WO2012169545A1 - ノンアスベスト摩擦材組成物 - Google Patents

ノンアスベスト摩擦材組成物 Download PDF

Info

Publication number
WO2012169545A1
WO2012169545A1 PCT/JP2012/064587 JP2012064587W WO2012169545A1 WO 2012169545 A1 WO2012169545 A1 WO 2012169545A1 JP 2012064587 W JP2012064587 W JP 2012064587W WO 2012169545 A1 WO2012169545 A1 WO 2012169545A1
Authority
WO
WIPO (PCT)
Prior art keywords
friction material
material composition
mass
copper
titanate
Prior art date
Application number
PCT/JP2012/064587
Other languages
English (en)
French (fr)
Inventor
光朗 海野
真理 光本
一也 馬場
高史 菊留
Original Assignee
日立化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011127571A external-priority patent/JP5895366B2/ja
Priority claimed from JP2011127574A external-priority patent/JP5895367B2/ja
Application filed by 日立化成工業株式会社 filed Critical 日立化成工業株式会社
Priority to US14/124,382 priority Critical patent/US9470283B2/en
Publication of WO2012169545A1 publication Critical patent/WO2012169545A1/ja
Priority to US15/161,308 priority patent/US10316918B2/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D69/00Friction linings; Attachment thereof; Selection of coacting friction substances or surfaces
    • F16D69/02Composition of linings ; Methods of manufacturing
    • F16D69/025Compositions based on an organic binder
    • F16D69/026Compositions based on an organic binder containing fibres
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2200/00Materials; Production methods therefor
    • F16D2200/0004Materials; Production methods therefor metallic
    • F16D2200/0026Non-ferro
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2200/00Materials; Production methods therefor
    • F16D2200/006Materials; Production methods therefor containing fibres or particles
    • F16D2200/0069Materials; Production methods therefor containing fibres or particles being characterised by their size
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2200/00Materials; Production methods therefor
    • F16D2200/006Materials; Production methods therefor containing fibres or particles
    • F16D2200/0073Materials; Production methods therefor containing fibres or particles having lubricating properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2200/00Materials; Production methods therefor
    • F16D2200/0082Production methods therefor
    • F16D2200/0086Moulding materials together by application of heat and pressure

