WO2014087565A1 - 鉛蓄電池用格子および鉛蓄電池 - Google Patents
鉛蓄電池用格子および鉛蓄電池 Download PDFInfo
- Publication number
- WO2014087565A1 WO2014087565A1 PCT/JP2013/005976 JP2013005976W WO2014087565A1 WO 2014087565 A1 WO2014087565 A1 WO 2014087565A1 JP 2013005976 W JP2013005976 W JP 2013005976W WO 2014087565 A1 WO2014087565 A1 WO 2014087565A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lead
- lattice
- negative electrode
- grid
- positive electrode
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/70—Carriers or collectors characterised by shape or form
- H01M4/72—Grids
- H01M4/73—Grids for lead-acid accumulators, e.g. frame plates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
- H01M4/68—Selection of materials for use in lead-acid accumulators
- H01M4/685—Lead alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/70—Carriers or collectors characterised by shape or form
- H01M4/72—Grids
- H01M4/74—Meshes or woven material; Expanded metal
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/70—Carriers or collectors characterised by shape or form
- H01M4/72—Grids
- H01M4/74—Meshes or woven material; Expanded metal
- H01M4/742—Meshes or woven material; Expanded metal perforated material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/70—Carriers or collectors characterised by shape or form
- H01M4/72—Grids
- H01M4/74—Meshes or woven material; Expanded metal
- H01M4/745—Expanded metal
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/06—Lead-acid accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2220/00—Batteries for particular applications
- H01M2220/20—Batteries in motive systems, e.g. vehicle, ship, plane
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to a lead-acid battery grid and a lead-acid battery using the grid as a positive electrode grid.
- the present invention relates to a lead storage battery used in an idling stop vehicle.
- the method of manufacturing a grid for a lead storage battery used for an electrode of a lead storage battery is shifting from a conventional casting method to an expanding method with a high production amount per unit time.
- expanding methods There are mainly two types of expanding methods: a reciprocating method and a rotary method.
- the reciprocating method is a method of forming a mesh portion by pressing a sheet down on the sheet made of Pb or various Pb alloys while pressing the blade along the longitudinal direction of the sheet.
- the rotary construction method is a construction method in which a sheet made of Pb or various Pb alloys is cut along a zigzag along the longitudinal direction of the sheet, and then the sheet is stretched in the width direction to form a mesh portion. .
- the battery reaction is more active in the upper part of the lead storage battery electrode plate near the current collector (ear). Therefore, in the case of the casting method, various ideas have been made to increase the current collecting property at the upper part of the lattice.
- a method of relatively thickening the lattice bone (strand) constituting the lattice above the mesh portion in the lattice is effective.
- the relatively thin lattice bone at the lower part of the mesh portion becomes relatively mechanically weak, cracks are generated, and the life characteristics are deteriorated.
- Patent Document 1 by adjusting the weight ratio of the upper part (upper half) in the entire mesh part (from 54% to 62%), lead with high yield while exhibiting excellent battery characteristics. It is said that a grid for storage batteries can be provided.
- the idling stop vehicle can improve fuel consumption by stopping the engine while the vehicle is stopped.
- the lead storage battery supplies all electric power such as an air conditioner and a fan during idling stop
- the lead storage battery tends to be insufficiently charged. Therefore, the lead storage battery is required to have a high charge acceptability that can be charged more in a short time in order to solve the shortage of charging.
- the lead storage battery is also required to have high durability in order to eliminate the decrease in life.
- Patent Document 2 describes a lead storage battery in which aluminum ions are contained in an electrolytic solution. Aluminum ions have the effect of suppressing the coarsening of the lead sulfate crystals produced at the positive and negative electrodes during discharge, thereby improving the charge acceptance performance of the lead storage battery.
- Patent Document 3 describes a lead storage battery that is a negative electrode grid that does not contain antimony and that is provided with a lead alloy layer containing antimony on its surface.
- the lead alloy layer containing antimony has an effect of efficiently charging and recovering the negative electrode plate, and thereby the durability of the lead storage battery can be improved.
- Patent Document 4 discloses that an alkaline metal sulfate such as Na 2 SO 4 is added to an electrolytic solution to suppress generation of lead ions accompanying a decrease in sulfuric acid concentration during overdischarge, and between the positive electrode and the negative electrode. Describes a technique for preventing the occurrence of a short circuit due to the growth of PbSO 4 on the negative electrode during charging.
- Na 2 SO 4 added to the electrolytic solution has an effect of suppressing a decrease in conductivity of the electrolytic solution accompanying a decrease in sulfuric acid concentration during overdischarge and improving charge recovery after overdischarge.
- the present invention is intended to solve this problem, and an object of the present invention is to provide a lead-acid battery grid that can constitute a long-life type lead-acid battery that allows a user to accurately recognize the replacement time.
- the idling stop vehicle may be provided with a fail-safe mechanism that does not discharge the lead storage battery when the state of charge (SOC) becomes a predetermined value (for example, 60%) or less. is there.
- SOC state of charge
- FIG. 4 is a graph schematically showing a state of charge (SOC) when the lead-acid battery is repeatedly discharged and charged in an idling stop vehicle.
- the line graph shown in FIG. 4 shows a pattern in which the lead storage battery is discharged while the vehicle is stopped, the SOC is lowered, the vehicle is driven again, the lead storage battery is charged, the SOC is recovered, and this is repeated. Is.
- the lead-acid battery has a high charge acceptance, the lead-acid battery recovers to about 100% while the car is running. Therefore, as shown in the line graph A in FIG. The charge / discharge of the lead storage battery can be repeated.
- the battery cannot be fully charged during traveling, and if the vehicle stops without the SOC recovering to 100%, Decrease in SOC due to increases. When such charging / discharging is repeated, the SOC gradually decreases.
- the fail-safe mechanism is provided in the idling stop vehicle, the fail-safe mechanism is activated and the discharge is stopped when the SOC becomes a predetermined value (for example, 60%) or less.
- the fail-safe mechanism is frequently used because the SOC cannot be fully charged and the SOC does not recover to 100%. Invite the situation to operate.
- the SOC is further reduced due to self-discharge and dark current while the vehicle is stopped. Become more prominent.
- the present invention has been made in view of such a problem, and its main object is to provide a lead-acid battery having sufficient charge acceptance and output characteristics, which can be applied to an idling stop vehicle used in the “choi riding” mode. It is to provide.
- a lead-acid battery grid according to the present invention is a lead-acid battery grid used for an electrode of a lead-acid battery, and is made of a Pb alloy containing at least one of Sn and Ca, and constitutes an upper side.
- An upper frame bone, a lower frame bone constituting a lower side, and a mesh portion where a lattice bone exists between the upper frame bone and the lower frame bone, and the mesh portion has a total mass.
- the ratio Wu / W of the upper half mass Wu to W is 62.5% or more and 67% or less, and a coating layer having a Sn content larger than that of the lattice bone is provided on at least a part of the surface of the lattice bone The surface of the lower frame bone is not provided with the coating layer.
- the mass ratio of Sn in the coating layer is 0.2% or more and 10.0% or less.
- the mass proportion of Sn in the coating layer is 3.0% to 7.0%.
- the coating layer further contains Sb, and the mass ratio is 0.2% or more and 10.0% or less.
- the mass ratio of Sb in the coating layer is 3.0% or more and 7.0% or less.
- the above lead storage battery grid may be produced by an expanding method.
- the lead storage battery of the present invention uses the above lead storage battery grid as the grid of the positive electrode plate.
- a lead storage battery according to the present invention is a lead storage battery in which a group of electrode plates in which a plurality of positive and negative electrode plates are laminated via a separator is housed in a cell chamber together with an electrolyte, and the positive electrode plate contains antimony A positive electrode grid made of lead or lead alloy, and a positive electrode active material filled in the positive electrode grid, a negative electrode plate comprising a negative electrode grid and a negative electrode active material filled in the negative electrode grid, and the negative electrode grid comprising antimony A negative electrode grid body portion made of lead or a lead alloy containing no lead and a surface layer made of a lead alloy containing antimony formed on the surface of the negative electrode grid body portion, A half mass ratio is 1.55 or more and 2.0 or less.
- the electrolytic solution contains sodium ions in the range of 0.03 mol / L to 0.28 mol / L.
- negative electrode plates housed in the bag-like separator are arranged on both sides of the electrode plate group.
- the lead storage battery which has sufficient charge acceptance property and output characteristics which can be applied to the idling stop vehicle used by "choi riding" mode can be provided.
- Diagram showing lead-acid battery grid Diagram showing lead acid battery Schematic showing an example of a method for manufacturing a lead-acid battery grid
- SOC state of charge
- FIG. 1 is a diagram showing a lead-acid battery grid.
- the lead-acid battery grid has a substantially quadrangular shape, and includes an upper frame bone 1 constituting the upper frame portion, a lower frame bone 3 constituting the lower frame portion, and the upper frame bone 1 and the lower frame bone 3. And a mesh portion 2 formed by intersecting lattice bones 2a.
- the upper frame bone 1, the mesh portion 2, and the lower frame bone 3 are made of a Pb alloy containing at least one of Sn and Ca.
- the lead-acid battery grid of Embodiment 1 has two characteristics.
- the first feature is that the ratio Wu / W of the upper half mass Wu to the total mass W of the mesh portion 2 is 62.5% or more and 67% or less.
- the second feature is that a covering layer 2b richer in Sn than the lattice bone 2a itself is provided on at least a part of the surface of the lattice bone 2a, and the lower frame bone 3 does not include the covering layer 2b.
- Patent Document 1 states that a lead-acid battery using a grid in which the ratio Wu / W of the upper half mass Wu exceeds 62% as the grid of the positive electrode plate has a short life due to cracks in the grid bone 2a. Yes. However, a lead-acid battery using a grid in which the covering layer 2b richer in Sn than the lattice bone 2a is provided on the surface of the lattice bone 2a and the lower frame bone 3 is not provided with the coating layer 2b is used as the positive plate lattice. Shows a favorable life characteristic because cracks of the lattice bone 2a which are concerned about Patent Document 1 are less likely to occur. The reason is that the coating layer containing an appropriate amount of Sn enhances the mechanical strength of the lattice bone.
- the mass proportion of Sn in the coating layer 2b is preferably 0.2% or more and 10.0% or less, and more preferably 3.0% or more and 7.0% or less.
- the mass ratio of Sn in the coating layer 2b is 0.2% or more, the mechanical strength of the lattice is improved, and when it is 10.0% or less, the corrosion resistance of the lattice is increased and the life characteristics are improved. Become.
- the coating layer 2b further contains Sb, and the mass ratio is preferably 0.2% or more and 10.0% or less, and more preferably 3.0% or more and 7.0% or less.
- the mass ratio of Sb in the coating layer 2b is 0.2% or more, the life characteristics are improved. However, if it is 10.0% or more, the decrease in the electrolytic solution due to repeated charge / discharge increases, which is not preferable.
- the coating layer 2b can contain Ag in addition to Pb, Sn and Sb.
- FIG. 2 is a diagram showing a lead storage battery.
- the lattice of Embodiment 1 is used at least for the positive electrode plate 4a.
- the positive electrode plate 4a and the negative electrode plate 4b are opposed to each other through the separator 4c to constitute the electrode plate group 4.
- the plurality of electrode plate groups 4 are housed one by one in each cell chamber 5b of the battery case 5 divided into a plurality of cell chambers 5b by an intermediate partition plate 5a.
- the ears of the plurality of positive electrode plates 4 a are connected by one strap 6, and the ears of the plurality of negative electrode plates 4 b are connected by another strap 6.
- the straps 6 having different polarities in the adjacent electrode plate groups 4 are connected to each other through the connecting plate 7 so as to penetrate the intermediate partition plate 5a.
- the opening of the battery case 5 is covered with a lid 8 having a liquid port.
- dilute sulfuric acid which is an electrolytic solution, is injected from the liquid port and closed with the liquid port plug 9.
- the lead-acid battery is completed by performing initial charging under predetermined conditions.
- lead powder appropriately containing red lead or the like can be used.
- barium sulfate, a lignin compound, and the like can be appropriately included in the active material of the negative electrode plate 4b.
- separator 4c polyethylene, polypropylene, polyethylene terephthalate, glass fiber, or the like can be used.
- FIG. 3 is a schematic view showing an example (reciprocating method) of a method for producing the lead-acid battery grid of Embodiment 1.
- At least one surface of a sheet 10 made of a Pb alloy containing at least one of Sn and Ca is pasted with a foil 11 (Pb and Sn are essential, and Sb and Ag may be included) more abundant than the sheet 10. .
- the blade 10 is pressed along the longitudinal direction of the sheet 10 and pushed down while the cuts 12 are made, thereby continuously including the mesh part 2 intersecting the lattice bone 2a and the plain part 13 not having the mesh part 2.
- Form body 14 is pressed along the longitudinal direction of the sheet 10 and pushed down while the cuts 12 are made, thereby continuously including the mesh part 2 intersecting the lattice bone 2a and the plain part 13 not having the mesh part 2.
- the active material paste 15 is continuously filled into the continuous body 14.
- the positive electrode plate 4a or the negative electrode plate 4b is completed by cutting the continuous body 14 filled with the active material paste 15 into a predetermined size.
- the ratio Wu / W of the mass Wu of the upper half (half closer to the upper frame bone 1) to the mass W of the entire mesh portion 2 is 62.5% or more and 67% or less.
- the portion corresponding to the upper half of the mesh part 2 is to increase the thickness by widening the interval of the cuts 12 than the lower half.
- a second point to keep in mind is to prevent the foil 11 from being attached to a location corresponding to the lower frame bone 3 so that the lower frame bone 3 does not include the coating layer 2b.
- the lattice bone 2a has a quadrangular cross section, and one side thereof is the coating layer 2b.
- the foil 11 On one side of the sheet 10 consisting of 1.3 mass% Sn, 0.06 mass% Ca and Pb remaining, the foil 11 consisting of 5 mass% Sn, 5 mass% Sb and the remainder Pb (after processing) A coating layer 2b) was attached. At this time, the foil 11 was not affixed to the part which becomes the lower frame bone 3 after processing.
- the continuum 14 is continuously filled with a positive electrode active material paste (active material paste 15) obtained by kneading lead oxide powder with sulfuric acid and purified water, and cut into predetermined dimensions, A positive electrode plate 4a was produced.
- active material paste 15 obtained by kneading lead oxide powder with sulfuric acid and purified water, and cut into predetermined dimensions, A positive electrode plate 4a was produced.
- the composition of the sheet 10 is different (Sn is 0.3% by mass, Ca is 0.06% by mass, the remainder is Pb), the coating layer 2b is not provided, the interval between the cuts 12 is constant, and Except that the composition of the active material paste 15 is different (a negative electrode active material paste obtained by kneading an organic additive, barium sulfate, carbon, or the like added to lead oxide powder by a conventional method) with sulfuric acid and purified water.
- a negative electrode plate 4b was produced in the same manner as the positive electrode plate 4a.
- electrode plates 4a and 8 electrode plates 4b were opposed to each other through a polyethylene separator 4c to form an electrode plate group 4.
- Six electrode plate groups 4 are housed one by one in each cell chamber 5b, and the ears of a plurality of positive electrode plates 4a are connected by one strap 6 for each electrode plate group 4, and a plurality of negative electrode plates 4b are connected. The ears were connected by another strap 6, and the straps 6 having different polarities of the adjacent electrode plate groups 4 were connected to each other through the connecting plate 7 through the intermediate partition plate 5 a.
- the lid 8 having a liquid port covers the opening of the battery case 5, injects an electrolytic solution (dilute sulfuric acid) from the liquid port, closes the liquid port with the liquid port plug 9, and performs the first charge, thereby leading to lead of 12V55Ah.
- a storage battery (Battery A) was produced.
- a battery H was manufactured under the same conditions and configuration as the battery D except that the covering layer 2b was also provided on the lower frame bone 3. Further, in the configuration of the battery D, a battery I was produced under the same conditions and configuration as the battery D except that the coating layer 2b was not provided at all.
- the battery was kept at 75 ° C. ⁇ 3 ° C., continuously discharged for 5 seconds at the rated cold cranking current, and the voltage at the 5th second was recorded. After confirming the initial values, the battery was kept at 75 ° C. ⁇ 3 ° C., the discharge current was 25.0 A ⁇ 0.1 A (discharge time 120 seconds ⁇ 1 second), the charging voltage 14.80 V ⁇ 0.03 V, the limit Charging / discharging is repeated under the condition of current 25.0A ⁇ 0.1A (charging time 600 seconds ⁇ 1 second), and the 5th second of the rated cold cranking current in the same manner as the initial value is measured every 480 cycles. The voltage was recorded.
- batteries B to G (particularly batteries C to G) having a ratio Wu / W of 62.5% or more did not show a sudden decrease in discharge capacity like battery A.
- the battery G in which the ratio Wu / W exceeds 67% showed remarkable variations in initial characteristics. If the variation in the initial characteristics is significant, it is not preferable because a stable lead storage battery cannot be supplied to the customer.
- the ratio Wu / W is 62.5% or more as in batteries B to F. It can be seen that it should be 67% or less (preferably 64% or more and 66% or less as in batteries C to E).
- the mass proportion of Sn in the coating layer 2b is less than 0.2%, the mechanical strength of the grid of the positive electrode plate 4a is slightly reduced, and when it exceeds 10.0%, the life characteristics are slightly inferior. From the above, it can be seen that the mass ratio of Sn in the coating layer 2b is preferably 0.2% or more and 10.0% or less, and more preferably 3.0% or more and 7.0% or less.
- the mass proportion of Sb in the coating layer 2b is less than 0.2%, the life characteristics are slightly inferior, and when it exceeds 10.0%, the amount of decrease in the electrolyte is slightly increased. From the above, it can be seen that the mass proportion of Sb in the coating layer 2b is preferably 0.2% or more and 10.0% or less, and more preferably 3.0% or more and 7.0% or less.
- FIG. 5 is an overview diagram schematically showing the configuration of the lead storage battery 101 in one embodiment of the present invention.
- an electrode plate group 105 in which a plurality of positive electrode plates 102 and negative electrode plates 103 are stacked via a separator 104 is accommodated in a cell chamber 106 together with an electrolytic solution.
- the positive electrode plate 102 includes a positive electrode lattice and a positive electrode active material filled in the positive electrode lattice
- the negative electrode plate 103 includes a negative electrode lattice and a negative electrode active material filled in the negative electrode lattice.
- the positive electrode lattice in the present embodiment is made of lead or a lead alloy containing no antimony (Sb), for example, a Pb—Ca alloy, a Pb—Sn alloy, or a Pb—Sn—Ca alloy.
- the plurality of positive electrode plates 102 are connected in parallel with each other by the positive electrode straps 107 at the ears 109 of the positive electrode grid, and the plurality of negative electrode plates 103 are connected in parallel with each other by the negative electrode straps 108 at the ear parts 110 of the negative electrode lattice.
- the plurality of electrode plate groups 105 accommodated in each cell chamber 106 are connected in series by a connecting body 111.
- Polar columns (not shown) are welded to the positive strap 107 and the negative strap 108 in the cell chambers 106 at both ends, respectively, and the respective polar columns are respectively connected to the positive terminal 112 and the negative terminal 113 disposed on the lid 114. Each is welded.
- the negative electrode lattice is configured by forming a surface layer (not shown) made of a lead alloy containing antimony on the surface of the negative electrode lattice main body portion made of lead or lead alloy containing no antimony (Sb). Yes.
- the lead alloy containing antimony has an effect of lowering the hydrogen overvoltage, whereby the charge acceptability of the lead storage battery 101 can be improved.
- the surface layer is preferably made of a Pb—Sb alloy having an antimony content of 1.0% by mass or more and 5.0% by mass or less.
- the negative electrode lattice main body is made of, for example, a Pb—Ca alloy, a Pb—Sn alloy, or a Pb—Sn—Ca alloy.
- the mass ratio of the upper half to the lower half of the positive electrode lattice is 1.55 or more and 2.0 or less.
- the output characteristic for restarting after idling stop becomes a sufficient value in a state where charging is not sufficient (SOC is low).
- the mass ratio is set to 2.0 or less, it is possible to prevent a decrease in yield due to bone breakage during manufacturing, particularly in the case of the expanding method.
- the “upper half” and “lower half” of the positive electrode grid are defined based on “the entire region including the frame bone excluding the ear portion 109”.
- the negative electrode plate 103 is preferably disposed on both sides of the electrode plate group 105, and the negative electrode plate 103 is accommodated in a bag-like separator 104.
- the electrolyte solution can also enter the negative electrode plates 103 arranged on both sides of the electrode plate group 105, so that the charge acceptability of the lead storage battery 101 is further improved, and the idling stop used in the “choy ride” mode. Even when applied to a vehicle, the operation of the fail-safe mechanism can be more effectively suppressed.
- the electrolytic solution preferably contains sodium ions in the range of 0.03 mol / L or more and 0.28 mol / L or less.
- the sodium ions in the electrolyte have the effect of improving the charge recovery after over-discharge, which allows the lead-acid battery recovered after over-discharge to be used again in the “choy ride” mode and repeatedly charged and discharged.
- the operation of the fail-safe mechanism can be suppressed.
- the lead acid battery 101 produced in the present example is a liquid lead acid battery having a D23L type size defined in JIS D5301.
- Each cell chamber 106 accommodates seven positive electrode plates 102 and eight negative electrode plates 103, and the negative electrode plate 103 is accommodated in a bag-like polyethylene separator 104.
- the positive electrode plate 102 was prepared by kneading lead oxide powder with sulfuric acid and purified water to prepare a paste, and filling this into an expanded lattice made of a calcium-based lead alloy composition.
- the expanded lattice was produced by a reciprocating method in which a sheet made of a calcium-based lead alloy composition was expanded and expanded while being cut at predetermined intervals. Here, by expanding the cut interval from the upper half close to the ear 109 to the lower half, an expanded lattice having a large mass ratio of the upper half to the lower half can be obtained.
- the mass ratio of the upper half to the lower half of the expanded lattice can be set to an arbitrary value by adjusting the degree of change in the notch interval.
- the negative electrode plate 103 is prepared by adding an organic additive or the like to lead oxide powder, kneading with sulfuric acid and purified water to create a paste, which is an expanded lattice (a negative electrode lattice main body composed of a calcium-based lead alloy) Part). As will be described later, there is also an example in which a surface layer is provided on the surface of the negative electrode lattice main body.
- the negative electrode plate 103 is accommodated in a polyethylene bag-like separator 104 and is alternately stacked with the positive electrode plates 102 to form seven positive electrode plates 102 and eight negative electrode plates.
- An electrode plate group 105 in which 103 and 103 were laminated via a separator 104 was produced.
- the electrode plate group 105 was accommodated in each of the cell chambers 106 divided into six, and the lead storage battery 101 in which the six cells were directly connected was produced.
- An electrolytic solution made of dilute sulfuric acid having a density of 1.28 g / cm 3 was placed in the lead storage battery 101, and a battery case was formed to obtain a 12V48Ah lead storage battery 101.
- SOC state of charge
- the charge recovery property when repeated was evaluated by the following method.
- (A) Discharge to 10.5 V with a 5-hour rate current (discharge current 9.8 A).
- (B) Then, after applying a load corresponding to 10 W and discharging at a temperature of 40 ° C. ⁇ 2 ° C. for 14 days, it is left in an open circuit state for 14 days.
- (D) After that, it is left in the atmosphere at ⁇ 15 ° C. ⁇ 1 ° C. for 16 hours or more, and then discharged to 6.0 V at 300 A.
- Example 1 A surface layer made of a lead alloy containing antimony is formed on the surface of the negative electrode lattice, and the mass ratio of the upper half with respect to the lower half of the positive electrode lattice is changed to make this ratio in the range of 1.5 to 2.2. Batteries 1 to 7 were produced, and the “choy ride” mode characteristics of each battery, the output characteristics in a low SOC state, and the yield of the positive electrode plate 102 were evaluated.
- the negative electrode plate was disposed on both sides of the electrode plate group and housed in a bag-shaped separator.
- the negative electrode lattice main body portion is composed of an expanded lattice of Pb-1.2Sn-0.1Ca, and the surface layer is composed of a Pb-3 mass% Sb foil.
- the positive electrode lattice is an expanded lattice of Pb-1.6Sn-0.1Ca, and no surface layer is provided. Then, 0.11 mol / L sodium sulfate (Na 2 SO 4 ) was added to the electrolytic solution.
- Table 2 is a table showing the evaluation results of each characteristic.
- a battery 8 in which a surface layer was not provided on the surface of the negative electrode lattice and a battery 9 in which a positive electrode plate instead of the negative electrode plate was accommodated in a bag-like separator were prepared.
- the SOC indicating the “choy ride” mode characteristic is 70% or more and low. It can be seen that the output characteristics in the SOC state are high and the yield of the positive electrode plate 2 is also good. Lead-acid batteries that satisfy these values can suppress the operation of the fail-safe mechanism even when the idling stop vehicle is used in the “choy ride” mode, and the idling stop battery is in a state where the lead-acid battery is in a low SOC state. Even so, a sufficient output can be obtained, so that it can be restarted smoothly. Furthermore, the batteries 2 to 6 can be produced with a high yield.
- both the output characteristics in the low SOC state and the yield of the positive electrode plate 2 can be achieved at a high level.
- the battery 1 having an upper half mass ratio of 1.5 to the lower half of the positive grid has insufficient output characteristics in a low SOC state. This is presumably because in the low SOC state, the output characteristics deteriorate due to the fact that the current path to the ear 9 is not optimized (the conductive path around the ear 9 where current is concentrated is not thick).
- the SOC showing the “choy ride” mode characteristic is very low as 57%. This is presumably because the lead alloy foil containing Sb was not provided on the surface of the negative electrode lattice, so that the hydrogen overvoltage was not lowered and the charge acceptance was low.
- the SOC showing the “choy ride” mode characteristic was as low as 56%. This is because the negative electrode plates arranged on both sides of the electrode plate group are not accommodated in the bag-shaped separator, so the negative electrode plate is pressed against the inner wall of the cell chamber, and as a result, the electrolyte solution to the negative electrode plate on the cell chamber side This is thought to be due to a decrease in charge acceptance due to insufficient wraparound.
- a surface layer made of a lead alloy containing antimony is formed on the surface of the negative electrode lattice containing no antimony, and negative electrode plates contained in a bag-like separator are arranged on both sides of the electrode plate group. Furthermore, the operation of the fail-safe mechanism is suppressed by setting the mass ratio of the upper half to the lower half of the positive electrode grid in the range of 1.55 to 2.0, more preferably in the range of 1.6 to 1.8.
- the lead storage battery suitable for the idling stop vehicle used in the “choi riding” mode including the restartability can be provided at a high yield.
- Example 2 In order to evaluate the charge recovery after overdischarge, the batteries 10 to 13 in which the Na ion content was changed to a range of 0.01 to 0.45 mol / L with respect to the battery 4 produced in Example 1 were used. Each battery was evaluated for the “choy ride” mode characteristics of each battery and the charge recovery after overdischarge.
- the negative electrode plate was disposed on both sides of the electrode plate group and housed in a bag-shaped separator.
- the negative electrode lattice main body portion is an expanded lattice of Pb-1.2Sn-0.1Ca, and the surface layer is formed of a Pb-3 mass% Sb foil.
- the positive electrode lattice is made of an expanded lattice of Pb-1.6Sn-0.1Ca, has no surface layer, and the mass ratio of the upper half to the lower half of the positive electrode lattice is 1.7.
- the SOC showing the “choy ride” mode characteristic is 74%.
- the duration of the overdischarge recovery is 3.0 minutes or more, both of which are excellent and have a suitable performance when using the idling stop vehicle in the “choy ride” mode.
- the SOC showing the “choy ride” mode characteristic is slightly low, 70%. This is thought to be because sodium ions in the electrolytic solution inhibit the charging reaction.
- the duration time indicating the recoverability of overdischarge is slightly shortened to 2.5 minutes. This is thought to be due to a slight decrease in recoverability after overdischarge.
- the lead storage battery of the present invention is a long-life type lead storage battery that is highly productive and allows the user to accurately know the replacement time, and is extremely useful in industry.
- the present invention is useful for a lead storage battery used in an idling stop vehicle.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Cell Electrode Carriers And Collectors (AREA)
- Secondary Cells (AREA)
- Cell Separators (AREA)
Abstract
Description
鉛蓄電池の電極に用いる鉛蓄電池用格子の製造方法は、従来の鋳造工法から、単位時間当たりの生産量が高いエキスパンド工法に遷移しつつある。エキスパンド工法には主として、レシプロ工法とロータリー工法の2種類がある。レシプロ工法は、Pbあるいは種々のPb合金からなるシートに対して、シートの長手方向に沿って刃を押し当てて切り目を入れつつ、シートを押し下げて網目部を形成する工法である。ロータリー工法は、Pbあるいは種々のPb合金からなるシートに対して、シートの長手方向に沿って千鳥上に切り目を加えた後で、シートを幅方向に引き広げて網目部を形成する工法である。
アイドリングストップ車は、停車中にエンジンを停止することで燃費を向上させることができる。しかしながら、鉛蓄電池は、アイドリングストップ中に、エアコンやファンなどの全ての電力を供給するため、鉛蓄電池は充電不足になりやすい。そのため、鉛蓄電池は、充電不足を解消するために、短時間でより多くの充電ができる、高い充電受入性が要求される。また、アイドリングストップ車は、頻繁にエンジンのオン・オフを繰り返すため、放電によって生成された硫酸鉛を、充電によって二酸化鉛と鉛とに回復する間もなく、次の放電が行われるため、鉛蓄電池の寿命が低下しやすくなる。そのため、鉛蓄電池は、寿命の低下を解消するために、高い耐久性も併せ要求される。
近年、鉛蓄電池の格子以外の構成部品の改良により、鉛蓄電池の特性(特に寿命特性)は飛躍的に向上している。そうすると充放電の繰り返しによって寿命末期に正極板の格子(具体的には網目部を形成する格子骨)が伸びて正極板自体を変形させて、正極板が負極板の集電部(耳)もしくは負極性のストラップに接触することで、内部短絡が生じるようになる。使用者(例えば自動車の運転者・保有者)がこの現象が生じる前に鉛蓄電池を交換しようとしても、この現象が生じることを予測することは極めて困難なため、使用者は鉛蓄電池の交換時期を察知できない。
アイドリングストップ車に使用される鉛蓄電池は、充電不足になりやすい。そのため、鉛蓄電池の過放電を防止する目的で、アイドリングストップ車には、充電状態(SOC)が所定値(例えば60%)以下になると鉛蓄電池を放電させないフェールセーフ機構が設けられている場合がある。
前述した課題を解決するために、本発明の鉛蓄電池用格子は、鉛蓄電池の電極に用いられる鉛蓄電池用格子であって、Sn及びCaのうち少なくとも一方を含むPb合金からなり、上辺を構成する上枠骨と、下辺を構成する下枠骨と、前記上枠骨と前記下枠骨との間に存し格子骨が交差した網目部とを備え、前記網目部においては、全体の質量Wに対する上側半分の質量Wuの割合Wu/Wが62.5%以上67%以下であり、かつ前記格子骨よりもSnの含有量が大きい被覆層が前記格子骨の表面の少なくとも一部に設けられており、前記下枠骨の表面には、前記被覆層が設けられていない構成を有している。
本発明に係る鉛蓄電池は、複数の正極板及び負極板がセパレータを介して積層された極板群が、電解液と共にセル室に収容された鉛蓄電池であって、正極板は、アンチモンを含有しない鉛または鉛合金からなる正極格子と、正極格子に充填された正極活物質とを備え、負極板は、負極格子と、負極格子に充填された負極活物質とを備え、負極格子は、アンチモンを含有しない鉛または鉛合金からなる負極格子本体部と、該負極格子本体部の表面に形成されたアンチモンを含有する鉛合金からなる表面層とを有しており、正極格子の下半分に対する上半分の質量比が1.55以上2.0以下であることを特徴とする。
本発明を用いれば、生産性が高い上に、使用者が交換時期を的確に察知できる長寿命タイプの鉛蓄電池を構成できる鉛蓄電池用格子を提供することができる。
本発明によれば、「チョイ乗り」モードで使用するアイドリングストップ車に適用しうる、十分な充電受入性と出力特性とを併せ持った鉛蓄電池を提供することができる。
以下、本発明の実施の形態を、図を用いて説明する。
図1は鉛蓄電池用格子を示す図である。鉛蓄電池用格子は略四辺形であって、上辺の枠部分を構成する上枠骨1と、下辺の枠部分を構成する下枠骨3と、上枠骨1と下枠骨3との間に存し格子骨2aが交差して構成されている網目部2とを備える。これら上枠骨1と網目部2と下枠骨3とは、SnとCaの少なくとも一方を含むPb合金からなる。
Snが1.3質量%、Caが0.06質量%、残部がPbからなるシート10の一面に、Snが5質量%、Sbが5質量%、残部がPbからなる箔11(加工後は被覆層2bとなる)を貼り付けた。このとき、加工後に下枠骨3となる箇所には箔11を貼り付けなかった。
電池Aの構成において、網目部2の上側半分から下側半分に掛けて切り目12の間隔を調整することで、Wu/Wを(表1)のように変化させたこと以外は、電池Aと同様の条件・構成として、電池B、C、D、E、FおよびGを作製した。
電池Dの構成において、下枠骨3にも被覆層2bを設けたこと以外は、電池Dと同様の条件・構成とし、電池Hを作製した。また電池Dの構成において、被覆層2bを全く設けなかったこと以外は、電池Dと同様の条件・構成として、電池Iを作製した。
電池Dの構成において、被覆層2bに占めるSnの質量割合を(表1)のように変化させたこと以外は、電池Dと同様の条件とし、電池J、K、L、M、N、OおよびPを作製した。
電池Dの構成において、被覆層2bに占めるSbの質量割合を(表1)のように変化させたこと以外は、電池Dと同様の条件とし、電池Q、R、S、T、U、VおよびWを作製した。
電池を75℃±3℃に保ち、定格コールドクランキング電流で5秒間連続放電を行い、5秒目の電圧を記録した。この初期値を確認した後に、電池を75℃±3℃に保ったままで、放電電流25.0A±0.1A(放電時間120秒±1秒)、充電電圧14.80V±0.03V、制限電流25.0A±0.1A(充電時間600秒±1秒)という条件で充放電を繰り返し、480サイクルごとに、初期値を測定したのと同様の要領で定格コールドクランキング電流の5秒目の電圧を記録した。この5秒目の電圧が7.2V以下となり、再び上昇しないことを確認したとき、寿命に到達したものとみなし、試験を終えた。寿命到達サイクルの1回前(480サイクル前)の5秒目の電圧から寿命到達サイクルの5秒目の電圧を減じた値の度合を、電池Aを100として指数に換算した。この指数を、寿命到達サイクル数とともにそれぞれ(表1)に記した。
電池A~Wそれぞれ30個を用意し、上述した寿命試験と同じ条件で定格コールドクランキング電流の5秒目の電圧を確認した。30個の電池の5秒目の電圧値を統計処理し、標準偏差σを求めて(表1)に記した。
シート10から連続体14を作製した後、正極活物質ペーストを連続的に充填する前の状態でこの連続体を各々10m切り出し、網目部2を目視確認した。格子骨2aの総数(交点間を1本として)に対する、切れなどの破損が生じていた格子骨2aの割合を、格子の機械的強度の尺度として(表1)に記した。
上述した寿命特性の際には、480サイクルごとに各々の電池の重量を測定し、初期値に対する減少量を電解液の減少量とみなした。内部短絡による急激な電解液の減少の影響を排除するため、各々の電池の寿命到達サイクルの1回前(480サイクル前)における電解液の減少量をサイクル数(寿命到達サイクル-480)で除した値を、電解液の減少量の尺度として(表1)に記した。
以下、本発明の実施形態を図面に基づいて詳細に説明する。なお、本発明は、以下の実施形態に限定されるものではない。また、本発明の効果を奏する範囲を逸脱しない範囲で、適宜変更は可能である。さらに、他の実施形態との組み合わせも可能である。
本実施例で作製した鉛蓄電池101は、JISD5301に規定するD23Lタイプの大きさの液式鉛蓄電池である。各セル室106には、7枚の正極板102と8枚の負極板103とが収容され、負極板103は、袋状のポリエチレン製のセパレータ104に収容されている。
(2-1)「チョイ乗り」モードの特性評価
作製した鉛蓄電池101に対して、「チョイ乗り」モードを想定した充放電を繰り返して、鉛蓄電池の「チョイ乗り」モードの特性評価を行った。なお、環境温度は、25℃±2℃で行った。
(A)9.6Aにて2.5時間放電し24時間放置する。
(B)放電電流20Aで、40秒間放電する。
(C)14.2Vの充電電圧(制限電流50A)で、60秒間充電する。
(D)(B)、(C)の充放電を18回繰り返した後、放電電流20mAで、83.5時間放電する。
(E)(B)~(D)の充放電を1サイクルとして、20サイクル繰り返す。
作製した鉛蓄電池101に対して、過放電後に回復した鉛蓄電池101が、再び「チョイ乗り」モードで使用される場合を想定して、充放電を繰り返したときの充電回復性を、以下の方法で評価した。
(A)5時間率電流(放電電流9.8A)で、10.5Vまで放電する。
(B)その後、10W相当の負荷を付けて、40℃±2℃の温度下で、14日間放電した後、開路状態で14日間放置する。
(C)その後、25℃±3℃の温度下で、15.0Vの充電電圧(制限電流25A)で、4時間充電する。
(D)その後、-15 ℃±1 ℃の大気中に16時間以上放置した後、300Aで、6.0 Vまで放電する。
作製した鉛蓄電池101に対して、「チョイ乗り」を繰り返すことで充電が十分でなくSOCが低い状態になった鉛蓄電池1を、アイドリングストップ後に過酷な環境(低温下)で再始動する場合を想定して、以下の試験を行った。
(A)25℃±1℃の環境下で、JIS D5301「9.4.2 充電」の「a)定電流充電法」に定めた方法で満充電した後、5時間率電流(9.6A)で0.5時間放電し、SOCを90%に調整する。
(B)-15 ℃±1 ℃の環境下に16時間放置した後、300Aで6.0 Vまで放電する。
前述したレシプロ工法によるエキスパンド格子にペーストを充填して正極板102を作製した後、目視検査にて製造時の骨切れ(略菱形の格子を構成する格子骨が切れるか、切れる直前の極端な変形を示す不良)の有無を確認した。作製した正極板2の総数に対する不良品の数の比(不良率)を、骨切れの起こりやすさとして評価した。
負極格子の表面に、アンチモンを含有する鉛合金からなる表面層を形成するとともに、正極格子の下半分に対する上半分の質量比を変化させて、この比を1.5~2.2の範囲に変えた電池1~7を作製し、各電池の「チョイ乗り」モードの特性、低SOC状態での出力特性、及び正極板102の歩留を評価した。なお、負極板は、極板群の両側に配置し、かつ、袋状のセパレータに収容した。
過放電後の充電回復性を評価するために、実施例1で作製した電池4に対して、Naイオンの含有量を0.01~0.45mol/Lの範囲に変えた電池10~13を作製し、各電池の「チョイ乗り」モードの特性、及び過放電後の充電回復性を評価した。なお、負極板は、極板群の両側に配置し、かつ、袋状のセパレータに収容した。
本発明の鉛蓄電池は、生産性が高い上に、使用者が交換時期を的確に察知できる長寿命タイプの鉛蓄電池であり、工業上、極めて有用である。
本発明は、アイドリングストップ車に使用される鉛蓄電池に有用である。
2 網目部
2a 格子骨
2b 被覆層
3 下枠骨
4 極板群
4a 正極板
4b 負極板
4c セパレータ
5 電槽
5a 中仕切板
5b セル室
6 ストラップ
7 接続部品
8 蓋
9 液口栓
10 シート
11 箔
12 切り目
13 無地部
14 連続体
15 活物質ペースト
101 鉛蓄電池
102 正極板
103 負極板
104 セパレータ
105 極板群
106 セル室
107 正極ストラップ
108 負極ストラップ
109 耳部
110 耳部
111 接続体
112 正極端子
113 負極端子
114 蓋
Claims (10)
- 鉛蓄電池の電極に用いられる鉛蓄電池用格子であって、
Sn及びCaのうち少なくとも一方を含むPb合金からなり、
上辺を構成する上枠骨と、下辺を構成する下枠骨と、前記上枠骨と前記下枠骨との間に存し格子骨が交差した網目部とを備え、
前記網目部においては、全体の質量Wに対する上側半分の質量Wuの割合Wu/Wが62.5%以上67%以下であり、かつ前記格子骨よりもSnの含有量が大きい被覆層が前記格子骨の表面の少なくとも一部に設けられており、
前記下枠骨の表面には、前記被覆層が設けられていないことを特徴とする、鉛蓄電池用格子。 - 前記被覆層に占めるSnの質量割合が0.2%以上10.0%以下である、請求項1に記載の鉛蓄電池用格子。
- 前記被覆層に占めるSnの質量割合が3.0%以上7.0%以下である、請求項2に記載の鉛蓄電池用格子。
- 前記被覆層がSbをさらに含み、その質量割合が0.2%以上10.0%以下である、請求項1に記載の鉛蓄電池用格子。
- 前記被覆層に占めるSbの質量割合が3.0%以上7.0%以下である、請求項4に記載の鉛蓄電池用格子。
- エキスパンド工法により作製された、請求項1に記載の鉛蓄電池用格子。
- 請求項1から6のいずれか1項に示す鉛蓄電池用格子を正極板の格子として用いた鉛蓄電池。
- 複数の正極板及び負極板がセパレータを介して積層された極板群が、電解液と共にセル室に収容された鉛蓄電池であって、
前記正極板は、アンチモンを含有しない鉛または鉛合金からなる正極格子と、該正極格子に充填された正極活物質とを備え、
前記負極板は、負極格子と、前記負極格子に充填された負極活物質とを備え、
前記負極格子は、アンチモンを含有しない鉛または鉛合金からなる負極格子本体部と、該負極格子本体部の表面に形成されたアンチモンを含有する鉛合金からなる表面層とを有しており、
前記正極格子の下半分に対する上半分の質量比が1.55以上2.0以下である鉛蓄電池。 - 前記電解液は、0.03mol/L以上0.28mol/L以下の範囲のナトリウムイオンを含有している、請求項8に記載の鉛蓄電池。
- 前記極板群の両側には、袋状の前記セパレータに収容された負極板が配置されている、請求項8に記載の鉛蓄電池。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014550892A JP5935069B2 (ja) | 2012-12-03 | 2013-10-08 | 鉛蓄電池用格子および鉛蓄電池 |
US14/414,847 US20150180040A1 (en) | 2012-12-03 | 2013-10-08 | Lead-acid storage battery grid and lead-acid storage battery |
DE112013005769.7T DE112013005769T5 (de) | 2012-12-03 | 2013-10-08 | Blei-Säure-Speicherbatteriegitter und Blei-Säure-Speicherbatterie |
CN201380042486.9A CN104541394B (zh) | 2012-12-03 | 2013-10-08 | 铅蓄电池用板栅和铅蓄电池 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012264043 | 2012-12-03 | ||
JP2012-264043 | 2012-12-03 | ||
JP2013079228 | 2013-04-05 | ||
JP2013-079228 | 2013-04-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014087565A1 true WO2014087565A1 (ja) | 2014-06-12 |
Family
ID=50883007
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/005976 WO2014087565A1 (ja) | 2012-12-03 | 2013-10-08 | 鉛蓄電池用格子および鉛蓄電池 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20150180040A1 (ja) |
JP (2) | JP5935069B2 (ja) |
CN (1) | CN104541394B (ja) |
DE (1) | DE112013005769T5 (ja) |
WO (1) | WO2014087565A1 (ja) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11075388B1 (en) * | 2017-11-10 | 2021-07-27 | Greatbatch Ltd. | Foil-type current collector having an unperforated strip at the connector tab |
US10868431B2 (en) * | 2018-01-16 | 2020-12-15 | Cisco Technology, Inc. | Battery charging cut-off circuit |
EP3792990B1 (en) * | 2018-05-11 | 2022-06-01 | Showa Denko Materials Co., Ltd. | Battery pack |
JP6916233B2 (ja) * | 2019-03-18 | 2021-08-11 | 本田技研工業株式会社 | 車両制御装置 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0337962A (ja) * | 1989-06-30 | 1991-02-19 | Matsushita Electric Ind Co Ltd | 鉛蓄電池 |
JPH04155761A (ja) * | 1990-10-18 | 1992-05-28 | Matsushita Electric Ind Co Ltd | 鉛蓄電池の製造方法 |
JP2005149788A (ja) * | 2003-11-12 | 2005-06-09 | Shin Kobe Electric Mach Co Ltd | 鉛蓄電池用集電体 |
JP2007123105A (ja) * | 2005-10-28 | 2007-05-17 | Gs Yuasa Corporation:Kk | 鉛蓄電池の格子体 |
JP2010113933A (ja) * | 2008-11-06 | 2010-05-20 | Panasonic Corp | ペースト式鉛蓄電池 |
WO2012153464A1 (ja) * | 2011-05-12 | 2012-11-15 | パナソニック株式会社 | 鉛蓄電池用負極および鉛蓄電池 |
WO2012157311A1 (ja) * | 2011-05-13 | 2012-11-22 | 新神戸電機株式会社 | 鉛蓄電池 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0864226A (ja) * | 1994-08-18 | 1996-03-08 | Shin Kobe Electric Mach Co Ltd | 鉛蓄電池 |
JP2001243958A (ja) * | 2000-02-28 | 2001-09-07 | Matsushita Electric Ind Co Ltd | 鉛蓄電池 |
JP5061451B2 (ja) * | 2004-11-08 | 2012-10-31 | 株式会社Gsユアサ | 鉛蓄電池用負極集電体 |
JP4868847B2 (ja) * | 2005-12-23 | 2012-02-01 | 古河電池株式会社 | 鉛蓄電池 |
JP5477288B2 (ja) * | 2008-05-20 | 2014-04-23 | 株式会社Gsユアサ | 鉛蓄電池及びその製造方法 |
-
2013
- 2013-10-08 CN CN201380042486.9A patent/CN104541394B/zh active Active
- 2013-10-08 US US14/414,847 patent/US20150180040A1/en not_active Abandoned
- 2013-10-08 WO PCT/JP2013/005976 patent/WO2014087565A1/ja active Application Filing
- 2013-10-08 JP JP2014550892A patent/JP5935069B2/ja active Active
- 2013-10-08 DE DE112013005769.7T patent/DE112013005769T5/de active Pending
-
2015
- 2015-10-16 JP JP2015204480A patent/JP2016042473A/ja active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0337962A (ja) * | 1989-06-30 | 1991-02-19 | Matsushita Electric Ind Co Ltd | 鉛蓄電池 |
JPH04155761A (ja) * | 1990-10-18 | 1992-05-28 | Matsushita Electric Ind Co Ltd | 鉛蓄電池の製造方法 |
JP2005149788A (ja) * | 2003-11-12 | 2005-06-09 | Shin Kobe Electric Mach Co Ltd | 鉛蓄電池用集電体 |
JP2007123105A (ja) * | 2005-10-28 | 2007-05-17 | Gs Yuasa Corporation:Kk | 鉛蓄電池の格子体 |
JP2010113933A (ja) * | 2008-11-06 | 2010-05-20 | Panasonic Corp | ペースト式鉛蓄電池 |
WO2012153464A1 (ja) * | 2011-05-12 | 2012-11-15 | パナソニック株式会社 | 鉛蓄電池用負極および鉛蓄電池 |
WO2012157311A1 (ja) * | 2011-05-13 | 2012-11-22 | 新神戸電機株式会社 | 鉛蓄電池 |
Also Published As
Publication number | Publication date |
---|---|
CN104541394A (zh) | 2015-04-22 |
US20150180040A1 (en) | 2015-06-25 |
CN104541394B (zh) | 2017-06-13 |
DE112013005769T5 (de) | 2015-10-15 |
JP2016042473A (ja) | 2016-03-31 |
JPWO2014087565A1 (ja) | 2017-01-05 |
JP5935069B2 (ja) | 2016-06-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5596241B1 (ja) | 鉛蓄電池 | |
EP2330676B1 (en) | Lead acid storage battery | |
JP5079324B2 (ja) | 鉛蓄電池 | |
JP5477288B2 (ja) | 鉛蓄電池及びその製造方法 | |
WO2014162674A1 (ja) | 鉛蓄電池 | |
JP5016306B2 (ja) | 鉛蓄電池 | |
CN103109412B (zh) | 铅蓄电池及搭载有该铅蓄电池的怠速停止车辆 | |
JP6045329B2 (ja) | 鉛蓄電池 | |
JP5935069B2 (ja) | 鉛蓄電池用格子および鉛蓄電池 | |
WO2019088040A1 (ja) | 鉛蓄電池用セパレータおよび鉛蓄電池 | |
JP2008130516A (ja) | 液式鉛蓄電池 | |
WO2012153464A1 (ja) | 鉛蓄電池用負極および鉛蓄電池 | |
JP6388094B1 (ja) | 鉛蓄電池 | |
JP2006185678A (ja) | 鉛蓄電池 | |
WO2014097516A1 (ja) | 鉛蓄電池 | |
JP5573785B2 (ja) | 鉛蓄電池 | |
JP6197426B2 (ja) | 鉛蓄電池 | |
JP6921037B2 (ja) | 鉛蓄電池 | |
JP4686808B2 (ja) | 鉛蓄電池 | |
JP4904686B2 (ja) | 鉛蓄電池 | |
JP2006114416A (ja) | 鉛蓄電池 | |
JP5504383B1 (ja) | 鉛蓄電池 | |
JP5754607B2 (ja) | 鉛蓄電池 | |
JP2018170303A (ja) | 鉛蓄電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13860403 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014550892 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14414847 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 112013005769 Country of ref document: DE Ref document number: 1120130057697 Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13860403 Country of ref document: EP Kind code of ref document: A1 |