WO2012169212A1 - 半導体デバイス、半導体基板、半導体基板の製造方法および半導体デバイスの製造方法 - Google Patents

半導体デバイス、半導体基板、半導体基板の製造方法および半導体デバイスの製造方法 Download PDF

Info

Publication number
WO2012169212A1
WO2012169212A1 PCT/JP2012/003784 JP2012003784W WO2012169212A1 WO 2012169212 A1 WO2012169212 A1 WO 2012169212A1 JP 2012003784 W JP2012003784 W JP 2012003784W WO 2012169212 A1 WO2012169212 A1 WO 2012169212A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor crystal
crystal layer
atom
semiconductor
base substrate
Prior art date
Application number
PCT/JP2012/003784
Other languages
English (en)
French (fr)
Inventor
秦 雅彦
山田 永
正史 横山
相賢 金
睿 張
充 竹中
高木 信一
哲二 安田
Original Assignee
住友化学株式会社
国立大学法人 東京大学
独立行政法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社, 国立大学法人 東京大学, 独立行政法人産業技術総合研究所 filed Critical 住友化学株式会社
Priority to KR1020137031860A priority Critical patent/KR20140036211A/ko
Priority to CN201280026103.4A priority patent/CN103563069A/zh
Publication of WO2012169212A1 publication Critical patent/WO2012169212A1/ja
Priority to US14/099,204 priority patent/US20140091398A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823807Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the channel structures, e.g. channel implants, halo or pocket implants, or channel materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/8252Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using III-V technology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/8258Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using a combination of technologies covered by H01L21/8206, H01L21/8213, H01L21/822, H01L21/8252, H01L21/8254 or H01L21/8256
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/84Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being other than a semiconductor body, e.g. being an insulating body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0605Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits made of compound material, e.g. AIIIBV
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1203Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1203Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI
    • H01L27/1207Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI combined with devices in contact with the semiconductor body, i.e. bulk/SOI hybrid circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78684Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising semiconductor materials of Group IV not being silicon, or alloys including an element of the group IV, e.g. Ge, SiN alloys, SiC alloys

Definitions

  • the present invention relates to a semiconductor device, a semiconductor substrate, a semiconductor substrate manufacturing method, and a semiconductor device manufacturing method.
  • this application is a research project commissioned by the New Energy and Industrial Technology Development Organization, “Development of New Nanoelectronic Semiconductor Materials and New Structure Nanoelectronic Device Technology-Research and Development of III-V Group Semiconductor Channel Transistor Technology on Silicon Platform” "It is a patent application subject to Article 19 of the Industrial Technology Strengthening Act.
  • Non-Patent Document 1 discloses a CMOSFET structure in which an N-channel MOSFET having a III-V group compound semiconductor channel and a P-channel MOSFET having Ge channel are formed on a single substrate.
  • Non-Patent Document 1 S. Takagi, et al., SSE, vol. 51, pp. 526-536, 2007.
  • nMISFET Metal-Insulator-Semiconductor-Field-Effect-Transistor
  • n-MISFET P-channel MISFET
  • CMOS complementary Metal-Insulator-Semiconductor Field-Effect Transistor
  • a manufacturing process in which nMISFET and pMISFET are formed at the same time is adopted. Is preferred.
  • the process can be simplified, and the device can be easily reduced in size and miniaturized.
  • the source / drain formation region of the nMISFET and the source / drain formation region of the pMISFET are formed as a thin film of a material to be the source and drain, and further patterned by photolithography or the like, thereby forming the source / drain of the nMISFET
  • the source and drain of the pMISFET can be formed simultaneously.
  • the III-V compound semiconductor crystal layer in which the nMISFET is formed and the IV group semiconductor crystal layer in which the pMISFET is formed are different in material.
  • the resistance of one or both of the source / drain regions of the nMISFET or pMISFET increases, or the contact resistance between the source / drain regions of one or both of the nMISFET or pMISFET and the source / drain electrodes increases. Therefore, it is difficult to reduce the resistance of the source / drain regions of both nMISFET and pMISFET or the contact resistance with the source / drain electrodes.
  • An object of the present invention is to form a CMISFET composed of an nMISFET whose channel is a III-V group compound semiconductor and a pMISFET whose channel is a group IV semiconductor on one substrate. It is an object of the present invention to provide a semiconductor device and a manufacturing method thereof in which each source and each drain are formed simultaneously and the resistance of the source / drain region or the contact resistance with the source / drain electrode is reduced.
  • the semiconductor device described above may have a separation layer that is located between the base substrate and the semiconductor crystal layer and electrically separates the base substrate and the semiconductor crystal layer.
  • the region of the base substrate in contact with the separation layer may be conductive, and the voltage applied to the region of the base substrate in contact with the separation layer is the back gate voltage to the N-channel MISFET.
  • the base substrate includes impurity atoms that exhibit p-type or n-type conductivity in the vicinity of the bonding surface of the base substrate. You may contain the impurity atom which shows the conductivity type different from the conductivity type which the impurity atom contained in the board
  • a semiconductor substrate for use in the semiconductor device of the first aspect comprising a base substrate and a semiconductor crystal layer, wherein the semiconductor crystal layer is a part of the surface of the base substrate.
  • An upper semiconductor substrate is provided.
  • the separation layer may further include a separation layer that is located between the base substrate and the semiconductor crystal layer and electrically separates the base substrate and the semiconductor crystal layer.
  • the separation layer may be made of an amorphous insulator.
  • the separation layer may be made of a semiconductor crystal having a forbidden band width larger than that of the semiconductor crystal constituting the semiconductor crystal layer.
  • the base substrate includes impurity atoms that exhibit p-type or n-type conductivity in the vicinity of the bonding surface of the base substrate. You may contain the impurity atom which shows the conductivity type different from the conductivity type which the impurity atom contained in the board
  • a plurality of semiconductor crystal layers may be provided, and each of the plurality of semiconductor crystal layers may be regularly arranged in a plane parallel to the upper surface of the base substrate.
  • a method of manufacturing a semiconductor substrate according to the second aspect wherein an epitaxial growth step of forming a semiconductor crystal layer on the semiconductor crystal layer forming substrate by an epitaxial crystal growth method, and the semiconductor crystal layer And a bonding step of bonding the substrate to a partial region on the surface of the base substrate or a region above the base substrate surface.
  • a method of manufacturing a semiconductor substrate as described above wherein a separation layer made of a semiconductor crystal having a forbidden band width larger than a forbidden band width of a semiconductor crystal constituting the semiconductor crystal layer is epitaxially grown above a part of a surface of a base substrate.
  • a method for manufacturing a semiconductor substrate comprising: a step of forming by a method; and a step of forming a semiconductor crystal layer on an isolation layer by an epitaxial growth method.
  • a method for manufacturing a semiconductor substrate as described above which includes impurity atoms exhibiting p-type or n-type conductivity near the surface of the base substrate, and a semiconductor crystal layer above a part of the surface of the base substrate. And doping the base substrate with impurity atoms having a conductivity type different from that of the impurity atoms contained in the base substrate in the step of forming the semiconductor crystal layer by the epitaxial growth method.
  • a method for manufacturing a semiconductor substrate is provided.
  • a crystalline sacrificial layer formed by an epitaxial crystal growth method may be provided on the surface of the semiconductor crystal layer forming substrate.
  • the crystalline sacrificial layer is removed to be epitaxially grown on the semiconductor crystal layer forming substrate.
  • the semiconductor crystal layer and the semiconductor crystal layer forming substrate may be separated.
  • the method may include either a step of patterning the semiconductor crystal layer in a regular arrangement after the semiconductor crystal layer is epitaxially grown, or a step of selectively epitaxially growing the semiconductor crystal layer in a regular arrangement in advance. .
  • a step of manufacturing a semiconductor substrate having a semiconductor crystal layer, and a base substrate in a region where the semiconductor crystal layer is not located above Forming a gate electrode on the top and the semiconductor crystal layer via a gate insulating layer; on a source electrode formation region of the base substrate; on a drain electrode formation region of the base substrate; and a source electrode formation region of the semiconductor crystal layer
  • Forming a metal film selected from the group consisting of a nickel film, a cobalt film, and a nickel-cobalt alloy film on the drain electrode formation region of the semiconductor crystal layer, and heating the metal film to form a base substrate A compound of Ge atom and nickel atom, a compound of Ge atom and cobalt atom, or a compound of Ge atom, nickel atom and cobalt atom
  • the first source and the first drain are formed, and a compound of a group III atom and a group V atom and a nickel atom,
  • FIG. 1 shows a cross section of a semiconductor device 100.
  • 2 shows a cross section of the semiconductor device 100 in the manufacturing process.
  • 2 shows a cross section of the semiconductor device 100 in the manufacturing process.
  • 2 shows a cross section of the semiconductor device 100 in the manufacturing process.
  • 2 shows a cross section of the semiconductor device 100 in the manufacturing process.
  • the cross section in the manufacture process of another semiconductor device is shown.
  • the cross section in the manufacture process of another semiconductor device is shown.
  • a cross section of a semiconductor device 200 is shown. It is the TEM photograph which observed the cross section of the Ta gate part on an InGaAs layer. It is the TEM photograph which observed the cross section of Ta gate part.
  • FIG. 1 shows a cross section of the semiconductor device 100.
  • the semiconductor device 100 has a base substrate 102 made of a Ge crystal and a semiconductor crystal layer 106 made of a III-V group compound semiconductor, and has a separation layer 110 between the base substrate 102 and the semiconductor crystal layer 106.
  • the semiconductor device 100 of this example includes an insulating layer 112 on the semiconductor crystal layer 106. Note that, from the embodiment shown in FIG. 1, the invention of the semiconductor substrate having the base substrate 102 and the semiconductor crystal layer 106 as constituent elements and the base substrate 102, the separation layer 110, and the semiconductor crystal layer 106 are constituent elements. At least two inventions can be grasped, including the semiconductor substrate invention.
  • a P-channel MISFET 120 is formed on the base substrate 102, and an N-channel MISFET 130 is formed on the semiconductor crystal layer 106.
  • the semiconductor crystal layer 106 is located above a part of the surface of the base substrate 102.
  • the thickness of the semiconductor crystal layer 106 is preferably 20 nm or less.
  • the N-channel MISFET 130 having a very thin film body can be configured.
  • the short channel effect can be suppressed and the leakage current of the N channel MISFET 130 can be reduced.
  • a III-V compound semiconductor crystal layer is used for an N channel MISFET, and a Ge crystal is used for a P channel MISFET.
  • the III-V compound semiconductor crystal an In x Ga 1-x As (0 ⁇ x ⁇ 1) crystal, a GaAs crystal, or an InP crystal can be given.
  • the III-V compound semiconductor crystal include a mixed crystal of a III-V compound semiconductor that lattice matches or pseudo-lattice matches with GaAs or InP.
  • examples of the III-V group compound semiconductor crystal include a stacked body of the mixed crystal and In x Ga 1-x As (0 ⁇ x ⁇ 1) crystal, GaAs crystal, or InP crystal.
  • the III-V group compound semiconductor crystal an In x Ga 1-x As (0 ⁇ x ⁇ 1) crystal is preferable. Since the group III-V compound semiconductor crystal has a high electron mobility and the group IV semiconductor crystal, especially Ge, has a high hole mobility, the performance of the CMISFET can be maximized.
  • the separation layer 110 is located between the base substrate 102 and the semiconductor crystal layer 106.
  • the separation layer 110 electrically separates the base substrate 102 and the semiconductor crystal layer 106.
  • the separation layer 110 may be made of an amorphous insulator.
  • the separation layer 110 becomes an amorphous insulator.
  • the separation layer 110 made of an amorphous insulator Al 2 O 3 , AlN, Ta 2 O 5 , ZrO 2 , HfO 2 , La 2 O 3 , SiO x (for example, SiO 2 ), SiN x (for example, Si 3 N). 4 ) and a layer composed of at least one of SiO x N y , or a laminate of at least two layers selected from these layers.
  • the isolation layer 110 may be made of a semiconductor crystal having a forbidden band width larger than that of the semiconductor crystal constituting the semiconductor crystal layer 106. Such a semiconductor crystal can be formed by an epitaxial crystal growth method.
  • the semiconductor crystal layer 106 is an InGaAs crystal layer or a GaAs crystal layer
  • examples of the semiconductor crystal constituting the separation layer 110 include an AlGaAs crystal, an AlInGaP crystal, an AlGaInAs crystal, and an InP crystal.
  • a part 112 a of the insulating layer 112 functions as a gate insulating layer of the N-channel MISFET 130.
  • the insulating layer 112 Al 2 O 3 , AlN, Ta 2 O 5 , ZrO 2 , HfO 2 , La 2 O 3 , SiO x (for example, SiO 2 ), SiN x (for example, Si 3 N 4 ), and SiO x N y Among them, a layer composed of at least one of them, or a laminate of at least two layers selected from these.
  • the P-channel type MISFET 120 has a first gate 122, a first source 124, and a first drain 126.
  • the first source 124 and the first drain 126 are formed in the base substrate 102.
  • the P-channel type MISFET 120 is formed on the base substrate 102 in a region where the semiconductor crystal layer 106 is not located above, and a part 102a of the base substrate 102 sandwiched between the first source 124 and the first drain 126 is used as a channel.
  • the first gate 122 is formed above the part 104a.
  • a part 102 a of the base substrate 102 which is a channel region and a part 110 a of the isolation layer 110 sandwiched between the first gates 122 may function as a gate insulating layer of the P-channel MISFET 120.
  • the first source 124 and the first drain 126 are made of a compound of Ge atoms and nickel atoms. Alternatively, the first source 124 and the first drain 126 are made of a compound of Ge atoms and cobalt atoms. Alternatively, the first source 124 and the first drain 126 are made of a compound of Ge atom, nickel atom, and cobalt atom. These nickel compounds, cobalt compounds, and nickel-cobalt compounds of Ge are low resistance compounds with low electrical resistance.
  • the N-channel MISFET 130 has a second gate 132, a second source 134, and a second drain 136.
  • the second source 134 and the second drain 136 are formed in the semiconductor crystal layer 106.
  • the N-channel MISFET 130 uses a part 106 a of the semiconductor crystal layer 106 sandwiched between the second source 134 and the second drain 136 as a channel.
  • the second gate 132 is formed above the part 106a.
  • a part 112 a of the insulating layer 112 is formed in a region sandwiched between the part 106 a of the semiconductor crystal layer 106 and the second gate 132 which is a channel region.
  • the part 112 a may function as a gate insulating layer of the N-channel MISFET 130.
  • the second source 134 and the second drain 136 are made of a compound of a group III atom, a group V atom, and a nickel atom.
  • the second source 134 and the second drain 136 are made of a compound of a group III atom, a group V atom, and a cobalt atom.
  • the second source 134 and the second drain 136 are made of a compound of a group III atom, a group V atom, a nickel atom, and a cobalt atom.
  • These group III-V crystal nickel compounds, cobalt compounds or nickel-cobalt compounds are low resistance compounds having low electrical resistance.
  • the source / drain (first source 124 and first drain 126) of the P-channel MISFET 120 and the source / drain (second source 134 and second drain 136) of the N-channel MISFET 130 are common atoms ( Nickel atom, cobalt atom or both atoms). This is a configuration that enables the manufacture of the part using a material film having a common atom, and simplifies the manufacturing process. Further, by using nickel and / or cobalt as a common atom, the source region and the source / drain formed in the III-V compound semiconductor crystal layer and the source / drain formed in the Ge crystal The electric resistance of the drain region can be lowered. As a result, the manufacturing process can be simplified and the performance of the FET can be improved.
  • the first source 124 and the first drain 126 may further include acceptor impurity atoms
  • the second source 134 and the second drain 136 may further include donor impurity atoms.
  • donor impurity atoms added to the source / drain (second source 134 and second drain 136) portion of the N channel MISFET 130 include Si, S, Se, and Ge.
  • acceptor impurity atoms added to the source / drain (first source 124 and first drain 126) portion of the P-channel MISFET 120 include B, Al, Ga, and In.
  • the base substrate 102 and the semiconductor crystal layer formation substrate 160 are prepared, and the semiconductor crystal layer 106 is formed on the semiconductor crystal layer formation substrate 160 by an epitaxial crystal growth method.
  • the separation layer 110 is formed over the base substrate 102.
  • the separation layer 110 is formed by a thin film formation method such as an ALD (Atomic Layer Deposition) method, a thermal oxidation method, a vapor deposition method, a CVD (Chemical Layer Vapor Deposition) method, or a sputtering method.
  • ALD Atomic Layer Deposition
  • thermal oxidation method a vapor deposition method
  • CVD Chemical Layer Vapor Deposition
  • sputtering method As the semiconductor crystal layer forming substrate 160, an InP substrate or a GaAs substrate can be selected.
  • An MOCVD (Metal Organic Chemical Vapor Deposition) method can be used for epitaxial crystal growth of the semiconductor crystal layer 106.
  • TMIn trimethylindium
  • TMGa trimethylgallium
  • AsH 3 arsine
  • P source is used.
  • PH 3 phosphine
  • Hydrogen can be used as the carrier gas.
  • the reaction temperature can be appropriately selected in the range of 300 ° C. to 900 ° C., preferably in the range of 450 to 750 ° C.
  • a Ge epitaxial crystal layer having better crystallinity can be formed on the surface of the Ge substrate serving as the base substrate.
  • GeH 4 germane
  • Hydrogen can be used as the carrier gas.
