WO2012153459A1 - 絶縁ゲート型スイッチング素子の駆動回路 - Google Patents

絶縁ゲート型スイッチング素子の駆動回路 Download PDF

Info

Publication number
WO2012153459A1
WO2012153459A1 PCT/JP2012/002425 JP2012002425W WO2012153459A1 WO 2012153459 A1 WO2012153459 A1 WO 2012153459A1 JP 2012002425 W JP2012002425 W JP 2012002425W WO 2012153459 A1 WO2012153459 A1 WO 2012153459A1
Authority
WO
WIPO (PCT)
Prior art keywords
gate
switching element
voltage
circuit
current
Prior art date
Application number
PCT/JP2012/002425
Other languages
English (en)
French (fr)
Inventor
和美 高際
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Priority to CN201280001978.9A priority Critical patent/CN103004092B/zh
Priority to JP2013513908A priority patent/JP5516825B2/ja
Publication of WO2012153459A1 publication Critical patent/WO2012153459A1/ja
Priority to US13/738,100 priority patent/US9246474B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/01Details
    • H03K3/012Modifications of generator to improve response time or to decrease power consumption
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/16Modifications for eliminating interference voltages or currents
    • H03K17/161Modifications for eliminating interference voltages or currents in field-effect transistor switches
    • H03K17/162Modifications for eliminating interference voltages or currents in field-effect transistor switches without feedback from the output circuit to the control circuit
    • H03K17/163Soft switching