Definitions

  • the present invention relates to a non-asbestos friction material composition, a friction material using the same, and a friction member. Specifically, it is suitable for friction materials such as disc brake pads and brake linings used for braking in automobiles, etc., and has a low copper content, so it is environmentally friendly, has excellent wear resistance at high temperatures, and generates metal catches.
  • the present invention relates to a small amount of non-asbestos friction material composition, and further relates to a friction material and a friction member using the non-asbestos friction material composition.
  • friction materials such as disc brake pads and brake linings are used for braking.
  • the friction material plays a role of braking by friction with facing materials such as a disk rotor and a brake drum. Therefore, the friction material is required not only to have a high coefficient of friction and stability of the coefficient of friction, but also to have a long pad life in a wide brake operating temperature range from a low temperature to a high temperature, that is, wear resistance.
  • the friction material includes a binder, a fiber base material, an inorganic filler, an organic filler, and the like, and in general, a combination of one or two or more of them in order to develop the above characteristics. included.
  • Organic fibers, metal fibers, inorganic fibers, and the like are used as the fiber base material, and copper and copper alloy fibers are used as the metal fibers in order to improve wear resistance.
  • non-asbestos friction material has become the mainstream, and copper, copper alloy, and the like are used in a large amount for this non-asbestos friction material.
  • the present invention provides a non-asbestos friction material composition that can provide a friction material that is excellent in wear resistance at high temperatures and generates little metal catch even when the content of copper and copper alloy is small. It aims at providing the friction material and friction member using a non-asbestos friction material composition.
  • the present inventors have determined that the content of copper as an element is not more than a certain level in a non-asbestos friction material composition, the content of metal fibers other than copper and copper alloys is not more than a certain level, and titanium It has been found that the above-mentioned problems can be solved by containing a specific amount of an acid salt and further containing antimony trisulfide or zinc powder, and the present invention has been completed. That is, the present invention is as follows.
  • a friction material composition comprising a binder, an organic filler, an inorganic filler, and a fiber base material, wherein the copper content in the friction material composition is 5% by mass or less as a copper element, and copper and a copper alloy
  • a non-asbestos friction material composition having a metal fiber content other than 0.5% by mass or less, containing titanate and antimony trisulfide, and having a titanate content of 10 to 35% by mass.
  • a friction material composition comprising a binder, an organic filler, an inorganic filler, and a fiber base material, wherein the copper content in the friction material composition is 5% by mass or less as a copper element, and copper and a copper alloy
  • the non-asbestos friction material composition according to 1 or 2 wherein the titanate has a flake shape, a plate shape, or a column shape. 4). 4. The non-asbestos friction material composition according to any one of 1 to 3, wherein the titanate is lithium potassium titanate or magnesium potassium titanate. 5.
  • the non-asbestos friction material composition of the present invention is environmentally friendly because it has less copper in the wear powder produced during braking when used in friction materials such as automotive disc brake pads and brake linings. It is excellent in wear and can suppress the generation of metal catch. Moreover, the friction material and friction member which have the said characteristic can be provided by using the non-asbestos friction material composition of this invention.
  • Non-asbestos friction material composition 1st form of this invention is a friction material composition containing a binder, an organic filler, an inorganic filler, and a fiber base material, Comprising: Content of copper in this friction material composition is 5 mass% as a copper element The content of metal fibers other than copper and copper alloy is 0.5% by mass or less, contains titanate and antimony trisulfide, and the titanate content is 10 to 35% by mass.
  • the present invention relates to a non-asbestos friction material composition.
  • the second aspect of the present invention is a friction material composition including a binder, an organic filler, an inorganic filler, and a fiber base material, wherein the content of copper in the friction material composition is 5 as a copper element.
  • the content of metal fibers other than copper and copper alloy is 0.5% by mass or less, contains titanate and zinc powder, and the content of titanate is 10 to 35% by mass. It is related with the non-asbestos friction material composition characterized by being. Due to the above configuration, the copper in the wear powder generated during braking is less than that of conventional products, so it is environmentally friendly, has excellent wear resistance at high temperatures, and can produce metal catches. it can.
  • the binding material integrates the organic filler, the inorganic filler, the fiber base, and the like contained in the friction material composition to give strength.
  • the thermosetting resin used as a binder of a friction material can be used.
  • the thermosetting resin include phenol resins; various elastomer-dispersed phenol resins such as acrylic elastomer-dispersed phenol resins and silicone elastomer-dispersed phenol resins; acrylic-modified phenol resins, silicone-modified phenol resins, cashew-modified phenol resins, and epoxy-modified phenols.
  • modified phenol resins such as resins and alkylbenzene-modified phenol resins can be used, and these can be used alone or in combination of two or more.
  • a phenol resin an acrylic-modified phenol resin, a silicone-modified phenol resin, or an alkylbenzene-modified phenol resin because good heat resistance, moldability, and friction coefficient are given.
  • the content of the binder is preferably 5 to 20% by mass, and more preferably 5 to 10% by mass.
  • the binder content is preferably 5 to 20% by mass, and more preferably 5 to 10% by mass.
  • the organic filler is included as a friction modifier for improving the sound vibration performance and wear resistance of the friction material.
  • the organic filler contained in the non-asbestos friction material composition of the present invention is not particularly limited as long as it can exhibit the above performance, and usually uses cashew dust, a rubber component, etc., used as an organic filler. Can do.
  • the cashew dust is not particularly limited as long as it is obtained by pulverizing a hardened cashew nut shell oil and is usually used for a friction material.
  • the rubber component examples include tire rubber, acrylic rubber, isoprene rubber, NBR (nitrile butadiene rubber), SBR (styrene butadiene rubber) and the like, and these are used alone or in combination of two or more.
  • cashew dust and a rubber component may be used in combination, or cashew dust coated with a rubber component may be used, but from the viewpoint of sound vibration performance, it is preferable to use cashew dust and a rubber component in combination. .
  • the content of the organic filler in the non-asbestos friction material composition of the present invention is preferably 1 to 20% by mass, more preferably 1 to 10% by mass, and 3 to 8% by mass. More preferably.
  • the content of the organic filler is preferably 1 to 20% by mass, more preferably 1 to 10% by mass, and 3 to 8% by mass. More preferably.
  • the content of the organic filler is preferably in a mass ratio of 2: 1 to 10: 1, and preferably 3: 1 to 9: 1. More preferably, it is 3: 1 to 8: 1.
  • the non-asbestos friction material compositions of the first and second aspects of the present invention contain titanate as an inorganic filler for the purpose of improving wear resistance at high temperatures and suppressing metal catch formation.
  • titanate potassium titanate, lithium potassium titanate, magnesium potassium titanate, or the like can be used.
  • potassium titanate include K 2 O ⁇ 6TiO 2 and K 2 O ⁇ 8TiO 2 .
  • lithium potassium titanate include those having a composition represented by K 0.3-0.7 Li 0.27 Ti 1.73 O 3.8-3.95 produced by mixing a titanium source, a lithium source, and a potassium source.
  • the titanate magnesium potassium for example, those having a composition represented by K 0.2-0.7 Mg 0.4 Ti 1.6 O 3.7-3.95 prepared by mixing a titanium source and a magnesium source and potassium source. These can be used alone or in combination of two or more. Among these, lithium potassium titanate and magnesium potassium titanate are preferable because they further improve the wear resistance at high temperatures.
  • the shape of the titanate a fiber, a column, a plate, a particle or a scale can be used, and these can be used alone or in combination of two or more.
  • the shape of the titanate can be analyzed, for example, by observation with a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the longest side of the rectangular parallelepiped having the smallest volume is the major axis L
  • the next longest side is the minor axis B
  • the shortest side is the thickness T (B> T).
  • the shape of titanate is defined by the aspect ratio (L / T, L / B).
  • the fibrous titanate is a titanate having an L / T larger than 10 and an L / B larger than 10.
  • Tismo D Tismo N (both manufactured by Otsuka Chemical Co., Ltd.) and the like can be mentioned.
  • TOFIX-S manufactured by Toho Material Co., Ltd.
  • the plate-like titanate is a titanate having L / T larger than 10 and L / B smaller than 10.
  • TXAX-A, TXAX-MA, TXAX-KA, TXAX-CT all manufactured by Kubota Corporation
  • the particulate titanate is a titanate having an L / T smaller than 10 and an L / B smaller than 2.
  • TOFIX-SGL manufactured by Toho Material Co., Ltd.
  • GTX-C manufactured by Kubota Co., Ltd.
  • those having a thin plate shape such as a scale are called scaly titanates.
  • Terraces PS, Terraces PM, Terraces L, Terraces TF-S all are Otsuka Chemical Co., Ltd.
  • an average particle diameter is represented by a median diameter, and a median diameter means the 50% diameter calculated
  • the specific surface area can be determined by a BET method using nitrogen gas as an adsorption gas.
  • the content of titanate in the non-asbestos friction material composition of the present invention is 10 to 35% by mass and 13 to 24% by mass from the viewpoint of improving wear resistance at high temperatures and suppressing the formation of metal catches.
  • the content is 14 to 20% by mass.
  • the content of titanate is less than 10% by mass, the wear resistance tends to deteriorate and metal catches tend to be generated.
  • content exceeds 35 mass% there exists a tendency for abrasion resistance to deteriorate, a friction coefficient to fall, and also a metal catch to be easy to produce
  • the first form of the non-asbestos friction material composition of the present invention contains antimony trisulfide. Further, in the second embodiment of the present invention, it is possible to contain anti-trifluidized antimony as necessary. Any antimony trisulfide can be used without particular limitation as long as it is generally used as a friction modifier.
  • the content of antimony trisulfide in the non-asbestos friction material composition of the present invention is preferably 0.5 to 12% by mass, more preferably 1 to 10% by mass, and 1 to 6% by mass. Is more preferably 2 to 5% by mass. When the content of antimony trisulfide is preferably 0.5 to 12% by mass, more preferably 1 to 10% by mass, excellent wear resistance is exhibited, and formation of a metal catch can be avoided.
  • the non-asbestos friction material composition of the present invention can further contain an inorganic filler other than the titanate and antimony trisulfide.
  • the inorganic filler that can be contained is not particularly limited as long as it is normally used for a friction material.
  • the inorganic filler examples include tin sulfide, molybdenum disulfide, iron sulfide, bismuth sulfide, zinc sulfide, calcium hydroxide, calcium oxide, sodium carbonate, calcium carbonate, magnesium carbonate, barium sulfate, dolomite, coke, graphite,
  • Use active alumina such as mica, iron oxide, vermiculite, calcium sulfate, talc, clay, zeolite, zirconium silicate, zirconium oxide, mullite, chromite, titanium oxide, magnesium oxide, silica, iron oxide, ⁇ -alumina, etc.
  • graphite and barium sulfate from the viewpoint of reducing the aggressiveness to the facing material
  • zirconium oxide from the viewpoint of improving the friction coefficient.
  • the content of the inorganic filler in the non-asbestos friction material composition of the present invention is preferably 30 to 80% by mass, more preferably 40 to 80% by mass, and 60 to 80% by mass. Further preferred. When the content of the inorganic filler is in the range of 30 to 80% by mass, deterioration of heat resistance can be avoided. In addition, content of the said inorganic filler contains content of the said titanate and antimony trisulfide.
  • the fiber base material exhibits a reinforcing action in the friction material.
  • inorganic fibers, metal fibers, organic fibers, carbon fibers, etc. which are usually used as fiber base materials, can be used alone. Alternatively, two or more types can be used in combination.
  • the fibrous base material here does not include the above-described fibrous form of titanate.
  • a ceramic fiber, a biodegradable ceramic fiber, a mineral fiber, glass fiber, a silicate fiber etc. can be used, It can use 1 type or in combination of 2 or more types.
  • mineral fiber here is artificial inorganic fiber melt-spun mainly using blast furnace slag such as slag wool, basalt such as basalt fiber, and other natural rocks.
  • blast furnace slag such as slag wool
  • basalt such as basalt fiber
  • natural rocks natural minerals containing SiO 2 , Al 2 O 3 , CaO, MgO, FeO, Na 2 O, etc., or natural minerals containing one or more of these compounds can be used, More preferably, natural minerals containing Al element among these can be used as mineral fibers.
  • the average fiber length of the entire mineral fiber is preferably 500 ⁇ m or less, More preferably, it is 100 to 400 ⁇ m.
  • the average fiber length refers to a number average fiber length indicating an average value of the lengths of all corresponding fibers.
  • the average fiber length of 200 ⁇ m indicates that 50 mineral fibers used as a friction material composition raw material are randomly selected, the fiber length is measured with an optical microscope, and the average value is 200 ⁇ m.
  • the mineral fiber used in the present invention is preferably biosoluble from the viewpoint of human harm.
  • biosoluble mineral fiber refers to a mineral fiber having a characteristic that even if it is taken into the human body, it is partially decomposed and discharged outside the body in a short time.
  • the chemical composition is alkali oxide, alkaline earth oxide total amount (total amount of oxides of sodium, potassium, calcium, magnesium, barium) is 18% by mass or more, and in a short-term biopermanent test by respiration, A fiber that has a mass half-life of 20 ⁇ m or more within 40 days or no evidence of excessive carcinogenicity in an intraperitoneal test or that has no associated pathogenicity or tumor development in a long-term respiratory test (EU Directive 97 / 69 / EC Nota Q (carcinogenic exclusion)).
  • biodegradable mineral fibers examples include SiO 2 —Al 2 O 3 —CaO—MgO—FeO—Na 2 O fibers, and the like, including SiO 2 , Al 2 O 3 , CaO, MgO, FeO, Na. the 2 O and the like include fibers containing any combination.
  • LAPINUS FIBERS B.M. For example, V Roxul series. “Roxul” includes SiO 2 , Al 2 O 3 , CaO, MgO, FeO, Na 2 O and the like.
  • copper or copper alloy fibers can be used to improve crack resistance and wear resistance.
  • the total content of copper in the friction material composition needs to be in the range of 5% by mass or less as the copper element.
  • the fiber of copper or copper alloy copper fiber, brass fiber, bronze fiber, or the like can be used, and these can be used alone or in combination of two or more.
  • metal fibers other than copper and copper alloy may be used from the viewpoint of improving the friction coefficient and crack resistance, but the content is 0 from the viewpoint of improving wear resistance and suppressing metal catch formation. .5% by mass or less is required.
  • the wear resistance is deteriorated and metal catches are easily generated for the improvement of the friction coefficient, and therefore metal fibers other than copper and copper alloy are not contained (content 0 mass%).
  • metal fibers other than copper and copper alloys include, for example, fibers in the form of single metals or alloys such as aluminum, iron, zinc, tin, titanium, nickel, magnesium, and silicon, and fibers mainly composed of metals such as cast iron fibers. These can be used alone or in combination of two or more.
  • an aramid fiber As the organic fiber, an aramid fiber, a cellulose fiber, an acrylic fiber, a phenol resin fiber (having a cross-linked structure) and the like can be used, and these can be used alone or in combination of two or more, and have an abrasion resistance. From the viewpoint of properties, it is preferable to use an aramid fiber.
  • As the carbon-based fiber flame-resistant fiber, pitch-based carbon fiber, PAN-based carbon fiber, activated carbon fiber, or the like can be used, and these can be used alone or in combination of two or more.
  • the content of the fiber base material in the non-asbestos friction material composition of the present invention is preferably 5 to 40% by mass, more preferably 5 to 20% by mass, and 5 to 18% by mass. Is more preferable.
  • the fiber substrate content is preferably 5 to 40% by mass, more preferably 5 to 20% by mass, and 5 to 18% by mass.
  • an optimum porosity as a friction material can be obtained, squealing can be prevented, an appropriate material strength can be obtained, and wear resistance can be exhibited.
  • the moldability can be improved.
  • content of the metal fiber of copper or a copper alloy is contained in content of the said fiber base material.
  • the second form of the non-asbestos friction material composition of the present invention contains zinc powder. Moreover, also in the 1st form of this invention, zinc powder can be contained as needed.
  • the zinc powder content in the non-asbestos friction material composition of the present invention is preferably 0.2 to 15% by mass, more preferably 1 to 10% by mass, and 1 to 6% by mass. Is more preferably 2 to 5% by mass. When the content of the zinc powder is preferably 0.2 to 15% by mass, more preferably 1 to 10% by mass, excellent wear resistance is exhibited.
  • the average particle diameter of the zinc powder is preferably from 0.1 to 150 ⁇ m, more preferably from 0.1 to 100 ⁇ m, further preferably from 0.1 to 50 ⁇ m, from the viewpoint of wear resistance.
  • a thickness of 10 to 45 ⁇ m is particularly preferable.
  • the non-asbestos friction material composition of this invention can mix
  • the copper content is within a range of 5% by mass or less as a copper element, and copper-based metal powder such as copper powder, brass powder, bronze powder, etc. is blended. can do.
  • an organic additive such as a fluorine-based polymer such as PTFE (polytetrafluoroethylene) can be blended.
  • the present invention also provides a friction material and a friction member using the above-described non-asbestos friction material composition.
  • the non-asbestos friction material composition of the present invention can be used as a friction material for disc brake pads and brake linings of automobiles and the like by molding the composition. Since the friction material of the present invention is excellent in wear resistance at high temperature and control of metal catch generation, it is suitable for a friction material of a disk brake pad having a large load during braking. Furthermore, by using the friction material, it is possible to obtain a friction member in which the friction material is formed to be a friction surface. Examples of the friction member that can be formed using the friction material include the following configurations.
  • the friction material of the present invention can be produced by a generally used method, and is produced by molding the non-asbestos friction material composition of the present invention, preferably by hot pressing.
  • the non-asbestos friction material composition of the present invention is uniformly mixed using a mixer such as a Readyge mixer, a pressure kneader, or an Eirich mixer, and this mixture is preformed in a molding die.
  • the obtained preform is molded for 2 to 10 minutes under conditions of a molding temperature of 130 ° C. to 160 ° C. and a molding pressure of 20 to 50 MPa, and the obtained molded product is heat-treated at 150 to 250 ° C. for 2 to 10 hours.
  • a friction material can be manufactured by performing coating, scorch treatment, and polishing treatment as necessary.
  • the non-asbestos friction material composition of the present invention is excellent in wear resistance at high temperatures and suppression of metal catch generation, it is useful as a ⁇ upholstery material '' for friction members such as disc brake pads and brake linings. It can also be molded and used as a “underlaying material” for the friction member.
  • the “upper material” is a friction material that becomes the friction surface of the friction member
  • the “underlay material” is a friction material that is interposed between the friction material that becomes the friction surface of the friction member and the back metal. It is a layer for the purpose of improving the shear strength and crack resistance in the vicinity of the adhesion part with the back metal.
  • the temperature is decreased from 250 ° C. to 50 ° C. at intervals of 50 ° C., and a total of 30 times under the same braking conditions as above. Brake was performed. After the test was completed, the size and number of metal catches generated on the friction material sliding surface were evaluated according to the following criteria.
  • the wear resistance, metal catch generation and friction coefficient were evaluated using a dynamometer at an inertia of 7 kgf ⁇ m ⁇ s 2 . Further, a ventilated disc rotor (manufactured by Kiriu Co., Ltd., material FC190) and a general pin slide type collet type caliper were used.
  • Examples 1 to 24 and Comparative Examples 1 to 10 Preparation of Disc Brake Pads Materials were blended according to the blending ratios shown in Tables 1 and 2, and friction material compositions of Examples and Comparative Examples were obtained.
  • the unit of the compounding quantity of each component of Table 1 and Table 2 is the mass% in a friction material composition.
  • This friction material composition was mixed with a ladyge mixer (manufactured by Matsubo Co., Ltd., trade name: ladyge mixer M20), and this mixture was preformed with a molding press (manufactured by Oji Kikai Kogyo Co., Ltd.). The molded product was heated and pressure-molded with a backing metal manufactured by Hitachi Automotive Systems, Ltd.
  • Examples 1 to 12 had a small friction material wear amount at 500 ° C., showed excellent wear resistance, could suppress the formation of metal catches, and exhibited a high friction coefficient. Comparative Examples 1 and 2 not containing antimony trisulfide, Comparative Example 3 having a titanate content of less than 10% by mass, Comparative Example 4 having a titanate content of more than 35% by mass, and 1 mass of iron fiber In Comparative Example 5 containing 5%, sufficient wear resistance could not be obtained, and the formation of metal catch could not be suppressed.
  • Examples 13 to 24 had a small friction material wear amount at 500 ° C., showed excellent wear resistance, were able to suppress the formation of metal catches, and exhibited a high coefficient of friction.
  • the non-asbestos friction material composition of the present invention is environmentally friendly, has excellent wear resistance at high temperatures, and suppresses the formation of metal catches because there is less copper in the wear powder generated during braking compared to conventional products. Therefore, it is useful for friction materials and friction members such as disc brake pads and brake linings of automobiles.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Braking Arrangements (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)

