベルト
CN104895297A (zh) * 2015-05-29 2015-09-09 安徽同丰橡塑工业有限公司 一种抗菌防静电防腐蚀橡胶地板
WO2017163764A1 (ja) * 2016-03-23 2017-09-28 バンドー化学株式会社 Vベルトの製造方法
WO2017169360A1 (ja) * 2016-03-30 2017-10-05 バンドー化学株式会社 Vリブドベルトの製造方法
WO2017169412A1 (ja) * 2016-03-30 2017-10-05 バンドー化学株式会社 伝動ベルトの製造方法
DE102017123722B4 (de) * 2017-10-12 2020-05-28 Arntz Beteiligungs Gmbh & Co. Kg Wenigstens dreischichtiger Kraftübertragungsriemen mit geschäumter Pufferschicht und Verfahren zur Herstellung eines solchen Kraftübertragungsriemens
DE102018116084A1 (de) * 2018-07-03 2020-01-09 Arntz Beteiligungs Gmbh & Co. Kg Verfahren zur Herstellung eines Keilrippenriemens mit Rippenbeschichtung
CN109260692A (zh) * 2018-09-06 2019-01-25 安徽微威胶件集团有限公司 一种跑步机用减震垫及其制备方法
KR102587742B1 (ko) * 2023-01-05 2023-10-25 주식회사 코어텍 전단키를 구비한 섬유보강플라스틱튜브로 보강한 원심성형콘크리트 말뚝의 제작방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54150540A (en) * 1978-05-18 1979-11-26 Mitsuboshi Belting Ltd Serrated transmission belt and method of producing same
JPH0874936A (ja) 1994-09-07 1996-03-19 Bando Chem Ind Ltd Vリブドベルト及びその製造方法
JP2004216857A (ja) 2002-11-19 2004-08-05 Mitsuboshi Belting Ltd 伝動ベルトの製造方法とその方法で得られた伝動ベルト
JP2007255635A (ja) * 2006-03-24 2007-10-04 Mitsuboshi Belting Ltd 摩擦伝動ベルト
WO2009101799A1 (ja) * 2008-02-13 2009-08-20 Bando Chemical Industries, Ltd. 摩擦伝動ベルト

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2607713A (en) * 1950-02-25 1952-08-19 Dayton Rubber Company Method of making v belts
US3607502A (en) * 1969-02-27 1971-09-21 Owens Corning Fiberglass Corp Industrial belt construction and method of manufacturing same
US3879505A (en) * 1969-10-22 1975-04-22 Ugine Kuhlmann Extrusion of foamable plastic materials
US5283927A (en) * 1991-05-31 1994-02-08 Jmk International, Inc. Silicon rubber wiper blade with low coefficient of friction
JP2002362720A (ja) * 2001-05-29 2002-12-18 Habasit Ag モジュール式コンベヤベルトおよびモジュール式コンベヤベルトの製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54150540A (en) * 1978-05-18 1979-11-26 Mitsuboshi Belting Ltd Serrated transmission belt and method of producing same
JPH0874936A (ja) 1994-09-07 1996-03-19 Bando Chem Ind Ltd Vリブドベルト及びその製造方法
JP2004216857A (ja) 2002-11-19 2004-08-05 Mitsuboshi Belting Ltd 伝動ベルトの製造方法とその方法で得られた伝動ベルト
JP2007255635A (ja) * 2006-03-24 2007-10-04 Mitsuboshi Belting Ltd 摩擦伝動ベルト
WO2009101799A1 (ja) * 2008-02-13 2009-08-20 Bando Chemical Industries, Ltd. 摩擦伝動ベルト

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2722161A4

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016031112A1 (ja) * 2014-08-26 2017-06-08 バンドー化学株式会社 伝動ベルト及びその製造方法
WO2016031112A1 (ja) * 2014-08-26 2016-03-03 バンドー化学株式会社 伝動ベルト及びその製造方法
JP6227842B1 (ja) * 2016-03-23 2017-11-08 バンドー化学株式会社 ローエッジvベルトの製造方法
US10538042B2 (en) 2016-03-23 2020-01-21 Bando Chemical Industries, Ltd. Manufacturing method for raw edge V-belt
WO2017163763A1 (ja) * 2016-03-23 2017-09-28 バンドー化学株式会社 ローエッジvベルトの製造方法
US10323717B2 (en) 2016-03-28 2019-06-18 Bando Chemical Industries, Ltd. Friction transmission belt
US10309487B2 (en) 2016-03-28 2019-06-04 Bando Chemical Industries, Ltd. Friction transmission belt
CN108700159A (zh) * 2016-03-30 2018-10-23 阪东化学株式会社 带的制造方法及双层贴合机
JP6214838B1 (ja) * 2016-03-30 2017-10-18 バンドー化学株式会社 ベルトの製造方法、それに使用する円筒金型及び架橋装置
JP6246420B1 (ja) * 2016-03-30 2017-12-13 バンドー化学株式会社 Vリブドベルトの製造方法
WO2017168919A1 (ja) * 2016-03-30 2017-10-05 バンドー化学株式会社 ベルトの製造方法及び二層貼合せ機
WO2017168920A1 (ja) * 2016-03-30 2017-10-05 バンドー化学株式会社 ベルトの製造方法、それに使用する円筒金型及び架橋装置
WO2017169361A1 (ja) * 2016-03-30 2017-10-05 バンドー化学株式会社 Vリブドベルトの製造方法
US10343358B2 (en) 2016-03-30 2019-07-09 Bando Chemical Industries, Ltd. Method for producing belt, and two-layer bonding machine
US10391680B2 (en) 2016-03-30 2019-08-27 Bando Chemical Industries, Ltd. Method for producing belt, and cylindrical mold and crosslinking apparatus used therefor
CN108700159B (zh) * 2016-03-30 2019-08-27 阪东化学株式会社 带的制造方法及双层贴合机
JP6159907B1 (ja) * 2016-03-30 2017-07-05 バンドー化学株式会社 ベルトの製造方法及び二層貼合せ機
US10538044B2 (en) 2016-03-30 2020-01-21 Bando Chemical Industries, Ltd. Method for producing V-ribbed belt
JP2019147376A (ja) * 2018-02-27 2019-09-05 三ツ星ベルト株式会社 歯付ベルトの製造方法、及び、歯付ベルトの製造装置
JP7115996B2 (ja) 2018-02-27 2022-08-09 三ツ星ベルト株式会社 歯付ベルトの製造方法、及び、歯付ベルトの製造装置

Also Published As

Publication number Publication date
JP5156881B2 (ja) 2013-03-06
CN103596749A (zh) 2014-02-19
KR20140019472A (ko) 2014-02-14
JPWO2012172717A1 (ja) 2015-02-23
US20140103562A1 (en) 2014-04-17
EP2722161A4 (en) 2014-11-12
EP2722161B1 (en) 2015-06-17
KR101422450B1 (ko) 2014-07-30
CN103596749B (zh) 2014-11-05
EP2722161A1 (en) 2014-04-23

Similar Documents

Publication Publication Date Title
JP5156881B2 (ja) Vリブドベルトの製造方法
US9341234B2 (en) Friction drive belt
JP5829614B2 (ja) 摩擦伝動ベルト
JP5309275B1 (ja) 摩擦伝動ベルト及びその製造方法
JP5586282B2 (ja) 摩擦伝動ベルト及びその製造方法、並びにそれを用いたベルト伝動装置
JP6088985B2 (ja) 摩擦伝動ベルト及びその製造方法、並びにベルト伝動装置
WO2017094213A1 (ja) Vリブドベルト
JP4299110B2 (ja) 伝動ベルトの製造方法
JP6007353B2 (ja) Vリブドベルト及びその製造方法、並びにベルト伝動装置
JPWO2017168914A1 (ja) 摩擦伝動ベルト
JP2004174772A (ja) 伝動ベルトの製造方法
JP4188172B2 (ja) 伝動ベルト用二層ゴムシートの製造方法
WO2016031112A1 (ja) 伝動ベルト及びその製造方法
JP2004216857A (ja) 伝動ベルトの製造方法とその方法で得られた伝動ベルト
JP2004160660A (ja) 伝動ベルトの製造方法
JP2003136610A (ja) 伝動ベルトの製造方法
JP2004188596A (ja) 伝動ベルトの製造方法
JP2003145637A (ja) 伝動ベルトの製造方法
JP2017106515A (ja) 摩擦伝動ベルト

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012547377

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12799846

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012799846

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147000540

Country of ref document: KR

Kind code of ref document: A