WO2012161307A1 - 高分岐ポリマーおよびカーボンナノチューブ分散剤 - Google Patents
高分岐ポリマーおよびカーボンナノチューブ分散剤 Download PDFInfo
- Publication number
- WO2012161307A1 WO2012161307A1 PCT/JP2012/063454 JP2012063454W WO2012161307A1 WO 2012161307 A1 WO2012161307 A1 WO 2012161307A1 JP 2012063454 W JP2012063454 W JP 2012063454W WO 2012161307 A1 WO2012161307 A1 WO 2012161307A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- dispersion
- ptpa
- pba
- branched structure
- Prior art date
Links
- 0 Cc1c(*)c(*)c(C)c(**)c1* Chemical compound Cc1c(*)c(*)c(C)c(**)c1* 0.000 description 3
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G12/00—Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen
- C08G12/02—Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes
- C08G12/04—Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with acyclic or carbocyclic compounds
- C08G12/06—Amines
- C08G12/08—Amines aromatic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/158—Carbon nanotubes
- C01B32/168—After-treatment
- C01B32/174—Derivatisation; Solubilisation; Dispersion in solvents
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/158—Carbon nanotubes
- C01B32/168—After-treatment
- C01B32/176—Cutting
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G12/00—Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen
- C08G12/02—Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes
- C08G12/40—Chemically modified polycondensates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/02—Polyamines
- C08G73/026—Wholly aromatic polyamines
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/04—Carbon
- C08K3/041—Carbon nanotubes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L61/00—Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
- C08L61/20—Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen
- C08L61/26—Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with heterocyclic compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L61/00—Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
- C08L61/20—Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen
- C08L61/32—Modified amine-aldehyde condensates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L79/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
- C08L79/02—Polyamines
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/20—Conductive material dispersed in non-conductive organic material
- H01B1/24—Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B13/00—Apparatus or processes specially adapted for manufacturing conductors or cables
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B5/00—Non-insulated conductors or conductive bodies characterised by their form
- H01B5/14—Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/011—Nanostructured additives
Definitions
- the present invention relates to a carbon nanotube dispersant. More specifically, the present invention relates to a carbon nanotube dispersant composed of a highly branched polymer containing a triarylamine structure as a branching point, and a carbon nanotube-containing composition containing this dispersant.
- Carbon nanotubes are considered as potential materials for nanotechnology, and their applicability in a wide range of fields has been studied.
- There are many applications such as a method using a single CNT itself, such as a transistor or a probe for a microscope, and an electron emission electrode, a fuel cell electrode, or a conductive composite in which CNTs are dispersed.
- distributed by electrophoresis etc. is used.
- the hyperbranched polymer is a polymer having a branch in the skeleton, such as a star polymer, a dendrimer classified as a dendritic (dendritic) polymer, or a hyperbranched polymer.
- These hyperbranched polymers are unique in that they have a relatively sparse internal space and particle characteristics in that the conventional polymers generally have a string-like shape but actively introduce branches. It has a large number of ends that can be modified by introducing various functional groups, and has the possibility of highly dispersing CNTs compared to linear polymers by utilizing these characteristics. .
- CNT is doped with bromine, potassium, water, nitric acid or sulfuric acid (see, for example, Non-Patent Document 1), and as a technique for improving electrical and mechanical properties, doping with thionyl chloride ( For example, see Non-Patent Document 2), and it is known that the conductivity can be improved.
- Non-Patent Document 1 CNT is doped with bromine, potassium, water, nitric acid or sulfuric acid
- thionyl chloride For example, see Non-Patent Document 2
- many of these dopants volatilize / decompose at high temperatures or move in the composition, and it has been difficult to stably increase the conductivity.
- An object of the present invention is to provide a branched polymer and a carbon nanotube dispersant comprising the highly branched polymer.
- the present inventors have found that a hyperbranched polymer containing a triarylamine structure as a branch point is excellent in CNT dispersibility, and that when this hyperbranched polymer is used as a CNT dispersant, at least one of CNT ( Have already been found to be isolated and dispersed to a single size without heat treatment (PCT / JP2010 / 70973). Based on this knowledge, the present inventors have conducted further studies. As a result, by introducing acidic groups serving as proton sources into the hyperbranched polymer, the conductivity of the thin film can be maintained while maintaining the dispersibility of CNTs. As a result, the present invention was completed.
- alkyl group which may have a branched structure having 1 to 5 carbon atoms, an alkoxy group which may have a branched structure having 1 to 5 carbon atoms, a carboxyl group, a sulfo group, a phosphoric acid group, a phosphonic acid group, Or a salt thereof.
- R 5 to R 38 are each independently a hydrogen atom, a halogen atom, an alkyl group which may have a branched structure having 1 to 5 carbon atoms, or a branched structure having 1 to 5 carbon atoms
- R 39 to R 62 are each independently a hydrogen atom, a halogen atom, an alkyl group which may have a branched structure of 1 to 5 carbon atoms, or a branched structure of 1 to 5 carbon atoms.
- Haloalkyl group, phenyl group, OR 63 , COR 63 , NR 63 R 64 , COOR 65 (in these formulas, R 63 and R 64 each independently represents a hydrogen atom or a carbon atom number)
- R 1 represents an alkyl group which may have a branched structure of 1 to 5, a haloalkyl group which may have a branched structure of 1 to 5 carbon atoms, or a phenyl group
- R 65 represents 1 to 5 carbon atoms.
- a carboxyl group, a sulfo group, a phosphate group Represents a phosphonic acid group or a salt thereof.
- at least one aromatic ring of the repeating unit represented by the formula (1) or (2) at least one selected from a carboxyl group, a sulfo group, a phosphoric acid group, a phosphonic acid group, and salts thereof Has an acidic group of species. ] 2.
- a film-forming composition comprising the hyperbranched polymer of any one of 1 to 6; 8).
- a membrane comprising the hyperbranched polymer of any one of 1 to 6, 9.
- a carbon nanotube dispersant comprising the hyperbranched polymer of any one of 1 to 6, 10.
- a composition comprising 9 carbon nanotube dispersants and carbon nanotubes, 11. 10 compositions wherein the carbon nanotube dispersant is attached to the surface of the carbon nanotubes to form a composite; 12 10 or 11 compositions further comprising an organic solvent, 13.
- 16 compositions further comprising an acid and / or acid generator; 18.
- a method for producing a composition comprising: preparing a mixture by mixing the carbon nanotube dispersant of No. 9, carbon nanotubes, and an organic solvent; and mechanically treating the mixture, 21. 20.
- Production method, 22. A method for producing a composition is provided, comprising combining the carbon nanotube dispersant of No. 9, carbon nanotube, and a thermoplastic resin by melt kneading.
- the highly branched polymer of the present invention can provide a film exhibiting a high refractive index, high transparency, and high heat resistance, and has an acidic group such as a sulfo group in its skeleton, so that the conductivity is improved.
- This film is used for producing electronic devices such as liquid crystal displays, organic electroluminescence (EL) displays, optical semiconductor (LED) elements, solid-state imaging elements, organic thin film solar cells, dye-sensitized solar cells, and organic thin film transistors (TFTs). It can utilize suitably as one member.
- the highly branched polymer of the present invention contains a triarylamine structure as a branching point, it has excellent CNT dispersibility and can disperse CNTs up to their single size without heat treatment.
- the dispersant composed of the hyperbranched polymer of the present invention by using the dispersant composed of the hyperbranched polymer of the present invention, at least a part of the CNT is separated into its single size (diameter 0.4 to 100 nm), and stable in a so-called “isolated dispersion” state. It can be dispersed in an organic solvent (without aggregation).
- isolated dispersion means that the CNTs are dispersed in the medium in such a way that the CNTs are not separated into a lump, bundle, or rope due to mutual cohesion. Means state.
- the CNT can be dispersed only by applying a mechanical treatment such as ultrasonic treatment to the solution containing the dispersant, CNT and the organic solvent, and an additional step such as a further heat treatment can be omitted in the dispersion, and Processing time can be shortened. Therefore, by using the CNT dispersant of the present invention, a CNT-containing composition in which CNT (at least a part thereof) is dispersed in an isolated dispersion state can be easily obtained. And the CNT containing composition obtained by this invention can form a thin film easily only by apply
- FIG. 1 is a diagram showing a 1 H-NMR spectrum of PTPA-PBA-SO 3 H obtained in Example 1.
- FIG. 3 is a diagram showing a 13 C-NMR spectrum of PTPA-PBA-SO 3 H obtained in Example 1.
- FIG. 1 is a diagram showing a 1 H-NMR spectrum of PTPA-PBA-SO 3 H-TBA obtained in Example 15.
- FIG. 1 is a diagram showing a 1 H-NMR spectrum of PTPA-PBA-SO 3 H-TOA obtained in Example 16.
- FIG. It is a figure which shows the ultraviolet visible near-infrared absorption spectrum of the SWCNT containing dispersion liquid obtained in Examples 13, 19, 20 and Comparative Examples 13-15.
- FIG. 6 is a diagram showing ultraviolet-visible-near infrared absorption spectra of SWCNT-containing dispersions obtained in Examples 21 and 22 and Comparative Example 19. It is a figure which shows the ultraviolet visible near-infrared absorption spectrum of the SWCNT containing dispersion liquid obtained in Example 23.
- the hyperbranched polymer represented by the above formulas (1) and (2) according to the present invention is a polymer containing a triarylamine structure as a branching point, more specifically, triarylamines and aldehydes and / or ketones. Is a polymer obtained by condensation polymerization under acidic conditions.
- this highly branched polymer is considered to have a high affinity for the conjugated structure of CNT through ⁇ - ⁇ interaction derived from the aromatic ring of the triarylamine structure, a high dispersibility of CNT is expected.
- this highly branched polymer has a branched structure, so that it has high solubility that cannot be seen in a straight chain, and also has excellent thermal stability and excellent hole transportability. Therefore, application as an organic EL material is also expected.
- the average molecular weight of the hyperbranched polymer is not particularly limited, but the weight average molecular weight is preferably 1,000 to 2,000,000. If the weight average molecular weight of the polymer is less than 1,000, there is a possibility that the dispersibility of CNTs is remarkably lowered or the dispersibility cannot be exhibited. On the other hand, if the weight average molecular weight exceeds 2,000,000, handling in the dispersion treatment may become extremely difficult. Highly branched polymers having a weight average molecular weight of 2,000 to 1,000,000 are more preferred.
- the weight average molecular weight in this invention is a measured value (polystyrene conversion) by gel permeation chromatography.
- Ar 1 to Ar 3 each independently represents any divalent organic group represented by the above formulas (3) to (7).
- a substituted or unsubstituted phenylene group represented by the formula (3) is preferred.
- R 1 to R 38 are each independently a hydrogen atom, a halogen atom, an alkyl group optionally having a branched structure of 1 to 5 carbon atoms, or carbon It represents an alkoxy group, a carboxyl group, a sulfo group, a phosphoric acid group, a phosphonic acid group, or a salt thereof, which may have a branched structure having 1 to 5 atoms.
- examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
- examples of the alkyl group which may have a branched structure having 1 to 5 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, and n-pentyl group.
- alkoxy group which may have a branched structure having 1 to 5 carbon atoms include methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, sec-butoxy group, tert-butoxy group And n-pentoxy group.
- Examples of salts of carboxyl group, sulfo group, phosphoric acid group and phosphonic acid group include alkali metal salts such as sodium and potassium; alkaline earth metal salts such as magnesium and calcium; ammonium salts; propylamine, dimethylamine, triethylamine, -N-propylamine, tri-n-butylamine, tri-n-pentylamine, tri-n-hexylamine, tri-n-heptylamine, tri-n-octylamine, tri-n-nonylamine, tri-n- Examples include aliphatic amine salts such as alkylamines having 1 to 10 carbon atoms such as decylamine and ethylenediamine; cyclic amine salts such as imidazoline, piperazine and morpholine; aromatic amine salts such as aniline and diphenylamine; and pyridinium salts.
- alkali metal salts such as sodium and potassium
- Z 1 and Z 2 are each independently a hydrogen atom, an alkyl group which may have a branched structure having 1 to 5 carbon atoms, or the above formula ( 8) to any one of the monovalent organic groups represented by (11) (wherein Z 1 and Z 2 are not simultaneously the above alkyl group), Z 1 and Z 2 are Independently, a hydrogen atom, a 2- or 3-thienyl group, and a group represented by the above formula (8) are preferable, and in particular, one of Z 1 and Z 2 is a hydrogen atom, and the other is a hydrogen atom, More preferred are 2- or 3-thienyl groups, groups represented by the above formula (8), particularly those in which R 41 is a phenyl group, or R 41 is a methoxy group.
- R 41 is a phenyl group
- an acidic group may be introduced onto the phenyl group when a method for introducing an acidic group after polymer production is used in the acidic group introduction method described later.
- alkyl group which may have a branched structure having 1 to 5 carbon atoms include those similar to those exemplified above.
- R 39 to R 62 each independently represent a hydrogen atom, a halogen atom, an alkyl group which may have a branched structure having 1 to 5 carbon atoms, or the number of carbon atoms A haloalkyl group optionally having 1 to 5 branched structures, a phenyl group, OR 63 , COR 63 , NR 63 R 64 , COOR 65 (wherein R 63 and R 64 each independently represents A hydrogen atom, an alkyl group optionally having a branched structure having 1 to 5 carbon atoms, a haloalkyl group optionally having a branched structure having 1 to 5 carbon atoms, or a phenyl group, R 65 is Represents an alkyl group which may have a branched structure having 1 to 5 carbon atoms, a haloalkyl group which may have a branched structure having 1 to 5 carbon atoms, or a phenyl group),
- the haloalkyl group which may have a branched structure having 1 to 5 carbon atoms includes a difluoromethyl group, a trifluoromethyl group, a bromodifluoromethyl group, a 2-chloroethyl group, a 2-bromoethyl group, 1, 1-difluoroethyl group, 2,2,2-trifluoroethyl group, 1,1,2,2-tetrafluoroethyl group, 2-chloro-1,1,2-trifluoroethyl group, pentafluoroethyl group, 3-bromopropyl group, 2,2,3,3-tetrafluoropropyl group, 1,1,2,3,3,3-hexafluoropropyl group, 1,1,1,3,3,3-hexafluoropropyl group, 1,1,1,3,3,3-hexafluoro Examples include propan-2-yl group, 3-bromo-2-methylpropyl group, 4-bromobutyl
- Examples of the salt of a halogen atom, an alkyl group which may have a branched structure having 1 to 5 carbon atoms, and a carboxyl group, a sulfo group, a phosphoric acid group and a phosphonic acid group include the above formulas (2) to ( Examples thereof are the same as those exemplified in 7).
- the hyperbranched polymer of the present invention includes a carboxyl group, a sulfo group, a phosphoric acid group, a phosphonic acid group, and a phosphonic acid group in at least one aromatic ring of the repeating unit represented by the formula (1) or (2). It has at least one acidic group selected from salts.
- the acidic group is preferably in the form of a salt, preferably an aliphatic amine salt.
- aldehyde compounds used in the production of the hyperbranched polymer of the present invention include formaldehyde, paraformaldehyde, acetaldehyde, propyl aldehyde, butyraldehyde, isobutyraldehyde, valeraldehyde, capronaldehyde, 2-methylbutyraldehyde, hexyl aldehyde, undecane aldehyde, Saturated aliphatic aldehydes such as 7-methoxy-3,7-dimethyloctylaldehyde, cyclohexanealdehyde, 3-methyl-2-butyraldehyde, glyoxal, malonaldehyde, succinaldehyde, glutaraldehyde, adipine aldehyde; acrolein, methacrolein Unsaturated aliphatic aldehydes such as: Furfural, pyridine
- Examples of the ketone compound used in the production of the hyperbranched polymer of the present invention include alkyl aryl ketones and diaryl ketones, such as acetophenone, propiophenone, diphenyl ketone, phenyl naphthyl ketone, dinaphthyl ketone, and phenyl tolyl ketone. And ditolyl ketone.
- the hyperbranched polymer used in the present invention includes, for example, a triarylamine compound that can give the above-described triarylamine skeleton as represented by the following formula (A), and the following formula, for example: It can be obtained by condensation polymerization of an aldehyde compound and / or a ketone compound as shown in (B) in the presence of an acid catalyst.
- a bifunctional compound (C) such as phthalaldehyde such as terephthalaldehyde is used as the aldehyde compound, not only the reaction shown in Scheme 1 but also the reaction shown in Scheme 2 below occurs.
- a hyperbranched polymer having a crosslinked structure in which two functional groups contribute to the condensation reaction may be obtained.
- an aldehyde compound and / or a ketone compound can be used at a ratio of 0.1 to 10 equivalents with respect to 1 equivalent of the aryl group of the triarylamine compound.
- the acid catalyst include mineral acids such as sulfuric acid, phosphoric acid and perchloric acid; organic sulfonic acids such as p-toluenesulfonic acid and p-toluenesulfonic acid monohydrate; carboxylic acids such as formic acid and oxalic acid. Etc. can be used.
- the amount of the acid catalyst to be used is variously selected depending on the kind thereof, but is usually 0.001 to 10,000 parts by mass, preferably 0.01 to 1,000 parts by mass with respect to 100 parts by mass of the triarylamines. Part, more preferably 0.1 to 100 parts by weight.
- the above condensation reaction can be carried out without a solvent, it is usually carried out using a solvent.
- Any solvent that does not inhibit the reaction can be used.
- cyclic ethers such as tetrahydrofuran and 1,4-dioxane; N, N-dimethylformamide (DMF), N, N-dimethylacetamide ( DMAc), amides such as N-methyl-2-pyrrolidone (NMP); ketones such as methyl isobutyl ketone and cyclohexanone; halogenated hydrocarbons such as methylene chloride, chloroform, 1,2-dichloroethane and chlorobenzene; benzene, And aromatic hydrocarbons such as toluene and xylene.
- solvents can be used alone or in admixture of two or more.
- cyclic ethers are preferred.
- the acid catalyst used is a liquid such as formic acid, the acid catalyst can also serve as a solvent.
- the reaction temperature during the condensation is usually 40 to 200 ° C.
- the reaction time is variously selected depending on the reaction temperature, but is usually about 30 minutes to 50 hours.
- the weight average molecular weight Mw of the polymer obtained as described above is usually 1,000 to 2,000,000, preferably 2,000 to 1,000,000.
- the acidic group of the hyperbranched polymer of the present invention is introduced in advance on the aromatic ring of the above triarylamine compound, aldehyde compound, or ketone compound, which is a polymer raw material, and is introduced by a method for producing a hyperbranched polymer using this.
- the obtained hyperbranched polymer may be introduced by a method of treating with a reagent capable of introducing an acidic group on the aromatic ring, but the latter method should be used in consideration of the ease of production. Is preferred.
- the method for introducing the acidic group onto the aromatic ring is not particularly limited, and may be appropriately selected from conventionally known various methods according to the type of the acidic group. For example, when a sulfo group is introduced, a technique of sulfonation using an excessive amount of sulfuric acid can be used.
- the hyperbranched polymer of the present invention can be used not only as a dispersant for CNTs as described later, but also can be suitably used as a film-forming composition by dissolving in various solvents.
- the solvent may be the same as or different from the solvent used during the polymerization.
- solvents include aromatic hydrocarbons such as toluene, p-xylene, o-xylene, m-xylene, ethylbenzene and styrene; ethyl acetate, n-propyl acetate, isopropyl acetate, and n-butyl acetate.
- Esters such as isobutyl acetate, ethyl lactate, ⁇ -butyrolactone; glycol esters such as ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, diethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether acetate; tetrahydrofuran (THF), Ethers such as 1,4-dioxane; ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, ethylene Lenglycol monoisopropyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, propylene glycol monomethyl ether, 1-methoxy-2-propanol, propylene glycol monoethyl ether, propylene glycol monobutyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl
- the solid content concentration in the film-forming composition is not particularly limited as long as it does not affect the storage stability and the like, and may be appropriately set according to the target film thickness. Specifically, from the viewpoint of solubility and storage stability, the solid content concentration is preferably 0.1 to 50% by mass, and more preferably 0.1 to 20% by mass.
- the film-forming composition of the present invention may contain other components other than the hyperbranched polymer and the solvent, for example, a leveling agent, a surfactant, a crosslinking agent, etc., as long as the effects of the present invention are not impaired. Good.
- the film-forming composition of the present invention can be applied to a substrate and then heated as necessary to form a desired film.
- the coating method of the composition is arbitrary, for example, spin coating method, dip method, flow coating method, ink jet method, spray method, bar coating method, gravure coating method, slit coating method, roll coating method, transfer printing method, brush Methods such as coating, blade coating, and air knife coating can be employed.
- the firing temperature is not particularly limited for the purpose of evaporating the solvent, and can be, for example, 40 to 400 ° C. In these cases, the temperature may be changed in two or more steps for the purpose of expressing a higher uniform film forming property or causing the reaction to proceed on the substrate.
- the firing method is not particularly limited. For example, the firing method may be performed using a hot plate or an oven in an appropriate atmosphere such as air, an inert gas such as nitrogen, or in a vacuum.
- the firing temperature and firing time may be selected in accordance with the process steps of the target electronic device, and the firing conditions may be selected so that the physical properties of the obtained film meet the required characteristics of the electronic device.
- the film comprising the film-forming composition of the present invention thus obtained can achieve high heat resistance, high transparency, high refractive index, high solubility, and low volume shrinkage. It can be suitably used as a member for producing electronic devices such as a luminescence (EL) display, an optical semiconductor (LED) element, a solid-state imaging element, an organic thin film solar cell, a dye-sensitized solar cell, and an organic thin film transistor (TFT).
- EL luminescence
- LED optical semiconductor
- TFT organic thin film transistor
- the CNT-containing composition according to the present invention includes the hyperbranched polymer (CNT dispersant) described above and CNT.
- CNTs are produced by an arc discharge method, a chemical vapor deposition method (CVD method), a laser ablation method, or the like.
- the CNTs used in the present invention may be obtained by any method.
- single-walled CNT hereinafter referred to as SWCNT
- SWCNT single-walled CNT in which one carbon film (graphene sheet) is wound in a cylindrical shape
- two-layered CNT in which two graphene sheets are wound in a concentric shape.
- DWCNT multi-layer CNT
- MWCNT multi-layer CNT
- SWCNT, DWCNT, and MWCNT are each a single unit, Or a combination of several can be used.
- the composition of the present invention may further contain an organic solvent capable of dissolving the dispersant (hyperbranched polymer).
- organic solvent include ethers such as tetrahydrofuran (THF), diethyl ether, and 1,2-dimethoxyethane (DME); halogenated hydrocarbons such as methylene chloride, chloroform, and 1,2-dichloroethane; Amides such as N, N-dimethylformamide (DMF), N, N-dimethylacetamide (DMAc), N-methyl-2-pyrrolidone (NMP); Ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone; methanol Alcohols such as ethanol, isopropanol and n-propanol; aliphatic hydrocarbons such as n-heptane, n-hexane and cyclohexane; aromatic hydrocarbons such as benzy
- organic solvents may be used alone or in combination of two or more. Can do.
- NMP, DMF, THF, and isopropanol are preferable because the ratio of isolated dispersion of CNT can be improved.
- glycol ethers such as ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, propylene glycol monomethyl ether; ketones such as acetone, methyl ethyl ketone, and cyclohexanone It is desirable to include a small amount of propylene glycol, isopropanol, NMP and the like.
- the hyperbranched polymer of the present invention When the hyperbranched polymer of the present invention is used (particularly when the acidic group is in the form of a salt), dispersibility and film formation can be achieved even when a hydrophilic solvent such as alcohols, glycols, glycol ethers or the like is used. Property is improved. Furthermore, even when the mixed solvent of the hydrophilic solvent and water is used, the dispersibility and the film formability do not deteriorate.
- a hydrophilic solvent such as alcohols, glycols, glycol ethers or the like
- the method for preparing the composition of the present invention is arbitrary.
- the dispersant hyperbranched polymer
- the dispersant and CNT are mixed as appropriate, and when the dispersant is solid, it is melted. Then, it can be prepared by mixing with CNTs.
- an organic solvent what is necessary is just to mix a dispersing agent, CNT, and an organic solvent in arbitrary orders, and to prepare a composition. At this time, it is preferable to disperse a mixture composed of a dispersant, CNT and an organic solvent, and this treatment can further improve the ratio of isolated dispersion of CNT.
- Examples of the dispersion treatment include mechanical treatment, wet treatment using a ball mill, bead mill, jet mill, and the like, and ultrasonic treatment using a bath-type or probe-type sonicator.
- the time for the dispersion treatment is arbitrary, but is preferably about 1 minute to 10 hours, and more preferably about 5 minutes to 5 hours.
- the dispersant of the present invention is excellent in the dispersibility of CNTs, a composition in which CNTs are isolated and dispersed at a high concentration can be obtained without performing a heat treatment before the dispersion treatment. Heat treatment may be performed accordingly.
- the mixing ratio of the dispersant and CNT can be about 1,000: 1 to 1: 100 in terms of mass ratio.
- the concentration of the dispersant in the composition using the organic solvent is not particularly limited as long as it is a concentration capable of dispersing CNTs in the organic solvent, but in the present invention, 0.001 in the composition. It is preferably about 30 to 30% by mass, and more preferably about 0.002 to 20% by mass.
- the concentration of CNTs in the composition is arbitrary as long as at least a part of the CNTs is isolated and dispersed, but in the present invention, it is preferably about 0.0001 to 20% by mass in the composition. More preferably, the content is about 0.001 to 10% by mass.
- the dispersant adheres to the surface of the CNT to form a complex.
- composition of the present invention may be mixed with a general-purpose synthetic resin that is soluble in the organic solvent described above and combined with this.
- general-purpose synthetic resins include polyolefin resins such as PE (polyethylene), PP (polypropylene), EVA (ethylene-vinyl acetate copolymer), EEA (ethylene-ethyl acrylate copolymer); PS (polystyrene) Polystyrene resins such as HIPS (high impact polystyrene), AS (acrylonitrile-styrene copolymer), ABS (acrylonitrile-butadiene-styrene copolymer), MS (methyl methacrylate-styrene copolymer); polycarbonate resin; Polyvinyl resin; Polyamide resin; (Meth) acrylic resin such as PMMA (polymethyl methacrylate); PET (polyethylene terephthalate), polybutylene terephthalate, polyethylene naphthalate, polybutylene
- the CNT-containing composition of the present invention may contain a crosslinking agent that is soluble in the organic solvent described above.
- cross-linking agents include melamine-based, substituted urea-based, or polymer systems thereof, and these cross-linking agents can be used alone or in admixture of two or more.
- the cross-linking agent has at least two cross-linking substituents, such as CYMEL (registered trademark), methoxymethylated glycoluril, butoxymethylated glycoluril, methylolated glycoluril, methoxymethylated melamine, butoxymethyl.
- Melamine methylolated melamine, methoxymethylated benzoguanamine, butoxymethylated benzoguanamine, methylolated benzoguanamine, methoxymethylated urea, butoxymethylated urea, methylolated urea, methoxymethylated thiourea, butoxymethylated thiourea, methylolated thio
- Examples include compounds such as urea, and condensates of these compounds.
- the amount of the crosslinking agent added varies depending on the organic solvent used, the substrate used, the required viscosity, the required film shape, etc., but is 0.001 to 80 mass relative to the CNT dispersant (highly branched polymer). %, Preferably 0.01 to 50% by mass, more preferably 0.05 to 40% by mass.
- These cross-linking agents may cause a cross-linking reaction by self-condensation, but they cause a cross-linking reaction with the hyperbranched polymer of the present invention. The group promotes the crosslinking reaction.
- a catalyst for promoting the crosslinking reaction p-toluenesulfonic acid, trifluoromethanesulfonic acid, pyridinium p-toluenesulfonic acid, salicylic acid, sulfosalicylic acid, citric acid, benzoic acid, hydroxybenzoic acid, naphthalenecarboxylic acid It is possible to add acidic compounds such as acids and / or thermal acid generators such as 2,4,4,6-tetrabromocyclohexadienone, benzoin tosylate, 2-nitrobenzyl tosylate, and organic sulfonic acid alkyl esters. it can.
- the addition amount of the catalyst is 0.0001 to 20% by mass, preferably 0.0005 to 10% by mass, and more preferably 0.001 to 3% by mass with respect to the CNT dispersant (highly branched polymer).
- the composition of the present invention may be combined with a matrix resin and melt-kneaded to form a composite.
- the resin used as the matrix is preferably a thermoplastic resin, and specific examples thereof include those similar to the thermoplastic resins exemplified for the general-purpose synthetic resin.
- the composition may be prepared by melting and kneading a dispersant, CNT, and a resin serving as a matrix with a kneading apparatus.
- the kneading apparatus include various mixers and single-screw or twin-screw extruders.
- the kneading temperature and time at this time are arbitrary and are appropriately selected according to the resin to be the matrix.
- the CNT concentration in the composition using the resin as the matrix is arbitrary because it changes in the required mechanical, electrical, thermal characteristics, etc. of the composition, but in the present invention,
- the content is preferably about 0.0001 to 30% by mass, and more preferably 0.001 to 20% by mass.
- the CNT-containing composition (solution) of the present invention is formed on a suitable substrate such as PET, glass, ITO, by spin coating, dipping, flow coating, ink jet, spraying, bar coating, gravure coating,
- the film can be formed by coating by an appropriate method such as slit coating, roll coating, transfer printing, brush coating, blade coating, or air knife coating.
- the obtained thin film can be suitably used for an antistatic film utilizing the metallic properties of CNT, a conductive material such as a transparent electrode, or a photoelectric conversion element and an electroluminescent device utilizing semiconductor properties.
- Measuring solvent DMSO-d 6 (deuterated dimethyl sulfoxide) Reference substance: Tetramethylsilane (0.00ppm) (5) 13 C NMR spectrum apparatus: JNM-ECA700 manufactured by JEOL Ltd. Measuring solvent: DMSO-d 6 Reference substance: DMSO-d 6 (39.5 ppm) (6) Ion chromatography (sulfur quantitative analysis) Device: ICS-1500, manufactured by Dionex Column: IonPacAG12A + IonPacAS12A manufactured by Dionex Solvent: (NaHCO 3 2.7 mmol + Na 2 CO 3 0.3 mmol) / L aqueous solution Detector: Electrical conductivity (7) Spin coater Device: 1H-D7 manufactured by Mikasa Co., Ltd.
- Hot plate device ND-2 manufactured by AS ONE Corporation (9)
- Apparatus UIP1000 manufactured by Hielscher Ultrasonics (10) Resistivity meter (surface resistivity measurement)
- Device A Loresta GP, manufactured by Mitsubishi Chemical Corporation
- Probe In-line 4-probe probe ASP manufactured by Mitsubishi Chemical Corporation (distance between probes: 5 mm)
- Device B Hiresta UP, manufactured by Mitsubishi Chemical Corporation
- Probe Ring probe URS manufactured by Mitsubishi Chemical Corporation (11)
- Device NDH5000 manufactured by Nippon Denshoku Industries Co., Ltd.
- CNT-1 Unrefined MWCNT [“C Tube 100” manufactured by CNT, outer diameter: 10 to 30 nm]
- CNT-2 Medium fiber diameter MWCNT [“VGCF-X”, outer diameter 15 nm, manufactured by Showa Denko KK]
- CNT-3 Unpurified SWCNT [HiPco manufactured by Carbon Nanotechnologies)
- CNT-4 Purified SWCNT [manufactured by Unidym]
- CNT-5 Purified SWCNT [ASP-100F manufactured by Hanwha Nanotech)
- CNT-6 Purified SWCNT [KH SWCNT80 manufactured by KH Chemicals]
- PVP Polyvinylpyrrolidone [Tokyo Chemical Industry Co., Ltd.
- Nafion Nafion (registered trademark) dispersion [manufactured by Sigma-Aldrich No. 510211 Nafion (registered trademark) 5 wt% / lower alcohol 50 wt% / water 45 wt%]
- BuOH 1-butanol CHN: cyclohexanone
- DMAc N, N-dimethylacetamide
- DME 1,2-dimethoxyethane EtOH: ethanol
- IPA isopropanol (2-propanol)
- IPE diisopropyl ether
- MEK methyl ethyl ketone
- MeOH methanol
- NMP N-methyl-2-pyrrolidone
- PG propylene glycol
- PGME propylene glycol monomethyl ether
- PrOH 1-propanol
- THF tetrahydrofuran
- the reaction mixture was diluted with 560 g of THF, and 80 g of 28% by mass aqueous ammonia was added.
- the reaction solution was reprecipitated by adding it to a mixed solution of 2000 g of acetone and 400 g of methanol.
- the deposited precipitate was filtered and dried under reduced pressure, and then the obtained solid was redissolved in 640 g of THF and re-precipitated by adding it to a mixed solution of 2000 g of acetone and 400 g of water.
- the deposited precipitate was filtered and dried under reduced pressure at 130 ° C. for 6 hours to obtain 115.1 g of a highly branched polymer PTPA-PBA having a repeating unit represented by the following formula [A].
- the obtained PTPA-PBA had a weight average molecular weight Mw measured in terms of polystyrene by GPC of 17,000 and a polydispersity Mw / Mn of 3.82 (where Mn is a number measured under the same conditions). Represents the average molecular weight).
- the 5% weight loss temperature measured by TG-DTA was 531 ° C.
- the glass transition temperature (Tg) measured by DSC was 159 ° C.
- Example 1 Synthesis of highly branched polymer PTPA-PBA-SO 3 H
- PTPA-PBA-SO 3 H In a 500 mL four-necked flask under nitrogen, 2.0 g of PTPA-PBA synthesized in Synthesis Example 1 and 50 g of sulfuric acid [manufactured by Kanto Chemical Co., Inc.] were charged. It is. The mixture was dissolved by heating to 40 ° C. while stirring, and sulfonation was started. After reacting for 8 hours, the reaction mixture was heated to 50 ° C. and further reacted for 1 hour. This reaction mixture was reprecipitated by adding it to 250 g of pure water. The precipitate was filtered, added to 250 g of pure water, and allowed to stand for 12 hours.
- the precipitate was filtered and dried under reduced pressure at 50 ° C. for 8 hours to obtain 2.7 g of a highly branched polymer PTPA-PBA-SO 3 H (hereinafter simply referred to as PTPA-PBA-SO 3 H) as a purple powder.
- the 1 H-NMR spectrum of the obtained PTPA-PBA-SO 3 H is shown in FIG. 1, and the 13 C-NMR spectrum is shown in FIG.
- the sulfur atom content of PTPA-PBA-SO 3 H calculated from sulfur quantitative analysis was 6.4% by mass.
- the sulfo group content of PTPA-PBA-SO 3 H obtained from this result was one per repeating unit of the highly branched polymer PTPA-PBA.
- Example 15 Synthesis under nitrogen hyperbranched polymer PTPA-PBA-SO 3 H- TBA, in 50mL four-necked flask was charged with PTPA-PBA-SO 3 H2.0g and methanol 18g synthesized in Example 1. This mixture was dissolved while stirring at room temperature (approximately 25 ° C.), and 1.5 g (8.2 mmol (2.0 eq relative to the sulfonated polymer)) of tri-n-butylamine [manufactured by Kanto Chemical Co., Ltd.] It was dripped. After reacting for 30 minutes, the reaction mixture was reprecipitated by adding to 200 g of IPE. 1. The precipitate is filtered and dried under reduced pressure at 60 ° C.
- FIG. 3 shows the 1 H-NMR spectrum of the obtained PTPA-PBA-SO 3 H-TBA.
- Example 16 Synthesis of hyperbranched polymer PTPA-PBA-SO 3 H-TOA
- the amount of methanol used was 8 g and tri-n-butylamine was tri-n-octylamine [manufactured by Tokyo Chemical Industry Co., Ltd.] Except that each was changed to 9 g (8.2 mmol (2.0 eq relative to the sulfonated polymer)), the same operation as in Example 15 was carried out, and a highly branched polymer PTPA-PBA-SO 3 H-TOA ( In the following, 3.0 g of PTPA-PBA-SO 3 H-TOA was obtained.
- FIG. 4 shows the 1 H-NMR spectrum of the obtained PTPA-PBA-SO 3 H-TOA.
- Example 2 Production of resin thin film
- PTPA-PBA-SO 3 H obtained in Example 1 was dissolved in an NMP / CHN mixed solution (mass ratio 1: 1) so that the resin concentration was 10% by mass.
- the obtained solution was spin-coated (200 rpm ⁇ 5 seconds, then 2000 rpm ⁇ 30 seconds) on a glass substrate (5 ⁇ 5 cm) to form a film.
- This coating film was heated on a hot plate at 100 ° C. for 2 minutes to produce a PTPA-PBA—SO 3 H thin film.
- Example 1 A PTPA-PBA thin film was produced in the same manner as in Example 2 except that PTPA-PBA-SO 3 H was changed to PTPA-PBA synthesized in Synthesis Example 1 and the solvent was changed to CHN.
- Example 2 A PVP thin film was produced in the same manner as in Example 2 except that PTPA-PBA-SO 3 H was changed to PVP.
- Example 2 The surface resistivity and total light transmittance of the thin films obtained in Example 2 and Comparative Examples 1 and 2 were evaluated. The results are also shown in Table 1.
- Example 2 As shown in Table 1, it was revealed that the thin film (Example 2) made of a hyperbranched polymer having a sulfo group has conductivity by itself. On the other hand, no conductivity was observed in a thin film made of a hyperbranched polymer having no sulfo group (Comparative Example 1) and a thin film made of PVP which is a known dispersant (Comparative Example 2). was found to be advantageous in obtaining a highly conductive thin film.
- Example 3 NMP dispersion using PTPA-PBA-SO 3 H
- PTPA-PBA-SO 3 H As a dispersant, 0.50 g of PTPA-PBA-SO 3 H synthesized in Example 1 was dissolved in 49.25 g of NMP as a dispersion medium, and 0.25 g of CNT-1 as MWCNT was added to this solution. This mixture was subjected to ultrasonic treatment at room temperature (approximately 25 ° C.) for 30 minutes using a probe-type ultrasonic irradiation device to obtain a black MWCNT-containing dispersion liquid in which MWCNT was uniformly dispersed without a precipitate.
- the obtained coating solution (50 ⁇ L) is uniformly spread on a glass substrate using an applicator having a slit width of 25.4 ⁇ m, and dried at 100 ° C. for about 2 minutes to obtain a transparent and uniform MWCNT / PTPA-PBA-SO 3.
- An H composite thin film was prepared.
- Example 4 NMP dispersion using PTPA-PBA-SO 3 H
- MWCNT-containing dispersion and MWCNT / PTPA-PBA-SO 3 H were operated in the same manner as in Example 3 except that the dispersant was changed to 0.25 g of PTPA-PBA-SO 3 H and the dispersion medium was changed to 49.50 g of NMP.
- a composite thin film was prepared.
- Example 5 NMP / PrOH / water dispersion using PTPA-PBA-SO 3 H
- the dispersion agent is PTPA-PBA-SO 3 H 0.25 g
- the dispersion medium is 44.75 g
- a MWCNT-containing dispersion and a MWCNT / PTPA-PBA-SO 3 H composite thin film were prepared in the same manner as in Example 3 except that the solvent was changed to 25 g of the mixed solvent.
- Example 6 MeOH dispersion using PTPA-PBA-SO 3 H The same procedure as in Example 3 was repeated except that the dispersion medium was changed to 49.25 g of MeOH and the additive was changed to 0.50 g of PG. Liquid and MWCNT / PTPA-PBA-SO 3 H composite thin film were prepared.
- Example 7 PGCNT dispersion using PTPA-PBA-SO 3 H The same procedure as in Example 3 was followed, except that the dispersion medium was changed to 49.25 g of PG and the additive CHN was not used. And a MWCNT / PTPA-PBA-SO 3 H composite thin film was prepared.
- Example 8 PGME / H 2 O dispersion using PTPA-PBA-SO 3 H
- the dispersion medium was changed to a mixed solvent of 44.33 g of PGME and 4.93 g of pure water, and the additive CHN was not used.
- a MWCNT-containing dispersion and a MWCNT / PTPA-PBA-SO 3 H composite thin film were prepared.
- Example 9 MeOH / H 2 O dispersion using PTPA-PBA-SO 3 H Except that the dispersion medium was changed to a mixed solvent of 20.00 g of MeOH and 29.25 g of pure water, and the additive was changed to 0.50 g of IPA. In the same manner as in Example 3, a MWCNT-containing dispersion and a MWCNT / PTPA-PBA-SO 3 H composite thin film were prepared.
- Example 10 IPA / H 2 O dispersion using PTPA-PBA-SO 3 H Except that the dispersion medium was changed to a mixed solvent of 44.33 g of IPA and 4.93 g of pure water, and the additive was changed to 0.50 g of NMP. In the same manner as in Example 3, a MWCNT-containing dispersion and a MWCNT / PTPA-PBA-SO 3 H composite thin film were prepared.
- Example 5 NMP dispersion using PVP MWCNT-containing dispersion and MWCNT / PVP composite were operated in the same manner as in Example 3 except that the dispersant was changed to 0.25 g of PVP and the dispersion medium was changed to 49.50 g of NMP. A body thin film was prepared.
- Example 7 NMP / lower alcohol / water dispersion using Nafion The same as Example 3 except that the dispersant was changed to Nafion 0.25 g (Nafion dispersion 5.00 g) and the dispersion medium was changed to NMP 44.75 g. The MWCNT-containing dispersion and the MWCNT / Nafion composite thin film were prepared.
- the values in parentheses in the surface resistivity column are reference values because the film is so uneven that accurate measurements cannot be made.
- the dispersant of the present invention can stably disperse CNTs not only with general organic solvents (NMP and the like) but also with hydrophilic solvents (alcohol, alcohol / water, etc.). For this reason, by using the dispersant of the present invention, it is possible to prepare a dispersion in a wide range of solvent systems.
- the surface resistivity was about one digit lower (10 3 ⁇ / ⁇ ).
- the dispersant of the present invention is advantageous in obtaining a highly conductive film.
- PVP can provide stable dispersions for both general organic solvents and hydrophilic solvents, the uniformity of the thin film is low (Comparative Examples 5 and 6), and Nafion can disperse MWCNT in general organic solvents. (Comparative Example 7) It can be seen that, although a stable dispersion can be obtained with a hydrophilic solvent, the film formability is very poor (Comparative Example 8).
- Example 11 NMP dispersion using PTPA-PBA-SO 3 H (1) A MWCNT-containing dispersion and a MWCNT / PTPA-PBA-SO 3 H composite thin film were prepared in the same manner as in Example 3 except that MWCNT was changed to 0.25 g of CNT-2.
- Example 12 NMP dispersion using PTPA-PBA-SO 3 H (2) MWCNT-containing dispersion was operated in the same manner as in Example 3 except that the dispersant was changed to PTPA-PBA-SO 3 H 0.25 g, the dispersion medium was changed to NMP 49.50 g, and MWCNT was changed to 0.25 g CNT-2. Liquid and MWCNT / PTPA-PBA-SO 3 H composite thin film were prepared.
- Example 17 PTPA-PBA-SO 3 H-TBA was synthesized in PrOH dispersing the dispersant Example 15 using PTPA-PBA-SO 3 H- TBA0.50g, the dispersion medium PrOH49.25g, MWCNT MWCNT-containing dispersion and MWCNT / PTPA-PBA-SO 3 H-TBA composite were operated in the same manner as in Example 3 except that CNT-2 was changed to 0.25 g and the additive was changed to PG 0.50 g. A thin film was prepared.
- Example 18 PTPA-PBA-SO 3 H-TOA synthesized in PrOH dispersing the dispersant Example 16 using PTPA-PBA-SO 3 H- TOA0.50g, the dispersion medium PrOH49.25g, MWCNT MWCNT-containing dispersion and MWCNT / PTPA-PBA-SO 3 H-TOA composite were operated in the same manner as in Example 3 except that CNT-2 was changed to 0.25 g and the additive was changed to PG 0.50 g. A thin film was prepared.
- Example 9 NMP dispersion using PTPA-PBA (1) The same procedures as in Example 3 were followed except that the dispersant was changed to 0.50 g of PTPA-PBA synthesized in Synthesis Example 1 and 0.25 g of MWCNT to 0.25 g of CNT-2, respectively, and a MWCNT-containing dispersion and MWCNT / PTPA- A PBA composite thin film was prepared.
- Example 10 NMP dispersion using PTPA-PBA (2) MWCNT was operated in the same manner as in Example 3 except that the dispersant was changed to 0.25 g of PTPA-PBA synthesized in Synthesis Example 1, the dispersion medium was changed to 49.50 g of NMP, and MWCNT was changed to 0.25 g of CNT-2. A dispersion containing MWCNT / PTPA-PBA composite thin film was prepared.
- Example 11 NMP dispersion using PVP The same operation as in Example 3 except that the dispersant was changed to 0.25 g of PVP, the dispersion medium was changed to 49.50 g, and MWCNT was changed to 0.25 g of CNT-2. MWCNT-containing dispersion and MWCNT / PVP composite thin film were prepared.
- the values in parentheses in the surface resistivity column are reference values because the film is so uneven that accurate measurements cannot be made.
- FIG. 1 A uniform SWCNT / PTPA-PBA-SO 3 H composite is prepared by spraying 2 mL of the above SWCNT-containing dispersion on the entire upper surface of the glass substrate heated with a hot plate at 230 ° C. for 15 to 20 seconds using an air brush. A body thin film was prepared. The spraying was performed using nitrogen at a pressure of 0.2 MPa from approximately 20 cm above the substrate to be coated.
- Example 19 PTPA-PBA-SO 3 H-TBA dispersion dispersant CNT-3 using synthesized in Example 15 PTPA-PBA-SO 3 H -TBA1.0mg, respectively dispersion medium PrOH5mL
- a SWCNT-containing dispersion and a SWCNT / PTPA-PBA-SO 3 H-TBA composite thin film were prepared in the same manner as in Example 13 except that the centrifugation treatment was not performed.
- the UV-visible near-infrared absorption spectrum of the obtained SWCNT-containing dispersion was measured, the absorption of semiconducting S 11 band, S 22 band, and metallic band was clearly observed, and SWCNT was dispersed. confirmed.
- the ultraviolet-visible near-infrared absorption spectrum of the obtained SWCNT-containing dispersion is also shown in FIG.
- Example 20 to PTPA-PBA-SO 3 H- TOA synthesized in Example 15 a dispersion dispersant CNT-3 Using PTPA-PBA-SO 3 H- TOA1.0mg, respectively dispersion medium PrOH5mL
- a SWCNT-containing dispersion and a SWCNT / PTPA-PBA-SO 3 H-TOA composite thin film were produced in the same manner as in Example 13 except that the centrifugation treatment was not performed.
- the UV-visible near-infrared absorption spectrum of the obtained SWCNT-containing dispersion was measured, the absorption of semiconducting S 11 band, S 22 band, and metallic band was clearly observed, and SWCNT was dispersed. confirmed.
- the ultraviolet-visible near-infrared absorption spectrum of the obtained SWCNT-containing dispersion is also shown in FIG.
- Example 13 Dispersion of CNT-3 using PTPA-PBA The procedure of Example 13 was repeated except that the dispersant was changed to 1.0 mg of PTPA-PBA synthesized in Synthesis Example 1. A SWCNT / PTPA-PBA composite thin film was prepared. The ultraviolet-visible near-infrared absorption spectrum of the obtained SWCNT-containing dispersion is also shown in FIG.
- Example 14 Dispersion of CNT-3 using PVP A SWCNT-containing dispersion and a SWCNT / PVP composite thin film were prepared in the same manner as in Example 13 except that the dispersant was changed to 1.0 mg of PVP. The ultraviolet-visible near-infrared absorption spectrum of the obtained SWCNT-containing dispersion is also shown in FIG.
- Example 15 Dispersion of CNT-3 using Nafion The same operation as in Example 13 was carried out except that the dispersant was changed to Nafion 1.0 mg (Nafion dispersion 20 mg) and the dispersion medium was changed to NMP 5.0 mL, respectively. A SWCNT-containing dispersion and a SWCNT / Nafion composite thin film were prepared. The ultraviolet-visible near-infrared absorption spectrum of the obtained SWCNT-containing dispersion is also shown in FIG.
- Example 14 Dispersion of CNT-4 using PTPA-PBA-SO 3 H
- the SWCNT-containing dispersion and SWCNT / PTPA-PBA- were operated in the same manner as in Example 13 except that SWCNT was changed to CNT-4.
- An SO 3 H composite thin film was prepared.
- the ultraviolet-visible near-infrared absorption spectrum of the obtained SWCNT-containing dispersion was measured, the semiconducting S 11 band (1,400 to 1,000 nm), the S 22 band (1,000 to 600 nm) and the metallic band ( (600 to 450 nm) was clearly observed, and it was confirmed that SWCNT was dispersed.
- the results are shown in FIG.
- Example 16 Dispersion of CNT-4 using PTPA-PBA Same as Example 13 except that the dispersant was changed to 1.0 mg of PTPA-PBA synthesized in Synthesis Example 1 and SWCNT was changed to CNT-4. By operating, a SWCNT-containing dispersion and a SWCNT / PTPA-PBA composite thin film were prepared. The ultraviolet-visible near-infrared absorption spectrum of the obtained SWCNT-containing dispersion is also shown in FIG.
- Example 17 Dispersion of CNT-4 using PVP The same procedure as in Example 13 was performed, except that the dispersant was changed to 1.0 mg of PVP and SWCNT to CNT-4, respectively. A PVP composite thin film was prepared. The ultraviolet-visible near-infrared absorption spectrum of the obtained SWCNT-containing dispersion is also shown in FIG.
- Example 18 Dispersion of CNT-4 using Nafion Example except that the dispersant was changed to Nafion 1.0 mg (Nafion dispersion 20 mg), the dispersion medium was changed to NMP 5.0 mL, and SWCNT was changed to CNT-4.
- a SWCNT-containing dispersion and a SWCNT / Nafion composite thin film were prepared.
- the ultraviolet-visible near-infrared absorption spectrum of the obtained SWCNT-containing dispersion is also shown in FIG.
- the dispersant (Examples 13, 14, and 19) made of —PBA—SO 3 H—TBA has a surface resistivity that is about an order of magnitude lower (10 5 / ⁇ level), and is used to obtain a highly conductive film. It can be seen that the following dispersants are advantageous. As shown in FIGS.
- the dispersibility of PVP varies greatly depending on the type of SWCNT, and SWCNTs that can be dispersed are limited (Comparative Examples 14 and 17), and Nafion can hardly disperse SWCNTs (Comparative Example 15). 18) Poor dispersibility means that there are many CNT aggregates, and the presence of these aggregates causes non-uniformity of the thin film, making it difficult to apply to devices. Further, in spray coating or the like, the aggregates cause clogging of the nozzle. From the above, the dispersant of the present invention is a novel and useful dispersant that can be dispersed regardless of SWCNT and can significantly reduce the surface resistivity of the composite thin film.
- Example 21 Production of SWCNT-containing composition and thin film 3 Dispersion of Example 21] PTPA-PBA-SO CNT -5 using 3 H (1) 20 mg of PTPA-PBA-SO 3 H synthesized in Example 1 as a dispersant was dissolved in a mixed solvent of 25 mL of IPA and 25 mL of pure water as a dispersion medium, and 10 mg of CNT-5 as SWCNT was added to this solution. This mixture was subjected to 50 MPa, 20-pass dispersion treatment at room temperature (approximately 25 ° C.) using a wet jet mill.
- This mixture was centrifuged at 10,000 G for 60 minutes using a small high-speed cooling centrifuge to obtain a SWCNT-containing dispersion as a supernatant.
- the UV-visible near-infrared absorption spectrum of the obtained SWCNT-containing dispersion was measured, the absorption of semiconducting S 11 band, S 22 band and metallic band was clearly observed, and it was confirmed that SWCNT was dispersed It was done.
- FIG. A uniform SWCNT / PTPA-PBA-SO 3 H composite is prepared by spraying 2 mL of the above SWCNT-containing dispersion on the entire upper surface of the glass substrate heated with a hot plate at 230 ° C. for 15 to 20 seconds using an air brush.
- a body thin film was prepared. The spraying was performed using nitrogen at a pressure of 0.2 MPa from approximately 20 cm above the substrate to be coated.
- Example 22 PTPA-PBA-SO CNT -5 using 3 H (2)
- the dispersion treatment method was changed to the ultrasonic treatment for 30 minutes at room temperature (approximately 25 ° C.) using a probe-type ultrasonic irradiation device, and was operated in the same manner as in Example 21, and the SWCNT-containing dispersion and SWCNT / PTPA- A PBA-SO 3 H composite thin film was prepared.
- the ultraviolet-visible near-infrared absorption spectrum of the obtained SWCNT-containing dispersion is also shown in FIG.
- Example 19 Dispersion of CNT-5 using PTPA-PBA The same operation as in Example 21 was carried out except that the dispersant was changed to 20 mg of PTPA-PBA synthesized in Synthesis Example 1, and the dispersion medium was changed to 50 mL of NMP. A SWCNT-containing dispersion and a SWCNT / PTPA-PBA composite thin film were prepared. The ultraviolet-visible near-infrared absorption spectrum of the obtained SWCNT-containing dispersion is also shown in FIG.
- Example 23 Dispersion of CNT-6 using PTPA-PBA-SO 3 H
- SWCNT-containing dispersion and SWCNT / PTPA-PBA- were operated in the same manner as in Example 21 except that SWCNT was changed to CNT-6.
- An SO 3 H composite thin film was prepared.
- the ultraviolet-visible near-infrared absorption spectrum of the obtained SWCNT-containing dispersion is shown in FIG.
- the surface resistivity and total light transmittance of the obtained SWCNT composite thin film were evaluated. The results are shown in Table 7.
- Example 21 As shown in Tables 6 and 7, in the case of using the dispersant of the present invention compared to the dispersant (Comparative Example 19) made of the highly branched polymer PTPA-PBA having no sulfo group even in the dispersion treatment other than the ultrasonic irradiation.
- the surface resistivity is about an order of magnitude lower than the same total light transmittance, and it can be seen that the dispersant of the present invention is advantageous in obtaining a highly conductive film.
- the dispersant of the present invention is a new and useful dispersant that can be dispersed regardless of the type of SWCNT and the dispersion treatment method, and can significantly reduce the surface resistivity of the composite thin film.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Nanotechnology (AREA)
- Materials Engineering (AREA)
- Medicinal Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Polymers & Plastics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Composite Materials (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Dispersion Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Carbon And Carbon Compounds (AREA)
- Phenolic Resins Or Amino Resins (AREA)
- Paints Or Removers (AREA)
- Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)
Abstract
Description
単独のCNTを使用する場合、CNTを溶媒中に加えてこれに超音波を照射した後、電気泳動等で単一に分散しているCNTのみを取り出す方法などが用いられている。
しかし、一般的にCNTは分散しにくいという問題があり、通常の複合体ではCNTの分散が不完全なまま用いられているため、十分にCNTの性能を発現させているとは言い難い。
さらに、この問題は、CNTの各種応用を難しくさせることにもつながっている。このためCNTの表面改質、表面化学修飾などによって分散性を向上させる方法が種々検討されている。
ここでは、有機溶媒中にCNTを孤立に分散させることが可能で、CNT1本にポリマーが付着している様子を示しているが、一度ある程度にまで分散した後に凝集が起こり、沈殿物としてCNTを捕集するというものであり、長期的にCNTを分散させた状態で保存できるものではなかった。
しかし、これらの技術では、分散剤として用いられるポリマーは直鎖状ポリマーであることを特徴としたものであり、高分岐ポリマーについての知見は明らかにされていない。
これらの高分岐ポリマーは、従来の高分子が一般的に紐状の形状であるのに対し、積極的に分岐を導入している点で比較的疎な内部空間や粒子性を有するという特異な形状を示すと共に、各種官能基の導入により修飾可能な多数の末端を有しており、これらの特徴を利用することで直鎖状のポリマーと比較してCNTを高度に分散させる可能性がある。
さらに、この特許文献4の技術では、分散剤を合成する際の収率が低く、収率を向上させるためにカップリング剤として多量の金属触媒を使用する必要があることから、高分岐ポリマー中に金属成分が残留する虞があるため、CNTとの複合体の用途では応用が限定される虞がある。
しかし、これらのドーパントは、高温下で揮発・分解したり、組成物中を移動したりするものが多く、安定に導電性を上げることが難しかった。
しかし、Nafion(登録商標)は、比較的高い伝導度を示すもののCNTの分散能はそれほど高いものではなかった。
この知見を基に、本発明者らはさらなる検討を重ねた結果、上記高分岐ポリマー中に、プロトン供給源となる酸性基を導入することで、CNTの分散性を維持しつつ、薄膜の導電性を改善し得ることを見出し、本発明を完成した。
1. 式(1)または式(2)で表される繰り返し単位を有することを特徴とする高分岐ポリマー、
2. 前記繰り返し単位が、式(12)で表される1の高分岐ポリマー、
3. 前記Z2が、水素原子である1または2の高分岐ポリマー、
4. 前記Z1が、水素原子、チエニル基、または前記式(8)で表される一価の有機基である3の高分岐ポリマー、
5. 前記酸性基が、スルホ基またはその塩である1~4のいずれかの高分岐ポリマー、
6. ゲル浸透クロマトグラフィーによるポリスチレン換算で測定される重量平均分子量が、1,000~2,000,000である1~5のいずれかの高分岐ポリマー、
7. 1~6のいずれかの高分岐ポリマーを含む膜形成用組成物、
8. 1~6のいずれかの高分岐ポリマーを含む膜、
9. 1~6のいずれかの高分岐ポリマーからなるカーボンナノチューブ分散剤、
10. 9のカーボンナノチューブ分散剤と、カーボンナノチューブとを含む組成物、
11. 前記カーボンナノチューブ分散剤が、前記カーボンナノチューブの表面に付着して複合体を形成している10の組成物、
12. さらに有機溶媒を含む10または11の組成物、
13. 前記カーボンナノチューブが、前記有機溶媒に孤立分散している12の組成物、
14. 前記複合体が、前記有機溶媒に孤立分散している12の組成物、
15. 前記カーボンナノチューブが、単層カーボンナノチューブ、2層カーボンナノチューブおよび多層カーボンナノチューブから選ばれる少なくとも1種である10~14のいずれかの組成物、
16. さらに有機溶媒に可溶な架橋剤を含む12~15のいずれかの組成物、
17. さらに酸および/または酸発生剤を含む16の組成物、
18. 10~17のいずれかの組成物から得られる薄膜、
19. 16または17の組成物から得られる薄膜に、熱処理を施すことで得られる硬化膜、
20. 9のカーボンナノチューブ分散剤、カーボンナノチューブ、および有機溶媒を混合して混合物を調製する工程と、この混合物を機械的処理する工程とを含むことを特徴とする組成物の製造方法、
21. 前記カーボンナノチューブ分散剤を前記有機溶媒に溶かしてなる溶液中に、前記カーボンナノチューブを添加して前記混合物を調製する工程と、この混合物を機械的処理する工程とを含むことを特徴とする20の製造方法、
22. 9のカーボンナノチューブ分散剤、カーボンナノチューブ、および熱可塑性樹脂を溶融混練により複合化させることを特徴とする組成物の製造方法
を提供する。
この膜は、液晶ディスプレイ、有機エレクトロルミネッセンス(EL)ディスプレイ、光半導体(LED)素子、固体撮像素子、有機薄膜太陽電池、色素増感太陽電池、有機薄膜トランジスタ(TFT)などの電子デバイスを作製する際の一部材として好適に利用できる。
特に、高屈折率が求められている固体撮像素子の部材である、フォトダイオード上の埋め込み膜および平坦化膜、カラーフィルター前後の平坦化膜、マイクロレンズ、マイクロレンズ上の平坦化膜およびコンフォーマル膜として好適に利用できる。
また、本発明の高分岐ポリマーは、トリアリールアミン構造を分岐点として含有しているためCNTの分散能に優れ、加熱処理することなく、CNTをその単独サイズまで孤立分散させ得る。
したがって、本発明の高分岐ポリマーからなる分散剤を用いることで、CNTの少なくとも一部をその単独サイズ(直径0.4~100nm)にまで分離して、いわゆる「孤立分散」の状態で安定に(凝集させることなく)有機溶媒に分散させることができる。なお本発明において「孤立分散」とは、CNTが相互の凝集力によって塊状や束状、縄状となることなく、CNTの1本1本がバラバラになって媒体に分散して存在している状態を意味する。
しかも分散剤、CNTおよび有機溶媒を含有する溶液に超音波処理などの機械的処理を施すだけで、CNTを分散させることができ、分散にあたり更なる熱処理などの付加工程を省略し得、かつ、処理時間を短縮することができる。
したがって、本発明のCNT分散剤を用いることで、CNT(の少なくとも一部)を孤立分散の状態で分散させた、CNT含有組成物を容易に得ることができる。
そして、本発明で得られるCNT含有組成物は、基板に塗布するだけで容易に薄膜形成が可能であるうえに、得られた薄膜は、高導電性を示す。そして上記組成物において、CNTの量をその用途に応じて調整することが容易であるため、各種半導体材料、電導体材料等として幅広い用途に好適に用いることができる。
本発明に係る上記式(1)および(2)で示される高分岐ポリマーは、トリアリールアミン構造を分岐点として含有するポリマー、より詳細には、トリアリールアミン類とアルデヒド類および/またはケトン類とを酸性条件下で縮合重合することで得られるポリマーである。
この高分岐ポリマーは、トリアリールアミン構造の芳香環由来のπ-π相互作用を通してCNTの有する共役構造に対して高い親和性を示すと考えられるため、CNTの高い分散能が期待されると共に、上記トリアリールアミン類とアルデヒド類および/またはケトン類から選ばれる共モノマーとの組み合わせや条件により、様々な骨格のデザインや官能基導入、分子量や分布の制御、さらには機能付与を行うことが可能であるなどの特徴を有する。また、この高分岐ポリマーは、分岐構造を有することで直鎖状のものでは見られない高溶解性をも有していると共に、熱安定性にも優れており、優れたホール輸送性を示すことから有機EL材料としての応用も期待される。
なお、本発明における重量平均分子量は、ゲル浸透クロマトフラフィーによる測定値(ポリスチレン換算)である。
炭素原子数1~5の分岐構造を有していてもよいアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基等が挙げられる。
炭素原子数1~5の分岐構造を有していてもよいアルコキシ基としては、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、sec-ブトキシ基、tert-ブトキシ基、n-ペントキシ基等が挙げられる。
カルボキシル基、スルホ基、リン酸基およびホスホン酸基の塩としては、ナトリウム,カリウムなどのアルカリ金属塩;マグネシウム,カルシウムなどのアルカリ土類金属塩;アンモニウム塩;プロピルアミン、ジメチルアミン、トリエチルアミン、トリ-n-プロピルアミン,トリ-n-ブチルアミン,トリ-n-ペンチルアミン,トリ-n-ヘキシルアミン,トリ-n-ヘプチルアミン,トリ-n-オクチルアミン,トリ-n-ノニルアミン,トリ-n-デシルアミン等のトリ炭素原子数1~10アルキルアミン、エチレンジアミンなどの脂肪族アミン塩;イミダゾリン、ピペラジン、モルホリンなどの環式アミン塩;アニリン、ジフェニルアミンなどの芳香族アミン塩;ピリジニウム塩等が挙げられる。
なお、R41がフェニル基の場合、後述する酸性基導入法において、ポリマー製造後に酸性基を導入する手法を用いた場合、このフェニル基上に酸性基が導入される場合もある。
上記炭素原子数1~5の分岐構造を有していてもよいアルキル基としては、上記で例示したものと同様のものが挙げられる。
なお、ハロゲン原子、炭素原子数1~5の分岐構造を有していてもよいアルキル基、並びにカルボキシル基、スルホ基、リン酸基およびホスホン酸基の塩としては、上記式(2)~(7)で例示した基と同様のものが挙げられる。
特に、アルコール類、グリコール類、グリコールエーテル類等の親水性溶媒に対する溶解性を向上させたい場合、上記酸性基は塩の形態、好ましくは、脂肪族アミン塩とすることが好適である。
なお、アルデヒド化合物として、例えば、テレフタルアルデヒド等のフタルアルデヒド類のような、二官能化合物(C)を用いる場合、スキーム1で示される反応が生じるだけではなく、下記スキーム2で示される反応が生じ、2つの官能基が共に縮合反応に寄与した、架橋構造を有する高分岐ポリマーが得られる場合もある。
上記酸触媒としては、例えば、硫酸、リン酸、過塩素酸などの鉱酸類;p-トルエンスルホン酸、p-トルエンスルホン酸一水和物などの有機スルホン酸類;ギ酸、シュウ酸などのカルボン酸類等を用いることができる。
酸触媒の使用量は、その種類によって種々選択されるが、通常、トリアリールアミン類100質量部に対して、0.001~10,000質量部、好ましくは、0.01~1,000質量部、より好ましくは0.1~100質量部である。
また、使用する酸触媒が、例えばギ酸のような液状のものであるならば、酸触媒に溶媒としての役割を兼ねさせることもできる。
以上のようにして得られる重合体の重量平均分子量Mwは、通常1,000~2,000,000、好ましくは、2,000~1,000,000である。
後者の手法において、酸性基を芳香環上に導入する手法としては、特に制限はなく、酸性基の種類に応じて従来公知の各種方法から適宜選択すればよい。
例えば、スルホ基を導入する場合、過剰量の硫酸を用いてスルホン化する手法などを用いることができる。
高分岐ポリマーを溶解するのに用いる溶媒は、重合時に用いた溶媒と同じものでも別のものでもよい。
本発明の膜形成用組成物には、本発明の効果を損なわない限りにおいて、高分岐ポリマーおよび溶媒以外のその他の成分、例えば、レベリング剤、界面活性剤、架橋剤等が含まれていてもよい。
組成物の塗布方法は任意であり、例えば、スピンコート法、ディップ法、フローコート法、インクジェット法、スプレー法、バーコート法、グラビアコート法、スリットコート法、ロールコート法、転写印刷法、刷毛塗り、ブレードコート法、エアーナイフコート法等の方法を採用できる。
焼成温度は、溶媒を蒸発させる目的では特に限定されず、例えば40~400℃とすることができる。これらの場合、より高い均一成膜性を発現させたり、基材上で反応を進行させたりする目的で2段階以上の温度変化をつけてもよい。
焼成方法としては、特に限定されるものではなく、例えば、ホットプレートやオーブンを用いて、大気、窒素等の不活性ガス、真空中等の適切な雰囲気下で行えばよい。
焼成温度および焼成時間は、目的とする電子デバイスのプロセス工程に適合した条件を選択すればよく、得られる膜の物性値が電子デバイスの要求特性に適合するような焼成条件を選択すればよい。
CNTは、アーク放電法、化学気相成長法(CVD法)、レーザー・アブレーション法等によって作製されるが、本発明に使用されるCNTはいずれの方法で得られたものでもよい。また、CNTには1枚の炭素膜(グラフェン・シート)が円筒状に巻かれた単層CNT(以下、SWCNTと記載)と、2枚のグラフェン・シートが同心円状に巻かれた2層CNT(以下、DWCNTと記載)と、複数のグラフェン・シートが同心円状に巻かれた多層CNT(以下、MWCNTと記載)とがあるが、本発明においては、SWCNT、DWCNT、MWCNTをそれぞれ単体で、または複数を組み合わせて使用できる。
このような有機溶媒としては、例えば、テトラヒドロフラン(THF)、ジエチルエーテル、1,2-ジメトキシエタン(DME)などのエーテル類;塩化メチレン、クロロホルム、1,2-ジクロロエタンなどのハロゲン化炭化水素類;N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド(DMAc)、N-メチル-2-ピロリドン(NMP)などのアミド類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンなどのケトン類;メタノール、エタノール、イソプロパノール、n-プロパノールなどのアルコール類;n-ヘプタン、n-ヘキサン、シクロヘキサンなどの脂肪族炭化水素類;ベンゼン、トルエン、キシレン、エチルベンゼンなどの芳香族炭化水素類;エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテルなどのグリコールエーテル類;エチレングリコール、プロピレングリコールなどのグリコール類等が挙げられ、これら有機溶媒は、それぞれ単独で、または2種以上混合して用いることができる。
特に、CNTの孤立分散の割合を向上させ得るという点から、NMP、DMF、THF、イソプロパノールが好ましい。さらに、用いる溶媒によっては、組成物の成膜性を向上し得る添加剤として、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテルなどのグリコールエーテル類;アセトン、メチルエチルケトン、シクロヘキサノンなどのケトン類、プロピレングリコール、イソプロパノール、NMP等を、少量含むことが望ましい。
さらに、上記親水性溶媒と水との混合溶媒とした場合でも、分散性、成膜性が低下することがない。
また、有機溶媒を用いる場合には、分散剤、CNT、有機溶媒を任意の順序で混合して組成物を調製すればよい。
この際、分散剤、CNTおよび有機溶媒からなる混合物を分散処理することが好ましく、この処理により、CNTの孤立分散の割合をより向上させることができる。分散処理としては、機械的処理である、ボールミル、ビーズミル、ジェットミルなどを用いた湿式処理や、バス型やプローブ型のソニケータを用いる超音波処理が挙げられる。
分散処理の時間は任意であるが、1分間から10時間程度が好ましく、5分間から5時間程度がより好ましい。
なお、本発明の分散剤は、CNTの分散能に優れているため、分散処理前等に加熱処理を施さなくとも、CNTが高濃度で孤立分散した組成物を得ることができるが、必要に応じて加熱処理を施しても構わない。
また、有機溶媒を使用した組成物中における分散剤の濃度は、CNTを有機溶媒に分散させ得る濃度であれば特に限定されるものではないが、本発明においては、組成物中に0.001~30質量%程度とすることが好ましく、0.002~20質量%程度とすることがより好ましい。
さらに、この組成物中におけるCNTの濃度は、少なくともCNTの一部が孤立分散する限りにおいて任意であるが、本発明においては、組成物中に0.0001~20質量%程度とすることが好ましく、0.001~10質量%程度とすることがより好ましい。
以上のようにして調製された本発明の組成物中では、分散剤がCNTの表面に付着して複合体を形成しているものと推測される。
汎用合成樹脂の例としては、PE(ポリエチレン)、PP(ポリプロピレン)、EVA(エチレン-酢酸ビニル共重合体)、EEA(エチレン-アクリル酸エチル共重合体)などのポリオレフィン系樹脂;PS(ポリスチレン)、HIPS(ハイインパクトポリスチレン)、AS(アクリロニトリル-スチレン共重合体)、ABS(アクリロニトリル-ブタジエン-スチレン共重合体)、MS(メタクリル酸メチル-スチレン共重合体)などのポリスチレン系樹脂;ポリカーボネート樹脂;塩化ビニル樹脂;ポリアミド樹脂;ポリイミド樹脂;PMMA(ポリメチルメタクリレート)などの(メタ)アクリル樹脂;PET(ポリエチレンテレフタレート)、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、PLA(ポリ乳酸)、ポリ-3-ヒドロキシ酪酸、ポリカプロラクトン、ポリブチレンサクシネート、ポリエチレンサクシネート/アジペートなどのポリエステル樹脂;ポリフェニレンエーテル樹脂;変性ポリフェニレンエーテル樹脂;ポリアセタール樹脂;ポリスルホン樹脂;ポリフェニレンサルファイド樹脂;ポリビニルアルコール樹脂;ポリグルコール酸;変性でんぷん;酢酸セルロース、三酢酸セルロース;キチン、キトサン;リグニン等の熱可塑性樹脂、並びに、フェノール樹脂;尿素樹脂;メラミン樹脂;不飽和ポリエステル樹脂;ポリウレタン樹脂;エポキシ樹脂等の熱硬化性樹脂が挙げられる。
このような架橋剤としては、メラミン系、置換尿素系、またはそれらのポリマー系等が挙げられ、これら架橋剤は、それぞれ単独で、または2種以上混合して用いることができる。なお、好ましくは、少なくとも2個の架橋形成置換基を有する架橋剤であり、CYMEL(登録商標)、メトキシメチル化グリコールウリル、ブトキシメチル化グリコールウリル、メチロール化グリコールウリル、メトキシメチル化メラミン、ブトキシメチル化メラミン、メチロール化メラミン、メトキシメチル化ベンゾグアナミン、ブトキシメチル化ベンゾグアナミン、メチロール化ベンゾグアナミン、メトキシメチル化尿素、ブトキシメチル化尿素、メチロール化尿素、メトキシメチル化チオ尿素、ブトキシメチル化チオ尿素、メチロール化チオ尿素等の化合物、およびこれらの化合物の縮合体が例として挙げられる。
本発明では、架橋反応を促進するための触媒としてとして、p-トルエンスルホン酸、トリフルオロメタンスルホン酸、ピリジニウムp-トルエンスルホン酸、サリチル酸、スルホサリチル酸、クエン酸、安息香酸、ヒドロキシ安息香酸、ナフタレンカルボン酸等の酸性化合物、および/または2,4,4,6-テトラブロモシクロヘキサジエノン、ベンゾイントシレート、2-ニトロベンジルトシレート、有機スルホン酸アルキルエステル等の熱酸発生剤を添加する事ができる。
触媒の添加量はCNT分散剤(高分岐ポリマー)に対して、0.0001~20質量%、好ましくは0.0005~10質量%、より好ましくは0.001~3質量%である。
マトリックスとなる樹脂としては、熱可塑性樹脂が好ましく、その具体例としては、上記汎用合成樹脂で例示した熱可塑性樹脂と同様のものが挙げられる。
この場合、組成物の調製は、分散剤、CNT、マトリックスとなる樹脂を、混練装置により溶融混練して複合化すればよい。混練装置としては、各種ミキサや、単軸または二軸押出機などが挙げられる。この際の混練温度、時間は任意であり、マトリックスとなる樹脂に応じて適宜選択される。
また、マトリックスとなる樹脂を用いた組成物中におけるCNT濃度は、要求される組成物の機械的、電気的、熱的特性などにおいて変化するため任意であるが、本発明においては、組成物中に0.0001~30質量%程度とすることが好ましく、0.001~20質量%とすることがより好ましい。
得られた薄膜は、CNTの金属的性質を活かした帯電防止膜、透明電極等の導電性材料、あるいは半導体的性質を活かした光電変換素子および電界発光素子等に好適に用いることができる。
装置:東ソー(株)製 HLC-8200 GPC
カラム:Shodex KF-804L+KF-805L
カラム温度:40℃
溶媒:テトラヒドロフラン
検出器:UV(254nm)
検量線:標準ポリスチレン
(2)示差熱天秤(TG-DTA)
装置:(株)リガク製 TG-8120
昇温速度:10℃/分
測定温度:25℃-750℃
(3)UV/Vis照射示差走査熱量計(Photo-DSC)
装置:(株)NETZSCH製 Photo-DSC 204 F1 Phoenix
昇温速度:40℃/分
測定温度:25℃-350℃
(4)1H NMRスペクトル
装置:日本電子(株)製 JNM-ECA700
測定溶媒:DMSO-d6(重水素化ジメチルスルホキシド)
基準物質:テトラメチルシラン(0.00ppm)
(5)13C NMRスペクトル
装置:日本電子(株)製 JNM-ECA700
測定溶媒:DMSO-d6
基準物質:DMSO-d6(39.5ppm)
(6)イオンクロマトグラフィー(イオウ定量分析)
装置:ダイオネクス社製 ICS-1500
カラム:ダイオネクス社製 IonPacAG12A + IonPacAS12A
溶媒:(NaHCO32.7mmol+Na2CO30.3mmol)/L水溶液
検出器:電気伝導度
(7)スピンコーター
装置:ミカサ(株)製 1H-D7
(8)ホットプレート
装置:アズワン(株)製 ND-2
(9)プローブ型超音波照射装置(分散処理)
装置:Hielscher Ultrasonics社製 UIP1000
(10)抵抗率計(表面抵抗率測定)
装置A:三菱化学(株)製 ロレスタ-GP
プローブ:三菱化学(株)製 直列4探針プローブ ASP(探針間距離:5mm)
装置B:三菱化学(株)製 ハイレスタ-UP
プローブ:三菱化学(株)製 リングプローブURS
(11)ヘイズメーター(全光線透過率測定)
装置:日本電色工業(株)製 NDH5000
(12)超音波洗浄器(分散処理)
装置:東京硝子器械(株)製 FU-6H
(13)小型高速冷却遠心機(遠心分離)
装置:(株)トミー精工製 SRX-201
(14)紫外線可視分光光度計(吸光度測定)
装置:(株)島津製作所製 SHIMADZU UV-3600
測定波長:400~1650nm
(15)エアブラシ
装置:アネスト岩田(株)製 Revolution HP-TR2
ノズル口径:0.5mm
ボトル容量:15mL
(16)湿式ジェットミル(分散処理)
装置:(株)常光製 ナノジェットパル(登録商標)JN20
CNT-1:未精製MWCNT[CNT社製 “C Tube 100” 外径10~30nm]
CNT-2:中繊維径MWCNT[昭和電工(株)製 “VGCF-X” 外径15nm]
CNT-3:未精製SWCNT[Carbon Nanotechnologies社製 HiPco]
CNT-4:精製SWCNT[Unidym社製]
CNT-5:精製SWCNT[Hanwha Nanotech社製 ASP-100F]
CNT-6:精製SWCNT[KH Chemicals社製 KH SWCNT80]
PVP:ポリビニルピロリドン[東京化成工業(株)製 K15 Mw10,000]
Nafion:Nafion(登録商標)分散液[シグマ-アルドリッチ社製 No.510211 Nafion(登録商標)5wt%/低級アルコール50wt%/水45wt%]
BuOH:1-ブタノール
CHN:シクロヘキサノン
DMAc:N,N-ジメチルアセトアミド
DME:1,2-ジメトキシエタン
EtOH:エタノール
IPA:イソプロパノール(2-プロパノール)
IPE:ジイソプロピルエーテル
MEK:メチルエチルケトン
MeOH:メタノール
NMP:N-メチル-2-ピロリドン
PG:プロピレングリコール
PGME:プロピレングリコールモノメチルエーテル
PrOH:1-プロパノール
THF:テトラヒドロフラン
[合成例1]高分岐ポリマーPTPA-PBAの合成
窒素下、1L四口フラスコに、トリフェニルアミン[Zhenjiang Haitong Chemical Industry Co.,Ltd.製]80.0g(326mmol)、4-フェニルベンズアルデヒド[三菱ガス化学(株)製,4-BPAL]118.8g(652mmol(トリフェニルアミンに対して2.0eq))、パラトルエンスルホン酸一水和物[江南化工(株)製]12.4g(65mmol(トリフェニルアミンに対して0.2eq))、および1,4-ジオキサン160gを仕込んだ。この混合物を撹拌しながら85℃まで昇温し、溶解させ、重合を開始した。6時間反応させた後、反応混合物を60℃まで放冷した。この反応混合物をTHF560gで希釈し、28質量%アンモニア水80gを加えた。その反応溶液をアセトン2000gおよびメタノール400gの混合溶液へ投入することで再沈殿させた。析出した沈殿物をろ過し、減圧乾燥した後、得られた固体をTHF640gに再溶解させ、アセトン2000gおよび水400gの混合溶液へ投入することで再度再沈殿させた。析出した沈殿物をろ過し、130℃で6時間減圧乾燥して、下記式[A]で表される繰り返し単位を有する高分岐ポリマーPTPA-PBA115.1gを得た。
得られたPTPA-PBAの、GPCによるポリスチレン換算で測定される重量平均分子量Mwは17,000、多分散度Mw/Mnは3.82であった(ここでMnは同条件で測定される数平均分子量を表す。)。また、TG-DTAにより測定した5%重量減少温度は531℃、DSCにより測定したガラス転移温度(Tg)は159℃であった。
窒素下、500mL四口フラスコに、合成例1で合成したPTPA-PBA2.0gおよび硫酸[関東化学(株)製]50gを仕込んだ。この混合物を撹拌しながら40℃まで昇温して溶解させ、スルホン化を開始した。8時間反応させた後、反応混合物を50℃まで昇温して、さらに1時間反応させた。この反応混合物を、純水250gへ投入することで再沈殿させた。沈殿物をろ過し、これを純水250gに加えて12時間静置した。沈殿物をろ過し、50℃で8時間減圧乾燥することで、紫色粉末として高分岐ポリマーPTPA-PBA-SO3H(以下、単にPTPA-PBA-SO3Hという)2.7gを得た。
得られたPTPA-PBA-SO3Hの1H-NMRスペクトルを図1に、13C-NMRスペクトルを図2にそれぞれ示す。また、イオウ定量分析から算出したPTPA-PBA-SO3Hのイオウ原子含有量は6.4質量%であった。この結果から求めたPTPA-PBA-SO3Hのスルホ基含有量は、高分岐ポリマーPTPA-PBAの1繰り返し単位当り1個であった。
窒素下、50mL四口フラスコに、実施例1で合成したPTPA-PBA-SO3H2.0gおよびメタノール18gを仕込んだ。この混合物を、室温(およそ25℃)で撹拌しながら溶解させ、トリ-n-ブチルアミン[関東化学(株)製]1.5g(8.2mmol(スルホン化ポリマーに対して2.0eq))を滴下した。30分間反応させた後、この反応混合物を、IPE200gへ投入することで再沈殿させた。沈殿物をろ過し、60℃で8時間減圧乾燥することで、淡緑色粉末として高分岐ポリマーPTPA-PBA-SO3H-TBA(以下、単にPTPA-PBA-SO3H-TBAという)2.6gを得た。
得られたPTPA-PBA-SO3H-TBAの1H-NMRスペクトルを図3に示す。
メタノールの使用量を8gに、トリ-n-ブチルアミンをトリ-n-オクチルアミン[東京化成工業(株)製]2.9g(8.2mmol(スルホン化ポリマーに対して2.0eq))にそれぞれ変更した以外は、実施例15と同様に操作し、淡緑色粉末として高分岐ポリマーPTPA-PBA-SO3H-TOA(以下、単にPTPA-PBA-SO3H-TOAという)3.0gを得た。
得られたPTPA-PBA-SO3H-TOAの1H-NMRスペクトルを図4に示す。
[実施例2]
実施例1で得られたPTPA-PBA-SO3Hを、樹脂濃度が10質量%となるようにNMP/CHN混合溶液(質量比1:1)に溶解させた。得られた溶液を、ガラス基板(5×5cm)上にスピンコーティング(200rpm×5秒間、次いで2000rpm×30秒間)して成膜した。この塗膜を100℃のホットプレートで2分間加熱し、PTPA-PBA-SO3H薄膜を作製した。
PTPA-PBA-SO3Hを合成例1で合成したPTPA-PBAに、溶媒をCHNにそれぞれ変更した以外は、実施例2と同様にしてPTPA-PBA薄膜を作製した。
PTPA-PBA-SO3HをPVPに変更した以外は、実施例2と同様にしてPVP薄膜を作製した。
[実施例3]PTPA-PBA-SO3Hを用いたNMP分散(1)
分散剤として実施例1で合成したPTPA-PBA-SO3H0.50gを、分散媒としてNMP49.25gに溶解させ、この溶液へMWCNTとしてCNT-1 0.25gを添加した。この混合物に、プローブ型超音波照射装置を用いて室温(およそ25℃)で30分間超音波処理を行い、沈降物がなくMWCNTが均一に分散した黒色のMWCNT含有分散液を得た。
上記MWCNT含有分散液2.0gに、添加剤としてCHN0.50gを添加し、薄膜作製用の塗布液を調製した。得られた塗布液50μLを、スリット幅25.4μmのアプリケータを用いてガラス基板上に均一に展開し、100℃でおよそ2分間乾燥することで透明で均一なMWCNT/PTPA-PBA-SO3H複合体薄膜を作製した。
分散剤をPTPA-PBA-SO3H0.25gに、分散媒をNMP49.50gにそれぞれ変更した以外は、実施例3と同様に操作し、MWCNT含有分散液およびMWCNT/PTPA-PBA-SO3H複合体薄膜を作製した。
分散剤をPTPA-PBA-SO3H0.25gに、分散媒をNMP44.75g、PrOH2.5gおよび純水2.25gの混合溶媒にそれぞれ変更した以外は、実施例3と同様に操作し、MWCNT含有分散液およびMWCNT/PTPA-PBA-SO3H複合体薄膜を作製した。
分散媒をMeOH49.25gに、添加剤をPG0.50gにそれぞれ変更した以外は、実施例3と同様に操作し、MWCNT含有分散液およびMWCNT/PTPA-PBA-SO3H複合体薄膜を作製した。
分散媒をPG49.25gに変更し、さらに添加剤CHNを用いない以外は、実施例3と同様に操作し、MWCNT含有分散液およびMWCNT/PTPA-PBA-SO3H複合体薄膜を作製した。
分散媒をPGME44.33gおよび純水4.93gの混合溶媒に変更し、さらに添加剤CHNを用いない以外は、実施例3と同様に操作し、MWCNT含有分散液およびMWCNT/PTPA-PBA-SO3H複合体薄膜を作製した。
分散媒をMeOH20.00gおよび純水29.25gの混合溶媒に、添加剤をIPA0.50gにそれぞれ変更した以外は、実施例3と同様に操作し、MWCNT含有分散液およびMWCNT/PTPA-PBA-SO3H複合体薄膜を作製した。
分散媒をIPA44.33gおよび純水4.93gの混合溶媒に、添加剤をNMP0.50gにそれぞれ変更した以外は、実施例3と同様に操作し、MWCNT含有分散液およびMWCNT/PTPA-PBA-SO3H複合体薄膜を作製した。
分散剤を合成例1で合成したPTPA-PBA0.50gに変更した以外は、実施例3と同様に操作し、MWCNT含有分散液およびMWCNT/PTPA-PBA複合体薄膜を作製した。
分散剤を合成例1で合成したPTPA-PBA0.25gに、分散媒をNMP49.50gに、それぞれ変更した以外は実施例3と同様に操作し、MWCNT含有分散液およびMWCNT/PTPA-PBA複合体薄膜を作製した。
分散剤をPVP0.25gに、分散媒をNMP49.50gにそれぞれ変更した以外は、実施例3と同様に操作し、MWCNT含有分散液およびMWCNT/PVP複合体薄膜を作製した。
分散剤をPVP0.50gに、分散媒をPG49.25gにそれぞれ変更した以外は、実施例3と同様に操作し、MWCNT含有分散液およびMWCNT/PVP複合体薄膜を作製した。
分散剤をNafion0.25g(Nafion分散液5.00g)に、分散媒をNMP44.75gにそれぞれ変更した以外は、実施例3と同様に操作し、MWCNT含有分散液およびMWCNT/Nafion複合体薄膜を作製した。
分散剤をNafion0.50g(Nafion分散液10.00g)に、分散媒をPG39.75gにそれぞれ変更した以外は、実施例3と同様に操作し、MWCNT含有分散液およびMWCNT/Nafion複合体薄膜を作製した。
<分散性>超音波処理後30分静置した後の分散液の状態
○:凝集物のような塊が全く確認できず均一に分散している。
×:MWCNTの凝集物が見られる。
<薄膜均一性>
○:凝集物のような塊や膜ムラ(濃淡)が全く確認できない。
△:MWCNTの凝集物や膜ムラ(濃淡)が見られる。
×:MWCNTの凝集物や膜ムラ(濃淡)が薄膜の殆どの部分で見られ、膜としての評価ができない。
また、スルホ基のないPTPA-PBA(比較例3,4)と比べ、スルホ基を有する実施例3~8の分散剤を用いた場合は表面抵抗率が1桁程度低く(103Ω/□レベル)、高導電性の膜を得る上で、本発明の分散剤が有利であることがわかる。
なお、PVPは一般的な有機溶媒、親水性溶媒ともに安定な分散液が得られるものの、薄膜の均一性が低く(比較例5,6)、Nafionは一般的な有機溶媒中ではMWCNTを分散できず(比較例7)、親水性溶媒では安定な分散液が得られるものの、成膜性が非常に悪い(比較例8)ことがわかる。
[実施例11]PTPA-PBA-SO3Hを用いたNMP分散(1)
MWCNTをCNT-2 0.25gに変更した以外は、実施例3と同様に操作し、MWCNT含有分散液およびMWCNT/PTPA-PBA-SO3H複合体薄膜を作製した。
分散剤をPTPA-PBA-SO3H0.25gに、分散媒をNMP49.50gに、MWCNTをCNT-2 0.25gに、それぞれ変更した以外は、実施例3と同様に操作し、MWCNT含有分散液およびMWCNT/PTPA-PBA-SO3H複合体薄膜を作製した。
分散剤を実施例15で合成したPTPA-PBA-SO3H-TBA0.50gに、分散媒をPrOH49.25gに、MWCNTをCNT-2 0.25gに、添加剤をPG0.50gに、それぞれ変更した以外は、実施例3と同様に操作し、MWCNT含有分散液およびMWCNT/PTPA-PBA-SO3H-TBA複合体薄膜を作製した。
分散剤を実施例16で合成したPTPA-PBA-SO3H-TOA0.50gに、分散媒をPrOH49.25gに、MWCNTをCNT-2 0.25gに、添加剤をPG0.50gに、それぞれ変更した以外は、実施例3と同様に操作し、MWCNT含有分散液およびMWCNT/PTPA-PBA-SO3H-TOA複合体薄膜を作製した。
分散剤を合成例1で合成したPTPA-PBA0.50gに、MWCNTをCNT-2 0.25gに、それぞれ変更した以外は、実施例3と同様に操作し、MWCNT含有分散液およびMWCNT/PTPA-PBA複合体薄膜を作製した。
分散剤を合成例1で合成したPTPA-PBA0.25gに、分散媒をNMP49.50gに、MWCNTをCNT-2 0.25gに、それぞれ変更した以外は、実施例3と同様に操作し、MWCNT含有分散液およびMWCNT/PTPA-PBA複合体薄膜を作製した。
分散剤をPVP0.25gに、分散媒をNMP49.50gに、MWCNTをCNT-2 0.25gに、それぞれ変更した以外は、実施例3と同様に操作し、MWCNT含有分散液およびMWCNT/PVP複合体薄膜を作製した。
分散剤をNafion0.25g(Nafion分散液5.00g)に、分散媒をNMP44.75gに、MWCNTをCNT-2 0.25gに、それぞれ変更した以外は、実施例3と同様に操作し、MWCNT含有分散液およびMWCNT/Nafion複合体薄膜を作製した。
[実施例13]PTPA-PBA-SO3Hを用いたCNT-3の分散
分散剤として実施例1で合成したPTPA-PBA-SO3H1.0mgを、分散媒としてNMP5.0mL、PrOH10mgおよび純水9mgの混合溶媒に溶解させ、この溶液へSWCNTとしてCNT-3 0.5mgを添加した。この混合物に、超音波洗浄器を用いて室温(およそ25℃)で60分間超音波処理を行った。この混合物を、小型高速冷却遠心機を用いて10,000Gで60分間の遠心分離処理を行い、SWCNT含有分散液を上澄み液として得た。
得られたSWCNT含有分散液の紫外可視近赤外吸収スペクトルを測定したところ、半導体性S11バンド(1,400~1,000nm)、S22バンド(1,000~600nm)および金属性バンド(600~450nm)の吸収が明確に観察され、SWCNTが分散されていることが確認された。結果を図5に示す。
上記SWCNT含有分散液2mLを、エアブラシを用いて、230℃のホットプレートで加熱しているガラス基板上部全面に15~20秒間スプレー塗布することで、均一なSWCNT/PTPA-PBA-SO3H複合体薄膜を作製した。なお、スプレーには圧力0.2MPaの窒素を使用し、被塗布基板の上方およそ20cmからスプレーした。
分散剤を実施例15で合成したPTPA-PBA-SO3H-TBA1.0mgに、分散媒をPrOH5mLにそれぞれ変更し、遠心分離処理を行わなかった以外は、実施例13と同様に操作し、SWCNT含有分散液およびSWCNT/PTPA-PBA-SO3H-TBA複合体薄膜を作製した。
得られたSWCNT含有分散液の紫外可視近赤外吸収スペクトルを測定したところ、半導体性S11バンド、S22バンド、および金属性バンドの吸収が明確に観察され、SWCNTが分散されていることが確認された。得られたSWCNT含有分散液の紫外可視近赤外吸収スペクトルを図5に併せて示す。
分散剤を実施例15で合成したPTPA-PBA-SO3H-TOA1.0mgに、分散媒をPrOH5mLにそれぞれ変更し、遠心分離処理を行わなかった以外は、実施例13と同様に操作し、SWCNT含有分散液およびSWCNT/PTPA-PBA-SO3H-TOA複合体薄膜を作製した。
得られたSWCNT含有分散液の紫外可視近赤外吸収スペクトルを測定したところ、半導体性S11バンド、S22バンド、および金属性バンドの吸収が明確に観察され、SWCNTが分散されていることが確認された。得られたSWCNT含有分散液の紫外可視近赤外吸収スペクトルを図5に併せて示す。
分散剤を合成例1で合成したPTPA-PBA1.0mgに変更した以外は、実施例13と同様に操作し、SWCNT含有分散液およびSWCNT/PTPA-PBA複合体薄膜を作製した。得られたSWCNT含有分散液の紫外可視近赤外吸収スペクトルを図5に併せて示す。
分散剤をPVP1.0mgに変更した以外は、実施例13と同様に操作し、SWCNT含有分散液およびSWCNT/PVP複合体薄膜を作製した。得られたSWCNT含有分散液の紫外可視近赤外吸収スペクトルを図5に併せて示す。
分散剤をNafion1.0mg(Nafion分散液20mg)に、分散媒をNMP5.0mLにそれぞれ変更した以外は、実施例13と同様に操作し、SWCNT含有分散液およびSWCNT/Nafion複合体薄膜を作製した。得られたSWCNT含有分散液の紫外可視近赤外吸収スペクトルを図5に併せて示す。
[実施例14]PTPA-PBA-SO3Hを用いたCNT-4の分散
SWCNTをCNT-4に変更した以外は実施例13と同様に操作し、SWCNT含有分散液およびSWCNT/PTPA-PBA-SO3H複合体薄膜を作製した。
得られたSWCNT含有分散液の紫外可視近赤外吸収スペクトルを測定したところ、半導体性S11バンド(1,400~1,000nm)、S22バンド(1,000~600nm)および金属性バンド(600~450nm)の吸収が明確に観察され、SWCNTが分散されていることが確認された。結果を図6に示す。
分散剤を合成例1で合成したPTPA-PBA1.0mgに、SWCNTをCNT-4に、それぞれ変更した以外は実施例13と同様に操作し、SWCNT含有分散液およびSWCNT/PTPA-PBA複合体薄膜を作製した。得られたSWCNT含有分散液の紫外可視近赤外吸収スペクトルを図6に併せて示す。
分散剤をPVP1.0mgに、SWCNTをCNT-4に、それぞれ変更した以外は実施例13と同様に操作し、SWCNT含有分散液およびSWCNT/PVP複合体薄膜を作製した。得られたSWCNT含有分散液の紫外可視近赤外吸収スペクトルを図6に併せて示す。
分散剤をNafion1.0mg(Nafion分散液20mg)に、分散媒をNMP5.0mLに、SWCNTをCNT-4に、それぞれ変更した以外は実施例13と同様に操作し、SWCNT含有分散液およびSWCNT/Nafion複合体薄膜を作製した。得られたSWCNT含有分散液の紫外可視近赤外吸収スペクトルを図6に併せて示す。
なお、図5,6に示されるように、PVPはSWCNTの種類によって分散能が大きく異なり、分散できるSWCNTに制限があり(比較例14,17)、NafionはSWCNTをほとんど分散できない(比較例15,18)ことがわかる。
分散性が悪いということは、CNTの凝集物が多いということであり、この凝集物の存在は、薄膜の不均一性の原因となるため、デバイスへの応用を困難とする。また、スプレー塗布等では凝集物はノズルを詰まらせる原因ともなる。
以上より、本発明の分散剤は、SWCNTを選ばず分散可能であり、複合体薄膜の表面抵抗率を大幅に低下させ得る、新規かつ有用な分散剤である。
[実施例21]PTPA-PBA-SO3Hを用いたCNT-5の分散(1)
分散剤として実施例1で合成したPTPA-PBA-SO3H20mgを、分散媒としてIPA25mLおよび純水25mLの混合溶媒に溶解させ、この溶液へSWCNTとしてCNT-5 10mgを添加した。この混合物に、湿式ジェットミル装置を用いて室温(およそ25℃)で、50MPa、20パスの分散処理を行った。この混合物を、小型高速冷却遠心機を用いて10,000Gで60分間の遠心分離処理を行い、SWCNT含有分散液を上澄み液として得た。
得られたSWCNT含有分散液の紫外可視近赤外吸収スペクトルを測定したところ、半導体性S11バンド、S22バンドおよび金属性バンドの吸収が明確に観察され、SWCNTが分散されていることが確認された。結果を図7に示す。
上記SWCNT含有分散液2mLを、エアブラシを用いて、230℃のホットプレートで加熱しているガラス基板上部全面に15~20秒間スプレー塗布することで、均一なSWCNT/PTPA-PBA-SO3H複合体薄膜を作製した。なお、スプレーには圧力0.2MPaの窒素を使用し、被塗布基板の上方およそ20cmからスプレーした。
分散処理方法を、プローブ型超音波照射装置を用いた室温(およそ25℃)で30分間の超音波処理に変更した以外は実施例21と同様に操作し、SWCNT含有分散液およびSWCNT/PTPA-PBA-SO3H複合体薄膜を作製した。得られたSWCNT含有分散液の紫外可視近赤外吸収スペクトルを図7に併せて示す。
分散剤を合成例1で合成したPTPA-PBA20mgに、分散媒をNMP50mLに、それぞれ変更した以外は実施例21と同様に操作し、SWCNT含有分散液およびSWCNT/PTPA-PBA複合体薄膜を作製した。得られたSWCNT含有分散液の紫外可視近赤外吸収スペクトルを図7に併せて示す。
[実施例23]PTPA-PBA-SO3Hを用いたCNT-6の分散
SWCNTをCNT-6に変更した以外は実施例21と同様に操作し、SWCNT含有分散液およびSWCNT/PTPA-PBA-SO3H複合体薄膜を作製した。得られたSWCNT含有分散液の紫外可視近赤外吸収スペクトルを図8に示す。
また、得られたSWCNT複合体薄膜の表面抵抗率および全光線透過率を評価した。結果を表7に示す。
また実施例13,14に加えて、実施例21~23から、CNT-3,4,5,6のいずれのSWCNTに対しても分散が可能であり、SWCNTであれば種類を問わず分散することができることがわかる。
以上より、本発明の分散剤は、SWCNTの種類、分散処理方法を選ばず分散可能であり、複合体薄膜の表面抵抗率を大幅に低下させ得る、新規かつ有用な分散剤であると言える。
[実施例24]
実施例1,15,16で得られた各高分岐ポリマーについて、表8に示す各溶媒に対する溶解性を評価した。評価は、濃度が1質量%となるように各高分岐ポリマーをそれぞれの溶媒と混合し、25℃で30分間超音波処理を行った後に、以下の基準に従って目視で評価した。結果を表8に示す。
<溶解性評価基準>
○:凝集物のような塊が全く確認できず均一に溶解している。
△:ある程度の溶解は確認できるが、溶け残りがある。
×:ほとんど溶解せず、塊のままである。
合成例1で得られたPTPA-PBA、PVPについて、実施例24と同様に評価した。結果を表8に併せて示す。
Claims (22)
- 式(1)または式(2)で表される繰り返し単位を有することを特徴とする高分岐ポリマー。
- 前記Z2が、水素原子である請求項1または2記載の高分岐ポリマー。
- 前記Z1が、水素原子、チエニル基、または前記式(8)で表される一価の有機基である請求項3記載の高分岐ポリマー。
- 前記酸性基が、スルホ基またはその塩である請求項1~4のいずれか1項記載の高分岐ポリマー。
- ゲル浸透クロマトグラフィーによるポリスチレン換算で測定される重量平均分子量が、1,000~2,000,000である請求項1~5のいずれか1項記載の高分岐ポリマー。
- 請求項1~6のいずれか1項記載の高分岐ポリマーを含む膜形成用組成物。
- 請求項1~6のいずれか1項記載の高分岐ポリマーを含む膜。
- 請求項1~6のいずれか1項記載の高分岐ポリマーからなるカーボンナノチューブ分散剤。
- 請求項9記載のカーボンナノチューブ分散剤と、カーボンナノチューブとを含む組成物。
- 前記カーボンナノチューブ分散剤が、前記カーボンナノチューブの表面に付着して複合体を形成している請求項10記載の組成物。
- さらに有機溶媒を含む請求項10または11記載の組成物。
- 前記カーボンナノチューブが、前記有機溶媒に孤立分散している請求項12記載の組成物。
- 前記複合体が、前記有機溶媒に孤立分散している請求項12記載の組成物。
- 前記カーボンナノチューブが、単層カーボンナノチューブ、2層カーボンナノチューブおよび多層カーボンナノチューブから選ばれる少なくとも1種である請求項10~14のいずれか1項記載の組成物。
- さらに有機溶媒に可溶な架橋剤を含む請求項12~15のいずれか1項記載の組成物。
- さらに酸および/または酸発生剤を含む請求項16記載の組成物。
- 請求項10~17のいずれか1項記載の組成物から得られる薄膜。
- 請求項16または17記載の組成物から得られる薄膜に、熱処理を施すことで得られる硬化膜。
- 請求項9記載のカーボンナノチューブ分散剤、カーボンナノチューブ、および有機溶媒を混合して混合物を調製する工程と、この混合物を機械的処理する工程とを含むことを特徴とする組成物の製造方法。
- 前記カーボンナノチューブ分散剤を前記有機溶媒に溶かしてなる溶液中に、前記カーボンナノチューブを添加して前記混合物を調製する工程と、この混合物を機械的処理する工程とを含むことを特徴とする請求項20記載の製造方法。
- 請求項9記載のカーボンナノチューブ分散剤、カーボンナノチューブ、および熱可塑性樹脂を溶融混練により複合化させることを特徴とする組成物の製造方法。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES12790303.7T ES2687149T3 (es) | 2011-05-25 | 2012-05-25 | Polímero altamente ramificado y dispersante para nanotubos de carbono |
JP2013516454A JP6052170B2 (ja) | 2011-05-25 | 2012-05-25 | 高分岐ポリマーおよびカーボンナノチューブ分散剤 |
KR1020137033872A KR101889094B1 (ko) | 2011-05-25 | 2012-05-25 | 고분기 폴리머 및 카본나노튜브 분산제 |
US14/119,798 US10138323B2 (en) | 2011-05-25 | 2012-05-25 | Highly branched polymer and dispersant for carbon nanotubes |
PL12790303T PL2716672T3 (pl) | 2011-05-25 | 2012-05-25 | Wysoce rozgałęziony polimer i środek dyspergujący do nanorurek węglowych |
CN201280024862.7A CN103582660B (zh) | 2011-05-25 | 2012-05-25 | 高支化聚合物和碳纳米管分散剂 |
EP12790303.7A EP2716672B1 (en) | 2011-05-25 | 2012-05-25 | Highly branched polymer and dispersant for carbon nanotubes |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011117258 | 2011-05-25 | ||
JP2011-117258 | 2011-05-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012161307A1 true WO2012161307A1 (ja) | 2012-11-29 |
Family
ID=47217372
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/063454 WO2012161307A1 (ja) | 2011-05-25 | 2012-05-25 | 高分岐ポリマーおよびカーボンナノチューブ分散剤 |
Country Status (9)
Country | Link |
---|---|
US (1) | US10138323B2 (ja) |
EP (1) | EP2716672B1 (ja) |
JP (1) | JP6052170B2 (ja) |
KR (1) | KR101889094B1 (ja) |
CN (1) | CN103582660B (ja) |
ES (1) | ES2687149T3 (ja) |
PL (1) | PL2716672T3 (ja) |
TW (1) | TWI534176B (ja) |
WO (1) | WO2012161307A1 (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2014132957A1 (ja) * | 2013-02-28 | 2017-02-02 | 東レ株式会社 | カーボンナノチューブ集合体およびその製造方法 |
WO2019054301A1 (ja) * | 2017-09-15 | 2019-03-21 | 日産化学株式会社 | スルホ基含有高分岐ポリマーの精製方法及びその製造方法 |
WO2019188540A1 (ja) * | 2018-03-29 | 2019-10-03 | 日産化学株式会社 | エネルギー貯蔵デバイスのアンダーコート層形成用組成物 |
CN110436443A (zh) * | 2018-05-03 | 2019-11-12 | 史增谦 | 碳纳米管分散剂及其制备方法和应用 |
JPWO2019188537A1 (ja) * | 2018-03-29 | 2021-04-08 | 日産化学株式会社 | エネルギー貯蔵デバイスのアンダーコート層形成用組成物 |
JPWO2019188538A1 (ja) * | 2018-03-29 | 2021-04-08 | 日産化学株式会社 | エネルギー貯蔵デバイスのアンダーコート層形成用組成物 |
JP2021075659A (ja) * | 2019-11-12 | 2021-05-20 | 大日精化工業株式会社 | 導電性ポリマー及び導電性ポリマー組成物 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5960178B2 (ja) * | 2013-03-28 | 2016-08-02 | 富士フイルム株式会社 | 熱電変換素子の製造方法および熱電変換層用分散物の製造方法 |
CN110719807A (zh) | 2017-03-24 | 2020-01-21 | 日东电工株式会社 | 选择性渗透的氧化石墨烯膜 |
CN109761221B (zh) * | 2017-11-09 | 2020-09-29 | 北京华碳元芯电子科技有限责任公司 | 分离提纯半导体单壁碳纳米管的有机物、方法及应用 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10302963A (ja) * | 1997-04-24 | 1998-11-13 | Toppan Printing Co Ltd | 高分子電荷輸送材料 |
JP2001255566A (ja) * | 2000-03-10 | 2001-09-21 | Showa Denko Kk | フォトリフラクティブ材料組成物及びこれを用いたフォトリフラクティブ素子及びホログラム |
WO2011065395A1 (ja) * | 2009-11-25 | 2011-06-03 | 日産化学工業株式会社 | カーボンナノチューブ分散剤 |
Family Cites Families (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3474054A (en) | 1966-09-13 | 1969-10-21 | Permalac Corp The | Surface coating compositions containing pyridine salts or aromatic sulfonic acids |
US4200729A (en) | 1978-05-22 | 1980-04-29 | King Industries, Inc | Curing amino resins with aromatic sulfonic acid oxa-azacyclopentane adducts |
US4251665A (en) | 1978-05-22 | 1981-02-17 | King Industries, Inc. | Aromatic sulfonic acid oxa-azacyclopentane adducts |
US4624999A (en) * | 1985-07-29 | 1986-11-25 | Honeywell Inc. | Electrically conducting complexes of polymers of N-substituted carbazoles and substituted benzaldehydes |
US4631323A (en) * | 1985-07-29 | 1986-12-23 | Honeywell Inc. | Method of making conducting polymer complexes of N-substituted carbazoles and substituted benzaldehydes |
US5187019A (en) | 1991-09-06 | 1993-02-16 | King Industries, Inc. | Latent catalysts |
JP4696229B2 (ja) | 1998-04-09 | 2011-06-08 | ホーカム・リミテッド | カーボンナノチューブ煤の精製方法とカーボンナノチューブポリマー複合体 |
WO2004048462A1 (ja) | 2002-11-28 | 2004-06-10 | Jsr Corporation | 光硬化性樹脂組成物、それを用いた医療用具およびその製造方法 |
KR100947702B1 (ko) | 2003-02-26 | 2010-03-16 | 삼성전자주식회사 | 경화성 작용기로 표면수식된 탄소나노튜브를 이용한패턴박막 형성방법 및 고분자 복합체의 제조방법 |
US7285591B2 (en) | 2003-03-20 | 2007-10-23 | The Trustees Of The University Of Pennsylvania | Polymer-nanotube composites, fibers, and processes |
JP4182215B2 (ja) | 2003-12-02 | 2008-11-19 | 独立行政法人産業技術総合研究所 | カーボンナノチューブ分散極性有機溶媒及びその製造方法 |
US7682590B2 (en) | 2003-11-27 | 2010-03-23 | National Institute Of Advanced Industrial Science And Technology | Carbon nanotube dispersed polar organic solvent and method for producing the same |
JP5155519B2 (ja) | 2005-08-24 | 2013-03-06 | 三菱レイヨン株式会社 | カーボンナノチューブ含有硬化性組成物、及びその硬化塗膜を有する複合体 |
JP4640070B2 (ja) * | 2005-09-20 | 2011-03-02 | 富士ゼロックス株式会社 | 電子写真感光体、プロセスカートリッジ及び画像形成装置 |
JP5011861B2 (ja) | 2006-07-15 | 2012-08-29 | 東レ株式会社 | カーボンナノチューブ分散液、その製造方法およびそれを用いた導電性材料 |
JP2008116569A (ja) * | 2006-11-01 | 2008-05-22 | Fuji Xerox Co Ltd | 電子写真感光体、画像形成装置及びプロセスカートリッジ |
KR100801595B1 (ko) | 2006-11-09 | 2008-02-05 | 제일모직주식회사 | 탄소나노튜브 복합체 조성물 및 이를 이용한 투명 전도성필름 |
KR20100019460A (ko) * | 2007-05-09 | 2010-02-18 | 고쿠리쓰다이가쿠호진 규슈다이가쿠 | 카본 나노튜브 가용화제 |
JP2009227934A (ja) | 2008-03-25 | 2009-10-08 | Fuji Xerox Co Ltd | 樹脂組成物、樹脂成形物及びその製造方法、ベルト張架装置、プロセスカートリッジ、並びに、画像形成装置 |
JP2009242145A (ja) | 2008-03-28 | 2009-10-22 | Toray Ind Inc | カーボンナノチューブ膜の製造方法 |
JP5300389B2 (ja) * | 2008-09-18 | 2013-09-25 | 東海旅客鉄道株式会社 | 橋梁の支持構造および施工方法 |
TWI378114B (en) * | 2008-12-17 | 2012-12-01 | Ten Chin Wen | Structure of hole-collecting layer made of sulfonated polyaniline derivative and electron-collecting layer made of titanium dioxide and manufacture method therefor |
ES2957854T3 (es) | 2008-12-18 | 2024-01-26 | Molecular Rebar Design Llc | Nanotubos de carbono exfoliados, métodos para la producción de los mismos y productos obtenidos de estos |
JP2010163568A (ja) | 2009-01-16 | 2010-07-29 | Toray Ind Inc | 導電性組成物および導電性複合体 |
JP5439823B2 (ja) | 2009-01-19 | 2014-03-12 | 日産化学工業株式会社 | カーボンナノチューブ分散・可溶化剤 |
SG176777A1 (en) * | 2009-06-19 | 2012-01-30 | Nissan Chemical Ind Ltd | Carbazole novolak resin |
BR112013025503A2 (pt) | 2011-04-04 | 2016-12-27 | Univ Florida | dispersantes de nanotubos e películas de nanotubos sem dispersantes a partir das mesmas |
-
2012
- 2012-05-25 ES ES12790303.7T patent/ES2687149T3/es active Active
- 2012-05-25 EP EP12790303.7A patent/EP2716672B1/en not_active Not-in-force
- 2012-05-25 KR KR1020137033872A patent/KR101889094B1/ko active IP Right Grant
- 2012-05-25 TW TW101118773A patent/TWI534176B/zh not_active IP Right Cessation
- 2012-05-25 PL PL12790303T patent/PL2716672T3/pl unknown
- 2012-05-25 JP JP2013516454A patent/JP6052170B2/ja active Active
- 2012-05-25 WO PCT/JP2012/063454 patent/WO2012161307A1/ja active Application Filing
- 2012-05-25 CN CN201280024862.7A patent/CN103582660B/zh not_active Expired - Fee Related
- 2012-05-25 US US14/119,798 patent/US10138323B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10302963A (ja) * | 1997-04-24 | 1998-11-13 | Toppan Printing Co Ltd | 高分子電荷輸送材料 |
JP2001255566A (ja) * | 2000-03-10 | 2001-09-21 | Showa Denko Kk | フォトリフラクティブ材料組成物及びこれを用いたフォトリフラクティブ素子及びホログラム |
WO2011065395A1 (ja) * | 2009-11-25 | 2011-06-03 | 日産化学工業株式会社 | カーボンナノチューブ分散剤 |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9922745B2 (en) | 2013-02-28 | 2018-03-20 | Toray Industries, Inc. | Aggregate of carbon nanotubes, and production method therefor |
JPWO2014132957A1 (ja) * | 2013-02-28 | 2017-02-02 | 東レ株式会社 | カーボンナノチューブ集合体およびその製造方法 |
JPWO2019054301A1 (ja) * | 2017-09-15 | 2020-10-15 | 日産化学株式会社 | スルホ基含有高分岐ポリマーの精製方法及びその製造方法 |
WO2019054301A1 (ja) * | 2017-09-15 | 2019-03-21 | 日産化学株式会社 | スルホ基含有高分岐ポリマーの精製方法及びその製造方法 |
JP7099466B2 (ja) | 2017-09-15 | 2022-07-12 | 日産化学株式会社 | スルホ基含有高分岐ポリマーの精製方法及びその製造方法 |
JPWO2019188540A1 (ja) * | 2018-03-29 | 2021-04-08 | 日産化学株式会社 | エネルギー貯蔵デバイスのアンダーコート層形成用組成物 |
JPWO2019188537A1 (ja) * | 2018-03-29 | 2021-04-08 | 日産化学株式会社 | エネルギー貯蔵デバイスのアンダーコート層形成用組成物 |
JPWO2019188538A1 (ja) * | 2018-03-29 | 2021-04-08 | 日産化学株式会社 | エネルギー貯蔵デバイスのアンダーコート層形成用組成物 |
WO2019188540A1 (ja) * | 2018-03-29 | 2019-10-03 | 日産化学株式会社 | エネルギー貯蔵デバイスのアンダーコート層形成用組成物 |
JP7318638B2 (ja) | 2018-03-29 | 2023-08-01 | 日産化学株式会社 | エネルギー貯蔵デバイスのアンダーコート層形成用組成物 |
JP7318637B2 (ja) | 2018-03-29 | 2023-08-01 | 日産化学株式会社 | エネルギー貯蔵デバイスのアンダーコート層形成用組成物 |
CN110436443A (zh) * | 2018-05-03 | 2019-11-12 | 史增谦 | 碳纳米管分散剂及其制备方法和应用 |
CN110436443B (zh) * | 2018-05-03 | 2023-09-19 | 史增谦 | 碳纳米管分散剂及其制备方法和应用 |
JP2021075659A (ja) * | 2019-11-12 | 2021-05-20 | 大日精化工業株式会社 | 導電性ポリマー及び導電性ポリマー組成物 |
JP7212605B2 (ja) | 2019-11-12 | 2023-01-25 | 大日精化工業株式会社 | 導電性ポリマー及び導電性ポリマー組成物 |
Also Published As
Publication number | Publication date |
---|---|
ES2687149T3 (es) | 2018-10-23 |
JPWO2012161307A1 (ja) | 2014-07-31 |
PL2716672T3 (pl) | 2018-11-30 |
JP6052170B2 (ja) | 2016-12-27 |
EP2716672A4 (en) | 2015-09-09 |
EP2716672B1 (en) | 2018-07-04 |
US10138323B2 (en) | 2018-11-27 |
EP2716672A1 (en) | 2014-04-09 |
TWI534176B (zh) | 2016-05-21 |
CN103582660B (zh) | 2015-07-22 |
KR20140031327A (ko) | 2014-03-12 |
US20140080971A1 (en) | 2014-03-20 |
KR101889094B1 (ko) | 2018-08-16 |
TW201309748A (zh) | 2013-03-01 |
CN103582660A (zh) | 2014-02-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5716670B2 (ja) | カーボンナノチューブ分散剤 | |
JP6052170B2 (ja) | 高分岐ポリマーおよびカーボンナノチューブ分散剤 | |
Chu et al. | Air‐stable conductive polymer ink for printed wearable micro‐supercapacitors | |
Kim et al. | Effects of alcoholic solvents on the conductivity of tosylate‐doped poly (3, 4‐ethylenedioxythiophene)(PEDOT‐OTs) | |
US20170242189A1 (en) | Low-resistance cladding material and electro-optic polymer optical waveguide | |
JP5939250B2 (ja) | 導電性組成物および導電性複合体 | |
Khademi et al. | Synthesis and characterization of poly (thiophene-co-pyrrole) conducting copolymer nanoparticles via chemical oxidative polymerization | |
CN107431135A (zh) | 光电转换元件 | |
US20140158946A1 (en) | Semiconductor composites comprising carbon nanotubes and diketopyrrolopyrrole-thiophene based copolymers | |
JP5957806B2 (ja) | カーボンナノチューブ分散剤 | |
Zhou et al. | Flexible and Robust Electro‐Optically Responsive Films Based on Novel Silica/Oligoaniline/Carbon Dots Composite | |
Lim et al. | Polypyrrole/MWCNT‐gr‐PSSA composite for flexible and highly conductive transparent film | |
JP5902498B2 (ja) | カーボンナノチューブ分散材料の導電性向上方法 | |
Aoai et al. | Photo doping process of conductive polymer with PAG and application for organic thermoelectric materials | |
Kaya et al. | Synthesis, characterization and electrochemical properties of poly (phenoxy-imine) s containing carbazole unit | |
Das et al. | Doping of Polyaniline with 6-Cyano-2-naphthol | |
Han et al. | Utilization of Multifunctional Environment‐Friendly Organic Dopants Inspired from Nature for Carbon Nanotube‐Based Planar Heterojunction Silicon Solar Cells | |
CN103182877B (zh) | 热转印膜和用该膜制造的有机电致发光装置 | |
Elashry et al. | An investigation of structural, optical, and electrical properties of poly (3‐hexylthiophene)/reduced graphene oxide nanocomposites for electronic and optoelectronic applications | |
Unruh Jr | Design, Synthesis, and Evaluation of Next Generation Technologies in Stimulus-Responsive Materials and Organic Electronics | |
JP2007224306A (ja) | 導電性ミクロゲル分散体の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12790303 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013516454 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14119798 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20137033872 Country of ref document: KR Kind code of ref document: A |