Abstract

 結合材、有機充填材、無機充填材及び繊維基材を含む摩擦材組成物であって、該摩擦材組成物中の銅の含有量が銅元素として5質量%以下であり、銅及び銅合金以外の金属繊維の含有量が0.5質量%以下であり、チタン酸塩、及び三硫化アンチモン又は亜鉛粉を含有し、該チタン酸塩の含有量が10~35質量%であるノンアスベスト摩擦材組成物、該ノンアスベスト摩擦材組成物を用いた摩擦材及び摩擦部材である。

Description

ノンアスベスト摩擦材組成物
 本発明は、ノンアスベスト摩擦材組成物、これを用いた摩擦材及び摩擦部材に関する。
 詳しくは、自動車等の制動に用いられるディスクブレーキパッドやブレーキライニング等の摩擦材に適しており、銅の含有量が少ないため環境に優しく、高温における耐摩耗性に優れ、かつメタルキャッチの生成が少ないノンアスベスト摩擦材組成物、さらに該ノンアスベスト摩擦材組成物を用いた摩擦材及び摩擦部材に関する。
 自動車等には、その制動のためにディスクブレーキパッドやブレーキライニング等の摩擦材が使用されている。摩擦材は、ディスクローターやブレーキドラム等の対面材と摩擦することにより、制動の役割を果たしている。そのため、摩擦材には、高い摩擦係数と摩擦係数の安定性が求められるだけでなく、低温から高温にわたる広いブレーキ使用温度域においてパッド寿命が長いこと、すなわち耐摩耗性が要求される。
 また、高温のブレーキ使用温度域では、摩擦材表面にメタルキャッチと呼ばれる金属摩耗粉の塊が生成し、ディスクローター及び摩擦材の摩耗量の増大、並びにブレーキの鳴きが発生することがある。そこで、高温での耐摩耗性向上及びメタルキャッチ生成の抑制のために、金属硫化物を配合することが提案されている(特許文献1参照)。
 一方、摩擦材には、結合材、繊維基材、無機充填材及び有機充填材等が含まれ、前記特性を発現させるために、一般的に、それぞれ1種もしくは2種以上を組み合わせたものが含まれる。繊維基材としては、有機繊維、金属繊維、無機繊維等が用いられ、耐摩耗性を向上させるために、金属繊維として銅及び銅合金の繊維が用いられている。また、摩擦材として、ノンアスベスト摩擦材が主流となっており、このノンアスベスト摩擦材には銅や銅合金等が多量に使用されている。
 しかし、銅や銅合金を含有する摩擦材は、制動時に生成する摩耗粉に銅を含み、河川、湖や海洋汚染等の原因となる可能性が示唆されているため、使用を制限する動きが高まっている。そこで、銅や銅合金等の金属を含有せず、酸化マグネシウムと黒鉛を摩擦材中に45~80体積%含有し、酸化マグネシウムと黒鉛の比を1/1~4/1とする方法が提案されている(特許文献2参照)。
特開2003-313312号公報 特開2002-138273号公報
 しかし、これまで開発されてきた銅及び銅合金の含有量が少ない摩擦材では、高温での耐摩耗性及びメタルキャッチ生成の抑制を両立させることは困難であった。
 そこで、本発明は、銅及び銅合金の含有量が少なくても、高温での耐摩耗性に優れ、かつメタルキャッチの生成が少ない摩擦材を与えることができるノンアスベスト摩擦材組成物、さらに該ノンアスベスト摩擦材組成物を用いた摩擦材及び摩擦部材を提供することを目的とする。
 本発明者らは、鋭意検討を重ねた結果、ノンアスベスト摩擦材組成物において、元素としての銅の含有量を一定以下とし、銅及び銅合金以外の金属繊維の含有量を一定以下とし、チタン酸塩を特定量含有し、さらに三硫化アンチモン又は亜鉛粉を含有することで上記課題を解決できることを見出し、本発明を完成した。
 すなわち、本発明は、下記のとおりである。
1. 結合材、有機充填材、無機充填材及び繊維基材を含む摩擦材組成物であって、該摩擦材組成物中の銅の含有量が銅元素として5質量%以下であり、銅及び銅合金以外の金属繊維の含有量が0.5質量%以下であり、チタン酸塩及び三硫化アンチモンを含有し、該チタン酸塩の含有量が10~35質量%であるノンアスベスト摩擦材組成物。
2. 結合材、有機充填材、無機充填材及び繊維基材を含む摩擦材組成物であって、該摩擦材組成物中の銅の含有量が銅元素として5質量%以下であり、銅及び銅合金以外の金属繊維の含有量が0.5質量%以下であり、チタン酸塩及び亜鉛粉を含有し、該チタン酸塩の含有量が10~35質量%であるノンアスベスト摩擦材組成物。
3. 前記チタン酸塩が、燐片状、板状又は柱状である前記1又は2に記載のノンアスベスト摩擦材組成物。
4. 前記チタン酸塩が、チタン酸リチウムカリウム又はチタン酸マグネシウムカリウムである前記1~3のいずれかに記載のノンアスベスト摩擦材組成物。
5. 前記三硫化アンチモンの含有量が、1~10質量%である前記1に記載のノンアスベスト摩擦材組成物。
6. 前記亜鉛粉の含有量が、1~10質量%である前記2に記載のノンアスベスト摩擦材組成物。
7. 前記1~6のいずれかに記載のノンアスベスト摩擦材組成物を成形してなる摩擦材。
8. 前記1~6のいずれかに記載のノンアスベスト摩擦材組成物を成形してなる摩擦材と裏金とを用いて形成される摩擦部材。
 本発明のノンアスベスト摩擦材組成物は、自動車用ディスクブレーキパッドやブレーキライニング等の摩擦材に用いた際に、制動時に生成する摩耗粉中の銅が少ないことから環境に優しく、高温での耐摩耗性に優れ、かつメタルキャッチ生成を抑制することができる。また、本発明のノンアスベスト摩擦材組成物を用いることにより、上記特性を有する摩擦材及び摩擦部材を提供できる。
 以下、本発明のノンアスベスト摩擦材組成物、これを用いた摩擦材及び摩擦部材について詳述する。
[ノンアスベスト摩擦材組成物]
 本発明の第一形態は、結合材、有機充填材、無機充填材及び繊維基材を含む摩擦材組成物であって、該摩擦材組成物中の銅の含有量が銅元素として5質量%以下であり、銅及び銅合金以外の金属繊維の含有量が0.5質量%以下であり、チタン酸塩及び三硫化アンチモンを含有し、該チタン酸塩の含有量が10~35質量%であることを特徴とする、ノンアスベスト摩擦材組成物に係る。
 また、本発明の第二形態は、結合材、有機充填材、無機充填材及び繊維基材を含む摩擦材組成物であって、該摩擦材組成物中の銅の含有量が銅元素として5質量%以下であり、銅及び銅合金以外の金属繊維の含有量が0.5質量%以下であり、チタン酸塩及び亜鉛粉を含有し、該チタン酸塩の含有量が10~35質量%であることを特徴とする、ノンアスベスト摩擦材組成物に係る。
 上記構成により、従来品と比較して制動時に生成する摩耗粉中の銅が少ないことから環境に優しく、高温での耐摩耗性に優れ、かつメタルキャッチ生成を抑制できるという効果を発現することができる。
(結合材)
 結合材は、摩擦材組成物に含まれる有機充填材、無機充填材及び繊維基材等を一体化し、強度を与えるものである。本発明のノンアスベスト摩擦材組成物に含まれる結合材としては特に制限はなく、通常、摩擦材の結合材として用いられる熱硬化性樹脂を用いることができる。
 上記熱硬化性樹脂としては、例えば、フェノール樹脂;アクリルエラストマー分散フェノール樹脂及びシリコーンエラストマー分散フェノール樹脂等の各種エラストマー分散フェノール樹脂;アクリル変性フェノール樹脂、シリコーン変性フェノール樹脂、カシュー変性フェノール樹脂、エポキシ変性フェノール樹脂及びアルキルベンゼン変性フェノール樹脂等の各種変性フェノール樹脂等が挙げられ、これらを単独で又は2種類以上を組み合わせて使用することができる。特に、良好な耐熱性、成形性及び摩擦係数を与えることから、フェノール樹脂、アクリル変性フェノール樹脂、シリコーン変性フェノール樹脂、アルキルベンゼン変性フェノール樹脂を用いることが好ましい。
 本発明のノンアスベスト摩擦材組成物における、結合材の含有量は、5~20質量%であることが好ましく、5~10質量%であることがより好ましい。結合材の含有量を5~20質量%の範囲とすることで、摩擦材の強度低下をより抑制でき、また、摩擦材の気孔率が減少し、弾性率が高くなることによる鳴き等の音振性能悪化を抑制できる。
(有機充填材)
 有機充填材は、摩擦材の音振性能や耐摩耗性等を向上させるための摩擦調整剤として含まれるものである。本発明のノンアスベスト摩擦材組成物に含まれる有機充填材としては、上記性能を発揮できるものであれば特に制限はなく、通常、有機充填材として用いられる、カシューダストやゴム成分等を用いることができる。
 上記カシューダストは、カシューナッツシェルオイルを硬化させたものを粉砕して得られる、通常、摩擦材に用いられるものであればよい。
 上記ゴム成分としては、例えば、タイヤゴム、アクリルゴム、イソプレンゴム、NBR(ニトリルブタジエンゴム)、SBR(スチレンブタジエンゴム)等が挙げられ、これらを単独で又は2種類以上を組み合わせて使用される。
 また、カシューダストとゴム成分とを併用してもよく、カシューダストをゴム成分で被覆したものを用いてもよいが、音振性能の観点から、カシューダストとゴム成分とを併用することが好ましい。
 本発明のノンアスベスト摩擦材組成物中における、有機充填材の含有量は、1~20質量%であることが好ましく、1~10質量%であることがより好ましく、3~8質量%であることがさらに好ましい。有機充填材の含有量を1~20質量%の範囲とすることで、摩擦材の弾性率が高くなることによる鳴き等の音振性能の悪化を避けることができ、また耐熱性の悪化、熱履歴による強度低下を避けることができる。また、カシューダストとゴム成分とを併用する場合、カシューダストとゴム成分とは、質量比で2:1~10:1の割合であることが好ましく、3:1~9:1であることがより好ましく、3:1~8:1であることがさらに好ましい。
(無機充填材)
 本発明の第一形態及び第二形態のノンアスベスト摩擦材組成物は、高温での耐摩耗性の向上、及びメタルキャッチ生成の抑制のため、無機充填材として、チタン酸塩を含有する。
 チタン酸塩としては、チタン酸カリウム、チタン酸リチウムカリウム、チタン酸マグネシウムカリウム等を用いることができる。チタン酸カリウムとしては、例えば、K2O・6TiO2、K2O・8TiO2等が挙げられる。チタン酸リチウムカリウムとしては、例えば、チタン源とリチウム源とカリウム源とを混合して製造したK0.3-0.7Li0.27Ti1.733.8-3.95で表される組成のものなどが挙げられる。チタン酸マグネシウムカリウムとしては、例えば、チタン源とマグネシウム源とカリウム源とを混合して製造したK0.2-0.7Mg0.4Ti1.63.7-3.95で表される組成のものなどが挙げられる。
 これらは単独で又は2種類以上を組み合わせて使用することができる。中でも、高温での耐摩耗性をより向上させることから、チタン酸リチウムカリウム、チタン酸マグネシウムカリウムが好ましい。
 チタン酸塩の形状としては、繊維状、柱状、板状、粒子状又は鱗片状のものを用いることができ、これらを単独で又は2種類以上を組み合わせて使用することができる。
 チタン酸塩の形状は、例えば走査型電子顕微鏡(Scanning Electron Microscope;SEM)観察から解析することができる。
 ここで、チタン酸塩の形状についての定義の一例を記載する。
 チタン酸塩に外接する直方体のうち最小の体積をもつ直方体(外接直方体)の最も長い辺を長径L、次に長い辺を短径B、最も短い辺を厚さTとして(B>Tとする)、チタン酸塩の形状をアスペクト比(L/T、L/B)で定義する。
 繊維状のチタン酸塩とは、L/Tが10よりも大きく、L/Bが10よりも大きいチタン酸塩である。例えば、ティスモD、ティスモN(いずれも、大塚化学株式会社製)等が挙げられる。
 柱状のチタン酸塩とは、L/T=2~10、L/B=2~10であるチタン酸塩である。TOFIX-S(東邦マテリアル株式会社製)などが挙げられる。
 板状のチタン酸塩とは、L/Tが10よりも大きく、L/Bが10よりも小さいチタン酸塩である。例えば、TXAX-A、TXAX-MA、TXAX-KA、TXAX-CT(いずれも、株式会社クボタ製)等が挙げられる。
 粒子状のチタン酸塩とは、L/Tが10よりも小さく、L/Bが2よりも小さいチタン酸塩である。例えば、TOFIX-SGL(東邦マテリアル株式会社製)、GTX-C(株式会社クボタ製)等が挙げられる。
 また、粒子状のチタン酸塩のうち、鱗のような薄板状の形状のものを鱗片状のチタン酸塩といい、例えば、テラセスPS、テラセスPM、テラセスL、テラセスTF-S(いずれも、大塚化学株式会社製)等が挙げられる。
 上記形状の中でも、高温の耐摩耗性をより向上させるために、燐片状、柱状又は板状のものを用いることが好ましい。
 また、平均粒子径が1~50μm、比表面積が0.5~10m2/gのものが好ましい。なお、平均粒子径はメジアン径で表され、メジアン径とは、レーザー回折法の体積分布から求めた50%径をいう。また、比表面積は吸着ガスとして窒素ガスを用いたBET法等により求めることができる。
 本発明のノンアスベスト摩擦材組成物におけるチタン酸塩の含有量は、高温での耐摩耗性の向上、及びメタルキャッチ生成の抑制の観点から、10~35質量%であり、13~24質量%であることが好ましく、14~20質量%であることがより好ましい。チタン酸塩の含有量が10質量%未満の場合、耐摩耗性が悪化し、メタルキャッチが生成しやすい傾向がある。また、含有量が35質量%を超える場合、耐摩耗性の悪化及び摩擦係数の低下、さらにメタルキャッチが生成しやすい傾向がある。
 本発明のノンアスベスト摩擦材組成物の第一形態は、三硫化アンチモンを含有する。また、本発明の第二形態においても必要に応じ、三流化アンチモンを含有することができる。
 三硫化アンチモンとしては、摩擦調整材として一般的に用いられているものであれば特に制限することなく使用することができる。
 本発明のノンアスベスト摩擦材組成物における三硫化アンチモンの含有量は、0.5~12質量%であることが好ましく、1~10質量%であることがより好ましく、1~6質量であることがさらに好ましく、2~5質量%であることが特に好ましい。三硫化アンチモンの含有量を好ましくは0.5~12質量%、より好ましくは1~10質量%とすることで優れた耐摩耗性を示し、メタルキャッチの生成を避けることができる。
 本発明のノンアスベスト摩擦材組成物は、上記チタン酸塩、三硫化アンチモン以外の無機充填材をさらに含有することができる。含有することができる無機充填剤としては、通常摩擦材に用いられるものであれば特に制限はない。
 上記無機充填材としては、例えば、硫化錫、二硫化モリブデン、硫化鉄、硫化ビスマス、硫化亜鉛、水酸化カルシウム、酸化カルシウム、炭酸ナトリウム、炭酸カルシウム、炭酸マグネシウム、硫酸バリウム、ドロマイト、コークス、黒鉛、マイカ、酸化鉄、バーミキュライト、硫酸カルシウム、タルク、クレー、ゼオライト、ケイ酸ジルコニウム、酸化ジルコニウム、ムライト、クロマイト、酸化チタン、酸化マグネシウム、シリカ、酸化鉄、γ-アルミナ等の活性アルミナ等を用いることができ、これらを単独で又は2種類以上を組み合わせて使用することができる。これらの中でも、対面材への攻撃性低下の観点から、黒鉛、硫酸バリウムを含有することが好ましく、また摩擦係数向上の観点から、酸化ジルコニウムを含有することが好ましい。
 本発明のノンアスベスト摩擦材組成物における無機充填材の含有量は、30~80質量%であることが好ましく、40~80質量%であることがより好ましく、60~80質量%であることがさらに好ましい。無機充填材の含有量を30~80質量%の範囲とすることで、耐熱性の悪化を避けることができる。なお、上記無機充填材の含有量には、前記チタン酸塩及び三硫化アンチモンの含有量が含まれる。
(繊維基材)
 繊維基材は、摩擦材において補強作用を示すものである。
 本発明のノンアスベスト摩擦材組成物に含まれる繊維基材としては、通常、繊維基材として用いられる、無機繊維、金属繊維、有機繊維、炭素系繊維等を用いることができ、これらを単独で又は2種類以上を組み合わせて使用することができる。なお、ここでいう繊維基材には上述したチタン酸塩の繊維状のものは含まれない。
 上記無機繊維としては、セラミック繊維、生分解性セラミック繊維、鉱物繊維、ガラス繊維、シリケート繊維等を用いることができ、1種又は2種以上を組み合わせて用いることができる。
 なお、ここでいう鉱物繊維とは、スラグウール等の高炉スラグ、バサルトファイバー等の玄武岩、その他の天然岩石等を主成分として溶融紡糸した人造無機繊維である。具体的には、SiO2、Al23、CaO、MgO、FeO、Na2O等が含まれる天然鉱物、又はこれら化合物が1種又は2種以上含有される天然鉱物を用いることができ、より好ましくはこれらのうちAl元素を含む天然鉱物を、鉱物繊維として用いることができる。
 摩擦材組成物中に含まれる鉱物繊維全体の平均繊維長が大きくなるほど摩擦組成物中の各成分との接着強度が低下する傾向があるため、鉱物繊維全体の平均繊維長は500μm以下が好ましく、より好ましくは100~400μmである。ここで、平均繊維長とは、該当する全ての繊維の長さの平均値を示した数平均繊維長のことをいう。例えば200μmの平均繊維長とは、摩擦材組成物原料として用いる鉱物繊維を無作為に50個選択し、光学顕微鏡で繊維長を測定し、その平均値が200μmであることを示す。
 本発明で用いられる鉱物繊維は、人体有害性の観点で生体溶解性であることが好ましい。ここでいう生体溶解性の鉱物繊維とは、人体内に取り込まれた場合でも短時間で一部分解され体外に排出される特徴を有する鉱物繊維である。具体的には、化学組成がアルカリ酸化物、アルカリ土類酸化物総量(ナトリウム、カリウム、カルシウム、マグネシウム、バリウムの酸化物の総量)が18質量%以上で、かつ呼吸による短期バイオ永続試験で、20μm以上の繊維の質量半減期が40日以内又は腹膜内試験で過度の発癌性の証拠がないか又は長期呼吸試験で関連の病原性や腫瘍発生がないことを満たす繊維を示す(EU指令97/69/ECのNota Q(発癌性適用除外))。このような生体分解性鉱物繊維としては、SiO2-Al23-CaO-MgO-FeO-Na2O系繊維等が挙げられ、SiO2、Al23、CaO、MgO、FeO、Na2O等を任意の組み合わせで含有した繊維が挙げられる。市販品としてはLAPINUS FIBERS B.V製のRoxulシリーズなどが挙げられる。「Roxul」は、SiO2、Al23、CaO、MgO、FeO、Na2O等が含まれる。
 上記金属繊維としては、耐クラック性や耐摩耗性の向上のため、銅又は銅合金の繊維を用いることができる。ただし、銅又は銅合金の繊維を含有させる場合、環境への優しさを考慮すると、該摩擦材組成物中における銅全体の含有量は、銅元素として5質量%以下の範囲であることを要する。
 銅又は銅合金の繊維としては、銅繊維、黄銅繊維、青銅繊維等を用いることができ、これらを単独で又は2種類以上を組み合わせて使用することができる。
 また、上記金属繊維として、摩擦係数向上、耐クラック性の観点から銅及び銅合金以外の金属繊維を用いてもよいが、耐摩耗性の向上及びメタルキャッチ生成の抑制の観点から含有量が0.5質量%以下であることを要する。好ましくは、摩擦係数の向上の割には耐摩耗性の悪化及びメタルキャッチの発生がしやすいため、銅及び銅合金以外の金属繊維を含有しないこと(含有量0質量%)である。
 銅及び銅合金以外の金属繊維としては、例えば、アルミニウム、鉄、亜鉛、錫、チタン、ニッケル、マグネシウム、シリコン等の金属単体又は合金形態の繊維や、鋳鉄繊維等の金属を主成分とする繊維が挙げられ、これらを単独で又は2種類以上を組み合わせて使用することができる。
 上記有機繊維としては、アラミド繊維、セルロース繊維、アクリル繊維、フェノール樹脂繊維(架橋構造を有する)等を用いることができ、これらを単独で又は2種類以上を組み合わせて使用することができ、耐摩耗性の観点からアラミド繊維を用いることが好ましい。
 上記炭素系繊維としては、耐炎化繊維、ピッチ系炭素繊維、PAN系炭素繊維、活性炭繊維等を用いることができ、これらを単独で又は2種類以上を組み合わせて使用することができる。
 本発明のノンアスベスト摩擦材組成物中における繊維基材の含有量は、5~40質量%であることが好ましく、5~20質量%であることがより好ましく、5~18質量%であることがさらに好ましい。繊維基材の含有量を5~40質量%の範囲とすることで、摩擦材としての最適な気孔率が得られ、鳴き防止ができ、適正な材料強度が得られ、耐摩耗性を発現し、成形性をよくすることができる。なお、上記繊維基材の含有量には、銅又は銅合金の金属繊維の含有量が含まれる。
 (亜鉛粉)
 本発明のノンアスベスト摩擦材組成物の第二形態は、亜鉛粉を含有する。また、本発明の第一形態においても必要に応じ、亜鉛粉を含有することができる。
 本発明のノンアスベスト摩擦材組成物における亜鉛粉の含有量は、0.2~15質量%であることが好ましく、1~10質量%であることがより好ましく、1~6質量%であることがさらに好ましく、2~5質量%であることが特に好ましい。亜鉛粉の含有量を好ましくは0.2~15質量%、より好ましくは1~10質量%とすることで、優れた耐摩耗性を示す。
 亜鉛粉の平均粒子径は、耐摩耗性の観点から、0.1~150μmであることが好ましく、0.1~100μmであることがより好ましく、0.1~50μmであることがさらに好ましく、10~45μmであることが特に好ましい。
(その他の材料)
 本発明のノンアスベスト摩擦材組成物は、前記の結合材、有機充填材、無機充填材、繊維基材、亜鉛粉以外に、必要に応じてその他の材料を配合することができる。
 例えば、本発明のノンアスベスト摩擦材組成物中における、銅全体の含有量が、銅元素として5質量%以下となる範囲で、銅粉、黄銅粉、青銅粉等の銅系金属粉末等を配合することができる。また、耐摩耗性の観点から、PTFE(ポリテトラフルオロエチレン)等のフッ素系ポリマー等の有機添加剤等を配合することができる。
[摩擦材及び摩擦部材]
 また、本発明は、上述のノンアスベスト摩擦材組成物を用いた摩擦材及び摩擦部材を提供する。
 本発明のノンアスベスト摩擦材組成物は、これを成形することにより、自動車等のディスクブレーキパッドやブレーキライニング等の摩擦材として使用することができる。本発明の摩擦材は高温での耐摩耗性及びメタルキャッチ生成の制御に優れるため、制動時に負荷の大きいディスクブレーキパッドの摩擦材に好適である。
 さらに、上記摩擦材を用いることにより、該摩擦材を摩擦面となるように形成した摩擦部材を得ることができる。摩擦材を用いて形成することができる摩擦部材としては、例えば、下記の構成等が挙げられる。
(1)摩擦材のみの構成。
(2)裏金と、該裏金の上に形成させ摩擦面となる、本発明の摩擦材組成物からなる摩擦材とを有する構成。
(3)上記(2)の構成において、裏金と摩擦材との間に、裏金の接着効果を高めるための表面改質を目的としたプライマー層、及び、裏金と摩擦材との接着を目的とした接着層をさらに介在させた構成。
 上記裏金は、摩擦部材の機械的強度の向上のために、通常、摩擦部材として用いるものであり、材質としては、金属または繊維強化プラスチック等を用いることができ、例えば、鉄、ステンレス、無機繊維強化プラスチック、炭素繊維強化プラスチック等が挙げられる。プライマー層及び接着層としては、通常、ブレーキシュー等の摩擦部材に用いられるものであればよい。
 本発明の摩擦材は、一般に使用されている方法を用いて製造することができ、本発明のノンアスベスト摩擦材組成物を成形して、好ましくは加熱加圧成形して製造される。
 具体的には、本発明のノンアスベスト摩擦材組成物を、レディーゲミキサー、加圧ニーダー、アイリッヒミキサー等の混合機を用いて均一に混合し、この混合物を成形金型にて予備成形し、得られた予備成形物を成形温度130℃~160℃、成形圧力20~50MPaの条件で2~10分間で成形し、得られた成形物を150~250℃で2~10時間熱処理する。必要に応じて塗装、スコーチ処理、研磨処理を行うことによって摩擦材を製造することができる。
 本発明のノンアスベスト摩擦材組成物は、高温での耐摩耗性やメタルキャッチ生成の抑制などに優れるため、ディスクブレーキパッドやブレーキライニング等の摩擦部材の「上張り材」として有用であり、さらに摩擦部材の「下張り材」として成形して用いることもできる。
 なお、「上張り材」とは、摩擦部材の摩擦面となる摩擦材であり、「下張り材」とは、摩擦部材の摩擦面となる摩擦材と裏金との間に介在する、摩擦材と裏金との接着部付近の剪断強度、耐クラック性向上を目的とした層のことである。
 本発明を実施例によりさらに詳細に説明するが、本発明によって何ら制限を受けるものではない。
 なお、実施例及び比較例に示す評価は次のように行った。
(1)高温での耐摩耗性の評価
 耐摩耗性は、制動前ブレーキ温度500℃、制動前速度60km/h、減速度0.3Gで1000回制動を行い、試験前後の摩擦材厚みから、摩擦材の摩耗量を算出した。
(2)メタルキャッチ生成の評価
 メタルキャッチ生成の評価では、制動前速度60km/h、制動条件1.96m/s2、2.94m/s2、3.92m/s2でそれぞれ2回ずつ、制動前温度を50℃から300℃まで50℃間隔で昇温する計36回の制動を行った後、250℃から50℃まで50℃間隔で降温し、かつ上記同様の制動条件による計30回の制動を行った。試験完了後、摩擦材摺動面に生成したメタルキャッチの大きさと数を、以下の基準で評価した。
   A:メタルキャッチの生成無し
   B:長径2mm未満のメタルキャッチが1個~2個生成
   C:長径2mm未満のメタルキャッチが3個以上生成
   D:長径2mm以上のメタルキャッチが1個以上生成
(3)摩擦係数の評価
 摩擦係数は、自動車技術会規格JASO C406に基づき測定し、第2効力試験における摩擦係数の平均値を算出した。
 なお、上記耐摩耗性の評価、メタルキャッチ生成及び摩擦係数の評価は、ダイナモメータを用い、イナーシャ7kgf・m・s2で評価を行った。また、ベンチレーテッドディスクロータ(株式会社キリウ製、材質FC190)、一般的なピンスライド式のコレットタイプのキャリパを用いて実施した。
[実施例1~24及び比較例1~10]
ディスクブレーキパッドの作製
 表1及び表2に示す配合比率に従って材料を配合し、実施例及び比較例の摩擦材組成物を得た。
 なお、表1及び表2の各成分の配合量の単位は、摩擦材組成物中の質量%である。
 この摩擦材組成物をレディーゲミキサー(株式会社マツボー社製、商品名:レディーゲミキサーM20)で混合し、この混合物を成形プレス(王子機械工業株式会社製)で予備成形し、得られた予備成形物を成形温度145℃、成形圧力30MPaの条件で5分間成形プレス(三起精工株式会社製)を用いて日立オートモティブシステムズ株式会社製の裏金と共に加熱加圧成形し、得られた成形品を200℃で4.5時間熱処理し、ロータリー研磨機を用いて研磨し、500℃のスコーチ処理を行って、ディスクブレーキパッド(摩擦材の厚さ11mm、摩擦材投影面積52cm2)を得た。
 作製したディスクブレーキパッドについて、前記の評価を行った結果を表1、表2に示す。
 なお、実施例及び比較例において使用した各種材料は次のとおりである。
(結合材)
・フェノール樹脂:日立化成工業株式会社製(商品名:HP491UP)
(有機充填剤)
・カシューダスト:東北化工株式会社製(商品名:FF-1090)
(無機充填剤)
・チタン酸塩1:大塚化学株式会社製(商品名:テラセスL)
        成分:チタン酸リチウムカリウム、形状:燐片状
        メジアン径:25μm、比表面積:0.6m2/g
・チタン酸塩2:大塚化学株式会社製(商品名:テラセスPS)
        成分:チタン酸マグネシウムカリウム、形状:燐片状
        メジアン径:4μm、比表面積:2.5m2/g
・チタン酸塩3:大塚化学株式会社製(商品名:テラセスTF-S)
        成分:チタン酸カリウム、形状:燐片状
        メジアン径:7μm、比表面積:3.5m2/g
・チタン酸塩4:株式会社クボタ製(商品名:TXAX-MA)
        成分:チタン酸カリウム、形状:板状
        比表面積:1.5m2/g
・チタン酸塩5:東邦マテリアル株式会社製(商品名:TOFIX-S)
        成分:チタン酸カリウム、形状:柱状
        メジアン径:6μm、比表面積:0.9m2/g
・チタン酸塩6:大塚化学株式会社製(商品名:ティスモD)
        成分:チタン酸カリウム、形状:繊維状
        比表面積:7.0m2/g
・硫酸バリウム:堺化学(株)製(商品名:BA)
・黒鉛:TIMCAL社製(商品名:KS75)
・三硫化アンチモン:日本精鉱株式会社製(商品名:P3)
・硫化錫:Chemetall社製(商品名:Stannolube)
(繊維基材)
・アラミド繊維(有機繊維):東レ・デュポン株式会社製(商品名:1F538)
・鉄繊維(金属繊維):GMT社製(商品名:#0)
・銅繊維(金属繊維):Sunny Metal社製(商品名:SCA-1070)
・鉱物繊維(無機繊維):LAPINUS FIBERS B.V製(商品名:RB240 Roxul 1000、平均繊維長300μm)
(亜鉛粉)
・亜鉛粉:福田金属箔粉工業株式会社製(商品名:Zn-At-200、平均粒子径25~38μm)
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 実施例1~12は500℃での摩擦材摩耗量が少なく、優れた耐摩耗性を示し、メタルキャッチ生成を抑制することができ、かつ高い摩擦係数を発現した。三硫化アンチモンを含有しない比較例1及び2、チタン酸塩の含有量が10質量%より少ない比較例3、チタン酸塩の含有量が35質量%より多い比較例4、並びに鉄繊維を1質量%含有する比較例5では、十分な耐摩耗性が得られず、またメタルキャッチ生成の抑制をすることができなかった。
 実施例13~24は500℃での摩擦材摩耗量が少なく、優れた耐摩耗性を示し、メタルキャッチ生成を抑制することができ、かつ高い摩擦係数を発現した。亜鉛粉を含有しない比較例6及び7、チタン酸塩の含有量が10質量%より少ない比較例8、チタン酸塩の含有量が35質量%より多い比較例9、並びに鉄繊維を1質量%含有する比較例10では、十分な耐摩耗性が得られず、またメタルキャッチ生成を抑制することができなかった。
 本発明のノンアスベスト摩擦材組成物は、従来品と比較して制動時に生成する摩耗粉中の銅が少ないことから環境に優しく、高温での耐摩耗性に優れ、かつ、メタルキャッチ生成を抑制できるため、自動車のディスクブレーキパッドやブレーキライニングなどの摩擦材及び摩擦部材に有用である。