Definitions

  • the present invention relates to a drive circuit for an insulated gate switching element for driving an insulated gate switching element such as an IGBT (Insulated Gate Bipolar Transistor) or a MOSFET (Metal Oxide Semiconductor Field Effect Transistor).
  • IGBT Insulated Gate Bipolar Transistor
  • MOSFET Metal Oxide Semiconductor Field Effect Transistor
  • a semiconductor device in which an insulated gate switching element such as an IGBT and a driving circuit for controlling driving of the switching element are packaged is an IPM (Intelligent). Called Power Module).
  • An IPM for driving a motor or the like is mounted with a power switching element such as an IGBT. If an overcurrent flows through the power switching element, it will cause serious damage to the electronic device equipped with the IPM. For this reason, it has a self-protection function that constantly monitors the current flowing through the power switching element, stops the supply of the gate signal when an overcurrent exceeding a predetermined current value flows, and safely stops the control.
  • the IGBT driving method is such that a P-channel MOSFET 51 and an N-channel MOSFET 52 are connected in series.
  • the source of the P-channel MOSFET 51 is connected to the power supply voltage Vcc, and the source of the N-channel MOSFET 52 is connected to the ground potential.
  • the drains of the P-channel MOSFET 51 and the N-channel MOSFET 52 are commonly connected to the gate of the IGBT 53, and the drive signal is commonly input to the gates of the P-channel MOSFET 51 and the N-channel MOSFET 52.
  • the drive signal When the IGBT 53 is turned on, the drive signal is set to a low level, whereby the P-channel MOSFET 51 is turned on and the N-channel MOSFET 52 is turned off.
  • the power supply voltage Vcc is applied to the gate of the IGBT 53 via the P-channel MOSFET 51. Applied.
  • the drive signal when turning off the IGBT 53, the drive signal is set to a high level to turn off the P-channel MOSFET 51 and turn on the N-channel MOSFET 52, and apply a ground potential to the gate of the IGBT 53 via the N-channel MOSFET 52. Is done.
  • the on-resistances of the P-channel MOSFET 51 and the N-channel MOSFET 52 are used for driving the IGBT 53 during turn-on and turn-off, respectively.
  • the on-resistance of the P-channel MOSFET 51 and the N-channel MOSFET 52 increases at a higher temperature than at room temperature.
  • the charging speed of the gate of the IGBT 53 is slowed down, and a steep voltage change (collector-emitter voltage of the IGBT 43) is suppressed, so that the generation of noise accompanying the voltage change is reduced.
  • the IGBT drive circuit includes a constant current source configured by a current mirror circuit that generates a constant current, and the IGBT gate is connected to the power supply potential side via the constant current source when turned on, and the IGBT is turned off.
  • a switching circuit for stopping the connection of the gate of the IGBT via the constant current source to the power supply potential side and a discharge circuit for turning off the IGBT are sometimes provided.
  • the switching circuit connects the gate of the IGBT to the power supply potential side through the constant current source to turn on the IGBT.
  • the switching circuit cuts off the connection of the IGBT gate to the power supply potential side via the constant current source, and the discharge circuit connects the IGBT gate to the ground potential to turn it off.
  • Patent Document 2 discloses a constant current pulse gate drive circuit that generates a gate signal to a voltage driven switching device such as an FET with a constant current output, and a constant voltage pulse gate that generates a gate signal with a constant voltage output.
  • a gate driving circuit including a determination circuit / switching circuit for switching between an operation of a driving circuit and a constant current pulse gate driving circuit and an operation of a constant voltage pulse gate driving circuit.
  • Patent Document 3 the current on the input side of the constant current source configured by a current mirror circuit is adjusted by bypassing one of the resistors connected in series with the switch element, and the output current of the constant current source is changed. It has been proposed to do.
  • Patent Document 4 as in Patent Document 3, the collector of one PNP transistor constituting the current mirror circuit is connected to a ground potential terminal via a resistance value variable resistance circuit, and the resistance value variable resistance It has been proposed to change the output current of the constant current circuit by selecting the resistance value of the resistance circuit with a resistance value selection unit.
  • Patent Document 5 proposes a switching element driving circuit that drives a switching element such as an IGBT or a MOSFET that switches large power.
  • This switching element drive circuit is a drive signal output circuit that drives the switching element when the PWM pulse input from the PWM pulse output circuit becomes high level, and first outputs the boosted voltage V2 to the gate of the switching element. Then, when the gate voltage Vgs of the switching element rises to a predetermined voltage, a predetermined voltage V1 lower than the boosted voltage V2 is output to the gate of the switching element. With this configuration, the switching loss of the switching element can be suppressed.
  • JP 2008-103895 A JP 2009-11049 A Japanese Patent Laid-Open No. 2005-260752 JP 2000-40849 A Republished Patent No. WO2008 / 15517
  • the insulated gate device can be turned on via a constant current source, and the temperature dependence of the charge rate of the gate of the insulated gate device can be reduced. It becomes possible. For this reason, at the time of turn-on of the insulated gate device, noise and loss can be suppressed even at room temperature while suppressing noise and loss at high temperature.
  • the conventional example described in Patent Document 1 has an unsolved problem that noise and loss can be suppressed, but current consumed by the drive circuit cannot be reduced.
  • the insulated gate device by driving with a constant current until the gate voltage exceeds a predetermined voltage, the insulated gate device can be turned on in a certain period of time, and thereafter, By switching to voltage drive, the device can be driven without impairing the reliability of the gate oxide film of the device, but there is an unsolved problem that the current consumed by the drive circuit cannot be reduced. Furthermore, in the conventional examples described in Patent Documents 3 and 4, it is disclosed that the current value of the constant current circuit is changed by changing the resistance value, but the drive circuit of the insulated gate switching element is disclosed. None is disclosed.
  • the present invention has been made paying attention to the above-mentioned unsolved problems of the conventional example, and an insulated gate switching element capable of reducing the current consumption of a drive circuit for driving the insulated gate switching element.
  • An object is to provide a drive circuit.
  • a first aspect of a drive circuit for an insulated gate switching device comprises a constant current source for generating a constant current and an insulated gate switching via the constant current source at turn-on.
  • a switching circuit for connecting the gate of the insulated gate type switching element to the reference potential side through a discharge circuit at the time of turn-off, and detecting a gate voltage of the insulated gate type switching element while connecting the gate of the element to the power supply potential side A gate voltage detection circuit, and a current mode for switching the constant current source from the normal current mode to the low current consumption mode when the turn-on of the insulated gate switching element is detected based on the gate voltage detected by the gate voltage detection circuit And a selection circuit.
  • the constant current source when the insulated gate switching element is turned on, the constant current source is set to the normal current mode until the gate voltage reaches a predetermined set voltage for turning on the insulated gate switching element, and the insulated gate switching element Inject current into the gate.
  • the constant current source is switched to the low current consumption mode to suppress the current consumption of the drive circuit.
  • the constant current source includes a first transistor having a resistance connected to the drain side, the first transistor and a current mirror.
  • a second transistor configured to generate a constant current determined by a terminal voltage of the resistor and a reference voltage, a current mirror connection with the second transistor, and a drain connected to a gate of the insulated gate switching element And a third transistor.
  • the constant current source includes a first transistor having a resistor connected to the drain side, and a connection between the first transistor and the resistor.
  • the reference voltage is applied when the gate voltage detected by the current mode selection circuit is less than a predetermined value.
  • the reference voltage is set to a low-consumption mode voltage lower than the normal voltage when the gate voltage detected by the gate voltage detection circuit is equal to or higher than a predetermined value.
  • the current mode selection circuit sets the constant current source to the normal current mode when the gate voltage detected by the gate voltage detection circuit is less than a predetermined value, and the constant current source when the gate voltage is equal to or higher than the predetermined value. Can be set to a low current consumption mode.
  • the current mode selection circuit includes a power supply side resistor and a ground side resistor connected between a positive power supply and the ground.
  • the ground side voltage dividing resistance value is set to a normal value, and the gate voltage detected by the gate voltage detection circuit is equal to or higher than the predetermined value.
  • the ground-side voltage dividing resistance value is set to a resistance value for low consumption mode smaller than the normal value. According to this configuration, the current mode selection voltage can be easily formed by changing the voltage dividing resistance value according to the gate voltage.
  • the gate voltage detection circuit sets a threshold for outputting a signal having a different level depending on the gate voltage of the insulated gate switching element.
  • the gate voltage of the gate type switching element is set to 7V to 14.5V.
  • the constant current source Is reduced to a value between 1/20 and 1/2.
  • the constant current source is set in the normal current mode to speed up the turn-on time.
  • FIG. 1 is a circuit diagram showing a first embodiment of a drive circuit for an insulated gate switching element according to the present invention
  • FIG. It is a circuit diagram which shows the level shift circuit which can be applied to this invention.
  • 4 is a circuit diagram showing a second embodiment of a drive circuit for an insulated gate switching element according to the present invention. It is a circuit diagram which shows the drive circuit of the conventional insulated gate switching element.
  • FIG. 1 is a block diagram showing a drive circuit for an insulated gate switching device according to the present invention.
  • reference numeral 1 denotes an insulated gate bipolar transistor (hereinafter referred to as IGBT) which is an insulated gate switching element to be driven.
  • the IGBT 1 is incorporated in a power conversion device such as an inverter circuit that converts direct current to alternating current, or a DC-DC converter that converts direct current to direct current of a different voltage.
  • the insulated gate switching element is not limited to the IGBT, and a power MOSFET can be applied.
  • the drive circuit 2 for driving the IGBT 1 has a positive line Lp connected to the positive power supply Vcc and a ground line Lg connected to the ground.
  • the drive circuit 2 includes a constant current source 3 that forms a charging circuit and generates a constant current, a discharge circuit 4, a switching circuit 5, and a current mode selection circuit 6.
  • the constant current source 3 includes P-channel MOSFETs (Metal Oxide Field Effect Transistors) 11, 12, and 16 that are first, second, and third transistors that are connected in a current mirror manner with gates connected to each other. A current mirror circuit is configured.
  • the source of the P-channel MOSFET 11 is connected to the power supply line Lp, and the drain is connected to the ground line Lg via the P-channel MOSFET 13 and the current detection resistor 22.
  • the P-channel MOSFET 12 has a source connected to the power supply line Lp, a drain connected to the drain of the N-channel MOSFET 17 serving as a fourth transistor, and the source of the N-channel MOSFET 17 connected to the ground line Lg.
  • the P-channel MOSFET 16 has a source connected to the power supply line Lp and a drain connected to the gate of the IGBT 1.
  • the constant current source 3 includes an operational amplifier 23 in which a reference voltage Vref output from a current mode selection circuit 6 described later is input to the non-inverting input side, and a terminal voltage of the current detection resistor 22 is input to the inverting input terminal. Have. The output of the operational amplifier 23 is supplied to the gate of the N-channel MOSFET 17.
  • the discharge circuit 4 includes a buffer 18 to which a drive signal Vin, for example, a pulse width modulation (PWM) signal is input from an external control device, and an N-channel MOSFET 19 having a gate connected to the output side of the buffer 18. I have.
  • a drive signal Vin for example, a pulse width modulation (PWM) signal is input from an external control device
  • PWM pulse width modulation
  • the N channel MOSFET 19 has a source connected to the ground line Lg and a drain connected to a connection point between the source of the P channel MOSFET 16 and the gate of the IGBT 1. Therefore, the source of the N-channel MOSFET 18 is connected to the emitter of the IGBT 1 through the ground line Lg.
