WO2012160735A1 - 車両用空調装置 - Google Patents

車両用空調装置 Download PDF

Info

Publication number
WO2012160735A1
WO2012160735A1 PCT/JP2012/001646 JP2012001646W WO2012160735A1 WO 2012160735 A1 WO2012160735 A1 WO 2012160735A1 JP 2012001646 W JP2012001646 W JP 2012001646W WO 2012160735 A1 WO2012160735 A1 WO 2012160735A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
heat exchanger
indoor heat
heating
cooling
Prior art date
Application number
PCT/JP2012/001646
Other languages
English (en)
French (fr)
Inventor
高橋 康文
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2013516171A priority Critical patent/JP5838316B2/ja
Priority to US14/122,122 priority patent/US9610822B2/en
Priority to EP12790132.0A priority patent/EP2716478B1/en
Priority to CN201280024771.3A priority patent/CN103547468B/zh
Publication of WO2012160735A1 publication Critical patent/WO2012160735A1/ja
Priority to US15/436,367 priority patent/US9931905B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00007Combined heating, ventilating, or cooling devices
    • B60H1/00021Air flow details of HVAC devices
    • B60H1/00035Air flow details of HVAC devices for sending an air stream of uniform temperature into the passenger compartment
    • B60H1/0005Air flow details of HVAC devices for sending an air stream of uniform temperature into the passenger compartment the air being firstly cooled and subsequently heated or vice versa
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00007Combined heating, ventilating, or cooling devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00007Combined heating, ventilating, or cooling devices
    • B60H1/00021Air flow details of HVAC devices
    • B60H1/00035Air flow details of HVAC devices for sending an air stream of uniform temperature into the passenger compartment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00007Combined heating, ventilating, or cooling devices
    • B60H1/00021Air flow details of HVAC devices
    • B60H1/00035Air flow details of HVAC devices for sending an air stream of uniform temperature into the passenger compartment
    • B60H1/00057Air flow details of HVAC devices for sending an air stream of uniform temperature into the passenger compartment the air being heated and cooled simultaneously, e.g. using parallel heat exchangers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00821Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being ventilating, air admitting or air distributing devices
    • B60H1/00835Damper doors, e.g. position control
    • B60H1/00842Damper doors, e.g. position control the system comprising a plurality of damper doors; Air distribution between several outlets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00899Controlling the flow of liquid in a heat pump system
    • B60H1/00921Controlling the flow of liquid in a heat pump system where the flow direction of the refrigerant does not change and there is an extra subcondenser, e.g. in an air duct
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • F25B29/003Combined heating and refrigeration systems, e.g. operating alternately or simultaneously of the compression type system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00007Combined heating, ventilating, or cooling devices
    • B60H1/00021Air flow details of HVAC devices
    • B60H2001/00078Assembling, manufacturing or layout details
    • B60H2001/00085Assembling, manufacturing or layout details of air intake
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00007Combined heating, ventilating, or cooling devices
    • B60H1/00021Air flow details of HVAC devices
    • B60H2001/00078Assembling, manufacturing or layout details
    • B60H2001/00099Assembling, manufacturing or layout details comprising additional ventilating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00007Combined heating, ventilating, or cooling devices
    • B60H1/00021Air flow details of HVAC devices
    • B60H2001/00114Heating or cooling details
    • B60H2001/00135Deviding walls for separate air flows
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00007Combined heating, ventilating, or cooling devices
    • B60H1/00021Air flow details of HVAC devices
    • B60H2001/0015Temperature regulation
    • B60H2001/00157Temperature regulation without by-pass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00007Combined heating, ventilating, or cooling devices
    • B60H1/00021Air flow details of HVAC devices
    • B60H2001/0015Temperature regulation
    • B60H2001/00178Temperature regulation comprising an air passage from the HVAC box to the exterior of the cabin

