WO2012157311A1 - 鉛蓄電池 - Google Patents

鉛蓄電池 Download PDF

Info

Publication number
WO2012157311A1
WO2012157311A1 PCT/JP2012/054943 JP2012054943W WO2012157311A1 WO 2012157311 A1 WO2012157311 A1 WO 2012157311A1 JP 2012054943 W JP2012054943 W JP 2012054943W WO 2012157311 A1 WO2012157311 A1 WO 2012157311A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
active material
electrode plate
lead
electrode active
Prior art date
Application number
PCT/JP2012/054943
Other languages
English (en)
French (fr)
Inventor
正寿 戸塚
酒井 政則
真輔 小林
耕二 小暮
箕浦 敏
柴原 敏夫
Original Assignee
新神戸電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新神戸電機株式会社 filed Critical 新神戸電機株式会社
Priority to US14/117,106 priority Critical patent/US9735409B2/en
Priority to JP2013515019A priority patent/JP5500315B2/ja
Priority to KR1020137029680A priority patent/KR20140021663A/ko
Priority to RU2013155484/07A priority patent/RU2013155484A/ru
Priority to EP12785458.6A priority patent/EP2709200B1/en
Priority to CN201280023755.2A priority patent/CN103534864B/zh
Publication of WO2012157311A1 publication Critical patent/WO2012157311A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • H01M10/12Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • H01M10/12Construction or manufacture
    • H01M10/128Processes for forming or storing electrodes in the battery container
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/14Electrodes for lead-acid accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/68Selection of materials for use in lead-acid accumulators
    • H01M4/685Lead alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M2010/4292Aspects relating to capacity ratio of electrodes/electrolyte or anode/cathode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes
    • H01M2300/0005Acid electrolytes
    • H01M2300/0011Sulfuric acid-based
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a liquid lead-acid battery having an electrolytic solution released from an electrode plate group and a separator in a battery case.
  • Micro-hybrid vehicles such as an idling stop vehicle (hereinafter referred to as an ISS vehicle) that reduces engine operation time and a power generation control vehicle that uses engine rotation as a power source are being considered as vehicles that have taken measures to improve fuel efficiency. .
  • PSOC Partial State Of Charge
  • Lead acid batteries tend to have a shorter life when used under PSOC than when used in a fully charged state.
  • the reason for the shortening of the life when used under PSOC is that if charging / discharging is repeated in a state where charging is insufficient, lead sulfate produced on the negative electrode plate becomes coarse during discharge, and lead sulfate is generated by charging. It is thought that it is difficult to return to the metallic lead that is a thing.
  • Patent Document 1 Japanese Patent Laid-Open No. 2002-025602
  • Patent Document 2 Japanese Patent Laid-Open No. 2004-0663152
  • Patent Document 3 Japanese Patent Laid-Open No. 2006-059576
  • Patent Document 1 discloses a lead storage battery including an electrode plate group in which an expanded lattice positive plate housed in a synthetic resin bag-shaped separator and an expanded lattice negative plate having a glass fiber mat attached to the surface are alternately laminated. Is disclosed. This is described in paragraph No. 0003, “There is a problem that hydrogen gas generated from the surface of the negative electrode plate does not sufficiently contribute to stirring the electrolytic solution, and stratification of the electrolytic solution is likely to occur”. It is intended for lead-acid batteries that are charged up to full charge where hydrogen gas is generated from the negative electrode plate surface.
  • Patent Document 2 is a lead including an electrode plate group in which a plurality of positive electrode plates, a negative electrode plate covered with a bag-like separator, and a flat plate separator with a glass mat interposed between the two are stacked.
  • a storage battery is disclosed (FIG. 5C).
  • the structure of the bag-like separator hinders the diffusion of the electrolyte existing between the positive electrode plate and the negative electrode plate, and the electrolyte concentration is high at the lower part of the electrode plate during use. In other words, it has been recognized that stratification with a lower electrolyte concentration occurs in the upper part of the electrode plate ”has not been achieved.
  • Patent Document 3 discloses a liquid type in which a microporous sheet and a glass mat are bonded together with an adhesive to make it difficult to cause stratification of the electrolyte even in an environment where the electrolyte is not easily stirred and circulated.
  • a lead-acid battery separator is disclosed.
  • this invention does not disclose how to use the separator in relation to the positive electrode plate and the negative electrode plate.
  • Patent Document 4 Japanese Patent Application Laid-Open No. 08-045537 discloses a bag separator and a positive electrode plate made of a microporous synthetic resin film that wraps the positive electrode plate in order to prevent a short circuit caused by lattice deformation due to corrosion of the positive electrode lattice.
  • positioned the U-shaped glass mat between these is disclosed.
  • An object of the present invention is that in a liquid type lead-acid battery in which discharge to a load is performed in a partially charged state, the battery is not fully charged under PSOC. In the case where it is desired, the life performance is improved by suppressing the stratification of the electrolytic solution.
  • the present invention provides an electrode plate group in which a negative electrode plate in which a negative electrode active material is filled in a negative electrode current collector and a positive electrode plate in which a positive electrode active material is filled in a positive electrode current collector are stacked via a separator. It is intended for a liquid lead-acid battery that has a configuration of being housed in a battery case together with a liquid, in which charging is performed intermittently and high-rate discharge to a load is performed in a partially charged state.
  • the non-woven fabric is in contact with the negative electrode plate over the whole electrode plate surface without being integrated with the electrode plate.
  • abutted is accommodated in the bag-shaped separator which consists of a microporous synthetic resin sheet, It is characterized by the above-mentioned.
  • a nonwoven fabric is comprised with the fiber of the at least 1 material selected from the material group which consists of glass, a pulp, and polyolefin.
  • the nonwoven fabric is preferably a mixed nonwoven fabric mainly composed of glass fiber, pulp and inorganic oxide powder.
  • the inorganic oxide powder is preferably silica powder.
  • the non-woven fabric is bent so that the surfaces face each other, and the negative electrode plate is disposed between the facing surfaces.
  • the present invention since a high-porosity separator made of a nonwoven fabric is brought into contact with the surface of the negative electrode plate, it is possible to prevent a decrease in sulfate ions eluted from lead sulfate during charging. Can be prevented. As a result, the shortage of charge under PSOC can be improved and a long-life lead-acid battery can be obtained.
  • Example of the lead acid battery which concerns on this invention it is cross-sectional explanatory drawing which shows the structure of an electrode group. It is explanatory drawing which shows the expanded type electrical power collector used for the Example of the lead acid battery which concerns on this invention. It is explanatory drawing which shows the electrode group used for the Example of the lead acid battery which concerns on this invention.
  • the lead storage battery according to the present invention is a liquid lead storage battery that is charged intermittently and discharged to a load under PSOC, and is suitable for use in a micro hybrid vehicle such as an ISS vehicle.
  • the lead storage battery according to the present invention is configured by laminating a negative electrode plate in which a negative electrode active material is filled in a negative electrode current collector and a positive electrode plate in which a positive electrode active material is filled in a positive electrode current collector through a separator.
  • the electrode plate group is housed in the battery case together with the electrolytic solution.
  • a carbonaceous conductive material and an organic compound that suppresses coarsening of the negative electrode active material due to charge / discharge are added to the negative electrode active material.
  • the carbonaceous conductive material is preferably selected from a material group consisting of graphite, carbon black, activated carbon, carbon fiber, and carbon nanotube.
  • the addition amount of the carbonaceous conductive material is preferably in the range of 0.1 to 3 parts by mass with respect to 100 parts by mass of the fully charged negative electrode active material (spongy metal lead).
  • graphite is selected, and more preferably, scaly graphite is selected.
  • the average primary particle size of the flaky graphite is preferably 100 ⁇ m or more.
  • the scaly graphite refers to that described in JIS M-8601 (2005).
  • the electrical resistivity of the scaly graphite is 0.02 ⁇ ⁇ cm or less, which is an order of magnitude less than about 0.1 ⁇ ⁇ cm of carbon blacks such as acetylene black. Therefore, by using scale-like graphite in place of the carbon blacks used in conventional lead-acid batteries, the electrical resistance of the negative electrode active material can be lowered and the charge acceptance performance can be improved.
  • the average primary particle diameter of the scaly graphite is obtained according to the laser diffraction / scattering method described in JISM8511 (2005).
  • a laser diffraction / scattering type particle size distribution measuring device Nikkiso Co., Ltd .: Microtrac 9220FRA
  • a commercially available surfactant polyoxyethylene octylphenyl ether for example, Roche Diagnostics Co., Ltd .: Triton
  • An appropriate amount of a scaly graphite sample is put into an aqueous solution containing 0.5 vol% of X-100), 40 W ultrasonic waves are irradiated for 180 seconds while stirring, and then measurement is performed.
  • the obtained average particle diameter (median diameter: D50) is defined as the average primary particle diameter.
  • Lead-acid batteries mounted on micro hybrid vehicles such as ISS cars and power generation control cars are used in a partially charged state called PSOC.
  • PSOC partially charged state
  • a phenomenon called sulfation in which lead sulfate, which is an insulator generated in the negative electrode active material during discharge, becomes coarse with repeated charging and discharging, is an early phenomenon. To occur. When sulfation occurs, the charge acceptability and discharge performance of the negative electrode active material are significantly reduced.
  • the carbonaceous conductive material added to the negative electrode active material suppresses the coarsening of lead sulfate, maintains the lead sulfate in a fine state, suppresses the decrease in the concentration of lead ions dissolved from the lead sulfate, It acts to maintain a state with high charge acceptability.
  • bisphenols examples include bisphenol A, bisphenol F, and bisphenol S.
  • the bisphenol A / sodium benzenebenzene / formaldehyde condensate represented by the chemical structural formula of [Chemical Formula 1] is particularly preferable.
  • the charging reaction of the negative electrode active material depends on the concentration of lead ions dissolved from lead sulfate, which is a discharge product, and the charge acceptance increases as the amount of lead ions increases.
  • Lignin which is widely used as an organic compound added to the negative electrode active material in order to suppress the coarsening of the negative electrode active material due to charge / discharge, decreases the reactivity of lead ions by adsorbing to lead ions, There is a side effect of inhibiting the charging reaction of the negative electrode active material and suppressing the improvement of charge acceptability.
  • the bisphenol A / sodium aminobenzenesulfonate / formaldehyde condensate having the chemical structural formula of [Chemical Formula 1] has a weak adsorptive power to lead ions and has a small amount of adsorption.
  • charge acceptance is less likely to be hindered, and maintenance of charge acceptability due to the addition of the carbonaceous conductive material is less likely to be hindered.
  • sodium lignin sulfonate represented by the chemical structural formula (partial structure) of [Chemical Formula 2] and the like is selected below. It does not prevent it.
  • the utilization ratio of the positive electrode active material of the positive electrode plate is set in the range of 50 to 65%.
  • the utilization rate of the positive electrode active material related to the discharge reaction is defined as follows. That is, using a positive electrode plate to determine the active material utilization rate, a liquid lead storage battery having a theoretical capacity of the negative electrode active material sufficiently larger than the theoretical capacity of the positive electrode active material is assembled, and this lead storage battery is fully charged. After that, the battery was discharged at a rated capacity of 0.2 C current, and before the negative electrode active material was consumed, the discharge reaction was impossible due to the consumption of the positive electrode active material. In this discharge test, the ratio of the amount of discharge electricity until the end of discharge and the theoretical discharge capacity of the positive electrode active material of the positive electrode plate is defined as the positive electrode active material utilization rate.
  • a negative electrode plate having one positive electrode plate and two negative electrode plates in which negative electrode plates are disposed on both sides of one positive electrode plate (the theoretical capacity of the negative electrode active material is the theoretical capacity of the positive electrode active material). 1.5 times or more) is accommodated in the battery case, and an electrolytic solution (diluted sulfuric acid having a specific gravity of 1.28) is placed in the battery case with a liquid volume of 1.5 times or more the theoretical capacity of the positive electrode active material. After the lead storage battery was poured and fully charged, a discharge test was performed on the lead storage battery to discharge at a rated capacity of 0.2 C current. The reason why the theoretical capacity of the electrolytic solution capacity and the negative electrode active material is 1.5 times or more than the theoretical capacity of the positive electrode active material is to ensure that the discharge reaction ends with the control of the positive electrode.
  • the high utilization rate of the positive electrode active material with respect to the discharge reaction means that the state in which the diffusion and transfer of hydrogen ions (H + ) and sulfate ions (SO 4 2 ⁇ ), which are reaction species of the discharge reaction, are performed quickly is maintained for a long time. This means that the discharge reaction can be continued for a long time.
  • the fact that the diffusion of the reactive species is maintained for a long time means that there are many diffusion paths of the reactive species.
  • a normal polyethylene separator made of a polyethylene microporous sheet can be used as a separator.
  • a polyethylene separator is not used alone, but glass fiber, polyolefin-based (polyethylene , Polypropylene, etc.)
  • a separator made of a nonwoven fabric made of fibers such as fibers and pulp (simply referred to as “separator made of nonwoven fabric”) and a polyethylene separator are used in combination.
  • a polyethylene separator and a non-woven fabric separator are overlapped and used so that the surface of the separator facing the negative electrode plate is constituted by the non-woven fabric separator.
  • the separator made of a nonwoven fabric can appropriately contain inorganic oxide powder such as silica.
  • Nonwoven fabrics can be manufactured by dispersing fibers in water and making paper, so if the inorganic oxide powder is dispersed in water together with fibers during papermaking, they can be easily incorporated into the nonwoven fabric. it can.
  • the non-woven fabric is preferably a mixed non-woven fabric mainly composed of glass fiber, pulp and silica powder.
  • Such a nonwoven fabric composed of a mixture of a plurality of fibers can be applied to, for example, a control valve type lead storage battery disclosed in Japanese Patent Laid-Open No. 2002-260714. And glass fibers, acid-resistant organic resin fibers, and, if necessary, silica) can be suitably used.
  • the separator made of non-woven fabric is in contact with the entire electrode plate surface of the negative electrode plate without being integrated with the electrode plate. And the negative electrode plate with which the said nonwoven fabric contact
  • the negative electrode active material is mainly composed of spongy lead (metal lead) that is hardly charged and lead sulfate that is negatively charged. Therefore, the negative electrode is mainly negatively charged.
  • the negative electrode active material including lead sulfate
  • solid phase is lower in potential than the positive electrode and is on the negative side in terms of the battery configuration.
  • the battery voltage originally appears as the sum of the potential difference between the positive and negative electric double layer regions.
  • the electric double layer region is a thin layer region on the order of angstroms, but the battery voltage of the lead-acid battery is equal to the difference between the potential on the positive electrode side and the potential on the negative electrode side with respect to the potential difference between the positive and negative electric double layer regions. .
  • the positive electrode active material solid phase has a high electric potential with respect to the electrolytic solution, that is, a positively charged electric double layer structure.
  • the negative electrode active material solid phase has a low electric potential with respect to the electrolytic solution, that is, a negatively charged electric double layer structure as described above.
  • the sulfate ion species (SO 4 2 ⁇ , HSO 4 ⁇ ) generated by the charging reaction are heavier than the water in the electrolyte and have a property of being easily settled by gravity.
  • sulfate ion species (SO 4 2 ⁇ , HSO 4 ⁇ ) generated on the negative electrode side are There is a relationship of electrostatic repulsion.
  • the negative electrode active material solid phase that is, the sulfate ion species (SO 4 2 ⁇ , HSO 4 ⁇ ) generated in the negative electrode active material pores by the charging reaction is generated on the negative electrode side. Being pushed out to the phase side, it is in an environment where the precipitation of sulfate ion species in the electrolyte is accelerated.
  • a separator made of a non-woven fabric that is only in contact with the surface of the negative electrode plate is in an electrolyte solution of sulfate ion species (SO 4 2 ⁇ , HSO 4 ⁇ ) extruded from the negative electrode active material pores into the electrolyte phase.
  • the positive electrode active material solid phase has a positively charged electric double layer structure
  • sulfate ion species (SO 4 2 ⁇ , HSO 4 ⁇ ) generated on the positive electrode side are electrostatically connected to the positive electrode. There is no repulsive relationship. Therefore, even if a separator made of a nonwoven fabric is brought into contact with the surface of the positive electrode plate, the effect of avoiding the stratification of the electrolyte is small.
  • the separator made of non-woven fabric is not brought into contact with the surface of the negative electrode plate, but is brought into contact with the surface of the positive electrode plate outside the bag-like separator containing the negative electrode plate, and in the bag-like separator containing the positive electrode plate This can be said in any case where the separator made of non-woven fabric is brought into contact with the surface of the positive electrode plate.
  • the separator made of non-woven fabric is placed in a bag-shaped separator by simply contacting the surface of the negative electrode plate without being integrated.
  • a glass fiber mat corresponding to the separator made of the nonwoven fabric of the present invention
  • the negative electrode active material is formed in the gap between the fibers constituting the nonwoven fabric. It enters and becomes a layer in which the fibers and the negative electrode active material are mixed. Rather, such a layer is a negative electrode active material solid phase that generates sulfate ion species in the negative electrode active material pores by a charging reaction.
  • the nonwoven fabric integrally adhered to the surface of the negative electrode plate is a part of the negative electrode active material solid phase in which sulfate ion species that cause stratification are generated in the negative electrode active material pores. Therefore, it is difficult to suppress the stratification phenomenon in which the nonwoven fabric that is a part of the solid phase of the negative electrode active material is manifested by the precipitation of sulfate ion species that are generated in the pores of the negative electrode active material and pushed out to the electrolyte phase side. is there.
  • the nonwoven fabric that is integrally attached to the surface of the negative electrode plate also increases the internal resistance of the battery.
  • the configuration in which a separator made of a nonwoven fabric is used by bending it into a V-shape or a U-shape so that the surfaces are opposed to each other is less than the separator made of a nonwoven fabric on both sides of the negative electrode plate. It is excellent in that no deviation occurs.
  • the electrode plates are arranged so that the electrode plate surfaces are in the vertical direction, and therefore, when the electrode plates extend, they tend to extend in the vertical direction. Under PSOC, lead sulfate tends to accumulate in the negative electrode, and in particular, there is a strong tendency for lead sulfate to remain in the lower part of the negative electrode plate in the vertical direction.
  • an unformed positive electrode plate was prepared.
  • a mixture of lead oxide, red lead and cut fiber (polyethylene terephthalate short fiber, hereinafter the same) was kneaded with water, and then kneaded with dilute sulfuric acid added in small portions to produce a positive electrode active material paste.
  • This active material paste is filled into an expandable current collector 21 shown in FIG. 2, which is produced by subjecting a rolled sheet made of a lead alloy to an expanding process.
  • the expandable current collector 21 includes a lattice portion 22, an upper frame bone 23, a lower frame bone 24, and an ear portion 25. After filling with the active material paste, it was aged in an atmosphere of 40 ° C. and a humidity of 95% for 24 hours and then dried to prepare an unchemically formed positive electrode plate.
  • positive electrode plates having positive electrode active materials having different utilization rates for the discharge reaction were prepared as follows. That is, as the amount of dilute sulfuric acid added at the time of preparing the positive electrode active material paste increases, the porosity of the active material increases and the utilization rate of the positive electrode active material related to the discharge reaction is improved. By preparing unchemically formed positive electrode plates, positive electrode plates having different active material utilization rates for discharge reactions were obtained.
  • an unformed negative electrode plate was produced. While adding water to a mixture of lead oxide, cut fiber, barium sulfate, carbonaceous conductive material, and organic compound that suppresses coarsening of the negative electrode active material, kneading, and then adding dilute sulfuric acid in small portions
  • the negative electrode active material paste was prepared by kneading. This active material paste is filled into an expanded current collector produced by subjecting a rolled sheet made of a lead alloy to an expanding process, and aged for 24 hours in an atmosphere of 40 ° C. and 95% humidity, and then dried to leave the paste.
  • a chemical negative electrode plate was prepared.
  • the following negative electrode plates A, B, and C were prepared by using different organic compounds and carbonaceous conductive materials that suppress the coarsening of the negative electrode active material.
  • Negative electrode plate A As the organic compound that suppresses the coarsening of the negative electrode active material, the organic compound mainly composed of sodium lignin sulfonate shown in the above [Chemical Formula 2] is selected, and carbon black using heavy oil as a raw material as a carbonaceous conductive material (ratio Surface area 260 m 2 / g), and the addition amount is 0.2 parts by mass with respect to 100 parts by mass of the active material.
  • 100 mass parts of active material means 100 mass parts of active material (spongy metal lead) in a fully charged state. The same applies hereinafter.
  • Negative electrode plate B As an organic compound that suppresses the coarsening of the negative electrode active material, the bisphenol A / sodium aminobenzenesulfonate / formaldehyde condensate shown in [Chemical Formula 1] (molecular weight: 17,000 to 20,000, sulfur content in the compound) 6-11 mass%) is selected as the main component, the carbon black is used as the carbonaceous conductive material, and the amount added is 0.2 parts by mass with respect to 100 parts by mass of the active material.
  • Negative electrode plate C As an organic compound that suppresses the coarsening of the negative electrode active material, the bisphenol A / sodium aminobenzenesulfonate / formaldehyde condensate shown in [Chemical Formula 1] (molecular weight: 17,000 to 20,000, sulfur content in the compound) 6-11 mass%) as a main component, and scaly graphite (particle size 180 ⁇ m) was used as the carbonaceous conductive material, and the amount added was 2 parts by mass with respect to 100 parts by mass of the active material. thing.
  • the negative plates A, B and C were combined with a positive plate with various utilization rates of the positive electrode active material related to the discharge reaction, and one or two kinds of separators.
  • FIG. 1 shows a cross-sectional view of an electrode plate group in which positive and negative electrode plates and separators are laminated.
  • a polyethylene separator having a predetermined dimension length (projection rib height of 0.6 mm, base thickness of 0.2 mm, total thickness of 0.8 mm, where the illustration of the projection ribs is omitted) and glass fiber
  • a non-woven fabric 2 (thickness: 0.3 mm) made of is laminated, and in that state, a crease is formed in the width direction at the center in the length direction and bent into a U shape, and the negative electrode plate 1 is disposed inside the U shape.
  • both sides in the length direction of the polyethylene separator folded in a U-shape are sealed to obtain a polyethylene bag-shaped separator 3.
  • the negative electrode plates 1 and the positive electrode plates 4 accommodated in the polyethylene bag-like separator 3 were alternately laminated to form a structure including six positive electrode plates and seven negative electrode plates.
  • the ears 25 of the electrode plates of the same polarity were welded together by a cast-on-strap (COS) method to form the straps 5, and the electrode plate group 6 shown in FIG. 3 was produced.
  • COS cast-on-strap
  • the electrode plate group 6 is inserted into the battery case in the next step, and the lid is thermally welded to the battery case.
  • the assembled battery is a D23 type lead acid battery defined in JIS D5301.
  • separator a separator having a bag-like polyethylene separator alone is used as a separator P, and a separator having a structure in which a nonwoven fabric made of glass fiber is in contact with the negative electrode plate surface inside the bag-like polyethylene separator.
  • separator Q1 a separator having a structure in which a nonwoven fabric made of glass fiber was in contact with the surface of the positive electrode inside the bag-like polyethylene separator was designated as a separator Q1 ′.
  • 100% glass fiber non-woven fabric was used as the non-woven fabric constituting separators Q1 and Q1 ′.
  • a non-woven fabric made of polyolefin-based material, pulp fiber or other material was used.
  • a mixed nonwoven fabric mainly composed of a mixture of fibers of these plural materials may be used.
  • separator Q2 a configuration using a mixed nonwoven fabric mainly composed of glass fiber, pulp, and inorganic oxide powder was designated as separator Q2.
  • this non-woven fabric is made of 10% by mass of glass fiber, 35% by mass of synthetic pulp, and 55% by mass of silica powder in water.
  • the battery case was formed.
  • a dilute sulfuric acid having a specific gravity of 1.230 in terms of 25 ° C. was injected into the battery case, and an amount of electricity of 200% of the theoretical capacity based on the amount of active material was applied to form a lead storage battery.
  • the configuration of the electrode plate group produced in this example is the 12 types shown in Table 1.
  • the positive electrode plate was used by changing the active material utilization rate related to the discharge reaction from 50% to 65% in four stages by the above-described manufacturing method.
  • the separator P is a bag-shaped polyethylene separator that contains various negative plates
  • the separator Q1 is made of a bag-shaped polyethylene separator and a glass fiber that is bent in a U shape inside thereof.
  • the separator Q1 ' used a combination of non-woven fabrics
  • a separator Q1' contained a bag-like polyethylene separator and a non-woven fabric made of glass fibers folded in a U-shape inside, and contained a positive electrode plate.
  • the separator Q2 uses the above-described mixed nonwoven fabric in place of the glass fiber nonwoven fabric in the same configuration as Q1.
  • the positive electrode active material utilization rate related to the discharge reaction was measured according to the method described above. That is, an electrode plate group of one positive electrode plate and two negative electrode plates, which is configured by arranging a negative electrode plate on both sides of one positive electrode plate (the theoretical capacity of the negative electrode active material is the theoretical capacity of the positive electrode active material). 1.5 times or more) is accommodated in the battery case, and an electrolytic solution (diluted sulfuric acid having a specific gravity of 1.28) is placed in the battery case with a liquid volume of 1.5 times or more the theoretical capacity of the positive electrode active material. After the lead acid battery was poured and fully charged, the lead acid battery was discharged at a rated capacity of 0.2 C, and the positive electrode active material was discharged before the negative electrode active material was consumed.
  • a positive electrode-dominated discharge test was conducted in which the discharge reaction became impossible due to wear and the discharge ended.
  • the ratio of the amount of discharge electricity until the end of discharge and the theoretical discharge capacity of the positive electrode active material of the positive electrode plate was defined as the positive electrode active material utilization rate.
  • the charge acceptability was measured as follows. Adjust the SOC (charged state) to 90% of the fully charged state in a constant temperature bath at 25 ° C and apply 14V charging voltage (however, the current before reaching 14V is limited to 100A). ) The charging current value at 5 seconds from the start (5th charging current value) was measured. The higher the 5th second charging current value, the higher the initial charge acceptability.
  • charging voltage 14.8V (however, the current before reaching 14.8V is limited to 25A), charging time 10 minutes, 25A constant current discharge, discharging time 4 minutes
  • the charge acceptability was measured under the same conditions as in the initial stage. That is, the higher the charge current value at the 5th second after 5000 cycles, the better the initial good charge acceptability is maintained thereafter.
  • Cycle characteristics were measured as follows. Adjust the ambient temperature so that the battery temperature is 25 ° C, perform constant current discharge for 45A-59 seconds and 300A-1 seconds, and then charge constant current / constant voltage for 100A-14V-60 seconds as one cycle. A life test was conducted.
  • This test is a cycle test that simulates the use of lead-acid batteries in ISS cars.
  • the battery since the amount of charge is small relative to the amount of discharge, the battery gradually becomes insufficient when charging is not performed completely. As a result, the voltage at the first second when the discharge current is 300 A for 1 second is obtained. Decrease gradually. That is, if the negative electrode is polarized during constant current / constant voltage charging and switched to constant voltage charging at an early stage, the charging current is attenuated, resulting in insufficient charging.
  • the first-second voltage at the time of discharge of 300 A was lower than 7.2 V, the battery life was determined.
  • the electrolyte specific gravity value in the vicinity of the electrolytic solution at the top of the battery case and the bottom of the battery case was measured at 20 ° C., and the difference in the specific gravity of the electrolyte between the vicinity of the electrolytic solution and the bottom of the battery case was calculated. The smaller this difference is, the lower the degree of electrolyte stratification during cycling.
  • the specific gravity difference of the electrolyte solution after 1000 cycles was examined and used as a scale for stratification.
  • Tables 2 to 13 show the measurement results of the 5 second charging current, the measurement results of the cycle characteristics, and the electrolyte specific gravity difference performed on the type 1 to 12 lead acid batteries, respectively.
  • Table 3, Table 5, Table 7, Table 9, Table 11, and Table 13 are examples, and Table 2, Table 4, Table 6, Table 8, Table 10, and Table 12 are comparative examples.
  • No. 1 in Table 2 is an electrode plate group configuration (reference example) that serves as a reference for evaluation of each table.
  • the reference example is a case where the utilization rate of the positive electrode active material related to the discharge reaction is 48%, and the charging current and the cycle characteristics at the fifth second shown in each table are comparatively evaluated with the reference example being 100.
  • the charging current at the 5th second after 5000 cycles is a comparative evaluation with the initial reference example as 100.
  • Tables 2 to 5 show that when the negative electrode plate A is used, due to the difference between the separator types P, Q1, Q1 ′, and Q2, the charging current (charge acceptance) at 5 seconds and the cycle characteristics (under PSOC) This shows that a difference occurs in the life performance of the liquid crystal and the difference in specific gravity of the electrolyte (degree of stratification of the electrolyte). From the above results, according to the embodiments according to the present invention (Tables 3 and 5), although the initial charge acceptance is slightly inferior, high-rate discharge to the load is performed under PSOC and charging is performed intermittently. It can be seen that the liquid type lead-acid battery has a long life while maintaining charge acceptability over a long period of time, and in particular, in the separator type Q2, the effect of suppressing the electrolyte stratification is remarkable.
  • Tables 6 to 9 show that when the negative electrode plate B is used, due to the difference in separator types P, Q1, Q1 ′, Q2, the charging current (charge acceptability) and cycle characteristics (under PSOC) This shows that a difference occurs in the life performance of the liquid crystal and the difference in specific gravity of the electrolyte (degree of stratification of the electrolyte). From the above results, according to the examples (Tables 7 and 9) according to the present invention, the initial charge acceptance is slightly inferior, but the high rate discharge to the load is performed under PSOC and the charge is intermittently performed.
  • the liquid lead-acid battery that is used has a long life and maintains charge acceptability over a long period of time, and in particular, the separator type Q2 has a remarkable effect of suppressing electrolyte stratification.
  • the separator type Q2 has a remarkable effect of suppressing electrolyte stratification.
  • Table 3 and Table 7 when an organic compound containing a condensate of [Chemical Formula 1] as a main component is used as an organic compound that suppresses the coarsening of the negative electrode active material, the charging current at 5 seconds (charge acceptance) It can be seen that the cycle characteristics (life performance under PSOC) can be greatly improved.
  • Tables 10 to 13 show that when the negative electrode plate C is used, due to the difference in separator types P, Q1, Q1 ′, Q2, the charging current at 5 seconds (charge acceptance) and cycle characteristics (under PSOC) This shows that a difference occurs in the life performance of the liquid crystal and the difference in specific gravity of the electrolyte (degree of stratification of the electrolyte). From the above results, according to the examples (Tables 11 and 13) according to the present invention, the initial charge acceptance is slightly inferior, but the high rate discharge to the load is performed under PSOC and the charge is intermittently performed.
  • the liquid lead-acid battery that is used has a long life and maintains charge acceptability over a long period of time, and in particular, the separator type Q2 has a remarkable effect of suppressing electrolyte stratification.
  • Table 7 when the flake graphite is added (Table 11), there is no significant difference between the case where carbon black is added (Table 7) and the initial 5 second charging current, but 5000 It can be seen that the charging current and cycle characteristics at the 5th second after the cycle can be improved, and the effect of suppressing the electrolyte stratification is great. Since flake graphite has the characteristic that the physical properties of the active material paste do not change even if the amount added is increased (the paste does not become hard), the amount added can be increased.
  • Tables 14 to 17 show that the 5th second charging current (charge acceptability) and the cycle are caused by the difference in the separator types P, Q1, Q1 ′, and Q2 regardless of the primary particle size of the scaly graphite. It shows that there is a difference in characteristics (life performance under PSOC) and electrolyte specific gravity difference (degree of electrolyte stratification). From the above results, according to the examples (Tables 15 and 17) according to the present invention, the initial charge acceptability is equivalent to the others, but the high rate discharge to the load is performed under PSOC and the charge is performed.
  • the negative electrode plate in the configuration in which the negative electrode plate is accommodated in a bag-shaped separator made of a microporous synthetic resin sheet, the negative electrode plate has at least a material selected from the group consisting of glass, pulp, and polyolefin over the entire electrode plate surface.
  • the present invention is not limited to the automotive lead storage battery described in the above embodiment, but can be widely applied to a liquid lead storage battery, and includes all liquid lead storage batteries.
  • an electric vehicle such as a forklift is expected to be used without waiting for the mounted lead storage battery to be fully charged, that is, under PSOC, when the operation time becomes long.
  • the present invention is also suitable in such a case.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Cell Separators (AREA)

Abstract

 部分充電状態で負荷への放電が行なわれる液式の鉛蓄電池において、PSOC下で、電池が満充電になることがないため、ガス発生による電解液の撹拌が行なわれがたい場合にも、電解液の成層化を抑制して寿命性能を向上させる。 負極板1には、極板面全体に、ガラス、パルプ及びポリオレフィンからなる材料群から選択された少なくとも1つの材料の繊維で構成された不織布2が極板と一体とせず当接される。前記不織布2が当接された負極板1が、微多孔性の合成樹脂シートからなる袋状セパレータ3に収容され、正極板4と積層されている。不織布は、好ましくは、ガラス繊維、パルプ及びシリカ粉末を主成分として抄造されたものである。

Description

鉛蓄電池
 本発明は、電槽内に極板群とセパレータから遊離した電解液を有する液式鉛蓄電池に関するものである。
 近年、自動車においては、大気汚染防止、地球温暖化防止のため、様々な燃費向上対策が検討されている。燃費向上対策を施した自動車としては、エンジンの動作時間を少なくするアイドリングストップ車(以下、ISS車)や、エンジンの回転を無駄なく動力に使用する発電制御車といったマイクロハイブリッド車が検討されている。
 ISS車では、エンジンの始動回数が多くなり、その都度、鉛蓄電池は大電流放電が繰り返される。またISS車や発電制御車では、オルタネータによる発電量が少なくなり、鉛蓄電池の充電が間欠的に行なわれるので充電が不十分となることが多い。
 上記のような使われ方をする鉛蓄電池は、PSOC(Partial State Of Charge)と呼ばれる部分充電状態で使用されることになる。鉛蓄電池は、PSOC下で使用されると、完全充電状態で使用される場合よりも、寿命が短くなる傾向がある。PSOC下で使われると寿命が短くなる理由は、充電が不足している状態で充放電を繰り返すと、放電の際に負極板に生成される硫酸鉛が粗大化していき、硫酸鉛が充電生成物である金属鉛に戻り難くなることにあると考えられている。
 また、充電時に、放電生成物である硫酸鉛から生成する硫酸イオンは重いので、電解液中で下方へと移動する傾向がある。通常の鉛蓄電池の使われ方では、充電末期のガス発生によって電解液が撹拌され、硫酸イオンの前記下方への移動が抑制される。しかし、PSOC下では、電池が満充電になることがないため、ガス発生による電解液の撹拌が行なわれがたい。その結果、濃度の高い電解液が電槽の下部に滞留し、濃度の低い電解液が電槽の上部に滞留して、電解液の成層化が発生する。電解液濃度が高いと充電が受入れられ難くなり(充電反応が進み難くなり)、鉛蓄電池の寿命が低下してしまう。
 電解液の成層化を抑制する手段として、特許文献1(特開2002-025602号公報)、特許文献2(特開2004-063152号公報)、ならびに、特許文献3(特開2006-059576号公報)に、それぞれ開示がある。
 特許文献1は、合成樹脂製袋状セパレータに収納されたエキスパンド格子正極板と、ガラス繊維マットが表面に付着せしめられたエキスパンド格子負極板とを、交互に積層した極板群を備えた鉛蓄電池を開示している。これは、段落番号0003に、「負極板表面から発生する水素ガスが電解液を攪拌することに十分寄与せず、電解液の成層化を起こしやすいという問題がある。」と課題が記載され、負極板表面から水素ガスが発生するような満充電まで充電が行なわれる鉛蓄電池を対象としている。
 特許文献2は、正極板と、袋状セパレータで全面を覆った負極板と、前記二者の間に介在させたガラスマット付き平板状セパレータとを複数枚重ね合せた極板群を備えた鉛蓄電池を開示している(図5(C))。尚、この発明では、段落番号0007に記載されるごとく、「袋状セパレータの構造により正極板と負極板の間に存在する電解液の拡散が阻害され、使用中に電解液濃度が極板下部で高く、極板上部で低くなる電解液濃度の成層化が発生してしまう」ことが認識されており、電解液の成層化防止の解決には至っていない。
 特許文献3は、電解液の攪拌・循環が行なわれにくい使用環境においても電解液の成層化を発生させにくくするために、微孔性シートとガラスマットとが接着剤で貼り合わされてなる液式鉛蓄電池用セパレータを開示している。しかし、この発明は、前記セパレータを、正極板と負極板との関係で、どのように用いるかについては開示していない。
 また、特許文献4(特開平08-045537号公報)は、正極格子の腐食による格子変形が引き起こす短絡を防止するために、正極板を包む微孔性合成樹脂フィルムからなる袋状セパレータと正極板との間にU字状ガラスマットを配置した構成を開示している。
特開2002-025602号公報 特開2004-063152号公報 特開2006-059576号公報 特開平08-045537号公報
 本発明の目的は、部分充電状態で負荷への放電が行なわれる液式の鉛蓄電池において、PSOC下で、電池が満充電になることがないため、ガス発生による電解液の撹拌が行なわれがたい場合にも、電解液の成層化を抑制して寿命性能を向上させることにある。
 本発明は、負極活物質を負極集電体に充填してなる負極板と、正極活物質を正極集電体に充填してなる正極板とをセパレータを介して積層した極板群を、電解液とともに電槽内に収容した構成を有して、充電が間欠的に行なわれ、部分充電状態で負荷への高率放電が行なわれる液式鉛蓄電池を対象とする。
 本発明においては、負極板に、その極板面全体に不織布が極板と一体とせず当接されている。そして、前記不織布が当接された負極板が、微多孔性の合成樹脂シートからなる袋状セパレータに収容されていることを特徴とする。ここで、不織布は、ガラス、パルプ及びポリオレフィンからなる材料群から選択された少なくとも1つの材料の繊維で構成されたものである。
 前記不織布は、好ましくは、ガラス繊維、パルプ及び無機酸化物粉末を主成分とする混抄不織布である。前記無機酸化物粉末は、好ましくは、シリカ粉末である。
 さらに、好ましくは、前記不織布は面が相対するように折り曲げられており、負極板は前記相対する面の間に配置されている。
 本発明によれば、負極板の表面に不織布からなる高多孔度のセパレータを当接させたことにより、充電時に硫酸鉛から溶出してくる硫酸イオンの下降を防止することができるため、成層化が起こるのを防ぐことができる。その結果、PSOC下の充電不足を改善し、長寿命の鉛蓄電池を得ることができる。
本発明に係る鉛蓄電池の実施例において、極板群の構成を示す断面説明図である。 本発明に係る鉛蓄電池の実施例に使用するエキスパンド式集電体を示す説明図である。 本発明に係る鉛蓄電池の実施例に使用する極板群を示す説明図である。
 本発明に係る鉛蓄電池は、充電が間欠的に行なわれ、PSOC下で負荷への放電が行なわれる液式鉛蓄電池で、ISS車などのマイクロハイブリッド車等で用いるのに好適なものである。本発明に係る鉛蓄電池は、負極活物質を負極集電体に充填してなる負極板と、正極活物質を正極集電体に充填してなる正極板とをセパレータを介して積層して構成した極板群を、電解液とともに電槽内に収容した構成を有する。これらの基本構成は、従来の鉛蓄電池と同様である。
 本発明を実施するに当たって、負極活物質には、炭素質導電材と、充放電に伴う負極活物質の粗大化を抑制する有機化合物とを添加する。
 炭素質導電材は、好ましくは、黒鉛、カーボンブラック、活性炭、炭素繊維及びカーボンナノチューブからなる材料群の中から選択される。炭素質導電材の添加量は、満充電状態の負極活物質(海綿状金属鉛)100質量部に対し0.1~3質量部の範囲とするのが好ましい。好ましくは、黒鉛を選択し、さらに好ましくは、鱗片状黒鉛を選択する。鱗片状黒鉛の平均一次粒子径は、好ましくは、100μm以上とする。
 ここでいう鱗片状黒鉛とは、JIS M 8601(2005)記載のものを指す。鱗片状黒鉛の電気抵抗率は、0.02Ω・cm以下で、アセチレンブラックなどのカーボンブラック類の0.1Ω・cm前後より一桁小さい。従って、従来の鉛蓄電池で用いられているカーボンブラック類に替えて鱗片状黒鉛を用いることにより、負極活物質の電気抵抗を下げて、充電受け入れ性能を改善することができる。
 ここで、鱗片状黒鉛の平均一次粒子径は、JISM8511(2005)記載のレーザ回折・散乱法に準拠して求める。レーザ回折・散乱式粒度分布測定装置(日機装株式会社製:マイクロトラック9220FRA)を用い、分散剤として市販の界面活性剤ポリオキシエチレンオクチルフェニルエーテル(例えば、ロシュ・ダイアグノスティックス株式会社製:トリトンX-100)を0.5vol%含有する水溶液に鱗片状黒鉛試料を適量投入し、撹拌しながら40Wの超音波を180秒照射した後、測定を行なう。求められた平均粒子径(メディアン径:D50)の値を平均一次粒子径とする。
 ISS車や発電制御車などのマイクロハイブリッド車両に搭載される鉛蓄電池は、PSOCと呼ばれる部分充電状態で使用される。このような状況下で使用される鉛蓄電池においては、放電の際に負極活物質に生成される絶縁体である硫酸鉛が充放電の繰り返しに伴って粗大化していく、サルフェーションと呼ばれる現象が早期に生じる。サルフェーションが起ると、負極活物質の充電受入れ性及び放電性能が著しく低下する。
 負極活物質に添加された炭素質導電材は、硫酸鉛の粗大化を抑制し、硫酸鉛を微細な状態に維持して、硫酸鉛から溶け出す鉛イオンの濃度が低下するのを抑制し、充電受け入れ性が高い状態を維持する作用をする。
 また、充放電に伴う負極活物質の粗大化を抑制する有機化合物は、好ましくは、ビスフェノール類・アミノベンゼンスルホン酸・ホルムアルデヒド縮合物を用いることが好ましい。上記ビスフェノール類は、ビスフェノールA、ビスフェノールF、ビスフェノールS等である。上記縮合物のうち、特に好ましいのは、以下に、[化1]の化学構造式で示すビスフェノールA・アミノベンゼンスルホン酸ナトリウム・ホルムアルデヒド縮合物である。
Figure JPOXMLDOC01-appb-C000002
 負極活物質の充電反応は、放電生成物である硫酸鉛から溶解する鉛イオンの濃度に依存し、鉛イオンが多いほど充電受入れ性が高くなる。充放電に伴う負極活物質の粗大化を抑制するために負極活物質に添加する有機化合物として広く用いられているリグニンは、鉛イオンに吸着して鉛イオンの反応性を低下させてしまうため、負極活物質の充電反応を阻害し、充電受け入れ性の向上を抑制するという副作用がある。これに対し、上記[化1]の化学構造式を有するビスフェノールA・アミノベンゼンスルホン酸ナトリウム・ホルムアルデヒド縮合物は、鉛イオンへの吸着力が弱く、吸着量も少ないことから、リグニンに代えて上記の縮合物を用いると、充電受入れ性を妨げることが少なくなり、炭素質導電材の添加による充電受け入れ性の維持を妨げることが少なくなる。
 尚、本発明は、充放電に伴う負極活物質の粗大化を抑制する有機化合物として、以下に、[化2]の化学構造式(部分構造)で示すリグニンスルホン酸ナトリウム等を選択することを妨げるものではない。
Figure JPOXMLDOC01-appb-C000003
 本発明を実施するに当たって、好ましくは、正極板の正極活物質利用率を50~65%の範囲に設定する。
 本明細書においては、正極活物質の放電反応に関する利用率を次のように定義する。即ち、活物質利用率を求めようとする正極板を用いて、負極活物質の理論容量が正極活物質の理論容量よりも十分に多い液式鉛蓄電池を組み立て、この鉛蓄電池を満充電の状態にした後、定格容量の0.2C電流で放電させて、負極活物質が消耗する前に正極活物質の消耗により放電反応が不可能な状態となって放電が終了する正極支配の放電試験に供し、この放電試験において、放電が終了するまでの放電電気量と当該正極板の正極活物質の理論放電容量との比を、正極活物質利用率とする。
 具体的には、正極板1枚の両側にセパレータを介して負極板を配置した、正極板1枚と負極板2枚の極板群(負極活物質の理論容量は正極活物質の理論容量の1.5倍以上)を電槽内に収容して、正極活物質の理論容量の1.5倍以上の理論容量の液量で電槽内に電解液(比重1.28の希硫酸)を注いだ鉛蓄電池を構成し、満充電状態にした後、この鉛蓄電池に対して、定格容量の0.2C電流で放電を行なわせる放電試験を実施した。電解液容量と負極活物質の理論容量を正極活物質の理論容量の1.5倍以上としているのは、放電反応が、正極支配で確実に終了するようにするためである。
 正極活物質の放電反応に関する利用率が高いことは、放電反応の反応種である水素イオン(H)や硫酸イオン(SO 2-)の拡散移動が速やかに行なわれる状態を長く維持して、放電反応を長時間に亘って継続させることができることを意味する。反応種の拡散が長時間に亘って維持されることは、反応種の拡散パスが多く存在していることを意味している。
 本発明を実施するに当たって、セパレータとしては、ポリエチレンの微多孔シートからなる通常のポリエチレン製のセパレータを用いることができるが、ポリエチレン製のセパレータを単独で用いるのではなく、ガラス繊維、ポリオレフィン系(ポリエチレン、ポリプロピレン等)繊維、パルプ等の材料の繊維からなる不織布からなるセパレータ(単に「不織布からなるセパレータ」という。)とポリエチレン製セパレータとを併用する。
 この場合、セパレータの負極板と相対する表面が不織布からなるセパレータにより構成されるように、ポリエチレン製セパレータと不織布からなるセパレータとを重ね合せて用いる。不織布からなるセパレータには、シリカ等の無機酸化物粉末を適宜含有させることができる。不織布は、繊維を水中に分散させて、これを抄造することにより製造できるので、抄造の際に前記無機酸化物粉末を繊維と一緒に水中に分散させれば、容易に不織布に含有させることができる。また、不織布は、好ましくは、ガラス繊維、パルプ及びシリカ粉末を主成分とする混抄不織布である。このような複数の繊維の混合物からなる不織布は、例えば、特開平2002-260714号公報に開示されている制御弁式鉛蓄電池に適用されるもの(薄型セパレータとして、ガラス繊維の単独構成とすることなく、ガラス繊維と耐酸性有機樹脂繊維と、さらには、必要に応じてシリカとで構成)を好適に用いることができる。
 不織布からなるセパレータは、負極板の極板面全体に極板と一体とせず当接される。そして、前記不織布が当接された負極板が、袋状のポリエチレン製セパレータに収容されている。このとき、不織布からなるセパレータは、面が相対するようにV字ないしU字状に折り曲げられて、負極板は前記相対する面の間に配置される。
 充電時に硫酸鉛から生成する硫酸イオンは、電解液中で下方へと移動してしまう。PSOC下では、電池が満充電になることがないため、ガス発生による電解液の撹拌が行なわれない。その結果、電池下部の電解液比重が高くなり、上部の電解液比重が低くなるという、成層化と呼ばれる電解液濃度の不均一化が起こる。このような現象が起こると、反応面積が低下することになるため、充電受入れ性及び放電性能が低下する。負極板の表面に不織布からなる高多孔度のセパレータを当接しておくと、硫酸イオンの沈降を防止することができるため、成層化が起こるのを防ぐことができる。そのメカニズムは次のとおりと推測され、負極板の表面に不織布からなるセパレータを極板と一体とせず当接しておくことが重要である。
 PSOC下において、負極活物質は、殆ど帯電しない海綿状鉛(金属鉛)と負に帯電する硫酸鉛が主成分である。従って、負極は主に負帯電している。これは、電池構成上、負極活物質(硫酸鉛を含む)固相が正極に対して電位的に低く、負側にあることを意味している。電池電圧は、元々、正極及び負極の電気二重層領域の電位差の合計として現れるものである。電気二重層領域は、オングストロームオーダの薄層領域であるが、鉛蓄電池の電池電圧は、正極及び負極の電気二重層領域の電位差に関して正極側の電位と負極側の電位の差に等しくなっている。従って、正極活物質固相は、電解液に対して高い電位、すなわち正に帯電した電気二重層構造になっている。一方、負極活物質固相は、前記のとおり、電解液に対して低い電位、すなわち、負に帯電した電気二重層構造になっている。
  充電反応により生成してくる硫酸イオン種(SO 2-、HSO )は、電解液中の水より重く、重力によって沈降し易い性質がある。上述のように、負極活物質固相は、負に帯電した電気二重層構造になっているので、負極側で生成してくる硫酸イオン種(SO 2-、HSO )は、負極と静電的に反発する関係にある。この静電的な反発作用が加わることにより、負極側では充電反応により負極活物質固相、すなわち負極活物質細孔内で生成した硫酸イオン種(SO 2-、HSO )が電解液相側に押し出され、硫酸イオン種の電解液中での沈降が加速される環境にある。この時、負極板の表面に当接しただけの不織布からなるセパレータが、負極活物質細孔内から電解液相に押し出された硫酸イオン種(SO 2-、HSO )の電解液中での沈降を効果的に抑えて電解液の成層化を回避することができる。
  一方、正極活物質固相は、正に帯電した電気二重層構造になっているので、正極側で生成してくる硫酸イオン種(SO 2-、HSO )は、正極と静電的に反発する関係にない。従って、正極板の表面に不織布からなるセパレータを当接しても、電解液の成層化回避の効果は小さい。これは、不織布からなるセパレータを負極板の表面に当接させず、負極板を収納した袋状セパレータの外側で正極板の表面に当接させる構成と、正極板を収納した袋状のセパレータ内で不織布からなるセパレータを正極板の表面に当接させる構成のいずれの場合にも言えることである。
 不織布からなるセパレータは、袋状のセパレータ内で負極板の表面に一体とせずに当接させるだけにして配置しておくことが重要である。特許文献1に開示されているようにガラス繊維マット(本発明の不織布からなるセパレータに相応)が負極板表面に一体に付着せしめられていると、不織布を構成する繊維の間隙に負極活物質が進入して、繊維と負極活物質が混在した層となる。このような層は、むしろ、充電反応により負極活物質細孔内で硫酸イオン種を生成する負極活物質固相である。すなわち、負極板表面に一体に付着せしめられた不織布は、成層化の原因である硫酸イオン種が負極活物質細孔内で生成する負極活物質固相の一部分である。従って、負極活物質固相の一部分である不織布が、負極活物質細孔内で生成し電解液相側に押し出された硫酸イオン種の沈降により顕在化する成層化現象を抑制することは困難である。また、負極板表面に一体に付着せしめられた不織布は、電池の内部抵抗を増加させる原因にもなる。
 不織布からなるセパレータを、面が相対するようにV字ないしU字状に折り曲げて用いる構成は、負極板の両面に不織布からなるセパレータを個別に配置するより、負極板と不織布からなるセパレータの位置ずれが生じない点で優れている。
  また、液式鉛蓄電池においては、極板はその極板面が垂直方向となるように配列されているので、極板が伸びるときは垂直方向の伸びとなりやすい。PSOC下では、負極に硫酸鉛が蓄積し易く、特に負極板の垂直方向下部に硫酸鉛が残存する傾向が強い。硫酸鉛が蓄積すると、負極活物質である海綿状鉛に比べて2.7倍の体積膨張を生じるので、負極板の下部が下方に伸びやすい。不織布からなるセパレータを、面が相対するようにV字ないしU字状に折り曲げて用いることにより、負極板の下部が不織布からなるセパレータの折り曲げ部に位置することになるので、変形した負極板の下部が袋状のセパレータを突き破り短絡の原因になることを防ぐことが可能である。
 先ず、未化成の正極板を作製した。酸化鉛と鉛丹とカットファイバ(ポリエチレンテレフタレート短繊維、以下同)との混合物に水を加えて混練し、続いて希硫酸を少量ずつ添加しながら混練して、正極用活物質ペーストを製造した。この活物質ペーストを、鉛合金からなる圧延シートにエキスパンド加工を施すことにより作製された、図2に示すエキスパンド式集電体21に充填する。エキスパンド式集電体21は、格子部22、上枠骨23、下枠骨24、耳部25から構成される。活物質ペーストを充填後、40℃、湿度95%の雰囲気で24時間熟成し、その後乾燥して、未化成の正極板を作製した。
 ここで、放電反応に関する利用率が種々異なる正極活物質を有する正極板を、次のようにして作成した。即ち、正極活物質ペースト調製時の希硫酸の添加量が多くなると活物質の多孔度が増加し、放電反応に関する正極活物質の利用率が向上することから、希硫酸の添加量を適宜に変えて未化成の正極板を作製することにより、放電反応に関する活物質利用率が種々異なる正極板を得た。
 次に、未化成の負極板を作製した。酸化鉛と、カットファイバと、硫酸バリウムと、炭素質導電材と、負極活物質の粗大化を抑制する有機化合物との混合物に水を加えて混練し、続いて希硫酸を少量ずつ添加しながら混練して、負極用活物質ペーストを作製した。この活物質ペーストを、鉛合金からなる圧延シートにエキスパンド加工を施すことにより作製されたエキスパンド式集電体に充填し、40℃、湿度95%の雰囲気で24時間熟成し、その後乾燥して未化成の負極板を作製した。ここで、負極活物質の粗大化を抑制する有機化合物、炭素質導電材を異ならせて、以下に示す負極板A,B,Cを作成した。
 負極板A:
 負極活物質の粗大化を抑制する有機化合物として、前記[化2]に示したリグニンスルホン酸ナトリウムを主成分とするものを選択し、炭素質導電材として、重油を原料としたカーボンブラック(比表面積260m/g)を用い、その添加量を活物質100質量部に対し0.2質量部としたもの。ここで、活物質100質量部とは、満充電状態における活物質(海綿状金属鉛)100質量部を言う。以下同様である。
 負極板B:
 負極活物質の粗大化を抑制する有機化合物として、[化1]に示したビスフェノールA・アミノベンゼンスルホン酸ナトリウム・ホルムアルデヒド縮合物(分子量1.7万~2.0万,化合物中のイオウ含有量は6~11質量%)を主成分とするものを選択し、炭素質導電材として、上記カーボンブラックを用い、その添加量を活物質100質量部に対し0.2質量部としたもの。
 負極板C:
 負極活物質の粗大化を抑制する有機化合物として、[化1]に示したビスフェノールA・アミノベンゼンスルホン酸ナトリウム・ホルムアルデヒド縮合物(分子量1.7万~2.0万,化合物中のイオウ含有量は6~11質量%)を主成分とするものを選択し、炭素質導電材として、鱗片状黒鉛(粒径180μm)を用い、その添加量を活物質100質量部に対し2質量部としたもの。
 次に上記負極板A、B及びCと、放電反応に関する正極活物質の利用率を種々異ならせた正極板と、1ないし2種類のセパレータとを組み合わせた。
 正負極板とセパレータが積層された極板群の断面図を図1に示す。まず、所定寸法長さのポリエチレン製セパレータ(凸条リブ高さ0.6mm、ベース厚み0.2mmで、総厚み0.8mm,尚、図では凸条リブの表示を省略した)と、ガラス繊維からなる不織布2(厚み0.3mm)を重ね、その状態で、長さ方向の中央において幅方向に折り目をつけてU字状に折り曲げ、負極板1をU字の内側に配置する。そして、U字状に折り曲げたポリエチレン製セパレータの長さ方向両側部をシールして、ポリエチレン製の袋状セパレータ3とする。
 前記ポリエチレン製の袋状セパレータ3に収納された負極板1と、正極板4とを交互に積層し、正極板6枚、負極板7枚からなる構成とした。
 続いて、キャストオンストラップ(COS)方式で同極の極板の耳部25同士を溶接してストラップ5を形成し、図3に示す極板群6を作製した。前記極板群6は次の工程で電槽に挿入し、蓋を電槽に熱溶着する。組み立てた電池は、JISD5301規定のD23形の鉛蓄電池である。
 ここで、セパレータについては、袋状のポリエチレン製セパレータを単独で用いたセパレータをセパレータPとし、袋状のポリエチレン製セパレータの内側で、負極板表面にガラス繊維からなる不織布を当接した構造のセパレータをセパレータQ1とし、袋状のポリエチレン製セパレータの内側で、正極板表面にガラス繊維からなる不織布を当接した構造のセパレータをセパレータQ1’とした。
 本実施例では、セパレータQ1、Q1’を構成する不織布としてガラス繊維100%の不織布を用いたが、このガラス繊維の不織布に代えて、ポリオレフィン系材料、パルプ等の材料の繊維からなる不織布を用いてもよく、これら複数の材料の繊維の混合物を主成分とする混抄不織布を用いてもよい。このような混抄不織布のうち、ガラス繊維、パルプ及び無機酸化物粉末を主成分とする混抄不織布を用いた構成をセパレータQ2とした。具体的には、この混抄不織布は、ガラス繊維10質量%、合成パルプ35質量%、シリカ粉末55質量%を水中で抄造したものである。
 次に電槽化成を行なった。25℃換算で比重が1.230の希硫酸を電槽内に注入し、活物質量に基づく理論容量の200%の電気量を通電して化成し、鉛蓄電池を完成した。
 本実施例において作製した極板群の構成は、表1の12タイプである。ここで、正極板は、前述の製法により、放電反応に関する活物質利用率を50%から65%まで4段階に変化させたものを使用した。また、上述したように、セパレータPは袋状のポリエチレン製セパレータを単独で用い各種負極板を収容したもの、セパレータQ1は袋状のポリエチレン製セパレータとその内側でU字状に折り曲げたガラス繊維からなる不織布とを組合せて用い各種負極板を収容したもの、セパレータQ1’は袋状のポリエチレン製セパレータとその内側でU字状に折り曲げたガラス繊維からなる不織布とを組合せて用い正極板を収容したものである。セパレータQ2は、Q1と同様の構成においてガラス繊維不織布に代えて上記の混抄不織布を用いたものである。
Figure JPOXMLDOC01-appb-T000004
 尚、本実施例において、放電反応に関する正極活物質利用率の測定は、前述した方法によった。即ち、正極板1枚の両側にセパレータを介して負極板を配置して構成した、正極板1枚と負極板2枚の極板群(負極活物質の理論容量は正極活物質の理論容量の1.5倍以上)を電槽内に収容して、正極活物質の理論容量の1.5倍以上の理論容量の液量で電槽内に電解液(比重1.28の希硫酸)を注いだ鉛蓄電池を構成し、これを満充電状態にした後、この鉛蓄電池に対して、定格容量の0.2C電流で放電を行なわせて、負極活物質が消耗する前に正極活物質の消耗により放電反応が不可能な状態となって放電が終了する正極支配の放電試験を実施した。この放電試験において、放電が終了するまでの放電電気量と当該正極板の正極活物質の理論放電容量との比を、正極活物質利用率とした。
 タイプ1ないしタイプ12の極板群を用いて組み立てた鉛蓄電池について、充電受け入れ性の測定と、サイクル特性の測定(寿命試験)とを行なった。
 まず、充電受入れ性の測定は次のようにして行なった。組み立て初期の鉛蓄電池を、25℃の恒温槽の中でSOC(充電状態)を満充電状態の90%に調整し、14Vの充電電圧の印加(但し、14Vに達する前の電流を100Aに制限)開始時から5秒目の充電電流値(5秒目充電電流値)を計測した。5秒目充電電流値が高い場合ほど初期の充電受入れ性が高いことを意味する。
 また、40℃の恒温槽の中で、充電電圧14.8V(但し、14.8Vに達する前の電流を25Aに制限)、充電時間10分の充電と、25A定電流放電,放電時間4分の放電を1サイクルとしたサイクル試験を5000サイクル繰り返した後、上記の初期と同様の条件で充電受け入れ性の測定を行なった。すなわち、5000サイクル後の5秒目充電電流値が高いほど初期の良好な充電受け入れ性をその後も維持していることを意味する。
 サイクル特性の測定は次のように行なった。電池温度が25℃になるように雰囲気温度を調整し、45A-59秒間、300A-1秒間の定電流放電を行なった後、100A-14V-60秒間の定電流・定電圧充電を1サイクルとする寿命試験を行なった。
 この試験はISS車における鉛蓄電池の使われ方を模擬したサイクル試験である。この寿命試験では、放電量に対して充電量が少ないため、充電が完全に行なわれないと徐々に充電不足になり、その結果、放電電流を300Aとして1秒間放電した時の1秒目電圧が徐々に低下する。即ち、定電流・定電圧充電時に負極が分極して早期に定電圧充電に切り替わると、充電電流が減衰して充電不足になる。この寿命試験では、300A放電時の1秒目電圧が7.2Vを下回ったときを、その電池の寿命と判定した。
 充放電サイクル中も高い充電受け入れ性を維持しなければ、充電不足の状態が継続し、サイクル特性は悪くなる。上記の5秒目充電電流値の充放電サイクルに伴う変化とサイクル特性を評価することで、充放電サイクル中の充電受け入れ性の良否を適正に評価することになる。
 また上記の試験において、電槽上部の電解液面近傍及び電槽底部の20℃換算の電解液比重値を測定し、電解液面近傍と電槽底部の電解液比重の差を算出した。この差が小さいほどサイクル時の電解液成層化の度合いが低いことを意味する。上記試験において1000サイクル経過時の電解液比重差を調べ、成層化の尺度とした。
 上記の試験により、定電圧充電時の充電受入れ性と、PSOC下で使用されたときの耐久性とを評価できる。
 タイプ1ないし12の鉛蓄電池について行なった5秒目充電電流の測定結果と、サイクル特性の測定結果及び電解液比重差とをそれぞれ表2ないし表13に示した。表3、表5、表7、表9、表11及び表13が実施例であり、表2、表4、表6、表8、表10及び表12は、比較例である。
 尚、表2のNo.1を、各表の評価の基準となる極板群構成(基準例)とした。基準例は、放電反応に関する正極活物質の利用率を48%とした場合であり、各表に示された5秒目充電電流及びサイクル特性は、基準例を100として比較評価したものである。5000サイクル後の5秒目充電電流にあっては、基準例の初期を100として比較評価したものである。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 表2ないし表5は、負極板Aを使用したときに、セパレータ種別P、Q1、Q1’、Q2の相違に起因して、5秒目充電電流(充電受け入れ性)とサイクル特性(PSOC下での寿命性能)及び電解液比重差(電解液成層化の度合い)に差が生じることを示している。
  上記の結果から、本発明に係る実施例(表3、表5)によれば、初期の充電受け入れ性こそ若干劣るものの、PSOC下で負荷への高率放電が行なわれ充電が間欠的に行なわれる液式鉛蓄電池において、長期に亘って充電受け入れ性を維持し長寿命であり、特に、セパレータ種別Q2においては、電解液成層化の抑制効果が顕著であることが分かる。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
 表6ないし表9は、負極板Bを使用したときに、セパレータ種別P、Q1、Q1’、Q2の相違に起因して、5秒目充電電流(充電受け入れ性)とサイクル特性(PSOC下での寿命性能)及び電解液比重差(電解液成層化の度合い)に差が生じることを示している。
  上記の結果からも、本発明に係る実施例(表7、表9)によれば、初期の充電受け入れ性こそ若干劣るものの、PSOC下で負荷への高率放電が行なわれ充電が間欠的に行なわれる液式鉛蓄電池において、長期に亘って充電受け入れ性を維持し長寿命であり、特に、セパレータ種別Q2においては、電解液成層化の抑制効果が顕著であることが分かる。
  また、表3と表7の対比から、負極活物質の粗大化を抑制する有機化合物として[化1]の縮合物を主成分としたものを用いると、5秒目充電電流(充電受け入れ性)及びサイクル特性(PSOC下での寿命性能)を大きく向上させることができることが分る。
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
 表10ないし表13は、負極板Cを使用したときに、セパレータ種別P、Q1、Q1’、Q2の相違に起因して、5秒目充電電流(充電受け入れ性)とサイクル特性(PSOC下での寿命性能)及び電解液比重差(電解液成層化の度合い)に差が生じることを示している。
  上記の結果からも、本発明に係る実施例(表11、表13)によれば、初期の充電受け入れ性こそ若干劣るものの、PSOC下で負荷への高率放電が行なわれ充電が間欠的に行なわれる液式鉛蓄電池において、長期に亘って充電受け入れ性を維持し長寿命であり、特に、セパレータ種別Q2においては、電解液成層化の抑制効果が顕著であることが分かる。
  また、表7と表11の対比から、鱗片状黒鉛を添加した場合(表11)は、カーボンブラックを添加した場合(表7)と初期の5秒目充電電流には大差がないものの、5000サイクル後の5秒目充電電流とサイクル特性を改善でき、電解液成層化の抑制効果も大きいことが分かる。
  鱗片状黒鉛は、添加量を増やしても活物質ペーストの物性変化がない(ペーストが硬くならない)特徴を持っているため、添加量を増やすことが可能である。
 次に、表10ないし表13それぞれのNo.3のタイプの鉛蓄電池において、鱗片状黒鉛の平均一次粒子径を変えて、その平均一次粒子径が電池特性に及ぼす影響を確認した。
  同様に、5秒目充電電流とサイクル特性を評価した結果を、表11ないし表13に示す。各表に示された5秒目充電電流及びサイクル特性は、表1の基準例を100として同様に評価したものである。
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000020
 表14ないし表17は、鱗片状黒鉛の一次粒子径がいずれの場合にも、セパレータ種別P、Q1、Q1’、Q2の相違に起因して、5秒目充電電流(充電受け入れ性)とサイクル特性(PSOC下での寿命性能)及び電解液比重差(電解液成層化の度合い)に差が生じることを示している。
  上記の結果からも、本発明に係る実施例(表15、表17)によれば、初期の充電受け入れ性こそ他と同等であるものの、PSOC下で負荷への高率放電が行なわれ充電が間欠的に行なわれる液式鉛蓄電池において、長期に亘って充電受け入れ性を維持し長寿命であり、特に、セパレータ種別Q2においては、電解液成層化の抑制効果が顕著であることが分かる。
  また、表15、表17の結果から、鱗片状黒鉛の平均一次粒子径が100μm以上の範囲で、長期に亘って充電受け入れ性を維持し長寿命であること顕著である。
 本発明では、微多孔性の合成樹脂シートからなる袋状セパレータに負極板を収容した構成において、負極板には、極板面全体に、ガラス、パルプ及びポリオレフィンからなる材料群から選択された少なくとも1つの材料の繊維で構成された不織布を極板と一体とせず当接したことにより、PSOC下で鉛蓄電池の長期に亘って充電受け入れ性を維持し、寿命性能を改善することができる。これは、PSOC下で使用される鉛蓄電池にとって大きな前進であり、マイクロハイブリッド車等に搭載される鉛蓄電池の性能の向上に大きく寄与するものである。
  また、本発明は、上記実施例で説明した自動車用鉛蓄電池に限らず、広く、液式の鉛蓄電池に適用可能であり、液式の鉛蓄電池全般を包含する。例えば、フォークリフト等の電動車は、稼働時間が長くなると、搭載されている鉛蓄電池が満充電されるのを待たずに、すなわち、PSOC下で使用されることが想定される。本発明は、このような場合にも好適である。
 1:負極板、2:不織布、3:袋状セパレータ、4:正極板、5:ストラップ、6:極板群、21:キスパンド式集電体、22:格子部、23:上枠骨、24:下枠骨、25:耳部。

Claims (7)

  1.  負極活物質を負極集電体に充填してなる負極板と、正極活物質を正極集電体に充填してなる正極板とをセパレータを介して積層した極板群を、電解液とともに電槽内に収容した構成を有して、部分充電状態で負荷への放電が行なわれる液式鉛蓄電池であって、
     前記負極板には、極板面全体に、ガラス、パルプ及びポリオレフィンからなる材料群から選択された少なくとも1つの材料の繊維で構成された不織布が極板と一体とせず当接され、
     前記不織布が当接された負極板が、微多孔性の合成樹脂シートからなる袋状セパレータに収容されていること、
     を特徴とする鉛蓄電池。
  2.  不織布が、ガラス繊維、パルプ及び無機酸化物粉末を主成分とする混抄不織布である請求項1記載の鉛蓄電池。
  3.  無機酸化物粉末がシリカ粉末である請求項2記載の鉛蓄電池。
  4.  前記不織布は面が相対するように折り曲げられ、前記相対する面の間に負極板が配置されていることを特徴とする請求項1~3のいずれかに記載の鉛蓄電池。
  5.  負極活物質に、充放電に伴う負極活物質の粗大化を抑制する有機化合物として[化1]の化学構造式で示すビスフェノールA・アミノベンゼンスルホン酸ナトリウム・ホルムアルデヒド縮合物が配合されている請求項1~3のいずれかに記載の鉛蓄電池。
    Figure JPOXMLDOC01-appb-C000001
  6.  負極活物質に、炭素質導電材として平均一次粒子径100μm以上の鱗片状黒鉛が配合されている請求項5に記載の鉛蓄電池。
  7.  正極活物質利用率が50~65%である請求項5に記載の鉛蓄電池。
PCT/JP2012/054943 2011-05-13 2012-02-28 鉛蓄電池 WO2012157311A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US14/117,106 US9735409B2 (en) 2011-05-13 2012-02-28 Lead acid battery
JP2013515019A JP5500315B2 (ja) 2011-05-13 2012-02-28 鉛蓄電池
KR1020137029680A KR20140021663A (ko) 2011-05-13 2012-02-28 납축전지
RU2013155484/07A RU2013155484A (ru) 2011-05-13 2012-02-28 Свинцово-кислотная аккумуляторная батарея
EP12785458.6A EP2709200B1 (en) 2011-05-13 2012-02-28 Lead battery
CN201280023755.2A CN103534864B (zh) 2011-05-13 2012-02-28 铅蓄电池

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-108690 2011-05-13
JP2011108690 2011-05-13
JP2011-187384 2011-08-30
JP2011187384 2011-08-30

Publications (1)

Publication Number Publication Date
WO2012157311A1 true WO2012157311A1 (ja) 2012-11-22

Family

ID=47176653

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/054943 WO2012157311A1 (ja) 2011-05-13 2012-02-28 鉛蓄電池

Country Status (7)

Country Link
US (1) US9735409B2 (ja)
EP (1) EP2709200B1 (ja)
JP (1) JP5500315B2 (ja)
KR (1) KR20140021663A (ja)
CN (1) CN103534864B (ja)
RU (1) RU2013155484A (ja)
WO (1) WO2012157311A1 (ja)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103259052A (zh) * 2013-05-03 2013-08-21 江苏苏中电池科技发展有限公司 一种电动车用铅炭动力电池及正、负极活性物质配方和制备方法
WO2014087565A1 (ja) * 2012-12-03 2014-06-12 パナソニック株式会社 鉛蓄電池用格子および鉛蓄電池
TWI479717B (zh) * 2013-11-28 2015-04-01 Csb Battery Co Ltd Lead-acid capacitor batteries and the preparation of lead-acid battery method
WO2015064445A1 (ja) * 2013-10-28 2015-05-07 日立化成株式会社 樹脂組成物、電極、鉛蓄電池及びこれらの製造方法
WO2015146919A1 (ja) * 2014-03-27 2015-10-01 新神戸電機株式会社 鉛蓄電池
JP2015176638A (ja) * 2014-03-13 2015-10-05 株式会社Gsユアサ 液式鉛蓄電池
WO2016052512A1 (ja) * 2014-09-29 2016-04-07 日立化成株式会社 鉛蓄電池
EP2960978A4 (en) * 2013-02-22 2016-08-10 Gs Yuasa Int Ltd SUBMERSIBLE BATTERY WITH LEAD-ACID
JP2016177872A (ja) * 2015-03-18 2016-10-06 日立化成株式会社 鉛蓄電池
JP2017045539A (ja) * 2015-08-24 2017-03-02 日立化成株式会社 鉛蓄電池
WO2017098665A1 (ja) * 2015-12-11 2017-06-15 日立化成株式会社 鉛蓄電池
WO2017098666A1 (ja) * 2015-12-11 2017-06-15 日立化成株式会社 鉛蓄電池
JP2017142888A (ja) * 2016-02-08 2017-08-17 日立化成株式会社 鉛蓄電池
JP2018018744A (ja) * 2016-07-29 2018-02-01 株式会社Gsユアサ 鉛蓄電池
JP2018018800A (ja) * 2016-07-29 2018-02-01 株式会社Gsユアサ 鉛蓄電池
JP2018018802A (ja) * 2016-07-29 2018-02-01 株式会社Gsユアサ 鉛蓄電池
WO2018105060A1 (ja) * 2016-12-07 2018-06-14 日立化成株式会社 液式鉛蓄電池
CN108370032A (zh) * 2015-10-06 2018-08-03 阿克爱科蒂夫有限公司 改进的铅酸蓄电池电极
WO2018199207A1 (ja) * 2017-04-28 2018-11-01 株式会社Gsユアサ 鉛蓄電池
JP2019102282A (ja) * 2017-12-04 2019-06-24 日立化成株式会社 鉛蓄電池
US10522837B2 (en) 2013-11-29 2019-12-31 Gs Yuasa International Ltd. Lead-acid battery
JPWO2018199123A1 (ja) * 2017-04-28 2020-03-12 株式会社Gsユアサ 鉛蓄電池
JPWO2018199053A1 (ja) * 2017-04-28 2020-03-12 株式会社Gsユアサ 鉛蓄電池
JPWO2018199124A1 (ja) * 2017-04-28 2020-03-12 株式会社Gsユアサ 鉛蓄電池
JPWO2018199125A1 (ja) * 2017-04-28 2020-03-12 株式会社Gsユアサ 鉛蓄電池

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220071298A (ko) * 2013-03-07 2022-05-31 다라믹 엘엘씨 적층 산화 보호 분리막
US10014501B2 (en) 2014-03-22 2018-07-03 Hollingsworth & Vose Company Battery separators having a low apparent density
US9293748B1 (en) 2014-09-15 2016-03-22 Hollingsworth & Vose Company Multi-region battery separators
WO2016121510A1 (ja) * 2015-01-28 2016-08-04 日立化成株式会社 鉛蓄電池及びそれを備える自動車
US10270074B2 (en) 2015-02-19 2019-04-23 Hollingsworth & Vose Company Battery separators comprising chemical additives and/or other components
US9786885B2 (en) 2015-04-10 2017-10-10 Hollingsworth & Vose Company Battery separators comprising inorganic particles
WO2017170422A1 (ja) * 2016-03-30 2017-10-05 日立化成株式会社 鉛蓄電池、マイクロハイブリッド車及びアイドリングストップシステム車
JP6775764B2 (ja) * 2016-09-30 2020-10-28 株式会社Gsユアサ 鉛蓄電池
KR101786393B1 (ko) 2016-10-14 2017-10-17 현대자동차주식회사 납축전지용 전해액 조성물 및 이를 이용한 납축전지
CN106531943A (zh) * 2016-12-14 2017-03-22 镇江泰舸电池隔膜科技有限公司 一种蓄电池卡槽式隔板
US20190365569A1 (en) 2017-02-09 2019-12-05 Norlase Aps Apparatus for Photothermal Ophthalmic Treatment
CN111279527B (zh) 2017-06-09 2023-11-07 Cps科技控股有限公司 铅酸电池
CN111295780A (zh) * 2017-10-31 2020-06-16 株式会社杰士汤浅国际 铅蓄电池的制造方法
CN109546232B (zh) * 2018-11-02 2021-11-05 小洋电源股份有限公司 一种固态矽胶牵引蓄电池
CN112018455A (zh) * 2019-05-28 2020-12-01 浙江图兰特储能科技有限公司 一种具有填充物的水平铅酸电池及其组装方法
WO2020241880A1 (ja) * 2019-05-31 2020-12-03 株式会社Gsユアサ 鉛蓄電池
WO2021060324A1 (ja) * 2019-09-27 2021-04-01 株式会社Gsユアサ 鉛蓄電池用負極板および鉛蓄電池
WO2021200290A1 (ja) * 2020-03-30 2021-10-07 旭化成株式会社 鉛蓄電池

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07176300A (ja) * 1993-12-20 1995-07-14 Matsushita Electric Ind Co Ltd 鉛蓄電池
JPH0845537A (ja) 1994-08-02 1996-02-16 Matsushita Electric Ind Co Ltd 鉛蓄電池
JPH0917406A (ja) * 1995-06-28 1997-01-17 Shin Kobe Electric Mach Co Ltd 密閉形鉛蓄電池
JP2002025602A (ja) 2000-07-06 2002-01-25 Shin Kobe Electric Mach Co Ltd 鉛蓄電池
JP2002141066A (ja) * 2000-10-31 2002-05-17 Shin Kobe Electric Mach Co Ltd 制御弁式鉛蓄電池
JP2002231247A (ja) * 2001-01-30 2002-08-16 Shin Kobe Electric Mach Co Ltd 制御弁式鉛蓄電池
JP2002260714A (ja) 2001-03-01 2002-09-13 Matsushita Electric Ind Co Ltd 制御弁式鉛蓄電池
JP2004063152A (ja) 2002-07-25 2004-02-26 Shin Kobe Electric Mach Co Ltd 鉛蓄電池
JP2005285700A (ja) * 2004-03-30 2005-10-13 Nippon Sheet Glass Co Ltd 鉛蓄電池用セパレータのシール材、袋状鉛蓄電池用セパレータ並びに鉛蓄電池
JP2005327546A (ja) * 2004-05-13 2005-11-24 Matsushita Electric Ind Co Ltd 制御弁式鉛蓄電池
WO2005124920A1 (ja) * 2004-06-16 2005-12-29 Matsushita Electric Industrial Co., Ltd. 鉛蓄電池
JP2006059576A (ja) 2004-08-17 2006-03-02 Nippon Sheet Glass Co Ltd 液式鉛蓄電池用セパレータ、液式鉛蓄電池用ガラスマット並びに液式鉛蓄電池
JP2006086039A (ja) * 2004-09-16 2006-03-30 Furukawa Battery Co Ltd:The 鉛蓄電池
JP2008243487A (ja) * 2007-03-26 2008-10-09 Furukawa Battery Co Ltd:The 鉛電池

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11250913A (ja) * 1998-03-02 1999-09-17 Aisin Seiki Co Ltd 鉛蓄電池
US20020106557A1 (en) * 2000-09-19 2002-08-08 Graeme Fraser-Bell Separator assembly for use in a recombinant battery
KR20070023674A (ko) * 2004-06-16 2007-02-28 마쯔시다덴기산교 가부시키가이샤 납축전지
JP2008098009A (ja) 2006-10-12 2008-04-24 Furukawa Battery Co Ltd:The 鉛蓄電池用正極板
AU2008335203A1 (en) * 2007-12-11 2009-06-18 P.H. Glatfelter Company Battery separator structures

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07176300A (ja) * 1993-12-20 1995-07-14 Matsushita Electric Ind Co Ltd 鉛蓄電池
JPH0845537A (ja) 1994-08-02 1996-02-16 Matsushita Electric Ind Co Ltd 鉛蓄電池
JPH0917406A (ja) * 1995-06-28 1997-01-17 Shin Kobe Electric Mach Co Ltd 密閉形鉛蓄電池
JP2002025602A (ja) 2000-07-06 2002-01-25 Shin Kobe Electric Mach Co Ltd 鉛蓄電池
JP2002141066A (ja) * 2000-10-31 2002-05-17 Shin Kobe Electric Mach Co Ltd 制御弁式鉛蓄電池
JP2002231247A (ja) * 2001-01-30 2002-08-16 Shin Kobe Electric Mach Co Ltd 制御弁式鉛蓄電池
JP2002260714A (ja) 2001-03-01 2002-09-13 Matsushita Electric Ind Co Ltd 制御弁式鉛蓄電池
JP2004063152A (ja) 2002-07-25 2004-02-26 Shin Kobe Electric Mach Co Ltd 鉛蓄電池
JP2005285700A (ja) * 2004-03-30 2005-10-13 Nippon Sheet Glass Co Ltd 鉛蓄電池用セパレータのシール材、袋状鉛蓄電池用セパレータ並びに鉛蓄電池
JP2005327546A (ja) * 2004-05-13 2005-11-24 Matsushita Electric Ind Co Ltd 制御弁式鉛蓄電池
WO2005124920A1 (ja) * 2004-06-16 2005-12-29 Matsushita Electric Industrial Co., Ltd. 鉛蓄電池
JP2006059576A (ja) 2004-08-17 2006-03-02 Nippon Sheet Glass Co Ltd 液式鉛蓄電池用セパレータ、液式鉛蓄電池用ガラスマット並びに液式鉛蓄電池
JP2006086039A (ja) * 2004-09-16 2006-03-30 Furukawa Battery Co Ltd:The 鉛蓄電池
JP2008243487A (ja) * 2007-03-26 2008-10-09 Furukawa Battery Co Ltd:The 鉛電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2709200A4

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014087565A1 (ja) * 2012-12-03 2014-06-12 パナソニック株式会社 鉛蓄電池用格子および鉛蓄電池
EP2960978A4 (en) * 2013-02-22 2016-08-10 Gs Yuasa Int Ltd SUBMERSIBLE BATTERY WITH LEAD-ACID
CN103259052A (zh) * 2013-05-03 2013-08-21 江苏苏中电池科技发展有限公司 一种电动车用铅炭动力电池及正、负极活性物质配方和制备方法
WO2015064445A1 (ja) * 2013-10-28 2015-05-07 日立化成株式会社 樹脂組成物、電極、鉛蓄電池及びこれらの製造方法
TWI479717B (zh) * 2013-11-28 2015-04-01 Csb Battery Co Ltd Lead-acid capacitor batteries and the preparation of lead-acid battery method
US10522837B2 (en) 2013-11-29 2019-12-31 Gs Yuasa International Ltd. Lead-acid battery
JP2015176638A (ja) * 2014-03-13 2015-10-05 株式会社Gsユアサ 液式鉛蓄電池
JPWO2015146919A1 (ja) * 2014-03-27 2017-04-13 日立化成株式会社 鉛蓄電池
WO2015146919A1 (ja) * 2014-03-27 2015-10-01 新神戸電機株式会社 鉛蓄電池
WO2016052512A1 (ja) * 2014-09-29 2016-04-07 日立化成株式会社 鉛蓄電池
JPWO2016052512A1 (ja) * 2014-09-29 2017-04-27 日立化成株式会社 鉛蓄電池
JP2016177872A (ja) * 2015-03-18 2016-10-06 日立化成株式会社 鉛蓄電池
JP2017045539A (ja) * 2015-08-24 2017-03-02 日立化成株式会社 鉛蓄電池
CN108370032A (zh) * 2015-10-06 2018-08-03 阿克爱科蒂夫有限公司 改进的铅酸蓄电池电极
WO2017098665A1 (ja) * 2015-12-11 2017-06-15 日立化成株式会社 鉛蓄電池
WO2017099141A1 (ja) * 2015-12-11 2017-06-15 日立化成株式会社 鉛蓄電池
JPWO2017099144A1 (ja) * 2015-12-11 2018-06-07 日立化成株式会社 鉛蓄電池
WO2017098666A1 (ja) * 2015-12-11 2017-06-15 日立化成株式会社 鉛蓄電池
WO2017099144A1 (ja) * 2015-12-11 2017-06-15 日立化成株式会社 鉛蓄電池
JPWO2017099141A1 (ja) * 2015-12-11 2018-07-12 日立化成株式会社 鉛蓄電池
JP2018170285A (ja) * 2015-12-11 2018-11-01 日立化成株式会社 鉛蓄電池
JP2018139230A (ja) * 2015-12-11 2018-09-06 日立化成株式会社 鉛蓄電池
JP2017142888A (ja) * 2016-02-08 2017-08-17 日立化成株式会社 鉛蓄電池
JP2018018744A (ja) * 2016-07-29 2018-02-01 株式会社Gsユアサ 鉛蓄電池
JP2018018800A (ja) * 2016-07-29 2018-02-01 株式会社Gsユアサ 鉛蓄電池
JP2018018802A (ja) * 2016-07-29 2018-02-01 株式会社Gsユアサ 鉛蓄電池
WO2018105134A1 (ja) * 2016-12-07 2018-06-14 日立化成株式会社 液式鉛蓄電池、液式鉛蓄電池の充放電方法、及び電源システム
JPWO2018105134A1 (ja) * 2016-12-07 2019-10-24 日立化成株式会社 液式鉛蓄電池、液式鉛蓄電池の充放電方法、及び電源システム
WO2018105060A1 (ja) * 2016-12-07 2018-06-14 日立化成株式会社 液式鉛蓄電池
JPWO2018105060A1 (ja) * 2016-12-07 2019-10-24 日立化成株式会社 液式鉛蓄電池
JPWO2018199053A1 (ja) * 2017-04-28 2020-03-12 株式会社Gsユアサ 鉛蓄電池
JPWO2018199125A1 (ja) * 2017-04-28 2020-03-12 株式会社Gsユアサ 鉛蓄電池
CN110546792B (zh) * 2017-04-28 2023-03-14 株式会社杰士汤浅国际 铅蓄电池
JPWO2018199207A1 (ja) * 2017-04-28 2020-03-12 株式会社Gsユアサ 鉛蓄電池
JPWO2018199123A1 (ja) * 2017-04-28 2020-03-12 株式会社Gsユアサ 鉛蓄電池
WO2018199207A1 (ja) * 2017-04-28 2018-11-01 株式会社Gsユアサ 鉛蓄電池
JPWO2018199124A1 (ja) * 2017-04-28 2020-03-12 株式会社Gsユアサ 鉛蓄電池
CN110546792A (zh) * 2017-04-28 2019-12-06 株式会社杰士汤浅国际 铅蓄电池
JP7099452B2 (ja) 2017-04-28 2022-07-12 株式会社Gsユアサ 鉛蓄電池
JP7099450B2 (ja) 2017-04-28 2022-07-12 株式会社Gsユアサ 鉛蓄電池
JP7099449B2 (ja) 2017-04-28 2022-07-12 株式会社Gsユアサ 鉛蓄電池
JP7099448B2 (ja) 2017-04-28 2022-07-12 株式会社Gsユアサ 鉛蓄電池
JP7099451B2 (ja) 2017-04-28 2022-07-12 株式会社Gsユアサ 鉛蓄電池
JP7152831B2 (ja) 2017-12-04 2022-10-13 昭和電工マテリアルズ株式会社 鉛蓄電池
JP2019102282A (ja) * 2017-12-04 2019-06-24 日立化成株式会社 鉛蓄電池

Also Published As

Publication number Publication date
EP2709200A1 (en) 2014-03-19
JP5500315B2 (ja) 2014-05-21
US9735409B2 (en) 2017-08-15
US20150050540A1 (en) 2015-02-19
CN103534864B (zh) 2016-11-23
EP2709200B1 (en) 2016-02-10
CN103534864A (zh) 2014-01-22
RU2013155484A (ru) 2015-06-20
KR20140021663A (ko) 2014-02-20
JPWO2012157311A1 (ja) 2014-07-31
EP2709200A4 (en) 2014-11-26

Similar Documents

Publication Publication Date Title
JP5500315B2 (ja) 鉛蓄電池
JP5621841B2 (ja) 鉛蓄電池
EP3196964B1 (en) Advanced graphite additive for enhanced cycle-life of deep discharge lead-acid batteries
JP5783170B2 (ja) 鉛蓄電池
JP5598532B2 (ja) 鉛蓄電池
Mandal et al. Positive electrode active material development opportunities through carbon addition in the lead-acid batteries: A recent progress
JP5445655B2 (ja) 鉛蓄電池
WO2012086008A1 (ja) 鉛蓄電池
JP4523580B2 (ja) 二次電池用負極活物質及びそれらを生成するための中間の混練物
WO2013058058A1 (ja) 鉛蓄電池
Blecua et al. Improvement of the lead acid battery performance by the addition of graphitized carbon nanofibers together with a mix of organic expanders in the negative active material
JP2008243493A (ja) 鉛蓄電池
JP6582636B2 (ja) 鉛蓄電池
JP2021077482A (ja) 鉛蓄電池、鉛蓄電池の正極板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12785458

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137029680

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2013515019

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14117106

Country of ref document: US

Ref document number: 2012785458

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2013155484

Country of ref document: RU

Kind code of ref document: A