WO2012155375A1 - 双组分显影剂 - Google Patents

双组分显影剂 Download PDF

Info

Publication number
WO2012155375A1
WO2012155375A1 PCT/CN2011/075651 CN2011075651W WO2012155375A1 WO 2012155375 A1 WO2012155375 A1 WO 2012155375A1 CN 2011075651 W CN2011075651 W CN 2011075651W WO 2012155375 A1 WO2012155375 A1 WO 2012155375A1
Authority
WO
WIPO (PCT)
Prior art keywords
toner
particles
carrier
polymer particles
particle diameter
Prior art date
Application number
PCT/CN2011/075651
Other languages
English (en)
French (fr)
Inventor
朱顺全
王玉宾
Original Assignee
湖北鼎龙化学股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖北鼎龙化学股份有限公司 filed Critical 湖北鼎龙化学股份有限公司
Priority to EP11817192.5A priority Critical patent/EP2669740A4/en
Priority to US13/178,496 priority patent/US8822119B2/en
Publication of WO2012155375A1 publication Critical patent/WO2012155375A1/zh

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/097Plasticisers; Charge controlling agents
    • G03G9/09708Inorganic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/0827Developers with toner particles characterised by their shape, e.g. degree of sphericity
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/097Plasticisers; Charge controlling agents
    • G03G9/09708Inorganic compounds
    • G03G9/09716Inorganic compounds treated with organic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/097Plasticisers; Charge controlling agents
    • G03G9/09708Inorganic compounds
    • G03G9/09725Silicon-oxides; Silicates
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/10Developers with toner particles characterised by carrier particles
    • G03G9/107Developers with toner particles characterised by carrier particles having magnetic components
    • G03G9/1075Structural characteristics of the carrier particles, e.g. shape or crystallographic structure
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/10Developers with toner particles characterised by carrier particles
    • G03G9/113Developers with toner particles characterised by carrier particles having coatings applied thereto
    • G03G9/1132Macromolecular components of coatings
    • G03G9/1135Macromolecular components of coatings obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • G03G9/1136Macromolecular components of coatings obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon atoms

Definitions

  • the present invention relates to a two-component developer used in electrophotographic copying machines and printers. Specifically, it relates to a two-component developer having high performance in HD and durability.
  • toner In the field of xerographic printing, toner has been conventionally mixed with a carrier and used as a two-component developer.
  • This two-component developer which charges the toner due to the use of the carrier, is a product for developing charged toner, and a method of attaching a charging property to the toner is now widely used.
  • the carrier is triboelectrically charged with the toner, and the necessary charge is given to the toner. That is, the surface of the carrier is designed to have the ability to generate a charge having an opposite polarity to the toner.
  • the carrier is centered on a magnetic material, and the magnetic material itself can be used alone as a carrier, and a resin surface coating layer can be applied thereto in order to impart a chargeability or the like to the magnetic material. When the former magnetic material is used alone as a carrier, the carrier can be easily adjusted. However, since the surface is composed of a magnetic material, the hardness is higher than that of the toner composed of the resin, and the surface of the carrier is attached. In the case of a toner, problems such as a decrease in chargeability may occur.
  • the silicone resin is a silicone-containing resin having a low critical surface tension and a toner component which is not easily attached. Further, since the crosslinked structure is easily formed, the surface hardness becomes high and it is not easily worn, which is a remarkable feature.
  • the emulsion polymerization method toner described in JP-A-63-186253 is mainly a method of preparing a toner by agglomerating and melting spheroidizing resin particles and colorant particles in an aqueous medium.
  • This toner is due to the particle table It is uniform in appearance and uniform in chargeability, so it is widely welcomed from the perspective of chargeability.
  • this emulsion polymerization-adjusted toner has a high surface uniformity, and therefore, when combined with the aforementioned silicone-coated carrier to form a two-component developer, the triboelectric performance is poor, and the charge amount is charged. It can't be too high, this is the problem.
  • the pulverization method toner is obtained by melting and kneading a resin and a colorant using a biaxial extruder or the like, followed by pulverization and classification. Since the surface of the toner is composed of a broken cross section, the surface thereof should be in a non-uniform state. If it is in such a non-uniform state, the electric charge formed by friction with the carrier will cause polarization at a non-uniform portion, and it becomes easy to be charged. However, when such a pulverizing toner is used, since there is a characteristic crushing and ultrafine powder held by the pulverized toner, the carrier contamination cannot be suppressed, and the charging effect which is hard to form is not maintained for a long time.
  • the silicone resin is generally composed of a hydroxymethyl silicone resin, the resin itself has a polar structure which makes it difficult to separate. For this reason, when rubbing against a surface having a high uniformity, the polarization effect is small, so that the cause of charging is small, and the result of the frictional electrification process takes a long time.
  • the present invention is a result of research and discussion in order to solve the above problems.
  • the present invention is directed to a disadvantage of a two-component developer which can overcome a toner and a silicone-coated carrier obtained by a polymerization method, maintains high friction electrification characteristics for a long period of time, and can maintain high sharpness for a long period of time.
  • a two-component developer of the image can overcome a toner and a silicone-coated carrier obtained by a polymerization method, maintains high friction electrification characteristics for a long period of time, and can maintain high sharpness for a long period of time.
  • the inventors of the present invention have discovered and studied the above-mentioned problems, and have found a two-component developer which is characterized in that it is composed of at least a toner and a carrier which are agglomerated and fused with a coloring agent.
  • a two-component developer which is characterized in that it is composed of at least a toner and a carrier which are agglomerated and fused with a coloring agent.
  • a hydrophobic silica external additive 0.01 to 1.0 wt.% of a hydrotalcite-based compound external additive are added, and the toner is added.
  • the shape factor is 0.93 to 0.99
  • the carrier is at least a carrier coated with a silicone resin coating on the magnetic particles and having a volume average particle diameter of 20 to 100 ⁇ .
  • the toner is composed of colored particles obtained by fusing polymer particles ( ⁇ ) and polymer particles ( ⁇ ) in an aqueous medium, and the polymer particles ( ⁇ ) contain paraffin, A colorant is contained in the polymer particles ( ⁇ ).
  • the carrier preferably has the following characteristics: a charge control agent is contained in the silicone resin coating on the surface of the magnetic particles, and a silicone resin coating layer containing 1 to 20 wt.% of a charge control agent is preferably applied to the surface of the magnetic particles.
  • a charge control agent is contained in the silicone resin coating on the surface of the magnetic particles
  • a silicone resin coating layer containing 1 to 20 wt.% of a charge control agent is preferably applied to the surface of the magnetic particles. The following is a detailed description.
  • the toner is added by adding 0.2 to 2.0 wt.% of a hydrophobic silica external additive and 0.01 to 1.0 wt.% of a hydrotalcite compound to the colored particles in which the resin particles are agglomerated and fused.
  • the composition of the toner has a shape factor of 0.93 to 0.99.
  • hydrotalcite-like compounds As described later, it is prepared from divalent and trivalent metal ions and has the characteristics of easily maintaining ion properties. This substance exists on the surface of the toner particles in a specific amount, so that the uniformity of the surface of the toner is lowered to some extent, eventually causing an increase in the frictional electrification position, thereby improving the triboelectric charging performance.
  • the shape factor by setting the average value of the shape factor to 0.93 to 0.99 and the non-spherical structure, it is possible to ensure that the surface shape is not uniform and the image quality due to the shape factor is lowered.
  • the shape factor is expressed by the following equation, and represents the arithmetic mean value of the measured shape factor.
  • the arithmetic mean value it is preferable to measure 5000 to 30000 particles in the number of particles.
  • represents the projected area of the toner (toner particles)
  • PM is the circumference of the toner (toner particle) projection surface.
  • the specific data can be measured by the Flow type particle image analyzer FPIA3000 (manufactured by Sysmex Corporation).
  • the hydrotalcite compound can be prepared by mixing a mixed metal salt solution of a divalent and a trivalent with an alkaline solution. This method is a method in which a divalent and trivalent metal ion is coprecipitated and then prepared, which is also called a coprecipitation method.
  • the pH at the time of co-precipitation varies depending on the combination and concentration of metal ions.
  • a solution in which a plurality of aqueous metal salt solutions are mixed is gradually dropped into an alkaline aqueous solution.
  • aqueous metal salt solution is dropped, it is necessary to add an aqueous sodium hydroxide solution or the like to adjust the pH of the system within the above pH range.
  • the aluminum magnesium carbonate compound is used in the metal combination, and is not limited to the two-membered system, and may also contain a tetravalent metal. If it is mixed into a metal salt aqueous solution, it is mixed with various metals of interest.
  • a polybasic or a magnesium aluminum carbonate compound containing a tetravalent metal can also be synthesized.
  • the hydrotalcite compound obtained in the divalent or trivalent metal ion can be represented by the chemical formula shown below.
  • M II represents a divalent metal ion such as Mg 2+ , Fe 2+ , Zn 2+ , Ca 2+ , Ni 2+ , Co 2+ , Cu 2+ ; Mill represents a trivalent metal ion such as Al 3+ , Fe 3+ , Mn A represents a monovalent or divalent anion, specifically OH-, F-, Cl_, Br-, N0 3 _, C0 3 2 _, S0 4 2 _, CH 3 COO—, C 2 0 4 2 —, C10 4 _, and salicylic acid ions.
  • m means a rational number of 10 or less.
  • the particle diameter of these hydrotalcite-based compounds is, by laser light scattering, an average initial particle diameter of 2 ⁇ or less, preferably 10 to 1000 nm.
  • the charging effect applied to the toner may not be exhibited.
  • the particle diameter is small, the adhesion to the toner may be enhanced, and the effect of improving the frictional electrification may not be exhibited.
  • the amount of such a hydrotalcite compound is added as an external additive to the toner, it is preferably used in an amount of 0.01 to 1.0% by weight. If the amount of addition is too small, the effect of triboelectric charging cannot be exerted, and if it is too large, the charging effect is lowered.
  • the toner used in the present invention is at least a substance to which an external additive is added to the colored particles which are agglomerated and thermally adhered to the resin particles.
  • the colored particles of the present invention are composed of colored particles obtained by thermally adhering polymer particles in an aqueous medium, and polymer particles (A) containing a paraffin component and polymer particles containing a colorant component ( B) A better effect can be obtained by heat-adhering to an aqueous medium to obtain colored particles.
  • the adjustment shown below can be performed, and the adjustment is not limited to the colored particles.
  • the formation of the polymer particles (A) containing the paraffin component can be adjusted by a polymerization method using paraffin as a seed emulsion.
  • the paraffin used as the seed emulsion in the present invention may be any one of known paraffin waxes, specifically, Hydrocarbon paraffin such as low molecular weight polyethylene, low molecular weight polypropylene, copolymerized polyethylene, paraffin wax, paraffin wax or microcrystalline wax, behenyl behenate, behenyl montanate An ester, a stearic acid stearyl alcohol ester, an ester paraffin having a long-chain aliphatic group such as pentaerythritol ester, a paraffin wax such as palm wax or beeswax, a higher fatty acid amide such as oleic acid amide or stearic acid amide, and the like.
  • paraffin wax with a melting point lower than ioo °c, preferably at a melting point of 40-90 ° C, and then controlled to a melting point of 60-85 ° C.
  • paraffin wax In order to use paraffin wax as a seed emulsion, the above paraffin wax may be dispersed in an aqueous medium for adjustment, and at least one selected from known cationic surfactants, anionic surfactants, and nonionic surfactants must be used.
  • Surfactants are used. These surfactants can be used in combination of two or more kinds.
  • the cationic surfactant dodecyldimethylammonium chloride, dodecyldimethylammonium bromide, dodecyltrimethylammonium bromide, dodecyl chloride can be used. Pyridine, dodecyl bromide, cetyltrimethylammonium bromide, and the like.
  • the anionic surfactant may be a metal of a higher fatty acid such as sodium stearate, sodium dodecanoate, sodium dodecyl sulfate, sodium dodecylbenzenesulfonate or sodium lauryl sulfate. salt.
  • nonionic surfactant we can cite the following examples, such as ethoxylated polyoxyethylene ether, hexadecyl polyoxyethylene ether, nonylphenol ethoxylate, polyoxyethylene. Laurel ether, polyoxyethylene sorbitan monooleate, mannose, and the like.
  • paraffinic materials are dispersed in an aqueous solution of a surfactant to form a latex for seed emulsion polymerization.
  • the average particle size of the paraffin latex is preferably 10 to 1000 nm, preferably 30 to 500 nm. Further, the average particle diameter can be measured by LS230 manufactured by Beckman Coulter.
  • the average particle diameter of the paraffin emulsion is more than 100 nm, the average particle diameter of the polymer particles obtained by the seed emulsion polymerization is too large, so that the particle size distribution of the toner is hard to be narrowed in the preparation of the toner, in order to prepare small particles. This large-size paraffin latex is not recommended for diameter toners.
  • the average particle diameter of the paraffin emulsion is less than 10 nm, the paraffin content of the polymer particles after the seed emulsion polymerization is likely to be small, which may cause problems such as a low-temperature storage effect.
  • a device such as CLEARMIX can be used to perform shearing by high-speed rotation and dispersion by cavitation; it is also possible to use a device such as a TK average agitator through a high speed. Rotate to cut and disperse; use a SC mill or a sand glider sander to disperse and the like.
  • the polymerization is successively added to the paraffin latex.
  • Monomers such a method of performing radical polymerization of paraffin particles into seed emulsions is recommended.
  • the polymerization initiator may be added to the paraffin latex in advance, or may be added after the addition of the polymerization monomer, or may be added after the combination. It can also be added by adding a surfactant.
  • the radical polymerizable monomer used in the present invention is preferably styrene, (X-methylstyrene, chlorostyrene, dichlorostyrene, p-tert-butylstyrene, pn-butylstyrene, pn-oxime).
  • Styrenes such as styrene, methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, isobutyl acrylate, 2-hydroxyethyl acrylate, 2-ethylhexyl acrylate, methacrylate Base ester, ethyl methacrylate, propyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, hydroxyethyl methacrylate, ethyl hexyl methacrylate, etc. (meta) acrylate Etc. Among them, we especially recommend styrene, butyl acrylate and the like.
  • a radical polymerizable monomer having a polar group can be used as a radical polymerizable monomer having an acidic polar group, and acrylic acid, methacrylic acid, maleic acid, fumaric acid, cinnamic acid, or the like can be used.
  • a radical polymerizable monomer having a carboxyl group, a radical polymerizable monomer having a sulfonic acid group such as sulfonated styrene, and the like, in particular, acrylic acid and methacrylic acid are recommended.
  • radical polymerizable monomer having a basic polar group, a styrene and a quaternary ammonium salt group thereof a radical polymerization monomer such as a vinylpyridine or a vinylpyrrolidone, and a vinyl structure, a quarter of a vinyl structure
  • An amino group-containing (META) acrylate such as an ammonium salt or 2-(diethylamino)ethyl methacrylate
  • a (META) acrylate containing an amino group of these amino quaternary ammonium salts particularly acrylamide, N-propyl acrylamide, N,N-dimethyl acrylamide, N,N-dipropyl acrylamide, N,N-dibutyl acrylamide, acrylamide, and the like.
  • the glass transition temperature of the polymer is preferably in the range of 40 to 70 °C. If the glass transition temperature exceeds 70 ° C, the stable temperature becomes too high, and problems such as poor fixability on the paper may occur. On the other hand, if the glass transition temperature of the polymer is lower than 40 °C, the storage stability of the toner becomes poor, and problems such as agglomeration are caused.
  • a water-soluble polymerization initiator of persulfate such as potassium persulfate, sodium persulfate or ammonium persulfate, and a redox combination of these persulfates with a reducing agent such as acidic sodium sulfite or ascorbic acid can be used.
  • a water-soluble polymerization initiator such as a polymerization initiator, hydrogen peroxide, 4,4'4,4'-azobis(4-cyanovaleric acid), t-butyl hydroperoxide or cumene hydroperoxide, and A redox polymerization initiator which is a combination of a water-soluble polymerizable initiator, a ferric salt or a reducing agent such as ascorbic acid.
  • These polymerization initiators may be added to the polymerization system before, during or after the addition of the radical polymerization monomer, and an appropriate addition method may be selected as needed.
  • a chain transfer agent can be used as needed.
  • the chain transfer agent may be toluenediamine, n-dodecyl mercaptan, 2-mercaptoethanol, isopropylxanthogen, carbon tetrachloride, trichlorobromomethane or the like.
  • the chain transfer agent may be used singly or in combination of two or more.
  • For the radical polymerizable monomer up to 5 wt.% may be used. If the amount used is too large, in addition to a decrease in molecular weight, the residual of the radical polymerizable monomer increases, and problems such as odor may occur.
  • the paraffin wax In terms of the ratio of the paraffin wax to the radical polymerizable monomer, if the radical polymerizable monomer is 100 parts by weight, the paraffin wax is 1 to 40 parts by weight, preferably 2 to 35 parts by weight, preferably 5 to 30 parts by weight.
  • the amount of addition is too small, the release property at the time of stabilization is insufficient, and so-called unevenness may occur. Further, when the amount of addition is too large, it is possible to form a single particle of paraffin, and the paraffin adheres to a carrier or the like, and problems such as reduction in durability may occur.
  • the average particle diameter of the polymer particles (A) is preferably in the range of 50 nm to 1500 nm, preferably 70 to 700 nm.
  • the average particle size can be measured by the LS230 manufactured by Beckman Coulter. If the average particle diameter is less than 50 nm, the paraffin content is lowered, that is, the problem that the so-called release effect is lowered. Further, when it is more than 1500 nm, it is difficult to control the diameter of the toner particles, and problems such as excessive particle diameter distribution occur.
  • the polymer particles (B) having a colorant component it can be produced in a polymerization method in which a colorant is used as a seed emulsion.
  • the colorant used as the seed emulsion for the polymerization may be one of an inorganic or organic pigment or an organic dye, or may be used in combination.
  • carbon black, magnetite, titanium black, aniline black, nigrosine dye or the like can be used as the black colorant.
  • For the colorant for cyano we can use C.L Pigment Blue 15:3, C.I. Pigment Blue 15:4, etc.
  • These colorants are usually used in a ratio of 3 to 20: 100 parts by weight based on the resin binder.
  • the average particle size of the dispersed colorant is preferably 50 to 1000 nm, preferably 80 to 500 nm.
  • the average particle size can be measured using a digital gas mass flow meter and a regulator Micro-Trak UPA produced by Nikkiso Co., Ltd., or by LS230 manufactured by Beckman Coulter.
  • the average particle diameter of the dispersed colorant is more than 100 nm, the average particle diameter of the polymer particles obtained by the seed emulsion polymerization is too large, and when the toner is prepared, it is difficult to make the particle diameter distribution narrow, which is disadvantageous for the small particle diameter. Preparation of toner. Further, if the average particle diameter of the dispersed colorant is less than 50 nm, the amount of the colorant in the polymer particles after the seed emulsion polymerization is easily reduced, and it may be difficult to maintain the image density.
  • the method of dispersing the coloring agent is generally not specifically limited, and it is considered that a device such as CLEARMIX can be used for cutting by high-speed rotation and dispersion by cavitation; it is also possible to perform a high-speed rotation using a device such as a TK average agitator. Shearing and dispersing; dispersing or the like using a means such as an SC mill or a sand glider sander.
  • the polymerization initiator may be added to the colorant dispersion in advance, or may be added after the completion of the addition of the polymerization monomer, or may be added after the combination. It can also be added by adding a surfactant.
  • any of the foregoing surfactants can be used.
  • any of the above may be used in terms of the radical polymerizable monomer or the polymerization initiator.
  • a chain transfer agent may be added, and the aforementioned chain transfer agent may also be used.
  • the average particle diameter of the polymer particles (B) is preferably from 50 nm to 1,500 nm, preferably from 70 to 700 nm. Further, the average particle diameter can be measured by LS230 manufactured by Beckman Coulter. If the average particle diameter is less than 50 nm, the introduction of the coloring agent is insufficient, and the problem of the release of the coloring agent itself may occur. Further, if it is larger than 1500 nm, it is difficult to control the diameter of the toner particles, and there may be a problem that the particle diameter distribution is excessively wide.
  • a charge adjuster may be added to the toner of the present invention.
  • the charge control agent either one of them may be used alone or in combination.
  • a positively charged quaternary ammonium salt compound may be used, and a negatively chargeable metal salt such as chromium, zinc or aluminum of a salicylic acid or an alkylphenolic acid, a metal complex or a metal salt of a diphenylglycolate, a metal complex or an amide may be used.
  • the amount thereof to be used may be determined by the amount of charge desired by the toner, but in general, the ratio of the resin binder may be 0.01 to 10 parts by weight: 100 parts by weight, preferably 0.1 to 10 parts by weight: 100. The ratio of parts by weight.
  • a method of aggregating the polymer particles (A) having a paraffin component and the polymer particles (B) containing a colorant component a method of adding a coagulated salt for agglutination, further heating the heat-adhesive method, and polymer particles ( A) and polymer particles (B) after dispersing in different polar surfactants, mixing the two, using uneven Agglutination method for agglutination and heating of the heat.
  • a monovalent or multivalent metal salt For the salt used for agglutination, we can use a monovalent or multivalent metal salt. Specifically, among the monovalent salts, we can use sodium salts and potassium salts such as sodium chloride and potassium chloride. Among the divalent metal salts, we can use magnesium chloride, magnesium sulfate, calcium chloride, calcium sulfate, and the like. Among the trivalent metal salts, we can use alumina, aluminum chloride, and the like.
  • agglomerated salt is added below the glass transition temperature of the polymer particles, and then the temperature is raised as rapidly as possible, and heated to the glass of the polymer particles. Above the temperature. During this heating process, it is best to control the time within one hour. Further, the temperature rise rate of the rapid temperature rise is preferably 0.25 ° C / min or more. Although the upper limit is not specifically defined, salting out will be carried out violently due to an increase in temperature in an instant, and particle diameter control becomes difficult at this time. In view of this, it is preferable to control the temperature to 5 ° C /min or less. By this heat-bonding step, the polymer particles and any fine particles are salted out/heat-bonded to obtain a dispersion of the polymer particles (colored particles).
  • the colored particles can then be separated from the aqueous medium by filtration and washing.
  • filtration and washing methods we can use centrifugal separation, vacuum filtration using a Buchner funnel, filtration and washing using a filter press, etc., but not limited to these method.
  • the colored particle cake of the washing treatment is dried to obtain a colored particle after drying.
  • a flat spray dryer preferably a static rack dryer, a mobile rack dryer, a fluid layer dryer, and a rotary type. Dryer, agitated dryer, etc.
  • the moisture content of the colored particles after drying is preferably less than 5 wt.%, more preferably 2 wt.% or less.
  • the colored particles after the drying treatment are agglomerated by the attraction between the weak particles, the aggregate can be subjected to the disintegration treatment.
  • a mechanical pulverizing device such as a jet mill, a Henschel mixer, a coffee mill, or a food processing machine can be used.
  • the ratio of the polymer particles (A) is low, problems in terms of release property upon stabilization may occur.
  • the ratio of the polymer particles (A) is large, the fluidity of the toner may be lowered due to the influence of the paraffin, and the coloring power may be lowered or the like due to a decrease in the ratio of the colorant.
  • a charge control agent as a paraffin wax.
  • the seed is used, and the charge regulator is dissolved or dispersed in a monomer or a paraffin, but it is preferable to agglomerate the polymer particles and agglomerate the charge regulator particles to form a polymerized particle as a toner.
  • the charge control agent can be used as a dispersion having an average particle diameter of 10 to 1000 nm in water.
  • the addition time may be simultaneously added and aggregated in the step of aggregating the paraffin-containing polymer particles and the colorant-containing polymer particles.
  • the same or different kinds of resin binder latexes are added, and the particles can be modified by adhesion on the surface of the particles. Toner properties near the surface.
  • hydrophobic silica in addition to the aforementioned hydrotalcite-like compound, at least 0.2 to 2.0% by weight of hydrophobic silica is added.
  • hydrophobic silica a product having an average particle diameter of 5 to 100 nm and having a degree of hydrophobicity of more than 50 as determined by a molecular weight method is used.
  • the hydrophobic silica can be obtained by surface treatment using hydrophilic silica such as dichlorodimethylsilane, dichlorodimethylsilane, hexamethyldisilazane or octyltrichlorosilane.
  • an inorganic fine powder such as magnetite, ferrite, cerium oxide, barium titanate, hydrophobic titanium oxide or conductive titanium oxide, or a styrene resin, an acrylic resin or the like may be used as an external additive.
  • a slip agent can also be used as an external additive.
  • the amount of these additives to be used can be appropriately selected depending on the desired properties. Generally, when the resin binder is 100 parts by weight of the resin, the ratio of these additives should be about 0.05 to 10 parts by weight.
  • the average particle diameter is 10 to 1000 nm.
  • the carrier of the present invention is at least a carrier coated with a silicone resin coating on the surface of the magnetic particles and having a volume average particle diameter of 20 to ⁇ .
  • magnétique particles known magnetic particles can be used.
  • ferrite particles are more suitable from the viewpoint of the adjustable magnetic angle of the magnetic particles and the lighter angle, and it is preferable to use ferrite particles containing light metals. By reducing the size and weight, the pressure inside the developing device can be reduced, so that the durability of the two-component developer is kept longer.
  • ferrite particles can be used, such as Cu-Zn ferrite, Ni ferrite, Ni-Zn ferrite, Mn-Mg ferrite, Cu-Mg ferrite, Mn ferrite, Mn — particles such as Zn ferrite, Li ferrite, Mn—M—Sr ferrite.
  • a substance containing an alkaline earth metal such as Mg or Li or an alkali metal can be used.
  • Ferrite particles can be produced by known methods. For example, a ferrite raw material such as Fe 2 O 3 or Mg(OH) 2 is mixed, and the mixed powder is heated and calcined in a heating furnace. After the obtained pre-fired product is cooled, it is pulverized into a ⁇ by a vibrating mill. To the left and right particles, a dispersant and water are added to the pulverized powder to prepare a binder. The binder was wet-pulverized using a wet ball mill, and the obtained suspension was granulated and dried by a spray dryer to obtain ferrite particles.
  • a ferrite raw material such as Fe 2 O 3 or Mg(OH) 2 is mixed, and the mixed powder is heated and calcined in a heating furnace. After the obtained pre-fired product is cooled, it is pulverized into a ⁇ by a vibrating mill. To the left and right particles, a dispersant and water are added to the pulverized powder to prepare a bin
  • the volume average particle diameter of the magnetic particles is 20 to 100 ⁇ m, and it is preferably 20 to 80 ⁇ m, preferably 30 to 60 ⁇ m.
  • the particle size of the magnetic particles can be measured using HELOS.
  • volume resistivity of ⁇ ⁇ When measuring magnetic particles by the bridge method, it is preferable to have a volume resistivity of ⁇ ⁇ . When the volume resistivity of the magnetic particles is lowered, the resistance of the entire carrier becomes low, and problems such as exposure due to an induction phenomenon or the like may occur. Further, when the volume resistivity of the magnetic particles is increased, the opposite charge remaining on the surface of the carrier causes a boundary effect, and the adhesion to the toner becomes high, so that the image density is lowered.
  • the volume resistivity of the magnetic particles is preferably in the range of lxlO 8 ⁇ 5xl0 1Q Q.cm.
  • thermosetting silicone resin a thermosetting resin is preferably used.
  • the thermosetting silicone resin can be obtained by dehydration polycondensation of a hydrogen group bonded to a silicon atom.
  • thermosetting silicone resin which can be used in the present invention
  • silicone paint can be used (produced by Toshiba Corporation: TSR 1 15 5, TSR 1 1 4 , TSR 1 0 2 , TSR 1 0 3 , YR) 3 0 6
  • TSR 1 1 0, TSR 1 1 6 , TSR 1 1 7 , TSR 1 0 8 , TSR 1 0 9 , TSR 1 8 0, TSR 1 8 1 , TSR 1 8 7 , TSR 1 4 4, TSR 1 6 5.
  • Shin-Etsu Chemical Industry Co., Ltd. produces: KR 2 7 1, KR 2 7 2, KR 2 7 5, KR 2 8 0, KR 2 8
  • the resin In order to realize the interlinking of the thermosetting silicone resin, the resin needs to be heat-treated to about 150 to 250 ° C, but a hardening catalyst may be added to the resin.
  • the hardening catalyst may be octanoic acid, tetramethylammonium acetate, tetrabutyl orthotitanate, tetraisopropyl titanate, dibutyltin diacetate, dibutyltin oxide, dibutyltin dilaurate, gamma-aminopropyltriethyl Oxysilane, ⁇ -aminopropyltriethoxysilane, diethylenetriaminopropyltrimethoxysilane, silane coupling agent, ⁇ -[3-(dimethoxymethylsilyl)propyl] Ethylenediamine and the like.
  • a charge control agent in the carrier of the present invention, it is also recommended to add a charge control agent to the resin layer.
  • a charge control agent a conventional charge regulator can be used.
  • a metal complex of salicylic acid or an azo metal complex or the like can be used.
  • products such as DL-N22, DL-N23, DL-N24, DL-N32, DL-N33 (above, products of Hubei Dinglong Chemical Co., Ltd.) can be used.
  • the quaternary ammonium salt represented by the following general formula (1) preferably contains one or more of the quaternary ammonium salt represented by the following general formula (2) and the quaternary ammonium salt represented by the following general formula (3).
  • the alkyl or aryl substituted quaternary ammonium salt has excellent dispersibility for the silicone resin, and the charge adjustment effect is also high.
  • X represents an alkyl group, a cycloalkyl group, a substituted or non-substituted phenyl group, or a C 0 R 5 (wherein R 5 represents a lower alkyl group)
  • Z represents a hydrogen atom, a hydroxyl group or an alkyl group.
  • independently represents an alkyl group or a benzyl group having 1 to 18 carbon atoms
  • R 2 represents an alkyl group having 1 to 4 carbon atoms
  • 1 ? 4 represents an alkyl group having a carbon number of 5 to 18 or a benzyl group.
  • the "base” means an alkyl group having 1 to 4 carbon atoms.
  • ⁇ 1? 4 represents a substituted, non-substituted alkyl group having 1 to 18 carbon atoms, an alkenyl group having 1 to 18 carbon atoms, a cycloalkyl group, a substituted or non-substituted phenyl group, or a substituted/non-substituted group. Replacement of benzyl.
  • ! ⁇ represents an alkyl group having 1 to 8 carbon atoms
  • R 2 and R 3 each independently represent an alkyl group having 1 to 8 carbon atoms, and an alkyl group having 1 to 8 carbon atoms or a benzyl group.
  • the silicone resin layer contains one or more of the above quaternary ammonium salts, so that in a high humidity environment, electrification is given The ability is stabilized, and the frictional electrification of the toner is formed earlier, which prevents the negative charge of the toner from being lowered. In addition, adhesion of the toner particles to the carrier during long-time printing can be prevented. Further, since the above quaternary ammonium salt is in a colorless state, it is difficult to cause contamination of the color toner, and it is possible to prevent staining of a color image. Therefore, a more stable image can be formed over a long period of time, and the image does not have a blurring feeling, reaching a certain concentration.
  • This carrier was formed into a resin layer in accordance with the principle described below.
  • the raw material of the silicone resin layer is dissolved in an organic solvent such as toluene or acetone, and the magnetic sample is immersed in the obtained solution, and then the resin-coated magnetic particles are produced by an organic solvent evaporation immersion method.
  • the resin-coated magnetic particles are subjected to a heat hardening treatment to form a thermosetting silicone resin layer on the surface of the magnetic particles.
  • the temperature during the heat hardening treatment is preferably higher than the melting point of the charge control agent by 5 ° C and lower than 70 ° C, which is most suitable at this temperature.
  • a method of adding a charge adjusting agent at the time of applying a resin coating layer and then coating it may be selected.
  • the coating amount of the silicone resin is preferably 50 to 100% of the surface of the magnetic particles.
  • the amount is less than 50%, the magnetic particles are excessively exposed, and the toner component may adhere to the portion, which may cause problems such as a decrease in durability. Further, the electric resistance of the carrier itself may decrease, which may cause problems such as excessive development.
  • the average thickness is preferably not more than 1 ⁇ .
  • the addition ratio of the charge regulator is preferably added to the coating resin in an amount of from 1 to 20% by weight, preferably from 5 to 10% by weight. If the amount added is too small, the function of the charge regulator itself cannot be exhibited. If it is too large, the problem that the resistance of the carrier itself is lowered is likely to occur, and problems in developability may also occur.
  • the carrier of the present invention has a volume average particle diameter of 20 to 100 ⁇ m, preferably 20 to 80 ⁇ , preferably 30 to 60 ⁇ . If the volume average particle diameter of the carrier is small, the carrier can easily move from the developing sleeve to the photoreceptor at the time of development, resulting in poor image writing, and sometimes white spots and the like. If the volume average particle diameter of the carrier is large, the carrier during development tends to cause a scratching effect, and problems such as reduction in fine line or dot matrix reproducibility occur.
  • the saturation magnetization of the carrier is preferably in the range of 30 to 100 emu/g, preferably in the range of 50 to 80 emu/g.
  • the lower the saturation magnetization of the carrier the softer the developer core carbon brush that is in contact with the photoreceptor, the more faithful the image can be obtained with the electrostatic latent image, but if the saturation magnetization is too low, the carrier can be easily transferred to On the photoreceptor, poor writing is caused, and white spots are prone to occur.
  • the saturation magnetization is too high, the core carbon brush of the developer becomes hard, and the scratching phenomenon caused by the carrier tends to occur, and problems such as reduction in fine line or dot reproducibility occur.
  • An aqueous solution of sodium carbonate was 800 g, and then 1.2 g of potassium persulfate was added. After heating to 85 ° C, a monomer solution of 70 g of styrene, 20 g of butyl acrylate, and 10 g of methacrylic acid was added dropwise for one hour to carry out seed emulsion polymerization using paraffin as a seed emulsion. After 7 hours, the reaction was terminated. After completion of the reaction, the mixture was cooled to 20 ° C, and the particle diameter was measured.
  • the resin particle particles containing paraffin wax have a diameter of 210 nm. We refer to the resin particles containing the paraffin as polymer particles (A 1 ).
  • the resin particle preparation example 1 containing paraffin 20 g of behenyl behenate was added, and other resin particles containing paraffin wax were obtained.
  • the resin particles containing paraffin have a particle diameter of 220 nm.
  • resin particles containing paraffin wax were obtained.
  • the resin particles containing paraffin have a particle diameter of 250 nm.
  • the kainaba wax (refined No. 1) was not added, but the temperature at which the paraffin was dispersed was 85, and the others were the same, and the paraffin wax was also obtained.
  • the resin particles containing paraffin have a particle diameter of 220 nm.
  • the aqueous solution was 800 g, and 1.3 g of potassium persulfate was added. After heating to 85 ° C, a monomer solution consisting of 70 g of styrene, 20 g of butyl acrylate, and 10 g of methacrylic acid was added dropwise over one hour to carry out seed emulsion polymerization using a coloring agent (carbon black) as a seed emulsion. After 7 hours, the reaction was terminated. After completion of the reaction, the mixture was cooled to 20 ° C, and the particle diameter was measured. The resin particles containing this colorant have a diameter of 160 nm. The resin particles containing this colorant are polymer particles (B-1).
  • the resin particle preparation example 1 containing a coloring agent 20 g of carbon black was not added, but 20 g was added, and the same was obtained, and resin particles containing a coloring agent were obtained in the same manner.
  • the resin particles containing this colorant had a particle diameter of 180 nm.
  • the resin particles containing this colorant are used as polymer particles (B-2).
  • resin particles containing a coloring agent were obtained in the same manner, except that carbon black was not added, but CLPigment Red 122 was used.
  • the resin particles containing this colorant had a particle diameter of 210 nm.
  • the resin particles containing the colorant are polymer particles (B-3).
  • CLPigment Yellow 74 was used without adding carbon black, and the resin particles containing the coloring agent were obtained in the same manner.
  • the resin particles containing this colorant had a particle diameter of 205 nm.
  • the resin particles containing this colorant are used as polymer particles (B-4).
  • CLPigment Blue 15:3 was used instead of carbon black, and the resin particles containing the coloring agent were obtained in the same manner.
  • the resin particles containing this colorant had a particle diameter of 195 nm.
  • the resin particles containing this colorant are used as polymer particles (B-5).
  • the polymer particles ( ⁇ -1) were not used, and the polymer particles ( ⁇ -2) were used, and other toners were obtained in the same manner.
  • the resulting toner is referred to as Toner 2.
  • the toner had a shape factor of 0.97 and a volume average particle diameter of 6.5 ⁇ m.
  • polymer particles ( ⁇ -2) were used without using polymer particles ( ⁇ -2), and particle growth was stopped when the particle diameter reached 6.9 ⁇ , and then cooled when the shape factor reached 0.955.
  • the hydrotalcite compound lg, the others are the same, and a toner can also be obtained.
  • the resulting toner is referred to as Toner 3.
  • the toner had a shape factor of 0.96 and a volume average particle diameter of 6.9 ⁇ m.
  • polymer particles ( ⁇ -3) were used without using the polymer particles (Al), and when the particle diameter reached 6.0 ⁇ m, the growth of the particles was stopped, and when the shape factor reached 0.975, the cooling was performed.
  • the hydrotalcite-like compound was changed to Mg 4 . 5 Al 2 (H) 13 C (V 3.5H 2 0, and the amount of addition was 0.1 g, and the same was obtained, and a toner was also obtained.
  • the obtained toner was called toning. Further, the toner had a shape factor of 0.98 and a volume average particle diameter of 6.0 ⁇ m.
  • toner preparation example 1 without using the polymer particles (of alpha-1), while using the polymer particles ( ⁇ - 4), the hydrotalcite compound was changed to Mg 4. 3 Al 2 COH) 12. 6 C (The toner is also obtained by V 3.5H 2 0, the addition amount is 1. 8G, and the toner is obtained. The obtained toner is referred to as toner 5. Further, the shape coefficient of the toner is 0.97, and the volume average particle diameter is Is 6.5 ⁇ ⁇
  • the polymer particles ( ⁇ -1) were not used, and the polymer particles ( ⁇ -3) were used, and other toners were obtained in the same manner.
  • the resulting toner is referred to as Toner 6.
  • the shape factor of the toner is 0.97
  • the volume average particle diameter is 6.5 ⁇ .
  • the polymer particles ( ⁇ -1) were not used, and the polymer particles ( ⁇ -4) were used, and other toners were obtained in the same manner.
  • the resulting toner is referred to as Toner 7.
  • the toner had a shape factor of 0.97 and a volume average particle diameter of 6.5 ⁇ .
  • the polymer particles ( ⁇ -1) were not used, and the polymer particles ( ⁇ -5) were used, and other toners were obtained in the same manner.
  • the resulting toner is referred to as Toner 8.
  • the toner had a shape factor of 0.97 and a volume average particle diameter of 6.5 ⁇ .
  • the polymer particles ( ⁇ -1) were not used, and the polymer particles ( ⁇ -3) were used, and other toners were obtained in the same manner.
  • the resulting toner is referred to as Toner 9.
  • the toner had a shape factor of 0.97 and a volume average particle diameter of 6.5 ⁇ .
  • the polymer particles ( ⁇ -1) were not used, and the polymer particles ( ⁇ -4) were used, and other toners were obtained in the same manner.
  • the resulting toner is referred to as toner 10.
  • the toner had a shape factor of 0.97 and a volume average particle diameter of 6.5 ⁇ .
  • the polymer particles ( ⁇ -1) were not used, and the polymer particles ( ⁇ -5) were used, and other toners were obtained in the same manner.
  • the resulting toner is referred to as Toner 11.
  • the toner has a shape factor of 0.97 and a volume average particle diameter of 6.5 ⁇ .
  • the polymer particles ( ⁇ -1) were not used, and the polymer particles ( ⁇ -3) were used, and other toners were obtained in the same manner.
  • the resulting toner is referred to as Toner 1 2 .
  • the toner had a shape factor of 0.97 and a volume average particle diameter of 6.5 ⁇ .
  • the polymer particles ( ⁇ -1) were not used, and the polymer particles ( ⁇ -4) were used, and other toners were obtained in the same manner.
  • the resulting toner is referred to as toner 13.
  • the shape factor of the toner is 0.97
  • the volume average particle diameter is 6.5 ⁇ .
  • the polymer particles ( ⁇ -1) were not used, and the polymer particles ( ⁇ -5) were used, and other toners were obtained in the same manner.
  • the resulting toner is referred to as toner 14.
  • the toner had a shape factor of 0.97 and a volume average particle diameter of 6.5 ⁇ m.
  • the polymer particles ( ⁇ -1) were not used, and the polymer particles ( ⁇ -3) were used, and other toners were obtained in the same manner.
  • the resulting toner is referred to as toner 15.
  • the toner had a shape factor of 0.97 and a volume average particle diameter of 6.5 ⁇ .
  • the polymer particles ( ⁇ -1) were not used, and the polymer particles ( ⁇ -4) were used, and other toners were obtained in the same manner.
  • the resulting toner is referred to as toner 16.
  • the toner had a shape factor of 0.97 and a volume average particle diameter of 6.5 ⁇ .
  • the polymer particles ( ⁇ -1) were not used, and the polymer particles ( ⁇ -5) were used, and other toners were obtained in the same manner.
  • the resulting toner is referred to as toner 17.
  • the toner had a shape factor of 0.97 and a volume average particle diameter of 6.5 ⁇ .
  • the toner preparation example 1 we do not use a hydrotalcite compound, and other similar, a comparative toner can be obtained.
  • a comparative toner can be obtained.
  • Comparative Toner 1 We call it Comparative Toner 1. Further, the toner had a shape factor of 0.97 and a volume average particle diameter of 6.5 ⁇ m.
  • the toner preparation example 6 we do not use a hydrotalcite compound, and other similar, a comparative toner can also be obtained.
  • a comparative toner can also be obtained.
  • Comparative Toner 2 We call it Comparative Toner 2 . Further, the toner had a shape factor of 0.97 and a volume average particle diameter of 6.5 ⁇ m.
  • the toner preparation example 7 we do not use a hydrotalcite compound, and other similar, a comparative toner can also be obtained.
  • a comparative toner can also be obtained.
  • Comparative Toner 3 Further, the toner has a shape factor of 0.97 and a volume average particle diameter of 6.5 ⁇ .
  • the toner preparation example 8 we do not use a hydrotalcite compound, and other similar, a comparative toner can also be obtained.
  • the comparative toner 4 We call it the toner 4. Further, the toner had a shape factor of 0.97 and a volume average particle diameter of 6.5 ⁇ m.
  • Silicone paint TSR 1 1 5 2 0 g was added to 1 kg of L i -M n ferrite particles having a volume average particle diameter of 4 2 ⁇ , and toluene 1 was added to 1 g of compound 1 as a charge regulator.
  • m 1 Using the mixed solution, a coating layer composed of a silicone varnish and a charge control agent was formed on the surface of the ferrite particles by a spray drying method. Next, heat treatment was performed at 1900 ° C for 1 hour, and after heat curing, a silicone resin layer carrier containing a charge control agent was obtained. We call this the carrier 1 .
  • Carrier 1 we changed the charge regulator to Compound 4, and the amount added was changed to Q. 5 g. Others were identical, and a carrier was also obtained. We call this carrier 2.
  • the charge regulator was changed to the compound 8, and the amount added was changed to 1.2 g , and the same was obtained, and the carrier was also obtained. We call this the carrier 3.
  • the charge regulator is changed to the compound 15 and the others are the same, and a carrier can also be obtained. We call this the carrier 4.
  • the carrier in the carrier 1, can be obtained in the same manner except that the charge control agent is not added. We call this the carrier 5 .
  • the carrier 50 is not added with a charge control agent, and the heat treatment is not carried out. Others are the same, and the comparative carrier 1 can be obtained. (image evaluation)
  • Image evaluation was performed using a digital multi-function peripheral M X-4 1 0 0 (manufactured by Sharp Corporation) having an intermediate transcription method.
  • the developer is the following combination.
  • Developer Combination Example 1 Carrier 1 Toner 1 1 Toner 6 1 Toner 7 1 Toner 8
  • Developer Combination Example 2 Carrier 1 Toner 2 1 Toner 6 1 Toner 7 1 Toner 8
  • Developer Combination Example 3 Carrier 1 Toner 3 1 Toner 6 1 Toner 7 1 Toner 8
  • Developer Combination Example 4 Carrier 1 Toner 4 1 Toner 6 1 Toner 7 1 Toner 8
  • Developer Combination Example 5 Carrier 1 Toner 5 1 Toner 6 1 Toner 7 1 Toner 8
  • Developer Combination Example 6 Carrier Ten Toner 3 1 Toner 9 1 Toner 1 0 / Toner 1 1 Developer Combination Example 7: Carrier 1 Toner 4 1 Toner 1 2 1 Toner 1 3 1 Toner 1 4 Developer Combination Example 8: Carrier Ten Toner 5 1 Toner 1 5 1 Toner 1 6 1 Toner 1 7 Developer Combination Example 9 : Carrier 2 Ten toners 1 1 toner 6 1 toner 7 1 toner 8
  • Developer Combination Example 1 Carrier 3 Toner 2 1 Toner 6 1 Toner 7 1 Toner 8
  • Developer Combination Example 1 1: Carrier 40 Toner 3 1 Toner 9 1 Toner 1 0 1 Toner 1 1 Developer Combination Example 1 2: Carrier 5 Toner 4 1 Toner 1 2 1 Toner 1 3 1 Toner 1 4 Comparative developer combination Example 1: Comparative carrier 1 Toner 1 1 Toner 6 1 Toner 7 1 Toner 8 Comparative developer combination Example 2: Comparative Carrier 1 Comparative Toner 1 1 Comparative Toner 2 1 Comparative Toner 3 I Comparative Toner 4
  • a full-color image consisting of 1 / 5 % pixel ratio of Y / M / C / B k colors is used, and A 4 printing is performed from the beginning. 1 0 0 0 sheets were continuously printed, and the measured image density was measured.
  • the image density can be evaluated using a ⁇ toner image.
  • the exposure concentration can be determined by the reflection concentration.
  • the color gamut range of the full-color image is measured, and the initial setting is 1 0 0, and the color gamut area ratio after continuous printing of 1 0 0 0 0 is obtained.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Developing Agents For Electrophotography (AREA)

Description

双组分显影剂 技术领域
本发明与电子照相方式的复印机及打印机中使用的双组分显影剂相关。 具体地说是 与具有高清、 耐久性优良性能的双组分显影剂相关。
背景技术
在静电印刷术领域, 此前一般将调色剂与载体混合起来, 用作双组分显影剂。 此双 组分显影剂, 由于载体的使用而使得调色剂带电, 是一种让带电的调色剂显像的产品, 作为向调色剂附加带电性质的方法现在被广泛使用。
载体与调色剂摩擦带电, 会给予调色剂以必要的电荷。 也就是说, 载体表面要设计 成为具有能够产生与调色剂具有相反极性的电荷的能力。 载体以磁性材料为核心, 该磁 性材料本身可以作为载体而单独使用, 还可以为了赋予该磁性材料的带电性等功能而对 其施加了树脂表面涂层。 在前者的磁性材料单独作为载体使用时, 载体可以简单的进行 调整, 但是, 由于表面是由磁性材料所构成, 因此与由树脂构成的调色剂相比, 其硬度 较高, 载体表面附着调色剂时, 可能会产生带电性降低等问题。 另外, 由于表面状态受 磁性材料所限, 使得带电性控制较难, 且由于表面具有导电性, 因此很容易出现湿度依 存性问题。 为了解决磁性材料单独使用时存在的硬度、 磁性以及导电性等问题, 近年来, 树脂涂层型载体得到普遍应用。
用于在磁性材料上施加涂层的树脂种类有很多种, 不过为了实现良好的载体耐久性, 一般偏向于使用调色剂不容易附着, 且涂层树脂不容易摩耗的种类。 此类树脂中, 我们 首推硅氧树脂。 理由如下, 硅氧树脂是一种含硅树脂, 临界表面张力低, 调色剂成分不 易附着。 此外, 由于容易形成交链结构, 因此表面硬度会变高, 而且不易摩耗, 这是它 的显著特征。
另一方面, 近年来, 也有很多方案试图开发出通过聚合法调制的调色剂, 其中, 将 树脂粒子凝集、 熔融球形化后形成的乳化聚合法调色剂由于粒子径易调整, 形状可任意 调整, 因而逐步加以实用。
特开昭 63— 186253公报中记载的乳化聚合法调色剂主要是一种将树脂粒子与着色剂 粒子在水系介质中通过凝集、 熔融球形化来制备调色剂的方法。 这种调色剂由于粒子表 面均一, 带电性也均一等, 因此从带电性角度讲, 受到广泛欢迎。
然而, 这种乳化聚合法调整的调色剂由于表面均一性高, 因此当与前述的施加硅氧 树脂涂层的载体相组合形成双组分显影剂时, 摩擦起电性能较差, 带电量也无法太高, 这是问题所在。
至于硅氧树脂涂层载体与粉碎法调整的调色剂相组合时, 摩擦起电性能方面没有问 题, 而且带电量也很高。 这种粉碎法调色剂是使用二轴型挤出机等对树脂与着色剂进行 熔融、 混揉, 再进行粉碎、 分级而得到。 调色剂表面由于是破断面构成的, 因此其表面 应为不均一状态。 如果处于这种不均一状态, 则与载体摩擦而形成的电荷会在不均一的 部分处产生分极化, 而变得容易带电。 然而, 使用这种粉碎法调色剂时, 由于存在粉碎 调色剂所持有的特有破碎及超微粉, 因此无法抑制载体污染, 进而导致好不容易形成的 带电效果却无法长久维持这一问题。
另一方面, 由于硅氧树脂一般由羟甲基硅氧树脂构成, 树脂本身具有的极性结构使 得其具有难分离性。 为此, 在与均一性较高的表面摩擦时, 极化效果较小, 因此带电的 起因部位小, 造成摩擦起电过程需要花费较长时间这一结果。
本发明就是为了解决以上的问题, 经过研究讨论而得出的结果。
发明内容
本发明旨在提供一种可以克服由聚合法得到的调色剂与硅树脂涂层载体构成的双组 分显影剂所具有的缺点, 长期维持高摩擦起电性特性, 而且能够长期维持高鲜锐性图像 的双组分显影剂。
本发明者等通过对上述课题进行研究讨论, 发现了一种双组分显影剂, 其特点为: 至少由调色剂与载体构成, 所述调色剂由向凝集、 融合了含着色剂的树脂粒子和含蜡的 树脂粒子的着色粒子中添加 0.2〜2.0wt. %的疏水性二氧化硅外添剂及 0.01〜1.0wt. %的水 滑石类化合物外添剂构成, 所述调色剂的形状系数为 0.93〜0.99, 所述载体至少为在磁性 粒子上施加硅氧树脂涂层, 体积平均粒子直径达 20〜100μη的载体。 此外, 更令人满意 的是, 该调色剂由聚合物粒子 (Α) 及聚合物粒子 (Β) 在水系介质中融合后得到的着色 粒子组成, 聚合物粒子 (Α) 内包含有石蜡, 聚合物粒子 (Β) 内包含有着色剂。
另外, 载体最好拥有以下特点: 在磁性粒子表面的硅氧树脂涂层中含有电荷调节剂, 优选在磁性粒子表面施加含有 l〜20wt. %电荷调节剂的硅氧树脂涂层。 以下就进行一下详细说明。
在本发明中,调色剂由向凝集、融合了树脂粒子的着色粒子中添加 0.2〜2.0wt.%的疏 水性二氧化硅外添剂及 0.01〜1.0wt.%的水滑石类化合物外添剂构成, 调色剂的形状系数 为 0.93〜0.99。本发明者们辛苦钻研后, 通过添加特定量的水滑石类化合物, 终于找到了 可以改善对所谓聚合型调色剂所持有的表面均一性引起的摩擦起电性能受到抑止的情 况。
现在, 对该原因尚未明确, 但是, 我们考虑其原因应该如下: 估计水滑石类化合物 正如后述的那样, 由 2价及 3价的金属离子制备而成, 具有可容易保持离子性能的特点。 这种物质以特定量的形态存在于调色剂粒子表面, 使得调色剂表面的均一性会在一定程 度上下降, 最终引起摩擦带电位置增加, 从而改善摩擦起电的性能。
形状系数方面, 通过将形状系数的平均值设定为 0.93〜0.99及非球体构造, 可以确 保排除表面形状不均一化及形状因子造成的画质低下等问题。
另外, 形状系数如下面的算式, 表示测定的形状系数算术平均值。 此处, 测定算术 平均值时, 粒子数最好测定 5000〜30000粒子。
式:形状系数( 圆形度) =与粒子投影面积相等的圆的周长 I粒子投影面的周长 = [2χ
Figure imgf000004_0001
(上式中, Α表示调色剂 (调色剂粒子) 的投影面积, PM为调色剂 (调色剂粒子)投 影面的周长。)
具体数据可通过 Flow式粒子图像分析装置 FPIA3000 (希森美康公司生产) 进行测 定。
水滑石类化合物可通过混合 2价及 3价的混合金属盐水溶液与碱性溶液进行制备。 该方法为使得 2价与 3价金属离子共同沉淀后进行制备的方法, 也称为共沉法。 共沉时 的 pH根据金属离子的组合及浓度不同会发生变化。 Mg-Al类铝碳酸镁化合物中推荐 pH=10±2。 这样的 pH (也就是 pH=10±2) 中, Mg不会沉淀, 此外, 在高 pH时, 氢氧化 铝由于是两性化合物, 因此 A1会再次溶解。 共沉淀法中, 我们使用混合了多个金属盐水 溶液的溶液缓缓滴到碱性水溶液中这一方法。 金属盐水溶液在滴下时, 需要添加氢氧化 钠水溶液等来调节体系的 pH在上述 pH范围内。 铝碳酸镁化合物在用于金属组合中, 不 仅限于 2元系, 还可能包含有 4价金属。 如果实现向金属盐水溶液中混入各种目的金属 盐的话, 也可以合成多元系或含有 4价金属的铝碳酸镁化合物。
2价与 3价的金属离子中得到的水滑石类化合物可表示为以下所示化学式。
Μπ 8xMm 2(An— )zmH20 此处, M II表示 2价金属离子, 比如 Mg2+, Fe2+, Zn2+, Ca2+, Ni2+, Co2+, Cu2+; Mill表示 3价金属离子, 比如 Al3+, Fe3+, Mn A表示 1价或 2价阴离子, 具体为 OH一、 F一、 Cl_、 Br一、 N03_、 C03 2_、 S04 2_、 CH3COO—、 C204 2—、 C104_、 及水杨酸离子等。 X为从 2到 4的有理数, n表示 1或 2, z表示 n=l时 22以下的整数, n=2时表示 11以下的整数。 另 外, m是指 10以下的有理数。
具体来说, 可举出 Mg6Al2(OH)16C03■ 4H20 、 Mg4.5Al2(OH)13C03■ 3.5H20 、 Mg43Al2(OH)126C03■ 3.5H20 、 Mg6M (OH)16C03■ 4H20 、 Mg6Fe2(OH)16C03■ 4H20 、 Fe6Al2(OH)16C03■ 4H20等例子。
这些水滑石类化合物的粒子直径通过激光光散射方法测定的平均初始粒子径数为 2 μη以下, 最好为 10〜1000nm。 此粒子直径较大时, 有时无法发挥出向调色剂赋予的带 电効果, 若较小时, 向调色剂的附着力会加强, 有时无法发挥改善摩擦起电的效果。 此 外, 此类水滑石类化合物的添加量作为调色剂的外添剂时, 最好用量为 0.01〜1.0wt.%。 此添加量若是过少, 就无法发挥摩擦起电的效果, 若是过多, 则带电赋予效果反而变得 低下。
本发明中使用的调色剂至少为向凝集、 热黏了树脂粒子的着色粒子中添加有外添剂 的物质。 特别是, 本发明的着色粒子是由将聚合物粒子在水系介质中加以热黏后得到的 着色粒子构成, 若是将含有石蜡成分的聚合物粒子(A)与含有着色剂成分的聚合物粒子 (B)在水系介质中加以热黏后得到着色粒子, 则可以发挥更好的效果。 使用此聚合物粒 子 (A)与聚合物粒子 (B),及在水系介质中热黏的着色粒子,则石蜡或着色剂很难发生游离, 特别是如果使用如本发明中所述双组分显影剂时, 可以抑制由于向载体上附着调色剂成 分而引起的问题, 从而确保更高的耐久性。
可以进行以下所示的调整, 该调整不限此着色粒子。
要形成含有石蜡成分的聚合物粒子 (A), 可通过以石蜡为种子乳液的聚合法进行调 整。 本发明中用作种子乳液的石蜡可以使用已知的石蜡类中任意一种, 具体来说, 可使 用低分子量聚乙烯、 低分子量聚丙烯、 共聚合聚乙烯等的链烃类石蜡、 石蜡或微晶蜡等 碳化氢系石蜡、 山嵛酸二十二烷醇酯、 褐煤酸二十二烷醇酯、 硬脂酸十八醇脂、 具有季 戊四醇酯等长链脂肪族基的酯类石蜡、 棕榈蜡、 蜜蜡等天然物系石蜡、 油酸酰胺、 硬脂 酸酰胺等高级脂肪酸酰胺等。为了提高这些石蜡中的定影性, 我们推荐融点低于 ioo°c的 石蜡, 最好是融点处于 40— 90°C, 进而控制到 60— 85°C融点范围内。
为了将石蜡用作种子乳液, 可将上述石蜡分散到水系介质中进行调整, 此时必须有 从已知的阳离子表面活性剂、 阴离子表面活性剂、 非离子性表面活性剂中选出的至少一 个表面活性剂来使用。 这些表面活性剂可同时使用 2种以上。 具体来说, 阳离子表面活 性剂可以使用双十二烷基二甲基氯化铵、 双十二烷基二甲基溴化铵、 十二烷基三甲基溴 化铵、 十二烷基氯化吡啶、 十二烷基溴化吡啶、 十六烷基三甲基溴化铵等。
此外, 具体来说, 阴离子表面活性剂可使用硬脂酸钠、 十二酸钠、 十二烷基磺酸钠、 十二烷基苯磺酸钠、 十二烷基硫酸钠等高級脂肪酸的金属盐。
而非离子性表面活性剂方面, 我们可具体举出以下例子, 如葵醇聚氧乙烯醚、 hexadecyl Polyoxyethylene ether (聚环氧乙烷十六醚)、 壬基酚聚氧乙烯醚、 聚氧乙烯月 桂醚、 聚氧乙烯山梨醇酐单油酸酯、 甘露糖等。
将这些石蜡类物质分散到表面活性剂的水溶液中形成乳胶, 用于种子乳液聚合。 石 蜡乳胶的平均粒径推荐 10〜1000nm , 最好是 30〜500nm。 此外, 平均粒径可通过贝克 曼库尔特公司生产的 LS230进行测定。
石蜡乳胶的平均粒径大于 lOOOnm时,通过种子乳液聚合得到的聚合物粒子平均粒子 直径会过大, 使得在制备调色剂时调色剂的粒径分布很难变得狭窄, 为了制备小粒子直 径调色剂,不推荐使用此种大粒径的石蜡乳胶。此外,石蜡乳胶的平均粒径若小于 10nm, 则种子乳液聚合后的聚合物粒子中石蜡含有量很容易变少, 有可能会引起低温保存效果 降低等问题。
至于分散石蜡的方法方面,没有进行特别的限定,我们认为可以使用例如 CLEARMIX 这样的装置, 通过高速旋转进行剪断, 通过空穴作用进行分散; 也可以使用如 TK均值搅 拌器这样的装置, 通过高速旋转进行剪断并分散; 使用 SC碾磨机或 sand glider砂磨机这 样的装置手段进行分散等。
在有石蜡乳胶的存在下, 进行种子乳液聚合的方法中, 逐次向石蜡乳胶中添加聚合 单体, 将石蜡粒子制成种子乳液的这种进行自由基聚合的方法值得推荐。 此时, 聚合引 发剂可事先向石蜡乳胶中添加, 也可以在添加完聚合单体后再添加, 此外, 也可在组合 后添加。 通过追加表面活性剂进行添加也可。
本发明中使用的自由基聚合单体推荐使用苯乙烯、 (X 甲基苯乙烯、 氯苯乙烯、 二氯 苯乙烯、 p-tert-丁基苯乙烯、 p-n-丁基苯乙烯、 p-n-壬基苯乙烯等苯乙烯类, 丙烯酸甲酯、 丙烯酸乙酯、 丙基丙烯酸、 丙烯酸丁酯、 丙烯酸异丁酯、 丙烯酸 -2-羟乙基酯、 丙烯酸 -2- 乙基己酯、 异丁烯酸甲基酯、 异丁烯酸乙基酯、 异丁烯酸丙基酯、 异丁烯酸 n—丁基酯、 异丁烯酸异丁基酯、 异丁烯酸羟乙基酯、 异丁烯酸乙基已基酯等 (meta) 丙烯酸酯等。 其中, 我们尤为推荐苯乙烯、 丙烯酸丁酯等。
可使用拥有极性基团的自由基聚合单体, 作为拥有酸性极性基基团的自由基聚合单 体, 可使用丙烯酸、 异丁烯酸、 顺式丁烯二酸、 富马酸、 桂皮酸等拥有羧基的自由基聚 合单体、 拥有磺化苯乙烯等磺酸基的自由基聚合单体等, 特别是我们推荐使用丙烯酸及 异丁烯酸。
此外, 作为拥有碱性极性基的自由基聚合单体, 氨基苯乙烯及其季铵盐基团、 乙烯 基吡啶、 乙烯吡咯烷酮等含氮杂环的自由基聚合单体、 乙烯基结构的季铵盐、 2- (二乙氨 基)乙基异丁烯酸酯等含氨基的 (META) 丙烯酸酯及, 含有将这些氨基季铵盐基团化铵 盐的(META)丙烯酸酯, 特别是丙烯酰胺、 N—丙基丙烯酰胺、 N,N—二甲基丙烯酰胺、 N,N—二丙基丙烯酰胺、 N,N-二丁基丙烯酰胺、 丙烯酸酰胺等。
这些自由基聚合单体可单独或混合使用, 不过此时, 聚合物的玻化温度最好处于 40 70°C范围内。 玻化温度若超过 70°C, 则稳定温度变得太高, 会发生在纸张上的定着性 差等问题。 而若聚合物的玻化温度低于 40°C, 则调色剂的保存安定性会变得很差, 并导 致凝集等问题的产生。
作为聚合引发剂, 可使用过硫酸钾、 过硫酸钠、 过硫酸铵等过硫酸盐的水溶性聚合 引发剂及由这些过硫酸盐与酸性亚硫酸纳、 抗坏血酸等的还原剂组合起来的氧化还原聚 合引发剂、 过氧化氢、 4, 4' 4,4'-偶氮双 (4-氰基戊酸)、 叔丁基过氧化氢、 过氧化氢异丙 苯等水溶性聚合引发剂以及与这些水溶性聚合性引发剂、 二价铁盐或抗坏血酸等的还原 剂组合的氧化还原聚合引发剂等。 这些聚合引发剂可在自由基聚合单体添加前、 添加的 同时或添加后的任何一个时期添加到聚合系中, 可根据需要, 选择适宜的添加方法。 为了调整聚合物分子量, 可根据需要使用链转移剂。 此链转移剂具体可使用甲苯二 胺、 正十二碳硫醇、 2-巯基乙醇、 异丙基黄原酸、 四氯化碳、 三氯溴甲烷等。 链转移剂可 单独使用, 也可同时并用两种以上, 对于自由基聚合单体来说, 可最多使用 5wt . %。 使 用量若过多, 则除了分子量降低外, 自由基聚合单体的残留增多, 可能产生臭气等问题。
石蜡与自由基聚合单体的比例方面, 如果以自由基聚合单体为 100重量份, 则石蜡 为 1〜40重量份, 推荐 2〜35重量份, 最好选用 5〜30重量份。 添加量过少时, 稳定时 的离型性不足, 可能会产生所谓的不均匀现象。 此外, 若添加量过多时, 就很容生成石 蜡单独粒子, 石蜡附着在载体等上, 降低耐久性等问题可能会由此发生。
聚合物粒子 (A ) 的平均粒径推荐在 50nm〜1500nm范围内, 最好为 70〜700nm。 此外, 平均粒径可通过贝克曼库尔特公司生产的 LS230 进行测定。 此平均粒径若不足 50nm, 则石蜡含有量会降低, 也就是出现所谓的离型效果发挥程度降低的问题。 此外, 若大于 1500nm时,对调色剂粒子的直径控制会比较困难,使得粒子直径分布过广等问题 发生。
为了形成具有包含着色剂成分的聚合物粒子 (B), 可在以着色剂为种子乳液的聚合 法中进行制备。
将着色剂作为种子乳液用于聚合时的着色剂可使用无机或有机颜料、 有机染料中的 一种, 也可以将它们组合后使用。 在具体实施例子中, 可使用碳黑、 磁铁矿、 钛黑、 苯 胺黑、 苯胺黑染料等作为黑着色剂。 氰基用着色剂中, 我们可使用 C.L颜料蓝 15:3, C.I. 颜料蓝 15:4等。 此外, 黄色用着色剂中, 我们推荐使用 C.L颜料黄 14, C.L颜料黄 17, C.L 颜料黄 93, C.I.颜料黄 94, C.L颜料黄 138, C.L颜料黄 150, C.L颜料黄 155, C.L颜料黄 180, C.I. 颜料黄 185, C.L溶剂黄 19, C.L溶剂黄 44, C.L溶剂黄 77, C.L溶剂黄 162等。而红色苯胺染 料用着色剂中,我们推荐 C.L颜料红 5, C.L颜料红 48:1, C.L颜料红 48:2, CL颜料红 48:3, C.I. 颜料红 53:1, C.I.颜料红 57:1, C.I.颜料红 122等。
这些着色剂通常以对树脂粘合剂为 3〜20: 100重量份的比例进行使用。
这些着色剂与前述的石蜡相同, 在表面活性剂的存在下分散到水系介质中, 用于种 子乳液聚合。 分散的着色剂平均粒径推荐为 50〜1000nm, 最好选用 80〜500nm。 此外, 平均粒径可使用日机装公司生产的数字气体质量流量计和调节仪 Micro-Trak U P A进行 测定, 也可通过贝克曼库尔特公司生产的 LS230进行计测。 分散的着色剂平均粒径大于 lOOOnm 时, 通过种子乳液聚合得到的聚合物粒子平均 粒子直径就会太大, 在制备调色剂时, 很难让粒子直径分布变得狭小, 不利于小粒子直 径调色剂的制备。 此外, 分散的着色剂平均粒径若小于 50nm, 则种子乳液聚合后的聚合 物粒子中着色剂含有量会很容易减少, 可能很难保持图像浓度。
分散着色剂的方法一般不会特意限定,我们认为可以使用例如 CLEARMIX这样的装 置, 通过高速旋转进行剪断, 通过空穴作用进行分散; 也可以使用如 TK均值搅拌器这样 的装置, 通过高速旋转进行剪断并分散; 使用 SC碾磨机或 sand glider砂磨机这样的装置 手段进行分散等。
在有着色剂粒子的存在下, 进行种子乳液聚合的方法中, 逐次向着色剂分散液中添 加自由基聚合单体, 将着色剂粒子制成种子乳液的这种进行自由基聚合的方法值得推荐。 此时, 聚合引发剂可事先向着色剂分散液中添加, 也可以在添加完基聚合单体后再添加, 此外, 也可在组合后添加。 通过追加表面活性剂进行添加也可。
表面活性剂活性剂方面, 可使用前述的任一种表面活性剂。
此外, 自由基聚合单体或聚合引发剂方面, 也可使用前述的任一种。
为了调整分子量, 可添加链转移剂, 同样可使用前述的链转移剂。
聚合物粒子 (B) 的平均粒径推荐为 50nm〜1500nm, 最好是 70〜700nm。 此外, 平 均粒径可通过贝克曼库尔特公司生产的 LS230进行测定。此平均粒径若不足 50nm, 则着 色剂的导入就不充分, 可能会发生着色剂本身的游离问题。 此外, 若大于 1500nm, 则对 调色剂粒子直径的控制较为困难, 可能会产生粒子直径分布过广等问题。
此外, 本发明的调色剂中可添加电荷调节剂。 作为带电控制剂, 可单独使用或并用 已知的任意一种。 正电荷性可选用季铵盐化合物, 负电荷性可选用水杨酸或烷基酚酸的 铬、 锌、 铝等金属盐、 金属络化物或二苯乙醇酸金属盐、 金属络化物、 酰胺类化合物、 苯酚类化合物、 萘酚类化合物、 苯酚酰胺类化合物等。 其使用量可由调色剂所期望的带 电量决定, 不过通常来说, 可使用对树脂粘合剂比例为 0.01〜10重量份: 100重量份的 比例, 最好是 0.1〜10重量份: 100重量份的比例。
作为凝集具有包含石蜡成分的聚合物粒子(A)及包含着色剂成分的聚合物粒子(B) 的方法方面, 可选择添加凝集盐进行凝集, 并进一步加热热黏的方法以及将聚合物粒子 (A) 及聚合物粒子 (B) 在不同极性的表面活性剂中分散后, 将两者混合, 使用不均匀 凝集法进行凝集, 并加热热黏的方法。
用于凝集的盐方面, 我们可以使用 1价或多价的金属盐。 具体来说, 1价盐中, 我 们可使用钠盐、 钾盐, 比如氯化钠、 氯化钾等。 2价金属盐中, 我们可使用氯化镁、 硫 酸镁、 氯化钙、 硫酸钙等。 3价金属盐中, 我们可使用氧化铝、 氯化铝等。
将聚合物粒子 (A) 与聚合物粒子 (B) 凝集、 加热并热黏时, 在聚合物粒子的玻化 温度以下加入凝集盐, 之后尽可能迅速的升温, 加热至将聚合物粒子的玻化温度以上。 在此升温过程中, 最好将时间控制在一小时内。 而且快速升温的升温速度最好为 0.25°C /分以上。 虽然没有特别明确上限, 不过为由于瞬间提高温度的话, 盐析会剧烈进行, 此时粒子直径控制就会变得很难, 考虑到这点, 最好将温度控制在 5°C /分以下。通过此 热黏工序, 聚合物粒子及任意微粒子就会被盐析 /热黏, 从而得到聚合粒子 (着色粒子) 的分散液。
接下来就可以通过过滤、 洗净来将着色粒子从水系介质中分离开了。 此处, 过滤、 洗净方法方面, 我们可使用离心分离法、 使用布氏漏斗进行的减压过滤法、 使用压滤机 等进行的过滤及洗净法等, 不过不一定只限制这几种方法。
随后就是将洗净处理的着色粒子饼进行干燥处理, 得到干燥后的着色粒子这一工序 了。 在此工序中使用的干燥剂方面, 我们推荐平喷雾干燥机、 真空冻结干燥机、 减压干 燥机等, 最好是静置架干燥机、 移动式架干燥机、 流动层干燥机、 旋转式干燥机、 搅拌 式干燥机等。 干燥后的着色粒子水分最好小于 5wt. %以下, 达到 2wt. %以下更为理想。 此外, 干燥处理后的着色粒子之间若因为弱粒子间引力凝集时, 该凝集体可进行解碎处 理。 此处, 解碎处理装置方面, 可使用喷射式粉碎机、 亨舍尔混合机、 咖啡磨、 食品加 工机等机械式解碎装置。
另外, 聚合物粒子 (A) 与聚合物粒子 (B) 的混合比为质量比, 聚合物粒子 (A): 聚合物粒子 (B) = 1 : 0.5〜1.2。 最理想的比值为聚合物粒子 (A): 聚合物粒子 (B) = 1 : 0.6〜1.0。 在此范围内, 可保证稳定的离型性与着色力, 若聚合物粒子 (A) 的比率 较低, 则稳定时的离型性方面会出现问题。 此外, 聚合物粒子(A) 比率若较大, 则由于 石蜡的影响, 可能使得调色剂流动性降低; 由于着色剂比率下降, 可能使得着色力下降 等。 本发明中, 为了得到聚合物粒子, 我们在使用石蜡的同时, 还可将电荷调节剂作为 种子进行使用, 将电荷调节剂溶解或分散到单体或石蜡中进行使用, 不过最好在凝集聚 合物粒子的同时, 凝集电荷调节剂粒子并形成聚合粒子, 作为调色剂。 此时, 可在水中 将电荷调节剂作为平均粒径 10〜1000nm的分散液进行使用。添加的时间方面, 可在对含 有石蜡的聚合物粒子与含有着色剂的聚合物粒子进行凝集的工序中进行同时添加并凝 集。
在制作本发明的调色剂时, 凝集粒子的粒子直径在实际增长到最终调色剂粒子直径 后, 再添加同种或不同种类的树脂粘合剂乳胶, 通过在粒子表面进行附着, 可以修饰表 面附近的调色剂性状。
此外, 在本发明中, 除了前述的水滑石类化合物, 至少还要添加 0.2〜2.0wt. %的疏 水性二氧化硅。 疏水性二氧化硅需选用平均粒径为 5〜100nm, 且由分子量法测定的疏水 化度超过 50以上的产品。 疏水性二氧化硅可使用二氯二甲基硅烷、 二氯二甲基硅烷、 六 甲基二硅氮烷、 辛基三氯化硅烷等亲水性二氧化硅通过表面处理而获取。
此外, 本发明的调色剂也可使用磁铁矿、 铁酸盐、 氧化铈、 钛酸锶、 疏水性二氧化 钛、 导电性二氧化钛等无机微粉末或苯乙烯树脂、 丙烯树脂等作为外添剂, 也可将滑剂 用作外添剂。 这些添加剂的使用量可根据所期望的性能进行恰当选择, 一般来说, 树脂 粘合剂为树脂 100重量份时, 这些添加剂的比例应为 0.05〜10重量份左右。
这些添加剂的粒子径中, 平均粒径为 10〜1000nm。
本发明的载体至少为在磁性粒子表面施加硅氧树脂涂层、 体积平均粒子直径为 20〜 ΙΟΟμηι 的载体, 特别是, 最好选用在表面涂覆了含电荷调节剂的硅氧树脂涂层的磁性粒 子。
磁性粒子可使用已知的磁性粒子, 不过从磁性粒子的可调整磁力角度及可轻量化角 度考虑, 铁酸盐粒子更加适合, 最好是含有轻金属的铁酸盐粒子。 通过小型轻量化, 可 以减少显影器内的压力, 使得双组分显影剂的耐久性保持的更长。
可使用已知的铁酸盐粒子, 例如 Cu—Zn铁酸盐、 Ni铁酸盐、 Ni—Zn铁酸盐、 Mn 一 Mg铁酸盐、 Cu— Mg铁酸盐、 Mn铁酸盐、 Mn— Zn铁酸盐、 Li铁酸盐、 Mn— Mg— Sr 铁酸盐等粒子。 轻金属铁酸盐可使用含 Mg、 Li等碱土类金属或碱金属的物质。
铁酸盐粒子可通过已知方法制成。 例如, 混合 Fe203或 Mg(OH)2等铁酸盐原料, 将 此混合粉在加热炉中加热并预烧。所得的预烧品冷却后,通过振动碾磨机粉碎成大约 Ιμηι 左右的粒子, 向粉碎粉中加入分散剂及水, 制作黏合液。 此黏合液使用湿式球磨机进行 湿式粉碎, 得到的悬浊液通过喷雾干燥器进行造粒干燥, 就可以得到铁酸盐粒子了。
磁性粒子的体积平均粒径为 20〜100μηι, 推荐选用 20〜80μηι, 最好为 30〜60μηι。 磁性粒子的粒径可使用 HELOS进行测定。
使用电桥法测定磁性粒子时, 最好有 ΙχΙί^ ΙχΙΟ^Ω^ιη的体积电阻率。 磁性粒子 的体积电阻率若变低, 则整个载体的抵抗就会变低, 可能由于感应现象等产生曝光等问 题。 此外, 磁性粒子的体积电阻率若变高, 则残留在载体表面的相反电荷会发生界限效 果,与调色剂的附着力会变高,使得图像浓度降低等。磁性粒子的体积电阻率最好在 lxlO8 〜5xl01QQ.cm范围内。
硅氧树脂最好使用热硬化性树脂。 该热硬化性硅氧树脂可通过与硅原子连接的氢基 团脱水縮聚而得到。
本发明中可使用的市场销售的热硬化硅氧树脂方面, 可使用例如硅酮漆 (东芝株式会 公司生产: T S R 1 1 5、 T S R 1 1 4 , T S R 1 0 2 , T S R 1 0 3 , Y R 3 0 6
1、 T S R 1 1 0、 T S R 1 1 6、 T S R 1 1 7、 T S R 1 0 8、 T S R 1 0 9、 T S R 1 8 0、 T S R 1 8 1、 T S R 1 8 7、 T S R 1 4 4、 T S R 1 6 5、 信越化学 工业株式会公司生产: KR 2 7 1、 KR 2 7 2、 KR 2 7 5、 KR 2 8 0、 K R 2 8
2、 KR 2 6 7、 KR 2 6 9、 KR 2 1 1、 KR 2 1 2)。
为了实现热硬化硅氧树脂的交链, 需要对该树脂进行加热处理至 150〜250°C左右, 不过也可向树脂中添加硬化催化剂。 硬化催化剂可使用辛酸、 四甲基醋酸铵、 正钛酸四 丁酯、 钛酸四异丙酯、 二醋酸二丁基锡、 二丁基氧化锡、 二月桂酸二丁基锡、 γ-氨丙基三 乙氧基硅烷、 γ-氨丙基三乙氧基硅烷、 二乙烯三胺基丙基三甲氧基硅烷、 硅烷偶联剂、 Ν-[3- (二甲氧基甲基硅基)丙基]乙二胺等。
本发明的载体中, 还推荐向树脂层中添加电荷调节剂。 电荷调节剂方面, 可使用以 往已知的电荷调节剂。 为了让调色剂具有正带电性, 需要让载体维持负带电性, 可使用 水杨酸的金属络化物或偶氮类金属络化物等。 例如, 可使用诸如 DL-N22、 DL-N23、 DL-N24、 DL-N32、 DL-N33 (以上为湖北鼎龙化学股份有限公司产品) 这样的商品。
为了让调色剂具有负带电性, 需要让载体维持正带电性, 此时推荐使用诸如季铵盐 类的电荷调节剂。 以下一般式 (1 ) 中表示的季铵盐最好含有以下一般式 (2) 中表示的季铵盐及以下 一般式 (3 ) 中表示的季铵盐的一种或 2种以上。 烷基或芳基置换的季铵盐对硅氧树脂来 说具有优异的分散性, 带电调节效果也很高。
Figure imgf000013_0001
(式中, X表示烷基、 环烷基、 置换或非置换苯基、 或一 C 0 R 5 (其中 R 5表示低 级烷基) , Z表示氢原子、 羟基或烷基。 !^及!^分别独立表示碳数 1〜18的烷基或苯甲 基, R 2表示碳数 1〜4的烷基, 1? 4表示碳数5〜18的烷基或苯甲基。 ) "低级烷基"是指碳 数 1〜4的烷基。
Figure imgf000013_0002
(式中, Z表示氢原子、羟基、置换或非置换烷基、链烯基或羧基, k表示 1或 2的整数, g及 h分别表示 1〜3的整数, 1^与 、 h总计小于 6。 !^〜1? 4分别表示碳数 1〜1 8 的置换、 非置换烷基、 碳数 1〜 1 8的链烯基、 环烷基、 置换或非置换苯基、 或置换 /非 置换苯甲基。 )
Figure imgf000013_0005
Figure imgf000013_0003
(式中、 !^表示碳数 1〜8的烷基、 R2及 R3分别独立表示碳数 1 1 8的烷基, 示碳数 1〜8的烷基或苯甲基。 )
一般式 (1 ) 中所示化合物方面, 可举出以下例子。
(化合物 1 )
Figure imgf000013_0004
(化合物 2) 1 ] 03S、 -NHOOCH;
CH3~ -C12H2S [OJ
OH
(化合物 3)
Figure imgf000014_0001
-般式 (2) 中所示化合物方面 可举出以下例子(
(化合物 4)
Figure imgf000014_0002
(化合物 5)
Figure imgf000014_0003
般式 (3) 中所示化合物方面, 可举出以下例子(
(化合物 6)
Figure imgf000014_0004
(化合物 7)
Figure imgf000014_0005
(化合物 8)
Figure imgf000014_0006
(化合物 9)
Figure imgf000015_0001
(化合物 10)
Figure imgf000015_0002
(化合物 11 )
Figure imgf000015_0003
(化合物 12)
Figure imgf000015_0004
(化合物 13)
Figure imgf000015_0005
(化合物 14)
Figure imgf000015_0006
(化合物 15)
Figure imgf000015_0007
硅氧树脂层含有上述季铵盐中的 1种或 2种以上, 这样在高湿度环境下, 带电赋予 能力就会稳定, 调色剂的摩擦起电就会更早形成, 可防止调色剂负带电量降低。 此外, 还可防止碳粉粒子在长时间打印时对载体的附着。 此外, 上述季铵盐由于为无色状态, 因此很难对颜色调色剂产生污染, 可防止彩色图像的污浊。 因此, 可在长时间形成更稳 定的图像, 且该图像不会具有模糊感, 达到了一定浓度。
此载体按照以下所述原理形成树脂层。
硅氧树脂层的形成方法中, 可采用已知的方法。 例如, 将硅氧树脂层的原料, 溶解 到甲苯、 丙酮等的有机溶媒中, 将磁性例子浸渍到所得的溶液中后, 通过有机溶剂蒸发 浸渍法, 制作包覆树脂的磁性粒子。 在烤炉中, 将包覆了树脂的磁性粒子进行热硬化处 理, 在磁性粒子表面形成热硬化硅氧树脂层。 热硬化处理时的温度最好高于带电控制剂 融点 5°C, 并低于 70°C, 在此温度下最适宜。
为了让包覆树脂层中含有电荷调节剂, 可选择在施加树脂涂层时添加电荷调节剂, 然后进行包覆的方法。
硅氧树脂的包覆量达到磁性粒子表面 50〜100%包覆量为最佳。 若不足 50%时, 磁 性粒子露出过度, 该部分会产生调色剂成分的附着等, 可能招致耐久性下降等问题, 此 外, 载体本身的电阻下降, 可能产生显影过多等问题。 此外, 包覆厚度方面虽然没有特 殊限制, 但是平均厚度最好不超过 1μη 。
电荷调节剂的添加量方面,添加比例最好以 1〜20重量%添加到包覆树脂中,推荐 5〜 10重量%。 若添加量过少, 则无法发挥电荷调节剂本身的功能; 而若过多, 则很容易产 生载体本身电阻下降的问题, 显影性方面也可能出现问题。
本发明的载体体积平均粒径为 20〜100μηι, 推荐 20〜80μΐη, 最好为 30〜60μΐη。载 体的体积平均粒径若较小, 则在显影时, 载体很容易从显影套筒处移动到感光体处, 造 成图像誊写不良, 有时会产生白斑等问题。 载体的体积平均粒径若较大, 显影时的载体 很容易造成刮线效果, 出现细线或点阵再现性降低等问题。
载体的饱和磁化推荐在 30〜100 emu/g范围内, 最好选在 50〜80emu/g范围内。载体 的饱和磁化越低, 与感光体相接的显影剂磁芯碳刷就会越柔软, 就越可以得到与静电潜 像更忠实的图像, 不过饱和磁化若是过低, 则载体很容易转移到感光体上, 造成誊写不 良, 很容易出现白斑现象。 饱和磁化过高时, 显影剂的磁芯碳刷就会变得坚硬, 就容易 出现由载体引起的刮线现象, 从而出现细线或点阵再现性降低等问题。 具体实施方式
以下就通过实施实例具体说明一下本发明。
包含石蜡的树脂粒子调制例 1
向加热到 80°C的 5 %十二烷基苯磺酸钠水溶液 100 g中投入加热至 80°C并溶解的山 嵛醇山嵛酸酯 15 g,使用高速分散机 CLEARMIX进行分散,使得粒子径数分散到 120nm。 该粒子直径为贝克曼库尔特公司生产的 LS230所测定的数据。 将上述分散液冷却, 然后 放入到安装有搅拌装置、 加热冷却装置、 浓縮装置及各原料投入口的钢化反应器中, 加 温至 40°C, 添加 5 %的十二烷基苯磺酸钠的水溶液 800g, 然后加入过硫酸钾 1.2 g。加温 至 85°C后, 花一小时时间滴加 70g苯乙烯、 20 g丙烯酸丁酯、 10 g异丁烯烯酸构成的单 体溶液, 进行以石蜡为种子乳液的种子乳液聚合。 在 7小时后, 结束反应。 反应结束后, 冷却到 20°C, 测定粒子直径。 包含有石蜡的树脂粒子粒子直径为 210nm。 我们将包含有 该石蜡的树脂粒子称为聚合物粒子 (A 1 )。
包含石蜡的树脂粒子调制例 2
包含石蜡的树脂粒子调制例 1中, 加入山嵛醇山嵛酸酯 20 g, 其他相同, 也可得到 包含石蜡的树脂粒子。 包含石蜡的树脂粒子的粒子直径为 220nm。 我们将包含有该石蜡 的树脂粒子称为聚合物粒子 (A— 2)。
包含石蜡的树脂粒子调制例 3
包含石蜡的树脂粒子调制例 1中, 加入山嵛醇山嵛酸酯 25 g, 其他相同, 也可得到 包含石蜡的树脂粒子。 包含石蜡的树脂粒子的粒子直径为 250nm。 我们将包含有该石蜡 的树脂粒子称为聚合物粒子 (A— 3)。
包含石蜡的树脂粒子调制例 4
包含石蜡的树脂粒子调制例 2 中, 不加入山嵛醇山嵛酸酯, 而是使用卡那巴蜡 (精 制 1号), 石蜡分散时的温度为 85, 其他相同, 同样可得到包含石蜡的树脂粒子。 包含石 蜡的树脂粒子的粒子直径为 220nm。我们将包含有该石蜡的树脂粒子称为聚合物粒子(A 3)。
包含着色剂的树脂粒子调制例 1
向 5 %的十二烷基苯磺酸钠水溶液 100g中加入 16g碳黑, 在 30°C温度条件下, 使用 CLEARMIX进行高速分散, 使得平均初始粒子径数分散至 80nm。 此外, 此粒子直径通 过贝克曼库尔特公司生产的 LS230测定。 随后, 在将分散液放入装有搅拌装置、 加热冷 却装置、 浓縮装置及各原料投入口的钢化反应器中, 加温至 30°C, 添加 5 %的十二烷基 苯磺酸钠的水溶液 800g, 并加入过硫酸钾 1.3g。 加温至 85°C后, 在一小时内滴入由 70g 苯乙烯、 20g丙烯酸丁酯、 10g异丁烯烯酸组成的单体溶液, 进行以着色剂 (碳黑) 为种 子乳液的种子乳液聚合。 在 7小时后, 结束反应。 反应结束后, 冷却到 20°C, 测定粒子 直径。 包含此着色剂的树脂粒子的直径为 160nm。 以包含此着色剂的树脂粒子为聚合物 粒子 (B—l )。
包含着色剂的树脂粒子调制例 2
包含着色剂的树脂粒子调制例 1中, 不加入碳黑 16g, 而是加入 20g, 其他相同, 同 样可得到内含着色剂的树脂粒子。 包含此着色剂的树脂粒子的粒子直径为 180nm。 以包 含此着色剂的树脂粒子为聚合物粒子 (B— 2)。
包含着色剂的树脂粒子调制例 3
包含着色剂的树脂粒子调制例 1中, 不加入碳黑, 而是用 CLPigment Red 122, 其他 相同,同样可得到内含着色剂的树脂粒子。包含此着色剂的树脂粒子的粒子直径为 210nm。 以包含此着色剂的树脂粒子为聚合物粒子 (B— 3 )。
包含着色剂的树脂粒子调制例 4
包含着色剂的树脂粒子调制例 1中, 不加入碳黑, 而是使用 CLPigment Yellow 74, 其他相同, 同样可得到内含着色剂的树脂粒子。 包含此着色剂的树脂粒子的粒子直径为 205nm。 以包含此着色剂的树脂粒子为聚合物粒子 (B— 4)。
包含着色剂的树脂粒子调制例 5
包含着色剂的树脂粒子调制例 1中, 不加入碳黑, 而是使用 CLPigment Blue 15:3, 其他相同, 同样可得到内含着色剂的树脂粒子。 包含此着色剂的树脂粒子的粒子直径为 195nm。 以包含此着色剂的树脂粒子为聚合物粒子 (B— 5 )。
调色剂调制例 1
将前述的聚合物粒子 (A—1 )及聚合物粒子 (B— 1 )分散液混合, 在 30°C环境 下一边搅拌,一边在 30分钟内滴下氯化镁水溶液(浓度 =20%) 300g,接下来升温至 80°C。 监测粒子直径的成长, 在粒子直径 (体积标准中值径: 使用贝克曼库尔特公司生产的库 尔特细胞体积追踪分析仪 Π进行测定)达到 6.5μη时添加 300g水, 停止粒子径成长。然 后, 升温到 95°C, 在 5小时内让形状变为球形。 当形状系数到达 0.965 (使用 FPIA-3000 测定) 时, 冷却至 20°C。 随后, 在离心机中进行过滤、 水洗, 并进行真空干燥。 向干燥 后的 200g粒子中, 加入疏水性二氧化硅(六甲基二硅氮烷处理、 平均初始粒子径数 = 12nm) 2g, 疏水性二氧化钛(十二甲基环己硅烷处理、 平均初始粒子径数 = 25nm) lg, 水滑石类化合物 (Mg6Al2(OH)16C03 _ 4H20) 0.5g, 使用亨舍尔混合机进行混合。 所得的 调色剂为调色剂 1。 另外, 调色剂的形状系数为 0.97, 体积平均粒子直径为 6.5μη 。
调色剂调制例 2
调色剂调制例 1中, 不使用聚合物粒子 (Β— 1 ), 而使用聚合物粒子 (Β— 2), 其他 相同, 也可以得到调色剂。 所得的调色剂我们称为调色剂 2。 此外, 调色剂的形状系数 为 0.97, 体积平均粒子直径为 6.5μηι。
调色剂调制例 3
调色剂调制例 1 中, 不使用聚合物粒子 (A-l ), 而使用聚合物粒子 (Α-2), 在粒子 直径到达 6.9μη时停止粒子成长, 随后在形状系数到达 0.955时进行冷却,添加水滑石类 化合物 l.g, 其他相同, 也可得到调色剂。 所得的调色剂我们称为调色剂 3。 此外, 调色 剂的形状系数为 0.96, 体积平均粒子直径为 6.9μηι。
调色剂调制例 4
调色剂调制例 1 中, 不使用聚合物粒子 (A-l ), 而使用聚合物粒子 (Α-3), 在粒子 直径到达 6.0μηι时停止粒子成长,在形状系数到达 0.975时进行冷却,并将水滑石类化合 物变更为 Mg4.5Al2( H)13C(V 3.5H20, 添加量为 0.1g, 其他相同, 也可得到调色剂。所得 的调色剂我们称为调色剂 4。此外,调色剂的形状系数为 0.98,体积平均粒子直径为 6.0μηι。
调色剂调制例 5
调色剂调制例 1中, 不使用聚合物粒子 (Α— 1 ), 而使用聚合物粒子 (Α— 4), 将水 滑石类化合物变更为 Mg4.3Al2COH)12.6C(V 3.5H20, 添加量为 1. 8G, 其他相同, 也可得 到调色剂。所得的调色剂称为调色剂 5。此外, 调色剂的形状系数为 0.97, 体积平均粒子 直径为 6.5μη ο
调色剂调制例 6
调色剂调制例 1中, 不使用聚合物粒子 (Β— 1 ), 而使用聚合物粒子 (Β— 3), 其他 相同, 也可得到调色剂。 所得的调色剂我们称为调色剂 6。 此外, 调色剂的形状系数为 0.97, 体积平均粒子直径为 6.5μηι。
调色剂调制例 7
调色剂调制例 1中, 不使用聚合物粒子(Β— 1 ), 而使用聚合物粒子(Β— 4), 其他 相同, 也可得到调色剂。 所得的调色剂我们称为调色剂 7。 此外, 调色剂的形状系数为 0.97, 体积平均粒子直径为 6.5μη 。
调色剂调制例 8
调色剂调制例 1中, 不使用聚合物粒子(Β— 1 ), 而使用聚合物粒子(Β— 5), 其他 相同, 也可得到调色剂。 所得的调色剂我们称为调色剂 8。 此外, 调色剂的形状系数为 0.97, 体积平均粒子直径为 6.5μη 。
调色剂调制例 9
调色剂调制例 3中, 不使用聚合物粒子 (Β— 1 ), 而使用聚合物粒子 (Β— 3), 其他 相同, 也可得到调色剂。 所得的调色剂我们称为调色剂 9。 此外, 调色剂的形状系数为 0.97, 体积平均粒子直径为 6.5μη 。
调色剂调制例 10
调色剂调制例 3中, 不使用聚合物粒子(Β— 1 ), 而使用聚合物粒子(Β— 4), 其他 相同, 也可得到调色剂。 所得的调色剂我们称为调色剂 10。 此外, 调色剂的形状系数为 0.97, 体积平均粒子直径为 6.5μη 。
调色剂调制例 11
调色剂调制例 3中, 不使用聚合物粒子(Β— 1 ), 而使用聚合物粒子(Β— 5), 其他 相同, 也可得到调色剂。 所得的调色剂我们称为调色剂 1 1。 此外, 调色剂的形状系数 为 0.97, 体积平均粒子直径为 6.5μη 。
调色剂调制例 12
调色剂调制例 4中, 不使用聚合物粒子(Β— 1 ), 而使用聚合物粒子(Β— 3), 其他 相同, 也可得到调色剂。 所得的调色剂我们称为调色剂 1 2。 调色剂的形状系数为 0.97, 体积平均粒子直径为 6.5μη 。
调色剂调制例 13
调色剂调制例 4中, 不使用聚合物粒子(Β— 1 ), 而使用聚合物粒子(Β— 4), 其他 相同, 也可得到调色剂。 所得的调色剂我们称为调色剂 13。 此外, 调色剂的形状系数为 0.97, 体积平均粒子直径为 6.5μη 。
调色剂调制例 14
调色剂调制例 4中, 不使用聚合物粒子(Β— 1 ), 而使用聚合物粒子(Β— 5), 其他 相同, 也可得到调色剂。 所得的调色剂我们称为调色剂 14。 此外, 调色剂的形状系数为 0.97, 体积平均粒子直径为 6.5μηι。
调色剂调制例 15
调色剂调制例 5中, 不使用聚合物粒子(Β— 1 ), 而使用聚合物粒子(Β— 3), 其他 相同, 也可得到调色剂。 所得的调色剂我们称为调色剂 15。 此外, 调色剂的形状系数为 0.97, 体积平均粒子直径为 6.5μη 。
调色剂调制例 16
调色剂调制例 5中, 不使用聚合物粒子(Β— 1 ), 而使用聚合物粒子(Β— 4), 其他 相同, 也可得到调色剂。 所得的调色剂我们称为调色剂 16。 此外, 调色剂的形状系数为 0.97, 体积平均粒子直径为 6.5μη 。
调色剂调制例 17
调色剂调制例 5中, 不使用聚合物粒子(Β— 1 ), 而使用聚合物粒子(Β— 5), 其他 相同, 也可得到调色剂。 所得的调色剂我们称为调色剂 17。 此外, 调色剂的形状系数为 0.97, 体积平均粒子直径为 6.5μη 。
比较用调色剂调制例 1
调色剂调制例 1中, 我们不使用水滑石类化合物, 其他相同, 可得到比较用调色剂。 我们称之为比较用调色剂 1。此外, 调色剂的形状系数为 0.97, 体积平均粒子直径为 6.5μ m。
比较用调色剂调制例 2
调色剂调制例 6中, 我们不使用水滑石类化合物, 其他相同, 也可得到比较用调色 剂。我们称之为比较用调色剂 2。此外, 调色剂的形状系数为 0.97, 体积平均粒子直径为 6.5μηι。
比较用调色剂调制例 3
调色剂调制例 7中, 我们不使用水滑石类化合物, 其他相同, 也可得到比较用调色 剂。我们称之为比较用调色剂 3。此外, 调色剂的形状系数为 0.97, 体积平均粒子直径为 6.5μηι。
比较用调色剂调制例 4
调色剂调制例 8 中, 我们不使用水滑石类化合物, 其他相同, 也可得到比较用调色 剂。 我们称之为比较用调色剂 4。 此外, 调色剂的形状系数为 0.97, 体积平均粒子直径为 6.5μηι。
载体调制例
载体 1
向体积平均粒径为 4 2 μη的 L i 一 M n铁酸盐粒子 1 k g中添加硅酮漆 T S R 1 1 5 2 0 g , 向作为电荷调节剂的 1 g化合物 1中添加入甲苯 1 Q Q Q m 1, 使用该混 合溶液, 通过喷雾干燥法, 在铁酸盐粒子表面形成硅酮漆及电荷调节剂构成的覆盖层。 接下来, 在 1 9 0 °C时进行 1小时热处理, 热硬化后就可以得到含有电荷调节剂的硅氧 树脂层载体了。 我们将其称为载体 1 。
载体 2
载体 1中, 我们将电荷调节剂更改为化合物 4, 添加量改为 Q . 5 g , 其他相同, 也可得到载体。 我们将其称为载体 2。
载体 3
载体 1中, 将电荷调节剂更改为化合物 8, 添加量改为 1 . 2 g, 其他相同, 也可 得到载体。 我们将其称为载体 3。
载体 4
载体 1中, 将电荷调节剂更改为化合物 1 5, 其他相同, 也可得到载体。 我们将其 称为载体 4。
载体 5
载体 1中, 除了不添加电荷调节剂外, 其他相同, 也可得到载体。 我们将其称为载 体 5。
比较用载体 1
载体 1中, 不使用硅酮漆 T S R I 1 5 , 而是更改为苯乙烯-甲基丙烯酸甲酯 (苯乙 烯 = 3 Q质量份 /甲基丙烯酸甲酯 = 7 Q质量份的组成比) 共聚合物 5 0 g , 不添加电 荷调节剂, 更不进行热处理, 其他相同, 可得到比较用载体 1 。 (图像评价)
使用具有中间誊写体方式的数码复合机 M X— 4 1 0 0 (夏普公司制造), 进行图像 评价。
显影剂为以下组合。
将载体与各个调色剂在 V型混合机中混合, 通过 8 %的显影剂调整调色剂浓度。 显影剂组合例 1 : 载体 1十调色剂 1 1调色剂 6 1调色剂 7 1调色剂 8
显影剂组合例 2 : 载体 1十调色剂 2 1调色剂 6 1调色剂 7 1调色剂 8
显影剂组合例 3 : 载体 1十调色剂 3 1调色剂 6 1调色剂 7 1调色剂 8
显影剂组合例 4 : 载体 1十调色剂 4 1调色剂 6 1调色剂 7 1调色剂 8
显影剂组合例 5 : 载体 1十调色剂 5 1调色剂 6 1调色剂 7 1调色剂 8
显影剂组合例 6 : 载体 1十调色剂 3 1调色剂 9 1调色剂 1 0 /调色剂 1 1 显影剂组合例 7 : 载体 1十调色剂 4 1调色剂 1 2 1调色剂 1 3 1调色剂 1 4 显影剂组合例 8 : 载体 1十调色剂 5 1调色剂 1 5 1调色剂 1 6 1调色剂 1 7 显影剂组合例 9 : 载体 2十调色剂 1 1调色剂 6 1调色剂 7 1调色剂 8
显影剂组合例 1 0: 载体 3十调色剂 2 1调色剂 6 1调色剂 7 1调色剂 8
显影剂组合例 1 1: 载体 4十调色剂 3 1调色剂 9 1调色剂 1 0 1调色剂 1 1 显影剂组合例 1 2: 载体 5十调色剂 4 1调色剂 1 2 1调色剂 1 3 1调色剂 1 4 比较用显影剂组合例 1 : 比较用载体 1十调色剂 1 1调色剂 6 1调色剂 7 1调色剂 8 比较用显影剂组合例 2: 比较用载体 1十比较用调色剂 1 1比较用调色剂 2 1比较用 调色剂 3 I比较用调色剂 4
评价时, 在低温低湿环境 ( 1 0 °C / 1 0 % R H ) 下, 使用由 Y / M / C / B k各色 1 5 %像素率构成的全彩图像, 从初期开始进行 A 4打印, 连续打印 1 0 0 0 0张, 测 试测定图像浓度。 图像浓度可使用黒调色剂图像进行评估。 此外, 可通过反射浓度测定 曝光浓度。
另外, 测定全彩图像的色域范围, 设定初期为 1 0 0, 求连续打印 1 0 0 0 0张后的 色域面积比。
由于很多评价反映, 若使用的显影剂不好, 调色剂消耗量较多, 我们推测由于替换调 色剂可能带来赋予带电的延迟, 带电量不好, 从而使得图像浓度降低, 发生曝光等现象, 甚至发生颜色平衡失调, 色再现范围狭小等问题。 评价结果如下所示。
Figure imgf000024_0001

Claims

权利 要求书
1. 一种双组分显影剂, 其特征在于, 至少由调色剂与载体构成, 所述调色剂由向凝 集、 融合了含着色剂的树脂粒子和含蜡的树脂粒子的着色粒子中添加 0.2〜2.0wt. %的疏 水性二氧化硅外添剂及 0.01〜1.0^. %的水滑石类化合物外添剂构成,所述调色剂的形状 系数为 0.93〜0.99, 所述载体至少为在磁性粒子上施加硅氧树脂涂层, 体积平均粒子直 径达 20〜100μηι的载体。
2. 如权利要求 1所述的双组分显影剂, 其特征在于, 所述调色剂由将聚合物粒子在 水系介质中融合后得到的着色粒子构成。
3. 如权利要求书 1或 2所述的双组分显影剂, 其特征在于, 所述调色剂由将聚合物 粒子(Α)及聚合物粒子(Β)在水系介质中融合后得到的着色粒子构成, 所述聚合物粒 子 (Α) 内包含有蜡, 聚合物粒子 (Β) 内包含有着色剂。
4. 如权利要求 1或 2所述的双组分显影剂, 其特征在于, 所述载体至少为在磁性粒 子表面施加含有 l〜20wt. %电荷调节剂的硅氧树脂涂层。
5. 如权利要求 1或 2所述的双组分显影剂, 其特征在于, 所述水滑石类化合物为下 述化学式的化合物:
MY xMm 2(An— )zmH20
式中, M11表示 2价金属离子; Μ111表示 3价金属离子, Α表示 1价或 2价阴离子; X 为从 2到 4的有理数, n表示 1或 2, z表示 n = 1时表示 2 2以下的整数, n = 2时 表示 1 1以下的整数, m是表示 1 Q以下的有理数。
6. 如权利要求 3所述的双组分显影剂, 其特征在于, 所述聚合物粒子 (A) 与聚合 物粒子 (B) 的混合比为质量比为: 聚合物粒子 (A): 聚合物粒子 (B) = 1: 0.5〜1.2。
PCT/CN2011/075651 2011-05-17 2011-06-13 双组分显影剂 WO2012155375A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP11817192.5A EP2669740A4 (en) 2011-05-17 2011-06-13 TWO COMPONENT REVELATION
US13/178,496 US8822119B2 (en) 2011-05-17 2011-07-08 Bicomponent developing agent

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN 201110127206 CN102193354B (zh) 2011-05-17 2011-05-17 双组分显影剂
CN201110127206.7 2011-05-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/178,496 Continuation US8822119B2 (en) 2011-05-17 2011-07-08 Bicomponent developing agent

Publications (1)

Publication Number Publication Date
WO2012155375A1 true WO2012155375A1 (zh) 2012-11-22

Family

ID=44601664

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/075651 WO2012155375A1 (zh) 2011-05-17 2011-06-13 双组分显影剂

Country Status (3)

Country Link
EP (1) EP2669740A4 (zh)
CN (1) CN102193354B (zh)
WO (1) WO2012155375A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5965144B2 (ja) * 2011-12-19 2016-08-03 三星電子株式会社Samsung Electronics Co.,Ltd. 磁性キャリア、二成分系現像剤、補給用現像剤及び画像形成方法
CN102608887B (zh) * 2012-03-02 2013-06-19 湖北鼎龙化学股份有限公司 静电图像显影剂用载体的制造方法
JP7207998B2 (ja) 2018-12-28 2023-01-18 キヤノン株式会社 トナー
JP7391658B2 (ja) * 2018-12-28 2023-12-05 キヤノン株式会社 トナー
JP7433872B2 (ja) 2018-12-28 2024-02-20 キヤノン株式会社 トナー
JP7443047B2 (ja) 2018-12-28 2024-03-05 キヤノン株式会社 トナー
JP7267740B2 (ja) 2018-12-28 2023-05-02 キヤノン株式会社 トナー
JP7443048B2 (ja) 2018-12-28 2024-03-05 キヤノン株式会社 トナー
JP7286314B2 (ja) 2018-12-28 2023-06-05 キヤノン株式会社 トナー
JP2020109499A (ja) 2018-12-28 2020-07-16 キヤノン株式会社 トナー及びトナーの製造方法
JP7391640B2 (ja) 2018-12-28 2023-12-05 キヤノン株式会社 トナー
CN111381468B (zh) 2018-12-28 2024-04-16 佳能株式会社 调色剂和调色剂制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63186253A (ja) 1987-01-29 1988-08-01 Nippon Carbide Ind Co Ltd 静電荷像現像用トナ−
US6124067A (en) * 1998-07-22 2000-09-26 Canon Kabushiki Kaisha Magnetic carrier, two-component developer and image forming method
US6312862B1 (en) * 1998-11-06 2001-11-06 Canon Kabushiki Kaisha Two-component type developer and image forming method
CN101520620A (zh) * 2008-02-28 2009-09-02 夏普株式会社 载体、利用它的双组分显影剂和利用该显影剂的图像形成设备
CN101910954A (zh) * 2007-12-27 2010-12-08 佳能株式会社 调色剂以及双组分显影剂

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5244764A (en) * 1991-05-20 1993-09-14 Mitsubishi Kasei Corporation Electrostatic image-developing toner and developer
DE69926685T2 (de) * 1998-05-13 2006-01-19 Canon K.K. Toner und Bildherstellungsverfahren
JP3684103B2 (ja) * 1998-05-13 2005-08-17 キヤノン株式会社 トナー及び画像形成方法
MX2008011024A (es) * 2006-03-06 2008-09-08 Ricoh Kk Toner, recipiente con el toner, revelador, aparato de formacion de imagen y cartucho de procedimiento y metodo de formacion de imagen.
US20090041500A1 (en) * 2006-03-30 2009-02-12 Mitsubishi Chemical Corporation Image forming apparatus
US8435709B2 (en) * 2007-03-19 2013-05-07 Ricoh Company, Ltd. Toner for developing latent electrostatic image, process cartridge and image forming method
JP4355734B2 (ja) * 2007-05-29 2009-11-04 シャープ株式会社 現像剤、現像装置、画像形成装置、および画像形成方法
JP2009104124A (ja) * 2007-10-03 2009-05-14 Mitsubishi Chemicals Corp 画像形成装置及びカートリッジ
CN101256367B (zh) * 2008-03-06 2010-11-24 湖北鼎龙化学股份有限公司 静电荷显影用碳粉及其制造方法
JP2009258595A (ja) * 2008-03-18 2009-11-05 Powdertech Co Ltd 電子写真現像剤用樹脂充填型キャリア及び該樹脂充填型キャリアを用いた電子写真現像剤

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63186253A (ja) 1987-01-29 1988-08-01 Nippon Carbide Ind Co Ltd 静電荷像現像用トナ−
US6124067A (en) * 1998-07-22 2000-09-26 Canon Kabushiki Kaisha Magnetic carrier, two-component developer and image forming method
US6312862B1 (en) * 1998-11-06 2001-11-06 Canon Kabushiki Kaisha Two-component type developer and image forming method
CN101910954A (zh) * 2007-12-27 2010-12-08 佳能株式会社 调色剂以及双组分显影剂
CN101520620A (zh) * 2008-02-28 2009-09-02 夏普株式会社 载体、利用它的双组分显影剂和利用该显影剂的图像形成设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2669740A4 *

Also Published As

Publication number Publication date
EP2669740A1 (en) 2013-12-04
CN102193354A (zh) 2011-09-21
EP2669740A4 (en) 2014-10-29
CN102193354B (zh) 2012-08-22

Similar Documents

Publication Publication Date Title
WO2012155375A1 (zh) 双组分显影剂
JP6222120B2 (ja) 静電潜像現像用二成分現像剤
JP6168086B2 (ja) 静電潜像現像用二成分現像剤
JP2015052643A (ja) 静電潜像現像用トナー
US20090226832A1 (en) Toner of static charge image and method for manufacturing the same
JP3724309B2 (ja) 静電荷像現像用トナーの製造方法
US20170075246A1 (en) Method to achieve tribocharge uniformity of a developer mix across different temerature and humidity conditions by modifying the surface of the magnetic carrier particle
JP4038986B2 (ja) 重合法トナー及びその製造方法
JP2009098678A (ja) 静電荷像現像用トナー、画像形成装置及びトナーカートリッジ
JP2013122499A (ja) 非磁性静電荷像現像用トナー及びその製造方法
US8822119B2 (en) Bicomponent developing agent
EP2362269A1 (en) Method for producing electrostatic image developing toner
JP3589723B2 (ja) 磁性粒子およびその製造方法
WO2003065125A1 (fr) Agent de developpement d'image electrostatique
JP2004294839A (ja) 静電潜像現像用トナー及びその製造方法
JP2000347456A (ja) 静電荷像現像用トナー及びその製造法
US20110165511A1 (en) Method for producing toner
JP2005221968A (ja) 静電荷像現像用トナーの製造方法
JP4271540B2 (ja) 静電荷像現像用トナーの製造方法
JP2009251525A (ja) 電子写真用トナー
JP3884302B2 (ja) 静電荷像現像用トナー及びその製造方法
JP2012083639A (ja) トナーの製造方法
JP7130961B2 (ja) 静電荷現像用トナー
CN107430361A (zh) 静电图像显影用调色剂
JP4389621B2 (ja) 静電写真用現像剤及び画像形成方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2011817192

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11817192

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE