WO2012150716A1 - 難燃性樹脂組成物及び成形物品 - Google Patents

難燃性樹脂組成物及び成形物品 Download PDF

Info

Publication number
WO2012150716A1
WO2012150716A1 PCT/JP2012/061594 JP2012061594W WO2012150716A1 WO 2012150716 A1 WO2012150716 A1 WO 2012150716A1 JP 2012061594 W JP2012061594 W JP 2012061594W WO 2012150716 A1 WO2012150716 A1 WO 2012150716A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
ethylene
resin composition
component
flame
Prior art date
Application number
PCT/JP2012/061594
Other languages
English (en)
French (fr)
Inventor
西口 雅己
宏樹 千葉
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Priority to CN2012800153434A priority Critical patent/CN103459487A/zh
Priority to JP2013513091A priority patent/JP5863781B2/ja
Priority to DE112012001964.4T priority patent/DE112012001964T5/de
Publication of WO2012150716A1 publication Critical patent/WO2012150716A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0807Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/26Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/441Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from alkenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/448Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from other vinyl compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/29Protection against damage caused by extremes of temperature or by flame
    • H01B7/295Protection against damage caused by extremes of temperature or by flame using material resistant to flame
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene

Definitions

  • the present invention relates to a flame retardant resin composition excellent in heat resistance, flame retardancy and mechanical properties.
  • the present invention also relates to a molded article having excellent heat resistance, flame retardancy and mechanical properties using the same.
  • insulated wires, cables, cords, optical fiber cores, optical fiber cords, etc. used for internal and external wiring of electrical and electronic equipment have flexibility and heat resistance in addition to flame resistance and mechanical properties. Various characteristics are required. Similarly, sheets and tubes are required to have flexibility and heat resistance in addition to flame retardancy and mechanical properties.
  • Standard for flame retardancy and mechanical properties for example, tensile properties
  • the test method is further determined according to the application.
  • UL 1581 Vertical Flame Test
  • VW-1 Vertical Flame Test
  • UL 1581 Reference Standard for Electrical Wires, Cables and Flexible Cords
  • JIS C 3005 Examples include horizontal tests and tilt tests specified in (Rubber / Plastic Insulated Wire Test Methods).
  • a resin component containing a block copolymer having an alkyl methacrylate and an alkyl acrylate as constituent components is proposed in which a metal hydrate is contained (see, for example, Patent Document 2).
  • mechanical properties such as tensile properties and wear resistance, wear resistance, and oil resistance may be significantly reduced.
  • ⁇ Molded articles such as electric wires are required to have heat deformation resistance at high temperatures as heat resistance.
  • a molded article using a conventional PVC material has heat deformation resistance at 120 ° C. or higher, whereas a molded article using a non-halogen flame-retardant resin composition has poor heat resistance, and heat deformation resistance is It was insufficient.
  • the present invention solves the above-mentioned problems, is excellent in flame retardancy, mechanical properties, oil resistance and wear resistance, and further has excellent thermal deformation (heat deformation resistance) at high temperatures. It is another object of the present invention to provide a molded article. More particularly, the present invention has a sufficient heat aging characteristic without impairing a high degree of flame retardancy and wear resistance, does not whiten even when bent, is not easily damaged, and has excellent oil resistance. It is an object to provide a conductive resin composition. Another object of the present invention is to provide a molded article such as a wiring material, a sheet, and a tube having a high degree of flame resistance and wear resistance, sufficient heat resistance, and excellent mechanical properties and oil resistance. It is what.
  • an unmodified ethylene- ⁇ -olefin copolymer having a density of a specific value or higher and an ethylene- ⁇ -olefin copolymer modified with an unsaturated carboxylic acid The resin composition containing magnesium hydroxide as a non-halogen flame retardant is excellent in flame retardancy, mechanical properties, oil resistance and wear resistance, and is excellent in thermal deformation at high temperatures. I found. The present invention has been made based on this finding.
  • ⁇ 1> (a) 5% by mass to 70% by mass of unmodified ethylene- ⁇ -olefin copolymer having a density of 903 kg / m 3 or more, (b) ethylene- ⁇ -modified with an unsaturated carboxylic acid 7% by mass or more and 70% by mass or less of an olefin copolymer, (c) 0% by mass or more and 35% by mass or less of an unmodified ethylene- ⁇ -olefin copolymer having a density of less than 903 kg / m 3 , and (d) polypropylene A flame-retardant resin composition containing 100 parts by mass or more and 280 parts by mass or less of magnesium hydroxide (B) with respect to 100 parts by mass of a resin component (A) composed of 0% by mass to 50% by mass of resin.
  • the flame-retardant resin composition according to ⁇ 1> wherein the content of the (d) polypropylene resin in the resin component (A) is 10% by mass or more and 50% by mass or less.
  • the flame-retardant resin composition according to ⁇ 1> or ⁇ 2> wherein the content of the (d) polypropylene resin in the resin component (A) is 25% by mass or less and 50% by mass or less.
  • ⁇ 4> The item ⁇ 1> to ⁇ 3>, wherein the ethylene- ⁇ -olefin copolymer modified with the unsaturated carboxylic acid (b) includes a copolymer having a density of 903 kg / m 3 or more.
  • ⁇ 5> The item (1) to (4), wherein the ethylene- ⁇ -olefin copolymer modified with (b) an unsaturated carboxylic acid is modified with maleic anhydride.
  • the flame retardant resin composition according to any one of ⁇ 1> to ⁇ 5>, which is contained in an amount of 10% by mass or less.
  • ⁇ 7> The above ⁇ 1> to ⁇ 1>, wherein the magnesium hydroxide (B) is at least one selected from the group consisting of untreated magnesium hydroxide and magnesium hydroxide surface-treated with a silane coupling agent.
  • ⁇ 8> A molded article comprising the flame retardant resin composition according to any one of ⁇ 1> to ⁇ 7> as a coating layer on an outer periphery of a conductor.
  • ⁇ 9> A molded article molded using the flame retardant resin composition according to any one of ⁇ 1> to ⁇ 8>.
  • the present invention can provide a flame retardant resin composition and a molded article that are excellent in flame retardancy, mechanical properties, oil resistance, and abrasion resistance, and further excellent in thermal deformation (heat distortion resistance) at high temperatures. .
  • the flame-retardant resin composition of the present invention comprises (a) 5% by mass to 70% by mass of an unmodified ethylene- ⁇ -olefin copolymer having a density of 903 kg / m 3 or more, and (b) an unsaturated carboxylic acid.
  • the component (a) ethylene- ⁇ -olefin copolymer include a copolymer of ethylene and an ⁇ -olefin having 4 to 12 carbon atoms.
  • Specific examples of the ⁇ -olefin include 1-butene, 1-hexene, 4-methyl-1-pentene, 1-octene, 1-decene, 1-dodecene and the like.
  • the component (a) does not include a copolymer of ethylene and propylene.
  • ethylene- ⁇ -olefin copolymer include LLDPE (linear low density polyethylene), LDPE (low density polyethylene), VLDPE (very low density polyethylene), EPR (ethylene propylene rubber), EBR (ethylene- 1-butene rubber), and ethylene- ⁇ -olefin copolymers synthesized in the presence of a metallocene catalyst.
  • LLDPE linear low density polyethylene
  • LDPE low density polyethylene
  • VLDPE very low density polyethylene
  • EPR ethylene propylene rubber
  • EBR ethylene- 1-butene rubber
  • an ethylene- ⁇ -olefin copolymer synthesized in the presence of a metallocene catalyst is preferable.
  • the optional resin component may include (c) an unmodified ethylene- ⁇ -olefin copolymer having a density of less than 903 kg / m 3.
  • the resin composition excellent in heat resistance, abrasion resistance, oil resistance, and workability can be obtained.
  • the thing excellent in press contact property can be obtained. If this amount is too small, the oil resistance, wear resistance, and pressure contact properties will be reduced.
  • the content of the component (a) in the resin component (A) is preferably 8% by mass or more, preferably 55% by mass or less, more preferably 50% by mass or less, preferably 5 to 55% by mass, and 8 to 50% by mass. Is more preferable.
  • the density of the component (a) may be 903 kg / m 3 or more. However, if the density is too large, the elongation characteristics, the low temperature characteristics, and the heat aging characteristics are significantly deteriorated. For this reason, it is preferable that the density of (a) component is 940 kg / m ⁇ 3 > or less. More preferably, it is 935 kg / m 3 or less.
  • Molded products including electric wires are required to have heat deformation resistance.
  • an unmodified ethylene- ⁇ -olefin copolymer having a density of 903 kg / m 3 or more By using an unmodified ethylene- ⁇ -olefin copolymer having a density of 903 kg / m 3 or more, a certain degree of heat deformation resistance can be maintained.
  • a polypropylene resin as the component (d) described later higher heat deformation resistance can be maintained, and oil resistance can be largely maintained.
  • a specific amount of unmodified ethylene- ⁇ -olefin copolymer having a density of 903 kg / m 3 or more the wire is twisted when the wire is wound around a bobbin while maintaining the pressure welding processability of the wire. Can be minimized, and the cause of problems in processing using the electric wire can be reduced.
  • the polypropylene resin as the component (d) it is possible to maintain high heat aging resistance while maintaining a certain hardness and strength.
  • the ethylene- ⁇ -olefin copolymer modified with unsaturated carboxylic acid as component (b) has an unsaturated carboxylic acid of ethylene- ⁇ -Resin grafted to olefin copolymer.
  • the component (b) does not include a copolymer of ethylene and propylene.
  • the amount of modification with the unsaturated carboxylic acid is preferably 0.2% by mass or more, more preferably 0.5% by mass or more, and preferably 6% by mass or less, based on the ethylene- ⁇ -olefin copolymer.
  • the melt flow rate (JIS K 6922) of an ethylene- ⁇ -olefin copolymer modified with an unsaturated carboxylic acid is preferably 0.3 g / min or more in order to ensure sufficient heat aging resistance and low temperature resistance.
  • 0.5 g / 10 min or more is more preferable, 0.5 g / 10 min or more is more preferable, 15 g / 1 min or less is preferable, 10 g / 10 min or less is more preferable, 8 g / 10 min or less is more preferable, 0 0.3 to 15 g / 1 min is preferable, 0.5 to 10 g / 10 min is more preferable, and 0.5 to 8 g / 10 min is further more preferable.
  • the modification of the ethylene- ⁇ -olefin copolymer can be performed, for example, by heating and kneading the ethylene- ⁇ -olefin copolymer resin and the unsaturated carboxylic acid in the presence of an organic peroxide.
  • the ethylene- ⁇ -olefin copolymer modified with the unsaturated carboxylic acid (b) includes a copolymer having a density of 903 kg / m 3 or more, and the ethylene modified with the unsaturated carboxylic acid.
  • the - ⁇ -olefin resin is preferably an ethylene- ⁇ -olefin copolymer having a density of 903 kg / m 3 or more.
  • the unsaturated carboxylic acid that modifies the ethylene- ⁇ -olefin copolymer is not particularly limited, but maleic anhydride is preferred.
  • Specific examples of the ethylene- ⁇ -olefin copolymer modified with maleic anhydride include, for example, E226Y (trade name, manufactured by DuPont), Adtex L-6100M (trade name, manufactured by Nippon Polyethylene), Admer XE070, Admer AT2490, Tuffmer MH7020, MH5040 (all are trade names, manufactured by Mitsui Chemicals, Inc.) and the like.
  • a flame retardant resin composition using an ethylene- ⁇ -olefin copolymer modified with an unsaturated carboxylic acid preferably maleic anhydride
  • the present inventors have found that it is excellent in maintenance.
  • the mechanism is not yet clear, but it can be considered as follows. That is, the modified portion in the ethylene- ⁇ -olefin copolymer modified with an unsaturated carboxylic acid is strongly ionically bonded to magnesium hydroxide, and the strength in the vicinity of the interface between magnesium hydroxide and the copolymer is determined. Becomes very high.
  • the component (b) When an ethylene- ⁇ -olefin copolymer having a high crystallinity and a density of 903 kg / m 3 or more is used as the component (b), not only the scratch resistance, wear resistance and mechanical strength, but also flame retardancy is achieved. This is preferable because the oil resistance is dramatically improved. Further, when used for a pressure welding electric wire, there is almost no cracking at the pressure welding blade and a strain relief rises, and an excellent pressure welding electric wire can be obtained.
  • the ethylene- ⁇ -olefin copolymer modified with an unsaturated carboxylic acid is 7% by mass or more and 70% by mass or less, or 7 to 70% by mass in the resin component (A).
  • the content of the ethylene- ⁇ -olefin copolymer modified with (b) unsaturated carboxylic acid in the resin component (A) is preferably 10% by mass or more, more preferably 20% by mass or more, and more preferably 25% by mass or more. More preferably, 30% by mass or more is particularly preferable, 70% by mass or less is preferable, 20 to 70% by mass is preferable, 25 to 70% by mass is more preferable, and 30 to 70% by mass is further preferable.
  • the content of the component (b) is too small, there will be problems in wear resistance and oil resistance, and if it is too much, the elongation characteristics, heat aging characteristics, and trauma resistance will deteriorate.
  • the amount is 25 to 70% by mass, a flame retardant resin composition that is very balanced in terms of mechanical strength, heat aging resistance, oil resistance, trauma resistance, wear resistance, and press contact is obtained. Obtainable.
  • the content of the component (c) in the resin component (A) is preferably 30% by mass or less, and more preferably 25% by mass or less.
  • Examples of the unmodified ethylene- ⁇ -olefin copolymer mentioned as the component (c) include those similar to the component (a), and among them, those having a density of less than 903 kg / m 3 are used. To do.
  • the density of the component (c) may be less than 903 kg / m 3, but if the density is too small, oil resistance, mechanical strength, and press contact properties are remarkably lowered, so that the density is preferably 868 kg / m 3 or more.
  • Examples of the component (c) ethylene- ⁇ -olefin copolymer include a copolymer of ethylene and an ⁇ -olefin having 4 to 12 carbon atoms.
  • ⁇ -olefin examples include 1-butene, 1-hexene, 4-methyl-1-pentene, 1-octene, 1-decene, 1-dodecene and the like.
  • the component (c) does not include a copolymer of ethylene and propylene.
  • (D) Polypropylene resin As the polypropylene resin of component (d), a propylene homopolymer (homopolypropylene), an ethylene-propylene random copolymer, an ethylene-propylene block copolymer, and the like can be used. By using an ethylene-propylene random copolymer, an ethylene-propylene block copolymer, or the like as the component (d), the moldability can be improved.
  • the ethylene-propylene random copolymer that can be used as the component (d) means that the ethylene component content is about 1% by mass to 5% by mass, and the ethylene-propylene block copolymer has an ethylene component content of 5% by mass. % To about 15% by mass or less.
  • MFR (ASTM-D-1238, L condition, 230 ° C.) of polypropylene to be mixed is preferably 0.1 g / 10 min or more, more preferably 0.3 g / 10 min or more, preferably 60 g / 10 min or less, 25 g / 10 min or less is more preferable, 15 g / 10 min or less is further preferable, 0.1 to 60 g / 10 min is preferable, 0.1 to 25 g / 10 min is more preferable, and 0.3 to 15 g / 10 min is further preferable.
  • the appearance, strength, and press contact can be maintained by blending polypropylene resin.
  • the content of the polypropylene resin is 0% by mass or more and 50% by mass or less, or 0 to 50% by mass in the resin component (A).
  • the content of the component (d) in the resin component (A) is preferably 10% by mass or more, more preferably 20% by mass or more, further preferably 25% by mass or more, particularly preferably 30% by mass or more, and 50% by mass or less. It is preferably 45% by mass or less, more preferably 10 to 50% by mass, and even more preferably 25 to 50% by mass. When there is too much content of this polypropylene, the elongation after heat aging will fall.
  • this polypropylene When the content of this polypropylene is 20 to 45% by mass, it is possible to maintain excellent pressure contact property, strength and oil resistance. Furthermore, when the amount of this polypropylene is 30% by mass or more, it becomes possible to further improve the press contact property and oil resistance.
  • a polypropylene obtained by modifying a part or all of this polypropylene with an unsaturated carboxylic acid may be used.
  • this modified polypropylene it is possible to improve strength, hardness, and pressure contact property of the electric wire.
  • (E) Ethylene-vinyl acetate copolymer, ethylene- (meth) acrylic acid alkyl ester copolymer
  • the ethylene-vinyl acetate copolymer of component (e) and ethylene -At least one selected from the group consisting of (meth) acrylic acid alkyl ester copolymers can be added.
  • heat aging resistance can be improved.
  • the component (e) can be 0 to 10% by mass or 0 to 10% by mass in the resin component (A).
  • the content of the component (e) in the resin component (A) is more preferably 0 to 6% by mass.
  • strength, an oil-resistant characteristic, press-contact property, and heat deformation resistance will fall remarkably.
  • (F) Other components Styrenic elastomers, styrene elastomers modified with unsaturated carboxylic acids, styrene copolymers modified with unsaturated carboxylic acids, ethylene- (meta ) Acrylic acid copolymer, acrylic rubber, polyester and the like can be added.
  • the addition amount is preferably 0% by mass or more, preferably 20% by mass or less, and preferably 0 to 20% by mass in the resin component (A).
  • the strength and elongation can be improved, so that the styrene copolymer modified with an unsaturated carboxylic acid in the resin component (A)
  • the content is preferably 0% by mass or more, preferably 20% by mass or less, and preferably 0 to 20% by mass.
  • the styrene copolymer modified with an unsaturated carboxylic acid is a copolymer obtained by grafting an unsaturated carboxylic acid onto a styrene copolymer by modification with an unsaturated carboxylic acid.
  • the unsaturated carboxylic acid examples include acrylic acid, methacrylic acid, maleic acid, itaconic acid, fumaric acid, maleic anhydride, itaconic anhydride, fumaric anhydride, and the like.
  • the styrene copolymer is a copolymer mainly composed of a block and random structure of a conjugated diene compound and an aromatic vinyl compound, and a hydrogenated product thereof.
  • aromatic vinyl compound examples include styrene, t-butylstyrene, ⁇ -methylstyrene, p-methylstyrene, divinylbenzene, 1,1-diphenylstyrene, N, N-diethyl-p-aminoethylstyrene, vinyltoluene, Examples thereof include p-tert-butylstyrene.
  • conjugated diene compound examples include butadiene, isoprene, 1,3-pentadiene, 2,3-dimethyl-1,3-butadiene and the like.
  • the styrene copolymer can be modified by, for example, heating and kneading the styrene copolymer and an unsaturated carboxylic acid in the presence of an organic peroxide.
  • the amount of modification with the unsaturated carboxylic acid is usually 0.5% by mass or more and 15% by mass or less, or 0.5 to 15% by mass.
  • Examples of the styrenic copolymer modified with an unsaturated carboxylic acid include Kraton 1901FG (trade name, manufactured by JSR Kraton), Tuftec (trade name, manufactured by Asahi Kasei), and the like.
  • the flame-retardant resin composition of the present invention contains a resin component (A) and magnesium hydroxide (B).
  • a flame retardant resin composition obtained by blending a resin component with a metal hydrate such as magnesium hydroxide has a marked decrease in wear resistance.
  • the wear resistance is not lowered, but rather the wear resistance and oil resistance are improved, and flame retardancy and wear resistance are improved. And oil resistance can be achieved.
  • magnesium hydroxide Even when magnesium hydroxide is added to a resin component containing a specific component, the wear resistance is not lowered, but rather the mechanism of improvement is not clear, but is considered as follows.
  • Magnesium hydroxide and the component (b) have a strong ionic bond, and the magnesium hydroxide and the whole polymer are finely and firmly bonded in the nano-micro state.
  • the magnesium hydroxide and the resin component By integrating the magnesium hydroxide and the resin component, it is considered that the inherent hardness, strength and reinforcement of the magnesium hydroxide are exhibited, and the abrasion resistance of the resin composition is remarkably improved.
  • a flame retardant resin composition excellent in strength, wear resistance, trauma resistance, and pressure contact property can be obtained by the presence of the highly crystalline component (a) in the vicinity of the magnesium hydroxide interface. It is done. Furthermore, the presence of the component (b) in a form compatible with the component (a) makes it possible to obtain an inexpensive material with high wear resistance and oil resistance. Furthermore, by mixing the component (c) in a form compatible with these components, relatively high flexibility can be maintained while maintaining high elongation characteristics, and high hot set characteristics when subjected to electron beam crosslinking or chemical crosslinking. Can be maintained.
  • magnesium hydroxide As commercially available magnesium hydroxide, commercially available magnesium hydroxide can be used. In the present invention, magnesium hydroxide may be subjected to a surface treatment even without being treated. You may use both together. Examples of the surface treatment include fatty acid treatment, phosphoric acid treatment, titanate treatment, treatment with a silane coupling agent, and the like. From the viewpoint of the action with the resin component (A), in the present invention, it is preferable to use untreated magnesium hydroxide, magnesium hydroxide surface-treated with a silane coupling agent, or a combination of both. . Further, magnesium hydroxide subjected to different surface treatments can be used in combination.
  • the silane coupling agent in the present invention preferably has a vinyl group, a methacryloxy group, a glycidyl group, or an amino group at the terminal.
  • vinyltrimethoxysilane, vinyltriethoxysilane, methacryloxypropyltriethoxysilane, methacryloxypropylmethyldimethoxysilane, and the like are preferable.
  • magnesium hydroxide either one of the silane coupling agents alone or two or more of them may be used in combination.
  • a surface treatment method using a silane coupling agent it is possible to perform the treatment by a commonly used method.
  • magnesium hydroxide that has not been surface-treated is previously dry-blended or wet-treated.
  • a silane coupling agent during kneading.
  • the content of the silane coupling agent to be used is appropriately added in an amount sufficient for the surface treatment.
  • the content is preferably 0.1% by mass or more, and 0.2% by mass or more with respect to magnesium hydroxide. Is more preferably 0.3% by mass or more, preferably 2.5% by mass or less, more preferably 1.8% by mass or less, further preferably 1.0% by mass or less, and 0.1 to 2.5%.
  • % By mass is preferable, 0.2 to 1.8% by mass is more preferable, and 0.3 to 1.0% by mass is more preferable.
  • magnesium hydroxide that has already been treated with a silane coupling agent.
  • Specific examples of magnesium hydroxide surface-treated with a silane coupling agent include Kisuma 5L, Kisuma 5N, Kisuma 5P (all trade names, manufactured by Kyowa Chemical Co., Ltd.) and Magseeds S4 (trade names, Kamishima Chemical Co., Ltd.). Manufactured).
  • Examples of the untreated magnesium hydroxide include Kisuma 5 (trade name, manufactured by Kyowa Chemical Co., Ltd.), Magnifine H5 (trade name, manufactured by Albemarle), and the like.
  • the content of magnesium hydroxide is 100 parts by mass or more and 280 parts by mass or less, or 100 to 280 parts by mass with respect to 100 parts by mass of the resin component (A), and 120 parts by mass. Part or more, preferably 120 to 280 parts by weight.
  • the amount is too large, the mechanical properties are remarkably deteriorated, and there are problems in wear resistance, appearance, and press contact.
  • magnesium magnesium hydroxide is added in an amount of 120 parts by mass or more based on 100 parts by mass of the resin component (A), the wear resistance can be remarkably improved.
  • the melamine cyanurate preferably has a fine particle size.
  • the average particle size of the melamine cyanurate compound used in the present invention is preferably 10 ⁇ m or less, more preferably 7 ⁇ m or less, and even more preferably 5 ⁇ m or less. If the particle size is too small, secondary agglomeration tends to occur, so 0.6 ⁇ m or more is preferable.
  • a melamine cyanurate compound surface-treated from the viewpoint of dispersibility is preferably used.
  • Examples of the melamine cyanurate compound that can be used in the present invention include MC6000 (trade name, manufactured by Nissan Chemical Co., Ltd.), Merapua MF15 (trade name, manufactured by Ciba), and Stumblece MC15 (trade name, manufactured by Sakai Chemical Co., Ltd.). is there.
  • Examples of the melamine cyanurate compound that can be used in the present invention include melamine cyanurate having the following structure.
  • the flame retardant resin composition of the present invention can contain at least one selected from zinc stannate, zinc hydroxystannate and zinc borate as necessary, and can further improve flame retardancy. .
  • the average particle size of zinc borate, hydroxy hydroxystannate, and zinc stannate used in the present invention is preferably 5 ⁇ m or less, and more preferably 3 ⁇ m or less. If the particle size is too small, secondary aggregation tends to occur, so 0.5 ⁇ m or more is preferable.
  • Examples of zinc stannate (ZnSnO 3 ) and hydroxy hydroxy stannate (ZnSn (OH) 6 ) include Alkanex ZS and Alkanex ZHS (both trade names, manufactured by Mizusawa Chemical Co., Ltd.).
  • the flame retardant resin composition of the present invention includes various additives generally used in molded articles, for example, antioxidants, metal deactivators, flame retardants (auxiliaries), fillers, and lubricants. And the like can be appropriately blended within a range not impairing the object of the present invention.
  • Antioxidants include amine-based antioxidants such as 4,4'-dioctyl diphenylamine, N, N'-diphenyl-p-phenylenediamine, and 2,2,4-trimethyl-1,2-dihydroquinoline polymer Agents, pentaerythrityl-tetrakis (3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate), octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate , 1,3,5-trimethyl-2,4,6-tris (3,5-di-t-butyl-4-hydroxybenzyl) benzene and other phenolic antioxidants, bis (2-methyl-4- ( Sulfur-based antioxidants such as 3-n-alkylthiopropionyloxy) -5-t-butylphenyl) sulfide, 2-mercaptobenzimidazole and its zinc salt, pentaeryth
  • Metal deactivators include N, N'-bis (3- (3,5-di-t-butyl-4-hydroxyphenyl) propionyl) hydrazine, 3- (N-salicyloyl) amino-1,2,4 -Triazole, 2,2′-oxamidobis- (ethyl 3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate) and the like.
  • Flame retardant (auxiliary) and filler include carbon, clay, zinc oxide, tin oxide, titanium oxide, magnesium oxide, molybdenum oxide, antimony trioxide, silicone compound, quartz, talc, calcium carbonate, magnesium carbonate, white carbon Etc.
  • the lubricant examples include hydrocarbon-based, fatty acid-based, fatty acid amide-based, ester-based, alcohol-based, metal soap-based, and silicone-based materials. Among these, hydrocarbon-based and silicone-based materials are preferable.
  • the flame retardant resin composition of the present invention is a kneading apparatus usually used such as a uniaxial kneading extruder, a biaxial kneading extruder, a Banbury mixer, a kneader, or a roll, preferably 150 ° C. or higher and 240 ° C. or lower. Alternatively, it can be obtained by melt-kneading at 150 to 240 ° C.
  • the molded article of the present invention examples include an insulated wire or cable in which the outer periphery of a conductor, optical fiber, or other molded body is coated with the flame retardant resin composition of the present invention.
  • This insulated wire or cable can be produced by extruding and coating the flame retardant resin composition of the present invention around a conductor, an optical fiber, an assembled insulated wire or other molded body using a conventional extrusion molding machine. .
  • the tube can be manufactured in the same manner.
  • the thickness of the coating layer of the insulating resin composition formed on the outer periphery of the conductor is not particularly limited, but is preferably 0.15 mm or more, preferably 3 mm or less, and 0. 15 to 3 mm is preferable.
  • the insulating layer may have a multilayer structure, and may have an intermediate layer in addition to the coating layer formed of the flame-retardant insulating resin composition of the present invention.
  • the resin composition of the present invention it is possible to use the resin composition of the present invention by extrusion coating to form a coating layer as it is, but to improve heat resistance. For the purpose, it is preferable to crosslink the coating layer after extrusion.
  • the resin composition is extruded to form a coating layer, and then crosslinked by irradiating an electron beam by a conventional method.
  • the dose of the electron beam is suitably 1 to 30 Mrad, and in order to perform crosslinking efficiently, the resin composition constituting the coating layer includes a methacrylate compound such as trimethylolpropane triacrylate, and an allyl group such as triallyl cyanurate.
  • the resin composition contains an organic peroxide as a cross-linking agent and is extruded to form a coating layer, followed by heat treatment by a conventional method.
  • the size and shape of the molded article of the present invention are not particularly limited, and examples thereof include a power plug, a connector, a sleeve, a box, a tape base material, a tube, and a sheet.
  • the molded article of the present invention is molded from the flame retardant resin composition of the present invention by a molding method such as ordinary injection molding. Sheets, tubes, and the like can also be manufactured in the same manner as the wire coating, and if necessary, crosslinking can be performed in the same manner as the wiring material.
  • Table 1 shows the content of each component of the resin compositions of Examples 1 to 13 and Table 2 of Comparative Examples 1 to 10 (the numerical values in the table are parts by mass).
  • Each component shown in Tables 1 and 2 was dry-blended at room temperature and melt-kneaded at 195 to 205 ° C. using a Banbury mixer to produce each flame-retardant resin composition.
  • (B) Component Ethylene- ⁇ -olefin copolymer modified with unsaturated carboxylic acid
  • the following (b-1) and (b-3) are both ethylene- ⁇ -olefin modified with maleic anhydride It is a copolymer.
  • (B-1) Product name: Husabond E226Y (manufactured by DuPont) (density 930 kg / m 3 )
  • (B-3) Product name: Admer XE070 (manufactured by Mitsui Chemicals) (density 893 kg / m 3 )
  • (c-1) Product name: Kernel KS240T (manufactured by Nippon Polyethylene) (density 880 kg / m 3 )
  • (C-2) Product name: Kernel KF360T (manufactured by Nippon Polyethylene) (density 898 kg / m 3 )
  • Polypropylene resin (d-1) Ethylene-propylene block copolymer, trade name: BC8A (manufactured by Nippon Polypro) (D-2) Propylene homopolymer, trade name: V200S (manufactured by Sun Allomer) (D-3) Ethylene-propylene random copolymer, trade name: PB222A (manufactured by Sun Allomer)
  • E Component (E-1) Ethylene-vinyl acetate copolymer, trade name: V-5274 (Mitsui DuPont Polychemical Co., Ltd.)
  • B Magnesium oxide
  • B-1 Magnesium hydroxide (magnesium hydroxide surface-treated with a silane coupling agent), trade name: Kisuma 5L (manufactured by Kyowa Chemical)
  • B-2 Magnesium hydroxide (magnesium hydroxide surface-treated with a silane coupling agent), trade name: Magseeds S-6 (manufactured by Kamishima Chemical Co., Ltd.)
  • the flame retardants of Examples 1 to 13 and Comparative Examples 1 to 10 previously melted and kneaded on a conductor (tin-plated annealed copper wire having a conductor diameter of 0.8 mm ⁇ ) using an extrusion coating apparatus for producing electric wires.
  • the insulated resin composition was coated by an extrusion method to produce each insulated wire.
  • the outer diameter was 1.3 mm, and the thickness of the insulating layer was 0.25 mm.
  • Each of the obtained insulated wires was evaluated in the following (1) to (9), and the obtained results are shown in Table 1 and Table 2, respectively.
  • the tube of the flame-retardant resin composition of Example 1 was manufactured using the extruder.
  • the outer diameter of the tube was 2.0 mm, and the inner diameter was 1.5 mm.
  • the following (1), (2), and (4) were evaluated with respect to the obtained tube. In any evaluation, it was performed similarly to the evaluation of the insulated wire except that the tube was used as it was.
  • Tensile test A tubular piece was prepared from the electric wire and a tensile test was performed. The test was performed at 25 mm between marked lines and a tensile speed of 50 mm / min, and the tensile strength and elongation were measured. An elongation of 100% or more and a tensile strength of 18 MPa or more are required. Further, as heat aging characteristics, the tubular piece was heat-treated at 136 ° C. for 168 hours in a thermostatic bath, and after taking out, the tensile test was performed under the above conditions. The tubular piece had a tensile residual ratio of 70% or higher and an elongation residual ratio of 50% or higher.
  • Oil resistance 1 A tubular piece was prepared, immersed in JIS No. 2 test oil heated to 70 ° C., and taken out after 4 hours. After wiping off the oil immediately, it was left for 16 hours and then subjected to a tensile test under the condition (1).
  • the tensile strength residual rate is 70% or more, and the elongation residual rate is 65% or more.
  • the residual tensile strength is preferably 80% or more and the residual elongation is 80% or more.
  • Oil resistance 2 A tubular piece was prepared, immersed in JIS No. 2 test oil heated to 85 ° C., and taken out after 4 hours. After wiping off the oil immediately, it was left for 16 hours and then subjected to a tensile test under the condition (1). Although the tensile strength residual rate is 80% or more and the elongation residual rate is 70% or more, it passes, but since oil resistance 2 is a test under severe conditions, it is preferable to pass, but the above oil resistance 1 is It only has to pass. More preferably, the residual tensile strength is 80% or more and the residual elongation is 80% or more.
  • Tables 1 and 2 show the following.
  • (A) In the case where an unmodified ethylene- ⁇ -olefin copolymer having a density of 903 kg / m 3 or more is not included, the wear resistance and pressure workability are rejected, and the oil resistance 2 is also large. It can be seen that it has decreased (Comparative Examples 2 to 4). On the contrary, when the component (a) was too much, the elongation was insufficient (Comparative Example 5). In the case where the ethylene- ⁇ -olefin copolymer modified with the unsaturated carboxylic acid component (b) was not included, the abrasion resistance, oil resistance and pressure contact property were unacceptable (Comparative Example 8).
  • the flame retardant resin compositions of Examples 1 to 13 have high heat aging characteristics while satisfying a high degree of flame retardancy, and are resistant to damage without being whitened even when bent. Excellent wear resistance. Furthermore, regarding oil resistance, it exhibited an excellent characteristic of passing a particularly severe oil resistance 2 test. For this reason, the flame-retardant resin composition of the present invention can provide molded articles such as wiring materials, sheets, tubes and the like that are excellent in high flame retardancy, wear resistance, heat resistance, mechanical properties and oil resistance. it can.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Insulated Conductors (AREA)
  • Inorganic Insulating Materials (AREA)
  • Organic Insulating Materials (AREA)

Abstract

 (a)密度が903kg/m3以上の変性されていないエチレン-α-オレフィン共重合体5質量%以上70質量%以下、(b)不飽和カルボン酸で変性されたエチレン-α-オレフィン共重合体7質量%以上70質量%以下、(c)密度が903kg/m3未満の変性されていないエチレン-α-オレフィン共重合体0質量%以上35質量%以下、及び(d)ポリプロピレン樹脂0質量%以上50質量%以下からなる樹脂成分(A)100質量部に対し、水酸化マグネシウム(B)100質量部以上280質量部以下を含有する、難燃性樹脂組成物。

Description

難燃性樹脂組成物及び成形物品
 本発明は、耐熱性、難燃性及び機械特性に優れた難燃性樹脂組成物に関する。また、本発明は、これを用いた耐熱性、難燃性及び機械特性に優れた成形物品に関する。
 従来より、電気・電子機器の内部及び外部配線に使用される絶縁電線・ケーブル・コードや光ファイバ心線、光ファイバコードなどには、難燃性や機械特性のほかに、柔軟性や耐熱性など種々の特性が要求されている。またシートやチューブなどにも同様に、難燃性や機械特性のほかに、柔軟性や耐熱性などが要求されている。
 電気・電子機器の配線材に求められる難燃性や機械特性(例えば引張特性)などの規格は、UL、JISなどで要求水準に応じて定められている。特に、難燃性に関しては、さらに用途に応じてその試験方法が定められている。例えば、UL1581(電線、ケーブル及びフレキシブルコードのための関連規格(Reference Standard for Electrical Wires,Cables and Flexible Cords))に規定される垂直燃焼試験(Vertical Flame Test)(VW-1)や、JIS C 3005(ゴム・プラスチック絶縁電線試験方法)に規定される水平試験や傾斜試験などがそれぞれ挙げられる。
 これまで、VW-1や傾斜試験に合格するような高度のノンハロゲンの難燃性樹脂組成物を得ようとすると、樹脂成分100質量部に対して、難燃剤である金属水和物を高充填、例えば100質量部以上配合する必要があった。このため、機械特性を維持できるように、樹脂成分として、エチレン系共重合体のうちでも、特に、エチレン-酢酸ビニル共重合体を使用したノンハロゲン難燃絶縁電線が提案されている(例えば、特許文献1参照)。しかし、電線をはじめとする成形物品に必要な機械特性を確保するためには、ベース樹脂成分としてエチレン-酢酸ビニル共重合体などを用いた場合には、耐熱性が不足する場合が多い。
 また、高度の難燃性のほかに、電線からの皮むき性に優れた電線被覆用樹脂組成物として、密度が特定の値以下のエチレン-α-オレフィン共重合体を含むエチレン系共重合体と、構成成分としてアルキルメタクリレートとアルキルアクリレートとを有するブロック共重合体を含む樹脂成分に対して、金属水和物を含有させたものが提案されている(例えば、特許文献2参照)。しかし、高度の難燃性を満足しようとすると、引張特性や耐摩耗性などの機械特性、耐摩耗性並びに耐油性が著しく低下する場合があった。
 電線をはじめとする成形物品には、耐熱性として、高温下での耐加熱変形性が要求される。従来のPVC材料を用いた成形物品は、120℃以上での耐加熱変形性を有するのに対し、ノンハロゲンの難燃性樹脂組成物を用いた成形物品は耐熱性に乏しく、耐加熱変形性は不十分なものであった。
特開2001-135142号公報 特開2008-94977号公報
 本発明は、上記の問題点を解決し、難燃性、機械特性、耐油性及び耐磨耗性に優れ、さらに高温下における熱変形(耐加熱変形性)に優れた難燃性樹脂組成物及び成形物品を提供することを課題とする。
 さらにくわしくは、本発明は、高度の難燃性及び耐摩耗性を損なうことなく、十分な熱老化特性を有し、折り曲げても白化することなく、また傷つきにくく、耐油性に優れた難燃性樹脂組成物を提供することを課題とする。また本発明は、高度の難燃性及び耐摩耗性を有するとともに、十分な耐熱性を有し、機械特性及び耐油性に優れた配線材、シート、チューブ等の成形物品を提供することを課題とするものである。
 本発明者は、上記課題について鋭意検討した結果、特定の値以上の密度を有する変性されていないエチレン-α-オレフィン共重合体と不飽和カルボン酸で変性されたエチレン-α-オレフィン共重合体を必須成分として含む樹脂成分に対し、ノンハロゲン難燃剤として水酸化マグネシウムを含む樹脂組成物が、難燃性、機械特性、耐油性及び耐磨耗性に優れ、さらに高温下における熱変形に優れることを見出した。本発明はこの知見に基づきなされたものである。
 本発明によれば、下記の手段が提供される。
<1>(a)密度が903kg/m3以上の変性されていないエチレン-α-オレフィン共重合体5質量%以上70質量%以下、(b)不飽和カルボン酸で変性されたエチレン-α-オレフィン共重合体7質量%以上70質量%以下、(c)密度が903kg/m3未満の変性されていないエチレン-α-オレフィン共重合体0質量%以上35質量%以下、及び(d)ポリプロピレン樹脂0質量%以上50質量%以下からなる樹脂成分(A)100質量部に対し、水酸化マグネシウム(B)100質量部以上280質量部以下を含有する、難燃性樹脂組成物。
<2>前記樹脂成分(A)における前記(d)ポリプロピレン樹脂の含有量が10質量%以上50質量%以下である、前記<1>項記載の難燃性樹脂組成物。
<3>前記樹脂成分(A)における前記(d)ポリプロピレン樹脂の含有量が25質量%50質量%以下である、前記<1>又は<2>項記載の難燃性樹脂組成物。
<4>前記(b)不飽和カルボン酸で変性されたエチレン-α-オレフィン共重合体が、密度903kg/m3以上の共重合体を含む、前記<1>~<3>項のいずれか1項記載の難燃性樹脂組成物。
<5>前記(b)不飽和カルボン酸で変性されたエチレン-α-オレフィン共重合体が、無水マレイン酸で変性されている、前記<1>~<4>項のいずれか1項記載の難燃性樹脂組成物。
<6>前記樹脂成分(A)に対し、(e)エチレン-酢酸ビニル共重合体及びエチレン-(メタ)アクリル酸アルキルエステル共重合体からなる群から選ばれた少なくとも1種を0質量%以上10質量%以下含む、前記<1>~<5>項のいずれか1項記載の難燃性樹脂組成物。
<7>前記水酸化マグネシウム(B)が、無処理の水酸化マグネシウム及びシランカップリング剤で表面処理された水酸化マグネシウムからなる群から選ばれた少なくとも1種である、前記<1>~<6>項のいずれか1項記載の難燃性樹脂組成物。
<8>導体の外周に被覆層として<1>~<7>のいずれか1項記載の難燃性樹脂組成物を用いてなる、成形物品。
<9><1>~<8>のいずれか1項記載の難燃性樹脂組成物を用いて成形されている、成形物品。
 本発明は、難燃性、機械特性、耐油性及び耐磨耗性に優れ、さらに高温下における熱変形(耐熱変形性)に優れた難燃性樹脂組成物及び成形物品を提供することができる。
 本発明の上記及び他の特徴及び利点は、下記の記載からより明らかになるであろう。
 本発明の難燃性樹脂組成物は、(a)密度が903kg/m3以上の変性されていないエチレン-α-オレフィン共重合体5質量%以上70質量%以下、(b)不飽和カルボン酸で変性されたエチレン-α-オレフィン共重合体7質量%以上70質量%以下、(c)密度が903kg/m3未満のエチレン-α-オレフィン共重合体0質量%以上35質量%以下、及び(d)ポリプロピレン樹脂0質量%以上50質量%以下からなる樹脂成分(A)100質量部に対し、水酸化マグネシウム(B)100質量部以上280質量部以下を含有する。
 本発明において、「変性されていないエチレン-α-オレフィン共重合体」とは、グラフトなどにより、エチレン-α-オレフィン共重合体が変性されていないものをいう。
 まず、本発明の難燃性樹脂組成物のうち、その樹脂成分(A)を構成する各成分について説明する。
(a)密度が903kg/m3以上の変性されていないエチレン-α-オレフィン共重合体
 本発明の難燃性樹脂組成物は、必須成分として、密度が903kg/m3以上の変性されていないエチレン-α-オレフィン共重合体を含有する。(a)成分のエチレン-α-オレフィン共重合体としては、例えばエチレンと炭素数4以上12以下のα-オレフィンとの共重合体を挙げることができる。α-オレフィンの具体例としては、1-ブテン、1-ヘキセン、4-メチル-1-ペンテン、1-オクテン、1-デセン、1-ドデセンなどが挙げられる。なお、前記(a)成分には、エチレンとプロピレンの共重合体は含まれない。
 エチレン-α-オレフィン共重合体として具体的には、LLDPE(直鎖状低密度ポリエチレン)、LDPE(低密度ポリエチレン)、VLDPE(超低密度ポリエチレン)、EPR(エチレンプロピレンゴム)、EBR(エチレン-1‐ブテンゴム)、及びメタロセン触媒存在下に合成されたエチレン-α-オレフィン共重合体等が挙げられる。このなかでも、メタロセン触媒存在下に合成されたエチレン-α-オレフィン共重合体が好ましい。
 前記(a)成分として、密度が903kg/m3以上の変性されていないエチレン-α-オレフィン共重合体を用いる。後述のように、任意樹脂成分として、(c)密度が903kg/m3未満の変性されていないエチレン-α-オレフィン共重合体を含むことができるが、(a)成分を樹脂成分(A)に対して、5質量%以上70質量%以下、又は5~70質量%含むことが必要である。これにより、耐熱性、耐摩耗性、耐油性及び加工性が優れた樹脂組成物を得ることができる。また、圧接用電線として使用する場合には圧接性の優れたものを得ることができる。この量が少なすぎると、耐油性、耐摩耗性、圧接性が低下する。またこの量が多すぎると、伸びが低下する。樹脂成分(A)における(a)成分の含有量は、8質量%以上が好ましく、55質量%以下が好ましく、50質量%以下がより好ましく、5~55質量%が好ましく、8~50質量%がより好ましい。(a)成分の密度は903kg/m3以上であればよいが、密度が大きすぎると、伸び特性や低温特性、耐熱老化特性が著しく低下する。このため、(a)成分の密度は940kg/m3以下であることが好ましい。さらに好ましくは935kg/m3以下である。
 電線をはじめとする成形品には耐加熱変形性が求められる。密度が903kg/m3以上の変性されていないエチレン-α-オレフィン共重合体を用いることにより、ある程度の耐加熱変形性を維持することができる。さらに後述の(d)成分のポリプロピレン樹脂を加えることにより、より高い耐加熱変形性を維持することができ、大幅に耐油性を維持することができる。さらに密度が903kg/m3以上の変性されていないエチレン-α-オレフィン共重合体を特定量用いることにより、電線の圧接加工性を維持しつつ、電線をボビンに巻いたときの電線のよれ等も最小限に抑えることができ、この電線を用いた加工に不具合を生じさせる原因を低減することができる。また、(d)成分のポリプロピレン樹脂を加えることにより、一定の硬度、強度を保ちつつ、高い耐熱老化性を維持することができる。
(b)不飽和カルボン酸で変性されたエチレン-α-オレフィン共重合体
 (b)成分の不飽和カルボン酸で変性されたエチレン-α-オレフィン共重合体は、不飽和カルボン酸がエチレン-α-オレフィン共重合体にグラフトされた樹脂である。なお、前記(b)成分には、エチレンとプロピレンの共重合体は含まれない。
 不飽和カルボン酸による変性量は、エチレン-α-オレフィン共重合体に対して、0.2質量%以上が好ましく、0.5質量%以上がより好ましく、6質量%以下が好ましく、2質量%以下がより好ましく、0.2~6質量%が好ましく、0.5~2質量%がより好ましい。不飽和カルボン酸で変性されたエチレン-α-オレフィン共重合体のメルトフローレート(JIS K 6922)は、十分な耐熱老化性と耐低温性を確保するため、0.3g/1分以上が好ましく、0.5g/10分以上がより好ましく、0.5g/10分以上がさらに好ましく、15g/1分以下が好ましく、10g/10分以下がより好ましく、8g/10分以下がさらに好ましく、0.3~15g/1分が好ましく、0.5~10g/10分がより好ましく、0.5~8g/10分がさらに好ましい。
 エチレン-α-オレフィン共重合体の変性は、例えば、エチレン-α-オレフィン共重合体樹脂と不飽和カルボン酸を有機パーオキサイドの存在下に加熱、混練することにより行うことができる。本発明において、前記(b)不飽和カルボン酸で変性されたエチレン-α-オレフィン共重合体には、密度903kg/m3以上の共重合体が含まれ、不飽和カルボン酸で変性されたエチレン-α-オレフィン樹脂としては、密度903kg/m3以上のエチレン-α-オレフィン共重合体が好ましい。これにより、耐油性や耐磨耗性が著しく増加する。
 エチレン-α-オレフィン共重合体を変性する不飽和カルボン酸としては特に制限はないが、無水マレイン酸が好ましい。無水マレイン酸で変性されたエチレン-α-オレフィン共重合体としては、具体的には、例えば、E226Y(商品名、デュポン社製)、アドテックスL-6100M(商品名、日本ポリエチレン社製)、アドマーXE070、アドマーAT2490、タフマーMH7020、MH5040(いずれも商品名、三井化学社製)等が挙げられる。
 (b)成分として、不飽和カルボン酸、好ましくは、無水マレイン酸で変性されたエチレン-α-オレフィン共重合体を使用した難燃性樹脂組成物が、非常に強度が高く、さらに耐油性の維持に優れることを本発明者等は見出した。その機構はまだ定かではないが、以下のように考えられる。
 すなわち、不飽和カルボン酸で変性されたエチレン-α-オレフィン共重合体中の変性部分が水酸化マグネシウムとイオン的に強固に結合して、水酸化マグネシウムと該共重合体との界面近傍の強度が非常に高くなる。(b)成分として、結晶性の高い密度903kg/m3以上のエチレン-α-オレフィン共重合体を使用した場合には、耐外傷性や耐摩耗性、機械強度のみならず、難燃性及ぶ飛躍的に耐油性も向上するため、好ましい。さらに圧接用電線に使用される場合、圧接刃での割れやストレインリリーフの盛り上がりがほとんどなく、優れた圧接加工用の電線を得ることができる。
 本発明において、(b)不飽和カルボン酸で変性されたエチレン-α-オレフィン共重合体は、樹脂成分(A)中7質量%以上70質量%以下、又は7~70質量%である。樹脂成分(A)における(b)不飽和カルボン酸で変性されたエチレン-α-オレフィン共重合体の含有量は、10質量%以上が好ましく、20質量%以上がより好ましく、25質量%以上がさらに好ましく、30質量%以上が特に好ましく、70質量%以下が好ましく、20~70質量%が好ましく、25~70質量%がより好ましく、30~70質量%がさらに好ましい。(b)成分の含有量が少なすぎると、耐摩耗性、耐油性に問題が生じ、これが多すぎると伸び特性、熱老化特性、耐外傷性が低下する。特にこの量が25~70質量%の場合、機械強度、耐熱老化性、耐油性、耐外傷性、耐摩耗性、加えて圧接性の点で非常にバランスのとれた難燃性樹脂組成物を得ることができる。
(c)密度が903kg/m3未満の変性されていないエチレン-α-オレフィン共重合体
 (c)成分として用いる密度903kg/m3未満の変性されていないエチレン-α-オレフィン共重合体の含有量は、樹脂成分(A)中、0質量%以上35質量%以下、又は0~35質量%である。(c)成分を含むことにより、伸びや難燃性を高めることができる。(c)成分が多すぎると、耐摩耗性や耐油性が低下する。樹脂成分(A)における(c)成分の含有量は、30質量%以下が好ましく、25質量%以下がより好ましい。
 (c)成分として挙げられる変性されていないエチレン-α-オレフィン共重合体としては、(a)成分と同様のものを挙げることができるが、その中でも密度が903kg/m3未満のものを使用する。(c)成分の密度は903kg/m3未満であればよいが、密度が小さすぎると、耐油性や力学的強度、圧接性が著しく低下するため、868kg/m3以上であることが好ましい。
 (c)成分のエチレン-α-オレフィン共重合体としては、例えばエチレンと炭素数4以上12以下のα-オレフィンとの共重合体を挙げることができる。α-オレフィンの具体例としては、1-ブテン、1-ヘキセン、4-メチル-1-ペンテン、1-オクテン、1-デセン、1-ドデセンなどが挙げられる。なお、前記(c)成分には、エチレンとプロピレンの共重合体は含まれない。
(d)ポリプロピレン樹脂
 (d)成分のポリプロピレン樹脂として、プロピレンの単独重合体(ホモポリプロピレン)や、エチレン-プロピレンランダム共重合体、エチレン-プロピレンブロック共重合体などを使用することができる。(d)成分として、エチレン-プロピレンランダム共重合体、エチレン-プロピレンブロック共重合体などを併用することにより、成形性を向上させることができる。(d)成分に使用することができるエチレン-プロピレンランダム共重合体はエチレン成分含量が1質量%以上5質量%以下程度のものをいい、エチレン-プロピレンブロック共重合体はエチレン成分含量が5質量%以上15質量%以下程度のものをいう。
 混合するポリプロピレンのMFR(ASTM-D-1238、L条件、230℃)は、0.1g/10分以上が好ましく、0.3g/10分以上がより好ましく、60g/10分以下が好ましく、25g/10分以下がより好ましく、15g/10分以下がさらに好ましく、0.1~60g/10分が好ましく、0.1~25g/10分がより好ましく、0.3~15g/10分がさらに好ましい。
 (d)ポリプロピレン樹脂を配合することにより、外観と強度、圧接性を維持することができる。ポリプロピレン樹脂の含有量は樹脂成分(A)中、0質量%以上50質量%以下、又は0~50質量%である。樹脂成分(A)における(d)成分の含有量は10質量%以上が好ましく、20質量%以上がより好ましく、25質量%以上がさらに好ましく、30質量%以上が特に好ましく、50質量%以下が好ましく、45質量%以下がより好ましく、10~50質量%が好ましく、25~50質量%がより好ましい。このポリプロピレンの含有量が多すぎると熱老化後の伸びが低下する。このポリプロピレンの含有量が20~45質量%の場合、優れた圧接性、強度、耐油性を維持することが可能となる。さらにこのポリプロピレンの量を30質量%以上とすることにより圧接性や耐油性を一段と上げることが可能となる。
 このポリプロピレンの一部又は全てを不飽和カルボン酸で変性されたポリプロピレンを用いても良い。この変性ポリプロピレンを用いることにより、強度や硬さ、電線の圧接性を向上させることができる。
(e)エチレン-酢酸ビニル共重合体、エチレン-(メタ)アクリル酸アルキルエステル共重合体
 樹脂成分(A)に加えられるその他の成分として、(e)成分のエチレン-酢酸ビニル共重合体及びエチレン-(メタ)アクリル酸アルキルエステル共重合体からなる群から選ばれた少なくとも1種を加えることができる。(e)成分を加えることにより、耐加熱老化性を向上させることができる。(e)成分は樹脂成分(A)中、0質量%以上10質量%以下、又は0~10質量%とすることができる。樹脂成分(A)における(e)成分の含有量は、さらに好ましくは、0~6質量%である。(e)成分が多すぎると、強度、耐油特性、圧接性、耐加熱変形性が著しく低下する。
(f)その他の成分
 本発明の目的を損なわない範囲内でスチレン系エラストマーや不飽和カルボン酸で変性されたスチレン系エラストマー、不飽和カルボン酸で変性されたスチレン系共重合体、エチレン-(メタ)アクリル酸共重合体、アクリルゴム、ポリエステルなどを添加することができる。添加量は樹脂成分(A)中、0質量%以上が好ましく、20質量%以下が好ましく、0~20質量%が好ましい。
 不飽和カルボン酸で変性されたスチレン系共重合体を加えることにより、強度と伸びを向上させることができるため、樹脂成分(A)中の不飽和カルボン酸で変性されたスチレン系共重合体の含有量は、0質量%以上が好ましく、20質量%以下が好ましく、0~20質量%が好ましい。不飽和カルボン酸で変性されたスチレン系共重合体とは、不飽和カルボン酸で変性することにより、不飽和カルボン酸がスチレン系共重合体にグラフトされた共重合体のことである。不飽和カルボン酸としては、例えば、アクリル酸、メタクリル酸、マレイン酸、イタコン酸、フマル酸、無水マレイン酸、無水イタコン酸、無水フマル酸などを挙げることができる。
 スチレン系共重合体とは、共役ジエン化合物と芳香族ビニル化合物とのブロック及びランダム構造を主体とする共重合体及びその水素添加物である。芳香族ビニル化合物としては、例えばスチレン、t-ブチルスチレン、α-メチルスチレン、p-メチルスチレン、ジビニルベンゼン、1,1-ジフェニルスチレン、N,N-ジエチル-p-アミノエチルスチレン、ビニルトルエン、p-第3ブチルスチレンなどが挙げられる。また共役ジエン化合物としては、例えば、ブタジエン、イソプレン、1,3-ペンタジエン、2,3-ジメチル-1,3-ブタジエンなどを挙げることができる。
 スチレン系共重合体の変性は、例えば、スチレン系共重合体と不飽和カルボン酸を有機パーオキサイドの存在下に加熱、混練することにより行うことができる。不飽和カルボン酸による変性量は、通常0.5質量%以上15質量%以下、又は0.5~15質量%である。
 不飽和カルボン酸で変性されたスチレン系共重合体としては、たとえば、クレイトン1901FG(商品名、JSRクレイトン社製)、タフテック(商品名、旭化成社製)等を挙げることができる。
(B)水酸化マグネシウム
 本発明の難燃性樹脂組成物は樹脂成分(A)と水酸化マグネシウム(B)とを含有するものである。
 一般に、樹脂成分に対して水酸化マグネシウムなどの金属水和物を配合して得られた難燃性樹脂組成物は、耐摩耗性が著しく低下する。しかし、本発明においては、金属水和物である水酸化マグネシウムを特定量含有しても耐摩耗性が低下することはなく、むしろ耐摩耗性、耐油性が向上し、難燃性と耐摩耗性、耐油性を両立させることができる。
 特定の成分を含む樹脂成分に水酸化マグネシウムを加えても、摩耗性が低下せず、むしろ向上するメカニズムについては、定かではないが、以下のように考えられる。
 水酸化マグネシウムと(b)成分が強いイオン性結合を有し、水酸化マグネシウムとポリマー全体がナノ-ミクロ状態で微細にしかも強固に結合する。水酸化マグネシウムと樹脂成分と一体化することで、水酸化マグネシウムが本来有している硬質性、強度、補強性が発揮され、樹脂組成物の耐摩耗性が格段に向上するものと思われる。この作用により、本発明の難燃性樹脂組成物の成形体表面をこすっても白化現象は生じず、非常に高強度の成形体を得ることができる。
 また水酸化マグネシウムの界面近傍に結晶性の高い(a)成分を存在させることにより、強度、耐摩耗性、耐外傷性、圧接性に優れた難燃性樹脂組成物を得ることができると考えられる。さらに(a)成分と相溶する形で(b)成分を存在させることにより、安価で摩耗性、耐油性の高い材料を得ることが出来る。さらに(c)成分をこれらと相溶する形で混合することにより、比較的柔軟性を確保しつつ、伸び特性を高く維持し、また電子線架橋や化学架橋した際には高度のホットセット特性を維持出来ることが可能となる。
 (B)水酸化マグネシウムとして使用することができるものとしては、通常市販されている水酸化マグネシウムを使用することができる。本発明において、水酸化マグネシウムは、無処理のままでも、表面処理を施されていてもよい。両者を併用してもよい。表面処理としてはたとえば、脂肪酸処理、リン酸処理、チタネート処理、シランカップリング剤による処理などがあげられる。樹脂成分(A)との作用の点から、本発明においては、無処理の水酸化マグネシウムか、シランカップリング剤で表面処理された水酸化マグネシウム、又は両者を併用したものを使用するのが好ましい。さらに、異なる表面処理を行った水酸化マグネシウムを併用することも可能である。
 本発明におけるシランカップリング剤は末端にビニル基、メタクリロキシ基、グリシジル基、アミノ基を有するものが好ましい。具体的にはたとえば、ビニルトリメトキシシラン、ビニルトリエトキシシラン、グリシドキシプロピルトリメトキシシラン、グリシドキシプロピルトリエトキシシラン、グリシドキシプロピルメチルジメトキシシラン、メタクリロキシプロピルトリメトキシシラン、メタクリロキシプロピルトリエトキシシラン、メタクリロキシプロピルメチルジメトキシシラン、メルカプトプロピルトリメトキシシラン、メルカプトプロピルトリエトキシシラン、アミノプロピルトリエトキシシラン、アミノプロピルトリメトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルトリプロピルメチルジメトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルトリプロピルトリメトキシシラン等が挙げられる。中でもビニルトリメトキシシラン、ビニルトリエトキシシラン、メタクリロキシプロピルトリエトキシシラン、メタクリロキシプロピルメチルジメトキシシラン等が好ましい。
 水酸化マグネシウムをシランカップリング剤で処理をする場合には、いずれか1種のシランカップリング剤のみでも、2種以上を併用してもよい。
 シランカップリング剤による表面処理の方法としては、通常使用される方法で処理を行うことが可能であるが、たとえば、表面処理をしていない水酸化マグネシウムをあらかじめドライブレンドしたり、湿式処理を行ったり、混練時にシランカップリング剤をブレンドすることなどにより得ることが可能である。使用するシランカップリング剤の含有量は、表面処理をするのに十分な量が適宜加えられるが、具体的には水酸化マグネシウムに対し0.1質量%以上が好ましく、0.2質量%以上がより好ましく、0.3質量%以上がさらに好ましく、2.5質量%以下が好ましく、1.8質量%以下がより好ましく、1.0質量%以下がさらに好ましく、0.1~2.5質量%が好ましく、0.2~1.8質量%がより好ましく、0.3~1.0質量%がさらに好ましい。
 すでにシランカップリング剤処理をおこなった水酸化マグネシウムを入手することも可能である。シランカップリング剤で表面処理された水酸化マグネシウムとしては、具体的には、キスマ5L、キスマ5N、キスマ5P(いずれも商品名、協和化学社製)や、マグシーズS4(商品名、神島化学社製)などが挙げられる。
 また、無処理の水酸化マグネシウムとしては、たとえばキスマ5(商品名、協和化学社製)、マグニフィンH5(商品名、アルベマール社製)などが挙げられる。
 本発明の難燃性樹脂組成物では、水酸化マグネシウムの含有量は、樹脂成分(A)100質量部に対し、100質量部以上280質量部以下、又は100~280質量部であり、120質量部以上が好ましく、120~280質量部が好ましい。含有量が少なすぎると、難燃性に問題が生じ、耐磨耗性が低下しやすくなる。多すぎると機械特性が著しく低下したり、耐磨耗性、外観、圧接性に問題が生じる。特に水酸化マグマグネシウムを樹脂成分(A)100質量部に対して120質量部以上加えると、耐摩耗性を著しく向上させることができる。
 その他難燃性を向上させるためにメラミンシアヌレート化合物を加えることもできる。メラミンシアヌレートは、粒径が細かい物が好ましい。本発明で用いるメラミンシアヌレート化合物の平均粒径は好ましくは10μm以下、より好ましくは7μm以下、さらに好ましくは5μm以下である。粒径が小さすぎると2次凝集が生じやすくなるため、0.6μm以上が好ましい。分散性の面から表面処理されたメラミンシアヌレート化合物が好ましく用いられる。本発明で用いることのできるメラミンシアヌレート化合物としては、MC6000(商品名、日産化学社製)、メラプアMF15(商品名、チバ社製)、スタビエースMC15(商品名、堺化学社製)などがある。
 本発明で用いることのできるメラミンシアヌレート化合物として、例えば以下のような構造のメラミンシアヌレートがある。
Figure JPOXMLDOC01-appb-I000001
 本発明の難燃性樹脂組成物には、必要に応じスズ酸亜鉛、ヒドロキシスズ酸亜鉛及びホウ酸亜鉛から選ばれる少なくとも1種を含有することができ、さらに難燃性を向上させることができる。これらの化合物を用いることにより、燃焼時の殻形成の速度が増大し、殻形成がより強固になる。従って、燃焼時に内部よりガスを発生するメラミンシアヌレート化合物とともに、難燃性を飛躍的に向上させることができる。
 本発明で用いるホウ酸亜鉛、ヒドロキシスズ酸亜鉛、スズ酸亜鉛は平均粒子径が5μm以下が好ましく、3μm以下がさらに好ましい。粒径が小さすぎると2次凝集が生じやすくなるため、0.5μm以上が好ましい。
 本発明で用いることのできるホウ酸亜鉛として、具体的には例えば、アルカネックスFRC-500(2ZnO/3B2・3.5H2O)、アルカネックスFRC-600(いずれも商品名、水澤化学社製)などがある。また、スズ酸亜鉛(ZnSnO3)、ヒドロキシスズ酸亜鉛(ZnSn(OH)6)として、アルカネックスZS、アルカネックスZHS(いずれも商品名、水澤化学社製)などがある。
 本発明の難燃性樹脂組成物には、成形物品において、一般的に使用されている各種の添加剤、例えば、酸化防止剤、金属不活性剤、難燃(助)剤、充填剤、滑剤などを本発明の目的を損なわない範囲で適宜、配合することができる。
 酸化防止剤としては、4,4'-ジオクチル・ジフェニルアミン、N,N'-ジフェニル-p-フェニレンジアミン、2,2,4-トリメチル-1,2-ジヒドロキノリンの重合物などのアミン系酸化防止剤、ペンタエリスリチル-テトラキス(3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート)、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン等のフェノール系酸化防止剤、ビス(2-メチル-4-(3-n-アルキルチオプロピオニルオキシ)-5-t-ブチルフェニル)スルフィド、2-メルカプトベンゾイミダゾール及びその亜鉛塩、ペンタエリスリトール-テトラキス(3-ラウリル-チオプロピオネート)などのイオウ系酸化防止剤などがあげられる。
 金属不活性剤としては、N,N'-ビス(3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニル)ヒドラジン、3-(N-サリチロイル)アミノ-1,2,4-トリアゾール、2,2'-オキサミドビス-(エチル3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート)などがあげられる。
 難燃(助)剤、充填剤としては、カーボン、クレー、酸化亜鉛、酸化錫、酸化チタン、酸化マグネシウム、酸化モリブデン、三酸化アンチモン、シリコーン化合物、石英、タルク、炭酸カルシウム、炭酸マグネシウム、ホワイトカーボンなどがあげられる。
 滑剤としては、炭化水素系、脂肪酸系、脂肪酸アミド系、エステル系、アルコール系、金属石けん系、シリコーン系などがあげられ、なかでも、炭化水素系やシリコーン系が好ましい。
 本発明の難燃性樹脂組成物は、上記の各成分を、一軸混練押出機、二軸混練押出機、バンバリーミキサー、ニーダー、ロールなど通常用いられる混練装置で、好ましくは150℃以上240℃以下、又は150℃~240℃で溶融混練して得ることができる。
 次に本発明の難燃性樹脂組成物を用いてなる成形物品について説明する。
 本発明の成形物品としては例えば、導体や光ファイバやその他成形体の外周に上記の本発明の難燃性樹脂組成物が被覆された絶縁電線やケーブルなどがある。この絶縁電線やケーブルは、本発明の難燃性樹脂組成物を従来の押出成形機を用いて導体、光ファイバ、集合絶縁電線やその他成形体の周囲に押出被覆することにより製造することができる。またチューブについても同様な方式で製造することができる。
 例えば、絶縁電線に使用される場合、導体の外周に形成される絶縁樹脂組成物の被覆層の肉厚については、特に制限はないが、0.15mm以上が好ましく、3mm以下が好ましく、0.15~3mmが好ましい。また、絶縁層が多層構造であってもよく、本発明の難燃性の絶縁樹脂組成物で形成した被覆層のほかに中間層などを有していてもよい。
 また、本発明の成形物品を配線材に使用する場合には、本発明の樹脂組成物を押出被覆してそのまま被覆層を形成して使用することも可能であるが、耐熱性を向上させることを目的として、押出後の被覆層を架橋させることが好ましい。
 架橋を行う場合の方法として、従来の電子線照射架橋法や化学架橋法が採用できる。この中でも電子線架橋が好ましい。
 電子線架橋法の場合は、樹脂組成物を押出成形して被覆層とした後に常法により電子線を照射することにより架橋をおこなう。電子線の線量は1~30Mradが適当であり、効率よく架橋をおこなうために、被覆層を構成する樹脂組成物に、トリメチロールプロパントリアクリレートなどのメタクリレート系化合物、トリアリルシアヌレートなどのアリル系化合物、マレイミド系化合物、ジビニル系化合物などの多官能性化合物を架橋助剤として含有してもよい。
 化学架橋法の場合は、樹脂組成物に有機パーオキサイドを架橋剤として含有し、押出成形して被覆層とした後に常法により加熱処理により架橋をおこなう。
 本発明の成形物品としては、その大きさや形状については特に制限されるものではなく、例えば、電源プラグ、コネクタ、スリーブ、ボックス、テープ基材、チューブ、シート、等を挙げることができる。本発明の成形物品は、通常の射出成形等の成形方法により、本発明の難燃性樹脂組成物から成形される。また、シートやチューブ等についても電線被覆と同様な方式で製造することができ、必要であれば、配線材と同様架橋を行うこともできる。
 以下、本発明を実施例に基づきさらに詳細に説明するが、本発明はこれら実施例に限定されるものではない。
 実施例1~13、比較例1~10
 表1に実施例1~13及び表2に比較例1~10の樹脂組成物の各成分の含有量(表中の数値は質量部である)を示す。表1及び2に示された各成分を室温にてドライブレンドし、バンバリーミキサーを用いて195~205℃で溶融混練して、各難燃性樹脂組成物を製造した。
 各成分材料としては、下記のものを使用した。
(a)成分 密度が903kg/m3以上の変性されていないエチレン-α-オレフィン共重合体
(a-1)商品名:SP1540(プライムポリマー社製)(密度913kg/m3
(a-2)商品名:SP2320(プライムポリマー社製)(密度920kg/m3
(a-4)商品名:ユメリット4040F(宇部丸善石油化学社製)(密度937kg/m3
(a-5)商品名:ユメリット0540F(宇部丸善石油化学社製)(密度904kg/m3
(b)成分 不飽和カルボン酸で変性されたエチレン-α-オレフィン共重合体
 以下の(b-1)及び(b-3)は、いずれも、無水マレイン酸で変性されたエチレン-α-オレフィン共重合体である。
(b-1)商品名:フサボンドE226Y(デュポン社製)(密度930kg/m3
(b-3)商品名:アドマーXE070(三井化学社製)(密度893kg/m3
(c)成分 密度が903kg/m3未満の変性されていないエチレン-α-オレフィン共重合体
(c-1)商品名:カーネルKS240T(日本ポリエチレン社製)(密度880kg/m3
(c-2)商品名:カーネルKF360T(日本ポリエチレン社製)(密度898kg/m3
(d)成分 ポリプロピレン樹脂
(d-1)エチレン-プロピレンブロック共重合体、商品名:BC8A(日本ポリプロ社製)
(d-2)プロピレンの単独重合体、商品名:V200S(サンアロマー社製)
(d-3)エチレン-プロピレンランダム共重合体、商品名:PB222A(サンアロマー社製)
(e)成分 
(e-1)エチレン-酢酸ビニル共重合体、商品名:V-5274(三井デュポンポリケミカル社製)
(e-2)エチレン-エチルアクリレート共重合体、商品名:NUC6510(ダウケミカル社製)
(f)成分
(f-1)無水マレイン酸で変性されたスチレン系共重合体(MAH-SBC)、商品名:クレイトン1901FG(クレイトンポリマー社製)
(B)酸化マグネシウム
(B-1)水酸化マグネシウム(シランカップリング剤で表面処理された水酸化マグネシウム)、商品名:キスマ5L(協和化学社製)
(B-2)水酸化マグネシウム(シランカップリング剤で表面処理された水酸化マグネシウム)、商品名:マグシーズS-6(神島化学社製)
(X)その他
(X-1)銅害防止剤、商品名:CDA-1(ADECA社製)
(X-2)滑剤(ポリエチレン系WAX)、商品名:PE-WAX(ハネウェル社製)
(X-3)ヒンダートフェノール系酸化防止剤、商品名:イルガノックス1010(チバ社製)
 次に、電線製造用の押出被覆装置を用いて、導体(導体径0.8mmφの錫メッキ軟銅線)上に、予め溶融混練した上記各実施例1~13及び比較例1~10の難燃性樹脂組成物を押し出し法により被覆して、各々、絶縁電線を製造した。外径は1.3mm、絶縁層の肉厚0.25mmとした。
 得られた各々の絶縁電線に対して、以下の(1)~(9)の評価を行い、得られた結果をそれぞれ表1及び表2に示した。
 また、押出機を用いて、実施例1の難燃性樹脂組成物のチューブを製造した。チューブの外径は2.0mm、内径は1.5mmとした。得られたチューブに対して、以下の(1)、(2)、及び(4)の評価を行った。いずれの評価においても、チューブをそのまま用いた以外は、絶縁電線の評価と同様に行った。
(1)引張試験
 電線より管状片を作成し引張試験を行った。標線間25mm、引張速度50mm/分で試験を行い、引張り強さ及び伸びを測定した。伸び100%以上、引張り強さ18MPa以上が必要である。
 また、耐熱老化特性として、管状片を恒温槽中、136℃で168時間熱処理を行い、取り出した後上記の条件で引っ張り試験を行った。その管状片の引っ張り残率が70%以上、伸び残率が50%以上を合格とした。
(2)耐摩耗性
 R=0.225のブレードを用い、JASO D608に基づきブレード往復法により試験を行った。加重は6Nとした。回数800回以上で合格であるが、1000回以上がより好ましい。
(3)難燃性
 JASO D608に基づき、水平燃焼試験を行った。60秒以上延焼したものを不合格とし「×」で示し、「○」を合格とした。
(4)耐外傷性
 JASO D 608に基づく耐摩耗試験のブレード往復法の試験方法で、R=0.125mmのブレードを使用し、荷重5Nで4往復摩耗を行った。その後のサンプルを観察した。外傷がない又は白化が無いものを「○」で示し合格とし、外傷がある又は白化が著しいものを「×」で示し不合格とした。
(5)外観
 外観は、絶縁電線の外径の変動の有無や表面の状態を目視で調査し、これらが良好であったものを「○」で示し合格とし、外径が変動しており不安定なもの、表面に肌荒れが発生したもの、ブリードが発生したものを「×」で示し不合格とした。
(6)耐油性1
 管状片を作製し、70℃に加熱されたJIS2号試験油に浸せきし、4時間後に取り出した。油をすぐに拭きたった後、16時間放置した後に(1)の条件で引っ張り試験を行った。引っ張り強さ残率が70%以上、伸び残率が65%以上で合格である。好ましくは引っ張り強さ残率が80%以上、伸び残率80%以上が好ましい。
(7)耐油性2
 管状片を作成し、85℃に加熱されたJIS2号試験油に浸せきし、4時間後に取り出した。油をすぐに拭きたった後、16時間放置した後に(1)の条件で引っ張り試験を行った。引っ張り強さ残率が80%以上、伸び残率が70%以上で合格であるが、耐油性2は厳しい条件下での試験であるため、合格することが好ましいが、上記の耐油性1が合格であればよい。より好ましくは、引っ張り強さ残率が80%以上、伸び残率80%以上である。
(8)耐加熱変形性
 耐加熱変形試験はUL1581に基づき、121℃で行った。荷重は2.5Nで行った。50%以下を合格とした。
(9)圧接性
 コネクタとしてTYCO社のCTコネクタを用い、圧接加工を行った。その後、加工性の観察を行い、電線の変形部がストレインリリーフの矢尻を越えていたり、圧接刃の部分で割れていないかを観察した。
 電線の変形部がストレインリリーフの矢尻を越えたり、圧接刃の部分で割れた場合を「×」で示し不合格とし、「○」を合格とした。
Figure JPOXMLDOC01-appb-I000002
Figure JPOXMLDOC01-appb-I000003
 表1、2から以下のことがわかる。
 (a)成分の密度が903kg/m3以上の変性されていないエチレン-α-オレフィン共重合体を含まない場合は、耐摩耗性、圧接加工性が不合格になり、また耐油性2も大きく低下していることがわかる(比較例2~4)。逆に前記(a)成分が多すぎる場合は、伸びが不十分であった(比較例5)。(b)成分の不飽和カルボン酸で変性されたエチレン-α-オレフィン共重合体を含まない場合は、耐磨耗性、耐油性及び圧接性が不合格であった(比較例8)。前記(b)成分が多すぎる場合は、伸びが不十分であり、熱老化特性に問題があった(比較例7)。また、(c)成分の密度が903kg/m3未満の変性されていないエチレン-α-オレフィン共重合体が多すぎると、耐磨耗性や耐油性が不合格であった(比較例1)。(d)成分のポリプロピレン樹脂が多すぎると加熱老化後の伸び残率が不十分な特性を示した(比較例6)。水酸化マグネシウム(B)が少なすぎる場合は、難燃性が不合格となり、大幅に耐摩耗性が低下していることがわかる(比較例9)。水酸化マグネシウム(B)が多すぎると、耐磨耗性、耐油性、耐外傷性、外観及び圧接性が不合格となった(比較例10)。
 これに対して、実施例1~13の難燃性樹脂組成物は、高度の難燃性を満足しながらも、十分な熱老化特性を有し、折り曲げても白化することなく傷つきにくい耐磨耗性に優れていた。さらに耐油性に関しては、特に厳しい耐油性2の試験にも合格するという優れた特性を示した。このため、本発明の難燃性樹脂組成物は、高度の難燃性、耐摩耗性、耐熱性、機械特性及び耐油性に優れた配線材、シート、チューブ等の成形物品を提供することができる。
 本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。
 本願は、2011年5月2日に日本国で特許出願された特願2011-102828に基づく優先権を主張するものであり、これはここに参照してその内容を本明細書の記載の一部として取り込む。

Claims (9)

  1.  (a)密度が903kg/m3以上の変性されていないエチレン-α-オレフィン共重合体5質量%以上70質量%以下、(b)不飽和カルボン酸で変性されたエチレン-α-オレフィン共重合体7質量%以上70質量%以下、(c)密度が903kg/m3未満の変性されていないエチレン-α-オレフィン共重合体0質量%以上35質量%以下、及び(d)ポリプロピレン樹脂0質量%以上50質量%以下からなる樹脂成分(A)100質量部に対し、水酸化マグネシウム(B)100質量部以上280質量部以下を含有する、難燃性樹脂組成物。
  2.  前記樹脂成分(A)における前記(d)ポリプロピレン樹脂の含有量が10質量%以上50質量%以下である、請求項1記載の難燃性樹脂組成物。
  3.  前記樹脂成分(A)における前記(d)ポリプロピレン樹脂の含有量が25質量%以上50質量%以下である、請求項1又は2記載の難燃性樹脂組成物。
  4.  前記(b)不飽和カルボン酸で変性されたエチレン-α-オレフィン共重合体が、密度903kg/m3以上の共重合体を含む、請求項1~3のいずれか1項記載の難燃性樹脂組成物。
  5.  前記(b)不飽和カルボン酸で変性されたエチレン-α-オレフィン共重合体が、無水マレイン酸で変性されている、請求項1~4のいずれか1項記載の難燃性樹脂組成物。
  6.  前記樹脂成分(A)に対し、(e)エチレン-酢酸ビニル共重合体及びエチレン-(メタ)アクリル酸アルキルエステル共重合体からなる群から選ばれた少なくとも1種を0質量%以上10質量%以下含む、請求項1~5のいずれか1項記載の難燃性樹脂組成物。
  7.  前記水酸化マグネシウム(B)が、無処理の水酸化マグネシウム及びシランカップリング剤で表面処理された水酸化マグネシウムからなる群から選ばれた少なくとも1種である、請求項1~6のいずれか1項記載の難燃性樹脂組成物。
  8.  導体の外周に被覆層として請求項1~7のいずれか1項記載の難燃性樹脂組成物を用いてなる、成形物品。
  9.  請求項1~8のいずれか1項記載の難燃性樹脂組成物を用いて成形されている、成形物品。
     
     
     
     
     
PCT/JP2012/061594 2011-05-02 2012-05-02 難燃性樹脂組成物及び成形物品 WO2012150716A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2012800153434A CN103459487A (zh) 2011-05-02 2012-05-02 阻燃性树脂组合物和成型物品
JP2013513091A JP5863781B2 (ja) 2011-05-02 2012-05-02 難燃性樹脂組成物及び成形物品
DE112012001964.4T DE112012001964T5 (de) 2011-05-02 2012-05-02 Flammhemmende Harzzusammensetzung und geformtes Produkt

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-102828 2011-05-02
JP2011102828 2011-05-02

Publications (1)

Publication Number Publication Date
WO2012150716A1 true WO2012150716A1 (ja) 2012-11-08

Family

ID=47107901

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/061594 WO2012150716A1 (ja) 2011-05-02 2012-05-02 難燃性樹脂組成物及び成形物品

Country Status (5)

Country Link
JP (1) JP5863781B2 (ja)
CN (1) CN103459487A (ja)
DE (1) DE112012001964T5 (ja)
MY (1) MY158149A (ja)
WO (1) WO2012150716A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014101454A (ja) * 2012-11-20 2014-06-05 Hitachi Metals Ltd ノンハロゲン架橋樹脂組成物及び絶縁電線、ケーブル
CN104277314A (zh) * 2013-07-09 2015-01-14 日立金属株式会社 耐放射线性无卤素阻燃性树脂组合物、使用其的电线以及电缆
JP2015021058A (ja) * 2013-07-18 2015-02-02 古河電気工業株式会社 難燃性樹脂組成物、およびそれを成形してなる難燃性樹脂成形体を含む難燃性物品
JP2015151417A (ja) * 2014-02-12 2015-08-24 株式会社フジクラ 難燃性樹脂組成物、及び、ケーブル
JP2015151416A (ja) * 2014-02-12 2015-08-24 株式会社フジクラ 難燃性樹脂組成物、及び、ケーブル
WO2019093288A1 (ja) * 2017-11-13 2019-05-16 住友電気工業株式会社 絶縁材及び絶縁電線

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0711071A (ja) * 1993-06-14 1995-01-13 Union Carbide Chem & Plast Technol Corp 低電圧用ケーブル
JP2006225604A (ja) * 2005-02-21 2006-08-31 Tmg Kk 難燃性樹脂組成物
JP2011057906A (ja) * 2009-09-11 2011-03-24 Furukawa Electric Co Ltd:The 難燃性樹脂組成物およびそれを用いた成形物品
JP2011198507A (ja) * 2010-03-17 2011-10-06 Furukawa Electric Co Ltd:The 多層電線
JP2012087238A (ja) * 2010-10-21 2012-05-10 Furukawa Electric Co Ltd:The 絶縁電線及びその製造方法
JP2012107213A (ja) * 2010-10-19 2012-06-07 Furukawa Electric Co Ltd:The 難燃性樹脂組成物及びそれを用いた成形物品
JP2012140557A (ja) * 2011-01-05 2012-07-26 Furukawa Electric Co Ltd:The 難燃性樹脂組成物およびそれを用いた光ファイバコード

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61255950A (ja) * 1985-05-09 1986-11-13 Nippon Petrochem Co Ltd 耐熱性にすぐれる難燃性エチレン系重合体組成物
US4722959A (en) * 1985-06-25 1988-02-02 Nippon Petrochemicals Co., Ltd. Flame-retardant olefin polymer composition
US5473016A (en) * 1991-04-09 1995-12-05 Nippon Petrochemicals Co., Ltd. Matte film or sheet and method for preparing same
JP5052748B2 (ja) * 2004-12-22 2012-10-17 古河電気工業株式会社 難燃性樹脂組成物とそれを用いた成形物品
JP5144007B2 (ja) * 2004-12-22 2013-02-13 古河電気工業株式会社 難燃性樹脂組成物とそれを用いた成形物品

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0711071A (ja) * 1993-06-14 1995-01-13 Union Carbide Chem & Plast Technol Corp 低電圧用ケーブル
JP2006225604A (ja) * 2005-02-21 2006-08-31 Tmg Kk 難燃性樹脂組成物
JP2011057906A (ja) * 2009-09-11 2011-03-24 Furukawa Electric Co Ltd:The 難燃性樹脂組成物およびそれを用いた成形物品
JP2011198507A (ja) * 2010-03-17 2011-10-06 Furukawa Electric Co Ltd:The 多層電線
JP2012107213A (ja) * 2010-10-19 2012-06-07 Furukawa Electric Co Ltd:The 難燃性樹脂組成物及びそれを用いた成形物品
JP2012087238A (ja) * 2010-10-21 2012-05-10 Furukawa Electric Co Ltd:The 絶縁電線及びその製造方法
JP2012140557A (ja) * 2011-01-05 2012-07-26 Furukawa Electric Co Ltd:The 難燃性樹脂組成物およびそれを用いた光ファイバコード

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014101454A (ja) * 2012-11-20 2014-06-05 Hitachi Metals Ltd ノンハロゲン架橋樹脂組成物及び絶縁電線、ケーブル
CN104277314A (zh) * 2013-07-09 2015-01-14 日立金属株式会社 耐放射线性无卤素阻燃性树脂组合物、使用其的电线以及电缆
CN104277314B (zh) * 2013-07-09 2017-10-27 日立金属株式会社 耐放射线性无卤素阻燃性树脂组合物、使用其的电线以及电缆
JP2015021058A (ja) * 2013-07-18 2015-02-02 古河電気工業株式会社 難燃性樹脂組成物、およびそれを成形してなる難燃性樹脂成形体を含む難燃性物品
JP2015151417A (ja) * 2014-02-12 2015-08-24 株式会社フジクラ 難燃性樹脂組成物、及び、ケーブル
JP2015151416A (ja) * 2014-02-12 2015-08-24 株式会社フジクラ 難燃性樹脂組成物、及び、ケーブル
WO2019093288A1 (ja) * 2017-11-13 2019-05-16 住友電気工業株式会社 絶縁材及び絶縁電線

Also Published As

Publication number Publication date
CN103459487A (zh) 2013-12-18
JPWO2012150716A1 (ja) 2014-07-28
MY158149A (en) 2016-09-15
DE112012001964T5 (de) 2014-02-13
JP5863781B2 (ja) 2016-02-17

Similar Documents

Publication Publication Date Title
JP5323332B2 (ja) 難燃性絶縁電線
JP5144007B2 (ja) 難燃性樹脂組成物とそれを用いた成形物品
JP5144013B2 (ja) 難燃性樹脂組成物とそれを用いた成形体
JP5275647B2 (ja) 耐熱性に優れた絶縁電線
JP2006310093A (ja) ノンハロゲン系絶縁電線およびワイヤーハーネス
JP5435506B2 (ja) 難燃性ケーブル
JP5863781B2 (ja) 難燃性樹脂組成物及び成形物品
JP5260852B2 (ja) 電線被覆用樹脂組成物、絶縁電線およびその製造方法
JP5260832B2 (ja) 難燃性樹脂組成物を用いた成形物品
JP2005171172A (ja) 架橋型難燃性樹脂組成物ならびにこれを用いた絶縁電線およびワイヤーハーネス
JP5261361B2 (ja) 難燃性樹脂組成物及びそれを用いた成形物品
JP2008094922A (ja) 樹脂成形体、絶縁電線、及び光ファイバケーブル
JP5202849B2 (ja) 難燃性樹脂組成物およびそれを用いた成形物品
JP5436994B2 (ja) 難燃性樹脂組成物およびそれを用いた成形物品
JP5116959B2 (ja) 難燃性樹脂組成物とそれを用いた成形物品
JP5684087B2 (ja) 難燃性樹脂組成物及びそれを用いた成形物品
JP2003082172A (ja) 耐熱性・耐候性に優れた絶縁樹脂組成物および絶縁電線
JP5220274B2 (ja) 難燃性樹脂組成物を用いた成形物品
JP5260868B2 (ja) 絶縁樹脂組成物および絶縁電線
JP5306770B2 (ja) 難燃性樹脂組成物とそれを用いた成形物品
WO2013002114A1 (ja) 難燃性樹脂組成物及び成形物品
JP5052798B2 (ja) 難燃性樹脂組成物とそれを用いた成形体
JP2004352763A (ja) キャブタイヤコード
JP5823246B2 (ja) 難燃性樹脂組成物及びそれを用いた成形物品
JP5667116B2 (ja) 難燃性樹脂組成物とそれを用いた成形物品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12779634

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013513091

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1120120019644

Country of ref document: DE

Ref document number: 112012001964

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12779634

Country of ref document: EP

Kind code of ref document: A1