WO2012165523A1 - 粒状物の搬送装置 - Google Patents

粒状物の搬送装置 Download PDF

Info

Publication number
WO2012165523A1
WO2012165523A1 PCT/JP2012/064026 JP2012064026W WO2012165523A1 WO 2012165523 A1 WO2012165523 A1 WO 2012165523A1 JP 2012064026 W JP2012064026 W JP 2012064026W WO 2012165523 A1 WO2012165523 A1 WO 2012165523A1
Authority
WO
WIPO (PCT)
Prior art keywords
granular material
inclined surface
plate
petroleum resin
hydrogenated petroleum
Prior art date
Application number
PCT/JP2012/064026
Other languages
English (en)
French (fr)
Inventor
一 高杉
盛夫 岩田
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Priority to CN201280022305.1A priority Critical patent/CN103502117B/zh
Priority to US14/116,035 priority patent/US9334119B2/en
Priority to SG2013082029A priority patent/SG194804A1/en
Priority to EP12794073.2A priority patent/EP2716579A1/en
Priority to KR1020137028898A priority patent/KR101911973B1/ko
Publication of WO2012165523A1 publication Critical patent/WO2012165523A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G11/00Chutes
    • B65G11/20Auxiliary devices, e.g. for deflecting, controlling speed of, or agitating articles or solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G11/00Chutes
    • B65G11/20Auxiliary devices, e.g. for deflecting, controlling speed of, or agitating articles or solids
    • B65G11/206Auxiliary devices, e.g. for deflecting, controlling speed of, or agitating articles or solids for bulk
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G11/00Chutes
    • B65G11/02Chutes of straight form
    • B65G11/026Chutes of straight form for bulk
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G11/00Chutes
    • B65G11/08Chutes with discontinuous guiding surfaces, e.g. arranged in zigzag or cascade formation
    • B65G11/085Chutes with discontinuous guiding surfaces, e.g. arranged in zigzag or cascade formation with zig-zag formations
    • B65G11/088Chutes with discontinuous guiding surfaces, e.g. arranged in zigzag or cascade formation with zig-zag formations for bulk
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G47/00Article or material-handling devices associated with conveyors; Methods employing such devices
    • B65G47/02Devices for feeding articles or materials to conveyors
    • B65G47/16Devices for feeding articles or materials to conveyors for feeding materials in bulk
    • B65G47/18Arrangements or applications of hoppers or chutes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G65/00Loading or unloading
    • B65G65/30Methods or devices for filling or emptying bunkers, hoppers, tanks, or like containers, of interest apart from their use in particular chemical or physical processes or their application in particular machines, e.g. not covered by a single other subclass
    • B65G65/34Emptying devices
    • B65G65/40Devices for emptying otherwise than from the top
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G69/00Auxiliary measures taken, or devices used, in connection with loading or unloading
    • B65G69/16Preventing pulverisation, deformation, breakage, or other mechanical damage to the goods or materials