Claims (8)

  1.  結合材、有機充填材、無機充填材及び繊維基材を含む摩擦材組成物であって、該摩擦材組成物中の銅の含有量が銅元素として5質量%以下であり、銅及び銅合金以外の金属繊維の含有量が0.5質量%以下であり、チタン酸塩及び三硫化アンチモンを含有し、該チタン酸塩の含有量が10~35質量%であるノンアスベスト摩擦材組成物。
  2.  結合材、有機充填材、無機充填材及び繊維基材を含む摩擦材組成物であって、該摩擦材組成物中の銅の含有量が銅元素として5質量%以下であり、銅及び銅合金以外の金属繊維の含有量が0.5質量%以下であり、チタン酸塩及び亜鉛粉を含有し、該チタン酸塩の含有量が10~35質量%であるノンアスベスト摩擦材組成物。
  3.  前記チタン酸塩が、燐片状、板状又は柱状である請求項1又は2に記載のノンアスベスト摩擦材組成物。
  4.  前記チタン酸塩が、チタン酸リチウムカリウム又はチタン酸マグネシウムカリウムである請求項1~3のいずれかに記載のノンアスベスト摩擦材組成物。
  5.  前記三硫化アンチモンの含有量が、1~10質量%である請求項1に記載のノンアスベスト摩擦材組成物。
  6.  前記亜鉛粉の含有量が、1~10質量%である請求項2に記載のノンアスベスト摩擦材組成物。
  7.  請求項1~6のいずれかに記載のノンアスベスト摩擦材組成物を成形してなる摩擦材。
  8.  請求項1~6のいずれかに記載のノンアスベスト摩擦材組成物を成形してなる摩擦材と裏金とを用いて形成される摩擦部材。
PCT/JP2012/064587 2011-06-07 2012-06-06 ノンアスベスト摩擦材組成物 WO2012169545A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/124,382 US9470283B2 (en) 2011-06-07 2012-06-06 Non-asbestos friction material composition
US15/161,308 US10316918B2 (en) 2011-06-07 2016-05-23 Non-asbestos friction material composition

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-127574 2011-06-07
JP2011127571A JP5895366B2 (ja) 2011-06-07 2011-06-07 ノンアスベスト摩擦材組成物
JP2011127574A JP5895367B2 (ja) 2011-06-07 2011-06-07 ノンアスベスト摩擦材組成物
JP2011-127571 2011-06-07

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/124,382 A-371-Of-International US9470283B2 (en) 2011-06-07 2012-06-06 Non-asbestos friction material composition
US15/161,308 Continuation US10316918B2 (en) 2011-06-07 2016-05-23 Non-asbestos friction material composition

Publications (1)

Publication Number Publication Date
WO2012169545A1 true WO2012169545A1 (ja) 2012-12-13

Family

ID=47296104

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/064587 WO2012169545A1 (ja) 2011-06-07 2012-06-06 ノンアスベスト摩擦材組成物

Country Status (2)

Country Link
US (2) US9470283B2 (ja)
WO (1) WO2012169545A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015041244A1 (ja) * 2013-09-17 2015-03-26 曙ブレーキ工業株式会社 摩擦材
WO2015041241A1 (ja) * 2013-09-17 2015-03-26 曙ブレーキ工業株式会社 摩擦材
CN104854213A (zh) * 2012-12-21 2015-08-19 曙制动器工业株式会社 摩擦材料
EP2937397A1 (en) 2012-12-21 2015-10-28 Akebono Brake Industry Co., Ltd. Friction material
KR20150129611A (ko) * 2014-05-12 2015-11-20 아이티티 매뉴팩츄어링 엔터프라이즈, 엘엘씨 마찰재
US20160245353A1 (en) * 2013-11-12 2016-08-25 Akebono Brake Industry Co., Ltd. Friction material composition and friction material
US10233988B2 (en) 2015-09-23 2019-03-19 Akebono Brake Industry Co., Ltd Friction material
JP2020050881A (ja) * 2019-12-02 2020-04-02 日本ブレーキ工業株式会社 摩擦材組成物、摩擦材組成物を用いた摩擦材及び摩擦部材

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101318486B1 (ko) * 2010-11-19 2013-10-16 히타치가세이가부시끼가이샤 비석면 마찰재 조성물, 이를 이용한 마찰재 및 마찰 부재
JP6211282B2 (ja) 2013-03-27 2017-10-11 大塚化学株式会社 樹脂組成物、摩擦材及びそれらの製造方法
JP6247079B2 (ja) 2013-11-12 2017-12-13 曙ブレーキ工業株式会社 摩擦材
JP6290598B2 (ja) 2013-11-12 2018-03-07 曙ブレーキ工業株式会社 摩擦材組成物および摩擦材
US9404546B2 (en) * 2014-06-18 2016-08-02 Robert Bosch Gmbh Copper free friction material composition
JP6557006B2 (ja) * 2014-12-24 2019-08-07 日本ブレーキ工業株式会社 摩擦材組成物、摩擦材組成物を用いた摩擦材および摩擦部材
EP3085985B1 (en) 2015-04-21 2021-06-09 Akebono Brake Industry Co., Ltd. Composition for friction material
JP6610014B2 (ja) * 2015-06-10 2019-11-27 日立化成株式会社 摩擦材組成物、摩擦材組成物を用いた摩擦材および摩擦部材
JP6125592B2 (ja) * 2015-10-08 2017-05-10 日清紡ブレーキ株式会社 摩擦材
JP6630136B2 (ja) 2015-11-27 2020-01-15 曙ブレーキ工業株式会社 摩擦材
EP3321338B8 (en) * 2016-04-21 2021-05-26 Hitachi Chemical Company, Ltd. Friction material composition, and friction material and friction member each obtained therefrom
CN110382654A (zh) * 2017-03-06 2019-10-25 日立化成株式会社 摩擦材料组合物、摩擦材料以及摩擦构件
US10927913B2 (en) * 2017-12-28 2021-02-23 Showa Denko Materials Co., Ltd. Frictional material composition, frictional material, and friction member
IT202100012974A1 (it) 2021-05-19 2021-08-19 Sannio Brake S R L Mescola priva di componenti nocivi ed elemento d’attrito dotato di tale mescola

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04290621A (ja) * 1991-03-18 1992-10-15 Kubota Corp 耐熱性摩擦材
JPH04304284A (ja) * 1991-04-02 1992-10-27 Aisin Chem Co Ltd 摩擦材
JPH06306185A (ja) * 1993-04-22 1994-11-01 Aisin Chem Co Ltd 摩擦材
JPH09144792A (ja) * 1995-11-24 1997-06-03 Aisin Chem Co Ltd 摩擦材
EP0959262A1 (en) * 1998-05-18 1999-11-24 Hitachi Chemical Co., Ltd. Non-asbestos disc brake pad for automobiles
JP2000154371A (ja) * 1998-11-20 2000-06-06 Hitachi Chem Co Ltd 自動車用非石綿ディスクブレーキパッド
WO2002010069A1 (fr) * 2000-07-31 2002-02-07 Otsuka Chemical Co., Ltd. Titanate de magnesium et de potassium de type lepidocrocite et son procede de production, et materiau de friction
JP2002097451A (ja) * 2000-09-20 2002-04-02 Aisin Chem Co Ltd アルミディスクローター用摩擦材
JP2002097285A (ja) * 2000-09-20 2002-04-02 Aisin Chem Co Ltd 摩擦材
JP2002266915A (ja) * 2001-03-06 2002-09-18 Hitachi Chem Co Ltd 自動車用非石綿ディスクブレーキパッド
JP2004169222A (ja) * 2002-11-20 2004-06-17 Gun Ei Chem Ind Co Ltd フェノール樹脂系繊維加工物
JP2004352738A (ja) * 2003-05-27 2004-12-16 Gun Ei Chem Ind Co Ltd 微細フェノール樹脂系繊維を用いた摩擦材
WO2008123558A1 (ja) * 2007-03-29 2008-10-16 Toho Titanium Co., Ltd. チタン酸アルカリ及びチタン酸アルカリの中空体粉末の製造方法、並びにこれにより得られたチタン酸アルカリ及びその中空体粉末、並びにこれを含む摩擦材
JP2008266131A (ja) * 2007-03-29 2008-11-06 Toho Titanium Co Ltd チタン酸アルカリの製造方法及びこれにより得られたチタン酸アルカリ並びにこれを含む摩擦材
WO2011158917A1 (ja) * 2010-06-18 2011-12-22 曙ブレーキ工業株式会社 摩擦材

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08209455A (ja) * 1995-02-03 1996-08-13 Nippon Uisukaa Kk チタン酸カリウム繊維およびその製造方法
JP3027577B1 (ja) * 1999-02-09 2000-04-04 大塚化学株式会社 摩擦材
JP2002048174A (ja) * 2000-08-01 2002-02-15 Nisshinbo Ind Inc 摩擦部材及びその製造方法
JP4071434B2 (ja) 2000-10-31 2008-04-02 株式会社曙ブレーキ中央技術研究所 ブレーキ用摩擦材
JP2003082331A (ja) 2001-07-02 2003-03-19 Nisshinbo Ind Inc 非石綿系摩擦材
WO2003037797A1 (fr) 2001-10-29 2003-05-08 Otsuka Chemical Co., Ltd. Titanate de potassium de lithium de type repidocrocite, procede de fabrication et matiere de frottement
JP2003301878A (ja) * 2002-04-05 2003-10-24 Mk Kashiyama Kk 有害物質を使わないブレーキ用摩擦材
JP2003313312A (ja) 2002-04-24 2003-11-06 Nisshinbo Ind Inc 非石綿系摩擦材
WO2007080975A1 (ja) * 2006-01-13 2007-07-19 Hitachi Chemical Co., Ltd. 摩擦材用組成物及びこれを使用した摩擦材
KR101428833B1 (ko) * 2007-04-04 2014-08-08 오츠카 가가쿠 가부시키가이샤 티탄산칼륨, 그의 제조 방법, 마찰재 및 수지 조성물
US8863917B2 (en) * 2008-10-03 2014-10-21 Federal-Mogul Products, Inc. Friction material for brakes
US8172051B2 (en) * 2008-10-03 2012-05-08 Federal-Mogul Products, Inc. Friction material for brakes
KR101355781B1 (ko) * 2009-06-01 2014-01-24 히타치가세이가부시끼가이샤 마찰재 조성물, 이를 이용한 마찰재 및 마찰 부재
JP5797428B2 (ja) * 2010-04-23 2015-10-21 日清紡ブレーキ株式会社 ディスクブレーキパッド

Patent Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04290621A (ja) * 1991-03-18 1992-10-15 Kubota Corp 耐熱性摩擦材
JPH04304284A (ja) * 1991-04-02 1992-10-27 Aisin Chem Co Ltd 摩擦材
JPH06306185A (ja) * 1993-04-22 1994-11-01 Aisin Chem Co Ltd 摩擦材
JPH09144792A (ja) * 1995-11-24 1997-06-03 Aisin Chem Co Ltd 摩擦材
EP0959262A1 (en) * 1998-05-18 1999-11-24 Hitachi Chemical Co., Ltd. Non-asbestos disc brake pad for automobiles
JP2000038571A (ja) * 1998-05-18 2000-02-08 Nissan Motor Co Ltd 自動車用非石綿ディスクブレーキパッド
US6220404B1 (en) * 1998-05-18 2001-04-24 Hitachi Chemical Company, Ltd. Non-asbestos disc brake pad for automobiles
JP2000154371A (ja) * 1998-11-20 2000-06-06 Hitachi Chem Co Ltd 自動車用非石綿ディスクブレーキパッド
EP1329421A1 (en) * 2000-07-31 2003-07-23 Otsuka Chemical Company, Limited Lepidocrosite type potassium magnesium titanate and method for production thereof, and friction material
JP4673541B2 (ja) * 2000-07-31 2011-04-20 大塚化学株式会社 レピドクロサイト型チタン酸カリウムマグネシウム及びその製造方法並びに摩擦材
WO2002010069A1 (fr) * 2000-07-31 2002-02-07 Otsuka Chemical Co., Ltd. Titanate de magnesium et de potassium de type lepidocrocite et son procede de production, et materiau de friction
US20030147804A1 (en) * 2000-07-31 2003-08-07 Hiroshi Ogawa Lepidocrosite type potassium magnesium titanate and method for production thereof, and friction material
CN1444544A (zh) * 2000-07-31 2003-09-24 大塚化学株式会社 纤铁矿钛酸钾镁及其制备方法以及摩擦材料
JP2002097285A (ja) * 2000-09-20 2002-04-02 Aisin Chem Co Ltd 摩擦材
JP2002097451A (ja) * 2000-09-20 2002-04-02 Aisin Chem Co Ltd アルミディスクローター用摩擦材
JP2002266915A (ja) * 2001-03-06 2002-09-18 Hitachi Chem Co Ltd 自動車用非石綿ディスクブレーキパッド
JP2004169222A (ja) * 2002-11-20 2004-06-17 Gun Ei Chem Ind Co Ltd フェノール樹脂系繊維加工物
JP2004352738A (ja) * 2003-05-27 2004-12-16 Gun Ei Chem Ind Co Ltd 微細フェノール樹脂系繊維を用いた摩擦材
WO2008123558A1 (ja) * 2007-03-29 2008-10-16 Toho Titanium Co., Ltd. チタン酸アルカリ及びチタン酸アルカリの中空体粉末の製造方法、並びにこれにより得られたチタン酸アルカリ及びその中空体粉末、並びにこれを含む摩擦材
EP2138461A1 (en) * 2007-03-29 2009-12-30 Toho Titanium CO., LTD. Method for production of alkali titanate, method for production of hollow powder of alkali titanate, alkali titanate and hollow powder thereof produced by the methods, and friction material comprising the alkali titanate or the hollow powder thereof
KR20100014484A (ko) * 2007-03-29 2010-02-10 도호 티타늄 가부시키가이샤 티탄산 알칼리 및 티탄산 알칼리의 중공체 분말의 제조 방법, 및 이에 의해 수득된 티탄산 알칼리 및 그 중공체 분말, 및 이를 포함하는 마찰재
CN101679067A (zh) * 2007-03-29 2010-03-24 东邦钛株式会社 碱金属钛酸盐和碱金属钛酸盐空心体粉末及其制法、以及含有碱金属钛酸盐和碱金属钛酸盐空心体粉末的摩擦材料
US20100112350A1 (en) * 2007-03-29 2010-05-06 Koji Tanimizu Method of manufacturing alkali metal titanate and hollow body particle thereof, product thereof, and friction material containing the product
JP2008266131A (ja) * 2007-03-29 2008-11-06 Toho Titanium Co Ltd チタン酸アルカリの製造方法及びこれにより得られたチタン酸アルカリ並びにこれを含む摩擦材
WO2011158917A1 (ja) * 2010-06-18 2011-12-22 曙ブレーキ工業株式会社 摩擦材

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2937398A4 (en) * 2012-12-21 2016-12-07 Akebono Brake Ind FRICTION MATERIAL
US10461104B2 (en) 2012-12-21 2019-10-29 Akebono Brake Industry Co., Ltd. Friction material
CN104854213B (zh) * 2012-12-21 2020-07-17 曙制动器工业株式会社 摩擦材料
US10060492B2 (en) 2012-12-21 2018-08-28 Akebono Brake Industry Co., Ltd. Friction material
CN104854213A (zh) * 2012-12-21 2015-08-19 曙制动器工业株式会社 摩擦材料
EP2937397A1 (en) 2012-12-21 2015-10-28 Akebono Brake Industry Co., Ltd. Friction material
EP2937397A4 (en) * 2012-12-21 2017-04-19 Akebono Brake Industry Co., Ltd. Friction material
WO2015041244A1 (ja) * 2013-09-17 2015-03-26 曙ブレーキ工業株式会社 摩擦材
CN105555900A (zh) * 2013-09-17 2016-05-04 曙制动器工业株式会社 摩擦材料
EP3048153B2 (en) 2013-09-17 2024-07-17 Akebono Brake Industry Co., Ltd. Friction material
US9914667B2 (en) 2013-09-17 2018-03-13 Akebono Brake Industry Co., Ltd. Friction material
EP3048153B1 (en) 2013-09-17 2019-11-06 Akebono Brake Industry Co., Ltd. Friction material
JP2015059142A (ja) * 2013-09-17 2015-03-30 曙ブレーキ工業株式会社 摩擦材
CN105555900B (zh) * 2013-09-17 2018-11-06 曙制动器工业株式会社 摩擦材料
JP2015059143A (ja) * 2013-09-17 2015-03-30 曙ブレーキ工業株式会社 摩擦材
WO2015041241A1 (ja) * 2013-09-17 2015-03-26 曙ブレーキ工業株式会社 摩擦材
US20160245353A1 (en) * 2013-11-12 2016-08-25 Akebono Brake Industry Co., Ltd. Friction material composition and friction material
EP2944843B1 (en) 2014-05-12 2018-04-04 ITT Manufacturing Enterprises LLC Friction material
KR102387244B1 (ko) 2014-05-12 2022-04-14 아이티티 이탈리아 에스.알.엘. 마찰재
KR20150129611A (ko) * 2014-05-12 2015-11-20 아이티티 매뉴팩츄어링 엔터프라이즈, 엘엘씨 마찰재
US10690207B2 (en) 2015-09-23 2020-06-23 Akebono Brake Industry Co., Ltd Friction material
US10233988B2 (en) 2015-09-23 2019-03-19 Akebono Brake Industry Co., Ltd Friction material
US11092205B2 (en) 2015-09-23 2021-08-17 Akebono Brake Industry Co., Ltd. Friction material
US11879513B2 (en) 2015-09-23 2024-01-23 Akebono Brake Industry Co., Ltd. Friction material
JP2020050881A (ja) * 2019-12-02 2020-04-02 日本ブレーキ工業株式会社 摩擦材組成物、摩擦材組成物を用いた摩擦材及び摩擦部材

Also Published As

Publication number Publication date
US9470283B2 (en) 2016-10-18
US20140202805A1 (en) 2014-07-24
US10316918B2 (en) 2019-06-11
US20160265612A1 (en) 2016-09-15

Similar Documents

Publication Publication Date Title
JP5970749B2 (ja) ノンアスベスト摩擦材組成物
JP6558465B2 (ja) ノンアスベスト摩擦材組成物、これを用いた摩擦材及び摩擦部材
WO2012169545A1 (ja) ノンアスベスト摩擦材組成物
JP5051330B2 (ja) ノンアスベスト摩擦材組成物、これを用いた摩擦材及び摩擦部材
JP5979003B2 (ja) ノンアスベスト摩擦材組成物、これを用いた摩擦材及び摩擦部材
JP5895367B2 (ja) ノンアスベスト摩擦材組成物
JP5790175B2 (ja) ノンアスベスト摩擦材組成物
JP5071604B2 (ja) ノンアスベスト摩擦材組成物、これを用いた摩擦材及び摩擦部材
JP6281755B1 (ja) 摩擦材組成物、およびこれを用いた摩擦材および摩擦部材
JP5895366B2 (ja) ノンアスベスト摩擦材組成物
JP2016222931A (ja) ノンアスベスト摩擦材組成物、これを用いた摩擦材及び摩擦部材
WO2012066966A1 (ja) ノンアスベスト摩擦材組成物、これを用いた摩擦材及び摩擦部材
WO2012066964A1 (ja) ノンアスベスト摩擦材組成物、これを用いた摩擦材及び摩擦部材
JP6596956B2 (ja) 摩擦材組成物、およびこれを用いた摩擦材および摩擦部材
JP5958623B2 (ja) ノンアスベスト摩擦材組成物
JP6570167B2 (ja) 摩擦材組成物、およびこれを用いた摩擦材および摩擦部材
JP5958624B2 (ja) ノンアスベスト摩擦材組成物
JP7020506B2 (ja) 摩擦材及び摩擦部材
JP6233461B2 (ja) ノンアスベスト摩擦材組成物
JP6699785B2 (ja) 摩擦材及び摩擦部材
JP6531807B2 (ja) ノンアスベスト摩擦材組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12796795

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14124382

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 12796795

Country of ref document: EP

Kind code of ref document: A1