  • the reaction temperature can be appropriately selected in the range of 300 ° C. to 900 ° C., preferably in the range of 450 to 750 ° C.
  • the thickness of the epitaxial growth layer can be controlled by appropriately selecting the source gas supply amount and the reaction time.
  • the surface of the semiconductor crystal layer 106 and the surface of the separation layer 110 are activated with an argon beam 150. Thereafter, as shown in FIG. 3, the surface of the semiconductor crystal layer 106 is bonded to and bonded to a part of the surface of the separation layer 110. Bonding can be performed at room temperature. The activation does not need to be performed by the argon beam 150 but may be a beam of other rare gas or the like. Thereafter, the semiconductor crystal layer forming substrate 160 is removed by etching with an HCl solution or the like. Thereby, the separation layer 110 is formed on the base substrate 102, and the semiconductor crystal layer 106 is formed on a part of the surface of the separation layer 110. Note that before the separation layer 110 and the base substrate 102 are bonded to each other, a sulfur termination treatment may be performed in which the surface of the semiconductor crystal layer 106 is terminated with sulfur atoms.
  • the separation layer 110 may be formed over the substrate, and the surface of the separation layer 110 over the base substrate 102 may be bonded to the surface of the separation layer 110 over the semiconductor crystal layer 106.
  • the separation layers 110 are heated and bonded together.
  • the separation layer 110 may be formed only on the semiconductor crystal layer 106 and the surface of the base substrate 102 and the surface of the separation layer 110 on the semiconductor crystal layer 106 may be bonded to each other.
  • the semiconductor crystal layer 106 is bonded to the separation layer 110 over the base substrate 102 and then the semiconductor crystal layer 106 is separated from the semiconductor crystal layer formation substrate 160.
  • the semiconductor crystal layer 106 may be bonded to the separation layer 110 after the crystal layer 106 is separated from the semiconductor crystal layer formation substrate 160. In this case, it is preferable to hold the semiconductor crystal layer 106 on an appropriate transfer substrate until the semiconductor crystal layer 106 is separated from the semiconductor crystal layer forming substrate 160 and then bonded to the separation layer 110.
  • an insulating layer 112 is formed on the semiconductor crystal layer 106.
  • the insulating layer 112 is formed by a thin film forming method such as an ALD method, a thermal oxidation method, a vapor deposition method, a CVD method, or a sputtering method.
  • a thin film of a metal such as tantalum is formed by vapor deposition, CVD, or sputtering, and the thin film is patterned using photolithography, so that the second substrate is formed above the base substrate 102 where the semiconductor crystal layer 106 is not formed.
  • One gate 122 is formed, and a second gate 132 is formed above the semiconductor crystal layer 106.
  • an opening reaching the base substrate 102 is formed in the separation layer 110 on both sides of the first gate 122, and an opening reaching the semiconductor crystal layer 106 is formed in the insulating layer 112 on both sides of the second gate 132.
  • the both sides of each gate indicate both sides of each gate in the horizontal direction.
  • the openings on both sides of the first gate 122 and the openings on both sides of the second gate 132 correspond to regions where the first source 124, the first drain 126, the second source 134, and the second drain 136 are formed.
  • a metal film 170 made of nickel is formed so as to be in contact with the base substrate 102 and the semiconductor crystal layer 106 exposed at the bottoms of these openings.
  • the metal film 170 may be a cobalt film or a nickel-cobalt alloy film.
  • the metal film 170 is heated.
  • the base substrate 102 and the metal film 170 react to form a compound of Ge atoms and atoms constituting the metal film 170, which becomes the first source 124 and the first drain 126.
  • the semiconductor crystal layer 106 and the metal film 170 react to form a compound of a group III atom and a group V atom and an atom constituting the metal film 170, thereby forming the second source 134 and the second drain 136.
  • the metal film 170 When the metal film 170 is a nickel film, a low resistance compound of Ge atoms and nickel atoms is generated as the first source 124 and the first drain 126, and a second semiconductor crystal is formed as the second source 134 and the second drain 136. A low resistance compound of Group III and Group V atoms and nickel atoms constituting layer 106 is produced.
  • the metal film 170 is a cobalt film, a compound of Ge atoms and cobalt atoms is generated as the first source 124 and the first drain 126, and a group III atom and the second source 134 and the second drain 136 are formed. A compound of a group V atom and a cobalt atom is generated.
  • the metal film 170 is a nickel-cobalt alloy film
  • a compound of Ge atom, nickel atom, and cobalt atom is generated as the first source 124 and the first drain 126, and as the second source 134 and the second drain 136, Compounds of group III and group V atoms, nickel atoms and cobalt atoms are produced.
  • the unreacted metal film 170 is removed, and the semiconductor device 100 of FIG. 1 can be manufactured.
  • the heating method of the metal film 170 is preferably an RTA (rapid thermal annealing) method.
  • RTA rapid thermal annealing
  • a heating temperature of 250 ° C. to 450 ° C. can be used.
  • the first source 124, the first drain 126, the second source 134, and the second drain 136 can be formed by self-alignment.
  • the first source 124, the first drain 126, the second source 134, and the second drain 136 are simultaneously formed in the same process, so that the manufacturing process can be simplified. . As a result, manufacturing costs are reduced and miniaturization is facilitated. Further, the first source 124, the first drain 126, the second source 134, and the second drain 136 are atoms constituting the base substrate 102 or the semiconductor crystal layer 106, that is, Ge atoms or III-V atoms and nickel, cobalt, or Low resistance compound with nickel-cobalt alloy.
  • the contact potential barrier between these low-resistance compounds and Ge constituting the channel of the semiconductor device 100 and the semiconductor crystal layer 106 is as small as 0.1 eV or less. Further, the contact between each of the first source 124, the first drain 126, the second source 134, and the second drain 136 and the electrode metal becomes an ohmic contact, and each ON current of the P-channel MISFET 120 and the N-channel MISFET 130 is increased. be able to.
  • the resistances of the first source 124, the first drain 126, the second source 134, and the second drain 136 are reduced, it is not necessary to reduce the channel resistances of the P channel MISFET 120 and the N channel MISFET 130, and doping impurities The concentration of atoms can be reduced. As a result, carrier mobility in the channel layer can be increased.
  • a voltage is applied to the region in contact with the separation layer 110 of the base substrate 102.
  • the voltage can act as a back gate voltage to the N-channel MISFET 130.
  • the action of the back gate voltage can increase the ON current of the N-channel MISFET 130 and reduce the OFF current.
  • a plurality of semiconductor crystal layers 106 may be provided, and each of the plurality of semiconductor crystal layers 106 may be regularly arranged in a plane parallel to the upper surface of the base substrate 102.
  • the regular arrangement of the semiconductor crystal layer 106 is performed by epitaxially growing the semiconductor crystal layer 106 and then patterning the semiconductor crystal layer 106 into a regular arrangement, or by selectively epitaxially growing the semiconductor crystal layer 106 in a regular arrangement in advance.
  • the semiconductor crystal layer 106 is epitaxially grown on the semiconductor crystal layer forming substrate 160, separated from the semiconductor crystal layer forming substrate 160, shaped into a predetermined shape, and then regularly arranged on the base substrate 102.
  • the method can be carried out by any one of the methods of pasting together, or can be carried out by a method in which any of a plurality of methods are combined.
  • the separation layer 110 when the separation layer 110 is a semiconductor crystal having a forbidden band width larger than the forbidden band width of the semiconductor crystal constituting the semiconductor crystal layer 106, the separation layer 110 and the semiconductor crystal layer are formed on the base substrate 102. 106 can be continuously formed by an epitaxial growth method. Note that in the case where the separation layer 110 is an epitaxially grown crystal, the separation layer 110 and the semiconductor crystal layer 106 may be formed over the base substrate 102 and then the separation layer 110 may be oxidized to be converted into an amorphous insulator layer. For example, when the separation layer 110 is AlAs or AlInP, the separation layer 110 can be made into an insulating oxide by a selective oxidation technique.
  • the substrate can also be removed. That is, before forming the semiconductor crystal layer 106 on the semiconductor crystal layer forming substrate 140, the crystalline sacrificial layer 190 is formed on the surface of the semiconductor crystal layer forming substrate 140 by an epitaxial crystal growth method. Thereafter, the semiconductor crystal layer 106 is formed on the surface of the crystalline sacrificial layer 190 by an epitaxial growth method, the separation layer 110 on the base substrate 102 is formed, and the surface of the semiconductor crystal layer 106 and the surface of the separation layer 110 are irradiated with an argon beam 150. Activate.
  • the semiconductor crystal layer 106 and the semiconductor crystal layer formation substrate 140 on the semiconductor crystal layer formation substrate 140 are separated. According to this method, the semiconductor crystal layer forming substrate can be reused, and the manufacturing cost can be reduced.
  • FIG. 9 shows a cross section of the semiconductor device 200.
  • the semiconductor device 200 does not have the separation layer 110 in the semiconductor device 100, and the semiconductor crystal layer 106 is disposed in contact with the base substrate 102.
  • the insulating layer 112 is used as the gate insulating layer of the P-channel type MISFET 120. Since others have the same structure as the semiconductor device 100, description of common members and the like is omitted.
  • the base substrate 102 and the semiconductor crystal layer 106 are in contact with each other at the bonding surface 103, and an impurity atom having p-type or n-type conductivity is contained in the vicinity of the bonding surface 103 of the base substrate 102.
  • impurity atoms having a conductivity type different from the conductivity type indicated by the impurity atoms contained in the base substrate 102 are contained. That is, the semiconductor device 200 has a pn junction in the vicinity of the bonding surface 103.
  • the base substrate 102 and the semiconductor crystal layer 106 can be electrically separated by a pn junction formed in the vicinity of the bonding surface 103, and formed on the base substrate 102.
  • the P channel MISFET and the N channel MISFET 130 formed in the semiconductor crystal layer 106 can be electrically separated.
  • the steps after the step of forming the semiconductor crystal layer 106 on the base substrate 102 by the epitaxial growth method and forming the insulating layer 112 on the semiconductor crystal layer 106 are the same as those of the semiconductor device 100. It can be manufactured by making it a process. However, the formation of the pn junction includes impurity atoms having p-type or n-type conductivity in the vicinity of the surface of the base substrate 102 and is included in the base substrate 102 in the step of forming the semiconductor crystal layer 106 by the epitaxial growth method.
  • the semiconductor crystal layer 106 can be doped with an impurity atom having a conductivity type different from that of the impurity atom formed.
  • a pn junction as an isolation structure is not essential when the need for element isolation is low. That is, the semiconductor device 200 does not contain an impurity atom exhibiting p-type or n-type conductivity in the vicinity of the bonding surface 103 of the base substrate 102, and p-type or n-type in the vicinity of the bonding surface 103 of the semiconductor crystal layer 106.
  • the structure which does not contain the impurity atom which shows this conductivity type may be sufficient.
  • annealing may be performed after the epitaxial growth or during the epitaxial growth. By the annealing treatment, dislocations in the semiconductor crystal layer 106 are reduced.
  • the epitaxial growth method a method to grow uniformly the semiconductor crystal layer 106 on the entire surface of the base substrate 102 or, finely divided surface of the base substrate 102 at a growth inhibition layer such as SiO 2, is grown selectively Any epitaxial growth method may be used.
  • a Ge (100) wafer was used as the base substrate 102, and an InP (100) wafer was used as the semiconductor crystal layer forming substrate 160.
  • An InGaAs layer was formed on the InP (100) wafer by an epitaxial growth method, and an Al 2 O 3 layer was formed on the InGaAs layer by an ALD method.
  • An Al 2 O 3 layer was formed on the Ge (100) wafer by ALD.
  • the In ratio of the InGaAs layer was 0.53, and the impurity concentration was on the order of 10 15 atoms / cm 3 .
  • the impurity concentration of the Ge substrate was 1 to 2 ⁇ 10 14 atoms / cm 3 .
  • the resistivity at this time was 7.1 to 9.5 ⁇ ⁇ cm.
  • Three types of devices having InGaAs layer thicknesses of 20 nm, 50 nm, and 100 nm were prepared.
  • the surface of the InGaAs layer was treated with a sulfur compound, and an Al 2 O 3 layer was deposited by ALD.
  • a part of the Al 2 O 3 layer was etched and a part of the InGaAs layer was further etched to form a region having no InGaAs layer on the Ge substrate.
  • Sputtering a Ta film the Ta film is patterned and forming a gate composed of the Al 2 O 3 Ta on the layer of the Al 2 O 3 layer and the InGaAs layer of the Al 2 O 3 layer on the Ge substrate.
  • annealing was performed at 350 ° C.
  • FIG. 10 is a TEM photograph observing a cross section of the Ta gate portion on the InGaAs layer.
  • FIG. 11 is a TEM photograph observing a cross section of the Ta gate portion on the Ge substrate. 10 and 11 show the case where the thickness of the InGaAs layer is 50 nm.
  • FIG. 12 is an SEM photograph of the pMOSFET on the Ge substrate and the nMOSFET on the InGaAs layer observed from above.
  • FIG. 13 shows drain current versus drain voltage characteristics of the pMOSFET on the Ge substrate and the nMOSFET on the InGaAs layer.
  • the gate width W and gate length L of each FET are 100 ⁇ m and 50 ⁇ m, respectively.
  • An InGaAs layer with a thickness of 20 nm was shown.
  • the gate voltage was changed in the range of 0 to -2V (in the case of pMOSFET) and 0 to 2V (in the case of nMOSFET).
  • a good drain current vs. drain voltage characteristic which was appropriately controlled by the gate voltage, was observed.
  • FIG. 14 and 15 show the gate voltage versus drain current characteristics.
  • the drain current is expressed as an absolute value normalized by the gate width.
  • FIG. 14 shows the characteristics of the pMOSFET on the Ge substrate
  • FIG. 15 shows the characteristics of the nMOSFET on the InGaAs layer.
  • the gate width W and gate length L of each FET are 100 ⁇ m and 20 ⁇ m, respectively.
  • the thickness of the InGaAs layer is 20 nm.
  • the case where the drain voltage is 1 V and the case where it is 50 mV are shown.
  • the nMOSFET of FIG. 15 the case of a double gate (DG) is shown in addition to the case of a single gate (SG).
  • DG double gate
  • SG single gate
  • both the FET on the Ge substrate and the nMOSFET on the InGaAs layer are operating normally.
  • the double-gate operation of the InGaAs layer nMOSFET is the current on-off ratio of about 10 6 show good transistor characteristics.
  • FIG. 16 shows the hole mobility of the pMOSFET on the Ge substrate in relation to the charge density Ns.
  • FIG. 17 shows the electron mobility of the nMOSFET on the InGaAs layer in relation to the charge density Ns.
  • FIG. 17 shows the case where the thickness of the InGaAs layer is 20 nm, 50 nm, and 100 nm.
  • 16 and 17 show the mobility when Si is used as an active layer for comparison. From 16 and 17, the hole mobility of the Ge substrate pMOSFET, none of the electron mobility of the InGaAs layer nMOSFET are each 260 cm 2 / Vs, it was found to exhibit 1800 cm 2 / Vs and a high value. These values were 2.3 times and 3.5 times, respectively, compared with the case of Si.
  • semiconductor device 102 base substrate, 102a part of base substrate, 103 bonding surface, 106 semiconductor crystal layer, 106a part of semiconductor crystal layer, 110 separation layer, 110a part of separation layer, 112 insulation layer, 112a insulation layer 120 P-channel MISFET, 122 First gate, 124 First source, 126 First drain, 130 N-channel MISFET, 132 Second gate, 134 Second source, 136 Second drain, 140 Semiconductor crystal layer Formation substrate, 150 argon beam, 160 semiconductor crystal layer formation substrate, 170 metal film, 190 crystalline sacrificial layer, 200 semiconductor device

Abstract

 Ge基板上に形成されたPチャネル型MISFETの第1ソースおよび第1ドレインが、Ge原子とニッケル原子との化合物、Ge原子とコバルト原子との化合物またはGe原子とニッケル原子とコバルト原子との化合物からなり、III-V族化合物半導体からなる半導体結晶層に形成されたNチャネル型MISFETの第2ソースおよび第2ドレインが、III族原子およびV族原子とニッケル原子との化合物、III族原子およびV族原子とコバルト原子との化合物、または、III族原子およびV族原子とニッケル原子とコバルト原子との化合物からなる半導体デバイスを提供する。

Description

半導体デバイス、半導体基板、半導体基板の製造方法および半導体デバイスの製造方法
 本発明は、半導体デバイス、半導体基板、半導体基板の製造方法および半導体デバイスの製造方法に関する。なお本願は、平成22年度、独立行政法人新エネルギー・産業技術総合開発機構委託研究「ナノエレクトロニクス半導体新材料・新構造ナノ電子デバイス技術開発 ―シリコンプラットフォーム上III-V族半導体チャネルトランジスタ技術の研究開発」、産業技術力強化法第19条の適用を受ける特許出願である。
 GaAs、InGaAs等のIII-V族化合物半導体は、高い電子移動度を有し、Ge、SiGe等のIV族半導体は、高い正孔移動度を有する。よって、III-V族化合物半導体でNチャネル型のMOSFET(Metal-Oxide-Semiconductor Field Effect Transistor)を構成し、IV族半導体でPチャネル型のMOSFETを構成すれば、高い性能を備えたCMOSFET(Complementary Metal-Oxide-Semiconductor Field Effect Transistor)が実現できる。非特許文献1には、III-V族化合物半導体をチャネルとするNチャネル型MOSFETとGeをチャネルとするPチャネル型MOSFETが、単一基板に形成されたCMOSFET構造が開示されている。
 非特許文献1 S. Takagi, et al., SSE, vol. 51, pp. 526-536, 2007.
 III-V族化合物半導体をチャネルとするNチャネル型MISFET(Metal-Insulator-Semiconductor Field-Effect Transistor)(以下単に「nMISFET」という。)と、IV族半導体をチャネルとするPチャネル型MISFET(以下単に「pMISFET」という。)とを、一つの基板上に形成するには、nMISFET用のIII-V族化合物半導体と、pMISFET用のIV族半導体を同一基板上に形成する技術が必要になる。
 また、nMISFETとpMISFETとで構成されるCMISFET(Complementary Metal-Insulator-Semiconductor Field-Effect Transistor)を、LSIとして安価に効率よく製造するには、nMISFETおよびpMISFETが同時に形成される製造プロセスを採用することが好ましい。特に、nMISFETのソース・ドレインとpMISFETのソース・ドレインが同時に形成できれば、工程を簡略化することができ、コスト削減とともに素子の微細化にも容易に対応できるようになる。
 たとえばnMISFETのソース・ドレイン形成領域とpMISFETのソース・ドレイン形成領域とに、ソースおよびドレインとなる材料を薄膜として形成し、さらにフォトリソグラフィ等によりパターニングして形成することで、nMISFETのソース・ドレインとpMISFETのソース・ドレインとを同時に形成できる。しかし、nMISFETが形成されるIII-V族化合物半導体結晶層と、pMISFETが形成されるIV族半導体結晶層とでは、構成される材料が異なる。このため、nMISFETまたはpMISFETの一方または両方のソース・ドレイン領域の抵抗が大きくなり、あるいは、nMISFETまたはpMISFETの一方または両方のソース・ドレイン領域とソース・ドレイン電極との接触抵抗が大きくなる。従って、nMISFETおよびpMISFETの両方のソース・ドレイン領域の抵抗あるいはソース・ドレイン電極との接触抵抗を小さくすることが難しい。
 本発明の目的は、チャネルがIII-V族化合物半導体であるnMISFETと、チャネルがIV族半導体であるpMISFETと、で構成されるCMISFETを、一つの基板上に形成する場合において、nMISFETおよびpMISFETの各ソースおよび各ドレインを同時に形成し、かつ、ソース・ドレイン領域の抵抗またはソース・ドレイン電極との接触抵抗が小さくなるような半導体デバイスおよびその製造方法を提供することにある。
 上記課題を解決するために、本発明の第1の態様においては、Ge結晶からなるベース基板と、ベース基板表面の一部の上方に位置し、III-V族化合物半導体からなる半導体結晶層と、半導体結晶層が上方に位置しない領域のベース基板の一部をチャネルとし、第1ソースおよび第1ドレインを有するPチャネル型MISFETと、半導体結晶層の一部をチャネルとし、第2ソースおよび第2ドレインを有するNチャネル型MISFETと、を有し、第1ソースおよび第1ドレインが、Ge原子とニッケル原子との化合物、Ge原子とコバルト原子との化合物、または、Ge原子とニッケル原子とコバルト原子との化合物からなり、第2ソースおよび第2ドレインが、III族原子およびV族原子とニッケル原子との化合物、III族原子およびV族原子とコバルト原子との化合物、または、III族原子およびV族原子とニッケル原子とコバルト原子との化合物からなる半導体デバイスを提供する。
 上記した半導体デバイスは、ベース基板と半導体結晶層との間に位置し、ベース基板と半導体結晶層とを電気的に分離する分離層を有してもよい。ベース基板と分離層とが接しする場合、ベース基板の分離層と接する領域が導電性であってよく、ベース基板の分離層と接する領域に印加した電圧が、Nチャネル型MISFETへのバックゲート電圧として作用してもよい。ベース基板と半導体結晶層とが接合面で接する場合、ベース基板の接合面の近傍に、p型またはn型の伝導型を示す不純物原子を含有し、半導体結晶層の接合面の近傍に、ベース基板に含有された不純物原子が示す伝導型とは異なる伝導型を示す不純物原子を含有してもよい。
 本発明の第2の態様においては、第1の態様の半導体デバイスに用いる半導体基板であって、ベース基板と、半導体結晶層と、を有し、半導体結晶層が、ベース基板表面の一部の上方に位置する半導体基板を提供する。
 ベース基板と半導体結晶層との間に位置し、ベース基板と半導体結晶層とを電気的に分離する分離層をさらに有してもよい。この場合、分離層として、非晶質絶縁体からなるものが挙げられる。あるいは、分離層として、半導体結晶層を構成する半導体結晶の禁制帯幅より大きな禁制帯幅を有する半導体結晶からなるものが挙げられる。ベース基板と半導体結晶層とが接合面で接する場合、ベース基板の接合面の近傍に、p型またはn型の伝導型を示す不純物原子を含有し、半導体結晶層の接合面の近傍に、ベース基板に含有された不純物原子が示す伝導型とは異なる伝導型を示す不純物原子を含有してもよい。半導体結晶層を複数有してもよく、複数の半導体結晶層のそれぞれが、ベース基板の上面と平行な面内で規則的に配列されてもよい。
 本発明の第3の態様においては、第2の態様の半導体基板を製造する方法であって、半導体結晶層形成基板上に半導体結晶層をエピタキシャル結晶成長法により形成するエピタキシャル成長ステップと、半導体結晶層をベース基板表面の一部の領域またはその上方の領域に貼り合わせる貼り合わせステップと、を有する半導体基板の製造方法を提供する。あるいは上記した半導体基板を製造する方法であって、ベース基板表面の一部の上方に、半導体結晶層を構成する半導体結晶の禁制帯幅より大きな禁制帯幅を有する半導体結晶からなる分離層をエピタキシャル成長法により形成するステップと、分離層の上に半導体結晶層をエピタキシャル成長法により形成するステップと、を有する半導体基板の製造方法を提供する。あるいは、上記した半導体基板を製造する方法であって、ベース基板の表面近傍に、p型またはn型の伝導型を示す不純物原子を含有し、ベース基板表面の一部の上方に、半導体結晶層をエピタキシャル成長法により形成するステップを有し、半導体結晶層をエピタキシャル成長法により形成するステップにおいて、ベース基板に含有された不純物原子が示す伝導型とは異なる伝導型を示す不純物原子で、ベース基板をドープする半導体基板の製造方法を提供する。
 半導体結晶層形成基板の表面に、エピタキシャル結晶成長法により形成された結晶性犠牲層を有してもよく、この場合、結晶性犠牲層を除去することで、半導体結晶層形成基板上にエピタキシャル成長された半導体結晶層と半導体結晶層形成基板とを分離するものであってもよい。半導体結晶層をエピタキシャル成長させた後に半導体結晶層を規則的な配列にパターニングするステップ、または半導体結晶層を予め規則的な配列に選択的にエピタキシャル成長させるステップ、のいずれかのステップを有してもよい。
 本発明の第4の態様においては、第3の態様の半導体基板の製造方法を用いて、半導体結晶層を有する半導体基板を製造するステップと、半導体結晶層が上方に位置しない領域のベース基板の上、および半導体結晶層の上に、ゲート絶縁層を介してゲート電極を形成するステップと、ベース基板のソース電極形成領域上、ベース基板のドレイン電極形成領域上、半導体結晶層のソース電極形成領域上、および半導体結晶層のドレイン電極形成領域上に、ニッケル膜、コバルト膜およびニッケル-コバルト合金膜からなる群から選ばれた金属膜を形成するステップと、金属膜を加熱して、ベース基板に、Ge原子とニッケル原子との化合物、Ge原子とコバルト原子との化合物、または、Ge原子とニッケル原子とコバルト原子との化合物からなる第1ソースおよび第1ドレインを形成し、半導体結晶層に、III族原子およびV族原子とニッケル原子との化合物、III族原子およびV族原子とコバルト原子との化合物、または、III族原子およびV族原子とニッケル原子とコバルト原子との化合物からなる第2ソースおよび第2ドレインを形成するステップと、未反応の金属膜を除去するステップと、を有する半導体デバイスの製造方法を提供する。
半導体デバイス100の断面を示す。 半導体デバイス100の製造過程における断面を示す。 半導体デバイス100の製造過程における断面を示す。 半導体デバイス100の製造過程における断面を示す。 半導体デバイス100の製造過程における断面を示す。 半導体デバイス100の製造過程における断面を示す。 他の半導体デバイスの製造過程における断面を示す。 他の半導体デバイスの製造過程における断面を示す。 半導体デバイス200の断面を示す。 InGaAs層上のTaゲート部分の断面を観察したTEM写真である。 Taゲート部分の断面を観察したTEM写真である。 Ge基板上のpMOSFETとInGaAs層上のnMOSFETを上方から観察したSEM写真である。 Ge基板上pMOSFETとInGaAs層上nMOSFETのドレイン電流対ドレイン電圧特性を示す。 Ge基板上pMOSFETのゲート電圧対ドレイン電流特性を示す。 InGaAs層上nMOSFETのゲート電圧対ドレイン電流特性を示す。 Ge基板上pMOSFETのホール移動度を電荷密度Nsとの関係で示す。 InGaAs層上nMOSFETの電子移動度を電荷密度Nsとの関係で示す。
 図1は、半導体デバイス100の断面を示す。半導体デバイス100は、Ge結晶からなるベース基板102と、III-V族化合物半導体からなる半導体結晶層106とを有し、ベース基板102と半導体結晶層106との間に分離層110を有する。本例の半導体デバイス100は、半導体結晶層106の上に絶縁層112を有する。なお、図1に示した実施例からは、ベース基板102と、半導体結晶層106とを構成要件とする半導体基板の発明と、ベース基板102、分離層110および半導体結晶層106を構成要件とする半導体基板の発明との少なくとも2つの発明が把握できる。ベース基板102にはPチャネル型MISFET120が形成され、半導体結晶層106にはNチャネル型MISFET130が形成されている。
 半導体結晶層106は、ベース基板102表面の一部の上方に位置する。半導体結晶層106の厚さは、20nm以下であることが好ましい。半導体結晶層106の厚さを20nm以下とすることで、極薄膜ボディのNチャネル型MISFET130を構成できる。Nチャネル型MISFET130のボディを極薄膜にすることで、短チャネル効果を抑制し、Nチャネル型MISFET130のリーク電流を減少することができる。
 半導体デバイス100では、III-V族化合物半導体結晶層をNチャネル型MISFETに使用し、Ge結晶をPチャネル型MISFETに使用する。III-V族化合物半導体結晶として、InGa1-xAs(0<x<1)結晶、GaAs結晶、または、InP結晶が挙げられる。また、III-V族化合物半導体結晶として、GaAsまたはInPに格子整合または擬格子整合するIII-V族化合物半導体の混晶が挙げられる。また、III-V族化合物半導体結晶として、当該混晶とInGa1-xAs(0<x<1)結晶、GaAs結晶またはInP結晶との積層体が挙げられる。なお、III-V族化合物半導体結晶としては、InGa1-xAs(0<x<1)結晶が好適である。III-V族化合物半導体結晶では電子移動度が高く、IV族半導体結晶特にGeでは正孔移動度が高いので、CMISFETの性能を最大化することができる。
 分離層110は、ベース基板102と半導体結晶層106との間に位置する。分離層110は、ベース基板102と半導体結晶層106とを電気的に分離する。
 分離層110は、非晶質絶縁体からなるものであってもよい。半導体結晶層106および分離層110が貼り合わせ法により形成された場合、分離層110は、非晶質絶縁体になる。非晶質絶縁体からなる分離層110として、Al、AlN、Ta、ZrO、HfO、La、SiO(例えばSiO)、SiN(例えばSi)およびSiOのうちの少なくとも1からなる層、またはこれらの中から選ばれた少なくとも2層の積層が挙げられる。
 分離層110は、半導体結晶層106を構成する半導体結晶の禁制帯幅より大きな禁制帯幅を有する半導体結晶からなるものであってもよい。このような半導体結晶は、エピタキシャル結晶成長法により形成できる。半導体結晶層106がInGaAs結晶層またはGaAs結晶層である場合、分離層110を構成する半導体結晶として、AlGaAs結晶、AlInGaP結晶、AlGaInAs結晶、または、InP結晶が挙げられる。
 絶縁層112の一部112aは、Nチャネル型MISFET130のゲート絶縁層として機能する。絶縁層112として、Al、AlN、Ta、ZrO、HfO、La、SiO(例えばSiO)、SiN(例えばSi)およびSiOのうちの少なくとも1からなる層、またはこれらの中から選ばれた少なくとも2層の積層が挙げられる。
 Pチャネル型MISFET120は、第1ゲート122、第1ソース124および第1ドレイン126を有する。第1ソース124および第1ドレイン126は、ベース基板102に形成される。Pチャネル型MISFET120は、半導体結晶層106が上方に位置しない領域のベース基板102に形成され、第1ソース124および第1ドレイン126に挟まれるベース基板102の一部102aをチャネルとする。第1ゲート122は、当該一部104aの上方に形成される。チャネル領域であるベース基板102の一部102aと第1ゲート122に挟まれた分離層110の一部110aは、Pチャネル型MISFET120のゲート絶縁層として機能してもよい。
 第1ソース124および第1ドレイン126は、Ge原子とニッケル原子との化合物からなる。あるいは第1ソース124および第1ドレイン126は、Ge原子とコバルト原子との化合物からなる。あるいは第1ソース124および第1ドレイン126は、Ge原子とニッケル原子とコバルト原子との化合物からなる。これらGeのニッケル化合物あるいはコバルト化合物あるいはニッケル-コバルト化合物は、電気抵抗が低い低抵抗化合物である。
 Nチャネル型MISFET130は、第2ゲート132、第2ソース134および第2ドレイン136を有する。第2ソース134および第2ドレイン136は、半導体結晶層106に形成される。Nチャネル型MISFET130は、第2ソース134および第2ドレイン136に挟まれる半導体結晶層106の一部106aをチャネルとする。第2ゲート132は、当該一部106aの上方に形成される。チャネル領域である半導体結晶層106の一部106aと第2ゲート132に挟まれた領域には、絶縁層112の一部112aが形成される。当該一部112aは、Nチャネル型MISFET130のゲート絶縁層として機能してもよい。
 第2ソース134および第2ドレイン136は、III族原子およびV族原子とニッケル原子との化合物からなる。あるいは第2ソース134および第2ドレイン136は、III族原子およびV族原子とコバルト原子との化合物からなる。あるいは第2ソース134および第2ドレイン136は、III族原子およびV族原子とニッケル原子とコバルト原子との化合物からなる。これらIII-V族結晶のニッケル化合物あるいはコバルト化合物あるいはニッケル-コバルト化合物は、電気抵抗が低い低抵抗化合物である。
 以上の通り、Pチャネル型MISFET120のソース・ドレイン(第1ソース124および第1ドレイン126)と、Nチャネル型MISFET130のソース・ドレイン(第2ソース134および第2ドレイン136)が、共通の原子(ニッケル原子、コバルト原子またはその両方の原子)の化合物からなる。これは共通の原子を有する材料膜を用いた当該部位の製造を可能にする構成であり、製造工程の簡略化を可能にする。また、共通の原子としてニッケルまたはコバルトまたはその両方を用いることで、III-V族化合物半導体結晶層に形成したソース・ドレイン、Ge結晶に形成したソース・ドレインの何れであっても、ソース領域およびドレイン領域の電気抵抗を低くできる。この結果、製造工程を簡略化すると共にFETの性能を高くすることができる。
 なお、第1ソース124および第1ドレイン126にアクセプタ不純物原子をさらに含んでよく、第2ソース134および第2ドレイン136にドナー不純物原子をさらに含んでよい。Nチャネル型MISFET130のソース・ドレイン(第2ソース134および第2ドレイン136)部に添加されるドナー不純物原子として、Si、S、Se、Geが挙げられる。Pチャネル型MISFET120のソース・ドレイン(第1ソース124および第1ドレイン126)部に添加されるアクセプタ不純物原子として、B、Al、Ga、Inが挙げられる。
 図2から図6は、半導体デバイス100の製造過程における断面を示す。まず、ベース基板102と半導体結晶層形成基板160を用意し、半導体結晶層形成基板160上に半導体結晶層106をエピタキシャル結晶成長法により形成する。また、ベース基板102上に分離層110を形成する。分離層110は、たとえばALD(Atomic Layer Deposition)法、熱酸化法、蒸着法、CVD(Chemical Vapor Deposition)法、スパッタ法等の薄膜形成法により形成する。半導体結晶層形成基板160としてInP基板、GaAs基板が選択できる。
 半導体結晶層106のエピタキシャル結晶成長には、MOCVD(Metal Organic Chemical Vapor Deposition)法を利用することができる。III-V族化合物半導体結晶層をMOCVD法で形成する場合、InソースにはTMIn(トリメチルインジウム)を、GaソースにはTMGa(トリメチルガリウム)を、AsソースにはAsH(アルシン)、PソースにはPH(ホスフィン)を用いることができる。キャリアガスには水素を用いることができる。反応温度は、300℃から900℃の範囲で、好ましくは450~750℃の範囲で適宜選択できる。Pチャネル型MISFET120をベース基板102に形成するに際して、ベース基板となるGe基板表面にさらに結晶性の良いGeエピタキシャル結晶層を形成することもできる。Ge結晶層をCVD法で形成する場合、Geソースには、GeH(ゲルマン)を用いることもできる。キャリアガスには水素を用いることができる。反応温度は、300℃から900℃の範囲で、好ましくは450~750℃の範囲で適宜選択できる。ソースガス供給量や反応時間を適宜選択することでエピタキシャル成長層の厚さを制御することができる。
 図2に示すように、半導体結晶層106の表面と分離層110の表面をアルゴンビーム150で活性化する。その後、図3に示すように、半導体結晶層106の表面を分離層110の表面の一部に貼り合わせて接合する。貼り合わせは室温で行うことができる。活性化はアルゴンビーム150である必要はなく、他の希ガス等のビームであっても良い。その後、半導体結晶層形成基板160をHCl溶液等でエッチングし、除去する。これにより、ベース基板102上に分離層110が形成され、分離層110表面の一部の上に半導体結晶層106が形成される。なお、分離層110とベース基板102とを貼り合わせる前に、半導体結晶層106の表面を硫黄原子で終端する硫黄終端処理を行っても良い。
 図2および図3に示す例では、分離層110をベース基板102の上にのみ形成し、分離層110の表面と半導体結晶層106の表面とを貼り合わせる例を説明したが、半導体結晶層106の上にも分離層110を形成し、ベース基板102上の分離層110の表面と半導体結晶層106上の分離層110の表面とを貼り合わせてもよい。この場合、分離層110の貼り合わせる面を親水化処理することが好ましい。親水化処理した場合は、分離層110どうしを加熱して貼り合わせることが好ましい。あるいは、半導体結晶層106の上にのみ分離層110を形成し、ベース基板102の表面と半導体結晶層106上の分離層110の表面とを貼り合わせてもよい。
 図2および図3に示す例では、半導体結晶層106をベース基板102上の分離層110に貼り合わせた後に、半導体結晶層106を半導体結晶層形成基板160から分離する例を説明したが、半導体結晶層106を半導体結晶層形成基板160から分離した後に、半導体結晶層106を分離層110に貼り合わせてもよい。この場合、半導体結晶層106を半導体結晶層形成基板160から分離した後、分離層110に貼り合わせるまでの間、適切な転写用基板に半導体結晶層106を保持することが好ましい。
 図4に示すように、半導体結晶層106の上に絶縁層112を形成する。絶縁層112は、たとえばALD法、熱酸化法、蒸着法、CVD法、スパッタ法等の薄膜形成法により形成する。さらに、ゲートとなる金属たとえばタンタルの薄膜を蒸着法、CVD法またはスパッタ法により形成し、当該薄膜をフォトリソグラフィを用いてパターニングし、半導体結晶層106が形成されていないベース基板102の上方に第1ゲート122を形成し、半導体結晶層106の上方に第2ゲート132を形成する。
 図5に示すように、第1ゲート122の両側の分離層110に、ベース基板102に達する開口を形成し、第2ゲート132の両側の絶縁層112に、半導体結晶層106に達する開口を形成する。各ゲートの両側とは、水平方向における、各ゲートの両側を指す。この第1ゲート122両側の開口および第2ゲート132両側の開口のそれぞれは、第1ソース124、第1ドレイン126、第2ソース134および第2ドレイン136のそれぞれが形成される領域に該当する。これら開口の底部に露出したベース基板102、および、半導体結晶層106のそれぞれに接するように、ニッケルからなる金属膜170を形成する。金属膜170は、コバルト膜、またはニッケル-コバルト合金膜であってもよい。
 図6に示すように、金属膜170を加熱する。加熱により、ベース基板102と金属膜170とが反応し、Ge原子と、金属膜170を構成する原子との化合物が形成され、第1ソース124および第1ドレイン126となる。同時に、半導体結晶層106と金属膜170とが反応し、III族原子およびV族原子と、金属膜170を構成する原子との化合物が形成され、第2ソース134および第2ドレイン136となる。金属膜170がニッケル膜である場合、第1ソース124および第1ドレイン126として、Ge原子とニッケル原子との低抵抗化合物が生成され、第2ソース134および第2ドレイン136として、第2半導体結晶層106を構成するIII族原子およびV族原子とニッケル原子との低抵抗化合物が生成される。なお、金属膜170がコバルト膜である場合、第1ソース124および第1ドレイン126として、Ge原子とコバルト原子との化合物が生成され、第2ソース134および第2ドレイン136として、III族原子およびV族原子とコバルト原子との化合物が生成される。金属膜170がニッケル-コバルト合金膜である場合、第1ソース124および第1ドレイン126として、Ge原子とニッケル原子とコバルト原子との化合物が生成され、第2ソース134および第2ドレイン136として、III族原子およびV族原子とニッケル原子とコバルト原子との化合物が生成される。最後に未反応の金属膜170を除去し、図1の半導体デバイス100が製造できる。
 金属膜170の加熱方法は、RTA(rapid thermal annealing)法が好ましい。RTA法を用いる場合、加熱温度としては250℃~450℃を用いることができる。上記のような方法により、第1ソース124、第1ドレイン126、第2ソース134および第2ドレイン136をセルフアラインで形成できる。
 以上説明した半導体デバイス100とその製造方法によれば、第1ソース124、第1ドレイン126、第2ソース134および第2ドレイン136が、同一プロセスで同時に形成されるので、製造工程を簡略化できる。その結果、製造コストが低減され、微細化も容易になる。また、第1ソース124、第1ドレイン126、第2ソース134および第2ドレイン136が、ベース基板102 あるいは半導体結晶層106を構成する原子、すなわちGe原子あるいはIII-V族原子とニッケル、コバルトあるいはニッケル・コバルト合金との低抵抗化合物である。またこれらの低抵抗化合物と半導体デバイス100のチャネルを構成するGeおよび半導体結晶層106との接触電位障壁は0.1eV以下と、極めて小さい。また、第1ソース124、第1ドレイン126、第2ソース134および第2ドレイン136の各々と電極金属とのコンタクトがオーミックコンタクトとなり、Pチャネル型MISFET120およびNチャネル型MISFET130の各オン電流を大きくすることができる。また、第1ソース124、第1ドレイン126、第2ソース134および第2ドレイン136の各抵抗が小さくなるから、Pチャネル型MISFET120およびNチャネル型MISFET130のチャネル抵抗を低くする必要がなく、ドーピング不純物原子の濃度を少なくできる。この結果、チャネル層でのキャリアの移動度を大きくすることができる。
 上記した半導体デバイス100では、ベース基板102と分離層110とが接しており、ベース基板102の分離層110と接する領域が導電性であるならば、ベース基板102の分離層110と接する領域に電圧を印加し、当該電圧を、Nチャネル型MISFET130へのバックゲート電圧として作用させることができる。バックゲート電圧の作用は、Nチャネル型MISFET130のオン電流を大きくし、オフ電流を小さくすることができる。
 上記した半導体デバイス100において、半導体結晶層106を複数有し、複数の半導体結晶層106のそれぞれが、ベース基板102の上面と平行な面内で規則的に配列されてもよい。このように、半導体結晶層106を規則的に配列することで、半導体デバイス100に使用する半導体基板の生産性を高めることができる。半導体結晶層106の規則的な配列は、半導体結晶層106をエピタキシャル成長させた後に半導体結晶層106を規則的な配列にパターニングする方法、または半導体結晶層106を予め規則的な配列に選択的にエピタキシャル成長させる方法、または半導体結晶層106を、半導体結晶層形成基板160上にエピタキシャル成長させた後、半導体結晶層形成基板160から分離し、所定の形状に整形した後、規則的な配列でベース基板102上に貼り合せる方法、のいずれかの方法により実施でき、また、いずれか複数の方法を組み合わせた方法により実施できる。
 上記した半導体デバイス100において、分離層110を、半導体結晶層106を構成する半導体結晶の禁制帯幅より大きな禁制帯幅を有する半導体結晶とする場合、ベース基板102上に分離層110および半導体結晶層106を連続してエピタキシャル成長法により形成できる。なお、分離層110がエピタキシャル成長結晶である場合、分離層110および半導体結晶層106をベース基板102上に形成した後、分離層110を酸化して非晶質絶縁体層に転換してもよい。たとえば、分離層110がAlAs、あるいはAlInPである場合、選択酸化技術により、分離層110を絶縁性酸化物とすることができる。
 上記した半導体デバイス100の製造方法における貼り合わせ工程では、半導体結晶層形成基板をエッチングして除去する例を説明したが、図7に示すように、結晶性犠牲層190を用いて半導体結晶層形成基板を除去することもできる。すなわち、半導体結晶層形成基板140の上に半導体結晶層106を形成する前に、半導体結晶層形成基板140の表面に、結晶性犠牲層190をエピタキシャル結晶成長法により形成する。その後、結晶性犠牲層190の表面に半導体結晶層106をエピタキシャル成長法により形成し、ベース基板102上の分離層110を形成し、半導体結晶層106の表面と分離層110の表面をアルゴンビーム150で活性化する。その後、半導体結晶層106の表面と分離層110の表面を貼り合わせ、図8に示すように、結晶性犠牲層190を除去する。これにより、半導体結晶層形成基板140上の半導体結晶層106と半導体結晶層形成基板140とが分離される。当該方法によれば、半導体結晶層形成基板の再利用が可能になり、製造コストを低くすることができる。
 図9は、半導体デバイス200の断面を示す。半導体デバイス200は、半導体デバイス100における分離層110を有さず、半導体結晶層106がベース基板102に接して配置されている。なお、半導体デバイス200では、分離層110が無いのでPチャネル型MISFET120のゲート絶縁層として絶縁層112が用いられる。その他は半導体デバイス100と同じ構造を有するので、共通する部材等の説明は省略する。
 半導体デバイス200は、ベース基板102と半導体結晶層106とが接合面103で接し、ベース基板102の接合面103の近傍に、p型またはn型の伝導型を示す不純物原子を含有し、半導体結晶層106の接合面103の近傍に、ベース基板102に含有された不純物原子が示す伝導型とは異なる伝導型を示す不純物原子を含有する。つまり、半導体デバイス200は、接合面103の近傍にpn接合を有する。分離層110が無い構造であっても、接合面103近傍に形成されるpn接合によって、ベース基板102と半導体結晶層106とを電気的に分離することが可能であり、ベース基板102に形成されるPチャネル型MISFETと半導体結晶層106に形成されるNチャネル型MISFET130とを電気的に分離することができる。
 なお、半導体デバイス200は、ベース基板102の上に半導体結晶層106をエピタキシャル成長法により形成し、半導体結晶層106の上に絶縁層112を形成する工程以降の工程を半導体デバイス100の場合と同様の工程にすることで製造できる。ただし、pn接合の形成は、ベース基板102の表面近傍に、p型またはn型の伝導型を示す不純物原子を含有させ、半導体結晶層106をエピタキシャル成長法により形成するステップにおいて、ベース基板102に含有された不純物原子が示す伝導型とは異なる伝導型を示す不純物原子で半導体結晶層106をドープすることで実施できる。
 半導体結晶層106をベース基板102の上に直接形成する構造において、素子分離の必要性が低い場合には分離構造としてのpn接合は必須ではない。つまり、半導体デバイス200は、ベース基板102の接合面103の近傍にp型またはn型の伝導型を示す不純物原子を含有せず、半導体結晶層106の接合面103の近傍にp型またはn型の伝導型を示す不純物原子を含有しない構造であってもよい。
 半導体結晶層106をベース基板102の上に直接形成する場合、エピタキシャル成長の後、またはエピタキシャル成長の途中において、アニール処理を施してもよい。アニール処理により、半導体結晶層106中の転位が低減する。また、エピタキシャル成長法は、ベース基板102の表面全部に半導体結晶層106を一様に成長する方法、あるいは、SiO等の成長阻害層でベース基板102の表面を細かく分割し、選択的に成長する方法の何れのエピタキシャル成長法であってもよい。
(実施例)
 ベース基板102としてGe(100)ウェハを用い、半導体結晶層形成基板160としてInP(100)ウェハを用いた。InP(100)ウェハ上にInGaAs層をエピタキシャル成長法により形成し、InGaAs層上にALD法によりAl層を形成した。Ge(100)ウェハ上にALD法によりAl層を形成した。InP(100)ウェハ上のAl層とGe(100)ウェハ上のAl層とを貼り合わせ、アニール後にInP(100)ウェハをHClエッチングにより除去した。InGaAs層のIn比は0.53とし、不純物濃度は1015atoms/cmのオーダーとした。Ge基板の不純物濃度は1~2×1014atoms/cmとした。このときの抵抗率は7.1~9.5Ω・cmであった。InGaAs層の厚さが、20nm、50nm、100nmの3種類のデバイスを作成した。
 InGaAs層の表面を硫黄化合物で処理し、ALD法によりAl層を堆積した。Al層の一部をエッチングし、さらにInGaAs層の一部をエッチングして、Ge基板上にInGaAs層が無い領域を形成した。Ta膜をスパッタリングし、当該Ta膜をパターニングして、Ge基板上のAl層およびInGaAs層上のAl層の各Al層上にTaからなるゲートを形成した。ゲート形成後に350℃でアニールした。図10は、InGaAs層上のTaゲート部分の断面を観察したTEM写真である。図11は、Ge基板上のTaゲート部分の断面を観察したTEM写真である。図10および図11は、InGaAs層の厚さが50nmの場合である。
 ゲート両側のAl層に開口を形成し、Ni膜をスパッタリングにより堆積した。250℃、1分の加熱によりNiとGe、およびNiとInGaAsを反応させ、未反応のNiをウェットエッチングにより除去し、InGaAs層およびGe基板の各々にNi化合物からなるソース・ドレインを形成した。図12は、Ge基板上のpMOSFETとInGaAs層上のnMOSFETを上方から観察したSEM写真である。
 図13は、Ge基板上pMOSFETとInGaAs層上nMOSFETのドレイン電流対ドレイン電圧特性を示す。各FETのゲート幅Wおよびゲート長Lは各々100μmおよび50μmである。InGaAs層の厚さが20nmのものを示した。ゲート電圧を0~-2V(pMOSFETの場合)、0~2V(nMOSFETの場合)の範囲で変えた。ゲート電圧で適切に制御された良好なドレイン電流対ドレイン電圧特性が観測された。
 図14および図15は、ゲート電圧対ドレイン電流特性を示す。ドレイン電流はゲート幅で規格化した絶対値で示す。図14は、Ge基板上pMOSFETの特性を示し、図15は、InGaAs層上nMOSFETの特性を示す。各FETのゲート幅Wおよびゲート長Lは各々100μmおよび20μmである。InGaAs層の厚さは20nmである。各図において、ドレイン電圧が1Vの場合と50mVの場合を示した。図15のnMOSFETについては、シングルゲート(SG)の場合に加えてダブルゲート(DG)の場合も示した。図14および図15より、Ge基板上pMOSFETおよびInGaAs層上nMOSFETの何れのFETも正常に動作していることがわかる。特に、InGaAs層上nMOSFETのダブルゲート動作においては、電流オンオフ比が10程度であり、良好なトランジスタ特性を示す。
 図16は、Ge基板上pMOSFETのホール移動度を電荷密度Nsとの関係で示す。図17は、InGaAs層上nMOSFETの電子移動度を電荷密度Nsとの関係で示す。図17では、InGaAs層の厚さが20nm、50nm、100nmの各々の場合について示す。図16および図17において、比較としてSiを活性層とする場合の移動度を示す。図16および図17より、Ge基板上pMOSFETのホール移動度、InGaAs層上nMOSFETの電子移動度の何れもが、各々260cm/Vs、1800cm/Vsと高い値を示すことがわかった。これらの値は、Siの場合と比較して、それぞれ2.3倍、3.5倍であった。
 請求の範囲、明細書、および図面中において示した装置、システム、プログラム、および方法における動作、手順、ステップ、および段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。請求の範囲、明細書、および図面中の動作フローに関して、便宜上「まず、」、「次に、」等を用いて説明したとしても、この順で実施することが必須であることを意味するものではない。また、第1層が第2層の「上方」にあるとは、第1層が第2層の上面に接して設けられる場合と、第1層の下面および第2層の上面の間に他の層が介在している場合とを含む。また、「上」、「下」等の方向を指す語句は、半導体基板および半導体デバイスにおける相対的な方向を示しており、地面等の外部の基準面に対する絶対的な方向を指すものではない。
100 半導体デバイス、102 ベース基板、102a ベース基板の一部、103 接合面、106 半導体結晶層、106a 半導体結晶層の一部、110 分離層、110a 分離層の一部、112 絶縁層、112a 絶縁層の一部、120 Pチャネル型MISFET、122 第1ゲート、124 第1ソース、126 第1ドレイン、130 Nチャネル型MISFET、132 第2ゲート、134 第2ソース、136 第2ドレイン、140 半導体結晶層形成基板、150 アルゴンビーム、160 半導体結晶層形成基板、170 金属膜、190 結晶性犠牲層、200 半導体デバイス

Claims (16)

  1.  Ge結晶からなるベース基板と、
     前記ベース基板における一部の領域の上方に位置し、III-V族化合物半導体からなる半導体結晶層と、
     前記半導体結晶層が上方に位置しない前記ベース基板の領域の一部をチャネルとし、第1ソースおよび第1ドレインを有するPチャネル型MISFETと、
     前記半導体結晶層の一部をチャネルとし、第2ソースおよび第2ドレインを有するNチャネル型MISFETと、を有し、
     前記第1ソースおよび前記第1ドレインが、Ge原子とニッケル原子との化合物、Ge原子とコバルト原子との化合物、または、Ge原子とニッケル原子とコバルト原子との化合物からなり、
     前記第2ソースおよび前記第2ドレインが、III族原子およびV族原子とニッケル原子との化合物、III族原子およびV族原子とコバルト原子との化合物、または、III族原子およびV族原子とニッケル原子とコバルト原子との化合物からなる
     半導体デバイス。
  2.  前記ベース基板と前記半導体結晶層との間に位置し、前記ベース基板と前記半導体結晶層とを電気的に分離する分離層を有する
     請求項1に記載の半導体デバイス。
  3.  前記ベース基板と前記分離層とが接し、
     前記ベース基板の前記分離層と接する領域が導電性であり、
     前記ベース基板の前記分離層と接する領域に印加した電圧が、前記Nチャネル型MISFETへのバックゲート電圧として作用する
     請求項2に記載の半導体デバイス。
  4.  前記ベース基板と前記半導体結晶層とが接合面で接し、
     前記接合面の近傍における前記ベース基板の領域に、p型またはn型の伝導型を示す不純物原子を含有し、
     前記接合面の近傍における前記半導体結晶層の領域に、前記ベース基板に含有された不純物原子が示す伝導型とは異なる伝導型を示す不純物原子を含有する
     請求項1に記載の半導体デバイス。
  5.  請求項1に記載の半導体デバイスに用いる半導体基板であって、
     前記ベース基板と、前記半導体結晶層と、を有し、
     前記半導体結晶層が、前記ベース基板表面の一部の上方に位置する
     半導体基板。
  6.  前記ベース基板と前記半導体結晶層との間に位置し、前記ベース基板と前記半導体結晶層とを電気的に分離する分離層、をさらに有する
     請求項5に記載の半導体基板。
  7.  前記分離層が、非晶質絶縁体からなる
     請求項6に記載の半導体基板。
  8.  前記分離層が、前記半導体結晶層を構成する半導体結晶の禁制帯幅より大きな禁制帯幅を有する半導体結晶からなる
     請求項6に記載の半導体基板。
  9.  前記ベース基板と前記半導体結晶層とが接合面で接し、
     前記接合面の近傍における前記ベース基板の領域に、p型またはn型の伝導型を示す不純物原子を含有し、
     前記接合面の近傍における前記半導体結晶層の領域に、前記ベース基板に含有された不純物原子が示す伝導型とは異なる伝導型を示す不純物原子を含有する
     請求項5に記載の半導体基板。
  10.  前記半導体結晶層を複数有し、
     複数の前記半導体結晶層のそれぞれが、前記ベース基板の上面と平行な面内で規則的に配列されている
     請求項5に記載の半導体基板。
  11.  請求項5に記載の半導体基板を製造する方法であって、
     半導体結晶層形成基板上に前記半導体結晶層をエピタキシャル結晶成長法により形成するエピタキシャル成長ステップと、
     前記半導体結晶層を前記ベース基板における一部の領域またはその上方の領域に貼り合わせる貼り合わせステップと、
     を有する半導体基板の製造方法。
  12.  請求項5に記載の半導体基板を製造する方法であって、
     前記ベース基板における一部の領域の上方に、前記半導体結晶層を構成する半導体結晶の禁制帯幅より大きな禁制帯幅を有する半導体結晶からなる分離層をエピタキシャル成長法により形成するステップと、
     前記分離層の上に前記半導体結晶層をエピタキシャル成長法により形成するステップと、
     を有する半導体基板の製造方法。
  13.  請求項5に記載の半導体基板を製造する方法であって、
     前記ベース基板の表面近傍に、p型またはn型の伝導型を示す不純物原子を含有させるステップと、
     前記ベース基板表面の一部の上方に、前記半導体結晶層をエピタキシャル成長法により形成するステップとを有し、
     前記半導体結晶層をエピタキシャル成長法により形成するステップにおいて、前記ベース基板に含有された不純物原子が示す伝導型とは異なる伝導型を示す不純物原子で、前記ベース基板をドープする
     半導体基板の製造方法。
  14.  前記半導体結晶層形成基板の上に半導体結晶層を形成する前に、前記半導体結晶層形成基板の表面に、エピタキシャル結晶成長法により結晶性犠牲層を形成するステップを有し、
     前記半導体結晶層を前記ベース基板に貼り合わせた後に前記結晶性犠牲層を除去することで、前記半導体結晶層形成基板上にエピタキシャル成長された半導体結晶層と前記半導体結晶層形成基板とを分離する
     請求項11に記載の半導体基板の製造方法。
  15.  前記半導体結晶層をエピタキシャル成長させた後に前記半導体結晶層を規則的な配列にパターニングするステップ、または前記半導体結晶層を予め規則的な配列に選択的にエピタキシャル成長させるステップ、のいずれかのステップを有する
     請求項11に記載の半導体基板の製造方法。
  16.  請求項11に記載の半導体基板の製造方法を用いて、前記半導体結晶層を有する半導体基板を製造するステップと、
     前記半導体結晶層が上方に位置しない領域の前記ベース基板の上、および前記半導体結晶層の上に、ゲート絶縁層を介してゲート電極を形成するステップと、
     前記ベース基板のソース電極形成領域上、前記ベース基板のドレイン電極形成領域上、前記半導体結晶層のソース電極形成領域上、および前記半導体結晶層のドレイン電極形成領域上に、ニッケル膜、コバルト膜およびニッケル-コバルト合金膜からなる群から選ばれた金属膜を形成するステップと、
     前記金属膜を加熱して、前記ベース基板に、Ge原子とニッケル原子との化合物、Ge原子とコバルト原子との化合物、または、Ge原子とニッケル原子とコバルト原子との化合物からなる第1ソースおよび第1ドレインを形成し、前記半導体結晶層に、III族原子およびV族原子とニッケル原子との化合物、III族原子およびV族原子とコバルト原子との化合物、または、III族原子およびV族原子とニッケル原子とコバルト原子との化合物からなる第2ソースおよび第2ドレインを形成するステップと、
     未反応の前記金属膜を除去するステップと、
     を有する半導体デバイスの製造方法。
PCT/JP2012/003784 2011-06-10 2012-06-11 半導体デバイス、半導体基板、半導体基板の製造方法および半導体デバイスの製造方法 WO2012169212A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020137031860A KR20140036211A (ko) 2011-06-10 2012-06-11 반도체 디바이스, 반도체 기판, 반도체 기판의 제조 방법 및 반도체 디바이스의 제조 방법
CN201280026103.4A CN103563069A (zh) 2011-06-10 2012-06-11 半导体器件、半导体基板、半导体基板的制造方法及半导体器件的制造方法
US14/099,204 US20140091398A1 (en) 2011-06-10 2013-12-06 Semiconductor device, semiconductor wafer, method for producing semiconductor wafer, and method for producing semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-130731 2011-06-10
JP2011130731 2011-06-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/099,204 Continuation-In-Part US20140091398A1 (en) 2011-06-10 2013-12-06 Semiconductor device, semiconductor wafer, method for producing semiconductor wafer, and method for producing semiconductor device

Publications (1)

Publication Number Publication Date
WO2012169212A1 true WO2012169212A1 (ja) 2012-12-13

Family

ID=47295795

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/003784 WO2012169212A1 (ja) 2011-06-10 2012-06-11 半導体デバイス、半導体基板、半導体基板の製造方法および半導体デバイスの製造方法

Country Status (6)

Country Link
US (1) US20140091398A1 (ja)
JP (1) JP2013016793A (ja)
KR (1) KR20140036211A (ja)
CN (1) CN103563069A (ja)
TW (1) TW201306235A (ja)
WO (1) WO2012169212A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017533574A (ja) 2014-09-18 2017-11-09 インテル・コーポレーション シリコンcmos互換性半導体装置における欠陥伝播制御のための傾斜側壁カット面を有するウルツ鉱ヘテロエピタキシャル構造物
JP6376575B2 (ja) 2014-09-25 2018-08-22 インテル・コーポレーション 自立シリコンメサ上のiii−nエピタキシャル素子構造
WO2016080961A1 (en) 2014-11-18 2016-05-26 Intel Corporation Cmos circuits using n-channel and p-channel gallium nitride transistors
KR102423219B1 (ko) 2014-12-18 2022-07-20 인텔 코포레이션 N-채널 갈륨 질화물 트랜지스터들
US10147652B2 (en) * 2015-02-24 2018-12-04 Globalfoundries Inc. Method, apparatus and system for advanced channel CMOS integration
CN107949914B (zh) * 2015-05-19 2022-01-18 英特尔公司 具有凸起掺杂晶体结构的半导体器件
CN107667424B (zh) 2015-06-26 2022-02-18 英特尔公司 具有高温稳定基板界面材料的异质外延结构
US9627275B1 (en) * 2015-10-30 2017-04-18 Taiwan Semiconductor Manufacturing Company Ltd. Hybrid semiconductor structure on a common substrate
WO2019066953A1 (en) 2017-09-29 2019-04-04 Intel Corporation REDUCED CONTACT RESISTANCE GROUP III (N-N) NITRIDE DEVICES AND METHODS OF MAKING SAME

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59198750A (ja) * 1983-04-25 1984-11-10 Seiko Epson Corp 半導体装置
JPS63311768A (ja) * 1987-06-13 1988-12-20 Fujitsu Ltd 相補型半導体装置の製造方法
JPH0384960A (ja) * 1989-08-28 1991-04-10 Nec Corp 半導体装置
JPH03109740A (ja) * 1989-09-25 1991-05-09 Hitachi Ltd 半導体装置
JP2001093987A (ja) * 1999-07-29 2001-04-06 Stmicroelectronics Inc Si基板上のGaAs/Geの新規なCMOS回路
JP2006100403A (ja) * 2004-09-28 2006-04-13 Fujitsu Ltd 電界効果型トランジスタおよびその製造方法
JP2007103897A (ja) * 2005-09-09 2007-04-19 Fujitsu Ltd 電界効果トランジスタおよびその製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3376078B2 (ja) * 1994-03-18 2003-02-10 富士通株式会社 高電子移動度トランジスタ
US7696574B2 (en) * 2005-10-26 2010-04-13 International Business Machines Corporation Semiconductor substrate with multiple crystallographic orientations
US8211786B2 (en) * 2008-02-28 2012-07-03 International Business Machines Corporation CMOS structure including non-planar hybrid orientation substrate with planar gate electrodes and method for fabrication
JP2011014806A (ja) * 2009-07-06 2011-01-20 Hitachi Ltd 半導体装置及び半導体装置の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59198750A (ja) * 1983-04-25 1984-11-10 Seiko Epson Corp 半導体装置
JPS63311768A (ja) * 1987-06-13 1988-12-20 Fujitsu Ltd 相補型半導体装置の製造方法
JPH0384960A (ja) * 1989-08-28 1991-04-10 Nec Corp 半導体装置
JPH03109740A (ja) * 1989-09-25 1991-05-09 Hitachi Ltd 半導体装置
JP2001093987A (ja) * 1999-07-29 2001-04-06 Stmicroelectronics Inc Si基板上のGaAs/Geの新規なCMOS回路
JP2006100403A (ja) * 2004-09-28 2006-04-13 Fujitsu Ltd 電界効果型トランジスタおよびその製造方法
JP2007103897A (ja) * 2005-09-09 2007-04-19 Fujitsu Ltd 電界効果トランジスタおよびその製造方法

Also Published As

Publication number Publication date
US20140091398A1 (en) 2014-04-03
CN103563069A (zh) 2014-02-05
KR20140036211A (ko) 2014-03-25
TW201306235A (zh) 2013-02-01
JP2013016793A (ja) 2013-01-24

Similar Documents

Publication Publication Date Title
WO2012169212A1 (ja) 半導体デバイス、半導体基板、半導体基板の製造方法および半導体デバイスの製造方法
TWI550828B (zh) 半導體裝置、半導體基板、半導體基板之製造方法及半導體裝置之製造方法
JP5678485B2 (ja) 半導体装置
TWI690975B (zh) 應力堆疊奈米片鰭狀電晶體及/或量子井堆疊奈米片
TWI660509B (zh) Channel field effect transistor and switching element
JP5599089B2 (ja) 半導体装置、半導体装置の製造方法、半導体基板、および半導体基板の製造方法
KR20020066191A (ko) Mos 전계 효과 트랜지스터
TW201019375A (en) Semiconductor wafer, electronic device, and method for making a semiconductor wafer
CN103384917A (zh) 半导体基板及其制造方法
JP6560117B2 (ja) 半導体装置の製造方法
WO2012169209A1 (ja) 半導体デバイス、半導体基板、半導体基板の製造方法および半導体デバイスの製造方法
WO2012169214A1 (ja) 半導体デバイス、半導体基板、半導体基板の製造方法および半導体デバイスの製造方法
WO2012169210A1 (ja) 半導体デバイス、半導体基板、半導体基板の製造方法および半導体デバイスの製造方法
JP2010177297A (ja) 半導体装置およびその製造方法
JP2013069970A (ja) 半導体積層基板およびその製造方法
CN116525670A (zh) 增强模式hemt及其制造工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12796920

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137031860

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12796920

Country of ref document: EP

Kind code of ref document: A1