Definitions

  • the present invention relates to a granular material conveying apparatus for conveying granular materials.
  • Hot melt adhesives are widely used in the manufacture and binding of paper diapers and various packaging.
  • a hot melt adhesive a styrene butadiene styrene block copolymer (Styrene-Butadiene-Styrene block copolymer: hereinafter referred to as SBS), a styrene isoprene-styrene block copolymer (hereinafter referred to as SBS), SIS), ethylene vinyl acetate block copolymer (hereinafter referred to as EVA), amorphous polyAlpha-Olefin (hereinafter referred to as APAO), and the like.
  • SBS styrene butadiene styrene block copolymer
  • SBS styrene isoprene-styrene block copolymer
  • SIS SIS
  • EVA ethylene vinyl acetate block copolymer
  • APAO amorphous polyAlp
  • a hydrogenated petroleum resin as a tackifier is blended with the base polymer.
  • the hydrogenated petroleum resin is produced by a hydrogenation treatment in which a polymer obtained by polymerizing a styrene monomer with cyclopentadiene is hydrogenated. From the point of handling, it may be manufactured into a hemispherical pellet.
  • granulation may be performed by dropping molten hydrogenated petroleum resin onto a metal cooling belt conveyor. Then, the cooled resin pellets are peeled off from the cooling belt conveyor by a flake-shaped scraping member, conveyed to the hopper via a belt conveyor, a chute, etc., and put into the hopper and stored.
  • the granulated hydrogenated petroleum resin pellets are relatively hard and brittle. For this reason, when the granulated hydrogenated petroleum resin pellets are dropped from the granulating device onto the belt conveyor via the chute, they are damaged by the impact at the time of dropping, and crushed materials and powder are generated. These crushed materials and powders are dropped from the chute to the belt conveyor together with hydrogenated petroleum resin pellets. In particular, the powder rises to the surroundings when dropped, and adheres to and accumulates on the belt conveyor components and surroundings. . For this reason, it is necessary to remove the deposits and deposits so that the conveyance failure of the belt conveyor due to the deposits and deposits does not occur. However, since such deposits and deposits soar easily, the environment for the removal work is bad and the work is very complicated.
  • An object of the present invention is to provide a granular material transport device that is easy to maintain and can stably transport a granular material for a long period of time.
  • the granular material conveying device of the present invention is provided with an inclined surface through which the granular material flows, and protrudes from the inclined surface, and changes the flow direction of the granular material by contacting the granular material to thereby increase the flow rate of the granular material. And a buffer portion that decelerates.
  • the flow rate of the granular material flowing on the inclined surface is reduced by changing the flowing direction in contact with the buffer portion protruding from the inclined surface. For this reason, the impact received when a granular material flows becomes weak, and the damage by the impact at the time of conveyance can be suppressed.
  • the said buffer part is provided with a plate-shaped member, and the said plate-shaped member is set as the structure by which the plane direction cross
  • the plate-like member changes the flow direction of the granular material flowing on the inclined surface to decelerate the flow velocity. Therefore, damage to the granular material can be suppressed with a simple structure in which the plate-like member protrudes from the inclined surface. .
  • the plate-like member is provided so as to intersect with the inclination direction of the inclined surface, the granular material flows obliquely downward with respect to the inclination direction of the inclined surface without stagnation on the plate-like member. For this reason, when a different product is poured, the inconvenience which mixes with the granular material which stagnates on a buffer part can be prevented.
  • a plurality of the plate-like members are provided in the inclination direction of the inclined surface, and each of the plate-like members adjacent above and below the inclination direction is provided with the plane direction inclined in the opposite direction.
  • a configuration is preferable.
  • the granular material flowing through the inclined surface is caused to flow in a meandering manner with respect to the inclined direction of the inclined surface by a plurality of plate-like members whose plane directions are inclined in opposite directions.
  • the granular material conveying device of the present invention includes an inclined surface through which the granular material flows, and the granular material flowing through the inclined surface that temporarily protrudes from the inclined surface, and the inclined granular surface on the retained granular material And a staying part for changing the flow direction of the granular material to reduce the flow rate of the granular material.
  • the granular material flowing on the inclined surface is temporarily retained by a retention portion protruding from the inclined surface, and the direction in which the granular material flowing on the inclined surface comes into contact with the retained granular material is changed.
  • the flow rate is reduced. For this reason, when a granular material flows, the impact received by contacting with granular materials becomes weak, and the damage by the impact at the time of conveyance can be suppressed.
  • the stay portion includes a pair of plate-like members facing each other in the width direction intersecting the direction in which the granular material flows on the inclined surface, and the pair of plate-like members are opposed to each other at the lower end. It is preferable that the distance is narrower than the opposing distance at the upper end, and the granular material protrudes at a distance that allows the granular material to flow through.
  • the paired plate-like members are opposed to each other in the width direction of the inclined surface, and the opposed distances of the lower ends of these plate-like members are narrowed so that the particulate matter can flow through. As a result, the particulate matter can temporarily stay between the paired plate-like members.
  • the staying granular material changes the flow direction by bringing the granular material flowing on the inclined surface into contact with the granular material to slow down the flow velocity. For this reason, the damage by the impact at the time of conveyance of a granular material can be suppressed with the simple structure which provides the stay part of the plate-shaped member which makes a pair. Moreover, the staying granular material flows from between the lower ends of a plate-shaped member because supply of the granular material which flows on an inclined surface stops. Thereby, the granular material does not continue to stay between the plate-like members, and even if different products are flowed on the inclined surface, it is possible to prevent the inconvenience of mixing with the granular materials staying between the plate-like members.
  • the staying portion includes a wall plate that allows the granular material flowing on the inclined surface to flow downward without dropping from the inclined surface, and a plate-like member that faces the wall plate in the width direction of the inclined surface.
  • the plate-like member has a configuration in which a lower end approaches the wall plate and a distance between the lower end and the wall plate is provided to allow the granular material to flow.
  • the plate member is provided with the lower end approaching the wall plate that guides the granular material flowing down the inclined surface without dropping, and the lower end of the plate member and the wall plate are opposed to each other. In this case, the particulate matter can be temporarily retained.
  • the flow rate is reduced by changing the flow direction by bringing the granular material flowing on the inclined surface into contact with the remaining granular material.
  • the granular material is preferably a hydrogenated petroleum resin pellet.
  • a hydrogenated petroleum resin pellet Even during hydrogenated petroleum resin pellets that are easily damaged, damage during transportation can be satisfactorily suppressed. For this reason, for example, when preparing a hot melt adhesive by mixing hydrogenated petroleum resin pellets with a base polymer, the hydrogenated petroleum resin pellets are broken and the particle size distribution fluctuates. The inconvenience that the setting and adjustment of the production conditions of the hot melt adhesive becomes complicated can also be prevented.
  • the block diagram which shows schematic structure of the manufacturing plant of the hydrogenated petroleum resin pellet which concerns on the conveyance apparatus of the granular material of this invention.
  • the schematic structure figure which shows the granulation part in the manufacturing plant of the said hydrogenated petroleum resin pellet.
  • the schematic structure figure which shows the conveyance part in the manufacturing plant of the said hydrogenated petroleum resin pellet.
  • the schematic plan view which shows the arrangement
  • the schematic side view which shows the arrangement
  • the schematic plan view which shows the arrangement
  • sequence of the said buffer board The schematic plan view which shows the arrangement
  • sequence of the said buffer board The schematic plan view which shows the arrangement
  • a hydrogenated petroleum resin pellet conveying device as a granulated material conveying device of the present invention will be described with reference to the drawings.
  • a hydrogenated petroleum resin pellet is illustrated as a granular material, it can apply not only to this but to various granular materials, and the granular material which is easy to be damaged especially by an impact can be made into object.
  • the structure of the manufacturing plant which manufactures the hydrogenated petroleum resin pellet provided with the conveyance apparatus of the hydrogenated petroleum resin pellet is demonstrated below.
  • a hydrogenated petroleum resin pellet manufacturing plant 1 is a plant for manufacturing hydrogenated petroleum resin pellets from hydrogenated petroleum resin raw materials.
  • the production plant 1 includes a polymerization reaction unit 2, a hydrogenation reaction unit 3, a hydrogenation solvent recovery unit 4, a granulation unit 5, a transport unit 6, a storage unit 7, and a control unit (not shown). I have.
  • the polymerization reaction unit 2 performs a polymerization reaction in which a cyclopentadiene compound and a vinyl aromatic compound are thermally polymerized to obtain a copolymer.
  • the polymerization reaction unit 2 includes a polymerization reaction tank for performing a thermal polymerization reaction with a cyclopentadiene compound and a vinyl aromatic compound that are hydrogenated petroleum resin raw materials using a solvent.
  • the cyclopentadiene compound include cyclopentadiene, methylcyclopentadiene, and ethylcyclopentadiene, as well as dimers and co-dimers thereof.
  • Examples of vinyl aromatic compounds include styrene, ⁇ -methylstyrene, vinyltoluene and the like.
  • Examples of the solvent include aromatic solvents, naphthene solvents, aliphatic hydrocarbon solvents, and the like. Specifically, benzene, toluene, xylene, cyclohexane, methylcyclohexane, dimethylcyclohexane, ethylcyclohexane and the like can be suitably used.
  • the solvent is appropriately recovered from the polymerization reaction tank and reused.
  • the recovered solvent usually contains a low molecular weight substance having a molecular weight of about 200 to 350.
  • the concentration of the low molecular weight substance in the solvent when reused as the solvent for thermal polymerization is at least 4% by mass or less.
  • the low molecular weight substance is separated and removed separately or diluted with a new solvent to obtain a low molecular weight concentration of 4% by mass or less, and at the start of the polymerization reaction. Used as a solvent for polymerization.
  • the polymerization reaction tank is a reactor that performs polymerization under pressure and heating, and includes a stirrer and a heating device (not shown). Then, the first raw material tank, the second raw material tank, and the solvent tank of the solvent recovery unit are connected to the polymerization reaction tank, and the cyclopentadiene compound, the vinyl aromatic compound, and the solvent are appropriately introduced. In addition, the obtained copolymer is discharged from the bottom of the polymerization reaction tank and used for the next hydrogenation reaction.
  • the amount of the polymerization solvent used is 50 to 500 parts by mass with respect to 100 parts by mass of the monomer mixture.
  • the temperature of the solvent is heated to 100 ° C., preferably 150 ° C. or more at the start of thermal polymerization.
  • copolymerization is performed while a mixture of a cyclopentadiene compound and a vinyl aromatic compound is added in portions in a heated solvent.
  • the divided addition time is usually 0.5 to 5 hours, and it is desirable to add them equally.
  • the reaction temperature is 150 ° C. or more and 350 ° C.
  • the polymerization reaction tank has a softening point of 60 ° C. or higher and 130 ° C. or lower, a vinyl aromatic compound content of 30% by mass or higher and 90% by mass or lower, and a bromine value of 30 g / 100 g or higher depending on the conditions of these thermal polymerizations.
  • a copolymer having 90 g / 100 g or less and a number average molecular weight of 400 to 1000 is obtained.
  • the hydrogenation reaction section 3 performs a hydrogenation reaction in which hydrogen is added to the copolymer produced by thermal polymerization in the polymerization reaction section 2 to obtain a hydrogenation reaction product.
  • the hydrogenation reaction section 3 includes a plurality of hydrogenation reaction towers for performing hydrogenation reaction by adding hydrogen to the copolymer produced by thermal polymerization in the polymerization reaction section 2 in the presence of a hydrogenation solvent. ing.
  • the hydrogenation solvent include cyclohexane, methylcyclohexane, dimethylcyclohexane, ethylcyclohexane, tetrahydrofuran, and the like.
  • the hydrogenation reaction tower is a tower filled with a hydrogenation reaction catalyst, and may be used in multiple stages.
  • the hydrogenation reaction catalyst nickel, palladium, cobalt, platinum, rhodium-based catalyst or the like is used.
  • the hydrogenation reaction column hydrogenates the copolymer with hydrogen in the presence of a hydrogenation reaction catalyst at a temperature of 120 to 300 ° C., a reaction pressure of 1 to 6 MPa, and a reaction time of 1 to 7 hours. .
  • the softening point is 70 ° C. or more and 140 ° C.
  • the vinyl aromatic compound content is 0% by mass or more and 35% by mass or less
  • the bromine value is 0 g / 100 g or more and 30 g / 100 g or less
  • number average A hydrogenation reaction product having a molecular weight of 400 to 1000 is obtained.
  • the hydrogenation reaction section 3 after the hydrogenation reaction in the hydrogenation reaction tower, the gas phase containing unreacted hydrogen is separated and appropriately recovered and treated outside the system.
  • the hydrogenation solvent recovery unit 4 separates and removes the hydrogenation solvent from the hydrogenation reaction product.
  • the hydrogenated solvent recovery unit 4 includes a solvent evaporation tank 41 as a first evaporator, a thin film evaporator 42 as a second evaporator, and the like.
  • the solvent evaporation tank 41 is connected to the hydrogenation reaction unit 3, and separates and recovers the hydrogenation solvent from the hydrogenation reaction product obtained in the hydrogenation reaction unit 3.
  • the evaporated hydrogenated solvent is separately collected and reused as a hydrogenated solvent used in the hydrogenation reaction in the hydrogenation reaction unit 3.
  • the thin film evaporator 42 is connected to the solvent evaporation tank 41 and evaporates and recovers the hydrogenated solvent remaining in the hydrogenation reaction product.
  • the evaporated hydrogenated solvent and low molecular weight substance are separately collected and reused as appropriate as the hydrogenated solvent used in the hydrogenation reaction in the hydrogenation reaction section 3 in accordance with the physical properties of the hydrogenated petroleum resin pellets to be produced. Is done.
  • an addition unit for adding an antioxidant is provided between the solvent evaporation tank 41 and the thin film evaporator 42 of the hydrogenated solvent recovery unit 4.
  • the addition part of the antioxidant adds the antioxidant to the hydrogenation reaction product from which most of the hydrogenation solvent has been removed in the solvent evaporation tank 41.
  • the solvent for dissolving the antioxidant the remaining hydrogenated solvent together with the solvent in which the antioxidant is dissolved is separated by the evaporation treatment by the thin film evaporator 42 in the subsequent stage, and the recovered hydrogenated solvent is reused for the hydrogenation reaction. can do. This is because the hydrogenation reaction is not affected.
  • the solvent in which the antioxidant is dissolved is separated and recovered from the hydrogenation reaction product together with the hydrogenation solvent by the thin film evaporator 42 on the downstream side.
  • the granulating unit 5 granulates the molten resin, which is a hydrogenation reaction product from which the hydrogenation solvent has been removed and the antioxidant is added, into pelletized hydrogenated petroleum resin pellets.
  • the granulation unit 5 includes a granulator 50A and a granulation air cooling unit 50B as shown in FIG.
  • the granulator 50A includes a granulator main body 52 and a cooling conveyor 53.
  • the granulator main body 52 is disposed in the granulation casing 51 so as to face the upstream end side in the transport direction of the cooling conveyor 53.
  • the granulator main body 52 has a die 52B that discharges molten resin along the axial direction from the outer peripheral surface of the body portion 52A to a body portion 52A having a cylindrical heating unit (not shown).
  • the granulator main body 52 has a cylindrical rotating body 52C that fits rotatably on the outer peripheral surface of the body portion 52A.
  • the rotating body 52C has a plurality of discharge holes 52D like a punching metal.
  • the cooling conveyor 53 includes a pair of pulleys 53A and a metal belt 53B that is a metal endless belt that is rotatively looped around the pulleys 53A. Further, the cooling conveyor 53 is provided with a cooling section 53D that cools the metal belt 53B by ejecting cooling water 53C from the back surface of the metal belt 53B. Note that the cooling method of the metal belt 53B is not limited to the method of ejecting the cooling water 53C, and any method such as blowing cool air can be applied.
  • the granulation air cooling unit 50B includes an air introduction path 54B having a blower 54A for introducing air into the granulation casing 51, and an intake blower 54C for sucking air in the granulation casing 51. And an intake passage 54E having a filter 54D.
  • the air introduction path 54 ⁇ / b> B is provided so that air can be introduced into the granulation casing 51 at positions corresponding to the downstream end of the cooling conveyor 53 and the two intermediate positions.
  • the intake passage 54 ⁇ / b> E is located at three positions in the vicinity of the granulator main body 52, which is the upstream end of the cooling conveyor 53, and two positions at intermediate positions in the transport direction of the cooling conveyor 53, that is, on the cooling conveyor 53.
  • the intake passage 54E captures and removes the low molecular weight mist from the air containing the low molecular weight mist in the granulation casing 51 by the filter 54D and exhausts only the air.
  • the intake / exhaust at the intermediate position is appropriately designed corresponding to the different softening points of the hydrogenated petroleum resin pellets to be produced. That is, it is preferable to have a structure capable of intake / exhaust at a plurality of positions so that even when the range until the molten resin solidifies varies depending on the product.
  • an inertial collision filter As the filter 54D, an inertial collision filter, a blocking filter, an electrostatic adsorption filter, a brown diffusion filter, or the like is used, and a glass fiber filter is particularly preferable. That is, since the low molecular weight mist is composed of fine high-viscosity fine particles having a mist diameter of 1 ⁇ m or less, the effect of collecting particles whose mass is ignored in addition to the inertial collision effect (collection effect by Brownian diffusion) is obtained. A glass fiber filter is preferred. Further, the pressure loss of the filter 54D is preferably set to 0.5 kPa or more and 2.5 kPa or less from the relationship with the filtration area.
  • a scraper 55 that scrapes off the hydrogenated petroleum resin pellets solidified on the metal belt is disposed in the granulation casing 51 at the downstream end of the cooling conveyor 53. ing. Further, the granulating casing 51 is connected to a transport unit 6 that is positioned at the downstream end of the cooling conveyor 53 and transports to the storage unit 7.
  • the transport unit 6 transports the hydrogenated petroleum resin pellets granulated by the granulation unit 5 to the storage unit 7. As shown in FIG. 4, the transport unit 6 includes a chute 61 connected to the granulating unit 5, a transport conveyor 62 connected to the chute 61, and a bucket conveyor (not shown).
  • One end of the chute 61 is connected to the lower portion of the granulating casing 51 at the downstream end of the cooling conveyor 53 and the other end extends downward, and one end is connected to the lower end of the upper chute 61A.
  • the other end has an upper chute portion 61A and a lower chute portion 61B extending to the opposite side, and is formed in a V shape in a side view.
  • the upper chute portion 61A and the lower chute portion 61B are provided such that the inclined surface 63 on which the hydrogenated petroleum resin pellets flow is inclined at an inclination angle of 44 ° to 75 ° with respect to the horizontal plane.
  • the hydrogenated petroleum resin pellets are retained on the inclined surface 63, and the hydrogenated petroleum resin pellets that are retained by switching the product to be manufactured are newly produced. The inconvenience of being mixed with the product to be produced occurs.
  • the inclination angle of the inclined surface 63 is steeply greater than 75 °, the flowing speed of the hydrogenated petroleum resin pellets flowing down on the inclined surface 63 increases, and the hydrogenated petroleum resin pellets may be damaged by the falling impact. Because there is.
  • a plurality of buffer plates 64 as plate-like members stand up on the inclined surface 63 where the hydrogenated petroleum resin pellets flow down in the upper chute portion 61A and the lower chute portion 61B. It is installed.
  • the buffer plate 64 is formed of, for example, a steel plate, and changes the flow direction of the hydrogenated petroleum resin pellets by contacting the hydrogenated petroleum resin pellets so that the flow rate of the hydrogenated petroleum resin pellets is reduced.
  • Projected to A plurality of buffer plates 64 are erected on the inclined surface 63 so as to intersect or incline with respect to the inclination direction of the inclined surface 63, and have a sliding surface 64A on which the hydrogenated petroleum resin pellets can slide.
