WO2012160598A1 - 空気調和装置 - Google Patents

空気調和装置 Download PDF

Info

Publication number
WO2012160598A1
WO2012160598A1 PCT/JP2011/002863 JP2011002863W WO2012160598A1 WO 2012160598 A1 WO2012160598 A1 WO 2012160598A1 JP 2011002863 W JP2011002863 W JP 2011002863W WO 2012160598 A1 WO2012160598 A1 WO 2012160598A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
shut
amount
air
branch
Prior art date
Application number
PCT/JP2011/002863
Other languages
English (en)
French (fr)
Inventor
傑 鳩村
山下 浩司
裕之 森本
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US14/111,795 priority Critical patent/US9933205B2/en
Priority to PCT/JP2011/002863 priority patent/WO2012160598A1/ja
Priority to GB1319177.0A priority patent/GB2504036B/en
Priority to JP2013516073A priority patent/JP5813107B2/ja
Publication of WO2012160598A1 publication Critical patent/WO2012160598A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices
    • F25D29/006Safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/06Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units
    • F24F3/065Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units with a plurality of evaporators or condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/005Arrangement or mounting of control or safety devices of safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/006Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant containing more than one component
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • F24F11/36Responding to malfunctions or emergencies to leakage of heat-exchange fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/006Compression machines, plants or systems with reversible cycle not otherwise provided for two pipes connecting the outdoor side to the indoor side with multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/22Preventing, detecting or repairing leaks of refrigeration fluids

Definitions

  • the present invention relates to an air conditioner applied to, for example, a building multi air conditioner.
  • an outdoor unit that is a heat source unit arranged outside a building is connected by piping to an indoor unit (indoor unit) arranged inside the building.
  • the refrigerant circuit is configured to circulate the refrigerant.
  • heating or cooling of the air-conditioning target space is performed by heating and cooling the air by using heat radiation and heat absorption of the refrigerant.
  • a plurality of indoor units are connected by piping, and there are many cases where a stopped indoor unit and an operating indoor unit are mixed.
  • the pipe connecting the outdoor unit and the indoor unit may be 100 m, for example. The longer the pipe, the more refrigerant is filled into the air conditioner.
  • Such an indoor unit of a multi-air conditioner for buildings is usually used by being placed in an indoor space where people are present (for example, an office space, a living room, a store, etc.).
  • an indoor space where people are present for example, an office space, a living room, a store, etc.
  • the refrigerant leaks from the indoor unit arranged in the indoor space for some reason, the refrigerant has flammability, toxicity, etc. depending on the type of the refrigerant. For this reason, it becomes a big problem from a viewpoint of the influence on a human body and safety, for example.
  • the refrigerant is not harmful to the human body, for example, it is assumed that the leakage of the refrigerant lowers the oxygen concentration in the indoor space and adversely affects the human body.
  • JP 2002-115939 A (for example, page 7)
  • HFC refrigerants for example, R410A, R404A, R407C, R134a, etc.
  • an air conditioner using a refrigerant having a low global warming potential for example, HFO1234yf, R32, HC (hydrocarbon), carbon dioxide, etc.
  • a flammable refrigerant for example, HFO1234yf, HFO1234ze, R32, a mixed refrigerant containing R32 and HFO1234yf, a mixed refrigerant containing at least one component of the above-described refrigerant, HC, or the like
  • a refrigerant is used as a refrigerant in a building multi-air conditioner.
  • Even such a refrigerant requires a large amount of refrigerant when used in a building multi-air conditioner. Therefore, it is necessary to take measures when these refrigerants leak into the indoor space.
  • Patent Document 1 the technology described in Patent Document 1 relates to an air conditioner that provides a refrigerant leakage sensor and a pipe shut-off valve in an outdoor unit to suppress the amount of flammable refrigerant leaking into the room.
  • an air conditioner that has many indoor units connected and has a long piping length in a building, such as a multi air conditioning system for buildings
  • the amount of refrigerant leakage in the indoor unit and piping connected to the indoor unit must also be considered.
  • the present invention has been made in order to solve the above-described problems, and provides an air conditioner that can reduce the load on the environment while ensuring safety.
  • An air conditioner includes an outdoor unit having a compressor and a heat source side heat exchanger, a plurality of indoor units having a load side expansion device and a load side heat exchanger, and performing air conditioning in an air-conditioned space,
  • the outdoor unit is piped with a plurality of main pipes, and each indoor unit is piped with a plurality of branch pipes, the refrigerant from the main pipe side is branched and flows into the branch pipe, and the refrigerant from the branch pipe side is joined.
  • a branching device that flows into the main pipe, a refrigerant concentration detection device installed in a non-air-conditioned space that is in a positional relationship that is different from the air-conditioned space and if refrigerant leaks, and the outdoor side on the main pipe side
  • a main pipe side blocking device that blocks a flow path between the air conditioner and the branch device and / or a branch pipe side blocking device that blocks a flow path between the indoor unit and the branch device on the branch pipe side
  • a refrigerant concentration detection device If it is determined that the refrigerant has leaked based on the detection, the shut-off device is cooled.
  • a control device which performs control to shut off the flow path.
  • the refrigerant leaked from the refrigerant circuit for example, the refrigerant leaked from the control device based on the refrigerant concentration detected by the refrigerant concentration detection device in the non-air-conditioned space such as the ceiling. Since the refrigerant flow is blocked by the shut-off device, the refrigerant leakage in the non-air-conditioned space is minimized, the refrigerant is prevented from diffusing into the air-conditioned space, and the safety is greatly improved. Environmental load can be reduced.
  • FIG. 1 It is the schematic which shows the example of installation of the air conditioning apparatus which concerns on Embodiment 1 of this invention. It is a figure which shows an example of a structure of the air conditioning apparatus 100 which concerns on Embodiment 1 of this invention. It is a figure which shows an example of a structural relationship of the interruption
  • FIG. It is a refrigerant circuit diagram which shows the flow of the refrigerant
  • FIG. 1 It is a refrigerant circuit diagram which shows the flow of the refrigerant
  • FIG. 1 is a schematic diagram illustrating an installation example of an air-conditioning apparatus according to Embodiment 1 of the present invention. Based on FIG. 1, the installation example of the air conditioning apparatus in this Embodiment is demonstrated.
  • This air conditioner circulates refrigerant and performs air conditioning using a refrigeration cycle. And all the indoor units to drive
  • the air conditioner according to the present embodiment includes one outdoor unit 1 that is a heat source unit and a plurality of indoor units 2 as shown in FIG.
  • the outdoor unit 1 and the indoor unit 2 are connected by a branch pipe 5 that conducts refrigerant through a main pipe 4 that conducts refrigerant and a branch device 16 that branches the refrigerant.
  • the branching device 16 is also used as a device for joining the refrigerant in some cases.
  • the cold or warm heat generated by the outdoor unit 1 is delivered to the indoor unit 2.
  • the air-conditioning apparatus includes a first shut-off device 42 and a second shut-off device 43 serving as a main pipe-side shut-off device on the main pipe 4 side of the branch device 16
  • a third blocking device 37 and a fourth blocking device 38 serving as a branch pipe blocking device are provided on the tube 5 side.
  • the outdoor unit 1 is usually disposed in an outdoor space 6 that is a space outside a building 9 such as a building (for example, a rooftop), and is connected to the indoor unit 2 via the main pipe 4, the branch device 16, and the branch pipe 5. It supplies cold or warm heat.
  • the indoor unit 2 is arranged at a position where cooling air or heating air can be supplied to the indoor space 7 that is a space (for example, a living room) inside the building 9, and the indoor space 7 that is an air-conditioned space (the wind that leads to the room) Cooling air or heating air is supplied to (including roads and the like).
  • the outdoor unit 1 and the indoor unit 2 use two main pipes 4, and the branch device 16 and each indoor unit 2 have two branch pipes. 5 are connected to each other.
  • the branching device 16 is a space inside the building 9, but is a space different from the indoor space 7 such as a ceiling (for example, a space such as a ceiling behind the building 9, hereinafter simply a non-air-conditioned space. 8) is shown as an example.
  • a ceiling for example, a space such as a ceiling behind the building 9, hereinafter simply a non-air-conditioned space. 8
  • the branching device 16 can also be installed in a common space where there is an elevator or the like.
  • the indoor unit 2 is a ceiling cassette type is shown as an example, it is not limited to this.
  • any type may be used as long as heating air or cooling air can be blown directly into the indoor space 7 by a duct or the like, such as a ceiling-embedded type or a ceiling-suspended type.
  • the outdoor unit 1 is installed in the outdoor space 6 as an example, but the present invention is not limited to this.
  • the outdoor unit 1 may be installed in an enclosed space such as a machine room with a ventilation opening.
  • the waste heat can be exhausted outside the building 9 by the exhaust duct, it may be installed inside the building 9.
  • the water-cooled outdoor unit 1 when used, it may be installed inside the building 9. Even if the outdoor unit 1 is installed in such a place, no particular problem occurs.
  • FIG. 2 is a diagram illustrating an example of the configuration of the air-conditioning apparatus 100 according to Embodiment 1 of the present invention. Based on FIG. 2, the detailed structure of the air conditioning apparatus 100 is demonstrated.
  • an outdoor unit 1 and a plurality of indoor units 2 are connected by a main pipe 4 and a branch pipe 5.
  • a first shut-off device 42 and a second shut-off device 43 are provided between the main pipe 4 and the branch device 16.
  • a third blocking device 37 (37a to 37d) and a fourth blocking device 38 (38a to 38d) are provided between the branch device 16 and the branch pipe 5.
  • Outdoor unit 1 In the outdoor unit 1, a compressor 10, a refrigerant flow switching device 11 such as a four-way valve, a heat source side heat exchanger 12, and an accumulator 19 are connected in series through a refrigerant pipe 17.
  • a compressor 10 In the outdoor unit 1, a compressor 10, a refrigerant flow switching device 11 such as a four-way valve, a heat source side heat exchanger 12, and an accumulator 19 are connected in series through a refrigerant pipe 17.
  • the compressor 10 sucks the refrigerant and compresses the refrigerant to a high temperature / high pressure state, and may be composed of, for example, an inverter compressor capable of capacity control.
  • the refrigerant flow switching device 11 switches the refrigerant flow in the heating only operation mode and the refrigerant flow in the cooling only operation mode.
  • the heat source side heat exchanger 12 functions as an evaporator during heating operation, functions as a condenser during cooling operation, and performs heat exchange between air and refrigerant supplied from a blower such as a fan (not shown). is there.
  • the accumulator 19 is provided on the suction side of the compressor 10, and surplus refrigerant due to the difference between the heating only operation mode and the cooling only operation mode, transitional operation changes (for example, the number of indoor units 2 operated) The surplus refrigerant with respect to (change) is stored.
  • the outdoor unit 1 is provided with a pressure sensor 33 as pressure detecting means, and detects the pressure of the high-temperature and high-pressure refrigerant compressed and discharged by the compressor 10.
  • the indoor unit 2 is equipped with a use-side heat exchanger 26 and an expansion device 25, respectively.
  • the usage-side heat exchanger 26 is connected to the outdoor unit 1 via the main pipe 4, the branch device 16, and the branch pipe 5, so that the refrigerant flows in and out.
  • the use-side heat exchanger 26 performs, for example, heat exchange between air supplied from a blower such as a fan (not shown) and a refrigerant and supplies heating air or cooling air to be supplied to the indoor space 7. Is to be generated.
  • the expansion device 25 has a function as a pressure reducing valve or an expansion valve, and decompresses the refrigerant to expand it.
  • the expansion device 25 is provided upstream of the use side heat exchanger 26 in the refrigerant flow in the cooling only operation mode. Therefore, the expansion device 25 is preferably constituted by a device whose opening degree can be variably controlled, for example, an electronic expansion valve.
  • the indoor unit 2 is provided with a first temperature sensor 31 and a second temperature sensor 32 as temperature detection means, and the temperature of the refrigerant flowing into the use side heat exchanger 26 or the use side heat exchanger.
  • the first temperature sensor 31 is provided in a pipe between the expansion device 25 and the use side heat exchanger 26, and the second temperature sensor 32 is on the paper surface. It is provided in the piping on the upper side of the use side heat exchanger 26, and may be composed of a thermistor or the like.
  • FIG. 2 shows an example in which four indoor units 2 are connected to the outdoor unit 1 via the main pipe 4, the branching device 16, and the branch pipe 5, and the indoor units 2a, Illustrated as an indoor unit 2b, an indoor unit 2c, and an indoor unit 2d.
  • the use side heat exchanger 26 also uses the use side heat exchanger 26a, the use side heat exchanger 26b, the use side heat exchanger 26c, and the use side heat exchanger from the lower side of the drawing.
  • the diaphragm device 25 is also the diaphragm device 25a
  • the diaphragm device 25b, the diaphragm device 25c, the diaphragm device 25d, and the first temperature sensor 31 are also the first temperature sensor 31a, the first temperature sensor 31b, and the first temperature sensor from the lower side of the drawing.
  • 31c, the first temperature sensor 31d, and the second temperature sensor 32 are also illustrated as a second temperature sensor 32a, a second temperature sensor 32b, a second temperature sensor 32c, and a second temperature sensor 32d.
  • four indoor units 2 are connected, but the number of connected units is not limited to four.
  • FIG. 3 is a diagram illustrating an example of a configuration relationship between the shut-off devices 37, 38, 42, and 43, the concentration detection device 39, and the shut-off valve control device 40.
  • the concentration detection device 39 is provided in the non-air-conditioned space 8 and detects the refrigerant concentration in the non-air-conditioned space 8 as, for example, an electric resistance value.
  • the concentration detection device 39 is installed in the vicinity of the branch device 16 connected to the indoor unit 2 a in the non-air-conditioned space 8, but the installation position is not limited to this, for example, in the vicinity of each branch device 16. May be installed.
  • the first shut-off device 42 is the main pipe 4 through which liquid refrigerant (liquid refrigerant) flows
  • the second shut-off device 43 is the main pipe 4 through which gaseous refrigerant (gas refrigerant) flows
  • the third shut-off device 37 is the branch pipe 5 on the liquid refrigerant side.
  • the fourth blocking device 38 is installed in each branch pipe 5 on the gas refrigerant side.
  • Each shut-off device has a shut-off valve, and based on an instruction (signal) from the shut-off valve control device 40, the shut-off valve closes the refrigerant flow path to shut off the refrigerant flow.
  • the non-energized state is a closed state.
  • FIG. 2 shows an example in which four indoor units 2 are connected to the outdoor unit 1 via the main pipe 4, the branch device 16, and the branch pipe 5.
  • the third blocking device 37a, the third blocking device 37b, the third blocking device 37c, the third blocking device 37d, and the fourth blocking device 38 from the lower side of the page are the fourth blocking device 38a and the fourth blocking device 38b from the lower side of the page.
  • a fourth shut-off device 38c and a fourth shut-off device 38d are shown. Specific detection means, opening / closing means, and installation position will be described later.
  • FIG. 2 it becomes the structure which installs the 3rd shut-off device 37 and the 4th shut-off device 38 according to the number of connected indoor units 2, and is not limited to four each.
  • the concentration calculation device 41 is a device for calculating the concentration based on the data (electric resistance value) relating to the concentration obtained by the detection of the concentration detection device 39. Specific processing of the apparatus will be described later. For example, data related to a calibration curve shown in FIG. By calculating by the concentration calculation device 41 and calculating the concentration, it is possible to individually give an instruction to open and close each shut-off device, such as closing the shut-off device related to the pipe into which the refrigerant flows into the branch device 16.
  • control unit is configured by a microcomputer or the like, and based on detection information from various detection means and instructions from a remote controller, the driving frequency of the compressor 10 and the rotational speed of the blower ( (Including ON / OFF), switching of the refrigerant flow switching device 11, opening of the expansion device 25 and the like are controlled, and each operation mode to be described later is executed.
  • the control device may calculate the density as the above-described density calculation device 41.
  • you may make it control the opening / closing of the 1st cutoff device 42, the 2nd cutoff device 43, the 3rd cutoff device 37, and the 4th cutoff device 38 as the cutoff valve control apparatus 40.
  • the control device may be provided for each unit or may be provided in the outdoor unit 1 or the indoor unit 2.
  • the air conditioner 100 can only perform a cooling operation or only a heating operation based on an instruction from each indoor unit 2. For this reason, the air conditioning apparatus 100 performs the same operation with all of the indoor units 2 that are driven.
  • the operation mode executed by the air conditioner 100 includes a cooling only operation mode in which all the driven indoor units 2 execute a cooling operation, and a heating only operation in which all the driven indoor units 2 execute a heating operation. There is a mode. Below, each operation mode is demonstrated with the flow of a refrigerant
  • FIG. 4 is a refrigerant circuit diagram illustrating a refrigerant flow when the air-conditioning apparatus 100 is in the cooling only operation mode.
  • the cooling only operation mode will be described by taking as an example a case where a cooling load is generated in the use side heat exchanger 26a and the use side heat exchanger 26b.
  • the flow direction of the refrigerant is indicated by solid line arrows.
  • the low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12 via the refrigerant flow switching device 11. And it becomes a high-pressure liquid refrigerant, radiating heat to outdoor air with the heat source side heat exchanger 12.
  • the high-pressure refrigerant that has flowed out of the heat source side heat exchanger 12 flows out of the outdoor unit 1, passes through the main pipe 4, and is branched through the first shut-off device 42 and the branching device 16.
  • the gas refrigerant flowing out from the use side heat exchanger 26a and the use side heat exchanger 26b passes through the branch pipe 5, the fourth shut-off device 38a, the fourth shut-off device 38b, the branching device 16, the second shut-off device 43, and the main pipe 4. It passes through the outdoor unit 1 again.
  • the refrigerant flowing into the outdoor unit 1 passes through the first refrigerant flow switching device 11 and the accumulator 19 and is again sucked into the compressor 10.
  • the opening degree of the expansion device 25a is such that the superheat (superheat degree) obtained as the difference between the temperature detected by the first temperature sensor 31a and the temperature detected by the second temperature sensor 32b is constant. Be controlled.
  • the opening degree of the expansion device 25b is controlled so that the superheat obtained as the difference between the temperature detected by the first temperature sensor 31b and the temperature detected by the second temperature sensor 32b becomes constant.
  • the expansion device 25c or the expansion device 25d may be opened to circulate the refrigerant.
  • the opening degree of the expansion device 25c or the expansion device 25d is the same as that of the expansion device 25a or the expansion device 25b described above, with the temperatures detected by the first temperature sensors 31c and 31d and the second temperature sensors 32c and 32d. The opening degree is controlled so that the superheat (superheat degree) obtained as the difference becomes constant.
  • FIG. 5 is a refrigerant circuit diagram illustrating a refrigerant flow when the air-conditioning apparatus 100 is in the heating only operation mode.
  • the heating only operation mode will be described by taking as an example a case where a thermal load is generated only in the use side heat exchanger 26a and the use side heat exchanger 26b.
  • the flow direction of the refrigerant is indicated by solid line arrows.
  • the low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 passes through the refrigerant flow switching device 11 and flows out of the outdoor unit 1.
  • the high-temperature and high-pressure gas refrigerant that has flowed out of the outdoor unit 1 passes through the main pipe 4 and is branched through the second blocking device 43 and the branching device 16.
  • the indoor space 7 is heated by radiating heat to the indoor air with the use side heat exchanger 26a and the use side heat exchanger 26b. However, it becomes a liquid refrigerant.
  • the liquid refrigerant flowing out from the use side heat exchanger 26a and the use side heat exchanger 26b is expanded by the expansion device 25a and the expansion device 25b to become a low-temperature / low-pressure two-phase refrigerant. It flows into the outdoor unit 1 again through the blocking device 37a, the third blocking device 37b, the branching device 16, the first blocking device 42, and the main pipe 4.
  • the low-temperature / low-pressure two-phase refrigerant flowing into the outdoor unit 1 absorbs heat from the outdoor air in the heat source side heat exchanger 12 and becomes a low-temperature / low-pressure gas refrigerant, and is compressed via the refrigerant flow switching device 11 and the accumulator 19. Inhaled again into machine 10.
  • the expansion device 25a has a constant subcool (degree of subcooling) obtained as a difference between a value obtained by converting the pressure detected by the pressure sensor 33 into a saturation temperature and a temperature detected by the first temperature sensor 31a.
  • the opening degree is controlled so that
  • the subcool (degree of subcooling) obtained as a difference between a value obtained by converting the pressure detected by the pressure sensor 33 into a saturation temperature and the temperature detected by the first temperature sensor 31b is constant. The opening degree is controlled so that
  • the use side heat exchanger 26c and the use side heat exchanger 26d that do not have a thermal load there is no need to flow the refrigerant, and the corresponding expansion devices 25c and 25d are closed. Then, when a thermal load is generated from the use side heat exchanger 26c or the use side heat exchanger 26d, the expansion device 25c or the expansion device 25d may be opened to circulate the refrigerant.
  • the opening degree of the expansion device 25c or the expansion device 25d is the same as the expansion device 25a or the expansion device 25b described above, the value obtained by converting the pressure detected by the pressure sensor 33 into the saturation temperature, the first temperature sensor 31c, The opening degree is controlled so that the subcool (degree of supercooling) obtained as the difference from the temperature detected at 31d becomes constant.
  • the concentration detection device 39 is connected via a shut-off valve control device 40 as shown in FIGS.
  • the shut-off valve control device 40 has a structure in which the switch is turned ON / OFF by a signal from the concentration detection device 39.
  • the concentration detecting device 39 outputs a voltage of DC5V as a signal, and does not output a voltage when the detected concentration is lower than the predetermined concentration.
  • voltage is used as a signal, but current or other output may be used as a signal.
  • the output voltage is not particularly limited to 5V, and may be 12V, 24V, or the like.
  • the predetermined concentration is the leakage limit concentration of the refrigerant used in the refrigerant circuit.
  • a flammable refrigerant HFO1234yf, R32, HC, etc.
  • the predetermined concentration when carbon dioxide is used as the refrigerant is set to about 1/10 of the leakage limit concentration.
  • the switch of the shut-off valve controller 40 When the concentration detector 39 detects a predetermined concentration and outputs a voltage of 5 V as a signal, the switch of the shut-off valve controller 40 is turned off. As described above, the first shut-off device 42, the second shut-off device 43, the third shut-off device 37, and the fourth shut-off device 38 close the shut-off valve in the non-energized state and open the energized state. Therefore, when the switch of the shut-off valve control device 40 is turned off, power is not supplied to the first shut-off device 42, the second shut-off device 43, the third shut-off device 37, and the fourth shut-off device 38, so that the shut-off valve of each shut-off device is closed. It will be.
  • the coils for opening and closing the valve bodies of the first shut-off device 42, the second shut-off device 43, the third shut-off device 37, and the fourth shut-off device 38 are configured to be excited by a DC voltage.
  • the shut-off device used in this embodiment has a specification that operates at 12V.
  • the operating voltage is not particularly limited to 12V, and may be 24V or the like.
  • the shut-off valve control device 40 includes a converter that can convert, for example, a commercial power supply (AC, AC 200 V in the present embodiment) into a predetermined DC voltage (DC 12 V in the present embodiment).
  • the shut-off valve control device 40 may generate sparks and ignite flammable gas due to mechanical electrical contact in the electromagnet relay. is there. Therefore, by using an SRR (solid state relay) using a semiconductor element, there is no mechanical electrical ON / OFF, so there is no possibility of generating a spark, and the flammable refrigerant is not contained in the non-air-conditioned space 8. Even if it leaks, the power can be turned on and off safely.
  • SRR solid state relay
  • FIG. 6 is a diagram illustrating the relationship between the refrigerant concentration and the resistance value of the concentration detector 39.
  • the detection unit for detecting the concentration is formed of a semiconductor, and the leakage concentration is calculated from the resistance change of the detection unit.
  • the semiconductor of the detection unit is made of tin oxide (SnO 2 ).
  • FIG. 6 shows that the resistance value of the semiconductor gradually decreases as the refrigerant concentration increases. For this reason, the density
  • FIG. As shown in FIG.
  • the main refrigerants R410A, R407C, R32, and HFO1234yf are related to the relationship between resistance and refrigerant concentration. There is almost the same tendency. For this reason, for example, for the main refrigerant, the refrigerant concentration can be detected using the same calibration curve data. Since a plurality of refrigerant concentrations can be detected using the same detection unit, the concentration detection device 39 can be standardized, and the cost of the concentration detection device 39 can be reduced. Finally, the cost of the air conditioner can be reduced. Further improvement of the detection accuracy of the concentration detector 39 can be handled by creating data relating to the calibration curve for each refrigerant as shown in FIG. In the present embodiment, at least the detection unit of the concentration detection device 39 using this principle is installed in the non-air-conditioned space 8.
  • SnO 2 tin oxide
  • each shutoff device Since the first shut-off device 42 and the second shut-off device 43 are installed in the main pipe 4, it is necessary to increase the valve diameter in the shut-off device (the CV value needs to be increased). Furthermore, the 3rd cutoff device 37 and the 4th cutoff device 38 are installed in the branch pipe 5 side of each branching device 16, and when the capacity
  • capacitance of one indoor unit 2 for example, 4HP (horsepower) or more
  • the first shut-off device 42, the second shut-off device 43, the third shut-off device 37, and the fourth shut-off device 38 are directly operated and shut off according to the CV value. make sure to use the shutoff device properly. And the rubber
  • the metal seal is excellent in durability, but the shut-off device is not a valve that is frequently opened and closed like a normal valve, but is a valve for shutting off immediately in an emergency. For this reason, since it is necessary to make a valve body and the material which seals it easy to adapt, rubber
  • the CV value may be small.
  • CV about 0.7 (0.3 or more)
  • a small and inexpensive direct acting type first cutoff device 42 can be used.
  • CV about 0.7 (0.05 or more)
  • a three-blocking device 37 can be used.
  • the second shutoff device 43 is installed on the gas refrigerant side, the CV value needs to be larger than that on the liquid refrigerant side.
  • the minimum operating pressure difference between the first shut-off device 42, the second shut-off device 43, the third shut-off device 37, and the fourth shut-off device 38 is a sufficiently small value of about 0 [kPa] so that the shut-off can be quickly performed in an emergency. There must be.
  • a limit concentration that is the maximum concentration of the amount of refrigerant that can be safely used is defined for each type of refrigerant.
  • the limit concentrations are, for example, 0.44 [kg / m 3 ] for R410A, 0.061 [kg / m 3 ] for R32, 0.0578 [kg / m 3 ] for HFO1234yf, and 0.008 [kg / m3] for propane. m 3 ] and the like.
  • shut-off valve in the shut-off device installed in the refrigerant pipe to prevent the refrigerant leak from expanding. At this time, it is not enough to shut off the refrigerant after reaching the limit concentration, and therefore the shutoff valve is closed when the refrigerant concentration in the space reaches 95% of the limit concentration. Therefore, after the shut-off valve is closed, the amount that may further leak until the refrigerant reaches the limit concentration is 5%.
  • the location where the indoor unit of a building multi-air conditioner is expected to be installed is the smallest room, and the indoor load per air-conditioning area is 0.15 [kW / m 2 ]
  • an indoor unit having a capacity of 1.5 [kW] is installed, a value obtained by dividing the capacity of the indoor unit by 1.5 [kW] by an indoor load of 0.15 [kW / m 2 ] per air-conditioning area,
  • the room area is 10.0 [m 2 ]. Further, multiply the room area 10.0 [m 2 ] by the room height 2.5 [m] to make the room volume 25 [m 3 ].
  • the space is closed with the window closed without being aware of refrigerant leakage such as when sleeping.
  • FIG. 7 is a diagram showing the relationship between the refrigerant amount and the risk of ignition.
  • the refrigerant amount and the ignition risk were in the relationship shown in FIG.
  • the horizontal axis represents the refrigerant amount
  • the vertical axis represents the risk.
  • the risk represents the probability of ignition, and is generally said to be a risk that is accepted by society if it is less than 1.0 ⁇ 10 ⁇ 7 (the risk of death in a traffic accident is It is said to be about 1.0 ⁇ 10 ⁇ 5 ).
  • the amount of refrigerant When aiming at a risk of less than 1.0 ⁇ 10 ⁇ 9, which is a region where there is almost no ignition, the amount of refrigerant must be less than 26 kg, as shown in FIG. Furthermore, considering the possibility of being overfilled by about 20% of the target filling amount at the site, the filling target refrigerant amount is about 20 [kg] when the indoor space capacity is 25 [m 3 ]. Clearly, for example, the upper limit value of the refrigerant filling amount in a directly expanded air conditioner for business use is a space per unit volume, which is a value obtained by dividing 20 [kg] by 25 [m 3 ], 0.800 [ kg / m 3 ].
  • FIG. 7 represents the risk when the refrigerant is R32.
  • the limit filling refrigerant amount when the refrigerant is HFO1234yf has a ratio of 0.948 between the limit concentration 0.0578 [kg / m 3 ] of HFO1234yf and the limit concentration 0.061 [kg / m 3 ] of R32, and the limit of R32
  • the limit charge refrigerant amount of HFO1234yf is about 0.759 [kg / m 3 ].
  • the composition ratio of R32 and HFO1234yf is 44% for R32 and 56% for HFO1234yf.
  • the sum of the limit concentrations corresponding to the respective composition ratios is 0.0592 [kg / m 3 ].
  • the ratio 0.971 between the sum of the limit concentrations 0.0592 [kg / m 3 ] and the limit concentration R61 of R32 of 0.061 [kg / m 3 ] is calculated as R32 limit charge refrigerant amount 0.800 [kg / m 3]. ].
  • the limit filling refrigerant amount of the R32 / HFO mixed refrigerant becomes about 0.777 [kg / m 3 ].
  • R32 is 73% and HFO1234yf is 27%.
  • the sum of the limit concentrations corresponding to the respective composition ratios is 0.0602 [kg / m 3 ].
  • the ratio 0.987 of the sum of the limit concentrations of 0.0602 [kg / m 3 ] and the limit concentration of R32 of 0.061 [kg / m 3 ] is set to a limit charge refrigerant amount of R32 of 0.800 [kg / m 3].
  • the limit filling refrigerant amount of the R32 / HFO mixed system is about 0.790 [kg / m 3 ]. This is approximately equal to the limit filling refrigerant amount of about 0.759 [kg / m 3 ] of HFO1234yf and the limit filling refrigerant amount of R32 of 0.800 [kg / m 3 ].
  • the limit concentration of propane is as low as 0.008 [kg / m 3 ].
  • the ratio 0.131 of the limit concentration of R32 to 0.061 [kg / m 3 ] is multiplied by the limit charge refrigerant amount 0.800 [kg / m 3 ] of R32, about 0.105 [kg / m 3 ] is obtained.
  • the degree is the limit filling refrigerant amount.
  • the value obtained by dividing the total amount of refrigerant inside the indoor unit 2 and the amount of refrigerant inside the branch pipe 5 that is a pipe connecting the indoor unit 2 and the branching device 16 by the volume of the indoor space 7 is the limit.
  • the third blocking device 37 and the fourth blocking device 38 are installed in the vicinity of the branching device 16. Then, the refrigerant is prevented from leaking from the branch pipe 5 to the non-air-conditioned space 8 and diffusing into the indoor space 7.
  • the value obtained by dividing the total amount of the refrigerant inside the main pipe 4 that is a pipe connecting the outdoor unit 1 and the branching device 16 and the amount of refrigerant inside the outdoor unit 1 by the volume of the indoor space 7 is the limit.
  • the first shut-off device 42 and the second shut-off device 43 are installed in the vicinity of the branch device 16, and the main unit 4 that is a pipe connected to the outdoor unit 1 and the outdoor unit 1 is changed from the main pipe 4 to the non-air-conditioned space 8. It is necessary to prevent the refrigerant from leaking and diffusing into the indoor space 7 beforehand.
  • the allowable refrigerant leakage amount is obtained by multiplying the limit concentration of each refrigerant by the indoor space volume 25 [m 3 ].
  • R32 is 20.0 [kg] or less
  • HFO1234yf is about 18.98 [kg] or less.
  • the composition ratio of R32 / HFO1234yf is 44% / HFO1234yf is 56%, it is about 19.43 [kg] or less.
  • the composition ratio of R32 / HFO1234yf is 73% for R32 / 27% for HFO1234yf, it is about 19.75 [kg] or less, and propane is about 2.63 [kg] or less.
  • the assumed minimum indoor space volume is 25 [m 3 ], but is not limited thereto.
  • a smaller space such as a server room or a machine room in which the indoor unit 2 is installed is regarded as the indoor space 7, and even if the space volume is 25 [m 3 ] or less, the limit filling refrigerant amount [kg / m 3 ] is reduced. Applicable. Even in a space where the indoor unit 2 is smaller than the assumed minimum indoor space volume of 25 [m 3 ], the concentration detection device 39 and each shut-off device are installed behind the ceiling. Therefore, safety can be secured.
  • the outdoor unit capacity is 8.0 kg up to 5-8 HP, 10.5 kg up to 9-14 HP, 11.5 kg up to 15-18 HP, 13.0 kg up to 19-20 HP, 21 to 28 HP is 18.0 kg, 29 HP or more is 20.0 kg or more.
  • the refrigerant quantity of the indoor unit 2 is 3.0 kg for 10 HP or less, 5.0 kg for 10 to 25 HP, 9.0 kg for 25 to 35 HP, and 14.0 kg for 36 HP or more.
  • the allowable refrigerant leakage amount when the refrigerant leaks into the non-air-conditioned space 8 and diffuses into the indoor space 7 due to a brazing failure in the branch device 16 will be described.
  • the refrigerant amount of the outdoor unit 1 corresponding to the capacity of the outdoor unit 1 is M1 [kg]
  • the refrigerant amount of the indoor unit corresponding to the total capacity of the indoor unit 2 is M2 [kg]
  • the number of indoor units 2 (number of branches) is Let n.
  • the diameter of the liquid-side main pipe 4 is D1 [m]
  • the diameter of the liquid-side branch pipe 5 is D2 [m]
  • the length of the main pipe 4 is L1 [ m]
  • the average length of the branch pipe 5 is L2 [m].
  • the volume of the indoor space 7 is V1 [m 3 ], the refrigerant liquid density ⁇ 981 [kg / m 3 ] (for example, the liquid density when the outside air average temperature of the R32 refrigerant is 20 ° C., and the refrigerant used (Depending on the equation), the equations (1-1) to (1-3) can be obtained (the units are all [kg]). And if it is going to comprise the air conditioning apparatus which satisfy
  • L2 on the left side of Expression (1-2) is calculated so as to satisfy the right side of Expression (1-2), L2 ⁇ 31.0 [m].
  • the total refrigerant amount of the branch pipe 5 and the indoor unit 2 is calculated using the L2, it is about 19.99 [kg] ⁇ 20.0 [kg] from the left side of the equation (1-2).
  • the total refrigerant amount of the main pipe 4 and the outdoor unit 1 is about 26.35 [kg]> 20.0 [kg] from the left side of the equation (1-1).
  • the total amount of refrigerant in the air conditioner is 46.34 [kg]> 20.0 [kg] based on the sum of the left side of the expression (1-3). Since the total refrigerant amount of the main pipe 4 and the outdoor unit 1 is about 26.35 [kg]> 20.0 [kg] from the left side of the formula (1-1), the shut-off device is on the outdoor unit 1 and main pipe 4 side.
  • the 1st cutoff device 42 and the 2nd cutoff device 43 are needed.
  • V1 25.0 [m 3 ]
  • L1 on the left side of the expression (1-1) is calculated so as to satisfy the right side of the expression (1-1)
  • the total refrigerant amount of the main pipe 4 and the outdoor unit 1 is calculated using L1, approximately 19.97 [kg] ⁇ 20.0 [kg] is obtained from the left side of the equation (1-1). Further, the total refrigerant amount of the branch pipe 5 and the indoor unit 2 is 21.93 [kg]> 20.0 [kg] from the left side of the equation (1-2).
  • the total refrigerant amount of the air conditioner is 41.9 [kg]> 20.0 [kg] from the sum of the left side of the expression (1-3). Since the total refrigerant amount of the branch pipe 5 and the indoor unit 2 is 21.93 [kg]> 20.0 [kg] from the left side of the formula (1-2), the third cutoff device 37 and the fourth Installation of the shut-off device 38 is required.
  • the total refrigerant amount of the main pipe 4 and the outdoor unit 1 is about 18.93 [kg] ⁇ 20.0 [kg] from the left side of the formula (1-1), and the total refrigerant amount of the branch pipe 4 and the indoor unit 2 is expressed by the formula ( From the left side of 1-2), approximately 12.3 [kg] ⁇ 20.0 [kg]. Since the total refrigerant amount of the air conditioner is 31.23 [kg]> 20.0 [kg] from the total of the left side of the expression (1-3), the first shut-off device 42 and the second shut-off device 43, or It is necessary to install either the third blocking device 37 or the fourth blocking device 38.
  • a shut-off device (not shown, for example, a fifth shut-off device or a sixth shut-off device) is installed at a position close to the indoor unit 2, M2 in Expression (1-2) Is 0 [kg], and the amount of refrigerant in the branch pipe 5 may be calculated.
  • the constant 0.8 from the right side of Expression (1-1) to the right side of (1-3) is the limit charging refrigerant amount.
  • R32 is 0.800 [kg / m 3 ] and HFO1234yf is about 0.759 [kg / m 3 ].
  • the composition ratio of R32 / HFO1234yf is about 0.777 [kg / m 3 ] when R32 is 44% / HFO1234yf is 56%. Furthermore, when R32 is 73% / HFO1234yf is 27%, it is about 0.790 [kg / m 3 ]. Propane is about 0.105 [kg / m 3 ].
  • the installation length of the first shut-off device 42 and the second shut-off device 43 (distance between the shut-off device and the branch device 16 inlet) is L3 [m]
  • the installation length of the third shut-off device 37 and the fourth shut-off device 38 (cut-off) If the distance between the device and the branching device 16 inlet) is L4 [m], the equations (2-1) to (2-3) can be obtained (the units are all [kg]).
  • the first shut-off device 42 and the second shut-off device 43 are installed within L3 [m] that satisfies Expression (2-1).
  • Expression (2-1) ⁇ (D1 / 2) 2 ⁇ ⁇ ⁇ ⁇ ⁇ L3 ⁇ + ⁇ M2 + (D2 / 2) 2 ⁇ n ⁇ ⁇ ⁇ ⁇ ⁇ L2 ⁇ ⁇ 0.8 ⁇ V1 (2-1)
  • the limit refrigerant charge amount is 20.0 [kg] from the right side of the formula (2-1), and the formula (2 When L3 on the left side of the equation (2-1) is calculated so as to satisfy -1), L3 ⁇ about 3.3 [m].
  • the 1st shut-off device 42 and the 2nd shut-off device 43 and the 2nd shut-off device 43 are made so that distance L3 to the 2nd shut-off device 43 and branch device 16 entrance may be less than about 3.3 [m]. It is necessary to install.
  • the third shut-off device 37 and the fourth shut-off device 38 are installed within L4 [m] that satisfies Expression (2-2).
  • the limit refrigerant charging amount is 20.0 [kg].
  • the 3rd shut-off device 37 and the 4th shut-off device 37 and the 4th shut-off device 38 are installed so that distance L4 to the 3rd shut-off device 37 and the 4th shut-off device 38 and branch device 16 entrance may be less than 0.6 [m]. There is a need to.
  • the first shut-off device 42, the second shut-off device 43, the third shut-off device 37, and the fourth shut-off device 38 are to be installed, the first shut-off device 42, the third shut-off device 37 and the fourth shut-off device 38 are The 1 cutoff device 42 and the 2nd cutoff device 43 are installed, and the 3rd cutoff device 37 and the 4th cutoff device 38 are installed within L4 [m].
  • the limit refrigerant charging amount is 20.0 [kg].
  • the refrigerant amount in the indoor unit 2 and the branch pipe 5 is approximately 29.18 [kg]> 20.0 [kg]. .
  • the refrigerant amount in the outdoor unit 1 and the main pipe 4 is 26.35 [kg]> 20.0 [kg].
  • the main pipe 4 requires the first shut-off device 42 and the second shut-off device 43, and the branch pipe 5 requires the third shut-off device 37 and the fourth shut-off device 38.
  • the first cutoff device 42 and the second cutoff device 43 are connected to the main pipe 4 with L3 ⁇ 70.0 [m], and the branch pipe 5 with L4 ⁇ 19.8 [m].
  • the third shut-off device 37 and the fourth shut-off device 38 are installed, the amount of refrigerant in the pipe to which each shut-off device is connected is approximately 19.97 [kg] ⁇ 20.0 [kg].
  • the first blocking device 42 and the second blocking device 43 are installed in the main pipe 4 with L3 ⁇ 70.0 [m]
  • the third blocking device 37 and the fourth blocking device 5 are installed in the branch pipe 5 with L4 ⁇ 19.8 [m].
  • a shut-off device 38 may be installed.
  • each shut-off device since each shut-off device is installed in the non-air-conditioned space 8, when the calculated distance L3 leaves the non-air-conditioned space 8 and becomes the outdoor space 6 side, the first shut-off device installed in the main pipe 4 42 and the second shutoff device 43 may be installed between the branch pipe 16 from the main pipe 4 immediately after entering the non-air-conditioned space 8 from the outdoor space 6.
  • a shut-off device (not shown, for example, a fifth shut-off device or a sixth shut-off device) is installed at a position close to the indoor unit 2, M2 in the equation (2-2) Is 0 [kg], and the distance L3 may be calculated.
  • the constant 0.8 from the right side of Expression (2-1) to the right side of (2-3) is the limit charging refrigerant amount.
  • R32 is 0.800 [kg / m 3 ] and HFO1234yf is about 0.759 [kg / m 3 ].
  • the composition ratio of R32 / HFO1234yf is about 0.777 [kg / m 3 ] when R32 is 44% / HFO1234yf is 56%. Furthermore, when R32 is 73% / HFO1234yf is 27%, it is about 0.790 [kg / m 3 ]. Propane is about 0.105 [kg / m 3 ].
  • the outdoor unit 1 By installing the first shut-off device 42, the second shut-off device 43, the third shut-off device 37, and the fourth shut-off device 38 at positions determined based on the above calculation, the outdoor unit 1, the main pipe 4, and the branch pipe 5.
  • the refrigerant leakage amount diffused into the indoor space 7 is set to be equal to or less than the limit value of the refrigerant leakage amount allowable to the indoor space 7 (below the limit refrigerant filling amount). Can be suppressed.
  • the refrigerant leakage from the refrigerant circuit is blocked based on the refrigerant concentration detected by the concentration detection device 39 in the non-air-conditioned space 8 such as the ceiling, for example.
  • the valve control device 40 determines that the refrigerant has leaked, the flow of the refrigerant is blocked by the first blocking device 42, the second blocking device 43, the third blocking device 37, and the fourth blocking device 38.
  • the safety can be greatly improved, and the environmental load can be reduced.
  • the piping for disposing the shut-off device is determined based on the refrigerant amount in the outdoor unit 1 and the main pipe 4, the refrigerant amount in the indoor unit 2 and the branch pipe 5, and the volume of the indoor space 7, the non-air-conditioned space 8 to the indoor space In consideration of the influence of the refrigerant leakage on 7, the interruption device can be arranged efficiently. Moreover, since the length from the branching device 16 to the main pipe 4 and the branch pipe 5 is determined based on the refrigerant amount, the volume of the indoor space 7 and the refrigerant filling amount limit value, the refrigerant from the non-air-conditioned space 8 to the indoor space 7 is determined.
  • the shut-off device can be arranged at a position that takes into account the effects of leakage.
  • FIG. FIG. 8 is a schematic diagram illustrating an installation example of the air-conditioning apparatus according to Embodiment 2 of the present invention. Based on FIG. 8, the installation example of the air conditioning apparatus in this Embodiment is demonstrated.
  • This air conditioner circulates refrigerant and performs air conditioning using a refrigeration cycle. And each indoor unit can select cooling or heating freely.
  • the same reference numerals as those in FIG. 1 and FIG. 2 perform the same operations as those described in the first embodiment.
  • the air conditioning apparatus includes one outdoor unit 1 that is a heat source unit and a plurality of indoor units 2 as shown in FIG. And the relay apparatus 3 (henceforth the relay apparatus 3) provided with the opening / closing devices 23 and 24 (refer FIG. 9) between the outdoor unit 1 and the indoor unit 2 is provided.
  • the relay device 3 supplies the gas refrigerant to the indoor unit 2 that performs heating, and controls the flow of the refrigerant for supplying the liquid refrigerant to the indoor unit 2 that performs cooling.
  • the first blocking device 42, the second blocking device 43, the third blocking device 37, and the fourth blocking device 38 described in the first embodiment are provided in the vicinity of the relay device 3. .
  • the outdoor unit 1 and the relay device 3 are connected by using two main pipes 4, and the relay device 3 and each indoor unit 2 are connected by using two branch pipes 5. It has become easy.
  • the relay device 3 is installed in the non-air-conditioned space 8 similarly to the branch device 16 of the first embodiment, but it can also be installed in a common space with an elevator, for example.
  • FIG. 9 is a diagram illustrating an example of the configuration of the air-conditioning apparatus 200 according to Embodiment 2. Based on FIG. 9, the detailed structure of the air conditioning apparatus 200 is demonstrated. As shown in FIG. 9, the outdoor unit 1 and the relay device 3 are connected by a main pipe 4. Further, the relay device 3 and each indoor unit 2 are connected by a branch pipe 5.
  • the outdoor unit 1 includes a compressor 10, a refrigerant flow switching device 11 such as a four-way valve, a heat source side heat exchanger 12, and an accumulator 19. Moreover, the 1st connection piping 4a, the 2nd connection piping 4b, the 1st check valve 13a, the 1st check valve 13b, the 1st check valve 13c, and the 1st check valve 13d are provided.
  • the indoor unit 2 By providing the first connection pipe 4a, the second connection pipe 4b, the first check valve 13a, the first check valve 13b, the first check valve 13c, and the first check valve 13d, the indoor unit 2 Regardless of the requested operation, the flow of the refrigerant flowing into the relay device 3 can be in a certain direction.
  • each indoor unit 2 in the present embodiment is the same as that of the indoor unit 2 described in the first embodiment.
  • the diaphragm device 25 described in the first embodiment will be described as the first diaphragm device 25.
  • the relay device 3 includes a gas-liquid separator 14, a second throttling device 15, a third throttling device 27, four first opening / closing devices 23 (23a to 23d), four second opening / closing devices 24 (24a to 24d), 4 Two second check valves 21 (21a to 21d) and four third check valves 22 (22a to 22d) are provided.
  • the gas-liquid separator 14 is installed at the entrance of the relay device 3 via the first shut-off device 42.
  • the high-pressure two-phase refrigerant generated in the outdoor unit 1 is separated into liquid refrigerant and gas refrigerant.
  • the liquid refrigerant flows through the lower piping on the paper surface of FIG. 9 and supplies cold heat to the indoor unit 2.
  • the gas refrigerant flows through the upper pipe in FIG. 9 and supplies warm heat to the indoor unit 2.
  • the second throttling device 15 has a function as a pressure reducing valve or an on-off valve, and adjusts the liquid refrigerant to a predetermined pressure by reducing the pressure or opens and closes the flow path of the liquid refrigerant.
  • the second expansion device 15 is provided in a pipe below the gas-liquid separator 14 on the paper surface of FIG. 9 into which the liquid refrigerant flows.
  • the second expansion device 15 may be configured by a device whose opening degree can be variably controlled, for example, an electronic expansion valve.
  • the third expansion device 27 has a function as a pressure reducing valve or an on-off valve, and opens and closes the refrigerant flow path to bypass the refrigerant in the heating only operation mode described later. In the heating-main operation mode described later, the bypass liquid flow rate is adjusted according to the indoor load.
  • the third expansion device 27 is installed between the low pressure pipe that conducts to the outlet side of the relay device 3 and the high pressure pipe that conducts to the outlet side of the second expansion device 15.
  • the third throttling device 27 may also be configured with a device whose opening degree can be variably controlled, such as an electronic expansion valve.
  • the four first opening / closing devices 23 are composed of, for example, solenoid valves, and open and close the flow path of the high-temperature and high-pressure gas refrigerant supplied to the indoor unit 2. To do.
  • the first opening / closing device 23 is provided in a number (four in this case) corresponding to the number of indoor units 2 installed.
  • the first opening / closing device 23 is connected to a gas pipe connected to the gas-liquid separator 14.
  • the first opening / closing device 23a, the first opening / closing device 23b, the first opening / closing device 23c, and the first opening / closing device 23d are illustrated from the lower side of the drawing.
  • the four second opening / closing devices 24 are composed of, for example, solenoid valves, and open / close the flow path of the low-pressure / low-temperature gas refrigerant flowing out from the indoor unit 2. Is.
  • the second opening / closing device 24 is provided in a number (four here) according to the number of indoor units 2 installed.
  • the second opening / closing device 24 is connected to a low-pressure pipe that conducts to the outlet side of the relay device 3.
  • the second opening / closing device 24a, the second opening / closing device 24b, the second opening / closing device 24c, and the second opening / closing device 24d are illustrated from the lower side of the drawing.
  • the four second check valves 21 are valves for allowing the high-pressure liquid refrigerant for cooling to flow into the indoor unit 2 that performs cooling.
  • the number (four here) corresponding to the number of indoor units 2 installed is provided.
  • the second check valve 21 is connected to a pipe on the refrigerant outlet side of the second expansion device 15.
  • the second check valve 21a, the second check valve 21b, the second check valve 21c, and the second check valve 21d are illustrated from the lower side of the drawing.
  • the four third check valves 22 are valves for preventing a back flow by flowing a refrigerant from the indoor unit 2 side, for example.
  • the number (four here) corresponding to the number of indoor units 2 installed is provided.
  • the third check valve 22 is provided on the refrigerant flow path side located on the lower side on the paper surface in FIG. 9, and is connected to the refrigerant outlet side pipe of the second expansion device 15.
  • the third check valve 22a, the third check valve 22b, the third check valve 22c, and the third check valve 22d are illustrated from the lower side of the drawing.
  • the relay device 3 is provided with a first pressure sensor 33 and a second pressure sensor 34 as pressure detection means.
  • the first pressure sensor 33 is provided on the inlet side of the second throttling device 15, and the second pressure sensor 34 is provided on the outlet side of the second throttling device 15.
  • the first pressure sensor 33 detects the pressure of the high-pressure refrigerant
  • the second pressure sensor 34 detects the intermediate pressure of the liquid refrigerant at the outlet of the second expansion device 15 in the cooling main operation mode.
  • the air conditioner 100 can perform a cooling operation or a heating operation in the indoor unit 2 based on an instruction from each indoor unit 2. For this reason, the air conditioning apparatus 200 can perform the same operation for all of the indoor units 2 and can perform different operations for each of the indoor units 2.
  • the operation mode executed by the air conditioner 200 includes a cooling only operation mode in which all the operating indoor units 2 execute the cooling operation, and a heating only operation in which all the driven indoor units 2 execute the heating operation.
  • FIG. 10 is a refrigerant circuit diagram illustrating a refrigerant flow when the air-conditioning apparatus 200 is in the cooling only operation mode.
  • the cooling only operation mode will be described by taking as an example a case where a cooling load is generated only in the use side heat exchanger 26a and the use side heat exchanger 26b.
  • the pipes represented by the thick lines indicate the pipes through which the refrigerant flows, and the flow direction of the refrigerant is indicated by the solid arrows.
  • the refrigerant flow switching device 11 is switched so that the heat source side refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12.
  • the low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12 via the refrigerant flow switching device 11. And it becomes a high pressure liquid refrigerant, radiating heat to outdoor air with the heat source side heat exchanger 12.
  • the high-pressure liquid refrigerant that has flowed out of the heat source side heat exchanger 12 flows out of the outdoor unit 1 through the check valve 13a, and flows into the relay device 3 through the main pipe 4 on the high-pressure refrigerant side.
  • the high-pressure liquid refrigerant that has flowed into the relay device 3 passes through the first shut-off device 42, the gas-liquid separator 14, the second throttling device 15, the second check valve 21, the third shut-off device 37, and the branch pipe 5. It is expanded by the first expansion device 25 and becomes a low-temperature, low-pressure two-phase refrigerant.
  • This two-phase refrigerant flows into each of the usage-side heat exchanger 26a and the usage-side heat exchanger 26b acting as an evaporator, and absorbs heat from the room air, thereby cooling the room air and reducing the temperature of the room. It becomes a gas refrigerant.
  • the gas refrigerant flowing out from the use side heat exchanger 26 a and the use side heat exchanger 26 b passes through the branch pipe 5, the fourth shut-off device 38, the second opening / closing device 24, and the second shut-off device 43, and the relay device 3. Spill from. Then, it flows into the outdoor unit 1 again through the main pipe 4 on the low-pressure refrigerant side.
  • the refrigerant that has flowed into the outdoor unit 1 passes through the check valve 13d, and is again sucked into the compressor 10 via the refrigerant flow switching device 11 and the accumulator 19.
  • the opening degree of the expansion device 25a is such that the superheat (superheat degree) obtained as the difference between the temperature detected by the first temperature sensor 31a and the temperature detected by the second temperature sensor 32b is constant. Be controlled.
  • the opening degree of the expansion device 25b is controlled so that the superheat obtained as the difference between the temperature detected by the first temperature sensor 31b and the temperature detected by the second temperature sensor 32b becomes constant.
  • the expansion device 25c or the expansion device 25d may be opened to circulate the refrigerant.
  • the opening degree of the expansion device 25c or the expansion device 25d is the same as that of the expansion device 25a or the expansion device 25b described above, with the temperatures detected by the first temperature sensors 31c and 31d and the second temperature sensors 32c and 32d. The opening degree is controlled so that the superheat (superheat degree) obtained as the difference becomes constant.
  • FIG. 11 is a refrigerant circuit diagram illustrating the refrigerant flow when the air-conditioning apparatus 200 is in the heating only operation mode.
  • the heating only operation mode will be described by taking as an example a case where a cooling load is generated only in the use side heat exchanger 26a and the use side heat exchanger 26b.
  • the pipes represented by bold lines indicate the pipes through which the refrigerant flows, and the refrigerant flow directions are indicated by solid arrows.
  • the refrigerant flow switching device 11 is connected to the relay device 3 without passing the heat source side refrigerant discharged from the compressor 10 through the heat source side heat exchanger 12. Switch to flow into.
  • the low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows out of the outdoor unit 1 through the refrigerant flow switching device 11 and the check valve 13b.
  • the high-temperature and high-pressure gas refrigerant that has flowed out of the outdoor unit 1 flows into the relay device 3 through the main pipe 4 on the high-pressure refrigerant side.
  • the high-temperature and high-pressure gas refrigerant flowing into the relay device 3 acts as a condenser after passing through the first shut-off device 42, the gas-liquid separator 14, the first switch device 23, the fourth shut-off device 38, and the branch pipe 5.
  • the refrigerant flows into each of the usage-side heat exchanger 26a and the usage-side heat exchanger 26b and dissipates heat to the indoor air, so that it becomes liquid refrigerant while heating the indoor space.
  • the liquid refrigerant flowing out from the use side heat exchanger 26a and the use side heat exchanger 26b is expanded by the first expansion device 25, and the branch pipe 5, the third shut-off device 37, the third check valve 22, the second It flows again into the outdoor unit 1 through the three throttle device 27, the second shut-off device 43, and the low-pressure refrigerant side main pipe 4.
  • the refrigerant flowing into the outdoor unit 1 passes through the check valve 13c and becomes a low-temperature / low-pressure gas refrigerant while absorbing heat from the outdoor air in the heat source side heat exchanger 12, and the refrigerant flow switching device 11 and the accumulator 19 are turned on. Then, it is sucked into the compressor 10 again.
  • the expansion device 25a has a subcool (degree of supercooling) obtained as a difference between a value obtained by converting the pressure detected by the first pressure sensor 33 into a saturation temperature and a temperature detected by the first temperature sensor 31a.
  • the opening degree is controlled to be constant.
  • the expansion device 25b has a subcool (degree of supercooling) obtained as a difference between a value obtained by converting the pressure detected by the first pressure sensor 33 into a saturation temperature and a temperature detected by the first temperature sensor 31b.
  • the opening degree is controlled to be constant.
  • the use side heat exchanger 26c and the use side heat exchanger 26d that do not have a thermal load there is no need to flow the refrigerant, and the corresponding expansion devices 25c and 25d are closed. Then, when a thermal load is generated from the use side heat exchanger 26c or the use side heat exchanger 26d, the expansion device 25c or the expansion device 25d may be opened to circulate the refrigerant.
  • the opening degree of the expansion device 25c or the expansion device 25d is the same as the expansion device 25a or the expansion device 25b described above, the value obtained by converting the pressure detected by the pressure sensor 33 into the saturation temperature, the first temperature sensor 31c, The opening degree is controlled so that the subcool (degree of supercooling) obtained as the difference from the temperature detected at 31d becomes constant.
  • FIG. 12 is a refrigerant circuit diagram illustrating a refrigerant flow when the air-conditioning apparatus 200 is in the cooling main operation mode.
  • the cooling main operation mode will be described by taking as an example a case where a cooling load is generated in the use side heat exchanger 26a and a heating load is generated in the use side heat exchanger 26b.
  • a pipe indicated by a thick line indicates a pipe through which the refrigerant circulates, and a flow direction of the refrigerant is indicated by a solid line arrow.
  • the first refrigerant flow switching device 11 is switched so that the heat source side refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12.
  • the low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12 via the refrigerant flow switching device 11. And it becomes a two-phase refrigerant
  • the refrigerant flowing out of the heat source side heat exchanger 12 flows into the relay device 3 through the check valve 13a and the main pipe 4 on the high pressure refrigerant side.
  • the two-phase refrigerant that has flowed into the relay device 3 is separated into a high-pressure gas refrigerant and a high-pressure liquid refrigerant by the gas-liquid separator 14.
  • the high-pressure gas refrigerant flows through the first opening / closing device 23b, the fourth shut-off device 38b, and the branch pipe 5, and then flows into the use-side heat exchanger 26b that acts as a condenser and dissipates heat to the indoor air. It becomes liquid refrigerant while heating the space.
  • the liquid refrigerant flowing out from the use side heat exchanger 26b is expanded by the first expansion device 25b and passes through the branch pipe 5, the third shut-off device 37b, and the third check valve 22b.
  • the liquid refrigerant that has passed through the third check valve 22b is separated by the gas-liquid separator 14 and then expanded to an intermediate pressure (for example, high pressure of about ⁇ 0.3 MPa) by the second expansion device. Merge with refrigerant.
  • the merged liquid refrigerant passes through the second check valve 21a, the third shut-off device 37a, and the branch pipe 5, and is then expanded by the first expansion device 25a to become a low-temperature / low-pressure two-phase refrigerant.
  • This two-phase refrigerant flows into the use-side heat exchanger 26a acting as an evaporator and absorbs heat from the room air, thereby becoming a low-temperature and low-pressure gas refrigerant while cooling the room air.
  • the gas refrigerant that has flowed out of the use-side heat exchanger 26a flows out of the relay device 3 via the branch pipe 5, the fourth blocking device 38a, the second opening / closing device 24a, and the second blocking device 43, and then the low-pressure refrigerant side main tube. 4 flows into the outdoor unit 1 again.
  • the refrigerant that has flowed into the outdoor unit 1 passes through the check valve 13d, and is again sucked into the compressor 10 via the refrigerant flow switching device 11 and the accumulator 19.
  • the first expansion device 25b obtains a subcool (supercooling degree) obtained as a difference between a value obtained by converting the pressure detected by the first pressure sensor 33 into a saturation temperature and a temperature detected by the first temperature sensor 31b. ) Is controlled to be constant.
  • the first expansion device 25a has an opening degree so that the superheat (superheat degree) obtained as a difference between the temperature detected by the first temperature sensor 31a and the temperature detected by the second temperature sensor 32b is constant. Is controlled.
  • the second expansion device 15 is configured so that the pressure difference between the pressure detected by the first pressure sensor 33 and the pressure detected by the second pressure sensor 34 becomes a predetermined pressure difference (for example, the first pressure sensor). 33-second pressure sensor 34 ⁇ 0.3 MPa, etc.), and the opening is controlled.
  • the expansion device 25c or the expansion device 25d may be opened to circulate the refrigerant.
  • FIG. 13 is a refrigerant circuit diagram illustrating a refrigerant flow when the air-conditioning apparatus 200 is in the heating main operation mode.
  • the heating main operation mode will be described by taking as an example a case where a cooling load is generated in the use side heat exchanger 26a and a heating load is generated in the use side heat exchanger 26b.
  • a pipe indicated by a bold line indicates a pipe through which the refrigerant circulates, and a flow direction of the refrigerant is indicated by a solid line arrow.
  • the refrigerant flow switching device 11 is connected to the relay device 3 without passing the heat source side refrigerant discharged from the compressor 10 through the heat source side heat exchanger 12. Switch to flow into.
  • the low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows out of the outdoor unit 1 through the refrigerant flow switching device 11 and the check valve 13b.
  • the high-temperature and high-pressure gas refrigerant that has flowed out of the outdoor unit 1 flows into the relay device 3 through the main pipe 4 on the high-pressure refrigerant side.
  • the high-temperature and high-pressure gas refrigerant flowing into the relay device 3 acts as a condenser after passing through the first shut-off device 42, the gas-liquid separator 14, the first switch device 23b, the fourth shut-off device 38b, and the branch pipe 5.
  • the refrigerant flows into the use side heat exchanger 26b and dissipates heat to the indoor air, thereby becoming a liquid refrigerant while heating the indoor space.
  • the liquid refrigerant that has flowed out of the use side heat exchanger 26b is expanded by the first expansion device 25b, passes through the branch pipe 5, the third shut-off device 37b, and the third check valve 22b, and passes through the second check valve. It branches to 21a and the 3rd expansion device 27 used as a bypass.
  • the liquid refrigerant that has flowed to the second check valve 21a passes through the third shut-off device 37a and the branch pipe 5, and is then expanded by the first expansion device 25a to become a low-temperature / low-pressure two-phase refrigerant.
  • This two-phase refrigerant flows into the use-side heat exchanger 26a acting as an evaporator and absorbs heat from the room air, thereby becoming a low-temperature and low-pressure gas refrigerant while cooling the room air.
  • the gas refrigerant that has flowed out of the use-side heat exchanger 26a passes through the branch pipe 5, the fourth blocking device 38a, and the second opening / closing device 24a, and then merges with the bypassed liquid refrigerant at the outlet of the third expansion device 27. It flows out from the relay device 3 via the 2 shut-off device 43 and flows into the outdoor unit 1 again through the low-pressure refrigerant side main pipe 4.
  • the refrigerant flowing into the outdoor unit 1 passes through the check valve 13c and becomes a low-temperature / low-pressure gas refrigerant while absorbing heat from the outdoor air in the heat source side heat exchanger 12, and the refrigerant flow switching device 11 and the accumulator 19 are turned on. Then, it is sucked into the compressor 10 again.
  • the first expansion device 25b obtains a subcool (supercooling degree) obtained as a difference between a value obtained by converting the pressure detected by the first pressure sensor 33 into a saturation temperature and a temperature detected by the first temperature sensor 31b. ) Is controlled to be constant.
  • the first expansion device 25a has an opening degree so that the superheat (superheat degree) obtained as a difference between the temperature detected by the first temperature sensor 31a and the temperature detected by the second temperature sensor 32b is constant. Is controlled.
  • the third expansion device 27 is arranged so that the pressure difference between the pressure detected by the first pressure sensor 33 and the pressure detected by the second pressure sensor 34 becomes a predetermined pressure difference (for example, the first pressure sensor). 33-second pressure sensor 34 ⁇ 0.3 MPa, etc.), and the opening is controlled.
  • the expansion device 25c or the expansion device 25d may be opened to circulate the refrigerant.
  • the outdoor unit capacity is 8.0 kg up to 5-8 HP, 10.5 kg up to 9-14 HP, 11.5 kg up to 15-18 HP, 13.0 kg up to 19-20 HP, 21 to 28 HP is 18.0 kg, 29 HP or more is 20.0 kg or more.
  • the refrigerant quantity of the indoor unit 2 is 3.0 kg for 10 HP or less, 5.0 kg for 10 to 25 HP, 9.0 kg for 25 to 35 HP, and 14.0 kg for 36 HP or more.
  • the outdoor unit capacity is 12 kg or less, 3.0 kg, 13 HP to 18 HP is 5.0 kg, 19 HP to 28 HP is 9.5 kg, and 29 HP or more is 13.0 kg.
  • the refrigerant amount of the outdoor unit 1 corresponding to the outdoor unit capacity is M1 [kg]
  • the refrigerant amount of the indoor unit 2 corresponding to the total capacity of the indoor unit 2 is M2 [kg]
  • the refrigerant of the relay device 3 corresponding to the outdoor unit capacity The amount is M3, and the number of indoor units (number of branches) is n.
  • the diameter of the high-pressure side main pipe 4 is D1 [m]
  • the diameter of the liquid side branch pipe 5 is D2 [m]
  • the length of the main pipe 4 (distance between the outdoor unit 1 and the relay device 3 inlet) is L1 [m]. ]
  • the average length of the branch pipe 5 (distance of the branch pipe 5 from the relay device 3 outlet to the indoor unit 2 inlet) is L2 [m].
  • the volume of the indoor space 7 is V2 [m 3 ]
  • the refrigerant liquid density is ⁇ 981 [kg / m 3 ] (for example, the liquid density when the outside air average temperature of the R32 refrigerant is 20 ° C. is used.
  • equations (3-1) to (3-3) can be obtained (the units are all [kg]). And if it is going to comprise the air conditioning apparatus which satisfy
  • the refrigerant leak from the outdoor unit 1 can be suppressed by the check valve 13 in the outdoor unit 1 when the refrigerant leaks, but the check valve 13
  • the amount of leakage is about 1.0 ⁇ 10 ⁇ 5 at a differential pressure of 1.5 [MPa] and 1.0 ⁇ 10 ⁇ 6 at a differential pressure of 5.0 [MPa] which is the amount of leakage of the second shut-off device 43
  • the second blocking device 43 is necessary.
  • L2 on the left side of Expression (3-2) is calculated so as to satisfy Expression (3-2), L2 ⁇ 25.8 [m].
  • the branch pipe 5, and the indoor unit 2 When the total refrigerant amount of the relay device 3, the branch pipe 5, and the indoor unit 2 is calculated using the L2, it is about 19.98 [kg] ⁇ 20.0 [kg] from the left side of the equation (3-2). It becomes. Further, the total refrigerant amount of the main pipe 4 and the outdoor unit 1 is approximately 27.23 [kg]> 20.0 [kg] from the left side of the equation (3-1). For this reason, the total refrigerant amount of the air conditioner is 47.21 [kg]> 20.0 [kg] from the left side of the equation (3-3).
  • the first shut-off device 42 which is a shut-off device on the outdoor unit 1 and the main pipe 4 side, and the second shut-off A device 43 is required.
  • L2> 25.8 [m] the total refrigerant amount of the relay device 3, the branch pipe 5, and the indoor unit 2 is about 20.02 [kg]> 20 from the left side of the equation (3-2). Therefore, it is necessary to install the third shut-off device 37 and the fourth shut-off device 38 which are shut-off devices on the branch pipe 5 and the indoor unit 2 side.
  • the total refrigerant amount of the main pipe 4 and the outdoor unit 1 is calculated using the L1, it is about 19.992 [kg] ⁇ 20.0 [kg] from the left side of the equation (3-1). Further, the total refrigerant amount of the relay device 3, the branch pipe 5, and the indoor unit 2 is approximately 21.61 [kg]> 20.0 [kg] from the equation (3-2). For this reason, the total refrigerant amount of the air conditioner is 41.602 [kg]> 20.0 [kg] from the equation (3-3). Since the total refrigerant amount of the relay device 3, the branch pipe 5, and the indoor unit 2 is about 21.61 [kg]> 20.0 [kg] from the left side of the equation (3-2), the third refrigerant is added to the branch pipe 5.
  • the total refrigerant amount of the main pipe 4 and the outdoor unit 1 is about 19.37 [kg] ⁇ 20.0 [kg] from the left side of the formula (3-1), and the relay device 3, the branch pipe 4, and the indoor unit 2
  • the total refrigerant amount is about 15.81 [kg] ⁇ 20.0 [kg] from the equation (3-2).
  • M2 in the equation (3-2) is set to 0 [kg] and the branch pipe 5
  • the total refrigerant amount of the relay device 3 may be calculated.
  • the constant 0.8 from the right side of Expression (3-1) to the right side of (3-3) is the limit charging refrigerant amount.
  • R32 is 0.800 [kg / m 3 ] and HFO1234yf is about 0.759 [kg / m 3 ].
  • the composition ratio of R32 / HFO1234yf is about 0.777 [kg / m 3 ] when R32 is 44% / HFO1234yf is 56%. Furthermore, when R32 is 73% / HFO1234yf is 27%, it is about 0.790 [kg / m 3 ]. Propane is about 0.105 [kg / m 3 ].
  • the installation length of the first blocking device 42 and the second blocking device 43 (distance between the blocking device and the relay device 3 entrance) is L3 [m]
  • the installation length of the third blocking device 37 and the fourth blocking device 38 (blocking) If the distance between the device and the relay device 3 entrance) is L4 [m], the equations (4-1) to (4-3) can be obtained (the units are all [kg]).
  • the first shut-off device 42 and the second shut-off device 43 are installed within L3 [m] that satisfies Expression (2-1).
  • Expression (2-1) ⁇ (D1 / 2) 2 ⁇ ⁇ ⁇ ⁇ ⁇ L3 ⁇ + ⁇ M2 + M3 + (D2 / 2) 2 ⁇ n ⁇ ⁇ ⁇ ⁇ ⁇ L2 ⁇ ⁇ 0.8 ⁇ V2 (4-1)
  • the limit refrigerant charging amount is 20.0 [kg] from the right side of the formula (4-1), and the formula (4
  • L3 on the left side of the equation (4-1) is calculated so as to satisfy -1)
  • L3 ⁇ 7.1 [m] is obtained.
  • the 1st shut-off device 42 and the 2nd shut-off device 43 are installed so that distance L3 ⁇ 7.1 [m] to the 1st shut-off device 42 and the 2nd shut-off device 43 and the branch device entrance may be set. There is a need.
  • the third shut-off device 37 and the fourth shut-off device 38 are installed within L4 [m] satisfying the equation (4-2). ⁇ (D1 / 2) 2 ⁇ ⁇ ⁇ ⁇ ⁇ L1 + M1 ⁇ + M3 + ⁇ (D2 / 2) 2 ⁇ n ⁇ ⁇ ⁇ ⁇ ⁇ L4 ⁇ ⁇ 0.8 ⁇ V2 (4-2)
  • the limit refrigerant charging amount is 20.0 [kg] from the right side of the formula (4-2).
  • L4 on the left side of the equation (4-2) is calculated so as to satisfy (4-2), L4 ⁇ 0.9 [m] is obtained. For this reason, it is necessary to install the third blocking device 37 and the fourth blocking device 38 so that the distance L4 ⁇ 0.9 [m] between the third blocking device 37 and the fourth blocking device 38 and the branching device entrance. There is.
  • the first shut-off device 42, the second shut-off device 43, the third shut-off device 37, and the fourth shut-off device 38 are to be installed, the first shut-off device 42, the third shut-off device 37, and the fourth shut-off device 38 are The 1 cutoff device 42 and the 2nd cutoff device 43 are installed, and the 3rd cutoff device 37 and the 4th cutoff device 38 are installed within L4 [m].
  • the limit refrigerant charging amount is 20.0 [kg].
  • the indoor unit 2 relay The refrigerant amount in the device 3 and the branch pipe 5 is approximately 21.61 [kg]> 20.0 [kg].
  • the refrigerant amount in the outdoor unit 1 and the main pipe 4 is approximately 27.23 [kg]> 20.0 [kg].
  • the main pipe 4 requires the first shut-off device 42 and the second shut-off device 43, and the branch pipe requires the third shut-off device 37 and the fourth shut-off device 38.
  • the main blocking circuit 4 with L3 ⁇ 29.2 [m] is connected to the first blocking device 42, the second blocking device 43, and the branch tube 5 with L4 ⁇ 15.0 [m].
  • tube to which each shut-off device is each connected will be the refrigerant
  • the amount is about 19.99 [kg] ⁇ 20.0 [kg].
  • the first shut-off device 42 and the second shut-off device 43 are installed on the main pipe 4 with L3 ⁇ 29.2 [m]
  • the third shut-off device 37 is installed on the branch pipe 5 with L4 ⁇ 15.0 [m]
  • a fourth shut-off device 38 may be installed.
  • each shut-off device is installed in the non-air-conditioned space 8 when the calculated distance L3 leaves the non-air-conditioned space 8 and becomes the outdoor space 6 side
  • the first shut-off device installed in the main pipe 4 42 and the second blocking device 43 may be installed between the relay pipe 3 and the main pipe 4 immediately after entering the non-air-conditioned space 8 from the outdoor space 6.
  • the distance L3 is calculated by setting M2 in the equation (4-1) to 0 [kg]. Good.
  • the constant 0.8 from the right side of Expression (4-1) to the right side of (4-3) is the limit charging refrigerant amount.
  • R32 is 0.800 [kg / m 3 ] and HFO1234yf is about 0.759 [kg / m 3 ].
  • the composition ratio of R32 / HFO1234yf is about 0.777 [kg / m 3 ] when R32 is 44% / HFO1234yf is 56%.
  • R32 is 73% / HFO1234yf is 27%, it is about 0.790 [kg / m 3 ].
  • Propane is about 0.105 [kg / m 3 ].
  • the outdoor unit 1 By installing the first shut-off device 42, the second shut-off device 43, the third shut-off device 37, and the fourth shut-off device 38 at positions determined based on the above calculation, the outdoor unit 1, the main pipe 4, and the branch pipe 5.
  • the refrigerant leakage amount diffused into the indoor space 7 is set to be equal to or less than the limit value of the refrigerant leakage amount allowable to the indoor space 7 (below the limit refrigerant filling amount). Can be suppressed.
  • the concentration detector 39 detects the refrigerant leak from the refrigerant circuit in the non-air-conditioned space 8 such as the ceiling.
  • the shutoff valve control device 40 determines that the refrigerant has leaked based on the refrigerant concentration
  • the first shutoff device 42, the second shutoff device 43, the third shutoff device 37, and the fourth shutoff device 38 control the flow of the refrigerant.
  • the shutoff device can be efficiently arranged.
  • the shut-off device can be arranged at a position that takes into account the effects of leakage.
  • a refrigerant with a low global warming potential for example, HFO1234yf, R32, HC, etc.
  • a flammable refrigerant for example, HFO1234yf, HFO1234ze, R32,
  • a mixed refrigerant containing R32 and HFO1234yf, a mixed refrigerant containing at least one component of the refrigerant described above, HC, and the like can be used as a refrigerant in a building multi-air conditioner.
  • the air-conditioning apparatus 100 and the air-conditioning apparatus 200 adopting the configuration described above, it is possible to detect refrigerant leakage from the refrigerant circuit, and the amount of refrigerant charged that is limited to the refrigerant circuit is R32 0.800 [kg / m 3 ], HFO1234yf is about 0.759 [kg / m 3 ], and in the R32 / HFO mixed system, for example, the composition ratio of R32 / HFO1234yf is R32 44% / HFO1234yf 56% About 0.777 [kg / m 3 ], when R32 is 73% / HFO1234yf is 27%, about 0.790 [kg / m 3 ], and propane is about 0.105 [kg / m 3 ].
  • a shut-off device for reducing the leakage amount is provided, and the refrigerant leaks into the non-air-conditioned space 8 and the indoor space 7. Such prevent the natural, and that greatly improves the safety.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

 圧縮機10及び熱源側熱交換器12を有する室外機1と、第1絞り装置25及び利用側熱交換器26を有して空調空間の空気調和を行う複数の室内機2と、室外機1とは複数の主管4で配管接続し、各室内機2とは複数の枝管5で配管接続して、主管4側からの冷媒を分岐して枝管5に流し、枝管5側からの冷媒を合流して主管4に流す分岐装置16と、室内空間7と異なる空間であり冷媒が漏れると室内空間7に冷媒が拡散する可能性がある位置関係にある非空調空間8に設置した濃度検出装置39と、主管4側において室外機と分岐装置との間の流路を遮断するおよび/または枝管側において室内機と分岐装置との間の流路を遮断する遮断装置42等と、濃度検出装置39の検出に基づいて冷媒が漏洩したものと判断すると、遮断装置42等に冷媒の流路を遮断させる制御を行う遮断弁制御装置40とを備える。

Description

空気調和装置
 本発明は、たとえばビル用マルチエアコン等に適用される空気調和装置に関するものである。
 従来から、ビル用マルチエアコンなどの空気調和装置においては、たとえば建物外に配置した熱源機である室外機(室外ユニット)と建物内に配置した室内機(室内ユニット)との間を配管接続して冷媒回路を構成し、冷媒を循環させている。そして、冷媒の放熱、吸熱を利用して空気を加熱、冷却することで、空調対象空間の暖房又は冷房を行なっている。
 このようなビル用マルチエアコンでは、複数の室内機を配管接続しており、停止している室内機、運転している室内機が混在していることも多い。また、室外機と室内機とを接続する配管がたとえば100mになることもある。配管が長くなるほど、多くの冷媒が空気調和装置内に充填されることになる。
 このようなビル用マルチエアコンの室内機は、通常、人が居る室内空間(たとえば、オフィス空間や居室、店舗等)に配置されて利用される。ここで、たとえば何らかの原因によって、室内空間に配置された室内機から冷媒が漏れた場合、冷媒の種類によっては引火性、有毒性等を有している。このため、たとえば人体への影響及び安全性の観点から大きな問題となる。また、たとえば人体に有害ではない冷媒であったとしても、冷媒漏れによって、室内空間での酸素濃度が低下し、人体に悪影響を及ぼすことも想定される。
 そこで、室外機に冷媒漏洩センサーと配管遮断弁とを設け、冷媒漏れが発生すると、室外機から冷媒が流出しないようにして、室内に漏洩する冷媒量を抑制するシステムが提案されている(たとえば、特許文献1参照)。
特開2002-115939号公報(たとえば、第7頁等)
 ところで、近年、地球温暖化の観点から、地球温暖化係数が高いHFC系冷媒(たとえば、R410Aや、R404A、R407C、R134a等)の使用を制限する動きがある。このため、地球温暖化係数が小さい冷媒(たとえば、HFO1234yf、R32、HC(炭化水素)及び二酸化炭素等)を用いた空気調和装置が提案されている。また、可燃性冷媒(たとえば、HFO1234yf、HFO1234ze、R32、R32とHFO1234yfと含む混合冷媒、前述した冷媒が少なくとも一成分含む混合冷媒及びHC等)を、ビル用マルチエアコンに、冷媒として用いる場合もある。このような冷媒においても、ビル用マルチエアコンに利用する際には多量の冷媒を必要とする。そこで、これらの冷媒が室内空間に漏れたときの対策を講じておく必要がある。
 たとえば特許文献1に記載されている技術は、室外機に冷媒漏洩センサーと配管遮断弁を設けて、室内に漏洩する可燃性冷媒量を抑制する空気調和装置に関するものである。しかし、ビル用マルチエアコンのように室内機が多く接続され、建物内において配管長が長い空気調和装置では、室内機とその室内機に接続された配管等における冷媒漏洩量も考慮しなければならない。たとえば可燃性を有する可燃性冷媒が漏洩した際の装置の安全性を確保するためには、建物内側に配置した機器、配管等に関しても何らかの安全装置を具備しておく必要がある。
 本発明は、上記の課題を解決するためになされたもので、安全性を確保しつつ、環境に与える負荷を低減することを可能とした空気調和装置を提供するものである。
 本発明に係る空気調和装置は、圧縮機及び熱源側熱交換器を有する室外機と、負荷側絞り装置及び負荷側熱交換器を有して空調空間の空気調和を行う複数の室内機と、室外機とは複数の主管で配管接続し、各室内機とは複数の枝管で配管接続して、主管側からの冷媒を分岐して枝管に流し、枝管側からの冷媒を合流して主管に流す分岐装置と、空調空間と異なる空間であり冷媒が漏れると空調空間に冷媒が拡散する可能性がある位置関係にある非空調空間に設置した冷媒濃度検出装置と、主管側において室外機と分岐装置との間の流路を遮断する主管側遮断装置および/または枝管側において室内機と分岐装置との間の流路を遮断する枝管側遮断装置と、冷媒濃度検出装置の検出に基づいて冷媒が漏洩したものと判断すると、遮断装置に冷媒の流路を遮断させる制御を行う制御装置とを備えるものである。
 本発明に係る空気調和装置によれば、冷媒回路からの冷媒漏れについて、たとえば冷媒濃度検出装置が天井裏等の非空調空間にて検出した冷媒濃度に基づいて、制御装置が冷媒が漏れたものと判断すると、遮断装置により冷媒の流れを遮断させるようにしたので、非空調空間における冷媒漏れを最小限に抑え、空調空間への冷媒の拡散を防ぎ、安全性を大きく向上させるだけでなく、環境負荷を小さくできる。
本発明の実施の形態1に係る空気調和装置の設置例を示す概略図である。 本発明の実施の形態1に係る空気調和装置100の構成の一例を示す図である。 遮断装置37,38,42,43、濃度検出装置39、遮断弁制御装置40の構成関係の一例を示す図である。 本発明の実施の形態1に係る空気調和装置の全冷房運転モード時における冷媒の流れを示す冷媒回路図である。 本発明の実施の形態1に係る空気調和装置の全暖房運転モード時における冷媒の流れを示す冷媒回路図である。 冷媒濃度と濃度検出装置39の抵抗値との関係を表す図である。 冷媒量と発火のリスクとの関係を示す図である。 本発明の実施の形態2に係る空気調和装置の設置例を示す概略図である。 本発明の実施の形態2に係る空気調和装置100の構成の一例を示す図である。 本発明の実施の形態2に係る空気調和装置の全冷房運転モード時における冷媒の流れを示す冷媒回路図である。 本発明の実施の形態2に係る空気調和装置の全暖房運転モード時における冷媒の流れを示す冷媒回路図である。 本発明の実施の形態2に係る空気調和装置の冷房主体運転モード時における冷媒の流れを示す冷媒回路図である。 本発明の実施の形態2に係る空気調和装置の暖房主体運転モード時における冷媒の流れを示す冷媒回路図である。
 以下、図面に基づいて本発明の実施の形態について説明する。ここで、図1を含め、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。また、添字で区別等している複数の同種の機器等について、特に区別したり、特定したりする必要がない場合には、添字を省略して記載する場合もある。また、以下で説明する温度、圧力の高低については、特に絶対的な値との関係で高低等が定まっているものではなく、装置等における状態、動作等において相対的に定まる関係に基づいて表記しているものとする。
実施の形態1.
 図1は、本発明の実施の形態1に係る空気調和装置の設置例を示す概略図である。図1に基づいて、本実施の形態における空気調和装置の設置例について説明する。この空気調和装置は、冷媒を循環させ、冷凍サイクルを利用した空気調和を行うものである。そして、運転する全室内機が冷房を行う全冷房運転モード又は暖房を行う全暖房運転モードを選択できるものである。
 本実施の形態に係る空気調和装置は、図1に示すように、熱源機である1台の室外機1と、複数台の室内機2とを有している。室外機1と室内機2とは、冷媒を導通する主管4と、冷媒の分岐を行う分岐装置16を介して、冷媒を導通する枝管5で接続されている。ここで、分岐装置16は場合によっては冷媒を合流させる装置としても用いられる。そして、室外機1で生成された冷熱あるいは温熱は、室内機2に配送されるようになっている。また、図2で詳細に説明するが、本実施の形態の空気調和装置は、分岐装置16の主管4側に主管側遮断装置となる第1遮断装置42、第2遮断装置43を備え、枝管5側に枝管側遮断装置となる第3遮断装置37、第4遮断装置38を備えている。
 室外機1は、通常、ビル等の建物9の外の空間(たとえば、屋上等)である室外空間6に配置され、主管4と、分岐装置16と、枝管5を介して室内機2に冷熱又は温熱を供給するものである。室内機2は、建物9の内部の空間(たとえば、居室等)である室内空間7に冷房用空気あるいは暖房用空気を供給できる位置に配置され、空調空間である室内空間7(室内に通じる風路等を含む)に冷房用空気あるいは暖房用空気を供給するものである。
 図1に示すように、本発明に係る空気調和装置においては、室外機1と室内機2とが2本の主管4を用いて、分岐装置16と各室内機2とが2本の枝管5を用いて、それぞれ接続されている。
 図1においては、分岐装置16が、建物9の内部ではあるが室内空間7とは別の空間である天井裏等の空間(たとえば、建物9における天井裏などのスペース、以下、単に非空調空間8と称する)に集約して設置されている状態を例に示している。分岐装置16を集約して設置することで、冷媒漏洩検出範囲を小さくすることが可能であり、安全性がより向上する。分岐装置16は、その他、エレベーター等がある共用空間等に設置することも可能である。また、図1においては、室内機2が天井カセット型である場合を例に示してあるが、これに限定するものではない。たとえば天井埋込型や天井吊下式等、室内空間7に直接またはダクト等により、暖房用空気あるいは冷房用空気を吹き出せるようになっていればどんな種類のものでもよい。
 また、図1においては、室外機1が室外空間6に設置されている場合を例に示しているが、これに限定するものではない。たとえば、室外機1は、換気口付の機械室等の囲まれた空間に設置してもよい。また、排気ダクトで廃熱を建物9の外に排気することができるのであれば建物9の内部に設置してもよい。あるいは、水冷式の室外機1を用いる場合にも建物9の内部に設置するようにしてもよい。このような場所に室外機1を設置するとしても、特段の問題が発生することはない。
 図2は、本発明の実施の形態1に係る空気調和装置100の構成の一例を示す図である。図2に基づいて、空気調和装置100の詳しい構成について説明する。図2に示すように、本実施の形態では、室外機1と複数の室内機2とが主管4と枝管5とで接続されている。そして、主管4と分岐装置16との間には、第1遮断装置42及び第2遮断装置43を設けている。また、分岐装置16と枝管5との間には、第3遮断装置37(37a~37d)及び第4遮断装置38(38a~38d)を設けている。
[室外機1]
 室外機1には、圧縮機10と、四方弁等の冷媒流路切替装置11と、熱源側熱交換器12と、アキュムレーター19とが冷媒配管17で直列に接続されて搭載されている。
 圧縮機10は、冷媒を吸入し、その冷媒を圧縮して高温・高圧の状態にするものであり、たとえば容量制御可能なインバータ圧縮機等で構成するとよい。冷媒流路切替装置11は、全暖房運転モード時における冷媒の流れと全冷房運転モード時における冷媒の流れとを切り替えるものである。
 熱源側熱交換器12は、暖房運転時には蒸発器として機能し、冷房運転時には凝縮器として機能し、図示省略のファン等の送風機から供給される空気と冷媒との間で熱交換を行なうものである。アキュムレーター19は、圧縮機10の吸入側に設けられており、全暖房運転モード時と全冷房運転モード時の違いによる余剰冷媒、過渡的な運転の変化(たとえば、室内機2の運転台数の変化)に対する余剰冷媒を蓄えるものである。
 また、室外機1には、圧力検出手段として、圧力センサー33が設けられており、圧縮機10により圧縮され吐出した高温・高圧の冷媒の圧力を検出するものである。
[室内機2]
 室内機2には、それぞれ利用側熱交換器26と、絞り装置25とが搭載されている。この利用側熱交換器26は、主管4と、分岐装置16と、枝管5とを介して室外機1と接続し、冷媒が流入出するようになっている。この利用側熱交換器26は、たとえば、図示省略のファン等の送風機から供給される空気と冷媒との間で熱交換を行ない、室内空間7に供給するための暖房用空気又は冷房用空気を生成するものである。また、絞り装置25は減圧弁や膨張弁としての機能を有し、冷媒を減圧して膨張させるものであり、全冷房運転モード時の冷媒の流れにおいて利用側熱交換器26の上流側に設けられており、絞り装置25は、開度が可変に制御可能なもの、たとえば電子式膨張弁等で構成するとよい。
 また、室内機2には、温度検出手段として、第1温度センサー31と、第2温度センサー32が設けられており、利用側熱交換器26に流入する冷媒の温度、もしくは利用側熱交換器から流出した冷媒の温度を検出するものであり、第1温度センサー31は、絞り装置25と利用側熱交換器26の間の配管に設けられており、第2温度センサー32は、紙面上の利用側熱交換器26の上側の配管に設けられており、サーミスター等で構成するとよい。
 図2では、4台の室内機2が主管4と、分岐装置16と、枝管5を介して室外機1に接続されている場合を例に示しており、紙面下側から室内機2a、室内機2b、室内機2c、室内機2dとして図示している。また、室内機2a~室内機2dに応じて、利用側熱交換器26も紙面下側から利用側熱交換器26a、利用側熱交換器26b、利用側熱交換器26c、利用側熱交換器26dと、絞り装置25も紙面下側から絞り装置25a、絞り装置25b、絞り装置25c、絞り装置25dと、第1温度センサー31も第1温度センサー31a、第1温度センサー31b、第1温度センサー31c、第1温度センサー31dと、第2温度センサー32も第2温度センサー32a、第2温度センサー32b、第2温度センサー32c、第2温度センサー32dとして図示している。なお、図2では室内機2を4台接続しているが、接続台数を4台に限定するものではない。
 図3は遮断装置37,38,42,43、濃度検出装置39、遮断弁制御装置40の構成関係の一例を表す図である。図2、図3に示すように、濃度検出装置39は、非空調空間8に設けており、非空調空間8内部における冷媒の濃度を、たとえば電気抵抗値として検出するものである。図2では、濃度検出装置39は、非空調空間8の室内機2aに導通している分岐装置16の近辺に設置しているが、設置位置はここに限らず、たとえば各分岐装置16近辺に設置してもよい。
 第1遮断装置42は液状の冷媒(液冷媒)が流れる主管4、第2遮断装置43は気体状の冷媒(ガス冷媒)が流れる主管4、第3遮断装置37は液冷媒側の枝管5、第4遮断装置38はガス冷媒側の枝管5にそれぞれ設置される。各遮断装置は、遮断弁を有し、遮断弁制御装置40からの指示(信号)に基づいて遮断弁により冷媒流路を閉止して冷媒の流れを遮断する。遮断装置において非通電状態は閉状態である。
 また、図2では、4台の室内機2が主管4と、分岐装置16と、枝管5を介して室外機1に接続されている場合を例に示しており、第3遮断装置37は紙面下側から第3遮断装置37a、第3遮断装置37b、第3遮断装置37c、第3遮断装置37dと、第4遮断装置38は紙面下側から第4遮断装置38a、第4遮断装置38b、第4遮断装置38c、第4遮断装置38dと図示している。具体的な検出手段、開閉手段、設置位置は後述する。なお、図2に示すように、室内機2の接続台数に応じて、第3遮断装置37と、第4遮断装置38を設置する構成となっており、各4台に限定するものではない。
 そして、濃度算出装置41は、濃度検出装置39の検出により得られた濃度に関するデータ(電気抵抗値)をもとに、濃度を演算するための装置である。装置の具体的な処理については後述するが、たとえば後述する図11で表される検量線に係るデータを記憶して演算を行う。濃度算出装置41により演算を行って濃度を演算することで、例えば、分岐装置16に冷媒が流入する配管に係る遮断装置を閉じる等、各遮断装置に個別に開閉指示を行うことができる。
 また、図示省略しているが、マイコン等で構成した制御装置を有しており、各種検出手段での検出情報及びリモコンからの指示に基づいて、圧縮機10の駆動周波数、送風機の回転数(ON/OFF含む)、冷媒流路切替装置11の切り替え、絞り装置25の開度等を制御し、後述する各運転モードを実行するようになっている。たとえばこの制御装置が、前述した濃度算出装置41として濃度を演算等をするようにしてもよい。また、遮断弁制御装置40として第1遮断装置42と、第2遮断装置43と、第3遮断装置37と、第4遮断装置38の開閉を制御するようにしてもよい。なお、制御装置は、ユニット毎に設けてもよく、室外機1または室内機2に設けてもよい。
 次に空気調和装置100が実行する各運転モードについて説明する。この空気調和装置100は、各室内機2からの指示に基づいて冷房運転のみ、もしくは暖房運転のみ可能になっている。このため、空気調和装置100は、駆動している室内機2の全部で同一運転をするようになっている。
 空気調和装置100が実行する運転モードには、駆動している室内機2の全てが冷房運転を実行する全冷房運転モード、駆動している室内機2の全てが暖房運転を実行する全暖房運転モードがある。以下に、各運転モードについて、冷媒の流れとともに説明する。
[全冷房運転モード]
 図4は、空気調和装置100の全冷房運転モード時における冷媒の流れを示す冷媒回路図である。この図4では、利用側熱交換器26aと、利用側熱交換器26bで冷熱負荷が発生している場合を例に全冷房運転モードについて説明する。なお、図4では、冷媒の流れ方向を実線矢印で示している。
 図4に示す全冷房運転モードの場合、低温・低圧の冷媒が圧縮機10によって圧縮され、高温・高圧のガス冷媒となって吐出される。圧縮機10から吐出された高温・高圧のガス冷媒は、冷媒流路切替装置11を介して熱源側熱交換器12に流入する。そして、熱源側熱交換器12で室外空気に放熱しながら高圧の液冷媒となる。熱源側熱交換器12から流出した高圧冷媒は、室外機1から流出し、主管4を通って、第1遮断装置42と、分岐装置16を介して分岐される。そして、第3遮断装置37aと、第3遮断装置37b、枝管5を経由した後に絞り装置25aと、絞り装置25bで膨張させられて、低温・低圧の二相冷媒となる。この二相冷媒は、蒸発器として作用する利用側熱交換器26aと、利用側熱交換器26bのそれぞれに流入し、室内空気から吸熱することで、室内空気を冷却しながら、低温・低圧のガス冷媒となる。利用側熱交換器26aと、利用側熱交換器26bから流出したガス冷媒は、枝管5、第4遮断装置38a、第4遮断装置38b、分岐装置16、第2遮断装置43、主管4を通って再び室外機1へ流入する。室外機1に流入した冷媒は、第1冷媒流路切替装置11及びアキュムレーター19を通って、圧縮機10へ再度吸入される。
 ここで、絞り装置25aは、第1温度センサー31aで検出された温度と第2温度センサー32bで検出された温度との差として得られるスーパーヒート(過熱度)が一定になるように開度が制御される。同様に、絞り装置25bは、第1温度センサー31bで検出された温度と第2温度センサー32bで検出された温度との差として得られるスーパーヒートが一定になるように開度が制御される。
 また、冷熱負荷がない、利用側熱交換器26cと、利用側熱交換器26dとにおいては、冷媒を流す必要が無く、それぞれに対応する絞り装置25cと、絞り装置25dは閉となっている。そして、利用側熱交換器26cや利用側熱交換器26dから冷熱負荷の発生があった場合には、絞り装置25cや、絞り装置25dを開放して、冷媒を循環させればよい。絞り装置25cや、絞り装置25dの開度は、上述した絞り装置25aや、絞り装置25bと同様に、第1温度センサー31c、31dと、第2温度センサー32c、32dで検出された温度との差として得られるスーパーヒート(過熱度)が一定になるように開度が制御される。
[全暖房運転モード]
 図5は、空気調和装置100の全暖房運転モード時における冷媒の流れを示す冷媒回路図である。この図5では、利用側熱交換器26aと、利用側熱交換器26bでのみ温熱負荷が発生している場合を例に全暖房運転モードについて説明する。なお、図5では、冷媒の流れ方向を実線矢印で示している。
 図5に示す全暖房運転モードの場合、低温・低圧の冷媒が圧縮機10によって圧縮され、高温・高圧のガス冷媒となって吐出される。圧縮機10から吐出された高温・高圧のガス冷媒は、冷媒流路切替装置11を通り、室外機1から流出する。室外機1から流出した高温・高圧のガス冷媒は、主管4を通って、第2遮断装置43、分岐装置16を介して分岐される。そして、第4遮断装置38a、第4遮断装置38b、枝管5を経由した後に、利用側熱交換器26aと、利用側熱交換器26bで室内空気に放熱することで、室内空間7を暖房しながら、液冷媒となる。利用側熱交換器26aと、利用側熱交換器26bから流出した液冷媒は、絞り装置25aと、絞り装置25bで膨張させられて、低温・低圧の二相冷媒となり、枝管5、第3遮断装置37a、第3遮断装置37b、分岐装置16、第1遮断装置42、主管4を通って再び室外機1へ流入する。室外機1へ流入した低温・低圧の二相冷媒は熱源側熱交換器12で室外空気から吸熱しながら、低温・低圧のガス冷媒となり、冷媒流路切替装置11及びアキュムレーター19を介して圧縮機10へ再度吸入される。
 ここで、絞り装置25aは、圧力センサー33で検出された圧力を飽和温度に換算した値と、第1温度センサー31aで検出された温度との差として得られるサブクール(過冷却度)が一定になるように開度が制御される。同様に、絞り装置25bは、圧力センサー33で検出された圧力を飽和温度に換算した値と、第1温度センサー31bで検出された温度との差として得られるサブクール(過冷却度)が一定になるように開度が制御される。
 また、温熱負荷がない、利用側熱交換器26cと、利用側熱交換器26dにおいては、冷媒を流す必要が無く、それぞれに対応する絞り装置25cと、絞り装置25dは閉となっている。そして、利用側熱交換器26cや利用側熱交換器26dから温熱負荷の発生があった場合には、絞り装置25cや、絞り装置25dを開放して、冷媒を循環させればよい。絞り装置25cや、絞り装置25dの開度は、上述した絞り装置25aや、絞り装置25bと同様に、圧力センサー33で検出された圧力を飽和温度に換算した値と、第1温度センサー31c、31dで検出された温度との差として得られるサブクール(過冷却度)が一定になるように開度が制御される。
 ところで、濃度検出装置39は、図2、図3に示すように遮断弁制御装置40を介して接続されている。遮断弁制御装置40は濃度検出装置39からの信号でスイッチがON・OFFする構造となっている。濃度検出装置39は、たとえば検出濃度が所定濃度以上のときはDC5Vの電圧を信号として出力し、所定濃度未満のときは電圧を出力しない。ここでは電圧を信号としているが、電流や他の出力を信号としてもよい。また、出力電圧は特に5Vに規定するものではなく、12V、24V等でもよい。所定濃度については、冷媒回路において使用される冷媒の漏洩限界濃度としている。たとえば、可燃性冷媒(HFO1234yf、R32、HC等)を用いた場合は、爆発限界下限値の1/10程度に設定する。また、二酸化炭素を冷媒として用いる場合の所定濃度は、漏洩限界濃度の1/10程度に設定する。
 濃度検出装置39が所定濃度を検出して5Vの電圧を信号として出力すると、遮断弁制御装置40のスイッチがOFF状態になる。第1遮断装置42、第2遮断装置43、第3遮断装置37、第4遮断装置38は、前述したように、非通電状態で遮断弁を閉じ、通電状態で開く。したがって、遮断弁制御装置40のスイッチがOFFすると、第1遮断装置42、第2遮断装置43、第3遮断装置37、第4遮断装置38へ給電が無くなるため、各遮断装置の遮断弁は閉じることとなる。
 ここで、第1遮断装置42、第2遮断装置43、第3遮断装置37、第4遮断装置38の弁体を開閉させるためのコイルは直流電圧で励磁させる仕組みとなっている。たとえば、本実施の形態で用いている遮断装置は12Vで動作する仕様となっている。動作電圧については特に12Vだけに電圧を規定するものではなく、24V等でもよい。また、直流を用いた方が、交流を用いた場合よりもコイルの寿命が長いため、本実施の形態では直流用のコイルを用いている。このため、遮断弁制御装置40は、たとえば商用電源(交流、本実施の形態ではAC200V)から所定の直流電圧(本実施の形態ではDC12V)に変換できる変換機を備えている
 可燃性冷媒(HFO1234yf、R32、HC等)を用いる場合、遮断弁制御装置40は電磁石のリレーでは、機械的な電気的接触があるために、火花が発生し、可燃性ガスを発火させるおそれがある。そこで、半導体素子を用いたSRR(ソリッドステート・リレー)を用いることで、機械的な電気的ON・OFFが無くなるため、火花を発生する可能性が無くなり、可燃性冷媒が非空調空間8内に漏洩しても、安全に電源のON・OFFをすることができる。
 図6は冷媒濃度と濃度検出装置39の抵抗値との関係を表す図である。本実施の形態で用いている濃度検出装置39において、濃度を検出するための検出部は半導体で構成しており、検出部の抵抗変化から漏洩濃度を算出するようになっている。ここで、検出部の半導体は、酸化スズ(SnO)からできている。図6から、冷媒濃度が上昇するにつれて、半導体の抵抗値が徐々に低下するのがわかる。このため、濃度検出装置39の抵抗値を求めることで、一義的に冷媒の濃度を求めることができる。ここで、特徴的なことは、図6に示すように、酸化スズ(SnO)半導体を用いることで、主要な冷媒であるR410A、R407C、R32、HFO1234yfは、抵抗と冷媒濃度との関係についてほぼ同じ傾向があることである。このため、たとえば主要な冷媒に対して、同じ検量線のデータを用いて冷媒濃度を検出することができる。同じ検出部を用いて複数の冷媒濃度を検出可能となるため、濃度検出装置39の標準化を図ることが可能となり、濃度検出装置39の低コスト化を図ることができる。そして、最終的には、空気調和装置の低コスト化を図ることができる。濃度検出装置39の検出精度向上をさらに図る場合には、図11に示すような冷媒ごとの検量線に係るデータを作成することで対応できる。本実施の形態においては、少なくともこの原理を利用した濃度検出装置39の検出部を非空調空間8に設置している。
 次に各遮断装置について説明する。第1遮断装置42、第2遮断装置43は主管4に設置されているため、遮断装置内の弁口径を大きくする必要がある(CV値を大きくする必要がある)。さらに、第3遮断装置37、第4遮断装置38は各分岐装置16の枝管5側に設置されており、1台の室内機2の容量が大きい場合(たとえば4HP(馬力)以上)、遮断装置内の弁口径を大きくする必要がある(CV値を大きくする必要がある)。
 そこで、本実施の形態では、第1遮断装置42、第2遮断装置43、第3遮断装置37、第4遮断装置38について、CV値の大きさに応じて、直動タイプ遮断装置とパイロット式遮断装置とを使い分けるようにする。そして、弁体をシールするためのシール材は、ゴム、PTFE等を用いる。たとえば、金属シールは耐久性に優れているが、遮断装置は通常の弁のように、頻繁に開閉するものではなく、緊急時にすぐに遮断するための弁である。このため、弁体とそれをシールする材料とは馴染みやすいものにする必要があることから、金属のシール材を用いずに、ゴム、PTFE等を用いる。 
 第1遮断装置42は液冷媒側に設置されているため、CV値は小さくてよい。室外機1における容量が10HP程度では、CV=0.7程度(0.3以上)であり、小さくて安価な直動タイプの第1遮断装置42を使用することができる。同様に、第3遮断装置37は液冷媒側に設置されているため、容量が10HPより小さい場合ではCV=0.7程度(0.05以上)であり、小さくて安価な直動タイプの第3遮断装置37が使用できる。一方、第2遮断装置43はガス冷媒側に設置されているため、CV値は液冷媒側よりも大きくする必要がある。たとえば、容量が10HP程度ではCV=10程度(4.7以上)であり、パイロット式の遮断装置を使用する必要がある。同様に、第4遮断装置38はガス冷媒側に設置されているため、容量が10HP程度ではCV=10程度(0.75以上)であり、パイロット式の遮断装置又は直動タイプの遮断装置を1台~複数台使用する必要がある。
 また、緊急時に素早く遮断できるように、第1遮断装置42、第2遮断装置43、第3遮断装置37、第4遮断装置38の最低作動圧力差は0[kPa]程度と十分に小さい値でなければならない。
 ここで、多くの冷媒が空間に漏れると、燃焼や酸欠等の危険があることから、冷媒の種類毎に、安全に使用できる漏洩冷媒量の最大濃度である限界濃度というものが定義されている。限界濃度は、たとえば、R410Aでは0.44[kg/m]、R32では0.061[kg/m]、HFO1234yfでは0.0578[kg/m]、プロパンは0.008[kg/m]等の値をとる。
 たとえば、空間内に冷媒が漏れたときに、冷媒配管に設置された遮断装置において遮断弁を閉じて、冷媒漏洩の拡大を防止することを考える。このとき、冷媒が限界濃度までに至ってから遮断等をしたのでは間に合わないので、空間内の冷媒の濃度が限界濃度の95%に達した時に、遮断弁を閉じるものとする。したがって、遮断弁を閉じた後に、冷媒が限界濃度に達するまでに、更に漏れてもよい量は5%ということになる。
 たとえばビル用マルチエアコンの室内機の据付が予想される場所を、最も小さい部屋とし、空調面積当りの室内負荷を0.15[kW/m]とする(空調・衛生設備見積ハンドブック 日本建築設備積算研究会編著より出典)。そして、能力1.5[kW]の室内機を据付けた場合、室内機の能力1.5[kW]を、空調面積当りの室内負荷0.15[kW/m]で除した値が、部屋の面積である10.0[m]となる。さらにその部屋の面積10.0[m]に、部屋の高さを2.5[m]を乗じて、部屋の容積を25[m]とする。遮断弁が作動したとき、遮断弁の前後差圧が1.0MPaだとし、ユニットバスやその他も物を除いた室内の実質的な空間容積が0.5×25=12.5mであるものとすると、遮断弁閉止後に、冷媒が漏れても良い量は、12.5m×0.05=0.625mとなる。就寝中など冷媒漏洩に気付かず、窓が閉まった状態で密閉された空間になっていることが予想される。このため、遮断装置が動作してから、24時間以内は限界濃度に達しない漏れ量を求めると、0.625/(24×60×60)=7.2×10-6[m/s]となり、遮断弁閉止後の漏れ量が、この値未満であれば、安全であるということになる。
 また、冷媒が漏れる箇所をあらかじめ特定することはできないが、漏れ量が多くなる高圧配管で漏れることを想定し、5MPa程度の差圧においても、上記漏れ量を確保しなければならないとすると、流体力学で一般衆知であるベルヌーイの定理より、冷媒の漏れ量は差圧の0.5乗に比例するため、冷媒の漏れ量は、7.2×10-6[m/s] / ( 5/1)  0.5  = 3.2×10-6となり、漏れ量がこの値未満であれば安全である。よって、更に安全を見て、漏れ量を1.0×10-6以下に抑えるものとする。
 図7は冷媒量と発火のリスクとの関係を示す図である。本実施の形態1の設置状態、用途等を考慮して、業務用空調機の発火リスクアセスメントを実施したところ、冷媒量と発火のリスクは図7に示す関係となった。図7において、横軸は冷媒量、縦軸はリスクを表している。ここで、リスクとは発火が発生する確率を表しており、一般的に1.0×10-7未満であれば社会で受け入れられるリスクであると言われている(交通事故での死亡リスクは1.0×10-5程度と言われている)。ほぼ発火の発生が無い領域である1.0×10-9未満のリスクを目指した場合、図7に示すように、冷媒量は26kg未満にしなければならない。さらに、現場で、目標充填量に対し、20%程度、過充填される可能性を考慮すると、充填目標冷媒量は、室内空間容量が25[m]の場合に、約20[kg]となる。したがって、たとえば業務用の直膨の空気調和装置における冷媒の充填量の上限値は、単位容積当りの空間で、20[kg]を25[m]で除した値である、0.800[kg/m]程度となる。
 ここで、図7は冷媒がR32のときのリスクを表している。たとえば、冷媒がHFO1234yfにおける限界充填冷媒量は、HFO1234yfの限界濃度0.0578[kg/m]とR32の限界濃度0.061[kg/m]との比0.948を、R32の限界充填冷媒量0.800[kg/m]に乗じると、HFO1234yfの限界充填冷媒量は約0.759[kg/m]となる。
 また、R32/HFO混合系の冷媒においては、たとえばR32とHFO1234yfとの組成比を、R32が44%、HFO1234yfが56%とする。それぞれの組成比を、R32、およびHFO1234yfの限界濃度に乗じた後、それぞれの組成比に応じた限界濃度の和が0.0592[kg/m]となる。その限界濃度の和0.0592[kg/m]とR32の限界濃度0.061[kg/m]との比0.971を、R32の限界充填冷媒量0.800[kg/m]に乗じるとR32/HFO混合系冷媒の限界充填冷媒量は約0.777[kg/m]となる。
 さらに、R32が73%、HFO1234yfが27%とする。それぞれの組成比を、R32、およびHFO1234yfの限界濃度に乗じた後、それぞれの組成比に応じた限界濃度の和が0.0602[kg/m]となる。その限界濃度の和0.0602[kg/m]とR32の限界濃度0.061[kg/m]との比0.987を、R32の限界充填冷媒量0.800[kg/m]に乗じるとR32/HFO混合系の限界充填冷媒量は約0.790[kg/m]となる。これはHFO1234yfの限界充填冷媒量約0.759[kg/m]と、R32の限界充填冷媒量0.800[kg/m]とほぼ同等である。
 ここで、プロパンについては、限界濃度が0.008[kg/m]と低い。R32の限界濃度0.061[kg/m]との比0.131を、R32の限界充填冷媒量0.800[kg/m]に乗じると、約0.105[kg/m]程度が限界充填冷媒量となる。
 よって、室内機2の内部の冷媒量と、室内機2と分岐装置16とを接続する配管である枝管5の内部の冷媒量の合計を、室内空間7の容積で除した値が、限界充填冷媒量を超えるシステムにおいては、第3遮断装置37、第4遮断装置38を分岐装置16の近傍に設置する。そして、枝管5から非空調空間8に冷媒が漏れて室内空間7に冷媒が拡散することを未然に防ぐ。
 さらに、室外機1と分岐装置16とを接続する配管である主管4の内部の冷媒量と、室外機1の内部の冷媒量との合計を、室内空間7の容積で除した値が、限界充填冷媒量を超えるシステムでは、分岐装置16の近傍に、第1遮断装置42、第2遮断装置43を設置し、室外機1および室外機1に繋がる配管である主管4から非空調空間8に冷媒が漏れて、室内空間7に冷媒が拡散することを未然に防ぐ必要がある。
 また、室内空間7の容積がたとえば25[m]である場合、許容出来る冷媒漏洩量は、各冷媒の限界濃度に室内空間容積25[m]を乗じる。たとえば、R32は20.0[kg]以下、HFO1234yfは約18.98[kg]以下である。また、R32/HFO混合系においては、たとえばR32/HFO1234yfの組成比を、R32が44%/HFO1234yfが56%とした場合は約19.43[kg]以下である。そして、R32/HFO1234yfの組成比を、R32が73%/HFO1234yfが27%とした場合は約19.75[kg]以下、プロパンは約2.63[kg]以下である。
 ここで、想定している最小の室内空間容積は25[m]としているが、これに限らない。たとえば、室内機2が設置されているサーバールームや機械室など、さらに小さい空間も室内空間7とみなし、その空間容積が25[m]以下でも、限界充填冷媒量[kg/m]を適用できる。想定している最小の室内空間容積である25[m]よりも、さらに小さい、室内機2が設置されている空間においても、天井裏に、濃度検出装置39と、各遮断装置を設置しているため、安全性は確保出来る。
 たとえば、室外機1の冷媒量について、室外機容量が5~8HPまでを8.0kg、9~14HPまでを10.5kg、15~18HPまでを11.5kg、19~20HPまでを13.0kg、21~28HPまでを18.0kg、29HP以上は20.0kg以上とする。室内機2の冷媒量は10HP以下を3.0kg、10~25HPを5.0kg、25~35HPを9.0kg、36HP以上を14.0kgとする。
 分岐装置16におけるロウ付け不良などにより、冷媒が非空調空間8に漏洩して、室内空間7にも拡散した場合の許容できる冷媒漏洩量について説明する。たとえば室外機1の容量に対応した室外機1の冷媒量をM1[kg]、室内機2の合計容量に対応した室内機冷媒量をM2[kg]、室内機2の台数(分岐数)をnとする。また、液側の主管4の直径をD1[m]、液側の枝管5の直径をD2[m]、主管4の長さ(室外機1と分岐装置16入口までの距離)をL1[m]、枝管5の平均長さ(分岐装置16出口から室内機2入口までの枝管5の距離)をL2[m]とする。さらに、室内空間7の容積をV1[m]、冷媒液密度ρ≒981[kg/m](たとえば、R32冷媒の外気平均温度を20℃とした場合の液密度としており、使用する冷媒により異なる。)とすると、式(1-1)~式(1-3)がいえる(単位はすべて[kg])。そして、式(1-1)を満たす空気調和装置を構成しようとすると、第1遮断装置42と第2遮断装置43が必要となる。また、式(1-2)を満たす空気調和装置を構成しようとすると、第3遮断装置37と第4遮断装置38の設置が必要となる。そして、式(1-3)を満たす空気調和装置を構成しようとすると、第1遮断装置42、第2遮断装置43、第3遮断装置37、第4遮断装置38が必要となる。
 {M1+(D1/2) ×π×ρ×L1}<{0.8×V1}    …(1-1)
 {M2+(D2/2) ×π×n×ρ× L2}<{0.8×V1} …(1-2)
 式(1-1)左辺+式(1-2)左辺<{0.8×V1}     …(1-3)
 たとえば、室外機容量が18HP、n=10、D1=13.88[mm](外径15.88、肉厚1.0)[mm]、L1=100[m]、D2=7.92(外径9.52、肉厚0.8)[mm]、V1=25.0[m]とすると、式(1-1)の右辺~(1-3)の右辺より、限界の冷媒充填量は20.0[kg]となる。 式(1-2)の右辺を満足するように式(1-2)の左辺のL2を計算すると、L2<31.0[m]である。そのL2を使用して枝管5と室内機2の合計冷媒量を計算すると、式(1-2)の左辺より約19.99[kg]<20.0[kg]となる。また、主管4と室外機1の合計冷媒量は、式(1-1)の左辺より約26.35[kg]>20.0[kg]となる。空気調和装置における合計冷媒量は式(1-3)の左辺合計より、46.34[kg]>20.0[kg]となる。主管4と室外機1の合計冷媒量が式(1-1)の左辺より約26.35[kg]>20.0[kg]となるため、室外機1と主管4側の遮断装置である第1遮断装置42と、第2遮断装置43が必要となる。一方、L2>31.0[m]となると、枝管5と室内機2の合計冷媒量は式(1-2)左辺より、約20.04[kg]以上>20.0[kg]となるため、枝管5と室内機2側の遮断装置である第3遮断装置37、第4遮断装置38の設置も必要となる。
 また、室外機1の容量が18HP、n=10、D1=13.88[mm](外径15.88、肉厚1.0)[mm]、D2=7.92(外径9.52、肉厚0.8)[mm]、L2=35.0[m]、V1=25.0[m]の場合、式(1-1)の右辺~(1-3)の右辺より、限界冷媒充填量は、20.0[kg]となる。式(1-1)の右辺を満足するように式(1-1)の左辺のL1を計算すると、L1<57.0[m]である。そして、L1を使用して主管4と室外機1の合計冷媒量を計算すると、式(1-1)の左辺より約19.97[kg]<20.0[kg]となる。また、枝管5と室内機2の合計冷媒量は式(1-2)の左辺より21.93[kg]>20.0[kg]となる。空気調和装置の合計冷媒量は、式(1-3)の左辺合計より41.9[kg]>20.0[kg]となる。枝管5と室内機2の合計冷媒量が式(1-2)の左辺より21.93[kg]>20.0[kg]であるため、枝管5に第3遮断装置37、第4遮断装置38の設置が必要となる。一方、L1>57.0[m]となると、主管4と室外機1の合計冷媒量は式(1-1)の左辺より20.1[kg]以上>20.0[kg]となるため、主管4と室外機1側の遮断装置である第1遮断装置42と、第2遮断装置43の設置も必要となる。
 また、室外機容量が18HP、n=10、D1=13.88[mm](外径15.88、肉厚1.0)[mm]、L1=50[m]、D2=7.92(外径9.52、肉厚0.8)[mm]、L2=15.0[m]、V1=25.0[m3]の場合、式(1-1)右辺~(1-3)右辺より、限界の冷媒充填量は20.0[kg]となる。主管4と室外機1の合計冷媒量が式(1-1)の左辺より約18.93[kg]<20.0[kg]で、枝管4と室内機2の合計冷媒量が式(1-2)の左辺より約12.3[kg]<20.0[kg]となる。空気調和装置の合計冷媒量は、式(1-3)の左辺合計より31.23[kg]>20.0[kg]となるため、第1遮断装置42、および第2遮断装置43、もしくは第3遮断装置37、および第4遮断装置38のいずれかを設置する必要がある。そして、冷媒漏洩量に対する安全性をより高めるために、上記例に第1遮断装置42、第2遮断装置43、第3遮断装置37、第4遮断装置38の全てを設置してもよい。
 ここで、たとえば室内機2に近接した位置に、遮断装置(図示していない、たとえば第5遮断装置、第6遮断装置とする)が設置されている場合は、式(1-2)のM2を0[kg]として、枝管5の冷媒量を計算するとよい。また、式(1-1)の右辺~(1-3)の右辺の定数0.8は限界充填冷媒量である。このとき、R32は0.800[kg/m]、HFO1234yfは約0.759[kg/m]である。また、R32/HFO混合系においては、たとえばR32/HFO1234yfの組成比を、R32が44%/HFO1234yfが56%とした場合は約0.777[kg/m]である。さらに、R32が73%/HFO1234yfが27%とした場合は約0.790[kg/m]である。そして、プロパンは約0.105[kg/m]である。
 次に、第1遮断装置42、第2遮断装置43の設置位置、第3遮断装置37、第4遮断装置38の設置位置について説明する。第1遮断装置42および第2遮断装置43の設置長さ(遮断装置と分岐装置16入口までの距離)をL3[m]、第3遮断装置37および第4遮断装置38の設置長さ(遮断装置と分岐装置16入口までの距離)をL4[m]とすると式(2-1)~式(2-3)がいえる(単位はすべて[kg])。
そして、第1遮断装置42及び第2遮断装置43を設置しようとする場合は、式(2-1)を満たすL3[m]以内に第1遮断装置42、第2遮断装置43を設置する。
{(D1/2)×π×ρ×L3}+{M2+( D2/2)×n×π×ρ×L2}
                        <0.8×V1  …(2-1)
 たとえば、室外機容量が18HP、n=10、D1=13.88[mm](外径15.88、肉厚1.0)[mm]、D2=7.92(外径9.52、肉厚0.8)[mm]、L2=30[m]、V1=25.0[m]であるとする。そして、主管4に第1遮断装置42、第2遮断装置43を設置しようとする場合、式(2-1)の右辺より、限界の冷媒充填量は20.0[kg]となり、式(2-1)を満足するように式(2-1)の左辺のL3を計算すると、L3<約3.3[m]となる。このため、第1遮断装置42および、第2遮断装置43と分岐装置16入口までの距離L3が約3.3[m]以内となるように、第1遮断装置42および第2遮断装置43を設置する必要がある。
 また、第3遮断装置37及び第4遮断装置38のみ設置しようとする場合は、式(2-2)を満たすL4[m]以内に第3遮断装置37、第4遮断装置38を設置する。
{(D1/2)×π×ρ×L1+M1}+{(D2/2)×n×π×ρ×L4}
                        <0.8×V1  …(2-2)
 たとえば、室外機容量が18HP、n=10、D1=13.88[mm](外径15.88、肉厚1.0)[mm]、D2=7.92(外径9.52、肉厚0.8)[mm]、L1=55.0[m]、V1=25.0[m]であるとする。そして、枝管5に第3遮断装置37と第4遮断装置38を設置しようとする場合、式(2-2)の右辺より、限界の冷媒充填量は20.0[kg]となり、式(2-2)を満足するように式(2-2)の左辺のL4を計算すると、L4<0.6[m]となる。このため、第3遮断装置37および、第4遮断装置38と分岐装置16入口までの距離L4が0.6[m]以内となるように、第3遮断装置37および第4遮断装置38を設置する必要がある。
 また、第1遮断装置42、第2遮断装置43、第3遮断装置37、第4遮断装置38を全て設置しようとする場合は、式(2-3)を満たすL3[m]以内に、第1遮断装置42と、第2遮断装置43を設置し、L4[m]以内に第3遮断装置37および第4遮断装置38を設置する。
 (D1/2)×π×ρ×L3+(D2/2)×n×π×ρ×L4
                        <0.8×V1  …(2-3)
 たとえば、室外機容量が18HP、n=10、D1=13.88[mm](外径15.88、肉厚1.0)[mm]、D2=7.92(外径9.52、肉厚0.8)[mm]、L1=100.0[m]、L2=50.0[m]、V1=25.0[m]であるとする。そして、式(2-3)の右辺より、限界の冷媒充填量は20.0[kg]となる。さらに、式(2-1)の左辺において{}で囲まれた第2項より、室内機2と枝管5内の冷媒量は約29.18[kg]>20.0[kg]となる。また、式(2-2)左辺{}で囲まれた第1項より、室外機1と主管4内の冷媒量は26.35[kg]>20.0[kg]となる。主管4には第1遮断装置42および第2遮断装置43、枝管5には第3遮断装置37および第4遮断装置38が必要となる。
 ここで、式(2-3)の左辺より、L3<70.0[m]の主管4に第1遮断装置42および第2遮断装置43、L4<19.8[m]の枝管5に第3遮断装置37および第4遮断装置38を設置すると、各遮断装置がそれぞれ接続されている配管内の冷媒量が、約19.97[kg]<20.0[kg]となる。したがって、L3<70.0[m]の主管4に第1遮断装置42および第2遮断装置43を設置し、L4<19.8[m]の枝管5に第3遮断装置37及び第4遮断装置38を設置すればよい。また、非空調空間8に各遮断装置を設置するため、算出されたL3の距離が非空調空間8を出て、室外空間6側となってしまう場合は、主管4に設置する第1遮断装置42および第2遮断装置43の設置位置は、室外空間6から非空調空間8に入った直後の主管4から、分岐装置16の間に設置するとよい。
 ここで、たとえば室内機2に近接した位置に、遮断装置(図示していない、たとえば第5遮断装置、第6遮断装置とする)が設置されている場合は、式(2-2)のM2を0[kg]として、距離L3を計算するとよい。また、式(2-1)の右辺~(2-3)の右辺の定数0.8は限界充填冷媒量である。このとき、R32は0.800[kg/m]、HFO1234yfは約0.759[kg/m]である。また、R32/HFO混合系においては、たとえばR32/HFO1234yfの組成比を、R32が44%/HFO1234yfが56%とした場合は約0.777[kg/m]である。さらに、R32が73%/HFO1234yfが27%とした場合は約0.790[kg/m]である。そして、プロパンは約0.105[kg/m]である。
 以上のような計算に基づいて定めた位置に第1遮断装置42、第2遮断装置43、第3遮断装置37、第4遮断装置38を設置することで、室外機1、主管4、枝管5、室内機2から非空調空間8に冷媒が漏れた際に、室内空間7へ拡散する冷媒漏洩量を、室内空間7が許容出来る冷媒漏洩量の限界値以下(限界冷媒充填量以下)に抑えることができる。
 以上のように、実施の形態1の空気調和装置によれば、冷媒回路からの冷媒漏れについて、たとえば濃度検出装置39が天井裏等の非空調空間8にて検出した冷媒濃度に基づいて、遮断弁制御装置40が冷媒が漏れたものと判断すると、第1遮断装置42、第2遮断装置43、第3遮断装置37、第4遮断装置38により冷媒の流れを遮断させるようにしたので、非空調空間8における冷媒漏れを最小限に抑え、空調空間への冷媒の拡散を防ぎ、安全性を大きく向上させるだけでなく、環境負荷を小さくできる。
 また、室外機1、主管4における冷媒量、室内機2、枝管5における冷媒量と室内空間7の容積とに基づいて、遮断装置を配置する配管を定めるので、非空調空間8から室内空間7に対する冷媒漏れの影響を考慮した上で、効率よく遮断装置を配置することができる。また、分岐装置16から主管4、枝管5までの長さを、その間の冷媒量、室内空間7の容積、冷媒充填量限界値に基づいて定めるので、非空調空間8から室内空間7に対する冷媒漏れの影響を考慮した位置に遮断装置を配置することができる。
実施の形態2.
 図8は、本発明の実施の形態2に係る空気調和装置の設置例を示す概略図である。図8に基づいて、本実施の形態における空気調和装置の設置例について説明する。この空気調和装置は、冷媒を循環させ、冷凍サイクルを利用した空気調和を行うものである。そして、各室内機が冷房または暖房を自由に選択できるものである。図8及び以下の図において、図1、図2等と同じ符号を付している機器等については、実施の形態1で説明したことと同様の動作等を行う。
 本実施の形態に係る空気調和装置は、図8に示すように、熱源機である1台の室外機1と、複数台の室内機2とを有している。そして、室外機1と室内機2との間に開閉装置23、24(図9参照)を備えた中継装置3(以下、中継装置3と称する)を有している。中継装置3は、暖房を行う室内機2に対してガス冷媒を供給し、冷房を行う室内機2に対して液冷媒を供給するための冷媒の流れを制御する。ここで、本実施の形態では、中継装置3の近傍に、実施の形態1で説明した第1遮断装置42、第2遮断装置43、第3遮断装置37及び第4遮断装置38を備えている。
 図8に示すように、室外機1と中継装置3とを2本の主管4を用い、中継装置3と各室内機2とを2本の枝管5を用いてそれぞれ接続することで施工が容易となっている。また、図8では、中継装置3は、実施の形態1の分岐装置16と同様に非空調空間8に設置されているが、たとえばエレベーター等がある共用空間等に設置することも可能である。
 図9は実施の形態2に係る空気調和装置200の構成の一例を示す図である。図9に基づいて、空気調和装置200の詳しい構成について説明する。図9に示すように、室外機1と中継装置3とが主管4で接続されている。また、中継装置3と各室内機2とが枝管5で接続されている。
[室外機1]
 本実施の形態の室外機1は、実施の形態1と同様に、圧縮機10、四方弁等の冷媒流路切替装置11、熱源側熱交換器12、アキュムレーター19とを搭載している。また、第1接続配管4a、第2接続配管4b、第1逆止弁13a、第1逆止弁13b、第1逆止弁13c、及び、第1逆止弁13dを設けている。第1接続配管4a、第2接続配管4b、第1逆止弁13a、第1逆止弁13b、第1逆止弁13c、及び、第1逆止弁13dを設けることで、室内機2の要求する運転に関わらず、中継装置3に流入させる冷媒の流れを一定方向にすることができる。
[室内機2]
 本実施の形態の各室内機2の構成は、実施の形態1で説明した室内機2と同様の構成である。ここで、実施の形態1で説明した絞り装置25については、第1絞り装置25として説明する。
[中継装置3]
 中継装置3は、気液分離器14、第2絞り装置15、第3絞り装置27、4つの第1開閉装置23(23a~23d)、4つの第2開閉装置24(24a~24d)、4つの第2逆止弁21(21a~21d)、4つの第3逆止弁22(22a~22d)を有している。
 気液分離器14は、気液分離器14は、中継装置3の入口に、第1遮断装置42を介して設置されている。そして、たとえば、後述するように冷房主体運転モードにおいて、室外機1で生成された高圧の二相冷媒を、液冷媒とガス冷媒とに分離する。液冷媒は図9の紙面上において下側の配管を流れて室内機2に冷熱を供給することとなる。また、ガス冷媒は図9において上側の配管を流れて室内機2に温熱を供給することとなる。
 第2絞り装置15は、減圧弁や開閉弁としての機能を有し、液冷媒を減圧させて所定の圧力に調整したり、液冷媒の流路を開閉するものである。第2絞り装置15は、液冷媒が流入する、図9の紙面上における気液分離器14の下側の配管に設けられている。第2絞り装置15は、開度が可変に制御可能なもの、たとえば電子式膨張弁等で構成するとよい。
 第3絞り装置27は、減圧弁や開閉弁としての機能を有し、後述する全暖房運転モードにおいて、冷媒流路を開閉して冷媒をバイパスさせる等するものである。また、後述する暖房主体運転モードにおいては、室内側負荷に応じ、バイパス液流量を調整するものである。第3絞り装置27は、中継装置3の出口側に導通する低圧配管と、第2絞り装置15の出口側に導通する高圧配管の間に設置されている。第3絞り装置27についても、開度が可変に制御可能なもの、たとえば電子式膨張弁等で構成するとよい。
 4つの第1開閉装置23(第1開閉装置23a~第1開閉装置23d)は、たとえば電磁弁等で構成されており、室内機2に供給される高温・高圧のガス冷媒の流路を開閉するものである。第1開閉装置23は、室内機2の設置台数に応じた個数(ここでは4つ)を設ける。第1開閉装置23は、気液分離器14に接続されているガス管と接続されている。ここで、各室内機2に対応させて、紙面下側から第1開閉装置23a、第1開閉装置23b、第1開閉装置23c、第1開閉装置23dとして図示している。
 4つの第2開閉装置24(第2開閉装置24a~第2開閉装置24d)は、たとえば電磁弁等で構成されており、室内機2から流出した低圧・低温のガス冷媒の流路を開閉するものである。第2開閉装置24は、室内機2の設置台数に応じた個数(ここでは4つ)を設ける。第2開閉装置24は、中継装置3の出口側に導通する低圧配管と接続されている。ここで、各室内機2に対応させて、紙面下側から第2開閉装置24a、第2開閉装置24b、第2開閉装置24c、第2開閉装置24dとして図示している。
 4つの第2逆止弁21(第2逆止弁21a~第2逆止弁21d)は、冷房用の高圧液冷媒を冷房を行う室内機2に流入させるための弁である。室内機2の設置台数に応じた個数(ここでは4つ)を設ける。第2逆止弁21は、第2絞り装置15の冷媒流出口側の配管と接続されている。ここで、各室内機2に対応させて、紙面下側から第2逆止弁21a、第2逆止弁21b、第2逆止弁21c、第2逆止弁21dとして図示している。
 4つの第3逆止弁22(第3逆止弁22a~第3逆止弁22d)は、たとえば室内機2側からの冷媒を流し、逆流を防止するための弁である。室内機2の設置台数に応じた個数(ここでは4つ)を設ける。第3逆止弁22は、図9における紙面上の下側に位置する冷媒流路側に設けられており、第2絞り装置15の冷媒流出口側配管と接続されている。ここで、各室内機2に対応させて、紙面下側から第3逆止弁22a、第3逆止弁22b、第3逆止弁22c、第3逆止弁22dとして図示している。
 また、中継装置3には、圧力検出手段として、第1圧力センサー33と、第2圧力センサー34を設けている。第1圧力センサー33は、第2絞り装置15の入口側、第2圧力センサー34は第2絞り装置15の出口側に設けられている。第1圧力センサー33は、高圧冷媒の圧力を検出するものであり、第2圧力センサー34は、冷房主体運転モード時、第2絞り装置15出口の液冷媒の中間圧力を検出するものである。
 次に空気調和装置200が実行する運転モードについて説明する。この空気調和装置100は、各室内機2からの指示に基づいて、その室内機2で冷房運転あるいは暖房運転が可能になっている。このため、空気調和装置200は、室内機2の全部で同一運転をすることができるとともに、室内機2のそれぞれで異なる運転をすることができるようになっている。
 空気調和装置200が実行する運転モードには、動作している室内機2の全てが冷房運転を実行する全冷房運転モード、駆動している室内機2の全てが暖房運転を実行する全暖房運転モード、冷房負荷の方が大きい冷房暖房混在運転モードとしての冷房主体運転モード、及び、暖房負荷の方が大きい冷房暖房混在運転モードとしての暖房主体運転モードがある。以下に、各運転モードについて説明する。
[全冷房運転モード]
 図10は、空気調和装置200の全冷房運転モード時における冷媒の流れを示す冷媒回路図である。この図10では、利用側熱交換器26a及び利用側熱交換器26bでのみ冷熱負荷が発生している場合を例に全冷房運転モードについて説明する。ここで図10では、太線で表された配管が冷媒の流れる配管を示しており、冷媒の流れ方向を実線矢印で示している。
 図10に示す全冷房運転モードの場合、室外機1では、冷媒流路切替装置11を、圧縮機10から吐出された熱源側冷媒を熱源側熱交換器12へ流入させるように切り替える。低温・低圧の冷媒が圧縮機10によって圧縮され、高温・高圧のガス冷媒となって吐出される。圧縮機10から吐出された高温・高圧のガス冷媒は、冷媒流路切替装置11を介して熱源側熱交換器12に流入する。そして、熱源側熱交換器12で室外空気に放熱しながら高圧液冷媒となる。熱源側熱交換器12から流出した高圧液冷媒は、逆止弁13aを通って、室外機1から流出し、高圧冷媒側の主管4を通って、中継装置3に流入する。中継装置3に流入した高圧液冷媒は、第1遮断装置42、気液分離器14、第2絞り装置15、第2逆止弁21、第3遮断装置37、枝管5を経由した後に、第1絞り装置25で膨張させられ、低温・低圧の二相冷媒となる。この二相冷媒は、蒸発器として作用する利用側熱交換器26aと、利用側熱交換器26bのそれぞれに流入し、室内空気から吸熱することで、室内空気を冷却しながら、低温・低圧のガス冷媒となる。利用側熱交換器26aと、利用側熱交換器26bから流出したガス冷媒は、枝管5、第4遮断装置38、第2開閉装置24、第2遮断装置43を経由して、中継装置3から流出する。そして、低圧冷媒側の主管4を通って再び室外機1へ流入する。室外機1に流入した冷媒は、逆止弁13dを通って、冷媒流路切替装置11、アキュムレーター19を経由して、圧縮機10へ再度吸入される。
 ここで、絞り装置25aは、第1温度センサー31aで検出された温度と第2温度センサー32bで検出された温度との差として得られるスーパーヒート(過熱度)が一定になるように開度が制御される。同様に、絞り装置25bは、第1温度センサー31bで検出された温度と第2温度センサー32bで検出された温度との差として得られるスーパーヒートが一定になるように開度が制御される。
 また、冷熱負荷がない、利用側熱交換器26cと、利用側熱交換器26dとにおいては、冷媒を流す必要が無く、それぞれに対応する絞り装置25cと、絞り装置25dは閉となっている。そして、利用側熱交換器26cや利用側熱交換器26dから冷熱負荷の発生があった場合には、絞り装置25cや、絞り装置25dを開放して、冷媒を循環させればよい。絞り装置25cや、絞り装置25dの開度は、上述した絞り装置25aや、絞り装置25bと同様に、第1温度センサー31c、31dと、第2温度センサー32c、32dで検出された温度との差として得られるスーパーヒート(過熱度)が一定になるように開度が制御される。
[全暖房運転モード]
 図11は、空気調和装置200の全暖房運転モード時における冷媒の流れを示す冷媒回路図である。この図11では、利用側熱交換器26a及び利用側熱交換器26bでのみ冷熱負荷が発生している場合を例に全暖房運転モードについて説明する。なお、図11では、太線で表された配管が冷媒の流れる配管を示しており、冷媒の流れ方向を実線矢印で示している。
 図11に示す全暖房運転モードの場合、室外機1では、冷媒流路切替装置11を、圧縮機10から吐出された熱源側冷媒を、熱源側熱交換器12を経由させずに中継装置3へ流入させるように切り替える。低温・低圧の冷媒が圧縮機10によって圧縮され、高温・高圧のガス冷媒となって吐出される。圧縮機10から吐出された高温・高圧のガス冷媒は、冷媒流路切替装置11、逆止弁13bを通り、室外機1から流出する。室外機1から流出した高温・高圧のガス冷媒は、高圧冷媒側の主管4を通って中継装置3に流入する。中継装置3に流入した高温・高圧のガス冷媒は、第1遮断装置42、気液分離器14、第1開閉装置23、第4遮断装置38、枝管5を経由した後に、凝縮器として作用する利用側熱交換器26aと、利用側熱交換器26bのそれぞれに流入し、室内空気に放熱することで、室内空間を暖房しながら、液冷媒となる。利用側熱交換器26aと、利用側熱交換器26bから流出した液冷媒は、第1絞り装置25で膨張させられて、枝管5、第3遮断装置37、第3逆止弁22、第3絞り装置27、第2遮断装置43、低圧冷媒側主管4を通って再び室外機1へ流入する。室外機1に流入した冷媒は、逆止弁13cを通って、熱源側熱交換器12で室外空気から吸熱しながら、低温・低圧のガス冷媒となり、冷媒流路切替装置11及びアキュムレーター19を介して圧縮機10へ再度吸入される。
 ここで、絞り装置25aは、第1圧力センサー33で検出された圧力を飽和温度に換算した値と、第1温度センサー31aで検出された温度との差として得られるサブクール(過冷却度)が一定になるように開度が制御される。同様に、絞り装置25bは、第1圧力センサー33で検出された圧力を飽和温度に換算した値と、第1温度センサー31bで検出された温度との差として得られるサブクール(過冷却度)が一定になるように開度が制御される。
 また、温熱負荷がない、利用側熱交換器26cと、利用側熱交換器26dにおいては、冷媒を流す必要が無く、それぞれに対応する絞り装置25cと、絞り装置25dは閉となっている。そして、利用側熱交換器26cや利用側熱交換器26dから温熱負荷の発生があった場合には、絞り装置25cや、絞り装置25dを開放して、冷媒を循環させればよい。絞り装置25cや、絞り装置25dの開度は、上述した絞り装置25aや、絞り装置25bと同様に、圧力センサー33で検出された圧力を飽和温度に換算した値と、第1温度センサー31c、31dで検出された温度との差として得られるサブクール(過冷却度)が一定になるように開度が制御される。
[冷房主体運転モード]
 図12は、空気調和装置200の冷房主体運転モード時における冷媒の流れを示す冷媒回路図である。この図12では、利用側熱交換器26aで冷熱負荷が発生し、利用側熱交換器26bで温熱負荷が発生している場合を例に冷房主体運転モードについて説明する。なお、図12では、太線で表された配管が冷媒の循環する配管を示しており、冷媒の流れ方向を実線矢印で示している。
 図12に示す冷房主体運転モードの場合、室外機1では、第1冷媒流路切替装置11を、圧縮機10から吐出された熱源側冷媒を熱源側熱交換器12へ流入させるように切り替える。低温・低圧の冷媒が圧縮機10によって圧縮され、高温・高圧のガス冷媒となって吐出される。圧縮機10から吐出された高温・高圧のガス冷媒は、冷媒流路切替装置11を介して熱源側熱交換器12に流入する。そして、熱源側熱交換器12で室外空気に放熱しながら二相冷媒となる。熱源側熱交換器12から流出した冷媒は、逆止弁13a、高圧冷媒側の主管4を通って、中継装置3に流入する。中継装置3に流入した二相冷媒は、気液分離器14で高圧ガス冷媒と高圧液冷媒に分離される。この高圧ガス冷媒は、第1開閉装置23b、第4遮断装置38b、枝管5を経由した後に、凝縮器として作用する利用側熱交換器26bに流入し、室内空気に放熱することで、室内空間を暖房しながら、液冷媒となる。また、利用側熱交換器26bから流出した液冷媒は、第1絞り装置25bで膨張させられて、枝管5、第3遮断装置37b、第3逆止弁22bを経由する。第3逆止弁22bを通ってきた液冷媒は、気液分離器14で分離された後に第2絞り装置にて中間圧(たとえば、高圧-0.3MPa程度)まで膨張させられた中間圧液冷媒と合流する。合流した液冷媒は、第2逆止弁21a、第3遮断装置37a、枝管5を経由した後に、第1絞り装置25aで膨張させられ、低温・低圧の二相冷媒となる。この二相冷媒は、蒸発器として作用する利用側熱交換器26aに流入し、室内空気から吸熱することで、室内空気を冷却しながら、低温・低圧のガス冷媒となる。利用側熱交換器26aから流出したガス冷媒は、枝管5、第4遮断装置38a、第2開閉装置24a、第2遮断装置43を経由して、中継装置3から流出し、低圧冷媒側主管4を通って再び室外機1へ流入する。室外機1に流入した冷媒は、逆止弁13dを通って、冷媒流路切替装置11、アキュムレーター19を経由して、圧縮機10へ再度吸入される。
 このとき、第1絞り装置25bは、第1圧力センサー33で検出された圧力を飽和温度に換算した値と、第1温度センサー31bで検出された温度との差として得られるサブクール(過冷却度)が一定になるように開度が制御される。一方、第1絞り装置25aは、第1温度センサー31aで検出された温度と第2温度センサー32bで検出された温度との差として得られるスーパーヒート(過熱度)が一定になるように開度が制御される。
 また、第2絞り装置15は、第1圧力センサー33で検出された圧力と、第2圧力センサー34で検出された圧力との圧力差が所定の圧力差となるように(たとえば第1圧力センサー33-第2圧力センサー34≒0.3MPaなど)、開度が制御される。
 ここで、熱負荷がない、利用側熱交換器26cと、利用側熱交換器26dにおいては、冷媒を流す必要が無く、それぞれに対応する絞り装置25cと、絞り装置25dは閉となっている。そして、利用側熱交換器26cや利用側熱交換器26dから熱負荷の発生があった場合には、絞り装置25cや、絞り装置25dを開放して、冷媒を循環させればよい。
[暖房主体運転モード]
 図13は、空気調和装置200の暖房主体運転モード時における冷媒の流れを示す冷媒回路図である。この図13では、利用側熱交換器26aで冷熱負荷が発生し、利用側熱交換器26bで温熱負荷が発生している場合を例に暖房主体運転モードについて説明する。なお、図13では、太線で表された配管が冷媒の循環する配管を示しており、冷媒の流れ方向を実線矢印で示している。
 図13に示す暖房主体運転モードの場合、室外機1では、冷媒流路切替装置11を、圧縮機10から吐出された熱源側冷媒を、熱源側熱交換器12を経由させずに中継装置3へ流入させるように切り替える。低温・低圧の冷媒が圧縮機10によって圧縮され、高温・高圧のガス冷媒となって吐出される。圧縮機10から吐出された高温・高圧のガス冷媒は、冷媒流路切替装置11、逆止弁13bを通り、室外機1から流出する。室外機1から流出した高温・高圧のガス冷媒は、高圧冷媒側の主管4を通って中継装置3に流入する。中継装置3に流入した高温・高圧のガス冷媒は、第1遮断装置42、気液分離器14、第1開閉装置23b、第4遮断装置38b、枝管5を経由した後に、凝縮器として作用する利用側熱交換器26bに流入し、室内空気に放熱することで、室内空間を暖房しながら、液冷媒となる。利用側熱交換器26bから流出した液冷媒は、第1絞り装置25bで膨張させられて、枝管5、第3遮断装置37b、第3逆止弁22bを経由して、第2逆止弁21aと、バイパスとして使用する第3絞り装置27に分岐される。第2逆止弁21aに流れた液冷媒は、第3遮断装置37a、枝管5を経由した後に、第1絞り装置25aで膨張させられ、低温・低圧の二相冷媒となる。この二相冷媒は、蒸発器として作用する利用側熱交換器26aに流入し、室内空気から吸熱することで、室内空気を冷却しながら、低温・低圧のガス冷媒となる。利用側熱交換器26aから流出したガス冷媒は、枝管5、第4遮断装置38a、第2開閉装置24aを経由した後に、第3絞り装置27出口のバイパスされた液冷媒と合流し、第2遮断装置43を経由して、中継装置3から流出し、低圧冷媒側主管4を通って再び室外機1へ流入する。室外機1に流入した冷媒は、逆止弁13cを通って、熱源側熱交換器12で室外空気から吸熱しながら、低温・低圧のガス冷媒となり、冷媒流路切替装置11及びアキュムレーター19を介して圧縮機10へ再度吸入される。
 このとき、第1絞り装置25bは、第1圧力センサー33で検出された圧力を飽和温度に換算した値と、第1温度センサー31bで検出された温度との差として得られるサブクール(過冷却度)が一定になるように開度が制御される。一方、第1絞り装置25aは、第1温度センサー31aで検出された温度と第2温度センサー32bで検出された温度との差として得られるスーパーヒート(過熱度)が一定になるように開度が制御される。
 また、第3絞り装置27は、第1圧力センサー33で検出された圧力と、第2圧力センサー34で検出された圧力との圧力差が所定の圧力差となるように(たとえば第1圧力センサー33-第2圧力センサー34≒0.3MPaなど)、開度が制御される。
 ここで、熱負荷がない、利用側熱交換器26cと、利用側熱交換器26dにおいては、冷媒を流す必要が無く、それぞれに対応する絞り装置25cと、絞り装置25dは閉となっている。そして、利用側熱交換器26cや利用側熱交換器26dから熱負荷の発生があった場合には、絞り装置25cや、絞り装置25dを開放して、冷媒を循環させればよい。
 たとえば、室外機1の冷媒量について、室外機容量が5~8HPまでを8.0kg、9~14HPまでを10.5kg、15~18HPまでを11.5kg、19~20HPまでを13.0kg、21~28HPまでを18.0kg、29HP以上は20.0kg以上とする。室内機2の冷媒量は10HP以下を3.0kg、10~25HPを5.0kg、25~35HPを9.0kg、36HP以上を14.0kgとする。また、中継装置3の冷媒量について、室外機容量が12HP以下を3.0kg、13HP~18HPを5.0kg、19HP~28HPを9.5kg、29HP以上を13.0kgする。
 中継装置3におけるロウ付け不良などにより、冷媒が非空調空間8に漏洩して、室内空間7にも拡散した場合の許容できる冷媒漏洩量について説明する。室外機容量に対応した室外機1の冷媒量をM1[kg]、室内機2の合計容量に対応した室内機2の冷媒量をM2[kg]、室外機容量に対応した中継装置3の冷媒量をM3、室内機台数(分岐数)をnとする。また、高圧側の主管4の直径をD1[m]、液側の枝管5の直径をD2[m]、主管4長さ(室外機1と中継装置3入口までの距離)をL1[m]、枝管5の平均長さ(中継装置3出口から室内機2入口までの枝管5の距離)をL2[m]とする。さらに、室内空間7の容積をV2[m]、冷媒液密度をρ≒981[kg/m](たとえば、R32冷媒の外気平均温度を20℃とした場合の液密度としており、使用する冷媒により異なる。)とすると、式(3-1)~式(3-3)がいえる(単位はすべて[kg])。そして、式(1-1)を満たす空気調和装置を構成しようとすると、第1遮断装置42と第2遮断装置43が必要となる。また、式(1-2)を満たす空気調和装置を構成しようとすると、第3遮断装置37と第4遮断装置38の設置が必要となる。そして、式(1-3)を満たす空気調和装置を構成しようとすると、第1遮断装置42、第2遮断装置43、第3遮断装置37、第4遮断装置38が必要となる。なお、第1遮断装置42と第2遮断装置43を主管4に設ける場合において、冷媒漏洩時に室外機1にある逆止弁13により室外機1からの冷媒漏洩は抑制出来るが、逆止弁13の漏れ量は差圧1.5[MPa]で約1.0×10-5と、第2遮断装置43の漏れ量である差圧5.0[MPa]で1.0・10-66以下よりも大きく、さらに全暖房運転モードでは、第2遮断装置43と室外機1の間の主管4に冷媒が滞留しているため、室外機1と主管4からの冷媒漏洩を確実に防ぐために第2遮断装置43は必要となる。
 M1+(D1/2)×π×ρ×L1<0.8×V2         …(3-1)
 M2+ M3+( D2/2)×π×ρ×L2<0.8×V2     …(3-2)
 式(3-1)左辺+式(3-2)左辺 <0.8×V2       …(3-3)
 たとえば、室外機容量が16HP、n=8、D1=20.22(外径22.22、肉厚1.0)[mm]、L1=50.0[m]、D2=7.92(外径9.52、肉厚0.8)[mm]、V2=25.0[m]の場合、式(3-1)右辺~式(3-3)右辺より、限界の冷媒充填量は20.0[kg]となる。式(3-2)を満足するように式(3-2)の左辺のL2を計算すると、L2<25.8[m]である。そのL2を使用して中継装置3と、枝管5と、室内機2の合計冷媒量を計算すると、式(3-2)の左辺より約19.98[kg]<20.0[kg]となる。また、主管4と室外機1の合計冷媒量は式(3-1)の左辺より約27.23[kg]>20.0[kg]となる。このため、空気調和装置の合計冷媒量は式(3-3)の左辺より47.21[kg]>20.0[kg]となる。主管4と室外機1の合計冷媒量が27.23[kg]>20.0[kg]となるため、室外機1と主管4側の遮断装置である第1遮断装置42と、第2遮断装置43が必要となる。一方、L2>25.8[m]となると、中継装置3と、枝管5と、室内機2の合計冷媒量は、式(3-2)の左辺より約20.02[kg]>20.0[kg]となるため、枝管5と室内機2側の遮断装置である第3遮断装置37、第4遮断装置38の設置も必要となる。
 また、室外機容量が16HP、n=8、D1=20.22(外径22.22、肉厚1.0)[mm]、L2=30.0[m]、D2=7.92(外径9.52、肉厚0.8)[mm]、V2=25.0[m]とする。式(3-1)の右辺~式(3-3)の右辺より、限界の冷媒充填量は20.0[kg]となる。式(3-1)を満足するように式(3-1)の左辺のL1を計算すると、L1<27.0[m]である。そのL1を使用して主管4と室外機1の合計冷媒量を計算すると、式(3-1)の左辺より約19.992[kg]<20.0[kg]となる。また、中継装置3と、枝管5と、室内機2の合計冷媒量は式(3-2)より約21.61[kg]>20.0[kg]となる。このため、空気調和装置の合計冷媒量は式(3-3)より41.602[kg]>20.0[kg]となる。中継装置3と、枝管5と、室内機2の合計冷媒量が式(3-2)左辺より約21.61[kg]>20.0[kg]であるため、枝管5に第3遮断装置37、第4遮断装置38の設置が必要となる。一方、L1>27.1[m]となると、主管4と室外機1の合計冷媒量は式(3-1)より約20.03[kg]>20.0[kg]となるため、主管4と室外機1側の遮断装置である第1遮断装置42と、第2遮断装置43の設置も必要となる。
 また、室外機容量が16HP、n=8、D1=20.22(外径22.22、肉厚1.0)[mm]、L1=25.0[m]、L2=15.0[m]、D2=7.92(外径9.52、肉厚0.8)[mm]、V2=25.0[m]の場合、式(3-1)の右辺~式(3-3)の右辺より、限界の冷媒充填量は20.0[kg]となる。主管4と室外機1の合計冷媒量が式(3-1)の左辺より約19.37[kg]<20.0[kg]で、中継装置3と、枝管4と、室内機2の合計冷媒量が式(3-2)より約15.81[kg]<20.0[kg]となる。このとき、空気調和装置の合計冷媒量は式(3-3)より35.18[kg]>20.0[kg]となるため、第1遮断装置42と、第2遮断装置43、もしくは第3遮断装置37と、第4遮断装置38のいずれかを設置する必要がある。そして、冷媒漏洩量に対する安全性をより高めるために、上記例に第1遮断装置42、第2遮断装置43、第3遮断装置37、第4遮断装置38の全てを設置してもよい。
 ここで、たとえば室内機2に近接した位置に、たとえば第5遮断装置、第6遮断装置が設置されている場合は、式(3-2)のM2を0[kg]として、枝管5と中継装置3の合計冷媒量を計算するとよい。また、式(3-1)の右辺~(3-3)の右辺の定数0.8は限界充填冷媒量である。このとき、R32は0.800[kg/m]、HFO1234yfは約0.759[kg/m]である。また、R32/HFO混合系においては、たとえばR32/HFO1234yfの組成比を、R32が44%/HFO1234yfが56%とした場合は約0.777[kg/m]である。さらに、R32が73%/HFO1234yfが27%とした場合は約0.790[kg/m]である。そして、プロパンは約0.105[kg/m]である。
 次に、第1遮断装置42、第2遮断装置43の設置位置、第3遮断装置37、第4遮断装置38の設置位置について説明する。第1遮断装置42および第2遮断装置43の設置長さ(遮断装置と中継装置3入口までの距離)をL3[m]、第3遮断装置37および第4遮断装置38の設置長さ(遮断装置と中継装置3入口までの距離)をL4[m]とすると式(4-1)~式(4-3)がいえる(単位はすべて[kg])。
そして、第1遮断装置42及び第2遮断装置43を設置しようとする場合は、式(2-1)を満たすL3[m]以内に第1遮断装置42、第2遮断装置43を設置する。
{(D1/2)×π×ρ×L3}+{M2+M3+( D2/2)×n×π×ρ×L2} 
                        <0.8×V2  …(4-1)
 たとえば、室外機容量が16HP、n=8、D1=20.22(外径22.22、肉厚1.0)[mm]、L2=20.0[m]、D2=7.92(外径9.52、肉厚0.8)[mm]、V2=25.0[m]であるとする。そして、主管4に第1遮断装置42、第2遮断装置43を設置しようとする場合、式(4-1)の右辺より、限界の冷媒充填量は20.0[kg]となり、式(4-1)を満足するように式(4-1)の左辺のL3を計算すると、L3<7.1[m]となる。このため、第1遮断装置42および、第2遮断装置43と分岐装置入口までの距離L3<7.1[m]となるように、第1遮断装置42および、第2遮断装置43を設置する必要がある。
また、第3遮断装置37、第4遮断装置38のみ設置しようとする場合は、式(4-2)を満たすL4[m]以内に第3遮断装置37および第4遮断装置38を設置する。
{(D1/2)×π×ρ×L1+M1}+M3+{(D2/2 )×n×π×ρ×L4} 
                        <0.8×V2  …(4-2)
 たとえば、室外機容量が16HP、n=8、D1=20.22(外径22.22、肉厚1.0)[mm]、L1=10.0[m]、D2=7.92(外径9.52、肉厚0.8)[mm]、V2=25.0[m]であるとする。そして、枝管4に第3遮断装置37と、第4遮断装置38が設置しようとする場合、式(4-2)の右辺より、限界の冷媒充填量は20.0[kg]となり、式(4-2)を満足するように式(4-2)の左辺のL4を計算すると、L4<0.9[m]となる。このため、第3遮断装置37および、第4遮断装置38と分岐装置入口までの距離L4<0.9[m]となるように、第3遮断装置37、第4遮断装置38を設置する必要がある。
 また、第1遮断装置42、第2遮断装置43、第3遮断装置37、第4遮断装置38を全て設置しようとする場合は、式(4-3)を満たすL3[m]以内に、第1遮断装置42と、第2遮断装置43を設置し、L4[m]以内に第3遮断装置37および第4遮断装置38を設置する。
 (D1/2)×π×ρ×L3+(D2/2)×n×π×ρ×L4
                        <0.8×V2  …(4-3)
 たとえば、室外機容量が16HP、n=8、D1=20.22(外径22.22、肉厚1.0)[mm]、L1=50.0[m]、L2=30.0[m]、D2=7.92(外径9.52、肉厚0.8)[mm]、V2=25.0[m]であるとする。そして、式(4-3)の右辺より、限界の冷媒充填量は20.0[kg]となり、式(4-1)の左辺{}で囲まれた第2項より、室内機2、中継装置3及び枝管5内の冷媒量は約21.61[kg]>20.0[kg]となる。また、式(4-2)の左辺{}で囲まれた第1項より、室外機1と主管4内の冷媒量は約27.23[kg]>20.0[kg]となる。主管4には第1遮断装置42と、第2遮断装置43、枝管に第3遮断装置37と、第4遮断装置38が必要となる。
 ここで、式(4-3)の左辺よりL3<29.2[m]の主管4に第1遮断装置42、および第2遮断装置43、L4<15.0[m]の枝管5に第3遮断装置37と、第4遮断装置38を設置すると、各遮断装置がそれぞれ接続されている配管内の冷媒量が、中継装置3と接続されている配管内と、中継装置3内の冷媒量が、約19.99[kg]<20.0[kg]となる。したがって、L3<29.2[m]の主管4に第1遮断装置42、および第2遮断装置43を設置し、L4<15.0[m]の枝管5に第3遮断装置37と、第4遮断装置38を設置すればよい。また、非空調空間8に各遮断装置を設置するため、算出されたL3の距離が非空調空間8を出て、室外空間6側となってしまう場合は、主管4に設置する第1遮断装置42、および第2遮断装置43の設置位置は、室外空間6から非空調空間8に入った直後の主管4から、中継装置3の間に設置するとよい。
 ここで、たとえば室内機2に近接した位置に、たとえば第5遮断装置、第6遮断装置が設置されている場合は、式(4-1)のM2を0[kg]として、距離L3を計算するとよい。また、式(4-1)の右辺~(4-3)の右辺の定数0.8は限界充填冷媒量である。このとき、R32は0.800[kg/m]、HFO1234yfは約0.759[kg/m]である。また、R32/HFO混合系においては、たとえばR32/HFO1234yfの組成比を、R32が44%/HFO1234yfが56%とした場合は約0.777[kg/m]である。さらに、R32が73%/HFO1234yfが27%とした場合は約0.790[kg/m]である。そして、プロパンは約0.105[kg/m]である。
 以上のような計算に基づいて定めた位置に第1遮断装置42、第2遮断装置43、第3遮断装置37、第4遮断装置38を設置することで、室外機1、主管4、枝管5、室内機2から非空調空間8に冷媒が漏れた際に、室内空間7へ拡散する冷媒漏洩量を、室内空間7が許容出来る冷媒漏洩量の限界値以下(限界冷媒充填量以下)に抑えることができる。
 以上のように、実施の形態2の空気調和装置によれば、実施の形態1と同様に、冷媒回路からの冷媒漏れについて、たとえば濃度検出装置39が天井裏等の非空調空間8にて検出した冷媒濃度に基づいて、遮断弁制御装置40が冷媒が漏れたものと判断すると、第1遮断装置42、第2遮断装置43、第3遮断装置37、第4遮断装置38により冷媒の流れを遮断させるようにしたので、非空調空間8における冷媒漏れを最小限に抑え、空調空間への冷媒の拡散を防ぎ、安全性を大きく向上させるだけでなく、環境負荷を小さくできる。
 また、室外機1、主管4、中継装置3、室内機2、枝管5における冷媒量と室内空間7の容積とに基づいて、遮断装置を配置する配管を定めるので、非空調空間8から室内空間7に対する冷媒漏れの影響を考慮した上で、効率よく遮断装置を配置することができる。また、中継装置3から主管4、枝管5までの長さを、その間の冷媒量、室内空間7の容積、冷媒充填量限界値に基づいて定めるので、非空調空間8から室内空間7に対する冷媒漏れの影響を考慮した位置に遮断装置を配置することができる。
 ここで、実施の形態1と、実施の形態2の冷媒としては、地球温暖化係数が小さい冷媒(たとえば、HFO1234yf、R32、HC等)、また、可燃性冷媒(たとえば、HFO1234yf、HFO1234ze、R32、R32とHFO1234yfと含む混合冷媒、前述した冷媒が少なくとも一成分含む混合冷媒及びHC等)をビル用マルチエアコンに冷媒として用いることができる。
 以上説明したような構成を採用した空気調和装置100と、空気調和装置200においては、冷媒回路からの冷媒漏れを検出することが可能となり、冷媒回路に限界とされる充填冷媒量が、R32は0.800[kg/m]、HFO1234yfは約0.759[kg/m]、R32/HFO混合系においては、たとえばR32/HFO1234yfの組成比を、R32が44%/HFO1234yfが56%とした場合は約0.777[kg/m]、R32が73%/HFO1234yfが27%とした場合は約0.790[kg/m]、プロパンは約0.105[kg/m]以上封入されて、非空調空間8に冷媒が漏洩した場合、漏洩量を小さくするための遮断装置を設け、非空調空間8と室内空間7に冷媒が漏洩することを未然に防げるといった、安全性を大きく向上させたものとなる。 
 1 室外機、2 室内機、2a 室内機、2b 室内機、2c 室内機、2d 室内機、3 中継装置(分岐装置)、4 4a、4b 主管、5 枝管、6 室外空間、7 室内空間、8 非空調空間、9 建物、10 圧縮機、11 冷媒流路切替装置、12 熱源側熱交換器、13 第1逆止弁、13a 第1逆止弁、13b 第1逆止弁、13c 第1逆止弁、13d 第1逆止弁、14 気液分離器、15 第2絞り装置、16 分岐装置、17 冷媒配管、19 アキュムレーター、21 第2逆止弁、21a 第2逆止弁、21b 第2逆止弁、21c 第2逆止弁、21d 第2逆止弁、22 第3逆止弁、22a 第3逆止弁、22b 第3逆止弁、22c 第3逆止弁、22d 第3逆止弁、23 第1開閉装置、23a 第1開閉装置、23b 第1開閉装置、23c 第1開閉装置、23c 第1開閉装置、23d 第1開閉装置、24 第2開閉装置、24a 第2開閉装置、24b 第2開閉装置、24c 第2開閉装置、24d 第2開閉装置、25 第1絞り装置、25a 第1絞り装置、25b 第1絞り装置、25c 第1絞り装置、25d 第1絞り装置、26 利用側熱交換器、26a 利用側熱交換器、26b 利用側熱交換器、26c 利用側熱交換器、26d 利用側熱交換器、27 第3絞り装置、31 第1温度センサー、31a 第1温度センサー、31b 第1温度センサー、32 第2温度センサー、32a 第2温度センサー、32b 第2温度センサー、32c 第2温度センサー、32d 第2温度センサー、33 第1圧力センサー、34 第2圧力センサー、37 第3遮断装置、37a 第3遮断装置、37b 第3遮断装置、37c 第3遮断装置、37d 第3遮断装置、38 第4遮断装置、38a 第4遮断装置、38b 第4遮断装置、38c 第4遮断装置、38d 第4遮断装置、39 濃度検出装置、40 遮断弁制御装置、 41 濃度算出装置、42 第1遮断装置、43 第2遮断装置、100 空気調和装置、200 空気調和装置。

Claims (17)

  1.  圧縮機及び熱源側熱交換器を有する室外機と、
     負荷側絞り装置及び負荷側熱交換器を有して空調空間の空気調和を行う複数の室内機と、
     前記室外機とは複数の主管で配管接続し、各室内機とは複数の枝管で配管接続して、前記主管側からの冷媒を分岐して前記枝管に流し、前記枝管側からの冷媒を合流して前記主管に流す分岐装置と、
     前記空調空間と異なる空間であり前記冷媒が漏れると前記空調空間に前記冷媒が拡散する可能性がある位置関係にある非空調空間に設置した冷媒濃度検出装置と、
     前記主管側において前記室外機と前記分岐装置との間の流路を遮断するおよび/または前記枝管側において前記室内機と前記分岐装置との間の流路を遮断する遮断装置と、
     前記冷媒濃度検出装置の検出に基づいて前記冷媒が漏洩したものと判断すると、前記遮断装置に前記冷媒の流路を遮断させる制御を行う制御装置と
    を備えることを特徴とする空気調和装置。
  2.  前記分岐装置を前記非空調空間に設置し、
     前記主管内の冷媒量を主管封入冷媒量W1[kg]、前記枝管内の冷媒量を枝管封入冷媒量W2[kg]、前記室外機内の冷媒量をM1[kg]、前記室内機内の冷媒量をM2[kg]としたときに、
     前記主管封入冷媒量W1と前記室外機内の冷媒量M1との和を前記空調空間の容積V[m]で除した値(W1+M1)/Vと、前記枝管封入冷媒量W2と前記室内機内の冷媒量M2との和を前記空調空間の容積V[m]で除した値(W2+M2)/Vとが、ともに所定の冷媒充填量限界値B[kg/m]以上であって、前記主管側および前記枝管側に前記遮断装置を備えたことを特徴とする請求項1に記載の空気調和装置。
  3.  前記分岐装置を前記非空調空間に設置し、
     前記主管内の冷媒量を主管封入冷媒量W1[kg]、前記枝管内の冷媒量を枝管封入冷媒量W2[kg]、前記室外機内の冷媒量をM1[kg]、前記室内機内の冷媒量をM2[kg]としたときに、
     前記主管封入冷媒量W1と前記室外機内の冷媒量M1との和を前記空調空間の容積V[m]で除した値(W1+M1)/V又は前記枝管封入冷媒量W2と前記室内機内の冷媒量M2との和を前記空調空間の容積V[m]で除した値(W2+M2)/Vのいずれか一方が所定の冷媒充填量限界値B[kg/m]以上であって、前記冷媒充填量限界値B[kg/m]以上である側の配管を遮断するための前記遮断装置を備えたことを特徴とする請求項1に記載の空気調和装置。
  4.  前記分岐装置を前記非空調空間に設置し、
     前記主管内の冷媒量を主管封入冷媒量W1[kg]、前記枝管内の冷媒量を枝管封入冷媒量W2[kg]、前記室外機内の冷媒量をM1[kg]、前記室内機内の冷媒量をM2[kg]としたときに、
     前記主管封入冷媒量W1と前記室外機内の冷媒量M1との和を前記空調空間の容積V[m]で除した値(W1+M1)/Vと、前記枝管封入冷媒量W2と前記室内機内の冷媒量M2との和を前記空調空間の容積V[m]で除した値(W2+M2)/Vとが、ともに所定の冷媒充填量限界値B[kg/m]以下であり、かつ、前記(W1+M1)/Vと前記(W2+M2)/Vの和が前記冷媒充填量限界値B[kg/m]以上であって、前記主管側又は前記枝管側のいずれかに前記遮断装置を備えたことを特徴とする請求項1に記載の空気調和装置。
  5.  前記分岐装置は、前記室内機のうち、暖房を行う前記室内機に気体の冷媒を供給し、前記室内機のうち、冷房を行う前記室内機に液体の冷媒を供給するための気液分離器及び開閉装置を有する中継装置であり、
     前記中継装置内の冷媒量をM3[kg]としたときに、前記(W2+M2)/Vの代わりに、前記枝管封入冷媒量W2、前記室内機内の冷媒量M2及び前記中継装置内の冷媒量M3の和を前記空調空間の容積V[m]で除した値(W2+M2+M3)/Vとすることを特徴とする請求項2~4のいずれかに記載の空気調和装置。
  6.  前記室内機に近接した位置にさらに遮断装置を備え、前記室内機内の冷媒量M2を0[kg]とすることを特徴とする請求項2~5のいずれかに記載の空気調和装置。
  7.  前記主管側の遮断装置と前記分岐装置との間の前記主管の長さが、前記主管側の遮断装置と前記分岐装置との間の前記主管における冷媒量W3[kg]を、前記空調空間の容積V[m]で除した値W3/Vが、所定の冷媒充填量限界値B[kg/m]以下となるようにし、
     前記枝管側の遮断装置と前記分岐装置との間の前記枝管の長さが、前記枝管側の遮断装置と前記分岐装置との間の前記枝管における冷媒量W4[kg]を、前記空調空間の容積V[m]で除した値W4/Vが、所定の冷媒充填量限界値B[kg/m]以下となるようにしたことを特徴とする請求項1、2又は6に記載の空気調和装置。
  8.  前記主管側の遮断装置と前記分岐装置との間の前記主管の長さが、前記主管側の遮断装置と前記分岐装置との間の前記主管における冷媒量W3[kg]を、前記空調空間の容積V[m]で除した値W3/Vが、所定の冷媒充填量限界値B[kg/m]以下となるようにし、
     前記枝管側の遮断装置と前記分岐装置との間の前記枝管の長さが、前記枝管側の遮断装置と前記分岐装置との間の前記枝管における冷媒量W4[kg]と前記中継装置内の冷媒量をM3[kg]との和を、前記空調空間の容積V[m]で除した値(W4+M3)/Vが、所定の冷媒充填量限界値B[kg/m]以下となるようにしたことを特徴とする請求項5又は請求項5に係る請求項6に記載の空気調和装置。
  9.  前記主管側の遮断装置と前記分岐装置との間の前記主管の長さは、前記主管側の遮断装置と前記分岐装置との間の前記主管における冷媒量W3[kg]、前記枝管内の冷媒量W2[kg]及び前記室内機内の冷媒量M2[kg]の和を、前記空調空間の容積V[m]で除した値(W3+W2+M2)/Vが所定の冷媒充填量限界値B[kg/m]以下となるようにしたことを特徴とする請求項1、3、4又は6に記載の空気調和装置。
  10.  前記主管側の遮断装置と前記分岐装置との間の前記主管における冷媒量W3[kg]、前記枝管内の冷媒量W2[kg]、前記室内機内の冷媒量M2[kg]及び前記中継装置内の冷媒量をM3[kg]の和を、前記空調空間の容積V[m]で除した値(W3+W2+M2+M3)/Vが所定の冷媒充填量限界値B[kg/m]以下となるようにしたことを特徴とする請求項5又は請求項5に係る請求項6に記載の空気調和装置。
  11.  前記枝管側の遮断装置と前記分岐装置との間の前記枝管の長さは、前記枝管側の遮断装置と前記分岐装置との間の前記枝管における冷媒量W4[kg]、前記主管内の冷媒量W1[kg]及び前記室外機内の冷媒量M1[kg]の和を前記空調空間の容積V[m]で除した値(W4+W1+M1)/Vが、所定の冷媒充填量限界値B[kg/m]以下となるようにしたことを特徴とする請求項1、3、4又は6に記載の空気調和装置。
  12.  前記枝管側の遮断装置と前記分岐装置との間の前記枝管における冷媒量W4[kg]、前記主管内の冷媒量W1[kg]、前記室外機内の冷媒量M1[kg]及び前記中継装置内の冷媒量をM3[kg]の和を前記空調空間の容積V[m]で除した値(W4+W1+M1+M3)/Vが、所定の冷媒充填量限界値B[kg/m]以下となるようにしたことを特徴とする請求項5又は請求項5に係る請求項6に記載の空気調和装置。
  13.  前記冷媒が可燃性を有する冷媒であることを特徴とする請求項1~12のいずれかに記載の空気調和装置。
  14.  前記冷媒は、HFO1234yf、HFO1234ze、R32、R32とHFO1234yfとを含む混合冷媒、HFO1234yf、HFO1234ze若しくはR32を少なくとも一成分含む混合冷媒、又はHCとすることを特徴とする請求項13に記載の空気調和装置。
  15.  前記冷媒充填量限界値Bは、R32は0.800[kg/m]以下、HFO1234yfは0.759[kg/m]以下、R32が44%/HFO1234yfが56%の組成比である混合冷媒は0.777[kg/m]以下、R32が73%/HFO1234yfが27%の組成比である混合冷媒は0.790[kg/m]以下、プロパンは0.105[kg/m]以下であることを特徴とする請求項14(請求項1に係るものを除く)に記載の空気調和装置。
  16.  前記冷媒回路に、R32が冷媒の場合は20[kg]以上、R32が44%/HFO1234yfが56%の組成比である混合冷媒が冷媒の場合は19.43[kg]以上、R32が73%/HFO1234yfが27%の組成比である混合冷媒が冷媒の場合は19.75[kg]以上、HFO1234yfが冷媒の場合は18.98[kg]以上、プロパンが冷媒の場合は2.63[kg]以上、封入していることを特徴とする請求項1~15のいずれかに記載の空気調和装置。
  17.  前記冷媒濃度検出装置の検出部を酸化スズを含む材料で構成することを特徴とする請求項1~16のいずれかに記載の空気調和装置。
PCT/JP2011/002863 2011-05-23 2011-05-23 空気調和装置 WO2012160598A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/111,795 US9933205B2 (en) 2011-05-23 2011-05-23 Air-conditioning apparatus
PCT/JP2011/002863 WO2012160598A1 (ja) 2011-05-23 2011-05-23 空気調和装置
GB1319177.0A GB2504036B (en) 2011-05-23 2011-05-23 Air-conditioning apparatus
JP2013516073A JP5813107B2 (ja) 2011-05-23 2011-05-23 空気調和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/002863 WO2012160598A1 (ja) 2011-05-23 2011-05-23 空気調和装置

Publications (1)

Publication Number Publication Date
WO2012160598A1 true WO2012160598A1 (ja) 2012-11-29

Family

ID=47216706

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/002863 WO2012160598A1 (ja) 2011-05-23 2011-05-23 空気調和装置

Country Status (4)

Country Link
US (1) US9933205B2 (ja)
JP (1) JP5813107B2 (ja)
GB (1) GB2504036B (ja)
WO (1) WO2012160598A1 (ja)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013139990A (ja) * 2011-12-08 2013-07-18 Panasonic Corp 空気調和機
WO2015152163A1 (ja) * 2014-04-02 2015-10-08 三菱電機株式会社 空気調和装置およびその設置方法
JP2016151395A (ja) * 2015-02-18 2016-08-22 ダイキン工業株式会社 空気調和装置
JP2016191502A (ja) * 2015-03-31 2016-11-10 ダイキン工業株式会社 冷媒流路切換ユニット
WO2016203507A1 (ja) * 2015-06-15 2016-12-22 三菱電機株式会社 冷凍サイクル装置
JP6081033B1 (ja) * 2016-05-24 2017-02-15 三菱電機株式会社 空気調和装置
WO2017056214A1 (ja) * 2015-09-30 2017-04-06 三菱電機株式会社 空気調和装置
WO2018220804A1 (ja) * 2017-06-01 2018-12-06 三菱電機株式会社 中継機および空気調和装置
WO2018220758A1 (ja) * 2017-05-31 2018-12-06 三菱電機株式会社 空気調和装置
WO2019049746A1 (ja) * 2017-09-05 2019-03-14 ダイキン工業株式会社 空調システム又は冷媒分岐ユニット
JP2019045138A (ja) * 2018-12-10 2019-03-22 ダイキン工業株式会社 空調システム
JP2019045129A (ja) * 2017-09-05 2019-03-22 ダイキン工業株式会社 空調システム
JP2019045103A (ja) * 2017-09-05 2019-03-22 ダイキン工業株式会社 冷媒分岐ユニット
JP2019082321A (ja) * 2019-02-28 2019-05-30 ダイキン工業株式会社 空調システム
JP2019095164A (ja) * 2017-11-28 2019-06-20 新星冷蔵工業株式会社 冷却システム
US10451306B2 (en) 2014-07-28 2019-10-22 Mitsubishi Electric Corporation Air-conditioning apparatus
WO2020049646A1 (ja) * 2018-09-05 2020-03-12 三菱電機株式会社 水冷式空気調和装置
CN111033151A (zh) * 2017-09-05 2020-04-17 大金工业株式会社 空调系统或制冷剂分支单元
JP2020109343A (ja) * 2019-01-02 2020-07-16 ダイキン工業株式会社 空気調和機および遮断弁
JP2020204464A (ja) * 2020-09-30 2020-12-24 ダイキン工業株式会社 冷媒分岐ユニット
WO2021106957A1 (ja) * 2019-11-29 2021-06-03 ダイキン工業株式会社 空調システム
JPWO2021199163A1 (ja) * 2020-03-30 2021-10-07
JP2021162231A (ja) * 2020-03-31 2021-10-11 株式会社富士通ゼネラル 空気調和装置
US11598560B2 (en) 2019-06-14 2023-03-07 Daikin Industries, Ltd. Refrigerant cycle apparatus

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9511075B2 (en) 2007-01-12 2016-12-06 The University Of Maryland, Baltimore Targeting NCCA-ATP channel for organ protection following ischemic episode
CA2618099C (en) 2007-02-09 2016-09-20 University Of Maryland, Baltimore Antagonists of a non-selective cation channel in neural cells
WO2009002832A2 (en) 2007-06-22 2008-12-31 University Of Maryland, Baltimore Inhibitors of ncca-atp channels for therapy
EP2719380A3 (en) 2008-09-16 2014-07-30 University of Maryland, Baltimore SUR1 inhibitors for therapy
JP5955383B2 (ja) * 2012-04-23 2016-07-20 三菱電機株式会社 空気調和システム
CN104819547B (zh) * 2015-05-15 2017-09-22 珠海格力电器股份有限公司 一种变频空调系统开机时的缺氟检测及保护方法和系统
JP6278094B1 (ja) * 2016-10-28 2018-02-14 ダイキン工業株式会社 空気調和装置
JP6798322B2 (ja) * 2017-01-16 2020-12-09 ダイキン工業株式会社 遮断弁を有する冷凍装置
EP3633277B1 (en) * 2017-05-24 2023-12-20 Mitsubishi Electric Corporation Air conditioning system
US10731884B2 (en) 2018-10-29 2020-08-04 Johnson Controls Technology Company Refrigerant leak management systems
JP6819706B2 (ja) * 2019-01-31 2021-01-27 ダイキン工業株式会社 冷媒サイクル装置
CN113557395B (zh) * 2019-03-04 2022-10-14 大金工业株式会社 支援系统
JP6876081B2 (ja) * 2019-03-04 2021-05-26 ダイキン工業株式会社 冷媒サイクル装置
CN111256427B (zh) * 2020-01-19 2021-07-30 新誉防务技术有限公司 舰用冷藏装置冷媒泄漏的判断方法及判断系统
US11732916B2 (en) 2020-06-08 2023-08-22 Emerson Climate Technologies, Inc. Refrigeration leak detection
US11359846B2 (en) 2020-07-06 2022-06-14 Emerson Climate Technologies, Inc. Refrigeration system leak detection
US11885516B2 (en) 2020-08-07 2024-01-30 Copeland Lp Refrigeration leak detection
US11754324B2 (en) 2020-09-14 2023-09-12 Copeland Lp Refrigerant isolation using a reversing valve
US11609032B2 (en) 2020-10-22 2023-03-21 Emerson Climate Technologies, Inc. Refrigerant leak sensor measurement adjustment systems and methods
EP4317835A1 (en) 2021-03-22 2024-02-07 Toshiba Carrier Corporation Air conditioner
US11940188B2 (en) 2021-03-23 2024-03-26 Copeland Lp Hybrid heat-pump system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6277769U (ja) * 1985-11-01 1987-05-18
JPH10115478A (ja) * 1996-10-09 1998-05-06 Sanyo Electric Co Ltd 空気調和機
JP2000274894A (ja) * 1999-03-18 2000-10-06 Sanyo Electric Co Ltd ヒートポンプ
JP2003130482A (ja) * 2001-10-26 2003-05-08 Mitsubishi Electric Corp 空気調和装置
JP2004116885A (ja) * 2002-09-26 2004-04-15 Mitsubishi Electric Corp 冷凍空調サイクル装置の取り扱い方法、冷凍空調サイクル装置の冷媒回収機構
WO2010050007A1 (ja) * 2008-10-29 2010-05-06 三菱電機株式会社 空気調和装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5415006A (en) * 1993-11-18 1995-05-16 Thermo King Transport refrigeration unit having means for increasing the amount of refrigerant charge available
JP3523584B2 (ja) 2000-10-12 2004-04-26 株式会社 日立インダストリイズ ヒートポンプシステム
JP3477184B2 (ja) 2001-06-19 2003-12-10 東芝キヤリア株式会社 スプリット形空気調和機
CN1695034B (zh) * 2002-10-30 2010-11-17 三菱电机株式会社 空调装置
JP2005241052A (ja) 2004-02-24 2005-09-08 Mitsubishi Electric Corp 除湿機および除湿機の梱包箱
TWI263763B (en) * 2004-11-10 2006-10-11 Daikin Ind Ltd Freezing apparatus
CN101065623B (zh) * 2004-11-25 2013-05-22 三菱电机株式会社 空调装置
JP2009299910A (ja) 2008-06-10 2009-12-24 Hitachi Appliances Inc 空気調和機
US8406931B2 (en) * 2009-12-31 2013-03-26 Service Solutions U.S. Llc A/C service tool controller
CN102770715B (zh) * 2010-02-10 2015-03-11 三菱电机株式会社 空气调节装置
CN103154628B (zh) * 2010-10-14 2015-11-25 三菱电机株式会社 室外机和空气调节装置
CN103228996B (zh) * 2010-11-17 2015-12-16 贝利莫控股公司 用于控制加热通风和空调系统中的阀的开度的装置和方法
WO2012073293A1 (ja) * 2010-12-03 2012-06-07 三菱電機株式会社 空気調和装置
JP5855279B2 (ja) * 2012-11-30 2016-02-09 三菱電機株式会社 空気調和装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6277769U (ja) * 1985-11-01 1987-05-18
JPH10115478A (ja) * 1996-10-09 1998-05-06 Sanyo Electric Co Ltd 空気調和機
JP2000274894A (ja) * 1999-03-18 2000-10-06 Sanyo Electric Co Ltd ヒートポンプ
JP2003130482A (ja) * 2001-10-26 2003-05-08 Mitsubishi Electric Corp 空気調和装置
JP2004116885A (ja) * 2002-09-26 2004-04-15 Mitsubishi Electric Corp 冷凍空調サイクル装置の取り扱い方法、冷凍空調サイクル装置の冷媒回収機構
WO2010050007A1 (ja) * 2008-10-29 2010-05-06 三菱電機株式会社 空気調和装置

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013139990A (ja) * 2011-12-08 2013-07-18 Panasonic Corp 空気調和機
JP2017003265A (ja) * 2014-04-02 2017-01-05 三菱電機株式会社 空気調和装置およびその設置方法
JPWO2015152163A1 (ja) * 2014-04-02 2017-04-13 三菱電機株式会社 空気調和装置およびその設置方法
JP6023356B2 (ja) * 2014-04-02 2016-11-09 三菱電機株式会社 空気調和装置およびその設置方法
US10436486B2 (en) 2014-04-02 2019-10-08 Mitsubishi Electric Corporation Air-conditioning apparatus and method of installing the same
WO2015152163A1 (ja) * 2014-04-02 2015-10-08 三菱電機株式会社 空気調和装置およびその設置方法
US10451306B2 (en) 2014-07-28 2019-10-22 Mitsubishi Electric Corporation Air-conditioning apparatus
JP2016151395A (ja) * 2015-02-18 2016-08-22 ダイキン工業株式会社 空気調和装置
JP2016191502A (ja) * 2015-03-31 2016-11-10 ダイキン工業株式会社 冷媒流路切換ユニット
JPWO2016203507A1 (ja) * 2015-06-15 2018-02-22 三菱電機株式会社 冷凍サイクル装置
WO2016203507A1 (ja) * 2015-06-15 2016-12-22 三菱電機株式会社 冷凍サイクル装置
WO2017056214A1 (ja) * 2015-09-30 2017-04-06 三菱電機株式会社 空気調和装置
JPWO2017056214A1 (ja) * 2015-09-30 2018-04-26 三菱電機株式会社 空気調和装置
WO2017203606A1 (ja) * 2016-05-24 2017-11-30 三菱電機株式会社 空気調和装置
JP6081033B1 (ja) * 2016-05-24 2017-02-15 三菱電機株式会社 空気調和装置
JPWO2018220758A1 (ja) * 2017-05-31 2019-12-19 三菱電機株式会社 空気調和装置
WO2018220758A1 (ja) * 2017-05-31 2018-12-06 三菱電機株式会社 空気調和装置
GB2575606B (en) * 2017-05-31 2021-02-24 Mitsubishi Electric Corp Air-conditioning apparatus
GB2575606A (en) * 2017-05-31 2020-01-15 Mitsubishi Electric Corp Air-conditioning apparatus
WO2018220804A1 (ja) * 2017-06-01 2018-12-06 三菱電機株式会社 中継機および空気調和装置
JPWO2018220804A1 (ja) * 2017-06-01 2019-11-21 三菱電機株式会社 中継機および空気調和装置
GB2578372B (en) * 2017-06-01 2021-02-24 Mitsubishi Electric Corp Relay unit and air-conditioning apparatus
GB2578372A (en) * 2017-06-01 2020-05-06 Mitsubishi Electric Corp Relay device and air conditioning device
WO2019049746A1 (ja) * 2017-09-05 2019-03-14 ダイキン工業株式会社 空調システム又は冷媒分岐ユニット
AU2018329314B2 (en) * 2017-09-05 2021-07-01 Daikin Industries, Ltd. Air-Conditioning System or Refrigerant Branch Unit
JP2019045103A (ja) * 2017-09-05 2019-03-22 ダイキン工業株式会社 冷媒分岐ユニット
US11486619B2 (en) 2017-09-05 2022-11-01 Daikin Industries, Ltd. Air-conditioning system or refrigerant branch unit
CN111033151A (zh) * 2017-09-05 2020-04-17 大金工业株式会社 空调系统或制冷剂分支单元
JP2019045129A (ja) * 2017-09-05 2019-03-22 ダイキン工業株式会社 空調システム
JP2019095164A (ja) * 2017-11-28 2019-06-20 新星冷蔵工業株式会社 冷却システム
JP7340215B2 (ja) 2017-11-28 2023-09-07 新星冷蔵工業株式会社 冷却システム
JPWO2020049646A1 (ja) * 2018-09-05 2021-01-07 三菱電機株式会社 水冷式空気調和装置
WO2020049646A1 (ja) * 2018-09-05 2020-03-12 三菱電機株式会社 水冷式空気調和装置
JP2019045138A (ja) * 2018-12-10 2019-03-22 ダイキン工業株式会社 空調システム
JP2020109343A (ja) * 2019-01-02 2020-07-16 ダイキン工業株式会社 空気調和機および遮断弁
US11976852B2 (en) 2019-01-02 2024-05-07 Daikin Industries, Ltd. Air conditioner and cut-off valve
JP2019082321A (ja) * 2019-02-28 2019-05-30 ダイキン工業株式会社 空調システム
US11598560B2 (en) 2019-06-14 2023-03-07 Daikin Industries, Ltd. Refrigerant cycle apparatus
WO2021106957A1 (ja) * 2019-11-29 2021-06-03 ダイキン工業株式会社 空調システム
JP2021085644A (ja) * 2019-11-29 2021-06-03 ダイキン工業株式会社 空調システム
GB2607499A (en) * 2020-03-30 2022-12-07 Mitsubishi Electric Corp Air conditioning system
WO2021199163A1 (ja) * 2020-03-30 2021-10-07 三菱電機株式会社 空気調和システム
JP7330363B2 (ja) 2020-03-30 2023-08-21 三菱電機株式会社 空気調和システム
JPWO2021199163A1 (ja) * 2020-03-30 2021-10-07
GB2607499B (en) * 2020-03-30 2024-02-07 Mitsubishi Electric Corp Air-conditioning system
JP2021162231A (ja) * 2020-03-31 2021-10-11 株式会社富士通ゼネラル 空気調和装置
JP7413896B2 (ja) 2020-03-31 2024-01-16 株式会社富士通ゼネラル 空気調和装置
JP7164820B2 (ja) 2020-09-30 2022-11-02 ダイキン工業株式会社 冷媒分岐ユニット
JP2020204464A (ja) * 2020-09-30 2020-12-24 ダイキン工業株式会社 冷媒分岐ユニット

Also Published As

Publication number Publication date
JPWO2012160598A1 (ja) 2014-07-31
GB2504036B (en) 2018-02-21
US20140033754A1 (en) 2014-02-06
US9933205B2 (en) 2018-04-03
JP5813107B2 (ja) 2015-11-17
GB2504036A (en) 2014-01-15
GB201319177D0 (en) 2013-12-11

Similar Documents

Publication Publication Date Title
JP5813107B2 (ja) 空気調和装置
JP5642202B2 (ja) 空気調和装置
JP6328245B2 (ja) 空気調和装置
EP2647920B1 (en) Air-conditioning apparatus
EP3239623B1 (en) Air-conditioning apparatus
WO2012098584A1 (ja) 空気調和装置
ES2780181T3 (es) Acondicionador de aire
US20110185754A1 (en) Air-conditioning apparatus
JP6701337B2 (ja) 空気調和装置
WO2011099063A1 (ja) 空気調和装置
WO2012049710A1 (ja) 室外機および空気調和装置
WO2011099058A1 (ja) 空気調和装置
US9651287B2 (en) Air-conditioning apparatus
US9857113B2 (en) Air-conditioning apparatus
JP5959716B2 (ja) 空気調和装置
WO2018220758A1 (ja) 空気調和装置
JPWO2019038797A1 (ja) 空気調和装置および膨張弁ユニット
US9746222B2 (en) Air-conditioning apparatus
WO2012073294A1 (ja) 冷凍サイクル装置の部品交換方法および冷凍サイクル装置
US20220290885A1 (en) Air conditioning system
JPWO2020049646A1 (ja) 水冷式空気調和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11866066

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013516073

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14111795

Country of ref document: US

ENP Entry into the national phase

Ref document number: 1319177

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20110523

WWE Wipo information: entry into national phase

Ref document number: 1319177.0

Country of ref document: GB

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11866066

Country of ref document: EP

Kind code of ref document: A1