Definitions

  • the present invention relates to a vehicle air conditioner that cools and heats a passenger compartment.
  • Patent Document 1 discloses a vehicle air conditioner 100 as shown in FIG. 9A.
  • the vehicle air conditioner 100 includes a heat pump circuit 110 in which the refrigerant flows only in one direction.
  • the heat pump circuit 110 includes a compressor 121, a first indoor heat exchanger 131, a first expansion valve 122, an outdoor heat exchanger 133, a second expansion valve 123, and a second indoor heat exchanger 132. They are connected in this order by road.
  • the heat pump circuit 110 is provided with a short-circuit path that bypasses the first expansion valve 122 and a short-circuit path that bypasses the second expansion valve 123.
  • the short-circuit path includes the first on-off valve 141 and the second short-circuit path.
  • An on-off valve 142 is provided.
  • the first indoor heat exchanger 131 and the second indoor heat exchanger 132 are disposed in a duct 150 through which the inside air or outside air is selectively flowed. Inside air or outside air is taken into the duct 150 from one end on the second indoor heat exchanger 132 side by a blower (not shown), and the inside air or outside air is blown out from the other end on the first indoor heat exchanger 131 side into the vehicle interior.
  • the second indoor heat exchanger 132 is located on the windward side of the first indoor heat exchanger 131.
  • a first damper 161 is disposed on the windward side of the second indoor heat exchanger 132, and the second damper 162 is disposed on the windward side of the first indoor heat exchanger 131. Is arranged.
  • the first on-off valve 141 is opened and the second on-off valve 142 is closed. Further, the first damper 161 and the second damper 162 are set at positions indicated by solid lines in FIG. 9B.
  • the refrigerant discharged from the compressor 121 flows into the outdoor heat exchanger 133 without being radiated by the first indoor heat exchanger 131, and after being radiated here, is expanded by the second expansion valve 123.
  • the expanded refrigerant absorbs heat in the second indoor heat exchanger 132 and is then sucked into the compressor 121.
  • the first on-off valve 141 is closed and the second on-off valve 142 is opened.
  • the first damper 161 and the second damper 162 are set at positions indicated by two-dot chain lines in FIG. 9B.
  • the refrigerant discharged from the compressor 121 dissipates heat in the first indoor heat exchanger 131 and is expanded by the first expansion valve 122.
  • the expanded refrigerant flows into the outdoor heat exchanger 133, absorbs heat here, and then is sucked into the compressor 121 without further absorbing heat in the second indoor heat exchanger 132.
  • an object of the present invention is to provide a vehicle air conditioner that can efficiently use energy.
  • the present invention provides a vehicle air conditioner that cools and heats a passenger compartment, and has an inside air inlet and an outside air inlet at one end and a blower at the other end.
  • a duct having an outlet, a partition member disposed so as to form a first air path and a second air path in the duct, a first blower disposed in the first air path, and the second Adjusting the ratio of the amount of the inside air flowing into the first air passage from the outside air intake port and the amount of the outside air flowing into the first air passage from the outside air intake port to the second blower arranged in the air passage
  • a first indoor heat exchanger that mainly contributes to heating
  • a second indoor heat exchanger that mainly contributes to heating
  • the exhaust port for heating when the exhaust port for heating is provided, heat can be taken from the inside air by the 2nd indoor heat exchanger in the middle of the inside air warmed by heating being discharged
  • the cooling exhaust port when the cooling exhaust port is provided, heat can be given to the inside air by the first indoor heat exchanger while the inside air cooled by the cooling is being discharged to the outside. That is, in either case, the inside air discharged to the outside can be rationally used to efficiently use energy.
  • the ratio of the inside air to the outside air can be adjusted for the air flowing through either the first air passage or the second air passage, only the inside air can be cooled or heated when the energy is recovered.
  • FIG. 6A is a diagram illustrating a state in the duct during normal heating operation
  • FIG. 6B is a diagram illustrating a state in the duct during dehumidification heating operation.
  • FIG. 9A and 8B are block diagrams of alternative switching means.
  • FIG. 9A is a configuration diagram of a conventional vehicle air conditioner
  • FIG. 9B is an explanatory diagram showing a damper used in the vehicle air conditioner.
  • FIG. 1 and 2 are configuration diagrams of a vehicle air conditioner 1A according to a first embodiment of the present invention.
  • This vehicle air conditioner 1A cools and heats a vehicle interior (not shown), and includes a duct 3 for introducing outside air into the vehicle interior and circulating the inside air, and a heat pump circuit 2A for circulating the refrigerant.
  • a control device 6 in FIG. 1, only a part of the signal line is drawn in order to simplify the drawing).
  • FIG. 1 schematically shows the shape of the duct 3, and the actual shape of the duct 3 may be swollen or swelled according to the space in which the duct 3 is installed.
  • the duct 3 has an outside air inlet 32 for taking outside air into the duct 3 and an inside air inlet 31 for taking inside air into the duct 3 at one end, and at the other end, An air outlet 34 is provided for blowing the temperature-adjusted air into the passenger compartment.
  • the opening direction of the inside air inlet 31 may be perpendicular to the opening direction of the outside air inlet 32 as shown in FIG. 1 and FIG. 2, or the outside air as shown in FIG. It may be parallel to the opening direction of the intake port 32.
  • the air outlet 34 may be branched into a plurality of parts such as a defroster air outlet, a face air outlet, and a foot air outlet.
  • a partition member 4 is disposed in the duct 3 so as to form a first air passage 3A and a second air passage 3B.
  • the partition member 4 partitions the internal space of the duct 3 in substantially the entire region except for both ends, and the first air passage 3A and the second air passage 3B are formed over the substantially entire length of the duct 3. Yes.
  • an inside air partition wall 45 that divides the inside air intake port 31 and an outside air partition wall 46 that divides the outside air intake port 32 are disposed so as to be continuous with the partition member 4.
  • the inside air intake port 31 and the outside air intake port 32 are in direct communication with both the first air passage 3A and the second air passage 3B, and the inside air from the inside air intake port 31 is the first air passage 3A and the second air passage. While being able to flow into both of 3B, the external air can flow into both the first air passage 3A and the second air passage 3B from the outside air intake port 33.
  • a first blower 41 is disposed in the first air passage 3A as the first blower of the present invention
  • a second blower 42 is disposed in the second air passage 3B as the second blower of the present invention. Yes.
  • the first blower 41 and the second blower 42 cause an air flow from one end of the duct 3 to the other end in the first air passage 3A and the second air passage 3B, respectively.
  • the first blower 41 and the second blower 42 are driven by separate electric motors as shown in FIG.
  • the 1st air blower and 2nd air blower of this invention are not limited to a blower, A fan may be sufficient.
  • a first intake damper 51 and a second intake damper 52 having a swing axis between the inside air intake port 31 and the outside air intake port 32 are respectively connected to the first air passage 3A and the second air passage 3B. Correspondingly, they are arranged.
  • the first intake damper 51 swings between an inside air blocking position that closes the inside air inlet 31 on the first air passage 3A side and an outside air blocking position that closes the outside air inlet 32
  • the second intake damper 52 It swings between an inside air blocking position for closing the inside air inlet 31 on the air passage 3B side and an outside air blocking position for closing the outside air inlet 32.
  • the first intake damper 51 adjusts the ratio of the amount of the inside air flowing into the first air passage 3A from the inside air intake port 31 and the amount of the outside air flowing into the first air passage 3A from the outside air intake port 32
  • the intake damper 52 adjusts the ratio of the amount of inside air flowing into the second air passage 3B from the inside air intake port 31 and the amount of outside air flowing into the second air passage 3B from the outside air intake port 32.
  • the heat pump circuit 2A includes a compressor 11, a first indoor heat exchanger 12A, a first expansion valve 13A, an outdoor heat exchanger 14, a second expansion valve 13B, and a second indoor heat exchanger 12B. These devices (11, 12A, 13A, 14, 13B, 12B) are annularly connected in this order by the first flow path 2a to the sixth flow path 2f. As the refrigerant, R134a, R410A, HFO-1234yf , HFO-1234ze, in addition to such CO 2, other HFC system, HC-based and available.
  • the compressor 11 is driven by an electric motor (not shown), compresses the refrigerant sucked from the suction port, and discharges it from the discharge port.
  • the electric motor may be disposed inside the compressor 11 or may be disposed outside.
  • the electric motor may be a vehicle driving motor.
  • the discharge port of the compressor 11 is connected to the first indoor heat exchanger 12A via the first flow path 2a.
  • the first indoor heat exchanger 12A mainly contributes to heating, and is arranged in the duct 3.
  • the first indoor heat exchanger 12A is disposed so as to be located in the first air passage 3A. Then, the first indoor heat exchanger 12A performs heat exchange between the inside air and / or outside air supplied by the first blower 41 and the refrigerant.
  • the first indoor heat exchanger 12A functions as a condenser during both the cooling operation and the heating operation.
  • the first indoor heat exchanger 12A is connected to the first expansion valve 13A via the second flow path 2b.
  • the first expansion valve 13A passes the refrigerant as it is during the cooling operation and expands the refrigerant during the heating operation.
  • the first expansion valve 13A is connected to the outdoor heat exchanger 14 via the third flow path 2c.
  • the outdoor heat exchanger 14 is disposed outside the vehicle compartment (for example, the front of the automobile), and performs heat exchange between the vehicle running and the outside air supplied by the fan 16 and the refrigerant.
  • the outdoor heat exchanger 14 functions as a condenser during the cooling operation, and functions as an evaporator during the heating operation.
  • the outdoor heat exchanger 14 is connected to the second expansion valve 13B via the fourth flow path 2d.
  • the second expansion valve 13B expands the refrigerant during the cooling operation and passes the refrigerant as it is during the heating operation.
  • the second expansion valve 13B is connected to the second indoor heat exchanger 12B via the fifth flow path 2e.
  • the second indoor heat exchanger 12B mainly contributes to cooling, and is disposed in the duct 3.
  • the second indoor heat exchanger 12B is arranged so as to be located in the second air passage 3B.
  • the second indoor heat exchanger 12B performs heat exchange between the inside air and / or outside air supplied by the second blower 42 and the refrigerant.
  • the second indoor heat exchanger 12B functions as an evaporator during both the cooling operation and the heating operation.
  • the positional relationship between the first indoor heat exchanger 12A and the second indoor heat exchanger 12B in the duct 3 is not particularly limited, but in the illustrated example, the second indoor heat exchanger 12B is disposed in the duct 3. It is located on the windward side of the first indoor heat exchanger 12A.
  • the second indoor heat exchanger 12B is connected to the suction port of the compressor 11 through the sixth flow path 2f.
  • An accumulator 15 is provided in the sixth flow path 2f.
  • the vehicle air conditioner 1A employs a configuration for recovering energy from the inside air discharged to the outside.
  • a heating exhaust port 35 is provided on the leeward side of the second indoor heat exchanger 12B
  • a cooling exhaust port 36 is provided on the leeward side of the first indoor heat exchanger 12A.
  • the heating exhaust port 35 is for discharging the air cooled by the second indoor heat exchanger 12B to the outside of the vehicle compartment during heating operation
  • the cooling exhaust port 36 is the first indoor heat exchanger during cooling operation. This is for discharging the air heated by 12A out of the passenger compartment.
  • a heating discharge damper 53 that opens and closes the heating exhaust port 35 and a cooling discharge damper 54 that opens and closes the cooling exhaust port 36 are attached to the duct 3.
  • the heating exhaust damper 53 has a swing shaft on the leeward side of the heating exhaust port 35, and swings inward from the closed position where the heating exhaust port 35 is closed so that the heating exhaust port 35 is moved. open. That is, the heating exhaust damper 53 guides the air that has passed through the second indoor heat exchanger 12 ⁇ / b> B to the heating exhaust port 35 when the heating exhaust port 35 is opened.
  • the heating discharge damper 53 can be stopped at an arbitrary position by a servo motor (not shown).
  • the cooling exhaust damper 54 has a swing shaft on the leeward side of the cooling exhaust port 36, and swings from the closed position where the cooling exhaust port 36 is closed to the inside of the duct 3 so as to open the cooling exhaust port 36. open. That is, the cooling exhaust damper 54 guides the air that has passed through the first indoor heat exchanger 12A to the cooling exhaust port 36 when the cooling exhaust port 36 is opened.
  • the cooling discharge damper 54 can be stopped at an arbitrary position by a servo motor (not shown).
  • the compressor 11, the first expansion valve 13A, the second expansion valve 13B, and the various dampers 51 to 54 described above are controlled by the control device 6.
  • the control device 6 is connected to an operation panel (not shown) disposed in the passenger compartment, and performs a cooling operation and a heating operation.
  • an operation panel not shown
  • the operation of the vehicle air conditioner 1A during the cooling operation and the heating operation will be described.
  • the case where a vehicle interior is ventilated is demonstrated typically.
  • the control device 6 first opens the first expansion valve 13A and sets the second expansion valve 13B to a predetermined opening. For this reason, the refrigerant discharged from the compressor 11 dissipates heat in the first indoor heat exchanger 12A and the outdoor heat exchanger 14, depressurizes in the second expansion valve 13B, and then absorbs heat in the second indoor heat exchanger 12B. .
  • control device 6 sets the first intake damper 51 at the outside air blocking position that closes the first air passage 3A side of the outside air intake port 32, and the second intake damper 52 sets the inside air intake port 31 on the second air passage 3B side. And the outside air inlet 32 are set at an intermediate position where they are opened. At this time, the second intake damper 52 is controlled so that outside air having a flow rate sufficient for ventilation of the vehicle interior is taken into the duct 3 from the second air passage 3B side of the outside air intake port 32. Further, the control device 6 sets the heating exhaust damper 53 in a closed position where the heating exhaust port 35 is closed, and sets the cooling exhaust damper 54 in an open position where the cooling exhaust port 36 is opened.
  • the air-fuel mixture obtained by mixing the inside air flowing in from the inside air intake port 31 and the outside air flowing in from the outside air intake port 32 is cooled by the second indoor heat exchanger 12B and then blown out. Is blown out into the passenger compartment.
  • the inside air flowing in from the inside air inlet 31 is heated by cooling the refrigerant in the first indoor heat exchanger 12A, and then discharged outside the vehicle compartment through the cooling exhaust port 36. .
  • the flow rate of the air discharged outside the passenger compartment through the cooling exhaust port 36 is equal to or less than the flow rate of the outside air taken into the duct 3 through the second air passage 3B side of the outside air intake port 32.
  • the rotational speed of the first blower 41 may be made smaller than the rotational speed of the second blower 42.
  • the first blower 41 is used when the outside air is not introduced into the passenger compartment, for example, when ventilation is not temporarily performed to improve temperature characteristics when air conditioning is started or when ventilation is not required during parking. May be stopped, the second intake damper 52 may be set to the outside air blocking position, and the cooling exhaust damper 54 may be set to the closed position.
  • the control device 6 first opens the second expansion valve 13B and sets the first expansion valve 13A to a predetermined opening. Therefore, the refrigerant discharged from the compressor 11 dissipates heat in the first indoor heat exchanger 12A, depressurizes in the first expansion valve 13A, and then absorbs heat in the outdoor heat exchanger 14 and the second indoor heat exchanger 12B. .
  • control device 6 sets the second intake damper 52 at an outside air blocking position that closes the second air passage 3B side of the outside air intake port 32, and sets the first intake damper 51 to the inside air intake port 32 on the first air passage 3A side. And the outside air inlet 32 are set at an intermediate position where they are opened. At this time, the first intake damper 51 is controlled such that outside air having a flow rate sufficient for ventilation in the vehicle compartment is taken into the duct 3 from the first air passage 3A side of the outside air intake port 32. Further, the control device 6 sets the cooling exhaust damper 54 in a closed position where the cooling exhaust port 36 is closed, and sets the heating exhaust damper 53 in an open position where the heating exhaust port 35 is opened.
  • the air-fuel mixture in which the inside air that has flowed in from the inside air intake port 31 and the outside air that has flowed in from the outside air intake port 32 is heated by the first indoor heat exchanger 12A is heated. Is blown out into the passenger compartment.
  • the inside air flowing in from the inside air intake port 31 is cooled by heating the refrigerant in the second indoor heat exchanger 12B, and then discharged outside the vehicle compartment through the heating exhaust port 35.
  • the flow rate of the air discharged outside the passenger compartment through the heating exhaust port 35 is preferably equal to or less than the flow rate of the outside air taken into the duct 3 through the first air passage 3A side of the outside air intake port 32.
  • the rotational speed of the second blower 42 may be made smaller than the rotational speed of the first blower 41.
  • the second blower 42 is used when the outside air is not introduced into the passenger compartment, for example, when ventilation is not temporarily performed to improve temperature characteristics when air conditioning is started or when ventilation is not required during parking. May be stopped, the first intake damper 51 may be set to the outside air blocking position, and the heating exhaust damper 53 may be set to the closed position.
  • the inside air can be given heat by the first indoor heat exchanger 12A.
  • heat can be taken from the inside air by the second indoor heat exchanger 12B. That is, in either operation, the inside air discharged to the outside can be rationally used to efficiently use energy.
  • the ratio of the inside air to the outside air can be adjusted for both the air flowing through the first air passage 3A and the second air passage 3B, only the inside air can be cooled or heated when the energy is recovered. .
  • the first indoor heat exchanger 12A can be operated as another outdoor heat exchanger, and the first air intake damper 51 can be operated during the heating operation described above.
  • the two intake dampers 52 are set at the room air shut-off position, the second indoor heat exchanger 12B can be operated as another outdoor heat exchanger.
  • the efficiency of the vehicle air conditioner 1A can be improved.
  • the same amount of inside air as the outside air introduced into the vehicle compartment through the duct 3 is discharged to the outside through an exhaust port at the rear of the vehicle body or a gap between members constituting the vehicle compartment.
  • the air volume of the outside air is discharged to the outside, there is no restriction on the air volume as in the case of heat exchange with the inside air.
  • the temperature of the inside air is substantially equal to the temperature of the outside air. Therefore, it is preferable to set the first intake damper 51 and the second intake damper 52 at the inside air blocking position.
  • the first indoor heat exchanger 12A can be operated as another outdoor heat exchanger when the cooling operation is started, and the second indoor heat exchange is started when the heating operation is started.
  • the vessel 12B can be operated as another outdoor heat exchanger. Thereby, the time required for start-up can be shortened.
  • dampers 51 to 54 need not be driven by a single motor, respectively, and some of them may be driven by a common motor using a link mechanism or the like.
  • the swinging plate-like damper is taken as an example, but the heating exhaust port 35 and the cooling exhaust port 36 can be opened and closed using a slide door or a film door.
  • the first air passage 3A and the second air passage 3B do not necessarily have to be formed over substantially the entire length of the duct 3, and the first indoor heat exchanger 12A is not necessarily located in the first air passage 3A. There is no need to be.
  • the partition member 4 is interrupted between the first indoor heat exchanger 12A and the second indoor heat exchanger 12B located on the windward side of the first indoor heat exchanger 12A. May be arranged so as to face both the outlet of the first air passage 3A and the outlet of the second air passage 3B. That is, the first indoor heat exchanger 12 ⁇ / b> A may have the same size as the cross-sectional area of the duct 3.
  • the 1st indoor heat exchanger 12 has the magnitude
  • FIG. 4 is a configuration diagram of a vehicle air conditioner 1B according to the second embodiment of the present invention.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof may be omitted.
  • the vehicle air conditioner 1B of the present embodiment includes a heat pump circuit 2B in which the flow direction of the refrigerant is switched.
  • the heat pump circuit 2B includes a compressor 11, a four-way valve 17, a first indoor heat exchanger 12A, an expansion valve 13, an outdoor heat exchanger 14, and a second indoor heat exchanger 12B.
  • the first channel 21 to the seventh channel 27 are connected.
  • the discharge port of the compressor 11 is connected to the first port of the four-way valve 17 via the first flow path 21.
  • the second port of the four-way valve 17 is connected to the outdoor heat exchanger 14 via the second flow path 22, and the third port of the four-way valve 17 is connected to the first indoor heat exchange via the fifth flow path 25.
  • the outdoor heat exchanger 14 and the first indoor heat exchanger 12A are connected to the expansion valve 13 via a third flow path 23 and a fourth flow path 24, respectively.
  • the fourth port of the four-way valve 17 is connected to the second indoor heat exchanger 12B via the sixth flow path 26, and the second indoor heat exchanger 12B is connected to the compressor 11 via the seventh flow path 27.
  • the accumulator 15 is provided in the seventh flow path 27.
  • the expansion valve 13 expands the refrigerant and is an example of the expansion mechanism of the present invention.
  • a positive displacement expander that recovers power from the expanding refrigerant may be employed.
  • the four-way valve 17 functions as the switching means of the present invention, and switches the flow direction of the refrigerant flowing through the heat pump circuit 2B to the first direction indicated by the broken line arrow during the cooling operation, and the second direction indicated by the solid line arrow during the heating operation. Switch to the direction.
  • the refrigerant discharged from the compressor 11 passes through the outdoor heat exchanger 14, the expansion valve 13, the first indoor heat exchanger 12A, and the second indoor heat exchanger 12B in this order and returns to the compressor 11.
  • the refrigerant discharged from the compressor 11 passes through the first indoor heat exchanger 12A, the expansion valve 13, the outdoor heat exchanger 14 and the second indoor heat exchanger 12B in this order for compression.
  • the direction is to return to the machine 11.
  • the first indoor heat exchanger 12A functions as an evaporator during the cooling operation and functions as a condenser during the heating operation. Similar to the first embodiment, the second indoor heat exchanger 12B functions as an evaporator during both the cooling operation and the heating operation.
  • the partition member 4 disposed so as to form the first air path 3A and the second air path 3B in the duct 3 is constituted by three partition walls 4A to 4C.
  • the outside air dividing wall 46 (see FIGS. 1 and 2) for dividing the outside air intake port 32 is not provided, and only the inside air dividing wall 45 for dividing the inside air intake port 31 is provided.
  • the inside air partition wall 45 divides the inside air inlet 31 into the first air passage 3A side and the second air passage 3B side at a position away from the partition member 4, and the outside air inlet 32 is provided with the inside air intake. It is arranged on the first air passage 3 ⁇ / b> A side with respect to the mouth 31.
  • outside air can directly flow into the first air passage 3A from the outside air inlet 32, while outside air can enter the second air passage 3B through the gap between the inside air dividing wall 45 and the partition member 4. Inflow is possible.
  • the outside air inlet 32 may be disposed on the second air passage 3B side with respect to the inside air inlet 31, or the inside air inlet 31 and the outside air inlet 32 are switched (that is, only the outside air inlet 32 is replaced). It is also possible to divide.
  • the first partition wall 4A located on the most windward side defines a space in which the first blower 41 is disposed and a space in which the second blower 42 is disposed.
  • the first blower 41 and the second blower 42 are connected to one shaft and are driven by the same electric motor.
  • the second partition wall 4B located in the middle defines a space in which the second indoor heat exchanger 12B is disposed and a space that forms a route that bypasses the second indoor heat exchanger 12B.
  • the third partition wall 4C located on the most leeward side defines a space in which the first indoor heat exchanger 12A is disposed and a space that forms a route that bypasses the first indoor heat exchanger 12A.
  • the first intake damper 51 has a swing shaft between the inside air intake port 31 and the outside air intake port 32, and the outside air closing position for closing the inside air intake port 31 on the first air passage 3 ⁇ / b> A side and the outside air intake port 32 are closed. Swings between the blocking position.
  • the second intake damper 52 has a rocking shaft at a position corresponding to the inside air partition wall 45, a blocking position for closing the second air passage 3B side of the inside air intake port 31, the rocking shaft and the first partition wall 4A. And a wall constituting position located on a line connecting the windward end of the wind.
  • One adjustment damper 56 is disposed.
  • the position of the first adjustment damper 56 located on the line connecting the ends of the first partition wall 4A and the second partition wall 4B is defined as the wall configuration position and the wall configuration position.
  • the position close to the first shutoff position side is referred to as a bypass side shutoff position, and the position close to the second shutoff position from the wall configuration position is referred to as a heat exchanger side restraint position.
  • the cooling exhaust port 36 is not provided on the leeward side of the first indoor heat exchanger 12A, and only the heating exhaust port 35 is provided on the leeward side of the second indoor heat exchanger 12B. Yes.
  • the heating exhaust damper 53 has a closed position where the heating exhaust port 35 is closed, and a blocking position where the tip of the heating exhaust damper 53 is close to or abuts on the second partition wall 4B and blocks the second flow path 3B. Can swing between the two.
  • a normal cooling operation will be described as a typical cooling operation
  • a normal heating operation a dehumidifying heating operation
  • an energy recovery heating operation will be typically described as heating operations.
  • the vehicle interior is ventilated during normal heating operation and energy recovery heating operation.
  • the control device 6 first controls the four-way valve 17 so that the refrigerant flows in the first direction indicated by the dashed arrow in the heat pump circuit 2B. Further, as shown in FIG. 5, the control device 6 sets the first adjustment damper 56 at the first blocking position where the first flow path 3A is blocked, and the second adjustment damper 57 blocks the second air path 3B. Set to the blocking position. For this reason, the refrigerant discharged from the compressor 11 dissipates heat in the outdoor heat exchanger 14, depressurizes in the expansion valve 13, and then absorbs heat in the first indoor heat exchanger 12A and the second indoor heat exchanger 12B.
  • control device 6 sets the first intake damper 51 at the outside air shut-off position that closes the outside air intake port 32, and sets the second intake damper 52 at the close-off position that closes the second air passage 3B side of the inside air intake port 31. . Furthermore, the control device 6 sets the heating exhaust damper 53 at a closed position where the heating exhaust port 35 is closed. For this reason, the inside air taken into the duct 3 from the first air passage 3A side of the inside air inlet 31 is cooled by the second indoor heat exchanger 12B and then further cooled by the first indoor heat exchanger 12A. The air is blown out from the exit 34 into the passenger compartment.
  • the control device 6 first controls the four-way valve 17 so that the refrigerant flows in the second direction indicated by the solid line arrow in the heat pump circuit 2B. Further, as shown in FIG. 6A, the control device 6 sets the first adjustment damper 56 at the second blocking position that blocks the second flow path 3B, and sets the second adjustment damper 57 at the wall constituting position. For this reason, the refrigerant discharged from the compressor 11 radiates heat at the first indoor heat exchanger 12A, depressurizes at the expansion valve 13, and then absorbs heat at the outdoor heat exchanger 14, leaving the second indoor heat exchanger 12B as it is. pass.
  • control device 6 sets the first intake damper 51 at the inside air blocking position that closes the first air passage 3A side of the inside air intake port 31 and sets the second intake damper 52 on the second air passage 3B side of the inside air intake port 31. Set to the closing position to close. Furthermore, the control device 6 sets the heating exhaust damper 53 at a closed position where the heating exhaust port 35 is closed. For this reason, the outside air taken into the duct 3 from the outside air inlet 32 is heated by the first indoor heat exchanger 12A and then blown out from the outlet 34 into the vehicle interior. In this case, the same amount of inside air as the outside air introduced into the passenger compartment through the duct 3 is discharged to the outside through a gap between members constituting the passenger compartment.
  • the first adjustment damper 56 is set at the first cutoff position where the first air passage 3A is cut off, and the second adjustment damper 57 is cut off at the position where the second air passage 3B is cut off.
  • the refrigerant discharged from the compressor 11 dissipates heat in the first indoor heat exchanger 12A, decompresses it in the expansion valve 13, and then absorbs heat in the outdoor heat exchanger 14 and the second indoor heat exchanger 12B.
  • the first intake damper 51 is set at an outside air blocking position where the outside air inlet 32 is closed.
  • the inside air taken into the duct 3 from the first air passage 3A side of the inside air inlet 31 is dehumidified by being cooled by the second indoor heat exchanger 12B, and then dehumidified by the first indoor heat exchanger 12A. It is heated and blown out from the outlet 34 into the passenger compartment.
  • the first adjustment damper 56 is set in the middle between the heat exchanger side suppression position and the wall constituting position, and the second adjustment damper 57 is set at the wall constituting position.
  • the first intake damper 51 is set at the inside air blocking position where the inside air inlet 31 closes the first air passage 3A side
  • the second intake damper 52 is set at the wall constituting position.
  • the heating discharge damper 53 is set at a blocking position for blocking the second air passage 3B. Therefore, the inside air that has flowed into the second air passage 3B from the inside air inlet 31 is distributed by the first adjustment damper 56 into the amount that flows through the second air passage 3B as it is and the portion that flows into the first air passage 3A.
  • the inside air that has flowed into the first air passage 3A is mixed with the outside air that flows into the first air passage 3A from the outside air inlet 32 to become an air-fuel mixture, and the air-fuel mixture is heated by the first indoor heat exchanger 12A and then blown out. 34 is blown out into the passenger compartment.
  • the inside air flowing through the second air passage 3B as it is is cooled by heating the refrigerant in the second indoor heat exchanger 12B, and then discharged outside the vehicle compartment through the heating exhaust port 35.
  • the first adjustment damper 56 is set at the wall constituting position and the second adjustment damper 57 is set at the blocking position, and then the heating discharge damper 53 is blocked. It may be set at a position closer to the closed position than the position. If it does in this way, inside air can be dehumidified, performing energy recovery heating operation.
  • the second indoor heat exchanger 12B can be operated as another outdoor heat exchanger. That is, since two outdoor heat exchangers can be used, the efficiency of the vehicle air conditioner 1B can be improved. In this case, the same amount of inside air as the outside air introduced into the passenger compartment through the duct 3 is discharged to the outside through a gap between members constituting the passenger compartment.
  • the four-way valve 17 is used as the switching means, but the switching means of the present invention is not limited to this.
  • the switching means as shown in FIG. 8A, two three-way valves 171 connected to the first flow path 21 and the sixth flow path 26 are connected in a loop shape by a pair of pipes 172, and these pipes 172 are connected to each other.
  • the circuit 17A to which the second flow path 22 and the fifth flow path 25 are connected may be used.
  • the switching means may be a so-called bridge circuit 17B as shown in FIG. 8B.
  • the first indoor heat exchanger 12A and the four-way valve 17 in the heat pump circuit 2B are provided.
  • An auxiliary depressurization mechanism that can be switched between an off state in which the control unit 6 passes the refrigerant as it is and an on state in which the refrigerant is depressurized may be provided in the fifth flow path 25 therebetween.
  • the auxiliary pressure reducing mechanism is controlled to be in an off state during a heating operation and a normal cooling operation, and is controlled to be in an on state during an energy recovery cooling operation for recovering energy from the inside air discharged to the outside during the cooling operation.
  • the expansion valve 13 When the auxiliary pressure reducing mechanism is controlled to be on, the expansion valve 13 is set to a relatively large opening. For this reason, the first indoor heat exchanger 12A functions as an evaporator during normal cooling operation, but functions as a condenser during energy recovery cooling operation. If it is such a structure, similarly to 1st Embodiment, while the inside air cooled by air_conditioning
  • the heating exhaust port 35 and the cooling exhaust port 36 are both provided in the duct 3, but the duct 3 includes the heating exhaust port 35 and It is sufficient that at least one of the cooling exhaust ports 36 is provided.
  • the vehicle air conditioner of the present invention may improve only the heating performance by the configuration having only the heating exhaust port 35.
  • the second indoor heat exchanger 12B does not necessarily need to be located on the windward side of the first indoor heat exchanger 12A in the duct 3, and their arrangement positions may be reversed. However, if the second indoor heat exchanger 12B is located on the windward side of the first indoor heat exchanger 12A, by adopting the configuration of the modified example of the first embodiment and the second embodiment, It is possible to dehumidify the air flowing in the duct 3 during the heating operation with the second indoor heat exchanger 12B before heating with the first indoor heat exchanger 12A.
  • the vehicle air conditioner of the present invention can be used for cooling and heating by efficiently using energy, and is particularly useful for non-combustion vehicles such as electric vehicles and fuel cell vehicles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)

Abstract

車両用空調装置(1A)は、内部に第1風路(3A)および第2風路(3B)を形成する仕切り部材(4)が配設されたダクト(3)と、ヒートポンプ回路(2A)を備えている。ヒートポンプ回路(2A)の主として暖房に寄与する第1室内熱交換器(12A)は、第1風路(3A)内に位置するまたはこの出口と対向しており、主として冷房に寄与する第2室内熱交換器(12B)は、第2風路(3B)内に位置している。第1風路(3A)および第2風路(3B)のどちらに流れる空気も内気と外気の比率が調整可能である。ダクト(3)には、暖房運転時に第2室内熱交換器(12B)で冷却された空気を車室外に排出するための暖房用排気口(35)、および冷房運転時に第1室内熱交換器(12A)で加熱された空気を車室外に排出するための冷房用排気口(36)、の少なくとも一方が設けられている。上記により、暖房または冷房によって既に温度が調整された車室内空気を、そのまま外部に排出してエネルギーを無駄にすることなく効率的に活用することができる。

Description

車両用空調装置
 本発明は、車室内の冷房および暖房を行う車両用空調装置に関する。
 従来、例えばガソリンエンジンを備える自動車では、冷房にヒートポンプが用いられる一方、暖房にエンジンの廃熱が利用されていた。近年では、エンジンの廃熱量が少ないハイブリッド車、およびエンジンの廃熱が利用できない電気自動車が普及してきており、これに合わせて冷房だけでなく暖房にもヒートポンプを用いるようにした車両用空調装置が開発されてきている。例えば、特許文献1には、図9Aに示すような車両用空調装置100が開示されている。
 この車両用空調装置100は、冷媒が一方向のみに流れるヒートポンプ回路110を備えている。ヒートポンプ回路110は、圧縮機121、第1室内熱交換器131、第1膨張弁122、室外熱交換器133、第2膨張弁123および第2室内熱交換器132を含み、これらの機器は流路によってこの順に接続されている。また、ヒートポンプ回路110には、第1膨張弁122をバイパスする短絡路と第2膨張弁123をバイパスする短絡路とが設けられており、これらの短絡路には第1開閉弁141および第2開閉弁142がそれぞれ設けられている。
 第1室内熱交換器131および第2室内熱交換器132は、内部に内気または外気が選択的に流されるダクト150内に配置されている。ダクト150内には図略の送風機によって第2室内熱交換器132側の一端から内気または外気が取り込まれ、その内気または外気が第1室内熱交換器131側の他端から車室内に吹き出される。すなわち、第2室内熱交換器132は、第1室内熱交換器131よりも風上側に位置している。
 また、ダクト150内には、図9Bに示すように、第2室内熱交換器132の風上側に第1ダンパ161が配設され、第1室内熱交換器131の風上側に第2ダンパ162が配設されている。
 このような構成の車両空調装置100では、冷房運転時は、第1開閉弁141が開かれ、第2開閉弁142が閉じられる。また、第1ダンパ161および第2ダンパ162は、図9B中に実線で示す位置にセットされる。これにより、圧縮機121から吐出された冷媒は、第1室内熱交換器131で放熱することなく室外熱交換器133に流入し、ここで放熱した後に第2膨張弁123で膨張される。膨張された冷媒は、第2室内熱交換器132で吸熱した後に圧縮機121に吸入される。
 一方、暖房運転時は、第1開閉弁141が閉じられ、第2開閉弁142が開かれる。また、第1ダンパ161および第2ダンパ162は、図9B中に二点鎖線で示す位置にセットされる。これにより、圧縮機121から吐出された冷媒は、第1室内熱交換器131で放熱し、第1膨張弁122で膨張される。膨張された冷媒は、室外熱交換器133に流入し、ここで吸熱した後に第2室内熱交換器132でさらに吸熱することなく圧縮機121に吸入される。
特許第3433297号公報
 ところで、ダクト150内に外気が取り込まれる場合、換言すればダクト150を通じて車室内に外気が導入される場合には、導入された外気と同じ量の内気(車室内空気)を外部に排出する必要がある。しかしながら、内気は暖房または冷房によって既に温度が調整されたものであるので、内気をそのまま外部に排出すると、その内気の温度を調整するのに要したエネルギーが無駄になる。
 本発明は、このような事情に鑑み、エネルギーを効率的に活用することができる車両用空調装置を提供することを目的とする。
 前記課題を解決するために、本発明は、車室内の冷房および暖房を行う車両用空調装置であって、一方の端部に内気吸気口および外気吸気口を有し、他方の端部に吹出口を有するダクトと、前記ダクト内に第1風路と第2風路を形成するように配設された仕切り部材と、前記第1風路内に配置された第1送風機と、前記第2風路内に配置された第2送風機と、前記内気吸気口から前記第1風路に流入する内気の量と前記外気吸気口から前記第1風路に流入する外気の量の比率を調整する第1吸気ダンパと、前記内気吸気口から前記第2風路に流入する内気の量と前記外気吸気口から前記第2風路に流入する外気の量の比率を調整する第2吸気ダンパと、前記第1風路内に位置するまたは前記第1風路の出口と対向するように前記ダクト内に配置された主として暖房に寄与する第1室内熱交換器、前記第2風路内に位置するように前記ダクト内に配置された主として冷房に寄与する第2室内熱交換器、および前記車室外に配置された室外熱交換器を含むヒートポンプ回路と、を備え、前記ダクトには、暖房運転時に前記第2室内熱交換器で冷却された空気を前記車室外に排出するための暖房用排気口、および冷房運転時に前記第1室内熱交換器で加熱された空気を前記車室外に排出するための冷房用排気口、の少なくとも一方が設けられている、車両用空調装置を提供する。
 上記の構成によれば、暖房用排気口が設けられている場合は、暖房によって温められた内気が外部に排出される途中で、その内気から第2室内熱交換器によって熱を奪うことができる。一方、冷房用排気口が設けられている場合は、冷房によって冷やされた内気が外部に排出される途中で、その内気に第1室内熱交換器によって熱を与えることができる。すなわち、どちらの場合でも、外部に排出される内気を合理的に利用して、エネルギーを効率的に活用することができる。しかも、第1風路および第2風路のどちらに流れる空気も内気と外気の比率が調整可能であるため、エネルギーを回収する際に内気のみを冷却または加熱して排出することができる。
本発明の第1実施形態に係る車両用空調装置の構成図 図1のII-II線に沿った断面図 第1実施形態の変形例の車両用空調装置の構成図 本発明の第2実施形態に係る車両用空調装置の構成図 通常の冷房運転時のダクト内の状態を示す図 図6Aは通常の暖房運転時のダクト内の状態を示す図、図6Bは除湿暖房運転時のダクト内の状態を示す図 エネルギー回収暖房運転時のダクト内の状態を示す図 図8Aおよび8Bは代替案の切換手段の構成図 図9Aは従来の車両用空調装置の構成図、図9Bは同車両用空調装置に用いられるダンパを示す説明図
 以下、本発明の実施形態について、図面を参照しながら説明する。なお、以下の説明は本発明の一例に関するものであり、本発明はこれらによって限定されるものではない。
 (第1実施形態)
 図1および図2は、本発明の第1実施形態に係る車両用空調装置1Aの構成図である。この車両用空調装置1Aは、図略の車室内の冷房および暖房を行うものであり、車室内に外気を導入したり内気を循環したりするためのダクト3と、冷媒を循環させるヒートポンプ回路2Aと、制御装置6(図1では図面の簡略化のために信号線の一部のみを作図)とを備えている。なお、図1はダクト3の形状を模式的に表すものであり、ダクト3の実際の形状は、当該ダクト3が設置されるスペースに合わせて膨らんでいたりうねっていたりしていてもよい。
 ダクト3は、一方の端部に、ダクト3内に外気を取り込むための外気吸気口32とダクト3内に内気を取り込むための内気吸気口31とを有しており、他方の端部に、温度調整された空気を車室内に吹き出すための吹出口34を有している。なお、内気吸気口31の開口方向は、図1および図2に示すように外気吸気口32の開口方向と垂直であってもよいし、他の実施形態ではあるが図4に示すように外気吸気口32の開口方向と平行であってもよい。また、吹出口34は、デフロスタ吹出口、フェイス吹出口およびフット吹出口など複数に分岐していてもよい。
 ダクト3内には、第1風路3Aと第2風路3Bを形成するように仕切り部材4が配設されている。本実施形態では、仕切り部材4がダクト3の内部空間を両端部を除いた略全域で仕切っており、第1風路3Aおよび第2風路3Bがダクト3の略全長に亘って形成されている。また、ダクト3内には、内気吸気口31を分断する内気分断壁45と外気吸気口32を分断する外気分断壁46とが仕切り部材4と連続するように配設されている。すなわち、内気吸気口31および外気吸気口32は第1風路3Aと第2風路3Bの双方に直接連通しており、内気吸気口31からは内気が第1風路3Aと第2風路3Bのどちらにも流入可能になっているとともに、外気吸気口33からは外気が第1風路3Aと第2風路3Bのどちらにも流入可能になっている。
 第1風路3A内には、本発明の第1送風機として第1ブロワ41が配置されており、第2風路3B内には、本発明の第2送風機として第2ブロワ42が配置されている。第1ブロワ41および第2ブロワ42は、それぞれ第1風路3A内および第2風路3B内にダクト3の一方の端部から他方の端部に向かう空気の流れを生じさせる。本実施形態では、第1ブロワ41および第2ブロワ42は、図1に示すように別々の電動機で駆動される。なお、本発明の第1送風機および第2送風機は、ブロワに限定されるものではなく、ファンであってもよい。
 さらに、ダクト3内には、内気吸気口31と外気吸気口32の間に揺動軸を有する第1吸気ダンパ51および第2吸気ダンパ52がそれぞれ第1風路3Aおよび第2風路3Bに対応して配設されている。第1吸気ダンパ51は、第1風路3A側の内気吸気口31を閉じる内気遮断位置と外気吸気口32を閉じる外気遮断位置との間で揺動し、第2吸気ダンパ52は、第2風路3B側の内気吸気口31を閉じる内気遮断位置と外気吸気口32を閉じる外気遮断位置との間で揺動する。すなわち、第1吸気ダンパ51は、内気吸気口31から第1風路3Aに流入する内気の量と外気吸気口32から第1風路3Aに流入する外気の量の比率を調整し、第2吸気ダンパ52は、内気吸気口31から第2風路3Bに流入する内気の量と外気吸気口32から第2風路3Bに流入する外気の量の比率を調整する。
 ヒートポンプ回路2Aは、圧縮機11、第1室内熱交換器12A、第1膨張弁13A、室外熱交換器14、第2膨張弁13B、および第2室内熱交換器12Bを含んでいる。これらの機器(11,12A,13A,14,13B,12B)は、第1流路2a~第6流路2fによってこの順に環状に接続されている。なお、冷媒としては、R134a、R410A、HFO-1234yf、HFO-1234ze、CO2などに加え、他のHFC系、HC系などが利用できる。
 圧縮機11は、図略の電動モータにより駆動されるものであり、吸入口から吸入した冷媒を圧縮して吐出口から吐出する。電動モータは、圧縮機11の内部に配置されていてもよいし、外部に配置されていてもよい。また、例えば電気自動車では、電動モータが車両走行用のモータであってもよい。圧縮機11の吐出口は、第1流路2aを介して第1室内熱交換器12Aに接続されている。
 第1室内熱交換器12Aは、主として暖房に寄与するものであり、ダクト3内に配置されている。本実施形態では、第1室内熱交換器12Aが第1風路3A内に位置するように配置されている。そして、第1室内熱交換器12Aは、第1ブロワ41により供給される内気および/または外気と冷媒との間で熱交換を行う。本実施形態では、第1室内熱交換器12Aは、冷房運転時および暖房運転時ともに凝縮器として機能する。第1室内熱交換器12Aは、第2流路2bを介して第1膨張弁13Aに接続されている。
 第1膨張弁13Aは、冷房運転時に冷媒をそのまま通過させ、暖房運転時に冷媒を膨張させる。第1膨張弁13Aは、第3流路2cを介して室外熱交換器14に接続されている。
 室外熱交換器14は、車室外(例えば、自動車のフロント)に配置され、車両の走行およびファン16により供給される外気と冷媒との間で熱交換を行う。室外熱交換器14は、冷房運転時に凝縮器として機能し、暖房運転時に蒸発器として機能する。室外熱交換器14は、第4流路2dを介して第2膨張弁13Bに接続されている。
 第2膨張弁13Bは、冷房運転時に冷媒を膨張させ、暖房運転時に冷媒をそのまま通過させる。第2膨張弁13Bは、第5流路2eを介して第2室内熱交換器12Bに接続されている。
 第2室内熱交換器12Bは、主として冷房に寄与するものであり、ダクト3内に配置されている。本実施形態では、第2室内熱交換器12Bが第2風路3B内に位置するように配置されている。そして、第2室内熱交換器12Bは、第2ブロワ42により供給される内気および/または外気と冷媒との間で熱交換を行う。第2室内熱交換器12Bは、冷房運転時および暖房運転時ともに蒸発器として機能する。なお、本実施形態ではダクト3内での第1室内熱交換器12Aと第2室内熱交換器12Bの位置関係は特に問わないが、図例では第2室内熱交換器12Bがダクト3内で第1室内熱交換器12Aよりも風上側に位置している。第2室内熱交換器12Bは、第6流路2fを介して圧縮機11の吸入口に接続されている。なお、第6流路2fには、アキュムレータ15が設けられている。
 さらに、車両用空調装置1Aには、外部に排出される内気からエネルギーを回収するための構成が採用されている。具体的に、ダクト3には、第2室内熱交換器12Bの風下側に暖房用排気口35が設けられ、第1室内熱交換器12Aの風下側に冷房用排気口36が設けられている。暖房用排気口35は、暖房運転時に第2室内熱交換器12Bで冷却された空気を車室外に排出するためのものであり、冷房用排気口36は、冷房運転時に第1室内熱交換器12Aで加熱された空気を車室外に排出するためのものである。
 さらに、ダクト3には、暖房用排気口35を開閉する暖房用排出ダンパ53と、冷房用排気口36を開閉する冷房用排出ダンパ54とが取り付けられている。
 暖房用排出ダンパ53は、暖房用排気口35の風下側に揺動軸を有しており、暖房用排気口35を閉じる閉じ位置からダクト3の内側に揺動して暖房用排気口35を開く。すなわち、暖房用排出ダンパ53は、暖房用排気口35を開いたときに、第2室内熱交換器12Bを通過した空気を暖房用排気口35に導く。なお、暖房用排気口35を開くときは、暖房用排出ダンパ53は図略のサーボモータにより任意の位置に停止可能である。
 冷房用排出ダンパ54は、冷房用排気口36の風下側に揺動軸を有しており、冷房用排気口36を閉じる閉じ位置からダクト3の内側に揺動して冷房用排気口36を開く。すなわち、冷房用排出ダンパ54は、冷房用排気口36を開いたときに、第1室内熱交換器12Aを通過した空気を冷房用排気口36に導く。なお、冷房用排気口36を開くときは、冷房用排出ダンパ54は図略のサーボモータにより任意の位置に停止可能である。
 上述した圧縮機11、第1膨張弁13Aおよび第2膨張弁13B、ならびに各種のダンパ51~54は、制御装置6により制御される。制御装置6は、車室内に配置された操作パネル(図示せず)と接続されており、冷房運転および暖房運転を行う。以下、冷房運転時および暖房運転時における車両用空調装置1Aの動作を説明する。ただし、以下では、車室内が換気される場合を代表的に説明する。
 <冷房運転>
 冷房運転時、制御装置6は、まず第1膨張弁13Aを全開にするとともに、第2膨張弁13Bを所定の開度に設定する。このため、圧縮機11から吐出された冷媒は、第1室内熱交換器12Aおよび室外熱交換器14で放熱し、第2膨張弁13Bで減圧した後に、第2室内熱交換器12Bで吸熱する。
 また、制御装置6は、第1吸気ダンパ51を外気吸気口32の第1風路3A側を閉じる外気遮断位置にセットし、第2吸気ダンパ52を第2風路3B側の内気吸気口31と外気吸気口32の双方を開く中間位置にセットする。このとき、第2吸気ダンパ52は、外気吸気口32の第2風路3B側からダクト3内に車室内の換気に十分な流量の外気が取り込まれるように制御される。さらに、制御装置6は、暖房用排出ダンパ53を暖房用排気口35を閉じる閉じ位置にセットし、冷房用排出ダンパ54を冷房用排気口36を開く開き位置にセットする。このため、第2風路3Bでは、内気吸気口31から流入した内気と外気吸気口32から流入した外気とが混合した混合気が、第2室内熱交換器12Bで冷却された後に吹出口34から車室内に吹き出される。一方、第1風路3Aでは、内気吸気口31から流入した内気が、第1室内熱交換器12Aで冷媒を冷却することによって加熱された後に、冷房用排気口36を通じて車室外に排出される。
 ところで、冷房用排気口36を通じて車室外に排出される空気の流量は、外気吸気口32の第2風路3B側を通じてダクト3内に取り込まれた外気の流量と同等又は少ないことが好ましい。これを実現するには、例えば、第1ブロワ41の回転数を第2ブロワ42の回転数よりも小さくすればよい。
 なお、言うまでもないが、空調始動時に温度特性改善のために一時的に換気しない場合や駐車時の換気が必要のない場合等で車室内への外気の導入が行われないときには、第1ブロワ41が停止され、第2吸気ダンパ52が外気遮断位置にセットされ、冷房用排出ダンパ54が閉じ位置にセットされてもよい。
 <暖房運転>
 暖房運転時、制御装置6は、まず第2膨張弁13Bを全開にするとともに、第1膨張弁13Aを所定の開度に設定する。このため、圧縮機11から吐出された冷媒は、第1室内熱交換器12Aで放熱し、第1膨張弁13Aで減圧した後に、室外熱交換器14および第2室内熱交換器12Bで吸熱する。
 また、制御装置6は、第2吸気ダンパ52を外気吸気口32の第2風路3B側を閉じる外気遮断位置にセットし、第1吸気ダンパ51を第1風路3A側の内気吸気口32と外気吸気口32の双方を開く中間位置にセットする。このとき、第1吸気ダンパ51は、外気吸気口32の第1風路3A側からダクト3内に車室内の換気に十分な流量の外気が取り込まれるように制御される。さらに、制御装置6は、冷房用排出ダンパ54を冷房用排気口36を閉じる閉じ位置にセットし、暖房用排出ダンパ53を暖房用排気口35を開く開き位置にセットする。このため、第1風路3Aでは、内気吸気口31から流入した内気と外気吸気口32から流入した外気とが混合した混合気が、第1室内熱交換器12Aで加熱された後に吹出口34から車室内に吹き出される。一方、第2風路3Bでは、内気吸気口31から流入した内気が、第2室内熱交換器12Bで冷媒を加熱することによって冷却された後に、暖房用排気口35を通じて車室外に排出される。
 ところで、暖房用排気口35を通じて車室外に排出される空気の流量は、外気吸気口32の第1風路3A側を通じてダクト3内に取り込まれた外気の流量と同等又は少ないことが好ましい。これを実現するには、例えば、第2ブロワ42の回転数を第1ブロワ41の回転数よりも小さくすればよい。
 なお、言うまでもないが、空調始動時に温度特性改善のために一時的に換気しない場合や駐車時の換気が必要のない場合等で車室内への外気の導入が行われないときには、第2ブロワ42が停止され、第1吸気ダンパ51が外気遮断位置にセットされ、暖房用排出ダンパ53が閉じ位置にセットされてもよい。
 以上説明したように、冷房運転時には、冷房によって冷やされた内気が外部に排出される途中で、その内気に第1室内熱交換器12Aによって熱を与えることができる。一方、暖房運転時には、暖房によって温められた内気が外部に排出される途中で、その内気から第2室内熱交換器12Bによって熱を奪うことができる。すなわち、どちらの運転時でも、外部に排出される内気を合理的に利用して、エネルギーを効率的に活用することができる。しかも、第1風路3Aおよび第2風路3Bのどちらに流れる空気も内気と外気の比率が調整可能であるため、エネルギーを回収する際に内気のみを冷却または加熱して排出することができる。
 なお、上述した冷房運転時に第1吸気ダンパ51を内気遮断位置にセットすれば、第1室内熱交換器12Aをもう1台の室外熱交換器として働かせることができるとともに、上述した暖房運転時に第2吸気ダンパ52を内気遮断位置にセットすれば、第2室内熱交換器12Bをもう1台の室外熱交換器として働かせることができる。換言すれば、どちらのケースも室外熱交換器を2台使用することができるため、車両用空調装置1Aの効率を向上させることができる。なお、この場合は、ダクト3を通じて車室内に導入される外気と同量の内気が車体後方の排気口または車室を構成する部材間の隙間などから外部に排出される。この場合、外気の風量は外部に排出されるので、内気と熱交換する場合の様な風量の制限は無い。
 また、上述した冷房運転時および暖房運転時ともに起動時には、内気の温度は外気の温度と略等しいので、第1吸気ダンパ51および第2吸気ダンパ52を内気遮断位置にセットすることが好ましい。このようにすれば、上述したのと同様に、冷房運転の起動時には第1室内熱交換器12Aをもう1台の室外熱交換器として働かせることができ、暖房運転の起動時には第2室内熱交換器12Bをもう1台の室外熱交換器として働かせることができる。これにより、立ち上げに必要な時間を短縮することができる。
 <変形例>
 なお、全てのダンパ51~54は、それぞれ単独のモータで駆動される必要はなく、リンク機構などを利用してそのうちのいくつかを共通のモータで駆動するようにしてもよい。
 また、図面では揺動する板状のダンパを例に挙げたが、スライドドアやフィルムドアを用いて暖房用排気口35および冷房用排気口36を開閉することも可能である。
 さらに、第1風路3Aおよび第2風路3Bは必ずしもダクト3の略全長に亘って形成されている必要はないし、第1室内熱交換器12Aは必ずしも第1風路3A内に位置している必要はない。例えば、図3に示すように、仕切り部材4が第1室内熱交換器12Aとこれよりも風上側に位置する第2室内熱交換器12Bの間で途切れていて、第1室内熱交換器12Aが第1風路3Aの出口と第2風路3Bの出口の双方に対向するように配置されていてもよい。すなわち、第1室内熱交換器12Aはダクト3の断面積と同程度の大きさを有していてもよい。あるいは、第1室内熱交換器12は、第1風路3A内に配置されるときと同程度の大きさを有しており、第1風路3Aの出口のみに対向するように片寄って配置されていてもよい。
 (第2実施形態)
 図4は、本発明の第2実施形態に係る車両用空調装置1Bの構成図である。なお、本実施形態では、第1実施形態と同一構成部分には同一符号を付し、その説明を省略することがある。
 本実施形態の車両用空調装置1Bは、冷媒の流れ方向が切り換えられるヒートポンプ回路2Bを備えている。このヒートポンプ回路2Bは、圧縮機11、四方弁17、第1室内熱交換器12A、膨張弁13、室外熱交換器14、および第2室内熱交換器12Bを含んでおり、これらの機器は、第1流路21~第7流路27によって接続されている。
 具体的に、圧縮機11の吐出口は、第1流路21を介して四方弁17の第1ポートに接続されている。四方弁17の第2ポートは、第2流路22を介して室外熱交換器14に接続されており、四方弁17の第3ポートは、第5流路25を介して第1室内熱交換器12Aに接続されている。室外熱交換器14および第1室内熱交換器12Aは、それぞれ第3流路23および第4流路24を介して膨張弁13に接続されている。四方弁17の第4ポートは、第6流路26を介して第2室内熱交換器12Bに接続されており、第2室内熱交換器12Bは、第7流路27を介して圧縮機11の吸入口に接続されている。なお、第7流路27には、アキュムレータ15が設けられている。
 膨張弁13は、冷媒を膨張させるものであり、本発明の膨張機構の一例である。本発明の膨張機構としては、膨張する冷媒から動力を回収する容積型の膨張機等を採用してもよい。
 四方弁17は、本発明の切換手段として機能するものであり、ヒートポンプ回路2Bに流れる冷媒の流れ方向を、冷房運転時には破線矢印で示す第1方向に切り換え、暖房運転時には実線矢印で示す第2方向に切り換える。第1方向は、圧縮機11から吐出された冷媒が室外熱交換器14、膨張弁13、第1室内熱交換器12Aおよび第2室内熱交換器12Bをこの順に通過して圧縮機11に戻る方向であり、第2方向は、圧縮機11から吐出された冷媒が第1室内熱交換器12A、膨張弁13、室外熱交換器14および第2室内熱交換器12Bをこの順に通過して圧縮機11に戻る方向である。
 本実施形態では、第1室内熱交換器12Aは、冷房運転時は蒸発器として機能し、暖房運転時は凝縮器として機能する。第2室内熱交換器12Bは、第1実施形態と同様に、冷房運転時および暖房運転時ともに蒸発器として機能する。
 さらに、本実施形態では、ダクト3内に第1風路3Aと第2風路3Bを形成するように配設された仕切り部材4が3つの仕切り壁4A~4Cで構成されている。また、本実施形態では、外気吸気口32を分断する外気分断壁46(図1および図2参照)が設けられておらず、内気吸気口31を分断する内気分断壁45のみが設けられている。さらに、内気分断壁45は、仕切り部材4から離れた位置で内気吸気口31を第1風路3A側と第2風路3B側とに分断しており、外気吸気口32は、内気吸気口31に対して第1風路3A側に配置されている。すなわち、外気吸気口32からは、第1風路3Aには外気が直接的に流入可能である一方、第2風路3Bには内気分断壁45と仕切り部材4の間の隙間を通じて外気が流入可能になっている。なお、外気吸気口32は内気吸気口31に対して第2風路3B側に配置されていてもよいし、内気吸気口31と外気吸気口32とを入れ替える(すなわち、外気吸気口32のみを分断する)ことも可能である。
 最も風上側に位置する第1仕切り壁4Aは、第1ブロワ41が配置される空間と第2ブロワ42が配置される空間を区画している。なお、第1ブロワ41と第2ブロワ42とは一軸に連結されており、同一の電動機によって駆動される。中間に位置する第2仕切り壁4Bは、第2室内熱交換器12Bが配置される空間と第2室内熱交換器12Bを迂回するルートを形成する空間とを区画する。最も風下側に位置する第3仕切り壁4Cは、第1室内熱交換器12Aが配置される空間と第1室内熱交換器12Aを迂回するルートを形成する空間とを区画する。
 第1吸気ダンパ51は、内気吸気口31と外気吸気口32の間に揺動軸を有し、内気吸気口31の第1風路3A側を閉じる内気遮断位置と外気吸気口32を閉じる外気遮断位置との間で揺動する。第2吸気ダンパ52は、内気分断壁45と対応する位置に揺動軸を有し、内気吸気口31の第2風路3B側を閉じる遮断位置と、揺動軸と第1仕切り壁4Aの風上側の端部とを結ぶ線上に位置する壁構成位置との間で揺動する。本実施形態でも、第1吸気ダンパ51によって外気吸気口32が少しでも開かれた状態で第2吸気ダンパ52が揺動すれば、内気吸気口31から第2風路3Bに流入する内気の量と外気吸気口32から第2風路3Bに流入する外気の量の比率が変更される。
 第1仕切り壁4Aと第2仕切り壁4Bの間には、第1風路3Aを遮断する第1遮断位置と第2風路3Bを遮断する第2遮断位置との間で揺動可能な第1調整ダンパ56が配設されている。なお、以下では、説明の便宜のために、第1調整ダンパ56については、第1仕切り壁4Aと第2仕切り壁4Bの端部同士を結ぶ線上に位置する位置を壁構成位置、壁構成位置から第1遮断位置側に寄った位置をバイパス側遮断位置、壁構成位置から第2遮断位置に寄った位置を熱交換器側抑制位置という。第2仕切り壁4Bと第3仕切り壁4Cの間には、それらの端部同士を結ぶ線上に位置する壁構成位置と第2風路3Bを遮断する遮断位置との間で揺動可能な第2調整ダンパ57が配設されている。
 本実施形態では、第1室内熱交換器12Aの風下側には冷房用排気口36が設けられておらず、第2室内熱交換器12Bの風下側に暖房用排気口35のみが設けられている。ただし、暖房用排出ダンパ53は、暖房用排気口35を閉じる閉じ位置と、当該暖房用排出ダンパ53の先端が第2仕切り壁4Bに近接または当接して第2流路3Bを遮断する遮断位置との間で揺動可能となっている。
 以下、冷房運転時および暖房運転時における車両用空調装置1Bの動作を説明する。ただし、以下では、冷房運転として通常の冷房運転を、暖房運転として通常の暖房運転、除湿暖房運転およびエネルギー回収暖房運転を代表的に説明する。なお、通常の暖房運転時およびエネルギー回収暖房運転時に車室内が換気される。
 <冷房運転>
 通常の冷房運転時、制御装置6は、まずヒートポンプ回路2Bに破線矢印で示す第1方向に冷媒が流れるように四方弁17を制御する。また、制御装置6は、図5に示すように、第1調整ダンパ56を第1流路3Aを遮断する第1遮断位置にセットし、第2調整ダンパ57を第2風路3Bを遮断する遮断位置にセットする。このため、圧縮機11から吐出された冷媒は、室外熱交換器14で放熱し、膨張弁13で減圧した後に、第1室内熱交換器12Aおよび第2室内熱交換器12Bで吸熱する。
 また、制御装置6は、第1吸気ダンパ51を外気吸気口32を閉じる外気遮断位置にセットし、第2吸気ダンパ52を内気吸気口31の第2風路3B側を閉じる遮断位置にセットする。さらに、制御装置6は、暖房用排出ダンパ53を暖房用排気口35を閉じる閉じ位置にセットする。このため、内気吸気口31の第1風路3A側からダクト3内に取り込まれた内気は、第2室内熱交換器12Bで冷却された後にさらに第1室内熱交換器12Aで冷却され、吹出口34から車室内に吹き出される。
 <暖房運転>
 通常の暖房運転時、制御装置6は、まずヒートポンプ回路2Bに実線矢印で示す第2方向に冷媒が流れるように四方弁17を制御する。また、制御装置6は、図6Aに示すように、第1調整ダンパ56を第2流路3Bを遮断する第2遮断位置にセットし、第2調整ダンパ57を壁構成位置にセットする。このため、圧縮機11から吐出された冷媒は、第1室内熱交換器12Aで放熱し、膨張弁13で減圧した後に、室外熱交換器14で吸熱し、第2室内熱交換器12Bをそのまま通過する。
 また、制御装置6は、第1吸気ダンパ51を内気吸気口31の第1風路3A側を閉じる内気遮断位置にセットし、第2吸気ダンパ52を内気吸気口31の第2風路3B側を閉じる遮断位置にセットする。さらに、制御装置6は、暖房用排出ダンパ53を暖房用排気口35を閉じる閉じ位置にセットする。このため、外気吸気口32からダクト3内に取り込まれた外気は、第1室内熱交換器12Aで加熱された後に、吹出口34から車室内に吹き出される。なお、この場合は、ダクト3を通じて車室内に導入される外気と同量の内気が車室を構成する部材間の隙間などから外部に排出される。
 除湿暖房運転時には、図6Bに示すように、第1調整ダンパ56が第1風路3Aを遮断する第1遮断位置にセットされ、第2調整ダンパ57が第2風路3Bを遮断する遮断位置にセットされる。このため、圧縮機11から吐出された冷媒は、第1室内熱交換器12Aで放熱し、膨張弁13で減圧した後に、室外熱交換器14および第2室内熱交換器12Bで吸熱する。また、第1吸気ダンパ51は外気吸気口32を閉じる外気遮断位置にセットされる。このため、内気吸気口31の第1風路3A側からダクト3内に取り込まれた内気は、第2室内熱交換器12Bで冷却されることにより除湿された後に第1室内熱交換器12Aで加熱され、吹出口34から車室内に吹き出される。
 エネルギー回収暖房運転時には、図7に示すように、第1調整ダンパ56が熱交換器側抑制位置と壁構成位置の中間にセットされ、第2調整ダンパ57が壁構成位置にセットされる。また、第1吸気ダンパ51が内気吸気口31の第1風路3A側を閉じる内気遮断位置にセットされ、第2吸気ダンパ52が壁構成位置にセットされる。さらに、暖房用排出ダンパ53は、第2風路3Bを遮断する遮断位置にセットされる。このため、内気吸気口31から第2風路3Bに流入した内気は、第1調整ダンパ56により第2風路3Bをそのまま流れる分と第1風路3Aに流れ込む分とに分配される。第1風路3Aに流れ込んだ内気は外気吸気口32から第1風路3Aに流入した外気と混ざり合って混合気となり、この混合気が第1室内熱交換器12Aで加熱された後に吹出口34から車室内に吹き出される。一方、第2風路3Bをそのまま流れる内気は、第2室内熱交換器12Bで冷媒を加熱することによって冷却された後に、暖房用排気口35を通じて車室外に排出される。
 このようなエネルギー回収暖房運転でも、第1実施形態と同様に、暖房によって温められた内気が外部に排出される途中で、その内気から第2室内熱交換器12Bによって熱を奪うことができる。従って、外部に排出される内気を合理的に利用して、エネルギーを効率的に活用することができる。
 なお、図示は省略するが、エネルギー回収暖房運転では、第1調整ダンパ56が壁構成位置にセットされるとともに第2調整ダンパ57が遮断位置にセットされた上で、暖房用排出ダンパ53が遮断位置よりも閉じ位置側に寄った位置にセットされてもよい。このようにすれば、エネルギー回収暖房運転を行いながらも内気を除湿することができる。
 また、図7に示す状態から第2吸気ダンパ52を遮断位置にセットすれば、第2室内熱交換器12Bをもう1台の室外熱交換器として働かせることができる。すなわち、室外熱交換器を2台使用することができるため、車両用空調装置1Bの効率を向上させることができる。なお、この場合は、ダクト3を通じて車室内に導入される外気と同量の内気が車室を構成する部材間の隙間などから外部に排出される。
 <変形例>
 前記実施形態では、切換手段として四方弁17が用いられていたが、本発明の切換手段はこれに限られるものではない。例えば、切換手段は、図8Aに示すような、第1流路21および第6流路26と接続された2つの三方弁171が一対の配管172によってループ状に接続され、それらの配管172に第2流路22および第5流路25が接続された回路17Aであってもよい。あるいは、切換手段は、図8Bに示すようないわゆるブリッジ回路17Bであってもよい。
 ところで、前記実施形態のダクト3に暖房用排気口35だけでなく第1実施形態で説明した冷房用排気口36も設ける場合は、ヒートポンプ回路2Bにおける第1室内熱交換器12Aと四方弁17の間の第5流路25に、制御装置6によって冷媒をそのまま通過させるオフ状態と冷媒を減圧するオン状態との間で切り換えられる補助減圧機構を設ければよい。この補助減圧機構は、暖房運転時および通常の冷房運転時にオフ状態に制御され、冷房運転の中でも外部に排出される内気からエネルギーを回収するエネルギー回収冷房運転時にオン状態に制御される。補助減圧機構がオン状態に制御されるときには、膨張弁13が相対的に大きな開度に設定される。このため、第1室内熱交換器12Aは、通常の冷房運転時は蒸発器として機能するが、エネルギー回収冷房運転時は凝縮器として機能する。このような構成であれば、第1実施形態と同様に、冷房によって冷やされた内気が外部に排出される途中で、その内気に第1室内熱交換器12Aによって熱を与えることができる。
 (その他の実施形態)
 前記第1実施形態および第2実施形態の変形例では暖房用排気口35および冷房用排気口36の双方がダクト3に設けられる形態を示したが、ダクト3には、暖房用排気口35および冷房用排気口36の少なくとも一方が設けられていればよい。例えば、本発明の車両用空調装置は、暖房用排気口35のみを持つ構成により、暖房性能だけを向上させるものであってもよい。
 また、第2室内熱交換器12Bはダクト3内で必ずしも第1室内熱交換器12Aよりも風上側に位置している必要はなく、それらの配置位置が逆になっていてもよい。ただし、第2室内熱交換器12Bが第1室内熱交換器12Aよりも風上側に位置していれば、第1実施形態の変形例および第2実施形態のような構成を採用することにより、暖房運転時にダクト3内を流れる空気を第1室内熱交換器12Aで加熱する前に第2室内熱交換器12Bで除湿することが可能になる。
 本発明の車両用空調装置は、エネルギーを効率的に活用して冷房および暖房を行うことができるので、特に電気自動車や燃料電池自動車などの非燃焼系の自動車に有用である。

Claims (8)

  1.  車室内の冷房および暖房を行う車両用空調装置であって、
     一方の端部に内気吸気口および外気吸気口を有し、他方の端部に吹出口を有するダクトと、
     前記ダクト内に第1風路と第2風路を形成するように配設された仕切り部材と、
     前記第1風路内に配置された第1送風機と、
     前記第2風路内に配置された第2送風機と、
     前記内気吸気口から前記第1風路に流入する内気の量と前記外気吸気口から前記第1風路に流入する外気の量の比率を調整する第1吸気ダンパと、
     前記内気吸気口から前記第2風路に流入する内気の量と前記外気吸気口から前記第2風路に流入する外気の量の比率を調整する第2吸気ダンパと、
     前記第1風路内に位置するまたは前記第1風路の出口と対向するように前記ダクト内に配置された主として暖房に寄与する第1室内熱交換器、前記第2風路内に位置するように前記ダクト内に配置された主として冷房に寄与する第2室内熱交換器、および前記車室外に配置された室外熱交換器を含むヒートポンプ回路と、を備え、
     前記ダクトには、暖房運転時に前記第2室内熱交換器で冷却された空気を前記車室外に排出するための暖房用排気口、および冷房運転時に前記第1室内熱交換器で加熱された空気を前記車室外に排出するための冷房用排気口、の少なくとも一方が設けられている、車両用空調装置。
  2.  前記ダクトには、前記暖房用排気口および前記冷房用排気口の双方が設けられている、請求項1に記載の車両用空調装置。
  3.  前記暖房用排気口を開閉する暖房用排出ダンパであって、前記暖房用排気口を開いたときには前記第2室内熱交換器を通過した空気を前記暖房用排気口に導く暖房用排出ダンパをさらに備える、請求項1または2に記載の車両用空調装置。
  4.  前記冷房用排気口を開閉する冷房用排出ダンパであって、前記冷房用排気口を開いたときには前記第1室内熱交換器を通過した空気を前記冷房用排気口に導く冷房用排出ダンパをさらに備える、請求項1~3のいずれか一項に記載の車両用空調装置。
  5.  前記第2室内熱交換器は、前記ダクト内で前記第1室内熱交換器よりも風上側に位置している、請求項1~4のいずれか一項に記載の車両用空調装置。
  6.  前記室外熱交換器は、暖房運転時に蒸発器として機能し、冷房運転時に凝縮器として機能する、請求項1~5のいずれか一項に記載の車両用空調装置。
  7.  前記ヒートポンプ回路は、冷媒を圧縮する圧縮機、暖房運転時に冷媒を膨張させる第1膨張弁、および冷房運転時に冷媒を膨張させる第2膨張弁、をさらに含み、
     前記圧縮機、前記第1室内熱交換器、前記第1膨張弁、前記室外熱交換器、前記第2膨張弁および前記第2室内熱交換器は、流路によってこの順に環状に接続されている、請求項6に記載の車両用空調装置。
  8.  前記ヒートポンプ回路は、冷媒を圧縮する圧縮機、および冷媒を膨張させる膨張機構、をさらに含み、
     前記ヒートポンプ回路に流れる冷媒の流れ方向を、冷房運転時には前記圧縮機から吐出された冷媒が前記室外熱交換器、前記膨張機構、前記第1室内熱交換器および前記第2室内熱交換器をこの順に通過して前記圧縮機に戻る第1方向に切り換え、暖房運転時には前記圧縮機から吐出された冷媒が前記第1室内熱交換器、前記膨張機構、前記室外熱交換器および前記第2室内熱交換器をこの順に通過して前記圧縮機に戻る第2方向に切り換える切換手段をさらに備える、請求項6に記載の車両用空調装置。
PCT/JP2012/001646 2011-05-26 2012-03-09 車両用空調装置 WO2012160735A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2013516171A JP5838316B2 (ja) 2011-05-26 2012-03-09 車両用空調装置
US14/122,122 US9610822B2 (en) 2011-05-26 2012-03-09 Air conditioning device for vehicle
EP12790132.0A EP2716478B1 (en) 2011-05-26 2012-03-09 Air conditioning device for vehicle
CN201280024771.3A CN103547468B (zh) 2011-05-26 2012-03-09 车辆用空调装置
US15/436,367 US9931905B2 (en) 2011-05-26 2017-02-17 Air conditioning device for vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011117702 2011-05-26
JP2011-117702 2011-05-26

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/122,122 A-371-Of-International US9610822B2 (en) 2011-05-26 2012-03-09 Air conditioning device for vehicle
US15/436,367 Continuation US9931905B2 (en) 2011-05-26 2017-02-17 Air conditioning device for vehicle

Publications (1)

Publication Number Publication Date
WO2012160735A1 true WO2012160735A1 (ja) 2012-11-29

Family

ID=47216830

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/001646 WO2012160735A1 (ja) 2011-05-26 2012-03-09 車両用空調装置

Country Status (5)

Country Link
US (2) US9610822B2 (ja)
EP (1) EP2716478B1 (ja)
JP (1) JP5838316B2 (ja)
CN (1) CN103547468B (ja)
WO (1) WO2012160735A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014113975A (ja) * 2012-12-12 2014-06-26 Sanden Corp 熱交換器及びそれを用いたヒートポンプシステム
WO2015049642A1 (de) * 2013-10-02 2015-04-09 Halla Visteon Climate Control Corporation Klimatisierungssystem für ein kraftfahrzeug
KR20160014829A (ko) * 2014-07-29 2016-02-12 한온시스템 주식회사 차량용 공조장치
KR20160017155A (ko) * 2014-07-31 2016-02-16 한온시스템 주식회사 차량용 에어컨시스템
KR20160084882A (ko) * 2015-01-06 2016-07-15 한온시스템 주식회사 차량용 히트 펌프 시스템
US20170043646A1 (en) * 2015-08-10 2017-02-16 Hanon Systems Air conditioning system for vehicle
JP2018517614A (ja) * 2016-01-18 2018-07-05 ハンオン システムズ 車両用空調システム
JP2018517612A (ja) * 2016-01-18 2018-07-05 ハンオン システムズ 車両用空調システム
JP2018520939A (ja) * 2015-07-24 2018-08-02 ヴァレオ クリマジステーメ ゲーエムベーハー 車両用空調機、及び当該車両用空調機を用いて車内空間を加熱するための方法
CN110325386A (zh) * 2016-12-16 2019-10-11 国际航空(美国)股份有限公司 加热、通风和空调系统

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9346337B2 (en) * 2011-02-24 2016-05-24 Panasonic Intellectual Property Management Co., Ltd. Air conditioning device for vehicle
DE102014104969B4 (de) * 2014-04-08 2019-11-21 Hanon Systems Klimatisierungssystem für ein Kraftfahrzeug
DE102014112498B4 (de) * 2014-08-29 2020-12-03 Deutsches Zentrum für Luft- und Raumfahrt e.V. Klimatisierungseinrichtung, Verfahren zum Betreiben einer Klimatisierungseinrichtung sowie Fahrzeug
WO2016036079A1 (ko) * 2014-09-01 2016-03-10 한온시스템 주식회사 차량용 히트 펌프 시스템
FR3026352B1 (fr) * 2014-09-25 2017-11-24 Valeo Systemes Thermiques Dispositif de generation d'un flux d'air
KR101628530B1 (ko) 2014-11-17 2016-06-09 현대자동차주식회사 차량용 공조 장치
KR101628558B1 (ko) * 2014-12-05 2016-06-09 현대자동차주식회사 차량의 공조 장치
WO2016167558A1 (ko) * 2015-04-14 2016-10-20 한온시스템 주식회사 차량용 공조 시스템
KR102470416B1 (ko) * 2015-04-14 2022-11-28 한온시스템 주식회사 차량용 공조 시스템
RS56955B1 (sr) * 2015-04-22 2018-05-31 Privredno Drustvo Za Pruzanje Usluga Iz Oblasti Automatike I Programiranja Synchrotek D O O Kgh sistem putničkog odeljka vozila sa promenom topologije vazdušnog toka
DE102015112030A1 (de) 2015-07-23 2017-01-26 Halla Visteon Climate Control Corporation Modulares Klimatisierungssystem eines Kraftfahrzeugs
GB2542377B (en) * 2015-09-17 2018-09-26 Jaguar Land Rover Ltd Vehicle air conditioning system
KR101766045B1 (ko) * 2015-10-08 2017-08-08 현대자동차주식회사 차량용 공조시스템
CN107635804B (zh) * 2015-11-27 2020-06-26 翰昂汽车零部件有限公司 制冷制热模块
KR101755926B1 (ko) 2015-12-09 2017-07-10 현대자동차주식회사 차량용 공조시스템
KR20170069318A (ko) * 2015-12-10 2017-06-21 현대자동차주식회사 차량용 공조시스템
JP6592466B2 (ja) * 2016-01-18 2019-10-16 ハンオン システムズ 車両用空調システム
US20170241653A1 (en) * 2016-02-22 2017-08-24 Tower Labs @MaRS Research Alliance Multi-zone air handler and method for using the same
FR3049237B1 (fr) * 2016-03-24 2019-04-19 Valeo Systemes Thermiques Boitier de climatisation pour habitacle de vehicule automobile et systeme de traitement de l'air comprenant un tel boitier
FR3049238B1 (fr) * 2016-03-24 2019-04-19 Valeo Systemes Thermiques Boitier de climatisation pour habitacle de vehicule automobile, systeme et procede de traitement de l'air comprenant un tel boitier
KR101822287B1 (ko) * 2016-07-04 2018-01-26 현대자동차주식회사 차량용 공조시스템
KR101822288B1 (ko) * 2016-07-06 2018-01-26 현대자동차주식회사 차량용 공조장치
KR102552118B1 (ko) * 2016-07-22 2023-07-10 한온시스템 주식회사 차량용 공조 시스템 및 그 제어방법
JP6683076B2 (ja) * 2016-09-02 2020-04-15 株式会社デンソー 冷凍サイクル装置
DE102016119231B4 (de) 2016-10-10 2022-03-31 Konvekta Aktiengesellschaft Klimaanlage für ein Fahrzeug mit verbesserter Temperaturregelung und Verfahren dazu
KR102319001B1 (ko) * 2017-04-07 2021-10-29 한온시스템 주식회사 차량용 공조장치
KR102334606B1 (ko) * 2017-04-14 2021-12-06 한온시스템 주식회사 차량용 공조장치의 제어 방법
JP6760225B2 (ja) * 2017-07-25 2020-09-23 株式会社デンソー 車両用空調ユニット
CN107449130B (zh) * 2017-08-04 2023-08-29 广东美芝制冷设备有限公司 空调系统及具有其的车辆
CN107449129B (zh) * 2017-08-04 2023-08-25 广东美芝制冷设备有限公司 空调系统及具有其的车辆
DE102017124814A1 (de) * 2017-10-24 2019-04-25 Hanon Systems Klimatisierungssystem zum Konditionieren der Luft eines Fahrgastraumes eines Kraftfahrzeugs und Verfahren zum Betreiben des Klimatisierungssystems
KR102418657B1 (ko) * 2017-10-25 2022-07-08 현대모비스 주식회사 전기차용 공기조화장치
KR102456850B1 (ko) * 2017-12-27 2022-10-21 한온시스템 주식회사 차량용 공조장치
EP3581857B1 (fr) * 2018-06-11 2021-07-28 Ventilairsec Dispositif de distribution d'air dans l'espace interieur d'une construction
FR3082288B1 (fr) * 2018-06-11 2020-11-20 Ventilairsec Dispositif de ventilation pour la ventilation et le chauffage ou la climatisation de l'espace interieur d'une construction
KR102661622B1 (ko) * 2018-11-12 2024-04-29 현대자동차주식회사 차량용 공조장치
US11920831B2 (en) * 2019-03-25 2024-03-05 Johnson Controls Tyco IP Holdings LLP Heating unit with a partition
JP6753486B1 (ja) * 2019-05-10 2020-09-09 ダイキン工業株式会社 空気調和システム
DE102019115416A1 (de) * 2019-06-06 2020-12-10 Konvekta Aktiengesellschaft Heiz- und Klimaanlage mit Nutzung von Abluft
CN112046234A (zh) * 2019-06-07 2020-12-08 翰昂汽车零部件有限公司 出口集中的暖空气通道
JP7111064B2 (ja) * 2019-06-11 2022-08-02 トヨタ自動車株式会社 Co2回収システム
KR20210013425A (ko) * 2019-07-24 2021-02-04 현대자동차주식회사 차량용 공조시스템
CN110481274A (zh) * 2019-08-29 2019-11-22 顾美红 一种车载空气循环系统
CN112577102A (zh) * 2019-09-11 2021-03-30 广东美的制冷设备有限公司 空调器
CN112484280A (zh) * 2019-09-11 2021-03-12 广东美的制冷设备有限公司 风道系统、空调器以及风道系统的控制方法
KR20210112155A (ko) * 2020-03-04 2021-09-14 엘지전자 주식회사 공기조화기
DE102020110602A1 (de) * 2020-04-18 2021-10-21 Konvekta Aktiengesellschaft Heiz- und/oder Klimaanlage mit verbesserter Luftbehandlung und Verfahren dazu
KR20210130320A (ko) * 2020-04-21 2021-11-01 현대자동차주식회사 차량용 공조 시스템
GB202108162D0 (en) * 2021-06-08 2021-07-21 Agco Int Gmbh Vehicle heating, ventilation and air conditioning system
KR20230071837A (ko) * 2021-11-15 2023-05-24 현대자동차주식회사 물류 배송차량의 공조장치
FR3131869A1 (fr) * 2021-12-13 2023-07-21 Valeo Systemes Thermiques Dispositif de climatisation pour un habitacle de véhicule

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60131407U (ja) * 1984-02-14 1985-09-03 カルソニックカンセイ株式会社 自動車用空気調和装置
JPS61102306A (ja) * 1984-10-24 1986-05-21 Diesel Kiki Co Ltd 車輛用空気調和装置
JPH05155236A (ja) * 1991-12-06 1993-06-22 Nippon Seiko Kk 電気自動車用冷暖房装置
JPH05221229A (ja) * 1992-02-14 1993-08-31 Nippondenso Co Ltd 自動車用空調装置
JPH0891042A (ja) * 1994-09-27 1996-04-09 Nippon Soken Inc ヒートポンプ式冷暖房装置
JPH08238919A (ja) * 1995-03-07 1996-09-17 Calsonic Corp 電気自動車用冷暖房装置
JP3433297B2 (ja) 1992-12-16 2003-08-04 株式会社ゼクセルヴァレオクライメートコントロール 空気調和装置
JP2003291625A (ja) * 2002-03-29 2003-10-15 Calsonic Kansei Corp 車両用空調装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5299431A (en) * 1991-04-26 1994-04-05 Nippondenso Co., Ltd. Automotive air conditioner having condenser and evaporator provided within air duct
FR2697211B1 (fr) * 1992-10-26 1994-12-09 Valeo Thermique Habitacle Dispositif de refroidissement et de climatisation pour véhicule électrique.
JP3799748B2 (ja) 1996-08-06 2006-07-19 株式会社デンソー 車両用空調装置
JPH10100662A (ja) * 1996-09-25 1998-04-21 Calsonic Corp 自動車用空気調和装置
US6352102B1 (en) * 1996-10-07 2002-03-05 Denso Corporation Air conditioning apparatus for vehicle
JP3584681B2 (ja) 1996-10-07 2004-11-04 株式会社デンソー 車両用空調装置
JP3293573B2 (ja) 1998-11-18 2002-06-17 株式会社デンソー 車両用空調装置
JP2001030743A (ja) * 1999-07-26 2001-02-06 Mitsubishi Heavy Ind Ltd 電気自動車用ヒートポンプ式空気調和装置
JP3985394B2 (ja) * 1999-07-30 2007-10-03 株式会社デンソー 冷凍サイクル装置
EP1695849A1 (en) * 2005-02-28 2006-08-30 Sanyo Electric Co., Ltd. Refrigerant cycle unit
JP2007008449A (ja) * 2005-05-31 2007-01-18 Denso Corp 車両用空調装置
US7690213B2 (en) * 2006-02-24 2010-04-06 Denso Corporation Waste heat utilization device and control method thereof
JP2009184493A (ja) * 2008-02-06 2009-08-20 Calsonic Kansei Corp 車両用空気調和システム
JP5104572B2 (ja) * 2008-06-13 2012-12-19 株式会社デンソー 車両用空調装置
DE102009028522B4 (de) 2009-08-13 2017-05-11 Hanon Systems Kompakte Klimaanlage für ein Kraftfahrzeug

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60131407U (ja) * 1984-02-14 1985-09-03 カルソニックカンセイ株式会社 自動車用空気調和装置
JPS61102306A (ja) * 1984-10-24 1986-05-21 Diesel Kiki Co Ltd 車輛用空気調和装置
JPH05155236A (ja) * 1991-12-06 1993-06-22 Nippon Seiko Kk 電気自動車用冷暖房装置
JPH05221229A (ja) * 1992-02-14 1993-08-31 Nippondenso Co Ltd 自動車用空調装置
JP3433297B2 (ja) 1992-12-16 2003-08-04 株式会社ゼクセルヴァレオクライメートコントロール 空気調和装置
JPH0891042A (ja) * 1994-09-27 1996-04-09 Nippon Soken Inc ヒートポンプ式冷暖房装置
JPH08238919A (ja) * 1995-03-07 1996-09-17 Calsonic Corp 電気自動車用冷暖房装置
JP2003291625A (ja) * 2002-03-29 2003-10-15 Calsonic Kansei Corp 車両用空調装置

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9927153B2 (en) 2012-12-12 2018-03-27 Sanden Holdings Corporation Heat exchanger and heat pump system using same
JP2014113975A (ja) * 2012-12-12 2014-06-26 Sanden Corp 熱交換器及びそれを用いたヒートポンプシステム
WO2015049642A1 (de) * 2013-10-02 2015-04-09 Halla Visteon Climate Control Corporation Klimatisierungssystem für ein kraftfahrzeug
DE102013110965A1 (de) * 2013-10-02 2015-04-16 Halla Visteon Climate Control Corp. Klimatisierungssystem für ein Kraftfahrzeug
KR102103257B1 (ko) * 2013-10-02 2020-04-23 한온시스템 주식회사 자동차용 공조 시스템
KR20190084219A (ko) * 2013-10-02 2019-07-16 한온시스템 주식회사 자동차용 공조 시스템
US9821627B2 (en) 2013-10-02 2017-11-21 Hanon Systems Air-conditioning system for a motor vehicle
KR20160014829A (ko) * 2014-07-29 2016-02-12 한온시스템 주식회사 차량용 공조장치
KR102158495B1 (ko) * 2014-07-29 2020-09-23 한온시스템 주식회사 차량용 공조장치
KR20160017155A (ko) * 2014-07-31 2016-02-16 한온시스템 주식회사 차량용 에어컨시스템
KR102170450B1 (ko) 2014-07-31 2020-10-29 한온시스템 주식회사 차량용 히트펌프 시스템
KR102182342B1 (ko) 2015-01-06 2020-11-25 한온시스템 주식회사 차량용 히트 펌프 시스템
KR20160084882A (ko) * 2015-01-06 2016-07-15 한온시스템 주식회사 차량용 히트 펌프 시스템
JP2018520939A (ja) * 2015-07-24 2018-08-02 ヴァレオ クリマジステーメ ゲーエムベーハー 車両用空調機、及び当該車両用空調機を用いて車内空間を加熱するための方法
CN106427462A (zh) * 2015-08-10 2017-02-22 翰昂汽车零部件有限公司 车辆用空调系统
US20170043646A1 (en) * 2015-08-10 2017-02-16 Hanon Systems Air conditioning system for vehicle
CN106427462B (zh) * 2015-08-10 2019-08-06 翰昂汽车零部件有限公司 车辆用空调系统
JP2018517614A (ja) * 2016-01-18 2018-07-05 ハンオン システムズ 車両用空調システム
JP2018517612A (ja) * 2016-01-18 2018-07-05 ハンオン システムズ 車両用空調システム
CN110325386A (zh) * 2016-12-16 2019-10-11 国际航空(美国)股份有限公司 加热、通风和空调系统

Also Published As

Publication number Publication date
EP2716478A1 (en) 2014-04-09
CN103547468B (zh) 2015-12-02
JP5838316B2 (ja) 2016-01-06
EP2716478B1 (en) 2016-10-19
US9931905B2 (en) 2018-04-03
US20170158019A1 (en) 2017-06-08
US20150082820A1 (en) 2015-03-26
US9610822B2 (en) 2017-04-04
EP2716478A4 (en) 2014-11-26
CN103547468A (zh) 2014-01-29
JPWO2012160735A1 (ja) 2014-07-31

Similar Documents

Publication Publication Date Title
JP5838316B2 (ja) 車両用空調装置
JP6167416B2 (ja) 車両用空調装置
JP6004367B2 (ja) 車両用空調装置
JP6189098B2 (ja) ヒートポンプ式車両用空調システム
EP2562017B1 (en) Vehicle air conditioning device
WO2017002547A1 (ja) 車両用空気調和装置
WO2013105200A1 (ja) 車両用空調装置
JP6874664B2 (ja) 車両用暖房装置
JP2012176659A (ja) 車両用空気調和装置
JP7017119B2 (ja) 冷却装置
JPH07232547A (ja) 車両用空気調和装置
KR101712069B1 (ko) 자동차용 히트펌프식 냉난방시스템
JP5884080B2 (ja) 車両用空調装置
JP5040897B2 (ja) 車両用空調装置
JP3969099B2 (ja) 車両用空調装置
JP5040898B2 (ja) 車両用空調装置
JP2012245849A (ja) 車両用空調装置
JP2005225249A (ja) 車両用空調装置
JP2012158247A (ja) 車両用空調装置
JP2006015842A (ja) 車両用空気調和装置
JPH0840057A (ja) 車両用空気調和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12790132

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2013516171

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2012790132

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012790132

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14122122

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE