WO2015146919A1 - 鉛蓄電池 - Google Patents

鉛蓄電池 Download PDF

Info

Publication number
WO2015146919A1
WO2015146919A1 PCT/JP2015/058760 JP2015058760W WO2015146919A1 WO 2015146919 A1 WO2015146919 A1 WO 2015146919A1 JP 2015058760 W JP2015058760 W JP 2015058760W WO 2015146919 A1 WO2015146919 A1 WO 2015146919A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrophilic
electrode plate
lead
battery according
storage battery
Prior art date
Application number
PCT/JP2015/058760
Other languages
English (en)
French (fr)
Inventor
素子 原田
真吾 荒城
大越 哲郎
箕浦 敏
柴原 敏夫
加賀爪 明子
登志雄 阿部
Original Assignee
新神戸電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新神戸電機株式会社 filed Critical 新神戸電機株式会社
Priority to JP2016510351A priority Critical patent/JP6197945B2/ja
Publication of WO2015146919A1 publication Critical patent/WO2015146919A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a lead storage battery.
  • Lead storage batteries are widely used for industrial purposes, and are used, for example, for automobile batteries, backup power supplies, and main power supplies for electric vehicles.
  • an idling stop-and-start system (hereinafter referred to as "ISS") that stops the engine during power generation control or when waiting for a signal is adopted for the purpose of reducing CO2 emissions and reducing fuel consumption. It came to be. Since power generation by the alternator is not performed during idling stop, all electric power to the electric equipment is supplied from the lead storage battery, and the lead storage battery is charged deeper than before. Further, during running, the power generation of the alternator is controlled, so that the charging is insufficient.
  • Patent Document 1 discloses a sealed type in which an inorganic powder such as silica, titania, or alumina is contained in a bag-like separator made of a nonwoven fabric sheet mainly composed of fine glass, and at least one of a positive electrode and a negative electrode is accommodated in this separator.
  • a lead acid battery is disclosed.
  • Patent Document 2 discloses a lead storage battery in which a negative electrode is accommodated by a microporous polyethylene bag-shaped separator and an electrolytic solution containing Al ions and Li ions is used.
  • Patent Document 1 discloses a sealed lead-acid battery separator that has good affinity, mechanical strength, and short-circuit resistance of an electrolytic solution, and also discloses that stratification of the electrolytic solution can be suppressed.
  • Patent Document 2 discloses a lead acid battery that is excellent in low-temperature high-rate performance and has little lead sulfate accumulation associated with charge control and idling stop.
  • the conventional techniques including the techniques described in Patent Documents 1 and 2 have not established a method for achieving both suppression of stratification of the electrolytic solution and suppression of deterioration of the high rate discharge performance.
  • An object of the present invention is to provide a lead storage battery capable of suppressing the stratification of the electrolyte and suppressing the deterioration of the high rate discharge performance.
  • the lead acid battery according to the present invention has the following characteristics.
  • a hydrophilic film is formed on the surface of the organic nonwoven fabric or porous film, and the hydrophilic film is made of Al 2 O 3 or a hydrophilic material made of Al 2 O 3 and SiO 2 , an inorganic material, or an organic polymer material. It is comprised from the support body material which consists of.
  • the lead-acid battery according to the present invention can realize suppression of the stratification of the electrolyte and reduction of the high rate discharge performance.
  • FIG. 1 is a schematic cross-sectional view of an electrode plate group of a lead storage battery according to an embodiment of the present invention. It is the structure schematic of the electrode plate of the lead acid battery by the Example of this invention. It is a figure which shows the partial structure of the electrode group of the lead acid battery by the Example of this invention, especially the structure around a negative electrode plate.
  • Stratification of electrolyte solution is a phenomenon in which sulfate ions and hydrogen sulfate ions in the electrolyte solution are settled and a difference in the specific gravity of the electrolyte solution occurs above and below the battery case.
  • sulfate ions SO 4 2 ⁇
  • hydrogen sulfate ions HSO 4 ⁇
  • sulfate ions SO 4 2 ⁇
  • HSO 4 ⁇ hydrogen sulfate ions
  • stratification of the electrolyte can be greatly suppressed.
  • the organic non-woven fabric or porous film provided around the negative electrode plate can prevent the sulfate ions from being settled and can keep the concentration of sulfate ions inside the battery case uniform.
  • the hydrophilic membrane provided on the organic nonwoven fabric or the porous membrane generates an interaction with sulfate ions, adsorbs and collects sulfate ions, and supplies them to the electrode. For this reason, it is considered that the supply efficiency of sulfate ions from the hydrophilic film to the electrode determines the high rate discharge performance. Therefore, the material of the hydrophilic film was examined based on the following two points.
  • the first point is the number of interaction points generated on the surface of the hydrophilic film and causing interaction with sulfate ions.
  • the material of the hydrophilic film was examined in consideration of the number of —OH groups as interaction points with sulfate ions as the number of interaction points.
  • the second point is the strength of the interaction (adsorption energy, etc.) acting between sulfate ions and the hydrophilic film.
  • adsorption energy is taken as an example of an interaction index
  • the adsorption energy acting between the sulfate ion and the hydrophilic film is an appropriate value.
  • an organic nonwoven fabric or a porous film is provided around the negative electrode plate, and a hydrophilic film is formed on the organic nonwoven fabric or the porous film.
  • the hydrophilic film is composed of a hydrophilic material and a support material, and a hydrophilic coating obtained by diluting a mixed solution of the hydrophilic material and the support material with a water-soluble solvent (for example, an alcohol solvent or water) It is formed by applying to the surface of a nonwoven fabric or porous membrane.
  • a water-soluble solvent for example, an alcohol solvent or water
  • the hydrophilic material includes at least one of Al 2 O 3 , a mixture of Al 2 O 3 and SiO 2 , BaSO 4 , and TiO 2. It is preferable to use it. In particular, it is preferable to use Al 2 O 3 or a mixture of Al 2 O 3 and SiO 2 as the hydrophilic material.
  • hydrophilic alumina sol can be used as the hydrophilic material.
  • a mixture of Al 2 O 3 and SiO 2 is used, a mixture of alumina sol and colloidal silica is used as the hydrophilic material.
  • the support material an inorganic material or an organic polymer material can be used.
  • silica sol, acrylamide, or alkoxysilane can be used.
  • the thickness of the organic nonwoven fabric or porous membrane is preferably 0.03 mm to 0.1 mm in consideration of the ability to prevent the precipitation of sulfate ions, the influence on the battery reaction, the strength, and the like.
  • a porous membrane it can be determined according to the pore diameter and material of the porous membrane. Since the organic nonwoven fabric has the advantage that it is easier to manufacture than the inorganic nonwoven fabric, the organic nonwoven fabric is adopted as the nonwoven fabric in the lead storage battery according to the present invention.
  • the porous film has pores of 100 nm to 1 ⁇ m, and the pore structure may be a regular structure or an irregular structure such as an organic nonwoven fabric.
  • the hydrophilic film is preferably formed on the surface of the organic nonwoven fabric or porous film with a thickness of 10 nm to 1000 nm. If it is thinner than 10 nm, the effect of adsorbing and holding sulfate ions is reduced, and if it is thicker than 1000 nm, the internal resistance of the battery is increased.
  • an organic non-woven fabric or porous film with a hydrophilic film around the negative electrode plate By providing an organic non-woven fabric or porous film with a hydrophilic film around the negative electrode plate, it is possible to suppress the stratification of the electrolyte and the deterioration of the high rate discharge performance in the lead storage battery.
  • the organic nonwoven fabric or porous membrane with a hydrophilic film formed when an organic nonwoven fabric or porous membrane with a hydrophilic film formed is provided around the negative electrode plate separately from the separator, the organic nonwoven fabric or porous membrane is disposed in a state of closer contact with the negative electrode plate. Therefore, the effect of suppressing stratification is higher than when the separator is provided with an effect of suppressing stratification.
  • FIG. 1A is a diagram showing a configuration of a lead storage battery according to an embodiment of the present invention
  • FIG. 1B is a schematic cross-sectional view of an electrode plate group of the lead storage battery according to this embodiment
  • FIG. 1C is a lead according to this embodiment.
  • It is a structure schematic diagram of the electrode plate of a storage battery.
  • the lead acid battery according to this embodiment includes a battery case 1 and a terminal 2 as an exterior part. Inside the battery case 1, a pole column 3 and a plate group 4 are provided inside the battery case 1, a pole column 3 and a plate group 4 are provided. The pole 3 connects the electrode plate group 4 and the terminal 2.
  • the electrode plate group 4 is disposed between a negative electrode plate 5 containing metal lead (Pb) as an active material, a positive electrode plate 7 containing lead dioxide (PbO 2 ) as an active material, and the negative electrode plate 5 and the positive electrode plate 7.
  • the separator 6 is provided.
  • the negative electrode plate 5 and the positive electrode plate 7 are plate-like, and the negative electrode plate 5 and the positive electrode plate 7 are alternately stacked via the separator 6 to constitute an electrode plate group (electrode group) 4.
  • the electrode plate group 4 is immersed in an electrolytic solution made of dilute sulfuric acid and accommodated in the battery case 1 to constitute a lead storage battery.
  • FIG. 2 is a diagram showing a part of the structure of the electrode plate group 4 of the lead storage battery according to the embodiment of the present invention, particularly the structure around the negative electrode plate 5.
  • An organic nonwoven fabric or porous film 8 is provided around the negative electrode plate 5.
  • the separator 6 may be plate-shaped or bag-shaped, and is disposed between the organic nonwoven fabric or porous film 8 provided around the negative electrode plate 5 and the positive electrode plate 7. When the separator 6 is bag-shaped, the separator 6 houses the negative electrode plate 5 and the organic nonwoven fabric or porous membrane 8.
  • a hydrophilic film 9 is formed on the surface of the organic nonwoven fabric or porous film 8.
  • the hydrophilic film 9 includes a hydrophilic material 10 and a holder material 11.
  • Organic nonwoven fabric or porous membrane 8 is provided so as to face at least the surface of negative electrode plate 5 facing separator 6 and the surface of negative electrode plate 5 opposite to this surface. Furthermore, the organic nonwoven fabric or the porous film 8 may be provided so as to face a surface other than these surfaces among the side surfaces of the negative electrode plate 5, or may be provided so as to face the bottom surface of the negative electrode plate 5. For example, the organic nonwoven fabric or the porous film 8 can be provided around the negative electrode plate 5 by being wound around the negative electrode plate 5.
  • the organic nonwoven fabric or porous film 8 faces the bottom surface and two side surfaces (a surface facing the separator 6 and a surface opposite to this surface) of the negative electrode plate 5. 5 is provided.
  • the organic nonwoven fabric or the porous membrane 8 may be a bag shape and may accommodate the negative electrode plate 5.
  • the hydrophilic film 9 may be formed on the surface of the separator 6 in addition to the organic nonwoven fabric or the porous film 8. Further, the hydrophilic film 9 may be formed on the surface of the separator 6 without providing the organic nonwoven fabric or the porous film 8 around the negative electrode plate 5.
  • Organic nonwoven fabric or porous membrane examples of materials used for the organic nonwoven fabric or porous membrane on which a hydrophilic membrane is formed include polypropylene, cellulose, polyethylene, nylon, aramid, and polyester.
  • a hydrophilic film described below can be applied to an organic nonwoven fabric or porous membrane, and heated and thermally cured to form a hydrophilic membrane on the surface of the organic nonwoven fabric or porous membrane.
  • the hydrophilic paint for forming the hydrophilic film is composed of (a) a hydrophilic material, (b) a support material, and (c) a solvent.
  • a hydrophilic material In both the hydrophilic material and the support material, solid components are present in the dispersion medium at a constant concentration.
  • the weight ratio of the solid component of the hydrophilic material to the solid component of the support material is preferably 90:10 to 70:30. When the weight ratio of the solid component is within this range, it is suitable for preparing a hydrophilic paint by mixing the hydrophilic material and the support material.
  • the total concentration of the solid components of the hydrophilic material and the support material is 0.5 wt% to 5 wt% with respect to the dilution solvent.
  • the mixture is diluted with a solvent so that If the concentration of the solid component is less than 0.5 wt%, the thickness of the hydrophilic film becomes non-uniform, and if it is more than 5 wt%, it is difficult to form the hydrophilic film, which is not preferable.
  • hydrophilic material An inorganic material that does not dissolve even when immersed in an acidic aqueous solution is preferable as a hydrophilic material because it can maintain hydrophilicity for a long period of time.
  • examples of such inorganic materials include hydrophilic silica particles and hydrophilic alumina sol.
  • colloidal silica IPA-ST-UP, IPA-ST, ST-OXS, ST-K2, and LSS-35 manufactured by Nissan Chemical Industries, Ltd. and alumina sol AS-200 manufactured by Nissan Chemical Industries, Ltd. Is mentioned. Since colloidal silica uses alcohol as a dispersion medium and alumina sol uses water as a dispersion medium, they can be easily mixed together.
  • colloidal silica particles having a specific surface area of about 130 m 2 / g to 1000 m 2 / g are preferably used. Assuming that the shape of the colloidal silica is spherical, the particle diameter of the colloidal silica having a specific surface area within this range is 2 nm to 20 nm. It is preferable to use an alumina sol whose alumina particles have a specific surface area of about 200 m 2 / g to 400 m 2 / g. Assuming that the shape of the alumina particles is plate-like, for example, an alumina sol containing alumina particles whose dimensions (length, width, and height) are 10 nm ⁇ 10 nm ⁇ 100 nm can be used.
  • Table 1 is a table showing an example of calculating the number of interaction points (—OH groups) that generate an interaction with sulfate ions generated on the surface of the hydrophilic film when colloidal silica and alumina sol are used as the hydrophilic material. It is.
  • (1) is a case where hydrophilic silica particles (SiO 2 ) are used as the hydrophilic material, and the weight ratio of the solid component of the hydrophilic material to the support material is 80:20.
  • (2) is the case where hydrophilic silica particles (SiO 2 ) are used as the hydrophilic material and the weight ratio of the solid component of the hydrophilic material and the support material is 80:20.
  • the specific surface area of the silica particles is about 7.7 times that of the silica particles of (1).
  • (3) is a case where alumina sol (Al 2 O 3 ) is used as the hydrophilic material and the weight ratio of the solid component of the hydrophilic material to the support material is 90:10.
  • Table 1 shows, for each of (1) to (3), the shape, particle size (nm), specific surface area (m 2 / g), number of interaction points per particle of hydrophilic material (pieces / piece) Particles), the number of interaction points per gram of hydrophilic material (number / g), and the number of interaction points per gram of hydrophilic film (number / g).
  • the size of the particle is assumed to be a spherical shape
  • the particle size is assumed to be a plate shape in (3) (vertical, horizontal, And height).
  • (A) is the number of interaction points of sulfate ions per particle of hydrophilic material
  • (B) is the volume of hydrophilic material per gram of hydrophilic material or hydrophilic film
  • (C) is the volume per particle of the hydrophilic material
  • (D) is the number of particles of hydrophilic material or hydrophilic material contained per gram of hydrophilic material
  • (E) is the number of interaction points of sulfate ions per gram of hydrophilic material or hydrophilic membrane, It is.
  • the number of interaction points is 4-6 in the case of (3) using Al 2 O 3 as the hydrophilic material than in the cases of (1) and (2) using SiO 2. An order of magnitude larger. From this, it can be seen that the use of Al 2 O 3 as the hydrophilic material can greatly increase the number of interaction points with sulfate ions.
  • Al 2 O 3 alone as a hydrophilic material
  • this mixture is used, the number of interaction points with sulfate ions is increased by Al 2 O 3 , and an appropriate interaction between sulfate ions and a hydrophilic film can be realized by SiO 2 .
  • a mixture of Al 2 O 3 and SiO 2 is used as the hydrophilic material, 10 wt% or more of Al 2 O 3 is included in the hydrophilic material.
  • Al 2 O 3 is less than 10 wt%, the number of interaction points with sulfate ions cannot be effectively increased.
  • the number of interaction points with sulfate ions is 1 ⁇ 10 21 to 1 ⁇ 10 24 per g for Al 2 O 3 and 1 ⁇ 10 17 to 1 ⁇ 10 20 per g for SiO 2. It is possible to obtain excellent high rate discharge performance by forming a hydrophilic film. Accordingly, when the hydrophilic material is made of Al 2 O 3 is preferably number is 1 ⁇ 10 21 pieces ⁇ 1 ⁇ 10 24 per 1g of Al 2 O 3 of the interaction point, the hydrophilic material is Al 2 In the case of consisting of O 3 and SiO 2 , the number of interaction points is 1 ⁇ 10 21 to 1 ⁇ 10 24 per g of Al 2 O 3 , and 1 ⁇ 10 17 per g of SiO 2. The number is preferably 1 ⁇ 10 20 .
  • the interaction point in an amount of Al 2 O 3 The number of is considered to be determined. For this reason, even when Al 2 O 3 is used as a hydrophilic material for forming the hydrophilic film or when a mixture of Al 2 O 3 and SiO 2 is used, the number of interaction points is 1 ⁇ per 1 g of the hydrophilic film.
  • the number of 10 21 to 1 ⁇ 10 24 is preferable because it is possible to particularly suppress a decrease in high rate discharge performance.
  • (B) Holder material An organic polymer material or an inorganic material can be used for the holder material.
  • the organic polymer material used for the holding material include a polymer obtained by heating polyethylene glycol, polyvinyl alcohol, or the like.
  • the inorganic material used for the holder material include a material that becomes a holder by heating, such as silica sol. Among them, acrylamide and silica sol are excellent in long-term stability in an acidic aqueous solution. Specific examples of the silica sol include Colcoat PX manufactured by Colcoat.
  • the solvent used for diluting the liquid mixture of the hydrophilic material and the holding material is preferably a solvent that has good dispersibility and compatibility with the hydrophilic material and the holding material, and is likely to volatilize during thermosetting. .
  • a solvent satisfying these conditions an alcohol solvent or water is preferable.
  • the boiling point is more preferably 100 ° C. or lower.
  • Specific examples of the solvent include water, methanol, ethanol, and isopropyl alcohol.
  • Table 2 is a table showing the configuration of the lead storage battery according to the example of the present invention, the evaluation of the effect of suppressing the stratification of the electrolytic solution, and the evaluation of the high rate discharge performance.
  • the structure of the lead-acid battery includes the material and thickness of the organic nonwoven fabric (mm), the thickness of the hydrophilic film (nm), the number of interaction points per 1 g of the hydrophilic film (pieces / g), and the hydrophilic material of the hydrophilic film. The body material and the weight ratio of these solid components are shown.
  • the material of the organic nonwoven fabric was represented by “PP” for polypropylene and “PE” for polyethylene.
  • the number of interaction points per 1 g of hydrophilic film is the total number of interaction points of alumina sol and colloidal silica.
  • Table 2 also shows a lead storage battery manufactured as a comparative example. Hereinafter, each example and each comparative example will be described. In the following examples and comparative examples, an organic nonwoven fabric was provided around the negative electrode plate 5.
  • the lead storage battery according to Example 1 is provided with an organic nonwoven fabric 8 on which a hydrophilic film 9 is formed around the negative electrode plate 5.
  • a hydrophilic film 9 was formed on the surface of the organic nonwoven fabric 8 as follows.
  • the organic nonwoven fabric 8 made of polypropylene and having a thickness of 0.1 mm was used.
  • Alumina sol (Al 2 O 3 ) and colloidal silica (SiO 2 ) were used as the hydrophilic material 10, and silica sol was used as the support material 11.
  • silica sol was used as the support material 11.
  • alumina sol AS-200 manufactured by Nissan Chemical Industries, Ltd. was used as the alumina sol
  • colloidal silica IPA-ST-UP manufactured by Nissan Chemical Industries, Ltd. was used as the colloidal silica
  • Colcoat PX manufactured by Colcoat was used as the silica sol.
  • the weight ratio of alumina sol to colloidal silica was 80:20. That is, the hydrophilic material 10 contains 80 wt% alumina sol (Al 2 O 3 ).
  • the hydrophilic material 10 and the support material 11 were mixed so that the weight ratio (X: Y) of the solid component of the hydrophilic material 10 (X) and the support material 11 (Y) was 80:20.
  • a hydrophilic paint was prepared by diluting this mixed solution with ethanol so that the concentration of the solid component was 5 wt%.
  • the organic nonwoven fabric 8 was pulled up at a speed of 156 mm / min.
  • the organic nonwoven fabric 8 is sandwiched between paper wipers and the roller is rolled from above to remove excess hydrophilic paint adhering to the organic nonwoven fabric 8, and then the organic nonwoven fabric 8 is placed in a constant temperature bath heated to 60 ° C. for 1 hour. The solvent was removed.
  • a hydrophilic film 9 was formed on the surface of the organic nonwoven fabric 8.
  • the hydrophilic film 9 has a thickness of 50 nm, and the number of interaction points per 1 g is 1.0 ⁇ 10 23 .
  • An organic nonwoven fabric 8 on which a hydrophilic film 9 was formed was placed around the negative electrode plate 5, and a dilute sulfuric acid was used as an electrolytic solution to produce a lead storage battery as shown in FIG.
  • This lead storage battery was subjected to a cycle test, and first, the effect of suppressing the stratification of the electrolyte was evaluated.
  • the lead-acid battery is placed in an atmosphere of 25 ° C.
  • I), (ii), and (iii) are taken as one cycle, and this cycle is repeated 3600 times (from Battery Industry Association Standard SBA S0101).
  • the difference in specific gravity of the electrolyte solution between the upper part and the lower part in the battery case in the initial cycle (3600th) in which the stratification of the electrolyte solution is noticeable was used as an index for stratification. That is, in the 3600th cycle, the specific gravity of the electrolyte in the lower part of the battery case and the specific gravity of the electrolyte in the upper part are measured, and the difference between these specific gravities is obtained. The effect was evaluated.
  • the upper part in the battery case is a position 1 cm above the upper end of the electrode plate group 4, and the lower part in the battery case is a position 1 cm above the lower end of the electrode plate group 4.
  • Specific evaluation criteria are “A” when the specific gravity difference is 0.02 or less, “B” when 0.02 or more and 0.04 or less, and “B” or more than 0.04 and 0.07 or less.
  • the case where “C” was greater than 0.07 was designated “D”.
  • stratification is suppressed in the order of A, B, C, and D.
  • the lead storage battery according to this example has a small specific gravity difference of 0.03, which is evaluated as B, indicating that stratification is suppressed.
  • the high rate discharge performance of the lead storage battery was evaluated.
  • the high rate discharge performance was measured in accordance with JIS standards with a discharge current of 150 A and a final voltage of 6 V after the lead storage battery was left for 16 hours under a temperature condition of ⁇ 15 ° C.
  • JIS standards JIS standards with a discharge current of 150 A and a final voltage of 6 V after the lead storage battery was left for 16 hours under a temperature condition of ⁇ 15 ° C.
  • the lead storage battery according to the present example has a high rate discharge performance of 95, which is evaluated as A, and it has been found that the decrease rate of the high rate discharge performance is extremely small. That is, it was found that the lead storage battery according to the present example can suppress a decrease in high rate discharge performance.
  • the lead-acid battery according to Example 2 has the same configuration as the lead-acid battery according to Example 1, except for the following points. Only the differences will be described below.
  • the hydrophilic material 10 contains 100 wt% alumina sol (Al 2 O 3 ).
  • the weight ratio (X: Y) of the solid component of the hydrophilic material 10 (X) and the holding material 11 (Y) is 90:10.
  • the number of interaction points per 1 g of the hydrophilic film 9 is 1.3 ⁇ 10 23 .
  • the lead storage battery according to this example has a small specific gravity difference of 0.04, which is evaluated as B, indicating that stratification is suppressed.
  • the lead storage battery according to this example has a high-rate discharge performance of 93 and an evaluation B, which indicates that the reduction rate of the high-rate discharge performance is small. That is, it was found that the lead storage battery according to the present example can suppress a decrease in high rate discharge performance.
  • the lead storage battery according to Example 3 has the same configuration as that of the lead storage battery according to Example 1, but the following points are different. Only the differences will be described below.
  • alumina sol (Al 2 O 3 ) and colloidal silica (SiO 2 ) were used as the hydrophilic material 10, and the weight ratio of alumina sol to colloidal silica was 70:30. That is, the hydrophilic material 10 includes 70 wt% alumina sol (Al 2 O 3 ). The number of interaction points per 1 g of the hydrophilic film 9 is 9.1 ⁇ 10 22 .
  • the lead storage battery according to this example has a small specific gravity difference of 0.03, which is evaluated as B, indicating that stratification is suppressed.
  • the lead storage battery according to this example had a high rate discharge performance of 96, which was evaluated as A, and it was found that the decrease rate of the high rate discharge performance was small. That is, it was found that the lead storage battery according to the present example can suppress a decrease in high rate discharge performance.
  • the lead storage battery according to Example 4 has the same configuration as that of the lead storage battery according to Example 1, except for the following points. Only the differences will be described below.
  • the organic nonwoven fabric 8 was made of polyethylene.
  • the thickness of the hydrophilic film 9 is 10 nm.
  • the lead storage battery according to this example has a small specific gravity difference of 0.04, which is evaluated as B, indicating that stratification is suppressed.
  • the lead storage battery according to this example has a high-rate discharge performance of 94, which is evaluated as B, and it has been found that the decrease rate of the high-rate discharge performance is small. That is, it was found that the lead storage battery according to the present example can suppress a decrease in high rate discharge performance.
  • the lead storage battery according to Example 5 has the same configuration as the lead storage battery according to Example 1, but the following points are different. Only the differences will be described below.
  • the hydrophilic material 10 contains 100 wt% alumina sol (Al 2 O 3 ).
  • Acrylamide was used as the holder material 11.
  • the hydrophilic film 9 has a thickness of 100 nm and the number of interaction points per 1 g is 1.3 ⁇ 10 23 .
  • the lead storage battery according to this example has a small specific gravity difference of 0.03, which is evaluated as B, indicating that stratification is suppressed.
  • the lead storage battery according to the present example has a high rate discharge performance of 92 and an evaluation B, and it was found that the decrease rate of the high rate discharge performance was small. That is, it was found that the lead storage battery according to the present example can suppress a decrease in high rate discharge performance.
  • the lead storage battery according to Example 6 has the same configuration as that of the lead storage battery according to Example 1, but the following points are different. Only the differences will be described below.
  • acrylamide was used as the holder material 11.
  • the thickness of the hydrophilic film 9 is 60 nm.
  • the lead storage battery according to this example has a small specific gravity difference of 0.04, which is evaluated as B, indicating that stratification is suppressed.
  • the lead storage battery according to this example has a high-rate discharge performance of 94, which is evaluated as B, and it has been found that the decrease rate of the high-rate discharge performance is small. That is, it was found that the lead storage battery according to the present example can suppress a decrease in high rate discharge performance.
  • the lead storage battery according to Example 7 has the same configuration as that of the lead storage battery according to Example 1, except for the following points. Only the differences will be described below.
  • the organic nonwoven fabric 8 made of polyethylene and having a thickness of 0.05 mm was used.
  • alumina sol (Al 2 O 3 ) and colloidal silica (SiO 2 ) were used, and the weight ratio of the alumina sol and colloidal silica was 70:30. That is, the hydrophilic material 10 includes 70 wt% alumina sol (Al 2 O 3 ).
  • Acrylamide was used as the support material 1.
  • the number of interaction points per 1 g of the hydrophilic film 9 is 9.1 ⁇ 10 22 .
  • the lead storage battery according to this example has a small specific gravity difference of 0.03, which is evaluated as B, indicating that stratification is suppressed.
  • the lead storage battery according to this example has an evaluation A of high-rate discharge performance of 95, and it has been found that the decrease rate of the high-rate discharge performance is small. That is, it was found that the lead storage battery according to the present example can suppress a decrease in high rate discharge performance.
  • the lead storage battery according to Example 8 has the same configuration as that of the lead storage battery according to Example 1, except for the following points. Only the differences will be described below.
  • the organic nonwoven fabric 8 having a thickness of 0.03 mm was used.
  • Alumina sol (Al 2 O 3 ) and colloidal silica (SiO 2 ) were used as the hydrophilic material 10, and the weight ratio of alumina sol to colloidal silica was 10:90. That is, the hydrophilic material 10 contains 10 wt% alumina sol (Al 2 O 3 ).
  • the weight ratio (X: Y) of the solid component of the hydrophilic material 10 (X) and the holding material 11 (Y) is 90:10.
  • the number of interaction points per 1 g of the hydrophilic film 9 is 1.2 ⁇ 10 22 .
  • the lead storage battery according to this example has a small specific gravity difference of 0.03, which is evaluated as B, indicating that stratification is suppressed.
  • the lead storage battery according to this example has a high-rate discharge performance of 94, which is evaluated as B, and it has been found that the decrease rate of the high-rate discharge performance is small. That is, it was found that the lead storage battery according to the present example can suppress a decrease in high rate discharge performance.
  • the lead storage battery according to Example 9 has the same configuration as the lead storage battery according to Example 1, but the following points are different. Only the differences will be described below.
  • alumina sol (Al 2 O 3 ) and colloidal silica (SiO 2 ) were used as the hydrophilic material 10, and the weight ratio of alumina sol to colloidal silica was 20:80. That is, the hydrophilic material 10 contains 20 wt% alumina sol (Al 2 O 3 ).
  • the weight ratio (X: Y) of the solid component of the hydrophilic material 10 (X) and the holding material 11 (Y) is 70:30.
  • the hydrophilic film 9 has a thickness of 60 nm, and the number of interaction points per gram is 2.2 ⁇ 10 22 .
  • the lead storage battery according to this example has a small specific gravity difference of 0.03, which is evaluated as B, indicating that stratification is suppressed.
  • the lead storage battery according to this example has a high-rate discharge performance of 94, which is evaluated as B, and it has been found that the decrease rate of the high-rate discharge performance is small. That is, it was found that the lead storage battery according to the present example can suppress a decrease in high rate discharge performance.
  • Comparative Example 1 The lead acid battery according to Comparative Example 1 has the same configuration as that of the lead acid battery according to Example 1, except for the following points. Only the differences will be described below.
  • the organic nonwoven fabric or the porous film 8 was not provided around the negative electrode plate 5.
  • the lead storage battery according to this comparative example has an extremely large specific gravity difference of 0.08, which is evaluated as D, and it was found that stratification cannot be suppressed. Moreover, since the lead acid battery by this comparative example does not provide the organic nonwoven fabric or the porous film 8 around the negative electrode plate 5, high-rate discharge performance is 100 of an evaluation reference value.
  • Comparative Example 2 The lead acid battery according to Comparative Example 2 has the same configuration as that of the lead acid battery according to Example 1, except for the following points. Only the differences will be described below.
  • the organic nonwoven fabric 8 made of polypropylene and having a thickness of 0.1 mm is provided around the negative electrode plate 5, but the hydrophilic film 9 is not formed on the organic nonwoven fabric 8.
  • the lead acid battery according to this comparative example was evaluated B when the specific gravity difference of the electrolyte was 0.04, and the high-rate discharge performance was rated B at 92.
  • the lead acid batteries having the largest specific gravity difference of the electrolytes are the lead acid batteries of Examples 2, 4, and 6. Even in the lead acid batteries of these examples, the specific gravity difference of the electrolyte is 0.04. It is. However, in the lead storage batteries of these examples, the high rate discharge performances are 93, 94, and 94, respectively, and the reduction rate of the high rate discharge performance is smaller than that of the lead storage battery according to this comparative example. That is, the lead acid battery according to this comparative example has the same specific gravity difference in the electrolyte solution as the lead acid batteries of Examples 2, 4, and 6, but the reduction rate of the high rate discharge performance is large.
  • the lead rate battery of Example 5 has the smallest high rate discharge performance (the rate of decrease in the high rate discharge performance is large).
  • the discharge performance is 92.
  • the specific gravity difference of the electrolytic solution is as small as 0.03. That is, the lead storage battery according to this comparative example has the same degree of decrease in the high rate discharge performance as compared with the lead storage battery of Example 5, but the specific gravity difference of the electrolyte is large.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 本発明は、電解液の成層化の抑制と高率放電性能の低下の抑制が可能な鉛蓄電池を提供する。本発明による鉛蓄電池は、二酸化鉛を含む正極板(7)と、金属鉛を含む負極板(5)と、正極板(7)と負極板(5)との間に配置されたセパレータ(6)と、希硫酸からなり、正極板(7)と負極板(5)とセパレータ(6)とからなる極板群が浸される電解液と、極板群と電解液とを収納する電槽と、負極板(5)の周囲に設けられた有機不織布または多孔質膜(8)とを備える。有機不織布または多孔質膜(8)の表面に、親水膜(9)が形成され、親水膜(9)は、AlからなるまたはAlとSiOとからなる親水材料(10)と、無機材料または有機高分子材料からなる保持体材料(11)とから構成される。

Description

鉛蓄電池
 本発明は、鉛蓄電池に関する。
 鉛蓄電池は、産業用に広く用いられており、例えば自動車のバッテリー、バックアップ用電源、及び電動車の主電源等に用いられている。近年の自動車では、炭酸ガスの排出規制対策や低燃費化を目的として、発電制御時や信号待ち時にエンジンを停止させるアイドリング・ストップ・アンド・スタート・システム(以下、「ISS」と称する)が採用されるようになった。アイドリングストップ中は、オルタネータによる発電が行われないため、電動装備への電力は全て鉛蓄電池から供給され、鉛蓄電池へは従来よりも深い充電が行われる。また、走行中は、オルタネータの発電が制御されるため、充電不足状態となる。
 このため、鉛蓄電池では、深い放電と充電不足とが繰り返され、電解液の成層化(充放電の繰り返しにより、電槽の上下で電解液の比重に差が生じる現象)が鉛蓄電池の短寿命化の要因として顕在化してきた。鉛蓄電池の正極では、放電時に発生した水が電解液を撹拌するため、成層化の影響は小さいが、負極では、そうした作用がないために、成層化が起こりやすい。
 また、ISS用の鉛蓄電池では、電解液の成層化の抑制による長寿命化のほかに、エンジンの始動性である高率放電性能、内部抵抗、及び充電受入れ性等の電池性能の向上も課題である。特に、過酷な環境下で使用されるISS用の鉛蓄電池の高性能化には、長寿命化と電池性能の向上が必要不可欠である。
 特許文献1には、微細ガラスを主体とした不織布シートからなる袋状セパレータにシリカ、チタニア、またはアルミナ等の無機粉体を含ませて、このセパレータに正極と負極の少なくとも一方を収納する密閉型鉛蓄電池が開示されている。
 特許文献2には、微孔性のポリエチレン製の袋状セパレータで負極を収納し、AlイオンとLiイオンを含有する電解液を用いる鉛蓄電池が開示されている。
特開2009-245901号公報 特開2012-079432号公報
 特許文献1には、電解液の親和性、機械的強度、及び耐短絡性が良好である密閉型鉛蓄電池用セパレータが開示されており、電解液の成層化を抑制できることも開示されている。特許文献2には、低温ハイレート性能に優れ、充電制御やアイドリングストップに伴う硫酸鉛の蓄積が少ない鉛蓄電池が開示されている。しかし、特許文献1、2に記載された技術を含め従来の技術では、電解液の成層化の抑制と高率放電性能の低下の抑制を両立する方法が確立されていなかった。
 本発明は、電解液の成層化の抑制と高率放電性能の低下の抑制が可能な鉛蓄電池を提供することを目的とする。
 本発明による鉛蓄電池は、次のような特徴を有する。二酸化鉛を含む正極板と、金属鉛を含む負極板と、前記正極板と前記負極板との間に配置されたセパレータと、希硫酸からなり、前記正極板と前記負極板と前記セパレータとからなる極板群が浸される電解液と、前記極板群と前記電解液とを収納する電槽と、前記負極板の周囲に設けられた有機不織布または多孔質膜とを備える。前記有機不織布または多孔質膜の表面に、親水膜が形成され、前記親水膜は、AlからなるまたはAlとSiOとからなる親水材料と、無機材料または有機高分子材料からなる保持体材料とから構成される。
 本発明による鉛蓄電池は、電解液の成層化の抑制と高率放電性能の低下の抑制を実現することができる。
本発明の実施例による鉛蓄電池の構成を示す図である。 本発明の実施例による鉛蓄電池の極板群の断面概略図である。 本発明の実施例による鉛蓄電池の極板の構成概略図である。 本発明の実施例による鉛蓄電池の極板群の一部の構造、特に負極板の周囲の構造を示す図である。
 以下、本発明の好ましい実施形態を詳細に説明する。
 (1)電解液の成層化
 電解液の成層化は、電解液中の硫酸イオンと硫酸水素イオンが沈降して、電槽の上下で電解液の比重に差が生じる現象である。以下では、硫酸イオン(SO 2-)と硫酸水素イオン(HSO )とを「硫酸イオン」と総称する。有機不織布や多孔質膜を負極板の周囲に設置して、硫酸イオンの沈降を阻害する物理的障壁を設けることにより、電解液の成層化を大きく抑制することができる。負極板の周囲に設けた有機不織布または多孔質膜により、硫酸イオンの沈降を防ぎ、電槽内部の硫酸イオンの濃度を均一に保持することが可能である。
 (2)高率放電性能
 高率放電性能は、(1)に記載した有機不織布や多孔質膜に親水膜を設けた場合には、親水膜を設けない場合よりも優れていた。これは、硫酸イオンと親水膜との間に化学的な相互作用が働いているためだと考えられる。親水膜に用いられるSiOやAlの表面には、-OH基が生成される。親水膜の表面の-OH基は、電解液である硫酸水溶液中でプロトンが付与された結果、-OH2+の形になって存在する。硫酸イオン(SO 2-とHSO )は、この-OH2+へ引き寄せられて化学的な相互作用を生じていると考えられる。すなわち、有機不織布や多孔質膜に設けられた親水膜は、硫酸イオンと相互作用を生じ、硫酸イオンを吸着して集め、電極へ供給すると考えられる。このため、親水膜から電極への硫酸イオンの供給効率が、高率放電性能を左右すると考えられる。そこで、以下の2点に基づき、親水膜の材質を検討した。
 第1点目は、親水膜の表面に生成された、硫酸イオンとの相互作用を生じる相互作用点の数である。本発明では、硫酸イオンとの相互作用点となる-OH基の数を相互作用点の数として考慮して、親水膜の材質を検討した。第2点目は、硫酸イオンと親水膜との間に働く相互作用(吸着エネルギー等)の強さである。以下では、相互作用の指標として吸着エネルギーを例にとった場合について説明する。吸着エネルギーが弱すぎると、硫酸イオンと親水膜との化学的な相互作用が弱くなり、親水膜に吸着する硫酸イオンの数が減って、硫酸イオンの電極への供給効率が低下してしまう。逆に吸着エネルギーが強すぎると、硫酸イオンが親水膜に吸着したままとなり、やはり硫酸イオンの電極への供給効率が低下してしまう。つまり、硫酸イオンと親水膜との間に働く吸着エネルギーは、適切な値であることが好ましい。
 本発明による鉛蓄電池では、有機不織布または多孔質膜が負極板の周囲に設けられ、この有機不織布または多孔質膜には、親水膜が形成されている。
 親水膜は、親水材料と保持体材料とから構成され、親水材料と保持体材料とからなる混合液を水溶性溶媒(例えばアルコール系溶媒や水)で希釈して得られた親水塗料を、有機不織布または多孔質膜の表面に塗布することで形成される。親水材料には、硫酸イオンと親水膜との間に働く吸着エネルギーを考慮すると、Al、AlとSiOとの混合物、BaSO、及びTiOのうちの少なくとも1つを用いるのが好ましい。特に、Al、またはAlとSiOとの混合物を親水材料に用いることが好ましい。Alを用いる場合には、親水材料として親水性アルミナゾルを利用することができ、AlとSiOとの混合物を用いる場合には、親水材料としてアルミナゾルとコロイダルシリカとの混合物を利用することができる。保持体材料には、無機材料または有機高分子材料を用いることができ、例えば、シリカゾル、アクリルアミド、またはアルコキシシランを用いることができる。
 有機不織布または多孔質膜の厚さは、硫酸イオンの沈降の防止能力、電池反応への影響、及び強度等を考慮すると0.03mm~0.1mmが好ましく、有機不織布を用いる場合には有機不織布の繊維に応じて、多孔質膜を用いる場合には多孔質膜の孔径や材料に応じて、それぞれ定めることができる。有機不織布は無機不織布に比べると製造が容易という利点を持つため、本発明による鉛蓄電池では、不織布として有機不織布を採用する。多孔質膜は、100nm~1μmの孔を有し、孔の構造は規則的な構造でも有機不織布のような不規則構造でも構わない。
 親水膜は、有機不織布または多孔質膜の表面に、10nm~1000nmの厚さで形成するのが好ましい。10nmより薄いと硫酸イオンを吸着して保持する効果が小さくなり、1000nmより厚いと電池の内部抵抗が大きくなり、どちらも好ましくない。
 親水膜が形成された有機不織布または多孔質膜を負極板の周囲に設けることより、鉛蓄電池において、電解液の成層化の抑制と高率放電性能の低下の抑制が可能である。特に、本発明による鉛蓄電池では、親水膜が形成された有機不織布または多孔質膜をセパレータとは別に負極板の周囲に設けると、有機不織布または多孔質膜が負極板とより密接した状態で配置されるので、セパレータに成層化の抑制効果を持たせた場合よりも、成層化の抑制効果が高い。
 図1Aは、本発明の実施例による鉛蓄電池の構成を示す図であり、図1Bは、本実施例による鉛蓄電池の極板群の断面概略図であり、図1Cは、本実施例による鉛蓄電池の極板の構成概略図である。本実施例による鉛蓄電池は、外装部分として電槽1と端子2を備える。電槽1の内部には、極柱3と極板群4を備える。極柱3は、極板群4と端子2とを接続する。極板群4は、金属鉛(Pb)を活物質として含む負極板5と、二酸化鉛(PbO)を活物質として含む正極板7と、負極板5と正極板7との間に配置されたセパレータ6とを備える。負極板5と正極板7は板状であり、セパレータ6を介して負極板5と正極板7とが交互に積層されて、極板群(電極群)4が構成される。極板群4は、希硫酸からなる電解液に浸されて電槽1内に収納され、鉛蓄電池を構成する。
 図2は、本発明の実施例による鉛蓄電池の極板群4の一部の構造、特に負極板5の周囲の構造を示す図である。負極板5の周囲には、有機不織布または多孔質膜8が設けられる。セパレータ6は、板状でも袋状でもよく、負極板5の周囲に設けられた有機不織布または多孔質膜8と正極板7との間に配置される。セパレータ6が袋状の場合は、セパレータ6は、負極板5と有機不織布または多孔質膜8とを収納する。有機不織布または多孔質膜8の表面には、親水膜9が形成される。親水膜9は、親水材料10と保持体材料11とから構成される。
 有機不織布または多孔質膜8は、少なくとも、セパレータ6と対向する負極板5の面と、この面の反対にある負極板5の面とに、対向するように設けられる。さらに、有機不織布または多孔質膜8は、負極板5の側面のうちこれらの面以外の面に対向するように設けてもよく、負極板5の底面に対向するように設けてもよい。例えば、有機不織布または多孔質膜8は、負極板5に巻くことで負極板5の周囲に設けることができる。
 図2に示した例では、有機不織布または多孔質膜8は、負極板5の底面と2つの側面(セパレータ6と対向する面と、この面の反対にある面)とに対向し、負極板5を巻いて設けられている。
 有機不織布または多孔質膜8は、袋状で、負極板5を収納してもよい。親水膜9は、有機不織布または多孔質膜8のほかに、セパレータ6の表面にも形成してもよい。また、有機不織布または多孔質膜8を負極板5の周囲に設けないで、セパレータ6の表面に親水膜9を形成してもよい。
 以下、本実施例による鉛蓄電池について説明する。
 [1]有機不織布または多孔質膜
 親水膜が形成される有機不織布または多孔質膜に用いられる材料の例として、ポリプロピレン、セルロース、ポリエチレン、ナイロン、アラミド、及びポリエステル等が挙げられる。有機不織布または多孔質膜に、以下に述べる親水塗料を塗布し、加熱して熱硬化させることで、有機不織布または多孔質膜の表面に親水膜を形成できる。
 [2]親水塗料
 親水膜を形成するための親水塗料は、(a)親水材料、(b)保持体材料、及び(c)溶媒から構成される。親水材料と保持体材料は、ともに、固形成分が一定の濃度で分散媒中に存在するものとする。親水材料の固形成分と保持体材料の固形成分の重量比は、90:10~70:30であるのが好ましい。固形成分の重量比がこの範囲であると、親水材料と保持体材料とを混合させて親水塗料を作製するのに好適である。親水材料が含まれる分散液と保持体材料が含まれる分散液とを混合した後、親水材料と保持体材料の各々の固形成分の合計濃度が希釈溶媒に対して0.5wt%~5wt%となるように、この混合液を溶媒で希釈する。固形成分の濃度が0.5wt%より小さいと親水膜の厚さが不均一になり、5wt%より大きいと親水膜が形成しづらくなり、どちらも好ましくない。
 (a)親水材料
 酸性水溶液に浸漬しても溶けださない無機材料は、親水性を長期間保てることから、親水材料として好ましい。このような無機材料として、親水性シリカ粒子や親水性アルミナゾルが挙げられる。具体的には、日産化学工業株式会社製のコロイダルシリカIPA-ST-UP、IPA-ST、ST-OXS、ST-K2、及びLSS-35や、日産化学工業株式会社製のアルミナゾルAS-200などが挙げられる。コロイダルシリカはアルコールを分散媒とし、アルミナゾルは水を分散媒としているため、これらは容易に混ぜ合わせることができる。
 コロイダルシリカは、比表面積が130m/g~1000m/g程度である粒子を用いるのが好ましい。コロイダルシリカの形状が球形であると仮定すると、比表面積がこの範囲であるコロイダルシリカの粒子径は、2nm~20nmである。アルミナゾルは、含まれているアルミナ粒子の比表面積が200m/g~400m/g程度であるものを用いるのが好ましい。アルミナ粒子の形状が板状であると仮定すると、例えば、寸法(縦、横、及び高さ)が10nm×10nm×100nmであるアルミナ粒子を含むアルミナゾルを用いることができる。
 表1は、親水材料にコロイダルシリカとアルミナゾルを用いた場合の、親水膜の表面に生成された、硫酸イオンとの相互作用を生じる相互作用点(-OH基)の数の算出例を示す表である。表1において、(1)は、親水材料として親水性シリカ粒子(SiO)を用い、親水材料と保持体材料の固形成分の重量比が80:20の場合である。(2)は、親水材料として親水性シリカ粒子(SiO)を用い、親水材料と保持体材料の固形成分の重量比が80:20の場合である。ただし、シリカ粒子の比表面積は、(1)のシリカ粒子の約7.7倍である。(3)は、親水材料としてアルミナゾル(Al)を用い、親水材料と保持体材料の固形成分の重量比が90:10の場合である。
 表1には、(1)~(3)のそれぞれについて、形状、粒子の大きさ(nm)、比表面積(m/g)、親水材料の1粒子あたりの相互作用点の数(個/粒子)、親水材料の1gあたりの相互作用点の数(個/g)、及び親水膜の1gあたりの相互作用点の数(個/g)を示した。ただし、粒子の大きさは、(1)と(2)では粒子が球形であると仮定してその径を、(3)では粒子が板状であると仮定してその寸法(縦、横、及び高さ)を示した。
Figure JPOXMLDOC01-appb-T000001
 各親水材料において、硫酸イオンとの相互作用点の数を算出するにあたり、以下の算出式を用いた。
(E)=(A)×(D)
   =(A)×{(B)/(C)}
ただし、
(A)は、親水材料の1粒子あたりの硫酸イオンの相互作用点の数、
(B)は、親水材料または親水膜1gあたりの、親水材料の体積、
(C)は、親水材料の1粒子あたりの体積、
(D)は、親水材料または親水膜1gあたりに含まれる親水材料の粒子数、
(E)は、親水材料または親水膜1gあたりの硫酸イオンの相互作用点の数、
である。
 表1によると、相互作用点の数は、親水材料にAlを用いた(3)の場合には、SiOを用いた(1)と(2)の場合よりも、4~6桁大きい。このことから、親水材料にAlを用いると、硫酸イオンとの相互作用点の数を大幅に増やせることがわかる。
 親水材料として、Alを単体で用いるほかに、AlとSiOとの混合物を用いることも可能である。この混合物を用いると、硫酸イオンとの相互作用点の数は、Alにより増加し、硫酸イオンと親水膜との適切な相互作用は、SiOにより実現できるという利点がある。親水材料にAlとSiOとの混合物を用いる場合には、10wt%以上のAlが親水材料に含まれるものとする。Alが10wt%より少ないと、硫酸イオンとの相互作用点の数を効果的に増やすことができない。
 硫酸イオンとの相互作用点の数が、Alでは1gあたり1×1021個~1×1024個、SiOでは1gあたり1×1017個~1×1020個である親水材料で親水膜を形成することで、優れた高率放電性能を得ることが可能である。従って、親水材料がAlからなる場合には、相互作用点の数がAlの1gあたり1×1021個~1×1024個であるのが好ましく、親水材料がAlとSiOとからなる場合には、相互作用点の数が、Alの1gあたり1×1021個~1×1024個であり、SiOの1gあたり1×1017個~1×1020個であるのが好ましい。
 相互作用点の数はAlの方がSiOよりも多いため、親水材料としてAlとSiOとの混合物を用いた場合には、Alの量で相互作用点の数が決まると考えられる。このため、親水膜を形成する親水材料として、Alを用いた場合でもAlとSiOとの混合物を用いた場合でも、相互作用点の数が親水膜の1gあたり1×1021個~1×1024個であれば、高率放電性能の低下を特に抑制できるので好ましい。
 (b)保持体材料
 保持体材料には、有機高分子材料または無機材料を用いることができる。保持体材料に用いる有機高分子材料の例としては、ポリエチレングリコールやポリビニルアルコール等を加熱して得られる重合体を挙げることができる。保持体材料に用いる無機材料の例としては、シリカゾルのように加熱により保持体となる材料が挙げられる。この中でも酸性水溶液中の長期安定性が優れているのは、アクリルアミドやシリカゾルである。シリカゾルとして、具体的には、コルコート社製のコルコートPXが挙げられる。
 (c)溶媒
 親水材料と保持体材料との混合液を希釈するために用いられる溶媒は、親水材料と保持体材料に対する分散性と相溶性がよく、熱硬化の際に揮発しやすいものが望ましい。これらの条件を満たす溶媒として、アルコール系の溶媒や水が好ましい。さらに、有機不織布や多孔質膜の耐熱性を考慮すると、沸点が100℃以下であることがさらに好ましい。溶媒の具体例として、水、メタノール、エタノール、及びイソプロピルアルコールが挙げられる。
 表2は、本発明の実施例による鉛蓄電池の構成と、電解液の成層化の抑制効果の評価と、高率放電性能の評価とを示す表である。鉛蓄電池の構成として、有機不織布の材質と厚さ(mm)、親水膜の厚さ(nm)、親水膜1gあたりの相互作用点の数(個/g)、及び親水膜の親水材料と保持体材料とこれらの固形成分の重量比とを示した。有機不織布の材質は、ポリプロピレンを「PP」で表し、ポリエチレンを「PE」で表した。親水膜1gあたりの相互作用点の数は、親水材料としてアルミナゾル(Al)とコロイダルシリカ(SiO)との混合物を用いた場合には、アルミナゾルとコロイダルシリカの相互作用点の総数を示している。また、表2には、比較例として作製した鉛蓄電池についても記載した。以下、各実施例と各比較例について説明する。以下の実施例と比較例では、負極板5の周囲に有機不織布を設けた。
Figure JPOXMLDOC01-appb-T000002
 実施例1による鉛蓄電池は、図2に示すように、親水膜9が形成された有機不織布8が負極板5の周囲に設けられている。有機不織布8の表面には、以下のようにして親水膜9を形成した。
 有機不織布8として、ポリプロピレン製で、厚さが0.1mmのものを用いた。
 親水材料10としてアルミナゾル(Al)とコロイダルシリカ(SiO)を用い、保持体材料11としてシリカゾルを用いた。具体的には、アルミナゾルとして日産化学工業株式会社製のアルミナゾルAS-200を、コロイダルシリカとして日産化学工業株式会社製のコロイダルシリカIPA-ST-UPを、シリカゾルとしてコルコート社製のコルコートPXを用いた。親水材料10において、アルミナゾルとコロイダルシリカの重量比は、80:20とした。すなわち、親水材料10には、80wt%のアルミナゾル(Al)が含まれる。
 親水材料10(X)と保持体材料11(Y)の固形成分の重量比(X:Y)が80:20になるように、親水材料10と保持体材料11とを混合した。この混合液を、固形成分の濃度が5wt%になるようにエタノールで希釈することで、親水塗料を調製した。
 この親水塗料に有機不織布8を浸漬させた後、速度156mm/分にて有機不織布8を引き上げた。この有機不織布8を紙ワイパーで挟んで上からローラーを転がすことで有機不織布8に付着した余分な親水塗料を除去した後、この有機不織布を60℃に加温した恒温槽内に1時間置いて溶媒を除去した。このようにして、有機不織布8の表面に親水膜9を形成した。親水膜9は、厚さが50nmであり、1gあたりの相互作用点の数が1.0×1023個である。
 親水膜9が形成された有機不織布8を負極板5の周囲に設置し、電解液として希硫酸を用い、図1に示すような鉛蓄電池を作製した。
 この鉛蓄電池にサイクル試験を行い、まず、電解液の成層化を抑制する効果を評価した。サイクル試験は、鉛蓄電池を25℃の雰囲気に置き、
(i)放電電流45Aで59秒間放電、
(ii)放電電流300Aで1秒間放電、
(iii)充電電圧14.0V(制限電流100A)で60秒間定電流定電圧充電、
の(i)、(ii)、及び(iii)を1サイクルとして、このサイクルを3600回繰り返すものである(電池工業会規格SBA S0101より)。電解液の成層化が顕著に現れる初期のサイクル(3600回目)における、電槽内の上部と下部での電解液の比重差を、成層化の指標とした。すなわち、3600回目のサイクルでの、電槽内の下部における電解液の比重と上部における電解液の比重とを測定し、これらの比重の差を求め、この比重差の値により、成層化の抑制効果を評価した。電槽内の上部とは、極板群4の上端から1cm上の位置であり、電槽内の下部とは、極板群4の下端から1cm上の位置である。具体的な評価基準は、比重差が0.02以下の場合を「A」、0.02より大きく0.04以下の場合を「B」、0.04より大きく0.07以下の場合を「C」、0.07より大きい場合を「D」とした。この評価基準では、A、B、C、Dの順に成層化が抑制されていることになる。
 本実施例による鉛蓄電池は、電解液の比重差が0.03と小さく、評価Bとなり、成層化が抑制されていることがわかった。
 次に、鉛蓄電池の高率放電性能を評価した。高率放電性能は、-15℃の温度条件下で鉛蓄電池を16時間放置した後に、放電電流150A、終止電圧6VのJIS規格に従って測定した。一般に、鉛蓄電池の内部に有機不織布または多孔質膜8を設置すると、高率放電性能が低下することが知られている。そこで、有機不織布または多孔質膜8を負極板5の周囲に設置しない場合の高率放電性能を100として、高率放電性能の低下幅が小さい場合(高率放電性能が100に近い場合)を、高率放電性能の低下を抑制できる場合として評価した。具体的な評価基準は、高率放電性能が100以下95以上を「A」、95未満91以上を「B」、91未満87以上を「C」、87未満を「D」とした。この評価基準では、A、B、C、Dの順に高率放電性能の低下を抑制していることになる。
 本実施例による鉛蓄電池は、高率放電性能が95で評価Aとなり、高率放電性能の低下幅が極めて小さいことがわかった。すなわち、本実施例による鉛蓄電池は、高率放電性能の低下を抑制できることがわかった。
 実施例2による鉛蓄電池は、実施例1による鉛蓄電池と同様の構成を備えるが、次の点が相違する。以下では、相違点のみを説明する。
 本実施例による鉛蓄電池では、親水材料10としてアルミナゾル(Al)のみを用い、コロイダルシリカ(SiO)を用いなかった。すなわち、親水材料10には、100wt%のアルミナゾル(Al)が含まれる。親水材料10(X)と保持体材料11(Y)の固形成分の重量比(X:Y)は、90:10である。また、親水膜9の1gあたりの相互作用点の数は、1.3×1023個である。
 本実施例による鉛蓄電池は、電解液の比重差が0.04と小さく、評価Bとなり、成層化が抑制されていることがわかった。また、本実施例による鉛蓄電池は、高率放電性能が93で評価Bとなり、高率放電性能の低下幅が小さいことがわかった。すなわち、本実施例による鉛蓄電池は、高率放電性能の低下を抑制できることがわかった。
 実施例3による鉛蓄電池は、実施例1による鉛蓄電池と同様の構成を備えるが、次の点が相違する。以下では、相違点のみを説明する。
 本実施例による鉛蓄電池では、親水材料10としてアルミナゾル(Al)とコロイダルシリカ(SiO)を用い、アルミナゾルとコロイダルシリカの重量比は、70:30とした。すなわち、親水材料10には、70wt%のアルミナゾル(Al)が含まれる。親水膜9の1gあたりの相互作用点の数は、9.1×1022個である。
 本実施例による鉛蓄電池は、電解液の比重差が0.03と小さく、評価Bとなり、成層化が抑制されていることがわかった。また、本実施例による鉛蓄電池は、高率放電性能が96で評価Aとなり、高率放電性能の低下幅が小さいことがわかった。すなわち、本実施例による鉛蓄電池は、高率放電性能の低下を抑制できることがわかった。
 実施例4による鉛蓄電池は、実施例1による鉛蓄電池と同様の構成を備えるが、次の点が相違する。以下では、相違点のみを説明する。
 本実施例による鉛蓄電池では、有機不織布8として、ポリエチレン製のものを用いた。
親水膜9の厚さは、10nmである。
 本実施例による鉛蓄電池は、電解液の比重差が0.04と小さく、評価Bとなり、成層化が抑制されていることがわかった。また、本実施例による鉛蓄電池は、高率放電性能が94で評価Bとなり、高率放電性能の低下幅が小さいことがわかった。すなわち、本実施例による鉛蓄電池は、高率放電性能の低下を抑制できることがわかった。
 実施例5による鉛蓄電池は、実施例1による鉛蓄電池と同様の構成を備えるが、次の点が相違する。以下では、相違点のみを説明する。
 本実施例による鉛蓄電池では、親水材料10としてアルミナゾル(Al)のみを用い、コロイダルシリカ(SiO)を用いなかった。すなわち、親水材料10には、100wt%のアルミナゾル(Al)が含まれる。保持体材料11として、アクリルアミドを用いた。親水膜9は、厚さが100nmであり、1gあたりの相互作用点の数が1.3×1023個である。
 本実施例による鉛蓄電池は、電解液の比重差が0.03と小さく、評価Bとなり、成層化が抑制されていることがわかった。また、本実施例による鉛蓄電池は、高率放電性能が92で評価Bとなり、高率放電性能の低下幅が小さいことがわかった。すなわち、本実施例による鉛蓄電池は、高率放電性能の低下を抑制できることがわかった。
 実施例6による鉛蓄電池は、実施例1による鉛蓄電池と同様の構成を備えるが、次の点が相違する。以下では、相違点のみを説明する。
 本実施例による鉛蓄電池では、保持体材料11として、アクリルアミドを用いた。親水膜9の厚さは、60nmである。
 本実施例による鉛蓄電池は、電解液の比重差が0.04と小さく、評価Bとなり、成層化が抑制されていることがわかった。また、本実施例による鉛蓄電池は、高率放電性能が94で評価Bとなり、高率放電性能の低下幅が小さいことがわかった。すなわち、本実施例による鉛蓄電池は、高率放電性能の低下を抑制できることがわかった。
 実施例7による鉛蓄電池は、実施例1による鉛蓄電池と同様の構成を備えるが、次の点が相違する。以下では、相違点のみを説明する。
 本実施例による鉛蓄電池では、有機不織布8として、ポリエチレン製で、厚さが0.05mmのものを用いた。親水材料10としてアルミナゾル(Al)とコロイダルシリカ(SiO)を用い、アルミナゾルとコロイダルシリカの重量比は、70:30とした。すなわち、親水材料10には、70wt%のアルミナゾル(Al)が含まれる。保持体材料1として、アクリルアミドを用いた。親水膜9の1gあたりの相互作用点の数は、9.1×1022個である。
 本実施例による鉛蓄電池は、電解液の比重差が0.03と小さく、評価Bとなり、成層化が抑制されていることがわかった。また、本実施例による鉛蓄電池は、高率放電性能が95で評価Aとなり、高率放電性能の低下幅が小さいことがわかった。すなわち、本実施例による鉛蓄電池は、高率放電性能の低下を抑制できることがわかった。
 実施例8による鉛蓄電池は、実施例1による鉛蓄電池と同様の構成を備えるが、次の点が相違する。以下では、相違点のみを説明する。
 本実施例による鉛蓄電池では、有機不織布8として、厚さが0.03mmのものを用いた。親水材料10としてアルミナゾル(Al)とコロイダルシリカ(SiO)を用い、アルミナゾルとコロイダルシリカの重量比は、10:90とした。すなわち、親水材料10には、10wt%のアルミナゾル(Al)が含まれる。親水材料10(X)と保持体材料11(Y)の固形成分の重量比(X:Y)は、90:10である。また、親水膜9の1gあたりの相互作用点の数は、1.2×1022個である。
 本実施例による鉛蓄電池は、電解液の比重差が0.03と小さく、評価Bとなり、成層化が抑制されていることがわかった。また、本実施例による鉛蓄電池は、高率放電性能が94で評価Bとなり、高率放電性能の低下幅が小さいことがわかった。すなわち、本実施例による鉛蓄電池は、高率放電性能の低下を抑制できることがわかった。
 実施例9による鉛蓄電池は、実施例1による鉛蓄電池と同様の構成を備えるが、次の点が相違する。以下では、相違点のみを説明する。
 本実施例による鉛蓄電池では、親水材料10としてアルミナゾル(Al)とコロイダルシリカ(SiO)を用い、アルミナゾルとコロイダルシリカの重量比は、20:80とした。すなわち、親水材料10には、20wt%のアルミナゾル(Al)が含まれる。親水材料10(X)と保持体材料11(Y)の固形成分の重量比(X:Y)は、70:30である。また、親水膜9は、厚さが60nmであり、1gあたりの相互作用点の数が2.2×1022個である。
 本実施例による鉛蓄電池は、電解液の比重差が0.03と小さく、評価Bとなり、成層化が抑制されていることがわかった。また、本実施例による鉛蓄電池は、高率放電性能が94で評価Bとなり、高率放電性能の低下幅が小さいことがわかった。すなわち、本実施例による鉛蓄電池は、高率放電性能の低下を抑制できることがわかった。
 [比較例1]
 比較例1による鉛蓄電池は、実施例1による鉛蓄電池と同様の構成を備えるが、次の点が相違する。以下では、相違点のみを説明する。
 本比較例による鉛蓄電池では、負極板5の周囲に有機不織布または多孔質膜8を設けなかった。
 本比較例による鉛蓄電池は、電解液の比重差が0.08と極めて大きく、評価Dとなり、成層化が抑制できないことがわかった。また、本比較例による鉛蓄電池は、負極板5の周囲に有機不織布または多孔質膜8を設けていないため、高率放電性能が評価基準値の100である。
 本比較例と実施例1~9により、負極板5の周囲に有機不織布または多孔質膜8を設けることにより、電解液の比重差を小さくすることができ、電解液の成層化を抑制できることが確認できた。
 [比較例2]
 比較例2による鉛蓄電池は、実施例1による鉛蓄電池と同様の構成を備えるが、次の点が相違する。以下では、相違点のみを説明する。
 本比較例による鉛蓄電池では、負極板5の周囲に、ポリプロピレン製で厚さが0.1mmの有機不織布8を設けたが、有機不織布8に親水膜9を形成していない。
 本比較例による鉛蓄電池は、電解液の比重差が0.04で評価Bとなり、高率放電性能が92で評価Bとなった。
 実施例1~9の鉛蓄電池のうち最も電解液の比重差が大きいのは実施例2、4、6の鉛蓄電池であり、これらの実施例の鉛蓄電池でも電解液の比重差は0.04である。しかし、これらの実施例の鉛蓄電池では、高率放電性能がそれぞれ93、94、94を示しており、本比較例による鉛蓄電池よりも高率放電性能の低下幅が小さい。すなわち、本比較例による鉛蓄電池は、実施例2、4、6の鉛蓄電池と比較して、電解液の比重差が同程度であるが、高率放電性能の低下幅が大きい。
 また、実施例1~9の鉛蓄電池のうち最も高率放電性能が小さい(高率放電性能の低下幅が大きい)のは実施例5の鉛蓄電池であり、実施例5の鉛蓄電池でも高率放電性能は92である。しかし、実施例5の鉛蓄電池では、電解液の比重差が0.03と小さい値を示している。すなわち、本比較例による鉛蓄電池は、実施例5の鉛蓄電池と比較して、高率放電性能の低下幅が同程度であるが、電解液の比重差が大きい。
 以上の結果から、本比較例による鉛蓄電池は、成層化の抑制と高率放電性能の低下の抑制とが両立できないことがわかった。さらに、本比較例と実施例1~9により、有機不織布8に親水膜9を形成することにより、高率放電性能の低下を抑制できることが確認できた。
 なお、本発明は、上記の実施例に限定されるものではなく、様々な変形例を含む。例えば、上記の実施例は、本発明を分かりやすく説明するために詳細に説明したものであり、本発明は、必ずしも説明した全ての構成を備える態様に限定されるものではない。
 1…電槽、2…端子、3…極柱、4…極板群、5…負極板、6…セパレータ、7…正極板、8…有機不織布または多孔質膜、9…親水膜、10…親水材料、11…保持体材料。

Claims (10)

  1.  二酸化鉛を含む正極板と、
     金属鉛を含む負極板と、
     前記正極板と前記負極板との間に配置されたセパレータと、
     希硫酸からなり、前記正極板と前記負極板と前記セパレータとからなる極板群が浸される電解液と、
     前記極板群と前記電解液とを収納する電槽と、
     前記負極板の周囲に設けられた有機不織布または多孔質膜と、を備え、
     前記有機不織布または多孔質膜の表面に、親水膜が形成され、
     前記親水膜は、AlからなるまたはAlとSiOとからなる親水材料と、無機材料または有機高分子材料からなる保持体材料とから構成されることを特徴とする鉛蓄電池。
  2.  前記親水膜は、前記親水材料がAlを10wt%以上含む請求項1に記載の鉛蓄電池。
  3.  前記親水膜は、前記親水材料の表面に生成された-OH基の数が、前記親水膜の1gあたり1×1021個~1×1024個である請求項2に記載の鉛蓄電池。
  4.  前記親水膜は、前記親水材料がAlからなる場合には、Alの表面に生成された-OH基の数が、Alの1gあたり1×1021個~1×1024個である請求項2に記載の鉛蓄電池。
  5.  前記親水膜は、前記親水材料がAlとSiOとからなる場合には、Alの表面に生成された-OH基の数が、Alの1gあたり1×1021個~1×1024個であり、SiOの表面に生成された-OH基の数が、SiOの1gあたり1×1017個~1×1020個である請求項2に記載の鉛蓄電池。
  6.  前記親水膜は、前記親水材料と前記保持体材料との固形成分の重量比が90:10~70:30である請求項2に記載の鉛蓄電池。
  7.  前記親水膜は、厚さが10nm~1000nmである請求項2に記載の鉛蓄電池。
  8.  前記有機不織布または多孔質膜は、厚さが0.03mm~0.1mmである請求項2に記載の鉛蓄電池。
  9.  前記セパレータの表面に、前記親水膜が形成されている請求項2に記載の鉛蓄電池。
  10.  二酸化鉛を含む正極板と、
     金属鉛を含む負極板と、
     前記正極板と前記負極板との間に配置されたセパレータと、
     希硫酸からなり、前記正極板と前記負極板と前記セパレータとからなる極板群が浸される電解液と、
     前記極板群と前記電解液とを収納する電槽と、を備え、
     前記セパレータの表面に、親水膜が形成され、
     前記親水膜は、AlからなるまたはAlとSiOとからなる親水材料と、無機材料または有機高分子材料からなる保持体材料とから構成されることを特徴とする鉛蓄電池。
PCT/JP2015/058760 2014-03-27 2015-03-23 鉛蓄電池 WO2015146919A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016510351A JP6197945B2 (ja) 2014-03-27 2015-03-23 鉛蓄電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-065123 2014-03-27
JP2014065123 2014-03-27

Publications (1)

Publication Number Publication Date
WO2015146919A1 true WO2015146919A1 (ja) 2015-10-01

Family

ID=54195432

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/058760 WO2015146919A1 (ja) 2014-03-27 2015-03-23 鉛蓄電池

Country Status (2)

Country Link
JP (1) JP6197945B2 (ja)
WO (1) WO2015146919A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016052512A1 (ja) * 2014-09-29 2016-04-07 日立化成株式会社 鉛蓄電池
JP2017142888A (ja) * 2016-02-08 2017-08-17 日立化成株式会社 鉛蓄電池
JP2018006258A (ja) * 2016-07-07 2018-01-11 旭化成株式会社 鉛蓄電池用セパレータ、及びこれを用いた鉛蓄電池
JP2019003838A (ja) * 2017-06-15 2019-01-10 日立化成株式会社 液式鉛蓄電池
CN112385070A (zh) * 2018-04-20 2021-02-19 达拉米克有限责任公司 带纤维垫的酸性电池

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112103569B (zh) * 2020-08-21 2022-01-14 风帆有限责任公司 提高agm阀控式密封蓄电池高温浮充寿命的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06295714A (ja) * 1992-12-07 1994-10-21 Akihide Nagata 鉛蓄電池用セパレータと鉛蓄電池及びそれらの製造方法
JPH07220751A (ja) * 1994-01-28 1995-08-18 Shin Kobe Electric Mach Co Ltd 密閉形鉛蓄電池及びその製造方法
JP2002367586A (ja) * 2001-06-07 2002-12-20 Bio Energy:Kk 密閉型鉛蓄電池
JP2011070904A (ja) * 2009-09-25 2011-04-07 Shin Kobe Electric Mach Co Ltd 鉛蓄電池用セパレータ及びそれを用いた鉛蓄電池
JP2011181436A (ja) * 2010-03-03 2011-09-15 Shin Kobe Electric Mach Co Ltd 鉛蓄電池
WO2012157311A1 (ja) * 2011-05-13 2012-11-22 新神戸電機株式会社 鉛蓄電池

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005108722A (ja) * 2003-09-30 2005-04-21 Nippon Sheet Glass Co Ltd 液式鉛蓄電池用セパレータ及びその製造方法
JP5618253B2 (ja) * 2010-09-30 2014-11-05 株式会社Gsユアサ 鉛蓄電池
JP5798962B2 (ja) * 2012-03-27 2015-10-21 日本板硝子株式会社 液式鉛蓄電池用セパレータ及び液式鉛蓄電池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06295714A (ja) * 1992-12-07 1994-10-21 Akihide Nagata 鉛蓄電池用セパレータと鉛蓄電池及びそれらの製造方法
JPH07220751A (ja) * 1994-01-28 1995-08-18 Shin Kobe Electric Mach Co Ltd 密閉形鉛蓄電池及びその製造方法
JP2002367586A (ja) * 2001-06-07 2002-12-20 Bio Energy:Kk 密閉型鉛蓄電池
JP2011070904A (ja) * 2009-09-25 2011-04-07 Shin Kobe Electric Mach Co Ltd 鉛蓄電池用セパレータ及びそれを用いた鉛蓄電池
JP2011181436A (ja) * 2010-03-03 2011-09-15 Shin Kobe Electric Mach Co Ltd 鉛蓄電池
WO2012157311A1 (ja) * 2011-05-13 2012-11-22 新神戸電機株式会社 鉛蓄電池

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016052512A1 (ja) * 2014-09-29 2016-04-07 日立化成株式会社 鉛蓄電池
JPWO2016052512A1 (ja) * 2014-09-29 2017-04-27 日立化成株式会社 鉛蓄電池
JP2017142888A (ja) * 2016-02-08 2017-08-17 日立化成株式会社 鉛蓄電池
JP2018006258A (ja) * 2016-07-07 2018-01-11 旭化成株式会社 鉛蓄電池用セパレータ、及びこれを用いた鉛蓄電池
JP2019003838A (ja) * 2017-06-15 2019-01-10 日立化成株式会社 液式鉛蓄電池
CN112385070A (zh) * 2018-04-20 2021-02-19 达拉米克有限责任公司 带纤维垫的酸性电池
JP2022502813A (ja) * 2018-04-20 2022-01-11 ダラミック エルエルシー 繊維状マットを含む鉛酸電池
JP7471231B2 (ja) 2018-04-20 2024-04-19 ダラミック エルエルシー 繊維状マットを含む鉛酸電池

Also Published As

Publication number Publication date
JP6197945B2 (ja) 2017-09-20
JPWO2015146919A1 (ja) 2017-04-13

Similar Documents

Publication Publication Date Title
JP6197945B2 (ja) 鉛蓄電池
Ma et al. Graphene‐based materials for lithium‐ion hybrid supercapacitors
RU2576670C2 (ru) Гибридная отрицательная пластина для свинцо-вокислотной аккумуляторной батареи и свинцово-кислотная аккумуляторная батарея
JP5064800B2 (ja) セラミック分離層を有するキャパシタ
JP6331161B2 (ja) 制御弁式鉛蓄電池
EP2596538B1 (en) Separators for electrochemical cells
JP4523580B2 (ja) 二次電池用負極活物質及びそれらを生成するための中間の混練物
JP5983985B2 (ja) 鉛蓄電池
JP2015536031A (ja) 電気化学素子用分離膜及びその製造方法
JP2017068920A (ja) 鉛蓄電池
JP6620579B2 (ja) 鉛蓄電池
JP6495862B2 (ja) 鉛蓄電池
JP6237922B2 (ja) 鉛蓄電池
JP6908052B2 (ja) 液式鉛蓄電池
KR101442958B1 (ko) 장기구동 성능 향상을 위한 다기능성 코팅 분리막 및 이를 구비한 이차전지
US20220302556A1 (en) Improved lead acid battery separators incorporating carbon, and improved batteries, systems, vehicles, and related methods
JP2016177872A (ja) 鉛蓄電池
JP2003036831A (ja) ゲル状電解液をそなえたシール形鉛蓄電池
JP6953821B2 (ja) 液式鉛蓄電池
WO2022022519A1 (zh) 一种隔膜及其应用
WO2020066763A1 (ja) 鉛蓄電池
JP3511858B2 (ja) 鉛蓄電池
JP4239510B2 (ja) 鉛蓄電池およびその製造方法
JP2022532478A (ja) 電池セパレータ構成要素へのリグノスルホン酸塩及び高表面積炭素の塗布
JP2001143679A (ja) 密閉形鉛蓄電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15769509

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016510351

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15769509

Country of ref document: EP

Kind code of ref document: A1