  • the switching circuit 5 includes a level shift circuit 20 and P-channel MOSFETs 14 and 15.
  • the P-channel MOSFET 14 has a source connected to the gate of the P-channel MOSFET 12, a body terminal connected to the power supply line Lp, and a drain connected to the gate of the P-channel MOSFET 16.
  • the P-channel MOSFET 15 has a source connected to the power supply line Lp and a drain connected to a connection point between the drain of the P-channel MOSFET 14 and the gate of the P-channel MOSFET 16.
  • the level shift circuit 20 inputs the drive signal Vin described above to the input terminal A, and individually connects the non-inverting output terminal B and the inverting output terminal BB to the gates of the P-channel MOSFETs 14 and 15. As shown in FIG. 2, in the level shift circuit 20, a series circuit of a P channel MOSFET 41, a resistor 47, and an N channel MOSFET 43 is connected between a power supply line Lp and a ground line Lg. A series circuit of a MOSFET 42, a resistor 48, and an N-channel MOSFET 44 is connected.
  • the gate of the P-channel MOSFET 41 is connected to the drain of the P-channel MOSFET 42, and similarly, the gate of the P-channel MOSFET 42 is connected to the drain of the P-channel MOSFET 41.
  • Zener diodes 45 and 46 are connected in parallel with the P-channel MOSFETs 41 and 42, respectively.
  • the inverted output terminal BB is derived from the connection point between the anode of the Zener diode 45 and the drain of the P-channel MOSFET 41, and the normal output terminal B is derived from the connection point of the anode of the Zener diode 46 and the drain of the P-channel MOSFET 42.
  • the gates of the N-channel MOSFETs 43 and 44 are connected via a logic inversion circuit 49, and the connection point between the gate of the N-channel MOSFET 43 and the logic inversion circuit 49 is an input terminal A.
  • the N-channel MOSFET 43 is turned on and the N-channel MOSFET 44 is turned off. Therefore, the P-channel MOSFET 42 is turned on and the P-channel MOSFET 41 is turned off. Therefore, a high level output signal is output from the normal output terminal B, and a low level output signal is output from the inverted output terminal BB.
  • the N-channel MOSFET 43 is turned off and the N-channel MOSFET 44 is turned on.
  • the P-channel MOSFET 41 is turned on, and the P-channel MOSFET 42 is turned off. Therefore, the output signal of the normal output terminal B becomes low level, and the output signal of the inverted output terminal BB becomes high level.
  • the current mode selection circuit 6 includes a power supply side resistor 31 and ground side resistors 32 and 33 connected in series between the power supply line Lp and the ground line Lg.
  • a bypass N-channel MOSFET 34 is connected in parallel with the ground-side resistor 33, and the output side of the buffer 35 is connected to the gate of the N-channel MOSFET 34.
  • the gate voltage detection circuit 7 is connected to the connection point between the drain of the P-channel MOSFET 16 and the gate of the IGBT 1 described above.
  • the gate voltage detection circuit 7 is configured to detect that the gate voltage Vg is equal to or higher than a predetermined set voltage Vs (for example, 13 V) that is sufficiently higher than the threshold voltage of the IGBT 1.
  • the gate voltage detection circuit 7 outputs a low level gate voltage detection signal Vdg to the buffer 35 of the current mode selection circuit 6 when Vg ⁇ Vs, and high level gate voltage detection when Vg ⁇ Vs.
  • the signal Vdg is output to the buffer 35 of the current mode selection circuit 6.
  • the predetermined set voltage Vs of the gate voltage detection circuit 7 is preferably set between 7 V and 14.5 V, which is a gate voltage for reliably turning on the IGBT 1.
  • the gate voltage detection signal Vdg of the gate voltage detection circuit 7 is at a high level
  • the reference voltage Vref2 0.58V
  • the mirror current I1 flowing through the N-channel MOSFET 17 0.29 mA
  • the gate voltage detection signal Vdg is low. It becomes about 1/5 of the mirror current in the case of the level.
  • the P-channel MOSFET 14 is turned off, the P-channel MOSFET 15 is turned on, and the P-channel MOSFET 16 is turned off.
  • the N-channel MOSFET 19 is turned on. Therefore, the current injection to the gate of the IGBT 1 through the constant current source 3, that is, charging is not performed, and the discharge state is continued by connecting the gate of the IGBT 1 to the ground line Lg through the N-channel MOSFET 19 of the discharge circuit 4. Is turned off or remains off.
  • the output signal of the normal output terminal B of the level shift circuit 20 becomes low level, and the output signal of the inverted output terminal BB becomes high level.
  • the P-channel MOSFET 14 is turned on and the P-channel MOSFET 15 is turned off.
  • the constant current source 3 forms a current mirror circuit, and the mirror current I11 is injected into the gate of the IGBT 1 through the P-channel MOSFET 16 to start charging.
  • the gate voltage detection signal Vdg output from the gate voltage detection circuit 7 maintains a low level.
  • the constant current source 3 is in the normal current mode in which the k-times current kI1 corresponding to the mirror current I1 is injected from the P-channel MOSFET 16 to the gate of the IGBT1. Thereby, the IGBT 1 can be turned on via the constant current source 3.
  • the current kI1 flowing through the P-channel MOSFET 16 is injected into the gate capacitance of the IGBT 1 to increase the gate voltage Vg.
  • a high level gate voltage detection signal Vdg is output from the gate voltage detection circuit 7. Since this gate voltage detection signal Vdg is supplied to the buffer 35 of the current mode selection circuit 6, the N-channel MOSFET 34 is turned on. For this reason, the ground side resistor 33 is bypassed, and the ground side resistor 32 is directly connected to the ground line Lg.
  • the mirror current I1 through the N-channel MOSFET 17 is about 1 as described above. Reduced to / 5. For this reason, the k times mirror current kI1 supplied to the IGBT 1 through the P-channel MOSFET 16 also decreases. However, since the gate capacitance of the IGBT 1 maintains the charged state, it remains on.
  • the average value of the mirror current I1 is substantially equal to 0.29 mA when the gate voltage detection signal Vdg of the gate voltage detection circuit 7 is at a high level, and a low power consumption mode can be set.
  • the mirror current I1 continues to flow 1.45 mA during the turn-on period of the IGBT 1, and the current consumption of the drive circuit is high. Maintain state.
  • the P channel MOSFET 14 is turned off, the P channel MOSFET 15 is turned on, the P channel MOSFET 16 is turned off, and the injection of the current kI1 into the IGBT 1 is stopped.
  • the N-channel MOSFET 19 of the discharge circuit 4 is turned on.
  • the gate charge of the IGBT 1 is extracted to the ground line Lg through the P-channel MOSFET 19, and a discharge state occurs, the gate voltage decreases, and the IGBT 1 is turned off.
  • the current mode selection circuit 6 when the IGBT 1 is turned on, when the gate voltage Vg is less than the predetermined set voltage Vs sufficiently higher than the threshold voltage for turning on the IGBT 1, the current mode selection circuit 6 increases the voltage.
  • the reference voltage Vref1 is supplied to the operational amplifier 23, the mirror current I1 of the constant current source 3 is set to the normal current value, and the constant current source 3 is set to the normal current mode.
  • the current mode selection circuit 6 supplies the low reference voltage Vref2 to the operational amplifier 23, and the mirror current I1 of the constant current source 3 is about 1/5 of the normal current value.
  • the constant current source 3 is set to the low current consumption mode.
  • the constant current source 3 with a P channel MOSFET 11 serving as a first transistor for detecting a constant current and a P channel MOSFET 12 serving as a second transistor for controlling the constant current, a stable constant current is provided. Can be generated. Further, by configuring the current mode selection circuit 6 with the voltage dividing resistors 31 to 33 and the switching element 34, the reference voltage Vref based on the gate voltage detection signal Vdg can be easily changed.
  • the configuration of the constant current source is simplified by omitting the P-channel MOSFETs 12 and 13 serving as the second and fourth transistors in the first embodiment described above. That is, in the second embodiment, the P-channel MOSFETs 12 and 13 serving as the second and fourth transistors are omitted from the configuration of FIG. 1 in the first embodiment described above. Further, an N-channel MOSFET 17 to which the output signal of the operational amplifier 23 is input to the gate is connected between the P-channel MOSFET 11 serving as the first transistor and the resistor 22.
  • the other configurations are the same as those in FIG. 1 described above, and the same reference numerals are given to the corresponding portions to those in FIG. 1, and the detailed description thereof will be omitted.
  • the power supply voltage Vcc 15V
  • the resistance value R1 20 k ⁇ of the resistor 31
  • the resistance value R2 1k ⁇ of the resistor 32
  • the resistance value R3 5k ⁇ of the resistor 33
  • the resistance value R4 3k ⁇ of the resistor 22
  • the gate voltage detection signal Vdg of the gate voltage detection circuit 7 is at a high level
  • the reference voltage Vref2 0.71 V is obtained from the equation (2)
  • the mirror current I1 flowing through the N-channel MOSFET 17 is 0.24 mA
  • the gate This is about 1/5 of the mirror current when the voltage detection signal Vdg is at a low level.
  • the drive signal Vin composed of, for example, a pulse width modulation (PWM) signal
  • PWM pulse width modulation
  • the P-channel MOSFET 14 is turned off, the P-channel MOSFET 15 is turned on, and the P-channel MOSFET 16 is turned off.
  • the N-channel MOSFET 19 is turned on. Therefore, current injection (charging) to the gate of the IGBT 1 through the constant current source 3 is not performed, and the discharge state is continued by connecting the gate of the IGBT 1 to the ground line Lg through the N-channel MOSFET 19 of the discharge circuit 4. IGBT1 maintains an OFF state.
  • the output signal of the normal output terminal B of the level shift circuit 20 becomes low level, and the output signal of the inverted output terminal BB becomes high level.
  • the P-channel MOSFET 14 is turned on and the P-channel MOSFET 15 is turned off.
  • a current mirror circuit is configured by the constant current source 3, and the mirror current I11 is supplied to the gate of the IGBT 1 through the P-channel MOSFET 16 to start current injection, that is, charging.
  • the average value of the mirror current I1 is substantially equal to 0.24 mA when the gate voltage detection signal Vdg of the gate voltage detection circuit 7 is at a high level, and the low power consumption mode can be set.
  • the mirror current I1 continues to flow 1.15 mA during the turn-on period of the IGBT 1, and the current consumption of the drive circuit is high. Maintain state.
  • the P-channel MOSFET 14 is turned off, the P-channel MOSFET 15 is turned on, the P-channel MOSFET 16 is turned off, and the injection of the current kI1 to the IGBT 1 is stopped.
  • the N-channel MOSFET 19 of the discharge circuit 4 is turned on.
  • the gate charge of the IGBT 1 is extracted to the ground line Lg through the P-channel MOSFET 19, and a discharge state occurs, the gate voltage decreases, and the IGBT 1 is turned off.
  • the current mode selection circuit 6 when the IGBT 1 is turned on, if the gate voltage Vg is less than the predetermined set voltage Vs that is sufficiently higher than the threshold voltage for turning on the IGBT 1, the current mode selection circuit 6 The high reference voltage Vref1 is supplied to the operational amplifier 23, the mirror current I1 of the constant current source 3 is set to the normal current value, and the constant current source 3 is set to the normal current mode. After that, when the gate voltage Vg reaches the predetermined set voltage Vs, the current mode selection circuit 6 supplies the low reference voltage Vref2 to the operational amplifier 23, and the mirror current I1 of the constant current source 3 is about 1/5 of the normal current value. The constant current source 3 is set to the low current consumption mode. As a result, the current consumption of the entire drive circuit can be reduced while increasing the turn-on time of the IGBT 1.
  • the IGBT 1 is applied as the insulated gate switching element.
  • the present invention is not limited to this, and other insulated gate switching elements such as MOSFETs are used. You may make it apply.
  • the present invention is not limited to this. Instead, when the gate voltage Vg of the insulated gate switching element becomes equal to or higher than the predetermined set voltage Vs, the current value of the constant current source 3 is reduced to a value between 1/20 and 1/2. What should I do?
  • the current value in the low current consumption mode of the constant current source 3 is less than 1/20 of the normal current mode, the current value applied to the gate of the insulated gate switching element is too small to maintain the turn-on state. Therefore, if it is less than half, the effect of reducing current consumption is small.
  • the MOSFET is applied as the active element of the constant current source 3, the discharge circuit 4, the switching circuit 5, and the current mode selection circuit 6 has been described.
  • the present invention is not limited to this. Instead, any active element such as an FET or a bipolar transistor can be applied.
  • the constant current source is set to the normal current mode to speed up the turn-on time, and when the gate voltage reaches the predetermined voltage at which the turn-on state is reached. It is possible to provide a drive circuit for an insulated gate switching element that can suppress the current consumption of the drive circuit by setting the constant current source to a low current consumption mode.

Landscapes

  • Power Conversion In General (AREA)
  • Electronic Switches (AREA)

Abstract

 絶縁ゲート型スイッチング素子を駆動する駆動回路の消費電流を低減することが可能な絶縁ゲート型スイッチング素子の駆動回路を提供する。この駆動回路は、定電流を発生させる定電流源(3)と、ターンオン時に前記定電流源(3)を介して絶縁ゲート型スイッチング素子(1)のゲートを電源電位側に接続するとともに、ターンオフ時に放電回路(4)を介して前記絶縁ゲート型スイッチング素子(1)のゲートを基準電位側に接続する切り替え回路(5)とを備えている。また、駆動回路は、前記絶縁ゲート型スイッチング素子(1)のゲート電圧を検出するゲート電圧検出回路(7)と、該ゲート電圧検出回路(7)で検出したゲート電圧に基づいて前記絶縁ゲート型スイッチング素子(1)のターンオンを検出したときに、前記定電流源(3)を通常電流モードから低消費電流モードに切り替える電流モード選択回路(6)とを備えている。

Description

絶縁ゲート型スイッチング素子の駆動回路
 本発明は、IGBT(Insulated Gate Bipolar Transistor)やMOSFET(Metal Oxide Semiconductor Field Effect Transistor)等の絶縁ゲート型スイッチング素子を駆動する絶縁ゲート型スイッチング素子の駆動回路に関する。
 IGBTなどの絶縁ゲート型のスイッチング素子と、スイッチング素子の駆動制御を行う駆動回路とがパッケージングされた半導体装置は、IPM(Intelligent
 Power Module)と称される。モータなどを駆動するためのIPMは、IGBTなどのパワースイッチング素子が実装されている。このパワースイッチング素子に過電流が流れると、IPMを搭載した電子機器に甚大な被害を与えることになる。このため、パワースイッチング素子に流れる電流を常時監視し、所定の電流値を超える過電流が流れた時にゲート信号の供給を停止して、安全に制御を停止する自己保護機能を有する。
 従来のIPMでは、IGBTの駆動方式は、図4に示すように、PチャネルMOSFET51とNチャネルのMOSFET52とを直列に接続している。PチャネルMOSFET51のソースは電源電圧Vccに接続されるとともに、NチャネルMOSFET52のソースはグランド電位に接続されている。そして、PチャネルMOSFET51及びNチャネルMOSFET52のドレインはIGBT53のゲートに共通に接続されるとともに、PチャネルMOSFET51及びNチャネルMOSFET52のゲートには、駆動信号が共通に入力される。
 そして、IGBT53をターンオンする場合には、駆動信号をローレベルにすることで、PチャネルMOSFET51がオンされるとともに、NチャネルMOSFET52がオフされ、電源電圧VccがPチャネルMOSFET51を介してIGBT53のゲートに印加される。
 一方、IGBT53をターンオフする場合には、駆動信号をハイレベルにすることで、PチャネルMOSFET51がオフされるとともに、NチャネルMOSFET52がオンされ、グランド電位がNチャネルMOSFET52を介してIGBT53のゲートに印加される。
 ここで、IGBT53のターンオン時とターンオフ時との駆動には、PチャネルMOSFET51及びNチャネルMOSFET52のオン抵抗がそれぞれ用いられる。
 このように、PチャネルMOSFET51及びNチャネルMOSFET52のオン抵抗を用いてIGBT53を駆動する方式では、PチャネルMOSFET51及びNチャネルMOSFET52のオン抵抗は室温と比べて高温において増加することから、高温時には室温時に比べてIGBT53のゲートの充電速度が遅くなり、急峻電圧変化(IGBT43のコレクタ-エミッタ間電圧)が抑制されて電圧変化に伴うノイズの発生は減少する。一方で、IGBT53のターンオンに要する時間が増加するため損失が増加するという問題がある。これに対して、高温時に損失が少なくなるように最適化された設計を行うと、室温時において、IGBT53のゲートの充電速度が遅すぎ、電圧変化が急峻となってノイズが増加するという問題がある。
 この問題を解決するために、特許文献1に記載された絶縁ゲート型デバイスの駆動回路が提案されている。
 この特許文献1では、IGBTの駆動回路には、定電流を発生させるカレントミラー回路で構成される定電流源、ターンオン時に定電流源を介してIGBTのゲートを電源電位側に接続するとともに、ターンオフ時に定電流源を介するIGBTのゲートを電源電位側への接続を停止する切り替え回路およびIGBTをターンオフさせる放電回路を設けている。そして、駆動信号がローレベルになると、切り替え回路で定電流源を介してIGBTのゲートを電源電位側に接続してIGBTをターンオンさせる。逆に、駆動信号がハイレベルになると、切り替え回路で定電流源を介するIGBTのゲートの電源電位側への接続を遮断し、放電回路でIGBTのゲートをグランド電位に接続して、ターンオフさせる。
 また、特許文献2には、IGBTもFET等の電圧駆動型のスイッチングデバイスへのゲート信号を定電流出力で作成する定電流パルスゲート駆動回路、ゲート信号を定電圧出力で作成する定電圧パルスゲート駆動回路、及び定電流パルスゲート駆動回路の動作と定電圧パルスゲート駆動回路の動作との切替を行う判定/切替回路を備えたゲート駆動回路が提案されている。
 また、特許文献3では、カレントミラー回路で構成した定電流源の入力側の電流を直列に接続された抵抗の一つをスイッチ素子でバイパスすることにより調整し、定電流源の出力電流を変更することが提案されている。
 また、特許文献4では、特許文献3と同様に、カレントミラー回路を構成する一方のPNPトランジスタのコレクタを抵抗値可変型の抵抗回路を介してグランド電位の端子に接続し、抵抗値可変型の抵抗回路の抵抗値を抵抗値選択部で選択することにより、定電流回路の出力電流を変更することが提案されている。
 また、特許文献5には、大電力をスイッチングするIGBTやMOSFETなどのスイッチング素子を駆動するスイッチング素子駆動回路が提案されている。このスイッチング素子駆動回路は、PWMパルス出力回路から入力されるPWMパルスがハイレベルとなった時に、スイッチング素子を駆動する駆動信号出力回路で、先ず昇圧された電圧V2をスイッチング素子のゲートに出力し、次いでスイッチング素子のゲート電圧Vgsが所定電圧にまで上昇すると、昇圧された電圧V2より低い所定電圧V1をスイッチング素子のゲートに出力する。この構成により、スイッチング素子のスイッチング損失を抑制することができる。
特開2008-103895号公報 特開2009-11049号公報 特開2005-260752号公報 特開2000-40849号公報 再公表特許第WO2008/155917号公報
 ところで、IPMの低消費電流化の要求は益々厳しくなっており、IPMの消費電流はIGBTを駆動する駆動回路及びIGBTを保護制御する制御回路の消費電流の占めるところが大きい。
 前述した特許文献1に記載の従来例にあっては、定電流源を介して絶縁ゲート型デバイスをターンオンすることができ、絶縁ゲート型デバイスのゲートの充電速度の温度依存性を低減することが可能となる。このため、絶縁ゲート型デバイスのターンオン時において、高温時のノイズと損失を抑えながら、室温時においてもノイズと損失を抑えることができる。しかしながら、特許文献1に記載の従来例では、ノイズや損失を抑制することはできるが駆動回路で消費する電流を低減することはできないという未解決の課題がある。
 また、特許文献2に記載の従来例にあっては、ゲート電圧が所定電圧を越えるまでは定電流で駆動することにより、一定時間で絶縁ゲート型デバイスをオンに遷移させることができ、その後定電圧駆動に切り替えることにより、デバイスのゲート酸化膜の信頼性を損なうことなく駆動できるが、駆動回路で消費する電流を低減することはできないという未解決の課題がある。
 さらに、特許文献3及び4に記載の従来例にあっては、抵抗値を変更して定電流回路の電流値を変更することは開示されているが、絶縁ゲート型スイッチング素子の駆動回路については何ら開示されていない。
 さらに、特許文献5に記載の従来例にあっては、大電力をスイッチングするIGBTやMOSFETなどのスイッチング素子をターンオンさせる際に、スイッチング素子のゲート電圧が所定電圧に上昇するまでの初期期間だけ、定常的にゲートに印加する所定電圧よりも高い昇圧電圧を印加するようにしている。このため、スイッチング素子のターンオン時に、スイッチング素子のゲートに常に過大な電圧を印加することなくスイッチング動作を速くすることができる。したがって、スイッチング素子のゲートに余分なストレスをかけることなく、遅延時間を短くし、且つスイッチング損失を低減することができるが、駆動回路で消費する電流を低減することはできないという未解決の課題がある。
 そこで、本発明は、上記従来例の未解決の課題に着目してなされたものであり、絶縁ゲート型スイッチング素子を駆動する駆動回路の消費電流を低減することが可能な絶縁ゲート型スイッチング素子の駆動回路を提供することを目的としている。
 上記目的を達成するために、本発明に係る絶縁ゲート型スイッチング素子の駆動回路の第1の態様は、定電流を発生させる定電流源と、ターンオン時に前記定電流源を介して絶縁ゲート型スイッチング素子のゲートを電源電位側に接続するとともに、ターンオフ時に放電回路を介して前記絶縁ゲート型スイッチング素子のゲートを基準電位側に接続する切り替え回路と、前記絶縁ゲート型スイッチング素子のゲート電圧を検出するゲート電圧検出回路と、該ゲート電圧検出回路で検出したゲート電圧に基づいて前記絶縁ゲート型スイッチング素子のターンオンを検出したときに、前記定電流源を通常電流モードから低消費電流モードに切り替える電流モード選択回路とを備えている。
 この構成によると、絶縁ゲート型スイッチング素子をターンオンさせる際に、ゲート電圧が絶縁ゲート型スイッチング素子のターンオンさせる所定設定電圧に達するまでの間は定電流源を通常電流モードとして、絶縁ゲート型スイッチング素子のゲートに電流を注入する。そして、絶縁ゲート型スイッチング素子がターンオンして、ゲート電圧が所定設定電圧より高くなると、定電流源を低消費電流モードに切り替えて、駆動回路の消費電流を抑制する。
 また、本発明に係る絶縁ゲート型スイッチング素子の駆動回路の第2の形態は、前記定電流源が、ドレイン側に抵抗が接続された第1のトランジスタと、該第1のトランジスタとカレントミラーを構成し、前記抵抗の端子電圧と参照電圧とで定まる定電流を発生させる第2のトランジスタと、該第2のトランジスタとカレントミラー接続され、前記絶縁ゲート型スイッチング素子のゲートにドレインが接続された第3のトランジスタとを備えている。
 この構成によると、第2のトランジスタで定電流を発生させることにより、この定電流に応じた定電流を第3のトランジスタから絶縁ゲート型スイッチング素子のゲートに出力する。
 また、本発明に係る絶縁ゲート型スイッチング素子の駆動回路の第3の形態は、前記定電流源が、ドレイン側に抵抗が接続された第1のトランジスタと、該第1のトランジスタ及び前記抵抗間に接続された前記抵抗の端子電圧と参照電圧とで定まる定電流を発生させる第4のトランジスタと、前記第1のトランジスタとカレントミラーを構成し、前記絶縁ゲート型スイッチング素子のゲートにドレインが接続された第3のトランジスタとを備えている。
 この構成によると、定電流源の構成を簡略化することができる。
 また、本発明に係る絶縁ゲート型スイッチング素子の駆動回路の第4の形態は、前記電流モード選択回路が、前記ゲート電圧検出回路で検出したゲート電圧が所定値未満であるときに前記参照電圧を通常電圧に設定し、前記ゲート電圧検出回路で検出したゲート電圧が所定値以上であるときに前記参照電圧を前記通常電圧より低い低消費モード用電圧に設定するようにしている。
 この構成によると、電流モード選択回路で、ゲート電圧検出回路で検出したゲート電圧が所定値未満であるときに定電流源を通常電流モードとし、ゲート電圧が所定値以上であるときに定電流源を低消費電流モードとすることができる。
 また、本発明に係る絶縁ゲート型スイッチング素子の駆動回路の第5の形態は、前記電流モード選択回路が、正の電源及びグランド間に接続された電源側抵抗及びグランド側抵抗を有する分圧抵抗を有し、前記ゲート電圧検出回路で検出したゲート電圧が所定値未満であるときにグランド側分圧抵抗値を通常値に設定し、前記ゲート電圧検出回路で検出したゲート電圧が所定値以上であるときに前記グランド側分圧抵抗値を前記通常値より小さい低消費モード用抵抗値に設定するようにしている。
 この構成によれば、ゲート電圧に応じて分圧抵抗値を変更することにより、電流モード選択電圧を容易に形成することができる。
 また、本発明に係る絶縁ゲート型スイッチング素子の駆動回路の第6の形態は、前記ゲート電圧検出回路が、前記絶縁ゲート型スイッチング素子のゲート電圧によって異なるレベルの信号を出力する閾値を、当該絶縁ゲート型スイッチング素子のゲート電圧7V乃至14.5Vに設定されている。
 この構成とすることにより、絶縁ゲート型スイッチング素子が確実にターンオン状態となって低電圧源で低消費電流モードを選択することができる。
 また、本発明に係る絶縁ゲート型スイッチング素子の駆動回路の第7の形態は、前記ゲート電圧検出回路が、前記絶縁ゲート型スイッチング素子のゲート電圧が前記閾値を超えたときに、前記定電流源の電流値を20分の1から2分の1の間の値に低下させるようにしている。
 この構成とすることにより、駆動回路全体の消費電流を大幅に抑制することができる。
 本発明によれば、絶縁ゲート型スイッチング素子のゲート電圧がターンオン状態となる所定電圧に達するまでは定電流源を通常電流モードとしてターンオン時間を速め、ゲート電圧がターンオン状態となる所定電圧に達したら定電流源を低消費電流モードとして駆動回路の消費電流を抑制することができるという効果が得られる。
本発明に係る絶縁ゲート型スイッチング素子の駆動回路の第1の実施形態を示す回路図である。 本発明に適用し得るレベルシフト回路を示す回路図である。 本発明に係る絶縁ゲート型スイッチング素子の駆動回路の第2の実施形態を示す回路である。 従来の絶縁ゲート型スイッチング素子の駆動回路を示す回路図である。
 以下、本発明の実施の形態を図面に基づいて説明する。
 図1は本発明による絶縁ゲート型スイッチング素子の駆動回路を示すブロック図である。
 図中、1は駆動対象とする絶縁ゲート型スイッチング素子である絶縁ゲート型バイポーラトランジスタ(以下、IGBTと称す)である。このIGBT1は、例えば直流を交流に変換するインバータ回路や、直流を異なる電圧の直流に変換するDC-DCコンバータ等の電力変換装置に組込まれている。ここで、絶縁ゲート型スイッチング素子としてはIGBTに限定されるものではなく、パワーMOSFETを適用することができる。
 このIGBT1を駆動する駆動回路2は、正の電源Vccに接続された正側ラインLp及びグランドに接続されたグランドラインLgを有する。また、駆動回路2は、充電回路を構成し定電流を発生する定電流源3、放電回路4、切り替え回路5及び電流モード選択回路6を有する。
 定電流源3は、ゲートを互いに接続してカレントミラー接続された第1、第2及び第3のトランジスタとなるPチャネルMOSFET((Metal Oxide Semiconductor Field Effect Transistor)11、12及び16を有してカレントミラー回路が構成されている。
 ここで、PチャネルMOSFET11のソースは電源ラインLpに接続され、ドレインはPチャネルMOSFET13を介し、電流検出用抵抗22を介してグランドラインLgに接続されている。
 PチャネルMOSFET12は、ソースが電源ラインLpに接続され、ドレインが第4のトランジスタとなるNチャネルMOSFET17のドレインに接続され、このNチャネルMOSFET17のソースがグランドラインLgに接続されている。
 さらに、PチャネルMOSFET16は、ソースが電源ラインLpに接続され、ドレインがIGBT1のゲートに接続されている。
 また、定電流源3は、非反転入力側に後述する電流モード選択回路6から出力される参照電圧Vrefが入力され、反転入力端子に電流検出用抵抗22の端子電圧が入力されたオペアンプ23を有する。このオペアンプ23の出力がNチャネルMOSFET17のゲートに供給されている。
 なお、PチャネルMOSFET11,12,16のチャネル長は実質的に同一で、PチャネルMOSFET16のチャネル幅はPチャネルMOSFET12のチャネル幅よりも10倍以上であることが好ましい。また、抵抗22、31~33の温度特性は、100ppm/℃以下であることが好ましい。
 また、放電回路4は、外部の制御装置から例えばパルス幅変調(PWM)信号でなる駆動信号Vinが入力されるバッファ18と、このバッファ18の出力側にゲートが接続されたNチャネルMOSFET19とを備えている。
 NチャネルMOSFET19は、ソースがグランドラインLgに接続され、ドレインがPチャネルMOSFET16のソース及びIGBT1のゲートとの接続点に接続されている。したがって、NチャネルMOSFET18のソースがグランドラインLgを介してIGBT1のエミッタに接続されている。
 切り替え回路5は、レベルシフト回路20及びPチャネルMOSFET14,15を有する。PチャネルMOSFET14は、ソースをPチャネルMOSFET12のゲートに接続し、ボディ端子を電源ラインLpに接続し、ドレインをPチャネルMOSFET16のゲートに接続している。PチャネルMOSFET15は、ソースを電源ラインLpに接続し、ドレインをPチャネルMOSFET14のドレイン及びPチャネルMOSFET16のゲートの接続点に接続している。
 そして、レベルシフト回路20は、入力端子Aに前述した駆動信号Vinを入力するとともに、非反転出力端子B及び反転出力端子BBをPチャネルMOSFET14及び15のゲートに個別に接続している。
 このレベルシフト回路20は、図2に示すように、電源ラインLp及びグランドラインLg間に、PチャネルMOSFET41、抵抗47及びNチャネルMOSFET43の直列回路が接続され、この直列回路と並列に、PチャネルMOSFET42、抵抗48及びNチャネルMOSFET44の直列回路が接続されている。
 そして、PチャネルMOSFET41のゲートをPチャネルMOSFET42のドレインに接続し、同様にPチャネルMOSFET42のゲートをPチャネルMOSFET41のドレインに接続している。また、PチャネルMOSFET41及び42と並列にそれぞれツェナーダイオード45及び46を接続している。
 また、ツェナーダイオード45のアノード及びPチャネルMOSFET41のドレインの接続点から反転出力端子BBを導出し、ツェナーダイオード46のアノード及びPチャネルMOSFET42のドレインの接続点から正転出力端子Bを導出している。さらに、NチャネルMOSFET43及び44のゲートを、論理反転回路49を介して接続し、NチャネルMOSFET43のゲート及び論理反転回路49の接続点を入力端子Aとする。
 このレベルシフト回路20は、入力端子Aに入力される駆動信号がハイレベルである場合には、NチャネルMOSFET43がオン状態となり、NチャネルMOSFET44がオフ状態となる。このため、PチャネルMOSFET42がオン状態となり、PチャネルMOSFET41がオフ状態となる。したがって、正転出力端子Bからハイレベルの出力信号が出力され、反転出力端子BBからローレベルの出力信号が出力される。
 一方、レベルシフト回路20は、駆動信号Vinがローレベルである場合には、NチャネルMOSFET43がオフ状態となり、NチャネルMOSFET44がオン状態となる。このため、PチャネルMOSFET41がオン状態となり、PチャネルMOSFET42がターンオフする。したがって、正転出力端子Bの出力信号がローレベルとなり、反転出力端子BBの出力信号がハイレベルとなる。
 また、電流モード選択回路6は、電源ラインLp及びグランドラインLg間に直列に接続された電源側抵抗31、グランド側抵抗32及び33を有する。また、電流モード選択回路6は、バイパス用のNチャネルMOSFET34をグランド側抵抗33と並列に接続し、このNチャネルMOSFET34のゲートにバッファ35の出力側を接続している。
 一方、前述したPチャネルMOSFET16のドレイン及びIGBT1のゲートとの接続点にゲート電圧検出回路7が接続されている。このゲート電圧検出回路7は、ゲート電圧VgがIGBT1の閾値電圧より十分に高い所定設定電圧Vs(例えば13V)以上となったことを検出するように構成されている。そして、ゲート電圧検出回路7は、Vg<Vsであるときにローレベルのゲート電圧検出信号Vdgを電流モード選択回路6のバッファ35に出力し、Vg≧Vsであるときにハイレベルのゲート電圧検出信号Vdgを電流モード選択回路6のバッファ35に出力する。ここで、ゲート電圧検出回路7の所定設定電圧Vsは、IGBT1が確実にターンオンするゲート電圧である7Vから14.5Vの間に設定することが好ましい。
 したがって、電流モード選択回路6では、ゲート電圧検出回路7で検出したIGBT1のゲート電圧Vgが所定閾値Vs未満(Vg<Vs)であるときには、ゲート電圧検出信号Vdgがローレベルとなることにより、NチャネルMOSFET34がオフ状態を維持している。このため、グランド側抵抗32にグランド側抵抗33が接続された状態となり、電源側抵抗31及びグランド側抵抗32の接続点から出力される参照電圧Vref1は、電源側抵抗31の抵抗値をR1、グランド側抵抗32及び33の抵抗値をそれぞれR2及びR3としたとき下記(1)式で表される。
 Vref1={(R2+R3)/(R1+R2+R3)}Vcc  ………(1)
 一方、IGBT1がターンオンするに十分な所定設定電圧Vs以上のゲート電圧Vgとなると、これがゲート電圧検出回路7で検出されてゲート電圧検出信号Vdgがローレベルとなることにより、NチャネルMOSFET34がターンオフ状態に移行する。このため、NチャネルMOSFET34によってグランド側抵抗R3がバイパスされることになり、グランド側抵抗32がNチャネルMOSFET34を介してグランドラインLgに接続される。したがって、電源側抵抗31及びグランド側抵抗32の接続点から出力される参照電圧Vref2は、下記(2)式で表される。
 Vref2={(R2)/(R1+R2)}Vcc  ………(2)
 この場合、電源電圧Vcc=15V、抵抗31の抵抗値R1=50kΩ、抵抗32の抵抗値R2=2kΩ、抵抗33の抵抗値R3=10kΩ、抵抗22の抵抗値R4=2kΩとしたときに、ゲート電圧検出回路7のゲート電圧検出信号Vdgがローレベルであるときには、参照電圧Vref1=2.90Vとなり、NチャネルMOSFET17を流れるミラー電流I1=1.45mAとなる。
 一方、ゲート電圧検出回路7のゲート電圧検出信号Vdgがハイレベルであるときには、参照電圧Vref2=0.58Vとなり、NチャネルMOSFET17を流れるミラー電流I1=0.29mAとなり、ゲート電圧検出信号Vdgがローレベルである場合のミラー電流の約1/5となる。
 次に、上記第1の実施形態の動作を説明する。
 今、外部の制御装置から、IGBTをオフさせる信号として、駆動信号Vinにハイレベルの信号が入力されることにより、レベルシフト回路20では、正転出力端子Bの出力信号がハイレベルとなり、反転出力端子BBの出力信号がローレベルとなる。なお、駆動信号としてパルス幅変調信号が入力されない場合は、IGBTをオフ状態で保持するために、駆動信号Vinにはハイレベルの信号を入力し続けるものとする。
 このため、PチャネルMOSFET14がオフ状態となり、PチャネルMOSFET15がオン状態となり、PチャネルMOSFET16がオフ状態となる。一方、放電回路ではNチャネルMOSFET19がオン状態となる。したがって、定電流源3を通じてのIGBT1のゲートへの電流注入すなわち充電は行われず、IGBT1のゲートが放電回路4のNチャネルMOSFET19を通じてグランドラインLgに接続されることにより、放電状態を継続し、IGBT1はターンオフ状態となり、あるいはオフ状態を維持する。
 このIGBT1のターンオフ状態から、駆動信号Vinがローレベルとなると、レベルシフト回路の20の正転出力端子Bの出力信号がローレベルとなり、反転出力端子BBの出力信号がハイレベルとなる。このため、PチャネルMOSFET14がオン状態となり、PチャネルMOSFET15がオフ状態となる。これにより、定電流源3でカレントミラー回路が構成されて、PチャネルMOSFET16を通じてミラー電流I11がIGBT1のゲートに注入されて充電が開始される。
 このとき、IGBT1のゲート電圧Vgは所定設定電圧Vsより低いため、ゲート電圧検出回路7から出力されるゲート電圧検出信号Vdgはローレベルを維持する。このため、電流モード選択回路6のNチャネルMOSFET34はオフ状態を維持し、比較的高い参照電圧Vref1(=2.90V)がオペアンプ23の非反転入力端子に供給される。このオペアンプ23の出力信号が比較的高い電圧となるので、NチャネルMOSFET17がオン状態となり、比較的高いミラー電流I1が流れる。したがって、定電流源3がPチャネルMOSFET16からミラー電流I1に応じたk倍の電流kI1をIGBT1のゲートに注入する通常電流モードとなる。これにより、定電流源3を介してIGBT1をターンオンさせることができる。
 このとき、PチャネルMOSFET16を流れる電流kI1がIGBT1のゲート容量に注入されることによりゲート電圧Vgが上昇する。そして、ゲート電圧VgがIGBT1の閾値電圧より十分に高い所定設定電圧Vsに達すると、ゲート電圧検出回路7からハイレベルのゲート電圧検出信号Vdgが出力される。このゲート電圧検出信号Vdgが電流モード選択回路6のバッファ35に供給されるので、NチャネルMOSFET34がオン状態となる。このため、グランド側抵抗33がバイパスされてグランド側抵抗32が直接グランドラインLgに接続される。
 したがって、参照電圧がVref1(=2.90V)からVref2(=0.58V)に低下し、オペアンプ23の出力電圧も低下することから、NチャネルMOSFET17を通じるミラー電流I1が前述したように約1/5に低下する。このため、PチャネルMOSFET16を通じてIGBT1に供給されるk倍のミラー電流kI1も減少する。しかしながら、IGBT1のゲート容量は充電状態を維持するので、オン状態を継続する。
 このとき、IGBT1のターンオン時に、ゲート電圧の立ち上がり時間は駆動信号Vinのスイッチング周期に比べて極めて短いため、ターンオン期間中にゲート電圧が所定設定電圧Vs未満となっている時間は極めて短い。このため、ミラー電流I1の平均値は、ゲート電圧検出回路7のゲート電圧検出信号Vdgがハイレベルとなっているときの0.29mAに略等しくなり、低消費電力モードとすることができる。
 因みに、ゲート電圧検出回路7及び電流モード選択回路6を備えていない従来例の場合には、ミラー電流I1はIGBT1のターンオン期間中1.45mAが流れ続けることになり、駆動回路の消費電流が高い状態を維持する。
 しかしながら、本実施形態では、IGBT1のターンオン期間中に、1.45mA-0.29mA=1.16mA分の消費電流を低減させることが可能となる。ターンオン期間は駆動信号Vinの積算時間のおよそ半分となるため、通常スイッチング状態では、1.16mA/2=0.58mA程度の消費電流を削減することができる。
 一方、駆動信号Vinがハイレベルになると、レベルシフト回路20の正転出力端子Bから出力される出力信号はハイレベルになるとともに、反転出力端子BBから出力される出力信号はローレベルとなる。このため、PチャネルMOSFET14はオフ状態となるとともに、PチャネルMOSFET15はオン状態となり、PチャネルMOSFET16はオフ状態となり、IGBT1への電流kI1の注入が停止される。
 これと同時に、放電回路4のバッファ18にハイレベルの駆動信号Vinが入力されているので、この放電回路4のNチャネルMOSFET19がオン状態となる。この結果、IGBT1のゲートの電荷がPチャネルMOSFET19を通じてグランドラインLgに引き抜かれることになり、放電状態となって、ゲート電圧が低下し、IGBT1がターンオフされる。
 このように、上記第1の実施形態によると、IGBT1をターンオンさせる際に、ゲート電圧VgがIGBT1をターンオンさせる閾値電圧より十分に高い所定設定電圧Vs未満であるときには、電流モード選択回路6で高い参照電圧Vref1をオペアンプ23に供給して、定電流源3のミラー電流I1を通常電流値に設定して定電流源3を通常電流モードとする。その後、ゲート電圧Vgが所定設定電圧Vsに達したときには、電流モード選択回路6で低い参照電圧Vref2をオペアンプ23に供給して、定電流源3のミラー電流I1を通常電流値の約1/5に低下させて定電流源3を低消費電流モードとする。この結果、IGBT1のターンオン時間を速めながら駆動回路の消費電流を低減することができる。
 また、定電流源3におけるPチャネルMOSFET11と抵抗22との間にPチャネルMOSFET13を適用することにより、IGBT1のゲート電位がグランド電位から電源電位Vccに変化すると、IGBT21のゲート電位と略同じ電圧をPチャネルMOSFET11のドレインに印加することが可能となり、PチャネルMOSFET11,16のカレントミラーの電流バランスを維持することが可能となる。このため、IGBT1のゲート電位(駆動回路のOUT端子電圧)によることなくPチャネルMOSFET16を流れる電流の大きさを一定に保つことができる。
 また、定電流源3を、定電流を検出する第1のトランジスタとなるPチャネルMOSFET11と定電流を制御する第2のトランジスタとなるPチャネルMOSFET12とを設ける構成とすることにより、安定した定電流を発生することができる。
 さらに、電流モード選択回路6を分圧抵抗31~33とスイッチング素子34とで構成することにより、ゲート電圧検出信号Vdgに基づく参照電圧Vrefの変更を容易に行うことができる。
 次に、本発明の第2の実施形態を図3について説明する。
 この第2の実施形態では、前述した第1の実施形態において、第2及び第4のトランジスタとなるPチャネルMOSFET12及び13を省略して定電流源の構成を簡略化したものである。
 すなわち、第2の実施形態では、前述した第1の実施形態における図1の構成において、第2及び第4のトランジスタとなるPチャネルMOSFET12及び13が省略されている。また、オペアンプ23の出力信号がゲートに入力されるNチャネルMOSFET17を第1のトランジスタとなるPチャネルMOSFET11と抵抗22との間に接続している。その他の構成は、前述した図1と同様の構成を有し、図1との対応部分には同一符号を付し、その詳細説明はこれを省略する。
 また、電流モード選択回路6では、電源電圧Vcc=15V、抵抗31の抵抗値R1=20kΩ、抵抗32の抵抗値R2=1kΩ、抵抗33の抵抗値R3=5kΩ、抵抗22の抵抗値R4=3kΩとしたときに、ゲート電圧検出回路7のゲート電圧検出信号Vdgがローレベルであるときには、前記(1)式により、参照電圧Vref1=3.46Vとなり、NチャネルMOSFET17を流れるミラー電流I1=1.15mAとなる。
 一方、ゲート電圧検出回路7のゲート電圧検出信号Vdgがハイレベルであるときには、前記(2)式により参照電圧Vref2=0.71Vとなり、NチャネルMOSFET17を流れるミラー電流I1=0.24mAとなり、ゲート電圧検出信号Vdgがローレベルである場合のミラー電流の約1/5となる。
 この第2の実施形態によると、今、外部の制御装置から例えばパルス幅変調(PWM)信号でなる駆動信号Vinが入力されていない場合には、駆動信号Vinがハイレベルを維持することにより、レベルシフト回路20では、正転出力端子Bの出力信号がハイレベルとなり、反転出力端子BBの出力信号がローレベルとなる。
 このため、PチャネルMOSFET14がオフ状態となり、PチャネルMOSFET15がオン状態となり、PチャネルMOSFET16がオフ状態となる。一方、放電回路4ではNチャネルMOSFET19がオン状態となる。
 したがって、定電流源3を通じてのIGBT1のゲートへの電流注入(充電)は行われず、IGBT1のゲートが放電回路4のNチャネルMOSFET19を通じてグランドラインLgに接続されることにより、放電状態を継続し、IGBT1はオフ状態を維持する。
 このIGBT1のオフ状態から、駆動信号Vinがローレベルとなると、レベルシフト回路の20の正転出力端子Bの出力信号がローレベルとなり反転出力端子BBの出力信号がハイレベルとなる。このため、PチャネルMOSFET14がオン状態となり、PチャネルMOSFET15がオフ状態となる。これにより、定電流源3でカレントミラー回路が構成されて、PチャネルMOSFET16を通じてミラー電流I11がIGBT1のゲートに供給されて電流の注入すなわち充電が開始される。
 このとき、IGBT1のゲート電圧Vgは所定閾値電圧Vsより低いため、ゲート電圧検出回路7から出力されるゲート電圧検出信号Vdgはローレベルを維持する。このため、電流モード選択回路6のNチャネルMOSFET34はオフ状態を維持し、比較的高い参照電圧Vref1(=3.46V)がオペアンプ23の非反転入力端子に供給される。このオペアンプ23の出力信号が比較的高い電圧となるので、NチャネルMOSFET17がオン状態となり、比較的高いミラー電流I1(=1.15mA)が流れる。したがって、PチャネルMOSFET16からミラー電流I1に応じたk倍の電流kI1がIGBT1のゲートに注入される。これにより、定電流源3を介してIGBT1をターンオンさせる。
 このとき、PチャネルMOSFET16を流れる電流kI1がIGBT1のゲート容量に注入されることによりゲート電圧Vgが上昇し、IGBT1の閾値電圧より十分に高い所定設定電圧Vsに達すると、ゲート電圧検出回路7からハイレベルのゲート電圧検出信号Vdgが出力される。このゲート電圧検出信号Vdgが電流モード選択回路6のバッファ35に供給されるので、NチャネルMOSFET34がオン状態となる。このため、グランド側抵抗33がバイパスされてグランド側抵抗32が直接グランドラインLgに接続される。
 これに応じて、参照電圧がVref1(=3.46V)からVref2(=0.71V)に低下し、オペアンプ23の出力電圧も低下することから、NチャネルMOSFET17を通じるミラー電流I1が前述したように約1/5に低下する。このため、PチャネルMOSFET16を通じてIGBT1に供給されるk倍のミラー電流kI1も減少する。しかしながら、IGBT1のゲート容量は充電状態を維持するので、オン状態を継続する。
 このとき、IGBT1のターンオン時に、ゲート電圧の立ち上がり時間は駆動信号Vinのスイッチング周期に比べて極めて短いため、ターンオン期間中にゲート電圧が所定設定電圧Vs未満となっている時間は極めて短い。このため、ミラー電流I1の平均値は、ゲート電圧検出回路7のゲート電圧検出信号Vdgがハイレベルとなっているときの0.24mAに略等しくなり、低消費電力モードとすることができる。
 因みに、ゲート電圧検出回路7及び電流モード選択回路6を備えていない従来例の場合には、ミラー電流I1はIGBT1のターンオン期間中1.15mAが流れ続けることになり、駆動回路の消費電流が高い状態を維持する。
 しかしながら、本実施形態では、IGBT1のターンオン期間中に、1.15mA-0.24mA=0.91mA分の消費電流を低減させることが可能となる。ターンオン期間は駆動信号Vinの積算時間のおよそ半分となるため、通常スイッチング状態では、0.91mA/2=0.455mA程度の消費電流を削減することができる。
 一方、駆動信号Vinがハイレベルになると、レベルシフト回路20の正転出力端子Bから出力される出力信号はハイレベルになるとともに、反転出力端子BBから出力される出力信号はローレベルとなる。このため、PチャネルMOSFET14はオフ状態となるとともに、PチャネルMOSFET15はオン状態となり、PチャネルMOSFET16はオフ状態となって、IGBT1への電流kI1の注入が停止される。
 これと同時に、放電回路4のバッファ18にハイレベルの駆動信号Vinが入力されているので、この放電回路4のNチャネルMOSFET19がオン状態となる。この結果、IGBT1のゲートの電荷がPチャネルMOSFET19を通じてグランドラインLgに引き抜かれることになり、放電状態となって、ゲート電圧が低下し、IGBT1がターンオフされる。
 このように、上記第2の実施形態によれば、IGBT1をターンオンさせる際に、ゲート電圧VgがIGBT1をターンオンさせる閾値電圧より十分に高い所定設定電圧Vs未満であるときには、電流モード選択回路6で高い参照電圧Vref1をオペアンプ23に供給して、定電流源3のミラー電流I1を通常電流値に設定して定電流源3を通常電流モードとする。その後、ゲート電圧Vgが所定設定電圧Vsに達したときには、電流モード選択回路6で低い参照電圧Vref2をオペアンプ23に供給して、定電流源3のミラー電流I1を通常電流値の約1/5に低下させて定電流源3を低消費電流モードとする。この結果、IGBT1のターンオン時間を速めながら駆動回路全体の消費電流を低減することができる。
 なお、上記第1及び第2の実施形態においては、絶縁ゲート型スイッチング素子としてIGBT1を適用した場合について説明したが、これに限定されるものではなく、MOSFET等の他の絶縁ゲート型スイッチング素子を適用するようにしてもよい。
 また、上記第1及び第2の実施形態においては、通常電流モードの電流値に比較して低消費モードの電流値を約1/5に低減した場合について説明したが、これに限定されるものではなく、絶縁ゲート型スイッチング素子のゲート電圧Vgが所定設定電圧Vs以上となったときに、定電流源3の電流値を20分の1から2分の1の間の値に低下させるようにすればよいものである。ここで、定電流源3の低消費電流モードの電流値を通常電流モードの20分1未満とすると、絶縁ゲート型スイッチング素子のゲートに与える電流値が少なすぎてターンオン状態を維持することが困難となり、2分の1未満とすると消費電流の低減効果が少ない。
 また、上記第1及び第2の実施形態においては、定電流源3、放電回路4、切り替え回路5及び電流モード選択回路6の能動素子としてMOSFETを適用した場合について説明したが、これに限定されるものではなく、FETやバイポーラトランジスタ等の任意の能動素子を適用することができる。
 本発明によれば、絶縁ゲート型スイッチング素子のゲート電圧がターンオン状態となる所定電圧に達するまでは定電流源を通常電流モードとしてターンオン時間を速め、ゲート電圧がターンオン状態となる所定電圧に達したら定電流源を低消費電流モードとして駆動回路の消費電流を抑制することができる絶縁ゲート型スイッチング素子の駆動回路を提供できる。
 1…IGBT、2…駆動回路、3…定電流源、4…放電回路、5…切り替え回路、6…電流モード選択回路、7…ゲート電圧検出回路、11~16…PチャネルMOSFET、17,18,34…NチャネルMOSFET、20…レベルシフト回路、23…オペアンプ、31…電源側抵抗、32,33…グランド側抵抗

Claims (7)

  1.  定電流を発生させる定電流源と、
     ターンオン時に前記定電流源を介して絶縁ゲート型スイッチング素子のゲートを電源電位側に接続するとともに、ターンオフ時に放電回路を介して前記絶縁ゲート型スイッチング素子のゲートを基準電位側に接続する切り替え回路と、
     前記絶縁ゲート型スイッチング素子のゲート電圧を検出するゲート電圧検出回路と、
     該ゲート電圧検出回路で検出したゲート電圧に基づいて前記絶縁ゲート型スイッチング素子のターンオンを検出したときに、前記定電流源を通常電流モードから低消費電流モードに切り替える電流モード選択回路と
     を備えたことを特徴とする絶縁ゲート型スイッチング素子の駆動回路。
  2.  前記定電流源は、ドレイン側に抵抗が接続された第1のトランジスタと、該第1のトランジスタとカレントミラーを構成し、前記抵抗の端子電圧と参照電圧とで定まる定電流を発生させる第2のトランジスタと、該第2のトランジスタとカレントミラー接続され、前記絶縁ゲート型スイッチング素子のゲートにドレインが接続された第3のトランジスタとを備えていることを特徴とする請求項1に記載の絶縁ゲート型スイッチング素子の駆動回路。
  3.  前記定電流源は、ドレイン側に抵抗が接続された第1のトランジスタと、該第1のトランジスタ及び前記抵抗間に接続された前記抵抗の端子電圧と参照電圧とで定まる定電流を発生させる第4のトランジスタと、前記第1のトランジスタとカレントミラーを構成し、前記絶縁ゲート型スイッチング素子のゲートにドレインが接続された第3のトランジスタとを備えていることを特徴とする請求項1に記載の絶縁ゲート型スイッチング素子の駆動回路。
  4.  前記電流モード選択回路は、前記ゲート電圧検出回路で検出したゲート電圧が所定値未満であるときに前記参照電圧を通常電圧に設定し、前記ゲート電圧検出回路で検出したゲート電圧が所定値以上であるときに前記参照電圧を前記通常電圧より低い低消費モード用電圧に設定することを特徴とする請求項1乃至3の何れか1項に記載の絶縁ゲート型スイッチング素子の駆動回路。
  5.  前記電流モード選択回路は、正の電源及びグランド間に接続された電源側抵抗及びグランド側抵抗を有する分圧抵抗を有し、前記ゲート電圧検出回路で検出したゲート電圧が所定値未満であるときにグランド側分圧抵抗値を通常値に設定し、前記ゲート電圧検出回路で検出したゲート電圧が所定値以上であるときに前記グランド側分圧抵抗値を前記通常値より小さい低消費モード用抵抗値に設定することを特徴とする請求項1乃至3の何れか1項に記載の絶縁ゲート型スイッチング素子の駆動回路。
  6.  前記ゲート電圧検出回路は、前記絶縁ゲート型スイッチング素子のゲート電圧によって異なるレベルの信号を出力する閾値が、当該絶縁ゲート型スイッチング素子のゲート電圧7V乃至14.5Vであることを特徴とする請求項1乃至3の何れか1項に記載の絶縁ゲート型スイッチング素子の駆動回路。
  7.  前記ゲート電圧検出回路は、前記絶縁ゲート型スイッチング素子のゲート電圧が前記閾値を超えたときに、前記定電流源の電流値を20分の1から2分の1の間の値に低下させることを特徴とする請求項6に記載の絶縁ゲート型スイッチング素子の駆動回路。
PCT/JP2012/002425 2011-05-11 2012-04-06 絶縁ゲート型スイッチング素子の駆動回路 WO2012153459A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280001978.9A CN103004092B (zh) 2011-05-11 2012-04-06 绝缘栅开关元件的驱动电路
JP2013513908A JP5516825B2 (ja) 2011-05-11 2012-04-06 絶縁ゲート型スイッチング素子の駆動回路
US13/738,100 US9246474B2 (en) 2011-05-11 2013-01-10 Drive circuit for insulated gate switching element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-106182 2011-05-11
JP2011106182 2011-05-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/738,100 Continuation US9246474B2 (en) 2011-05-11 2013-01-10 Drive circuit for insulated gate switching element

Publications (1)

Publication Number Publication Date
WO2012153459A1 true WO2012153459A1 (ja) 2012-11-15

Family

ID=47138952

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/002425 WO2012153459A1 (ja) 2011-05-11 2012-04-06 絶縁ゲート型スイッチング素子の駆動回路

Country Status (4)

Country Link
US (1) US9246474B2 (ja)
JP (1) JP5516825B2 (ja)
CN (1) CN103004092B (ja)
WO (1) WO2012153459A1 (ja)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104052443A (zh) * 2013-03-11 2014-09-17 株式会社电装 栅极驱动电路
JP2015231180A (ja) * 2014-06-06 2015-12-21 トヨタ自動車株式会社 駆動回路及び半導体装置
KR20160021847A (ko) * 2013-06-24 2016-02-26 미쓰비시덴키 가부시키가이샤 파워 반도체소자의 구동 회로
JP2016220101A (ja) * 2015-05-22 2016-12-22 株式会社デンソー パワートランジスタ駆動装置
KR101746300B1 (ko) 2015-04-16 2017-06-12 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드 공급 부스트 디바이스
JP2017188977A (ja) * 2016-04-01 2017-10-12 ルネサスエレクトロニクス株式会社 半導体装置
JP2018064339A (ja) * 2016-10-11 2018-04-19 新電元工業株式会社 パワーモジュール
NL2020745A (en) 2017-04-25 2018-10-29 Shindengen Electric Mfg Switching element control circuit and power module
US10979043B2 (en) 2017-09-21 2021-04-13 Shindengen Electric Manufacturing Co., Ltd. Switching element control circuit and power module
US11031932B2 (en) 2017-12-22 2021-06-08 Shindengen Electric Manufacturing Co., Ltd. Power module
US11088686B2 (en) 2017-12-19 2021-08-10 Shindengen Electric Manufacturing Co., Ltd. Semiconductor module
JP2021190939A (ja) * 2020-06-03 2021-12-13 株式会社東芝 電子回路およびインバータ
US11289993B2 (en) 2017-09-25 2022-03-29 Shindengen Electric Manufacturing Co., Ltd. Switching element control circuit and power module
US11323032B2 (en) 2017-12-28 2022-05-03 Shindengen Electric Manufacturing Co., Ltd. Plural power modules conversion device with switch element control
US11381149B2 (en) 2017-09-25 2022-07-05 Shindengen Electric Manufacturing Co., Ltd. Switching element control circuit and power module
US11448684B2 (en) 2017-12-22 2022-09-20 Shindengen Electric Manufacturing Co., Ltd. Power module
US12021511B2 (en) 2022-03-17 2024-06-25 Fuji Electric Co., Ltd. Drive circuit of switching element and intelligent power module

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103430310A (zh) * 2010-12-20 2013-12-04 达尔捷特科半导体有限公司 具有提高的切换速度及提高的交叉控制及增加的输出电压的互补达林顿射极跟随器
JP6089599B2 (ja) * 2012-11-01 2017-03-08 富士電機株式会社 絶縁ゲート型半導体素子の駆動装置
EP3010152B1 (en) * 2013-06-14 2018-11-14 Fuji Electric Co., Ltd. Gate-driving circuit
US9322852B2 (en) 2014-07-15 2016-04-26 Ford Global Technologies, Llc Gate drive under-voltage detection
JP6332451B2 (ja) * 2014-07-17 2018-05-30 富士電機株式会社 電圧制御型デバイスの駆動回路
US20160248422A1 (en) * 2015-02-24 2016-08-25 Infineon Technologies Austria Ag Switching circuit, semiconductor switching arrangement and method
GB2545445A (en) * 2015-12-16 2017-06-21 General Electric Technology Gmbh Voltage balancing of voltage source converters
CN106451391A (zh) * 2016-11-21 2017-02-22 广东美的制冷设备有限公司 过流保护外围电路和用电设备
CN106786440A (zh) * 2016-12-28 2017-05-31 广东美的制冷设备有限公司 过流保护电路、电机和空调器
CN106786438A (zh) * 2016-12-28 2017-05-31 广东美的制冷设备有限公司 过流保护电路、电机和空调器
CN106711978B (zh) * 2017-01-06 2019-07-30 广东美的制冷设备有限公司 可调式ipm模块的过流保护电路、方法及空调器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11346147A (ja) * 1998-06-02 1999-12-14 Nec Corp スルーレート出力回路
JP2008103895A (ja) * 2006-10-18 2008-05-01 Fuji Electric Device Technology Co Ltd 絶縁ゲート型デバイスの駆動回路
JP2010045759A (ja) * 2008-07-18 2010-02-25 Denso Corp 駆動トランジスタ制御回路

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06119070A (ja) * 1992-10-02 1994-04-28 Nippon Philips Kk 定電流回路
JP3271738B2 (ja) * 1995-12-27 2002-04-08 株式会社沖データ データ転送装置
US5796278A (en) * 1996-04-26 1998-08-18 Delco Electronics Corporaiton Circuitry for controlling load current
JP4003994B2 (ja) 1998-07-24 2007-11-07 ミヤチテクノス株式会社 固体レーザ装置
JP2001068948A (ja) * 1999-08-27 2001-03-16 Hitachi Kokusai Electric Inc Mosfet増幅回路
JP4667594B2 (ja) * 2000-12-25 2011-04-13 ルネサスエレクトロニクス株式会社 薄膜磁性体記憶装置
JP3957150B2 (ja) * 2001-02-08 2007-08-15 セイコーインスツル株式会社 Led駆動回路
US6545513B2 (en) * 2001-05-17 2003-04-08 Denso Corporation Electric load drive apparatus
JP2005260752A (ja) 2004-03-12 2005-09-22 Sharp Corp パルス発生回路、および、それを用いた光検出装置
US7256371B2 (en) * 2004-03-22 2007-08-14 Integrated Electronic Solutions Pty Ltd. Temperature control method for positive temperature coefficient type heating element
JP4520241B2 (ja) * 2004-07-29 2010-08-04 パナソニック株式会社 半導体装置およびカメラ
JPWO2006059438A1 (ja) * 2004-11-30 2008-06-05 ローム株式会社 電圧生成回路、定電流回路および発光ダイオード駆動回路
JP4556833B2 (ja) * 2005-10-18 2010-10-06 パナソニック株式会社 ゲートドライバおよびそのゲートドライバを含むモータ駆動装置
JP4338721B2 (ja) * 2006-08-22 2009-10-07 株式会社日立製作所 電力変換装置及びその異常検出方法
US7821306B2 (en) * 2007-06-19 2010-10-26 Panasonic Corporation Switching device drive circuit
JP5138287B2 (ja) * 2007-06-27 2013-02-06 三菱電機株式会社 ゲート駆動装置
JP4755153B2 (ja) * 2007-08-23 2011-08-24 株式会社リコー 充電回路
JP4954290B2 (ja) * 2007-10-02 2012-06-13 三菱電機株式会社 ゲート駆動回路
US8138819B2 (en) 2008-07-18 2012-03-20 Denso Corporation Driving transistor control circuit
TWI397034B (zh) * 2008-10-29 2013-05-21 Richtek Technology Corp 改善led顯示系統效能的電流調節器及方法
JP5487637B2 (ja) * 2009-02-13 2014-05-07 富士ゼロックス株式会社 露光装置、画像形成装置、及び露光制御プログラム
US8633755B2 (en) * 2010-11-22 2014-01-21 Denso Corporation Load driver with constant current variable structure
JP5938852B2 (ja) * 2011-05-25 2016-06-22 富士電機株式会社 電圧制御型スイッチング素子のゲート駆動回路

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11346147A (ja) * 1998-06-02 1999-12-14 Nec Corp スルーレート出力回路
JP2008103895A (ja) * 2006-10-18 2008-05-01 Fuji Electric Device Technology Co Ltd 絶縁ゲート型デバイスの駆動回路
JP2010045759A (ja) * 2008-07-18 2010-02-25 Denso Corp 駆動トランジスタ制御回路

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104052443A (zh) * 2013-03-11 2014-09-17 株式会社电装 栅极驱动电路
CN104052443B (zh) * 2013-03-11 2018-08-21 株式会社电装 栅极驱动电路
KR20160021847A (ko) * 2013-06-24 2016-02-26 미쓰비시덴키 가부시키가이샤 파워 반도체소자의 구동 회로
KR101706901B1 (ko) 2013-06-24 2017-02-14 미쓰비시덴키 가부시키가이샤 파워 반도체소자의 구동 회로
JP2015231180A (ja) * 2014-06-06 2015-12-21 トヨタ自動車株式会社 駆動回路及び半導体装置
US9559668B2 (en) 2014-06-06 2017-01-31 Toyota Jidosha Kabushiki Kaisha Drive circuit and semiconductor apparatus
KR101746300B1 (ko) 2015-04-16 2017-06-12 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드 공급 부스트 디바이스
JP2016220101A (ja) * 2015-05-22 2016-12-22 株式会社デンソー パワートランジスタ駆動装置
CN107615664A (zh) * 2015-05-22 2018-01-19 株式会社电装 功率晶体管驱动装置
JP2017188977A (ja) * 2016-04-01 2017-10-12 ルネサスエレクトロニクス株式会社 半導体装置
JP2018064339A (ja) * 2016-10-11 2018-04-19 新電元工業株式会社 パワーモジュール
DE112017007476T5 (de) 2017-04-25 2020-01-02 Shindengen Electric Manufacturing Co., Ltd. Schaltelement-Steuerschaltung und Leistungsmodul
NL2020745A (en) 2017-04-25 2018-10-29 Shindengen Electric Mfg Switching element control circuit and power module
US10879892B2 (en) 2017-04-25 2020-12-29 Shindengen Electric Manufacturing Co., Ltd. Switching element control circuit and power module
US10979043B2 (en) 2017-09-21 2021-04-13 Shindengen Electric Manufacturing Co., Ltd. Switching element control circuit and power module
US11289993B2 (en) 2017-09-25 2022-03-29 Shindengen Electric Manufacturing Co., Ltd. Switching element control circuit and power module
US11381149B2 (en) 2017-09-25 2022-07-05 Shindengen Electric Manufacturing Co., Ltd. Switching element control circuit and power module
US11088686B2 (en) 2017-12-19 2021-08-10 Shindengen Electric Manufacturing Co., Ltd. Semiconductor module
US11031932B2 (en) 2017-12-22 2021-06-08 Shindengen Electric Manufacturing Co., Ltd. Power module
US11448684B2 (en) 2017-12-22 2022-09-20 Shindengen Electric Manufacturing Co., Ltd. Power module
US11323032B2 (en) 2017-12-28 2022-05-03 Shindengen Electric Manufacturing Co., Ltd. Plural power modules conversion device with switch element control
JP2021190939A (ja) * 2020-06-03 2021-12-13 株式会社東芝 電子回路およびインバータ
JP7495817B2 (ja) 2020-06-03 2024-06-05 株式会社東芝 電子回路およびインバータ
US12021511B2 (en) 2022-03-17 2024-06-25 Fuji Electric Co., Ltd. Drive circuit of switching element and intelligent power module

Also Published As

Publication number Publication date
JP5516825B2 (ja) 2014-06-11
US20130147525A1 (en) 2013-06-13
US9246474B2 (en) 2016-01-26
CN103004092A (zh) 2013-03-27
JPWO2012153459A1 (ja) 2014-07-31
CN103004092B (zh) 2016-10-26

Similar Documents

Publication Publication Date Title
JP5516825B2 (ja) 絶縁ゲート型スイッチング素子の駆動回路
US8729929B2 (en) Gate driving circuit
US8981689B2 (en) Driver for switching element and control system for rotary machine using the same
US7592853B2 (en) Drive circuit for insulated gate device
US8487602B2 (en) Switch driving circuit and driving method thereof
US7969206B2 (en) Semiconductor element drive circuit
KR101541632B1 (ko) 반도체 스위치 소자의 구동 장치
JP5794246B2 (ja) ゲート駆動回路
US7777437B2 (en) Switching control system and motor driving system
KR101069485B1 (ko) 모터 구동 회로
JP2007228769A (ja) パワー半導体スイッチング素子の駆動回路
JP4420012B2 (ja) 過電流保護回路
JP5229495B2 (ja) スイッチング装置及びその制御方法
JP2007259657A (ja) モータ駆動回路
US10365679B2 (en) Regenerative current detection circuit, charge current detection circuit, and motor current detection system
US8917065B2 (en) Photocoupler output signal receiving circuit
JP2010062860A (ja) スイッチング素子駆動回路
JP5469228B1 (ja) スイッチ素子駆動装置
US20150049531A1 (en) Driving device
JP5133648B2 (ja) 電圧制御形スイッチングデバイスのゲート駆動装置
JP6758486B2 (ja) 半導体素子の駆動装置および電力変換装置
JP2016213659A (ja) 半導体スイッチ回路
JP5382702B2 (ja) ドライバ回路
JP2013258549A (ja) ドライバ回路
JP2013214875A (ja) 半導体装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280001978.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12781776

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013513908

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12781776

Country of ref document: EP

Kind code of ref document: A1