  • Each of the plurality of buffer plates 64 is erected sequentially with the inclination direction of the sliding surface 64A alternately inclined in the opposite direction to the inclination direction of the inclined surface 63, and the lower end of the sliding surface 64A is erected downward.
  • the inclination direction is alternately opposite to the upper portion of the other buffer plate 64. That is, the buffer plates 64 that are adjacent to each other above and below the inclined direction of the inclined surface 63 are provided so that the plane direction of the sliding surface 64A is inclined in the opposite direction, and the hydrogenated petroleum resin pellets are inclined with respect to the inclined direction of the inclined surface 63. Meander and flow down.
  • the buffer plate 64 is erected in a state where the sliding surface is inclined at an inclination angle of 40 ° or more and 52 ° or less with respect to a plane orthogonal to the longitudinal direction of the inclined surface 63.
  • the inclined angle of the sliding surface 64A is a gentle slope smaller than 40 °, the hydrogenated petroleum resin pellets stay on the inclined surface 63, and the hydrogenated petroleum resin pellets that remain by switching the product to be manufactured are newly produced. The inconvenience of being mixed with the product to be produced occurs.
  • the angle of inclination of the inclined surface 63 and the angle of inclination of the sliding surface of the buffer plate 64 are such that the flow rate of the hydrogenated petroleum resin pellets that flow down is less than 1.98 m / second at which the flow rate of the hydrogenated petroleum resin pellets does not break and What is necessary is just to set suitably so that it may become a corner or more.
  • the transport conveyor 62 includes a conveyor casing 62A, a belt conveyor 62B, and a recovery hopper 62C.
  • the belt conveyor 62B is disposed in a conveyor casing 62A connected to the lower end of the lower chute 61B at one end, and conveys hydrogenated petroleum resin pellets flowing down the lower chute 61B.
  • the belt conveyor 62B includes a pair of conveying pulleys 62B1 and an endless belt 62B2 that is looped around the conveying pulleys 62B1.
  • the other end of the conveyor housing 62A is provided with a charging chute (not shown) for charging the hydrogenated petroleum resin pellets conveyed by the belt conveyor 62B into the storage unit 7.
  • a plurality of the buffer plates 64 are also provided on the charging chute.
  • the bucket conveyor which conveys a hydrogenated petroleum resin pellet to the storage part 7 is connected to the input chute.
  • the collection hopper 62C has an opening formed with a diameter increasing upward, and a plurality of collection hoppers 62C are provided on the lower surface of the conveyor casing 62A, positioned below the belt conveyor 62B.
  • the recovery hopper 62C is formed such that the inner surface is inclined at an angle larger than the angle of repose at which the powder of the hydrogenated petroleum resin pellets collapses, specifically, 70 ° or more with respect to the horizontal plane.
  • the collection hoppers 62C are not limited to a plurality of collection hoppers, and are located at least below the lower chute 61B so long as the hydrogenated petroleum resin pellets flowing down the lower chute 61B and spilling from the belt conveyor 62B can be collected. There may be only one.
  • a screw conveyor (not shown) is provided below the collection hoppers 62C below the collection hoppers 62C, and the hydrogenated petroleum resin pellets and powder particles collected by the collection hoppers 62C are collected. It can be transported outside the section 62C.
  • the configuration is not limited to the configuration in which the screw conveyor is provided below the collection hopper 62C, and a configuration in which a belt conveyor or the like is provided or a discharge port that can be simply opened and closed may be provided.
  • the storage unit 7 stores the hydrogenated petroleum resin pellets conveyed by the conveyance unit 6 so as to be appropriately removable.
  • the storage unit 7 includes a storage hopper (not shown) and a switching unit (not shown) that inputs hydrogenated petroleum resin pellets conveyed by the bucket conveyor of the conveyance unit 6 into a predetermined storage hopper.
  • the buffer plate 64 protrudes from the inclined surface 63 of the chute 61 of the transport unit 6. For this reason, the direction of the hydrogenated petroleum resin pellets flowing through the inclined surface 63 is changed in contact with the buffer plate 64, and the flow rate of the hydrogenated petroleum resin pellets is reduced, so that the hydrogenated petroleum resin pellets flow. The impact received is weakened, and it is possible to suppress damage due to the impact during transportation of hydrogenated petroleum resin pellets.
  • the plate-shaped buffer plate 64 is made to protrude in the inclined surface 63 in the inclined state where a plane direction cross
  • a plurality of buffer plates 64 project in the tilt direction of the inclined surface 63, and each of the buffer plates 64 adjacent in the upper and lower directions of the tilt direction is provided in a state where the plane direction is tilted in the opposite direction. ing. For this reason, with a simple structure in which the plurality of buffer plates 64 are provided to be inclined in the opposite direction, it is possible to suppress breakage during transport of the hydrogenated petroleum resin pellets by suppressing an increase in the flow velocity.
  • the structure which conveys the hydrogenated petroleum resin pellet which is easy to break and it is set as the structure which can prevent a breakage and can be conveyed favorably. For this reason, for example, when preparing a hot melt adhesive by mixing hydrogenated petroleum resin pellets with a base polymer, the hydrogenated petroleum resin pellets are broken and the particle size distribution fluctuates. The inconvenience that the setting and adjustment of the production conditions of the hot melt adhesive becomes complicated can also be prevented.
  • the buffer plate 64 provided on the chute 61 of the transport unit 6 is not limited to the above-described arrangement. For example, as shown in FIGS. It may be inclined.
  • the buffer plate 64 may be disposed so as to meander and flow down on both sides of the inclined surface 63 in the inclined direction. That is, the plurality of first buffer plates 64S that incline from both sides of the inclined surface 63 toward the center, and the inclined surface 63 in which the upper edge is located at the center between the lower ends of the first buffer plates 64S facing at the same height position.
  • a second buffer plate 64T having a plane in the inclined direction and a Y-shape in a plan view by inclining from the lower end edge of the second buffer plate 64T toward the upper end edge of the first buffer plate 64S located immediately below.
  • the third buffer plate 64U to be formed may be provided. 9 and 10, the hydrogenated petroleum resin pellets can be transported without being damaged as in the above embodiment.
  • a staying part that abuts between flowing hydrogenated petroleum resin pellets to reduce the falling impact may be configured. That is, the hydrogenated petroleum resin pellets flowing through the inclined surface 63 are temporarily retained, and the hydrogenated petroleum resin pellets flowing through the inclined surface 63 come into contact with the retained hydrogenated petroleum resin pellets, thereby The flow direction of the hydrogenated petroleum resin pellets may be reduced by changing the flow direction.
  • first buffer plates 64S that incline from both sides of the inclined surface 63 toward the center, a parallel plane located above the first buffer plate 64S, and at the center of the inclined surface 63
  • a pair of plate-like members that are positioned and intersect the inclination direction of the inclined surface 63, that is, in the width direction, with their lower end edges facing each other with a predetermined gap and provided in a V shape in plan view.
  • a fourth buffer plate 64V is the gap which is the opposing distance of the lower end edge of the fourth buffer plate 64V that makes a pair cannot pass through the produced hydrogenated petroleum resin pellets, and a part of the gap is retained between the fourth buffer plates 64V like an hourglass.
  • the size is designed to gradually flow down from the gap.
  • the gap be larger than 6 times the maximum particle size of the hydrogenated petroleum resin pellet and be shorter than the dimension between the first buffer plates 64S facing each other.
  • the distance from the fourth buffer plate 64V flowing down to the hydrogenated petroleum resin pellets staying between the fourth buffer plates 64V located immediately below the gap is not faster than the flow-down velocity of 1.98 m / sec. Set to distance.
  • the distance until contact with the fourth buffer plate 64V positioned immediately below is set to a distance that does not become faster than the flow-down speed of 1.98 m / sec.
  • the distance when overflowing from the upper end edge of the fourth buffer plate 64V and flowing down to the first buffer plate 64S is also set to a distance that does not become faster than the flow-down speed of 1.98 m / sec. Also with the configuration shown in FIG. 11, the hydrogenated petroleum resin pellets can be conveyed without being damaged.
  • the retention part which makes hydrogenated petroleum resin pellets retain temporarily, makes hydrogenated petroleum resin pellets contact each other, and changes the flow direction
  • it is set as a structure as shown, for example in FIG. Also good. That is, in the configuration shown in FIG. 12, the lower end of the plate-like fifth buffer plate 64 ⁇ / b> W which is a plate-like member is provided on both sides of the inclined surface 63 of the chute 61 and the hydrogenated petroleum resin pellets flowing through the inclined surface 63 are inclined. Inclined and projecting so as to be close to the wall plate 63 ⁇ / b> A functioning as a guide to flow downward without dropping from 63.
  • the produced hydrogenated petroleum resin pellets cannot be completely passed between the lower end of the fifth buffer plate 64W and the wall plate 63A, and a part of the fifth buffer plate 64W and the wall plate 63A is partly like an hourglass. There is a gap that stays in between and gradually flows down.
  • This gap is, for example, a gap larger than 6 times the maximum particle diameter of the hydrogenated petroleum resin pellets and is shorter than the dimension from the upper end of the fifth buffer plate 64W to the wall plate 63A, as in the embodiment shown in FIG. It is preferable to design the gap.
  • the distance when overflowing from the upper end edge of the fifth buffer plate 64W and flowing down to the fifth buffer plate 64W immediately below is also set to a distance that does not become faster than the flow velocity of 1.98 m / sec. Also with the configuration shown in FIG. 12, the hydrogenated petroleum resin pellets can be conveyed without being damaged.
  • the plate-shaped member such as the buffer plate 64
  • the plate-shaped member protruded and illustrated the structure which changes the flow direction of a hydrogenated petroleum resin pellet
  • a plate-shaped member for example like pachinko.
  • Any configuration can be adopted in which the flow of the hydrogenated petroleum resin pellets flowing through the inclined surface 63 is changed by providing a plurality of pin-shaped members on the surface.
  • the present invention is used in a transport device that transports granular materials that are easily damaged by external impacts, such as hydrogenated petroleum resin pellets.
  • Conveying unit as a granular material conveying device 63.
  • Inclined surface 63 A Wall plate 64.
  • Plate 64W Fifth buffer plate that is a plate-like member constituting the staying portion

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Chutes (AREA)
  • Feeding Of Articles To Conveyors (AREA)

Abstract

 水添石油樹脂ペレットを搬送する搬送部のシュートの傾斜面(63)に、板状の緩衝板(64)を、平面方向が傾斜面(63)の傾斜方向に対して交差する傾斜した状態で複数突設する。傾斜面(63)を流れる水添石油樹脂ペレットは、緩衝板(64)に接触して流れる方向が変更され、水添石油樹脂ペレットの流速が減速される。流速の減速により、水添石油樹脂ペレットが流れる際に受ける衝撃が弱くなり、水添石油樹脂ペレットの搬送時の衝撃による破損を抑制できる。

Description

粒状物の搬送装置
 本発明は、粒状物を搬送する粒状物の搬送装置に関する。
 紙おむつの製造や製本、各種包装などにホットメルト接着剤が広く普及している。例えば、ホットメルト接着剤として、スチレンブタジエンスチレンブロック共重合体(Styrene-Butadiene-Styrene block copolymer:以下、SBSと称す。)、スチレンイソプレンスチレンブロック共重合体(Styrene-Isoprene-Styrene block copolymer:以下、SISと称す。)、エチレン酢酸ビニル共重合体(Ethylene Vinyl Acetate block copolymer:以下、EVAと称す。)、非晶性ポリアルファオレフィン(Amorphous PolyAlpha-Olefin:以下、APAOと称す。)などが挙げられる。該ベースポリマーに、粘着性付与剤としての水添石油樹脂が配合されている。
 水添石油樹脂は、例えば特許文献1に記載のように、シクロペンタジエンにスチレンモノマーを重合させて得られた重合物を水素化する水添処理により生成される。取り扱いの点から、半球状ペレットに製造されることがある。
 該水添石油樹脂ペレットの造粒方法としては、例えば、溶融した水添石油樹脂を金属製の冷却ベルトコンベヤ上に滴下することで造粒することが考えられる。そして、冷却された樹脂ペレットは、薄片状の掻き取り部材により冷却ベルトコンベヤから剥ぎ取られ、ベルトコンベヤやシュートなどを介してホッパーまで搬送され、ホッパーに投入されて貯蔵される。
国際公開第2004/056882号
 造粒された水添石油樹脂ペレットは、比較的に硬質で脆い。このことから、造粒された水添石油樹脂ペレットが造粒装置からシュートを介してベルトコンベヤへ投下される際、投下の際の衝撃などにより破損して、破砕物や粉体が発生する。これら破砕物や粉体は、水添石油樹脂ペレットとともにシュートからベルトコンベヤへ投下されるが、特に粉体は、投下時に周囲に舞い上がり、ベルトコンベヤの構成部品や周囲に付着したり堆積したりする。このため、付着物や堆積物によるベルトコンベアの搬送障害が生じないように、付着物や堆積物を除去する必要がある。
 しかしながら、このような付着物や堆積物は、容易に舞い上がるので、除去作業の環境は悪く、作業も極めて煩雑である。
 本発明の目的は、保守管理が容易で長期間安定して粒状物を搬送できる粒状物の搬送装置を提供することにある。
 本発明の粒状物の搬送装置は、粒状物を流す傾斜面と、該傾斜面に突設され、前記粒状物が接触することにより前記粒状物の流れる方向を変更して前記粒状物の流速を減速する緩衝部と、を具備したことを特徴とする。
 本発明では、傾斜面を流れる粒状物は、傾斜面に突設された緩衝部に接触して流れる方向が変更されて流速が減速する。
 このため、粒状物が流れる際に受ける衝撃が弱くなり、搬送時の衝撃による破損を抑制できる。
 本発明では、前記緩衝部は、板状部材を備え、前記板状部材は、平面方向が前記傾斜面の傾斜方向に対して交差して設けられている構成とすることが好ましい。
 この構成では、板状部材により、傾斜面を流れる粒状物の流れる方向を変更して流速を減速するので、傾斜面に板状部材を突設する簡単な構造で、粒状物の破損を抑制できる。さらに、板状部材を傾斜面の傾斜方向に対して交差して設けているので、粒状物が板状部材上に停滞することなく傾斜面の傾斜方向に対して斜め下方に流される。このため、異なる製品が流された際に緩衝部上に停滞する粒状物と混合してしまう不都合を防止できる。
 本発明では、前記板状部材は、前記傾斜面の傾斜方向で複数設けられ、前記傾斜方向の上下で隣接する前記板状部材のそれぞれは、平面方向が反対方向に傾斜して設けられている構成とすることが好ましい。
 この構成では、傾斜面を流れる粒状物は、平面方向が反対方向に傾斜する複数の板状部材により、傾斜面の傾斜方向に対して蛇行する状態で流される。このことにより、複数の板状部材を反対方向に傾斜させて設ける簡単な構造で、流速が速くなることを抑えて破損を抑制できる。
 本発明の粒状物の搬送装置は、粒状物を流す傾斜面と、該傾斜面に突設され、前記傾斜面を流れる粒状物を一時的に滞留させ、当該滞留された粒状物に前記傾斜面を流れる粒状物が接触することにより、前記粒状物の流れる方向を変更して前記粒状物の流速を減速する滞留部と、を具備したことを特徴とする。
 この構成では、傾斜面を流れる粒状物は、傾斜面に突設された滞留部により一時的に滞留され、この滞留された粒状物に、傾斜面を流れる粒状物が接触して流れる方向が変更されて流速が減速する。このため、粒状物が流れる際に粒状物同士で接触することで受ける衝撃が弱くなり、搬送時の衝撃による破損を抑制できる。
 本発明では、前記滞留部は、前記傾斜面における前記粒状物が流れる方向に対して交差する幅方向で対向する対をなす板状部材を備え、前記対をなす板状部材は、下端の対向距離が上端の対向距離より狭く、かつ前記粒状物を流過可能な距離で突設されている構成とすることが好ましい。
 この構成では、対をなす板状部材を傾斜面の幅方向で対向させ、これら板状部材の下端の対向距離が粒状物を流過可能に狭くなる状態で設けている。このことにより、対をなす板状部材間に一時的に粒状物が滞留可能となる。この滞留する粒状物により、傾斜面を流れる粒状物を接触させて流れる方向を変更させて流速を遅くする。
 このため、対をなす板状部材の滞留部を設ける簡単な構造で、粒状物の搬送時の衝撃による破損を抑制できる。また、傾斜面上を流れる粒状物の供給が停止することで、滞留した粒状物は板状部材の下端間から流れる。このことにより、粒状物が板状部材間に滞留し続けることがなく、異なる製品が傾斜面に流されても、板状部材間に滞留する粒状物と混合してしまう不都合を防止できる。
 本発明では、前記滞留部は、前記傾斜面を流れる粒状物を該傾斜面から落下させずに下方へ流す壁板と、前記壁板に前記傾斜面の幅方向で対向する板状部材とを備え、前記板状部材は、下端が前記壁板に接近し、かつ、下端と前記壁板との間が前記粒状物を流通可能な距離で設けられた構成とすることが好ましい。
 この構成では、傾斜面を流れる粒状物を落下させずに下方へ流させるガイドをする壁板に、下端を接近させて板状部材を設け、板状部材の下端と壁板との対向する間に一時的に粒状物が滞留可能となる。この滞留する粒状物により、傾斜面を流れる粒状物を接触させて流れる方向を変更させて流速を減速する。
 このことにより、板状部材と壁板とを設ける簡単な構造で、粒状物の搬送時の衝撃による破損を抑制できる。また、傾斜面上を流れる粒状物の供給が停止することで、滞留した粒状物は板状部材の下端と壁板との間から流れる。このことにより、粒状物が板状部材と壁板との間に滞留し続けることがなく、異なる製品が傾斜面に流されても、板状部材と壁部との間に滞留する粒状物と混合してしまう不都合を防止できる。
 本発明では、前記粒状物は、水添石油樹脂ペレットである構成とすることが好ましい。
 この構成では、破損しやすい水添石油樹脂ペレットでも良好に搬送時の破損を抑制できる。
 このことにより、例えば水添石油樹脂ペレットをベースポリマーと混合してホットメルト接着剤を調製する際、水添石油樹脂ペレットが破損して粒度分布が変動することで、加熱混合条件が変動してホットメルト接着剤の製造条件の設定や調整が煩雑となるという不都合も防止できる。
本発明の粒状物の搬送装置に係る水添石油樹脂ペレットの製造プラントの概略構成を示すブロック図。 前記水添石油樹脂ペレットの製造プラントにおける造粒部を示す概略構造図。 前記造粒部における造粒状況を説明する概略構成を示す図。 前記水添石油樹脂ペレットの製造プラントにおける搬送部を示す概略構造図。 前記搬送部におけるシュートに複数設けられた緩衝板の配列を示す概略平面図。 前記緩衝板の配列を示す概略側面図。 本発明の他の実施形態における搬送部におけるシュートに複数設けられた緩衝板の配列を示す概略平面図。 前記緩衝板の配列を示す概略側面図。 本発明のさらに他の実施形態における搬送部におけるシュートに複数設けられた緩衝板の配列を示す概略平面図。 前記緩衝板の配列を示す概略側面図。 本発明のさらに他の実施形態における搬送部におけるシュートに複数設けられた緩衝板の配列を示す概略平面図。 本発明のさらに他の実施形態における搬送部におけるシュートに複数設けられた緩衝板の配列を示す概略平面図。
 以下、本発明の造粒物の搬送装置として、水添石油樹脂ペレットの搬送装置に係る実施形態を、図面を参照して説明する。
 本発明では、粒状物として水添石油樹脂ペレットを例示するが、これに限らず、各種粒状物にも適用でき、特に衝撃により破損し易い粒状物を対象とすることができる。
 まず、水添石油樹脂ペレットの搬送装置を備えた水添石油樹脂ペレットを製造する製造プラントの構成について、以下に説明する。
[水添石油樹脂ペレットの製造プラントの構成]
 図1に示すように、水添石油樹脂ペレットの製造プラント1は、水添石油樹脂原料から水添石油樹脂ペレットを製造するプラントである。
 該製造プラント1は、重合反応部2と、水素化反応部3と、水素化溶媒回収部4と、造粒部5と、搬送部6と、貯蔵部7と、図示しない制御部と、を備えている。
 (重合反応)
 重合反応部2は、シクロペンタジエン系化合物とビニル芳香族系化合物とを熱重合させて共重合物を得る重合反応を実施する。
 該重合反応部2は、溶媒を用いて水添石油樹脂原料であるシクロペンタジエン系化合物とビニル芳香族系化合物と熱重合反応を実施する重合反応槽などを備えている。
 シクロペンタジエン系化合物としては、シクロペンタジエン、メチルシクロペンタジエン、エチルシクロペンタジエンの他、これらの二量体や共二量体などが例示できる。
 ビニル芳香族系化合物としては、スチレン、α-メチルスチレン、ビニルトルエンなどが例示できる。
 溶媒としては、芳香族系溶媒、ナフテン系溶媒、脂肪族炭化水素系溶媒などが例示できる。具体的には、ベンゼン、トルエン、キシレン、シクロヘキサン、メチルシクロヘキサン、ジメチルシクロヘキサン、エチルシクロヘキサンなどが好適に使用できる。溶媒は、重合反応槽から適宜回収されて再利用される。
 回収された溶媒の中には、通常、分子量200~350程度の低分子量体が含まれる。
 物性低下を防ぐために、熱重合用の溶媒として再使用される場合の溶媒の低分子量体の濃度は、少なくとも4質量%以下にする。回収溶媒中の低分子量体の含有量によっては、低分子量体を別途分離除去したり、あるいは新溶媒で希釈したりして、4質量%以下の低分子量体濃度とし、重合反応の開始時の重合用の溶媒として使用する。
 重合反応槽は、加圧および加熱下で重合を実施する反応器で、図示しない攪拌装置と加熱装置とを備えている。そして、重合反応槽には、第一原料タンク、第二原料タンクおよび溶媒回収部の溶媒タンクが接続され、シクロペンタジエン系化合物、ビニル芳香族系化合物および溶媒が適宜流入される。また、重合反応槽の底部は、得られた共重合物を流出し、次の水添反応に供する。
 ここで、シクロペンタジエン系化合物とビニル芳香族化合物との混合割合に特に制限はないが、通常は質量比でシクロペンタジエン系化合物:ビニル芳香族化合物=70:30~20:80の割合である。
 また、重合溶媒の使用量は、モノマー混合物100質量部に対して、50~500質量部の割合である。
 そして、重合反応槽では、熱重合の開始時、溶媒の温度を100℃、好ましくは150℃以上に加熱しておくことが望ましい。重合反応槽では、加熱された溶媒中にシクロペンタジエン系化合物とビニル芳香族化合物との混合物が分割添加されながら共重合を行う。
 分割添加時間は通常、0.5~5時間であり、等分に添加することが望ましい。該共重合反応は、シクロペンタジエン系化合物とビニル芳香族化合物との混合物を分割添加し終わった後も引き続き反応を行わせることが望ましい。その時の反応条件に特に制限はないが、通常は反応温度150℃以上350℃以下、反応圧力は、0MPa以上2MPa以下、反応時間は、1時間以上10時間以下である。
 そして、重合反応槽は、これらの熱重合の条件により、軟化点が60℃以上130℃以下、ビニル芳香族系化合物の含有量が30質量%以上90質量%以下、臭素価が30g/100g以上90g/100g以下、数平均分子量が400以上1000以下の共重合物を得る。
 (水素化反応)
 水素化反応部3は、重合反応部2で熱重合により生成された共重合物に水素を添加し水素化反応物を得る水素化反応を実施する。
 該水素化反応部3は、重合反応部2で熱重合により生成された共重合物に水素化溶媒の存在下で水素を添加して水素化反応を実施する複数の水素化反応塔などを備えている。
 水素化溶媒としては、例えば、シクロヘキサン、メチルシクロヘキサン、ジメチルシクロヘキサン、エチルシクロヘキサン、テトラヒドロフランなどが用いられる。
 水素化反応塔は、水素化反応触媒がそれぞれ充填された塔であり、多段に用いても良い。水素化反応触媒としては、ニッケル、パラジウム、コバルト、白金、ロジウム系触媒などが用いられる。そして、水素化反応塔は、水素化反応触媒の存在下で、水素と共重合物を、120~300℃の温度、1~6MPaの反応圧力、1~7時間の反応時間で水素化反応させる。
 上記水素化反応の条件により、軟化点が70℃以上140℃以下、ビニル芳香族系化合物の含有量が0質量%以上35質量%以下、臭素価が0g/100g以上30g/100g以下、数平均分子量が400以上1000以下の水素化反応物を得る。
 水素化反応部3では、水素化反応塔による水素化反応後、未反応の水素を含む気相分を分離して適宜回収し系外にて処理する。
 (水素化溶媒除去)
 水素化溶媒回収部4は、水素化反応物から水素化溶媒を分離除去する。該水素化溶媒回収部4は、第一蒸発器である溶媒蒸発槽41と、第二蒸発器である薄膜蒸発機42と、などを備えている。
 溶媒蒸発槽41は、水素化反応部3に接続され、水素化反応部3で得られた水素化反応物から水素化溶媒を蒸発させて分離回収する。蒸発させた水素化溶媒は、別途回収され、水素化反応部3における水素化反応で利用する水素化溶媒として再利用される。
 薄膜蒸発機42は、溶媒蒸発槽41に接続され、水素化反応物に残留する水素化溶媒を蒸発させて分離回収する。蒸発させた水素化溶媒および低分子量体は、別途回収され、製造する水添石油樹脂ペレットの物性値に対応して、水素化反応部3における水素化反応で利用する水素化溶媒として適宜再利用される。
 水素化溶媒回収部4の溶媒蒸発槽41と薄膜蒸発機42との間には、酸化防止剤を添加する添加部が設けられている。
 酸化防止剤の添加部は、溶媒蒸発槽41で大半の水素化溶媒が除去された水素化反応物に、酸化防止剤を添加する。
 酸化防止剤を溶解する溶媒としては、後段の薄膜蒸発機42による蒸発処理で、酸化防止剤を溶解した溶媒とともに残留する水素化溶媒を分離し、回収した水素化溶媒を水素化反応に再利用することができる。水素化反応に影響を及ぼさないためである。
 そして、酸化防止剤を溶解した溶媒は、下流側の薄膜蒸発機42により、水素化溶媒とともに水素化反応物から分離回収される。
 (造粒)
 造粒部5は、水素化溶媒が除去され酸化防止剤が添加された水素化反応物である溶融樹脂を、ペレット状の水添石油樹脂ペレットに造粒する。
 具体的には、造粒部5は、図2に示すように、造粒機50Aと、造粒空冷部50Bとを備えている。
 造粒機50Aは、図3に示すように、造粒機本体52と、冷却コンベヤ53と、を備えている。
 造粒機本体52は、冷却コンベヤ53における搬送方向の上流端側に対向して造粒筐体51内に配置されている。造粒機本体52は、円筒状で図示しない加熱部を有する胴体部52Aに、該胴体部52Aの外周面から軸方向に沿って溶融樹脂を吐出するダイ52Bを有している。
 また、造粒機本体52は、胴体部52Aの外周面に回転可能に嵌まり合う円筒状の回転体52Cを有している。回転体52Cは、パンチングメタル様に複数の吐出孔52Dを有し、胴体部52Aの外周面を回転することで吐出孔52Dがダイ52Bに位置すると溶融樹脂5Aを冷却コンベヤ53上に所定量で吐出させる。
 冷却コンベヤ53は、造粒筐体51内に配置され、一対のプーリー53Aと、これらプーリー53Aに回行可能に掛け渡された金属製の無端ベルトである金属ベルト53Bを備えている。
 また、冷却コンベヤ53には、金属ベルト53Bの裏面から冷却水53Cを噴出して金属ベルト53Bを冷却する冷却部53Dが設けられている。なお、金属ベルト53Bの冷却方法としては、冷却水53Cを噴出する方法に限らず、冷風を吹き付けるなどいずれの方法が適用できる。
 造粒空冷部50Bは、図2に示すように、造粒筐体51に空気を導入する送風ブロワ54Aを有した空気導入路54Bと、造粒筐体51内の空気を吸引する吸気ブロワ54Cおよびフィルター54Dを有した吸気路54Eとを備えている。
 空気導入路54Bは、冷却コンベヤ53の下流端と中間位置の2箇所とに対応する位置で造粒筐体51内に空気を導入可能に設けられている。
 吸気路54Eは、冷却コンベヤ53の上流端となる造粒機本体52の近傍の3箇所と、冷却コンベヤ53の搬送方向の中間位置の2箇所とに対応する位置、すなわち、冷却コンベヤ53上に滴下された溶融樹脂が固化するまでの範囲で造粒筐体51内の空気を吸気可能に設けられている。そして、吸気路54Eは、造粒筐体51内の低分子量体ミストを含む空気から低分子量体ミストをフィルター54Dで捕捉除去し空気のみを排気する。
 なお、中間位置の吸排気は、製造する水添石油樹脂ペレットの異なる軟化点に対応し、適宜設計される。すなわち、溶融樹脂が固化するまでの範囲が製品によって異なる場合でも対応可能に、複数位置で吸排気できる構造とすることが好ましい。
 フィルター54Dとしては、慣性衝突型フィルター、遮断型フィルター、静電吸着フィルター、ブラウン拡散フィルターなどが用いられ、特にガラス繊維フィルターが好適である。すなわち、低分子量体ミストは、ミスト径1μm以下の微細な高粘度微粒子からなるので、慣性衝突効果に加えて質量が無視される粒子を捕集する効果(ブラウン拡散による捕集効果)が得られるガラス繊維フィルターが好適である。また、フィルター54Dの圧力損失は、濾過面積との関係から、好ましくは0.5kPa以上2.5kPa以下に設定されることが好ましい。
 また、造粒筐体51内には、図4に示すように、冷却コンベヤ53の下流端に位置して、金属ベルト上で固化された水添石油樹脂ペレットを掻き取るスクレーパー55が配設されている。
 さらに、造粒筐体51には、冷却コンベヤ53の下流端に位置して、貯蔵部7へ搬送する搬送部6が接続されている。
 (搬送)
 搬送部6は、造粒部5で造粒された水添石油樹脂ペレットを、貯蔵部7へ搬送する。
 この搬送部6は、図4に示すように、造粒部5に接続されたシュート61と、該シュート61に接続された搬送コンベヤ62と、図示しないバケットコンベヤと、を備えている。
 シュート61は、一端部が冷却コンベヤ53の下流端における造粒筐体51の下部に接続され他端部が下方に延出する上シュート部61Aと、この上シュート部61Aの下端に一端が接続され他端が上シュート部61Aと反対側に延出する下シュート部61Bとを有し、側面視でV字状に形成されている。
 これら上シュート部61Aおよび下シュート部61Bは、水添石油樹脂ペレットが流下する傾斜面63が水平面に対して傾斜角44°以上75°以下に傾斜して設けられている。
 ここで、傾斜面63の傾斜角が44°より小さい緩斜となると、水添石油樹脂ペレットが傾斜面63上に滞留し、製造する製品の切替により滞留する水添石油樹脂ペレットが新たに製造される製品と混じってしまう不都合が生じる。一方、傾斜面63の傾斜角が75°より大きい急斜となると、傾斜面63上を流下する水添石油樹脂ペレットの流下速度が速くなり、流下衝撃により水添石油樹脂ペレットが破損するおそれがあるためである。
 また、上シュート部61Aおよび下シュート部61Bにおける水添石油樹脂ペレットが流下する傾斜面63には、図4~6に示すように、緩衝部である板状部材としての緩衝板64が複数立設されている。
 緩衝板64は、例えば鋼板などにて形成され、水添石油樹脂ペレットが接触することにより水添石油樹脂ペレットの流れる方向を変更して水添石油樹脂ペレットの流速を減速させる状態に傾斜面63に突設されている。緩衝板64は、傾斜面63の傾斜方向に対して交差すなわち傾斜する状態で傾斜面63に複数立設され、水添石油樹脂ペレットが滑動可能な滑り面64Aを上面に有している。そして、複数の緩衝板64のそれぞれは、滑り面64Aの傾斜方向が傾斜面63の傾斜方向で交互に反対方向に傾斜して順次立設され、かつ滑り面64Aの下端が下方に立設される他の緩衝板64の上部に対向する状態に、傾斜方向が交互に反対方向となっている。すなわち、傾斜面63の傾斜方向の上下で隣接する緩衝板64のそれぞれは、滑り面64Aの平面方向が反対方向に傾斜して設けられ、水添石油樹脂ペレットが傾斜面63の傾斜方向に対して蛇行して流下するようになっている。
 そして、緩衝板64は、滑り面が傾斜面63の長手方向に直交する平面に対して傾斜角40°以上52°以下に傾斜する状態で立設されている。
 ここで、滑り面64Aの傾斜角が40°より小さい緩斜面となると、水添石油樹脂ペレットが傾斜面63上に滞留し、製造する製品の切替により滞留する水添石油樹脂ペレットが新たに製造される製品と混じってしまう不都合が生じる。一方、滑り面64Aの傾斜角が52°より大きい急斜面となると、傾斜面63および滑り面64A上を流下する水添石油樹脂ペレットの流下速度が速くなり、流下衝撃により水添石油樹脂ペレットが破損するおそれがあるためである。
 すなわち、上記傾斜面63の傾斜角および緩衝板64の滑り面の傾斜角は、流下する水添石油樹脂ペレットの流下速度が破損しない1.98m/秒より遅くなる条件で、かつ、滞留しない安息角以上となるように適宜設定すればよい。
 搬送コンベヤ62は、図4に示すように、コンベヤ筐体62Aと、ベルトコンベヤ62Bと、回収ホッパー部62Cと、を備えている。
 ベルトコンベヤ62Bは、一端部に下シュート部61Bの下端が接続するコンベヤ筐体62A内に配置され、下シュート部61Bを流下する水添石油樹脂ペレットを搬送する。該ベルトコンベヤ62Bは、一対の搬送プーリー62B1と、これら搬送プーリー62B1に回行可能に掛け渡された無端ベルト62B2とを備えている。
 そして、コンベヤ筐体62Aの他端部には、ベルトコンベヤ62Bで搬送された水添石油樹脂ペレットを貯蔵部7へ投入する図示しない投入シュートが設けられている。なお、この投入シュートにも、上記緩衝板64が複数設けられていることが好ましい。そして、投入シュートには、水添石油樹脂ペレットを貯蔵部7へ搬送するバケットコンベヤが接続されている。
 回収ホッパー部62Cは、上方に向けて拡径して開口形成され、ベルトコンベヤ62Bの下方に位置してコンベヤ筐体62Aの下面に複数設けられている。回収ホッパー部62Cは、内面が水添石油樹脂ペレットの粉体が崩れ落ちる安息角より大きい角度、具体的には水平面に対して70°以上に傾斜して形成されている。なお、回収ホッパー部62Cは、複数設ける場合に限らず、少なくとも下シュート部61Bの下方に位置し、下シュート部61Bを流下しベルトコンベヤ62Bからこぼれ落ちる水添石油樹脂ペレットを回収可能であれば、1つのみでもよい。
 そして、回収ホッパー部62Cの下部には、複数の回収ホッパー部62Cの下部に図示しないスクリューコンベヤが設けられ、各回収ホッパー部62Cに回収された水添石油樹脂ペレットやその粉粒体を回収ホッパー部62C外へ搬送可能となっている。なお、回収ホッパー部62Cの下部にスクリューコンベヤを設ける構成に限らず、ベルトコンベヤなどを設けたり、単に開閉可能な排出口を設けた構成としたりしてもよい。
 (貯蔵)
 貯蔵部7は、搬送部6で搬送された水添石油樹脂ペレットを適宜取り出し可能に貯蔵する。
 該貯蔵部7は、図示しない貯蔵ホッパーと、搬送部6のバケットコンベヤで搬送された水添石油樹脂ペレットを所定の貯蔵ホッパーに投入する図示しない切替部を備えている。
[実施形態の作用効果]
 上述したように、上記実施形態では、搬送部6のシュート61の傾斜面63に、緩衝板64を突設している。
 このため、傾斜面63を流れる水添石油樹脂ペレットは、緩衝板64に接触して流れる方向が変更され、水添石油樹脂ペレットの流速が減速されるので、水添石油樹脂ペレットが流れる際に受ける衝撃が弱くなり、水添石油樹脂ペレットの搬送時の衝撃による破損を抑制できる。
 そして、上記実施形態では、板状の緩衝板64を、平面方向が傾斜面63の傾斜方向に対して交差する傾斜した状態に傾斜面63に突設させている。
 このため、傾斜面63に板状の部材を突設する簡単な構造で、水添石油樹脂ペレットの破損を抑制できる。さらに、緩衝板64を傾斜面63の傾斜方向に対して交差して設けているので、水添石油樹脂ペレットが緩衝板64上に停滞することなく傾斜面63の傾斜方向に対して斜め下方に流れる。このため、異なる製品が流された際に緩衝板64上に停滞する水添石油樹脂ペレットと混合してしまう不都合を防止できる。
 また、上記実施形態では、傾斜面63の傾斜方向で緩衝板64を複数突設するとともに、傾斜方向の上下で隣接する緩衝板64のそれぞれは、平面方向が反対方向に傾斜する状態に設けられている。
 このため、複数の緩衝板64を反対方向に傾斜させて設ける簡単な構造で、流速が速くなることを抑えて水添石油樹脂ペレットの搬送時の破損を抑制できる。
 そして、上記実施形態では、破損しやすい水添石油樹脂ペレットを搬送する構成に適用し、破損を防止して良好に搬送できる構成としている。
 このことにより、例えば水添石油樹脂ペレットをベースポリマーと混合してホットメルト接着剤を調製する際、水添石油樹脂ペレットが破損して粒度分布が変動することで、加熱混合条件が変動してホットメルト接着剤の製造条件の設定や調整が煩雑となるという不都合も防止できる。
[変形例]
 なお、本発明は前述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。
 具体的には、破損し易い水添石油樹脂ペレットを搬送する構成について例示したが、この限りではなく、搬送時の流下の際に加わる衝撃により損傷してしまう各種粒状物を対象とすることができる。
 そして、搬送部6のシュート61に設けた緩衝板64は、上記配置に限らず、例えば図7,8に示すように、傾斜面63の傾斜角を緩傾斜とした際に滑り面64Aが急傾斜となるようにしたりしてもよい。
 また、例えば図9,10に示すように、傾斜面63の傾斜方向における両側で蛇行して流下させるように緩衝板64を配置してもよい。
 すなわち、傾斜面63の両側から中央に向けて傾斜する複数の第1緩衝板64Sと、同高さ位置で対向する第1緩衝板64Sの下端間の中央に上端縁が位置する傾斜面63の傾斜方向に平面が沿った第2緩衝板64Tと、第2緩衝板64Tの下端縁から直近下方に位置する第1緩衝板64Sの上端縁に向けてそれぞれ傾斜して平面視でY字状を形成する第3緩衝板64Uとを設けた構成としてもよい。
 この図9,10に示す構成でも、上記実施形態と同様に、水添石油樹脂ペレットを破損することなく搬送できる。
 さらには、例えば図11に示すように、流下する水添石油樹脂ペレット同士で当接して流下衝撃を軽減する滞留部を構成してもよい。すなわち、傾斜面63を流れる水添石油樹脂ペレットを一時的に滞留させ、滞留された水添石油樹脂ペレットに、傾斜面63を流れる水添石油樹脂ペレットが接触することで水添石油樹脂ペレットの流れる方向を変更して水添石油樹脂ペレットの流速を減速させる構成としてもよい。
 具体的には、傾斜面63の両側から中央に向けて傾斜する複数の第1緩衝板64Sと、第1緩衝板64Sの上方に位置して平行な平面を有し、傾斜面63の中央に位置して傾斜面63における傾斜方向に対して交差する方向、すなわち幅方向で下端縁が所定の間隙を介して対向し、平面視でV字状に設けられた対をなす板状部材である第4緩衝板64Vとを備えている。そして、対をなす第4緩衝板64Vの下端縁の対向距離である間隙は、生産される水添石油樹脂ペレットが全通できず、砂時計のように一部が第4緩衝板64V間に滞留して間隙から徐々に流下する寸法に設計される。例えば、水添石油樹脂ペレットの最大粒径の6倍より大きい間隙でかつ、相対する第1緩衝板64S間の寸法より短い間隙に設計することが好ましい。
 さらに、第4緩衝板64Vの間隙から流下して直近下方に位置する第4緩衝板64V間に滞留する水添石油樹脂ペレットに流下するまでの距離が、流下速度1.98m/秒より速くならない距離に設定される。特に、より衝撃を低減するために、直近下方に位置する第4緩衝板64Vに当接するまでの距離が、流下速度1.98m/秒より速くならない距離に設定されることが好ましい。合わせて、第4緩衝板64Vの上端縁から溢れ出て第1緩衝板64Sに流下する際の距離も、流下速度1.98m/秒より速くならない距離に設定される。
 この図11に示す構成としても、水添石油樹脂ペレットが破損することなく搬送できる。
 また、水添石油樹脂ペレットを一時的に滞留させて、水添石油樹脂ペレット同士で接触させて流れる方向を変更する滞留部の構成としては、例えば図12に示すような構成とするなどしてもよい。
 すなわち、図12に示す構成では、板状部材である板状の第5緩衝板64Wの下端が、シュート61の傾斜面63の両側に設けられ傾斜面63を流れる水添石油樹脂ペレットを傾斜面63から落下させずに下方に流させるガイドとして機能する壁板63Aに近接する状態に、傾斜して突設している。この第5緩衝板64Wの下端と壁板63Aとの間には、生産される水添石油樹脂ペレットが全通できず、砂時計のように一部が第5緩衝板64Wと壁板63Aとの間に滞留して徐々に流下させる間隙を設ける。この間隙は、図11に示す実施形態と同様に、例えば、水添石油樹脂ペレットの最大粒径の6倍より大きい間隙で、かつ、第5緩衝板64Wの上端から壁板63Aまで寸法より短い間隙に設計することが好ましい。
 さらに、第5緩衝板64Wの上端縁から溢れ出て直近下方の第5緩衝板64Wに流下する際の距離も、流下速度1.98m/秒より速くならない距離に設定される。
 この図12に示す構成としても、水添石油樹脂ペレットが破損することなく搬送できる。
 また、上記各実施形態では、緩衝板64などの板状の部材を突設して水添石油樹脂ペレットの流れる方向を変更する構成を例示したが、板状部材に代えて、例えばパチンコのようにピン状の部材を複数設けるなどにより、傾斜面63を流れる水添石油樹脂ペレットの流れを変更させるいずれの構成とすることができる。
 その他、本発明の実施の際の具体的な構造および手順は、本発明の目的を達成できる範囲で他の構成に変更するなどしてもよい。
 本発明は、特に水添石油樹脂ペレットなど、外部からの衝撃により破損し易い粒状物を搬送する搬送装置に利用される。
   6……粒状物の搬送装置としての搬送部
  63……傾斜面
  63A…壁板
  64……緩衝部としての板状部材である緩衝板
  64V…滞留部を構成する板状部材である第4緩衝板
  64W…滞留部を構成する板状部材である第5緩衝板

Claims (7)

  1.  粒状物を流す傾斜面と、
     該傾斜面に突設され、前記粒状物が接触することにより前記粒状物の流れる方向を変更して前記粒状物の流速を減速する緩衝部と、
     を具備したことを特徴とする粒状物の搬送装置。
  2.  請求項1に記載の粒状物の搬送装置において、
     前記緩衝部は、板状部材を備え、
     前記板状部材は、平面方向が前記傾斜面の傾斜方向に対して交差して設けられている
     ことを特徴とする粒状物の搬送装置。
  3.  請求項2に記載の粒状物の搬送装置において、
     前記板状部材は、前記傾斜面の傾斜方向で複数設けられ、
     前記傾斜方向の上下で隣接する前記板状部材のそれぞれは、平面方向が反対方向に傾斜して設けられている
     ことを特徴とする粒状物の搬送装置。
  4.  粒状物を流す傾斜面と、
     該傾斜面に突設され、前記傾斜面を流れる粒状物を一時的に滞留させ、当該滞留された粒状物に前記傾斜面を流れる粒状物が接触することにより、前記粒状物の流れる方向を変更して前記粒状物の流速を減速する滞留部と、
     を具備したことを特徴とする粒状物の搬送装置。
  5.  請求項4に記載の粒状物の搬送装置において、
     前記滞留部は、前記傾斜面における前記粒状物が流れる方向に対して交差する幅方向で対向する対をなす板状部材を備え、
     前記対をなす板状部材は、下端の対向距離が上端の対向距離より狭く、かつ前記粒状物を流過可能な距離で突設されている
     ことを特徴とする粒状物の搬送装置。
  6.  請求項5に記載の粒状物の搬送装置において、
     前記滞留部は、前記傾斜面を流れる粒状物を該傾斜面から落下させずに下方へ流す壁板と、前記壁板に前記傾斜面の幅方向で対向する板状部材とを備え、
     前記板状部材は、下端が前記壁板に接近し、かつ、下端と前記壁板との間が前記粒状物を流通可能な距離で設けられた
     ことを特徴とする粒状物の搬送装置。
  7.  請求項1から請求項6までのいずれか一項に記載の粒状物の搬送装置において、
     前記粒状物は、水添石油樹脂ペレットである
     ことを特徴とする粒状物の搬送装置。
PCT/JP2012/064026 2011-06-01 2012-05-31 粒状物の搬送装置 WO2012165523A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201280022305.1A CN103502117B (zh) 2011-06-01 2012-05-31 粒状物的运送装置
US14/116,035 US9334119B2 (en) 2011-06-01 2012-05-31 Conveyance device for granular materials
SG2013082029A SG194804A1 (en) 2011-06-01 2012-05-31 Conveyance device for granular materials
EP12794073.2A EP2716579A1 (en) 2011-06-01 2012-05-31 Conveyance device for granular materials
KR1020137028898A KR101911973B1 (ko) 2011-06-01 2012-05-31 입상물의 반송 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011123666A JP5840870B2 (ja) 2011-06-01 2011-06-01 水添石油樹脂ペレットの搬送装置、および、水添石油樹脂ペレットの製造プラント
JP2011-123666 2011-06-01

Publications (1)

Publication Number Publication Date
WO2012165523A1 true WO2012165523A1 (ja) 2012-12-06

Family

ID=47259375

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/064026 WO2012165523A1 (ja) 2011-06-01 2012-05-31 粒状物の搬送装置

Country Status (8)

Country Link
US (1) US9334119B2 (ja)
EP (1) EP2716579A1 (ja)
JP (1) JP5840870B2 (ja)
KR (1) KR101911973B1 (ja)
CN (1) CN103502117B (ja)
SG (1) SG194804A1 (ja)
TW (1) TWI549868B (ja)
WO (1) WO2012165523A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105691956A (zh) * 2016-03-24 2016-06-22 苏州倍特罗智能科技有限公司 一种方便下料的料仓

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103935778B (zh) * 2014-04-21 2016-01-20 中国矿业大学 一种机械摇臂式垂直投料缓冲装置
CN103991696A (zh) * 2014-05-03 2014-08-20 张家口奥斯特不锈钢工程有限公司 一种新型高效的为薯片生产线供料的均流料斗装置
KR101494699B1 (ko) * 2014-07-09 2015-02-26 이신영 제본 완성품의 적재장치
CN104276404A (zh) * 2014-09-29 2015-01-14 无锡明珠钢球有限公司 一种缓冲式输送线
KR101688190B1 (ko) * 2015-01-16 2016-12-20 목포대학교 산학협력단 오일 유출 방지 장치
CN105994010A (zh) * 2016-07-05 2016-10-12 青岛大牧人机械股份有限公司 具有饲料防分级装置的料塔
JP7019126B2 (ja) * 2016-08-30 2022-02-15 静岡製機株式会社 穀粒品質測定器
CN106219134B (zh) * 2016-09-22 2018-12-25 青岛海科佳电子设备制造有限公司 一种散面垂直落面装置
CN107954222A (zh) * 2016-12-12 2018-04-24 刘全义 具有l形阻流板的降破碎装置的筒仓及装粮方法
CN107472583B (zh) * 2017-09-05 2019-05-07 内蒙古中煤蒙大新能源化工有限公司 一种基于物联网控制的智能包装设备
CN107640334A (zh) * 2017-09-25 2018-01-30 江阴市意康包装制品有限公司 一种具有防止破损的食品塑料包装装置
CN108177984A (zh) * 2017-12-23 2018-06-19 安徽王仁和米线食品有限公司 一种防尘型米线加工用入料斗
KR102028632B1 (ko) * 2018-07-10 2019-10-04 기형도 적하 충격을 최소화할 수 있는 버력 선별장치
CN109823761B (zh) * 2019-03-28 2020-07-28 大连民族大学 可缓冲的楼顶空投货物的接收装置
JP7227081B2 (ja) * 2019-06-12 2023-02-21 東洋エンジニアリング株式会社 粒子の搬送用のシュート管
KR102506266B1 (ko) * 2020-04-23 2023-03-06 한화솔루션 주식회사 분진 함유량이 감소된 석유수지 제품의 제조방법
US10919702B1 (en) * 2020-04-29 2021-02-16 Eugene Zoltan Berta Aerial roof height item receiving chute
US12012295B2 (en) * 2021-12-06 2024-06-18 TriDelta Systems, LLC Apparatus and methods for transferring fragile items at selectively variable flow rates

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06293417A (ja) * 1993-04-07 1994-10-21 Taisei Corp 粒状体の輸送装置
JPH08143162A (ja) * 1994-11-18 1996-06-04 Mitsubishi Heavy Ind Ltd 石炭貯蔵設備
JP2002302093A (ja) * 2001-04-03 2002-10-15 Mitsubishi Heavy Ind Ltd 船舶における粒状貨物の積込装置
WO2004056882A1 (ja) 2002-12-20 2004-07-08 Idemitsu Kosan Co., Ltd. 水素添加石油樹脂の製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2733800A (en) * 1956-02-07 Ocsgooooo
US2634842A (en) * 1947-09-11 1953-04-14 Gen Mills Inc Self-cleaning deadbox
JPS5244887Y2 (ja) 1971-03-31 1977-10-13
DE3865628D1 (de) * 1987-11-02 1991-11-21 Mitsubishi Materials Corp Einrichtung zur zuechtung von kristallen.
JPH0718113A (ja) 1993-06-30 1995-01-20 Riken Viny Kogyo Kk 連続気孔体の製造方法
JP2004168473A (ja) 2002-11-19 2004-06-17 Furukawa Co Ltd 貯留装置の緩衝機構
CN2839191Y (zh) 2005-09-06 2006-11-22 江苏牧羊集团有限公司 一种物料减速运行机构
CN2918295Y (zh) * 2006-06-26 2007-07-04 上海宝田新型建材有限公司 一种矿粉发货下料管缓冲装置
CN201187944Y (zh) 2007-11-13 2009-01-28 四川龙蟒集团有限责任公司 一种高温直接还原铁的输送装置
CN201102783Y (zh) 2007-11-30 2008-08-20 武汉烟草(集团)有限公司 物料垂直输送缓冲装置
CN101220124B (zh) 2007-12-18 2010-12-15 清华大学 一种脱环c5加氢树脂的生产方法
CN101774473A (zh) * 2010-01-30 2010-07-14 铜陵天奇蓝天机械设备有限公司 直卸式缓冲溜槽

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06293417A (ja) * 1993-04-07 1994-10-21 Taisei Corp 粒状体の輸送装置
JPH08143162A (ja) * 1994-11-18 1996-06-04 Mitsubishi Heavy Ind Ltd 石炭貯蔵設備
JP2002302093A (ja) * 2001-04-03 2002-10-15 Mitsubishi Heavy Ind Ltd 船舶における粒状貨物の積込装置
WO2004056882A1 (ja) 2002-12-20 2004-07-08 Idemitsu Kosan Co., Ltd. 水素添加石油樹脂の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105691956A (zh) * 2016-03-24 2016-06-22 苏州倍特罗智能科技有限公司 一种方便下料的料仓

Also Published As

Publication number Publication date
CN103502117B (zh) 2016-10-12
JP5840870B2 (ja) 2016-01-06
KR20140022046A (ko) 2014-02-21
KR101911973B1 (ko) 2018-10-25
TW201305018A (zh) 2013-02-01
TWI549868B (zh) 2016-09-21
SG194804A1 (en) 2013-12-30
JP2012250793A (ja) 2012-12-20
US9334119B2 (en) 2016-05-10
CN103502117A (zh) 2014-01-08
EP2716579A1 (en) 2014-04-09
US20140144748A1 (en) 2014-05-29

Similar Documents

Publication Publication Date Title
WO2012165523A1 (ja) 粒状物の搬送装置
WO2012165534A1 (ja) 粒状物の貯蔵装置
CN102421576A (zh) 聚合物颗粒的防粘连处理工艺
JP5709647B2 (ja) 粉粒物の搬送装置、粉粒物の製造プラント、および、粉粒物の搬送方法
US20140117580A1 (en) Method and device for making granules
JP5496430B2 (ja) 粉粒体冷却装置
CN202107763U (zh) 吹扫装置和具有它的等离子体增强化学气相沉积设备
TW201212348A (en) Electrode material production apparatus
JP2002306943A (ja) 向流式造粒装置
CN201740407U (zh) 球团环冷机出料口装置
JPH1060550A (ja) 焼結原料の造粒方法及びそれに用いる分級装置
JPH08323291A (ja) ガラスビン分級装置
CN105620823A (zh) 包膜肥料颗粒软输送下料斗

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12794073

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137028898

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14116035

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE