WO2012140908A1 - 積層板、回路基板、および半導体パッケージ - Google Patents

積層板、回路基板、および半導体パッケージ Download PDF

Info

Publication number
WO2012140908A1
WO2012140908A1 PCT/JP2012/002582 JP2012002582W WO2012140908A1 WO 2012140908 A1 WO2012140908 A1 WO 2012140908A1 JP 2012002582 W JP2012002582 W JP 2012002582W WO 2012140908 A1 WO2012140908 A1 WO 2012140908A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
layer
fiber base
prepreg
glass fiber
Prior art date
Application number
PCT/JP2012/002582
Other languages
English (en)
French (fr)
Inventor
小野塚 偉師
康二 佐藤
裕樹 篠▲崎▼
猛 八月朔日
Original Assignee
住友ベークライト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ベークライト株式会社 filed Critical 住友ベークライト株式会社
Priority to KR1020137030029A priority Critical patent/KR20140023980A/ko
Publication of WO2012140908A1 publication Critical patent/WO2012140908A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/247Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using fibres of at least two types
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/28Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer impregnated with or embedded in a plastic substance
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49822Multilayer substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49827Via connections through the substrates, e.g. pins going through the substrate, coaxial cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49866Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers characterised by the materials
    • H01L23/49894Materials of the insulating layers or coatings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/033 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/20All layers being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/40Symmetrical or sandwich layers, e.g. ABA, ABCBA, ABCCBA
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • B32B2260/023Two or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/07Parts immersed or impregnated in a matrix
    • B32B2305/076Prepregs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • B32B2307/734Dimensional stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/24Thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16227Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0271Arrangements for reducing stress or warp in rigid printed circuit boards, e.g. caused by loads, vibrations or differences in thermal expansion
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0183Dielectric layers
    • H05K2201/0191Dielectric layers wherein the thickness of the dielectric plays an important role

Definitions

  • the present invention relates to a laminated board, a circuit board, and a semiconductor package.
  • circuit boards tend to be made thinner and thinner with the demand for higher functionality and lighter and thinner electronic devices.
  • a general circuit board is mainly composed of a laminated board in which a plurality of prepregs each having a fiber base layer and a resin layer are laminated.
  • the current laminated board is mainly used for FCBGA (Flip Chip Ball Grid Array) used in, for example, a CPU (Central Processing Unit) and has a thickness of about 0.8 mm.
  • FCBGA Flexible Chip Ball Grid Array
  • thinning of laminates has been promoted for reasons such as reduction in substrate cost due to demands for reduction in thickness, reduction in member cost, processing cost, and improvement in electrical characteristics.
  • a laminate having a thickness of about 0.4 mm, further 0.2 mm or less has been developed.
  • Patent Document 1 Japanese Patent Laid-Open No. 62-2924278 describes that warping and twisting of a prepreg can be reduced by keeping the longitudinal and lateral ratios of the tensile strength of a glass nonwoven fabric within a certain range. .
  • Patent Document 2 Japanese Patent Application Laid-Open No. 4-259543 relates to a method for manufacturing a laminated board for printed circuit which is less warped and twisted and has excellent dimensional stability.
  • Patent Document 2 discloses that the longitudinal and lateral tensile strength ratios of the glass woven fabric used for the surface layer are controlled by controlling the longitudinal and lateral tensile strength ratios of the glass nonwoven fabric used for the intermediate layer. It is described that a balance between both directions is to be achieved.
  • Patent Document 3 Japanese Patent Laid-Open No. 2008-258335 describes that warpage of a semiconductor package can be effectively prevented by using a buildup layer in which a fiber base material is unevenly distributed in the thickness direction. Has been.
  • the warping of the laminate has become more prominent. Further, with the increase in the warp of the laminated plate, the increase in the warp of the circuit board and the increase in the warp of the semiconductor package resulting therefrom have become more prominent.
  • Patent Documents 1, 2, and 3 were effective in solving the warpage of the laminated board, the development of a laminated board with further reduced warpage is desired as the circuit board is further reduced in thickness. It was.
  • This invention is made
  • circuit board including the laminate according to the present invention.
  • a semiconductor package in which a semiconductor element is mounted on the circuit board according to the present invention.
  • a first prepreg containing a first glass fiber base layer, one or more second prepregs containing an organic fiber base layer and no glass fiber base layer, and a second glass fiber base By laminating and forming a third prepreg containing a material layer in this order, a laminated plate in which the first glass fiber substrate layer and the second glass fiber substrate layer are arranged outside the laminate is produced. can do.
  • the first glass fiber base layer and the second glass fiber base layer By arranging the first glass fiber base layer and the second glass fiber base layer on the outside of the laminate, the bending elastic modulus of the organic fiber base layer is reinforced, and the rigidity of the laminate is increased. Can reduce single warpage.
  • FIG. 1 is a cross-sectional view showing a configuration of a laminated board and a manufacturing method thereof in the present embodiment.
  • Laminate 100 includes a first prepreg 201 containing a first glass fiber substrate layer 101, one or more second prepregs 202 that include an organic fiber substrate layer and do not include a glass fiber substrate layer, and a second glass. It is the laminated board 100 obtained by laminating
  • the bending elastic modulus of the organic fiber base layer is reinforced, and the rigidity of the laminate 100 is increased. It can raise and can reduce the single unit curvature of a laminated board.
  • the distance between the center line A1 of the first glass fiber base layer 101 and the center line A2 of the second glass fiber base layer 102 is set to D1.
  • the thickness of the laminate 100 is D2
  • the total number of the first glass fiber substrate layer, the second glass fiber substrate layer and the organic fiber substrate layer contained in the laminate is n (where n is 3). It is preferable that the condition of D2 / n ⁇ D1 is satisfied.
  • the number n of fiber base layers represents the total number of the first glass fiber base layer, the second glass fiber base layer, and one or more organic fiber base layers. If it carries out like this, expansion stress can be moved to the center direction of the laminated board 100, and the single-piece
  • the first glass fiber base layer 101 and the second glass fiber base layer 102 are symmetrical with respect to the center line B1 of the laminate, respectively. It is preferable to arrange
  • the thickness of the laminated plate in the present embodiment is preferably 0.025 mm or more and 0.6 mm or less. More preferably, it is 0.04 mm or more and 0.4 mm or less, More preferably, it is 0.06 mm or more and 0.3 mm or less, Especially preferably, it is 0.08 mm or more and 0.2 mm or less.
  • the thickness of the laminate is within the above range, the balance between mechanical strength and productivity is particularly excellent, and a laminate suitable for a thin circuit board can be obtained.
  • the linear expansion coefficient in the plane direction of the laminate in the present embodiment is ⁇ 10 ppm / ° C. to 10 ppm / ° C., preferably ⁇ 8 ppm / ° C. to 8 ppm / ° C., more preferably ⁇ 5 ppm / ° C. to 5 ppm / ° C. It is as follows.
  • the linear expansion coefficient of the laminate is within the above range, it is possible to more effectively obtain warpage suppression and temperature cycle reliability improvement of a circuit board on which a wiring pattern is formed and a semiconductor package on which a semiconductor element is mounted. Improvement of temperature cycle reliability with the mother board when the package is secondarily mounted can be obtained more effectively.
  • the linear expansion coefficient of this embodiment represents the average value of the linear expansion coefficient in the region of 50 ° C. or higher and 150 ° C. or lower.
  • the laminated plate 100 Next, a method for manufacturing the laminated plate 100 will be described. First, the 1st prepreg 201 containing the 1st glass fiber base material layer 101, the 1st or more 2nd prepreg 202 which contains the organic fiber base material layer and does not contain the glass fiber base material layer, and the 2nd glass fiber base material layer 102 A third prepreg 203 containing each of them is prepared. Next, as shown in FIG. 1A, the first prepreg 201, the second prepreg 202, and the third prepreg 203 are overlapped in the order in the prepreg stacking direction.
  • the prepregs are overlapped so that the obtained laminated plate 100 satisfies the condition of D2 / n ⁇ D1.
  • each prepreg may be supplied continuously and laminated
  • first prepreg 201, the second prepreg 202, and the third prepreg 203 that are superposed as described above are heated and pressed to form the laminate in the present embodiment as shown in FIG. 100 is obtained.
  • the method for the heat treatment is not particularly limited, and can be carried out using, for example, a hot air drying device, an infrared heating device, a heating roll device, a flat platen hot platen pressing device, or the like.
  • a hot-air drying device or an infrared heating device is used, the bonding can be carried out without substantially applying pressure to the joined ones.
  • a heating roll apparatus or a flat hot platen press apparatus it can implement by making predetermined
  • the temperature at the time of heat treatment is not particularly limited, but it is preferably a temperature range in which the resin used is melted and the resin curing reaction does not proceed rapidly.
  • the temperature at which the resin melts is preferably 120 ° C. or higher, more preferably 150 ° C. or higher.
  • the temperature at which the resin curing reaction does not proceed rapidly is preferably 250 ° C. or lower, more preferably 230 ° C. or lower.
  • the time for the heat treatment varies depending on the type of resin used and the like, it is not particularly limited.
  • the heat treatment can be performed by treating for 30 minutes to 180 minutes.
  • the pressure to pressurize is not particularly limited, but is preferably 0.2 MPa or more and 5 MPa or less, and more preferably 2 MPa or more and 4 MPa or less.
  • the prepreg contained in the laminate 100 is a sheet-like material including a fiber base layer and a resin layer obtained by impregnating a fiber base with one or more resin compositions and then semi-curing the fiber base.
  • a sheet-like material having such a structure is preferable because it is excellent in various properties such as dielectric properties, mechanical and electrical connection reliability under high temperature and high humidity, and suitable for manufacturing a laminated board for a circuit board.
  • the method of impregnating the fiber base material with the resin composition used in the present embodiment is not particularly limited.
  • the resin composition is dissolved in a solvent to prepare a resin varnish, and the fiber base material is immersed in the resin varnish.
  • coating with various coaters, the method of spraying by a spray, the method of laminating the resin layer with a support base material, etc. are mentioned.
  • the method of immersing the fiber base material in the resin varnish is preferable. Thereby, the impregnation property of the resin composition with respect to the fiber base material can be improved.
  • a normal impregnation coating equipment can be used.
  • the thickness of the fiber substrate is 0.1 mm or less
  • a method of laminating with a film-like resin layer from both sides of the fiber substrate is preferable.
  • the impregnation amount of the resin composition with respect to the fiber base material can be freely adjusted, and the moldability of the prepreg can be further improved.
  • laminating a film-like resin layer it is more preferable to use a vacuum laminating apparatus or the like.
  • examples of the method for producing the prepreg include the following methods.
  • FIG. 2 is a cross-sectional view showing a method for producing a prepreg.
  • the carrier material 5a, 5b is manufactured in advance, and after laminating the carrier material 5a, 5b on the fiber base material 11, a method of peeling the carrier film will be specifically described.
  • a carrier material 5a in which the first resin composition is previously applied to the carrier film and a carrier material 5b in which the second resin composition is applied to the carrier film are manufactured.
  • the carrier materials 5a and 5b are overlapped from both sides of the fiber base material under reduced pressure, and bonded with a laminating roll 61 heated to a temperature at which the resin composition melts as necessary,
  • the fiber base material 11 is impregnated with the resin composition coated on the carrier film.
  • a vacuum box device or a vacuum becquerel device can be used as another device for joining the fiber base material 11 and the carrier materials 5a and 5b under such a reduced pressure.
  • heat treatment is performed at a temperature equal to or higher than the melting temperature of the resin applied to the carrier material by the hot air drying device 62.
  • an infrared heating device for example, a heating roll device, a plate-shaped hot platen pressing device, or the like can be used.
  • the carrier film After laminating the carrier materials 5a and 5b to the fiber substrate 11, the carrier film is peeled off. By this method, the resin composition is supported on the fiber base material 11, and the prepreg 21 in which the fiber base material 11 is built is obtained.
  • an asymmetric prepreg in which the fiber base layer is unevenly distributed in the thickness direction can be produced by adjusting the thickness of the resin layers of the carrier materials 5a and 5b.
  • the fiber base material 3 is conveyed so as to pass between the two die coaters to a coating machine provided with the first coating device 1a and the second coating device 1b, which are two die coaters, on both sides thereof.
  • the resin varnish 4 is applied on each side.
  • the first coating apparatus 1a and the second coating apparatus 1b may use the same die coater or different ones.
  • the 1st coating apparatus 1a and the 2nd coating apparatus 1b may use a roll coater.
  • the coating distance L and the tip overlap distance D have a certain distance as shown in FIGS. 11 and 12, they may not have a certain distance as shown in FIG. .
  • the first coating device 1 a and the second coating device 1 b each have a coating tip 2, and each coating tip 2 is elongated in the width direction of the fiber base 3.
  • tip part 2a which is a coating front-end
  • tip part 2b protrudes toward the other surface of the fiber base material 3.
  • the discharge amount per unit time of the resin varnish 4 discharged from the first coating device 1a and the second coating device 1b may be the same or different.
  • the thickness of the resin varnish 4 to be applied can be individually controlled on one side and the other side of the fiber base 3, and the layer of the resin layer The thickness can be easily adjusted.
  • a prepreg is manufactured by heating at a predetermined temperature in a dryer to volatilize the solvent of the applied resin varnish 4 and to semi-cur the resin composition.
  • the solvent used in the resin varnish preferably exhibits good solubility with respect to the resin component in the resin composition. May be used.
  • the solvent exhibiting good solubility include acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, tetrahydrofuran, dimethylformamide, dimethylacetamide, dimethyl sulfoxide, ethylene glycol, cellosolve and carbitol.
  • the thickness C1 of the first resin layer constituting the prepreg is usually 2.3 ⁇ m or more and 100 ⁇ m or less, and the thickness C2 of the second resin layer is usually preferably 1 ⁇ m or more and 15 ⁇ m or less.
  • the thickness of the resin layer is a distance from the interface between the fiber base layer and the resin layer to the opposite interface of the resin layer, and does not include the resin impregnated in the fiber base layer.
  • the ratio of the thickness C2 of the second resin layer of the prepreg to the thickness C1 of the first resin layer (C2 / C1) is in the range of 0.1 ⁇ C2 / C1 ⁇ 0.9, which controls the warpage. It is preferable from the viewpoint of facilitating.
  • a relatively thick resin layer is referred to as a first resin layer
  • a relatively thin resin layer is referred to as a second resin layer.
  • the thickness of the resin layer can be measured, for example, by observing a cross section of the prepreg after curing with an optical microscope.
  • the solid content of the resin varnish is not particularly limited, but is preferably 40% by weight to 80% by weight, and more preferably 50% by weight to 65% by weight. Thereby, the impregnation property to the fiber base material of the resin varnish can further be improved.
  • a prepreg can be obtained by impregnating a fiber base material with a resin composition and drying at a predetermined temperature, for example, 80 ° C. or more and 200 ° C. or less.
  • Glass fiber base material layer Although it does not specifically limit as a fiber base material used for the 1st glass fiber base material layer 101 and the 2nd glass fiber base material layer 102, Glass fiber base materials, such as a glass cloth and a glass nonwoven fabric, are mentioned. Among these, glass cloth is particularly preferable from the viewpoint of strength and water absorption. Moreover, the thermal expansion coefficient of a laminated board can be made still smaller by using a glass cloth.
  • the basis weight (weight of the fiber base material per 1 m 2 ) is preferably 4 g / m 2 or more and 150 g / m 2 or less, more preferably 8 g / m 2 or more and 110 g. / M 2 or less, more preferably 12 g / m 2 or more and 60 g / m 2 or less, further preferably 12 g / m 2 or more and 30 g / m 2 or less, and particularly preferably 12 g / m 2 or more and 24 g / m 2 or less. 2 or less.
  • the basis weight is not more than the above upper limit value, the impregnation property of the resin composition in the fiber base material is improved, and the occurrence of strand voids and a decrease in insulation reliability can be suppressed.
  • strength of a glass fiber base material or a laminated board can be improved as basic weight is more than the said lower limit. As a result, handling properties can be improved, prepreg can be easily produced, and reduction in the warpage reduction effect of the substrate can be suppressed.
  • a glass fiber base material having a linear expansion coefficient of 6 ppm / ° C. or lower is preferable, and a glass fiber base material of 3.5 ppm / ° C. or lower is more preferable.
  • the glass fiber base material having such a linear expansion coefficient it is possible to further suppress the warpage of the laminated board of the present embodiment.
  • the fiber base material used in this embodiment preferably has a Young's modulus of 60 GPa to 100 GPa, more preferably 65 GPa to 92 GPa, and still more preferably 86 GPa to 92 GPa.
  • a glass fiber base material having such a Young's modulus for example, deformation of the wiring board due to reflow heat during semiconductor mounting can be effectively suppressed, so that the connection reliability of electronic components is further improved.
  • the glass fiber base material used in the present embodiment preferably has a dielectric constant at 1 MHz of 3.8 to 7.0, more preferably 3.8 to 6.8, and even more preferably 3. .8 or more and 5.5 or less.
  • the dielectric constant of the laminate can be further reduced, which is suitable for a semiconductor package using a high-speed signal.
  • E glass, S glass, NE glass, T glass, UN glass, and quartz glass are preferably used as the glass fiber base material having the above-described linear expansion coefficient, Young's modulus, and dielectric constant.
  • T glass or S glass is preferable.
  • the first glass fiber base layer 101 and the second glass fiber base layer 102 in the laminated plate 100 are layers formed by impregnating the above glass fiber bases with the resin composition. Can be considered as the thickness of the fiber substrate.
  • the thickness of the glass fiber base layer is not particularly limited, but is preferably 5 ⁇ m or more and 100 ⁇ m or less, more preferably 10 ⁇ m or more and 60 ⁇ m or less, and further preferably 12 ⁇ m or more and 35 ⁇ m or less.
  • the thickness of the glass fiber substrate layer is not more than the above upper limit, the impregnation property of the resin composition in the fiber substrate is improved, and the occurrence of strand voids and a decrease in insulation reliability can be suppressed.
  • strength of a fiber base material or a prepreg can be improved as the thickness of a glass fiber base material layer is more than the said lower limit. As a result, handling properties can be improved, prepreg can be easily produced, and reduction in the warpage reduction effect of the substrate can be suppressed.
  • the number of glass fiber substrates used is not limited to one, and a plurality of thin fiber substrates can be used in a stacked manner. In addition, when using a plurality of fiber base materials in piles, the total thickness only needs to satisfy the above range.
  • the first glass fiber base layer 101 and the second glass fiber base layer 102 in the laminate 100 may be the same or different.
  • Laminate 100 has a fiber substrate layer formed by impregnating a fiber substrate such as a glass fiber substrate with a resin composition, thereby providing an excellent low linear expansion coefficient and high elastic modulus, a thin multilayer wiring board, A semiconductor package in which a semiconductor chip is mounted on a multilayer wiring board can be obtained with less warping and excellent heat resistance and thermal shock reliability.
  • high strength, low water absorption, and low thermal expansion can be achieved by having a fiber base layer formed by impregnating a glass fiber base with a resin composition.
  • the resin composition impregnated into the glass fiber substrate is not particularly limited, but preferably has a low linear expansion coefficient and a high elastic modulus and is excellent in thermal shock reliability. It is preferable that the resin composition contains a thermosetting resin.
  • thermosetting resin Although it does not specifically limit as a thermosetting resin, It is preferable that it has a low linear expansion coefficient and a high elasticity modulus, and is excellent in the reliability of thermal shock property.
  • the glass transition temperature of the thermosetting resin is preferably 160 ° C. or higher and 350 ° C. or lower, more preferably 180 ° C. or higher and 300 ° C. or lower. By using a thermosetting resin having such a glass transition temperature, the effect of further improving the lead-free solder reflow heat resistance can be obtained.
  • thermosetting resins include, for example, novolac type phenolic resins such as phenol novolak resin, cresol novolak resin, bisphenol A novolak resin, unmodified resole phenolic resin, oil modified resole modified with tung oil, linseed oil, walnut oil, etc.
  • novolac type phenolic resins such as phenol novolak resin, cresol novolak resin, bisphenol A novolak resin, unmodified resole phenolic resin, oil modified resole modified with tung oil, linseed oil, walnut oil, etc.
  • Phenol resin such as phenolic resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bisphenol E type epoxy resin, bisphenol M type epoxy resin, bisphenol P type epoxy resin, bisphenol Bisphenol type epoxy resin such as Z type epoxy resin, novolak type epoxy resin such as phenol novolac type epoxy resin, cresol novolac type epoxy resin, biffe Type epoxy resin, biphenyl aralkyl type epoxy resin, aryl alkylene type epoxy resin, naphthalene type epoxy resin, anthracene type epoxy resin, phenoxy type epoxy resin, dicyclopentadiene type epoxy resin, norbornene type epoxy resin, adamantane type epoxy resin, fluorene Type epoxy resin, epoxy resin, urea (urea) resin, resin having triazine ring such as melamine resin, unsaturated polyester resin, bismaleimide resin, polyurethane resin, diallyl phthalate resin, silicone resin, resin having benzoxazine ring, Examples
  • cyanate resins are particularly preferable.
  • the thermal expansion coefficient of a laminated board can be made small.
  • the cyanate resin is excellent in electrical characteristics (low dielectric constant, low dielectric loss tangent), mechanical strength, and the like.
  • cyanate resin for example, those obtained by reacting a cyanogen halide compound with phenols, or those obtained by prepolymerization by a method such as heating as required can be used.
  • bisphenol cyanate resins such as novolac type cyanate resin, bisphenol A type cyanate resin, bisphenol E type cyanate resin, tetramethylbisphenol F type cyanate resin, naphthol aralkyl type polyvalent naphthols, and cyanogen halides Cyanate resin, dicyclopentadiene-type cyanate resin, biphenylalkyl-type cyanate resin, and the like obtained by the above reaction.
  • novolac type cyanate resin is preferable. By using the novolac type cyanate resin, the crosslink density is increased and the heat resistance is improved. Therefore, the flame retardancy of the laminate can be improved.
  • the novolak cyanate resin forms a triazine ring after the curing reaction. Furthermore, it is considered that novolak-type cyanate resin has a high benzene ring ratio due to its structure and is easily carbonized. Furthermore, even when the thickness of the laminate is 0.6 mm or less, the laminate including the resin layer produced by curing the novolac cyanate resin has excellent rigidity. In particular, since such a laminate is excellent in rigidity during heating, it is also excellent in reliability when mounting a semiconductor element.
  • a novolak-type cyanate resin what is shown by the following general formula (I) can be used, for example.
  • the average repeating unit n of the novolak cyanate resin represented by the general formula (I) is an arbitrary integer. Although the minimum of n is not specifically limited, 1 or more are preferable and 2 or more are more preferable. When n is not less than the above lower limit, the heat resistance of the novolak-type cyanate resin is improved, and it is possible to suppress desorption and volatilization of the low monomer during heating.
  • the upper limit of n is not particularly limited, but is preferably 10 or less, and more preferably 7 or less. It can suppress that a melt viscosity becomes it high that n is below the said upper limit, and can suppress that the moldability of a resin layer falls.
  • a naphthol type cyanate resin represented by the following general formula (II) is also preferably used.
  • the naphthol type cyanate resin represented by the following general formula (II) includes, for example, naphthols such as ⁇ -naphthol or ⁇ -naphthol and p-xylylene glycol, ⁇ , ⁇ '-dimethoxy-p-xylene, 1,4- It is obtained by condensing naphthol aralkyl resin obtained by reaction with di (2-hydroxy-2-propyl) benzene and cyanic acid.
  • n is preferably 10 or less.
  • n 10 or less
  • the resin viscosity does not increase, the impregnation property to the fiber base material is good, and there is a tendency not to deteriorate the performance as a laminate.
  • intramolecular polymerization hardly occurs at the time of synthesis, the liquid separation property at the time of washing with water tends to be improved, and the decrease in yield tends to be prevented.
  • R represents a hydrogen atom or a methyl group, and n represents an integer of 1 or more.
  • a dicyclopentadiene type cyanate resin represented by the following general formula (III) is also preferably used.
  • n in the following general formula (III) is preferably 0 or more and 8 or less. When n is 8 or less, the resin viscosity does not increase, the impregnation property to the fiber base material is good, and the performance as a laminated plate can be prevented from being lowered.
  • a dicyclopentadiene type cyanate resin it is excellent in low hygroscopicity and chemical resistance.
  • N represents an integer of 0 or more and 8 or less.
  • Mw500 or more is preferable and Mw600 or more is more preferable.
  • Mw600 or more is more preferable.
  • the upper limit of Mw is not particularly limited, but is preferably Mw 4,500 or less, and particularly preferably Mw 3,000 or less.
  • Mw is not more than the above upper limit value, it is possible to suppress the reaction from being accelerated, and in the case of a circuit board, it is possible to suppress the occurrence of molding defects and the decrease in interlayer peel strength.
  • Mw such as cyanate resin can be measured by, for example, GPC (gel permeation chromatography, standard substance: converted to polystyrene).
  • one kind of cyanate resin may be used alone, two or more kinds having different Mw may be used in combination, and one kind or two or more kinds and a prepolymer thereof may be used in combination.
  • the content of the thermosetting resin contained in the resin composition is not particularly limited as long as it is appropriately adjusted according to the purpose, but is preferably 5% by mass or more and 90% by mass or less based on the entire resin composition, 10 mass% or more and 80 mass% or less are more preferable, and 20 mass% or more and 50 mass% or less are especially preferable.
  • the content of the thermosetting resin is not less than the above lower limit value, handling properties are improved, and it becomes easy to form a resin layer.
  • the content of the thermosetting resin is less than or equal to the above upper limit, the strength and flame retardancy of the resin layer are improved, or the linear expansion coefficient of the resin layer is reduced and the effect of reducing the warpage of the laminate is improved. There is a case.
  • an epoxy resin substantially free of halogen atoms
  • the epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol E type epoxy resin, bisphenol S type epoxy resin, bisphenol M type epoxy resin, bisphenol P type epoxy resin, bisphenol Z type epoxy resin and the like.
  • Type epoxy resin phenol novolac type epoxy resin, novolac type epoxy resin such as cresol novolac type epoxy resin, arylphenyl type epoxy resin such as biphenyl type epoxy resin, xylylene type epoxy resin, biphenyl aralkyl type epoxy resin, naphthol type epoxy resin, Naphthalenediol type epoxy resin, bifunctional or tetrafunctional epoxy type naphthalene resin, naphthylene ether type epoxy resin, binaphthyl type epoxy resin Naphthalene-type epoxy resins such as xylene resin, naphthalene-aralkyl-type epoxy resin, anthracene-type epoxy resin, phenoxy-type epoxy resin, dicyclopentadiene-type epoxy resin, norbornene-type epoxy resin, adamantane-type epoxy resin, fluorene-type epoxy resin, etc. .
  • epoxy resin one of these may be used alone, or two or more having different weight average molecular weights may be used in combination, or one or two or more and those prepolymers may be used in combination. May be.
  • aryl alkylene type epoxy resins are particularly preferable. Thereby, moisture-absorbing solder heat resistance and flame retardance can be further improved.
  • the arylalkylene type epoxy resin refers to an epoxy resin having one or more arylalkylene groups in a repeating unit.
  • a xylylene type epoxy resin, a biphenyl dimethylene type epoxy resin, etc. are mentioned.
  • a biphenyl dimethylene type epoxy resin is preferable.
  • mold epoxy resin can be shown, for example with the following general formula (IV).
  • the average repeating unit n of the biphenyl dimethylene type epoxy resin represented by the general formula (IV) is an arbitrary integer. Although the minimum of n is not specifically limited, 1 or more are preferable and 2 or more are more preferable. When n is not less than the above lower limit, crystallization of the biphenyldimethylene type epoxy resin can be suppressed and the solubility in a general-purpose solvent is improved, so that handling becomes easy.
  • the upper limit of n is not particularly limited, but is preferably 10 or less, and more preferably 5 or less. When n is less than or equal to the above upper limit, the fluidity of the resin is improved and the occurrence of molding defects and the like can be suppressed.
  • epoxy resin other than the above a novolac type epoxy resin having a condensed ring aromatic hydrocarbon structure is preferable. Thereby, heat resistance and low thermal expansibility can further be improved.
  • the novolak type epoxy resin having a condensed ring aromatic hydrocarbon structure is a novolak type epoxy resin having a naphthalene, anthracene, phenanthrene, tetracene, chrysene, pyrene, triphenylene, and tetraphen or other condensed ring aromatic hydrocarbon structure.
  • the novolac type epoxy resin having a condensed ring aromatic hydrocarbon structure is excellent in low thermal expansion because a plurality of aromatic rings can be regularly arranged. Moreover, since the glass transition temperature is also high, it is excellent in heat resistance.
  • the molecular weight of the repeating structure is large, it is superior in flame retardancy compared to conventional novolak type epoxies, and the weakness of cyanate resin can be improved by combining with cyanate resin. Therefore, when used in combination with a cyanate resin, the glass transition temperature is further increased, so that the lead-free compatible mounting reliability is excellent.
  • the novolak-type epoxy resin having a condensed ring aromatic hydrocarbon structure is obtained by epoxidizing a novolac-type phenol resin synthesized from a phenol compound, a formaldehyde compound, and a condensed ring aromatic hydrocarbon compound.
  • the phenol compound is not particularly limited, but examples thereof include cresols such as phenol, o-cresol, m-cresol, p-cresol, 2,3-xylenol, 2,4-xylenol, 2,5-xylenol, 2, 6-xylenol, 3,4-xylenol, xylenols such as 3,5-xylenol, trimethylphenols such as 2,3,5 trimethylphenol, ethyl such as o-ethylphenol, m-ethylphenol, p-ethylphenol Phenols, alkylphenols such as isopropylphenol, butylphenol, t-butylphenol, o-phenylphenol, m-phenylphenol, p-phenylphenol, catechol, 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphtha , Naphthalenediols such as 2,7-dihydroxyn
  • the aldehyde compound is not particularly limited, and examples thereof include formaldehyde, paraformaldehyde, trioxane, acetaldehyde, propionaldehyde, polyoxymethylene, chloral, hexamethylenetetramine, furfural, glyoxal, n-butyraldehyde, caproaldehyde, allylaldehyde, Examples include benzaldehyde, crotonaldehyde, acrolein, tetraoxymethylene, phenylacetaldehyde, o-tolualdehyde, salicylaldehyde, dihydroxybenzaldehyde, trihydroxybenzaldehyde, 4-hydroxy-3-methoxyaldehyde paraformaldehyde and the like.
  • the fused ring aromatic hydrocarbon compound is not particularly limited, but for example, naphthalene derivatives such as methoxynaphthalene and butoxynaphthalene, anthracene derivatives such as methoxyanthracene, phenanthrene derivatives such as methoxyphenanthrene, other tetracene derivatives, chrysene derivatives, pyrene derivatives, Derivatives such as triphenylene and tetraphen derivatives are mentioned.
  • the novolak-type epoxy resin having a condensed ring aromatic hydrocarbon structure is not particularly limited.
  • methoxynaphthalene-modified orthocresol novolak epoxy resin, butoxynaphthalene-modified meta (para) cresol novolak epoxy resin, and methoxynaphthalene-modified novolak epoxy resin Etc are preferable.
  • Ar is a condensed ring aromatic hydrocarbon group.
  • R may be the same or different from each other, and is a hydrogen atom, a hydrocarbon group having 1 to 10 carbon atoms, a halogen element, a phenyl group, A group selected from an aryl group such as a benzyl group and an organic group containing a glycidyl ether, n, p and q are integers of 1 or more, and the values of p and q may be the same for each repeating unit, May be different.
  • R in formula (V) is a structure represented by (Ar1) to (Ar4) in formula (VI).
  • R in formula (VI) may be the same or different from each other. It is often a group selected from a hydrogen atom, a hydrocarbon group having 1 to 10 carbon atoms or a halogen element, an aryl group such as a phenyl group and a benzyl group, and an organic group including glycidyl ether.
  • naphthalene type epoxy resins such as naphthol type epoxy resin, naphthalene diol type epoxy resin, bifunctional or tetrafunctional epoxy type naphthalene resin, naphthylene ether type epoxy resin and the like are preferable.
  • heat resistance and low thermal expansibility can further be improved.
  • the naphthalene ring has a higher ⁇ - ⁇ stacking effect than the benzene ring, it is particularly excellent in low thermal expansion and low thermal shrinkage.
  • the polycyclic structure has a high rigidity effect and the glass transition temperature is particularly high, the change in heat shrinkage before and after reflow is small.
  • the naphthol type epoxy resin for example, the following general formula (VII-1); as the naphthalene diol type epoxy resin, the following formula (VII-2); as the bifunctional or tetrafunctional epoxy type naphthalene resin, the following formula (VII-3): Examples of (VII-4) (VII-5) and naphthylene ether type epoxy resin can be represented by the following general formula (VII-6).
  • N represents an average number of 1 to 6, and R represents a glycidyl group or a hydrocarbon group having 1 to 10 carbon atoms.
  • R 1 represents a hydrogen atom or a methyl group.
  • R 2 each independently represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an aralkyl group, a naphthalene group, or a glycidyl ether group-containing naphthalene group.
  • O and m are each an integer of 0 to 2, and either o or m is 1 or more.
  • the lower limit of the content of the epoxy resin is not particularly limited, but is preferably 1% by mass or more and more preferably 2% by mass or more in the entire resin composition. When the content is not less than the above lower limit, the reactivity of the cyanate resin is improved, and the moisture resistance of the resulting product can be improved.
  • the upper limit of content of an epoxy resin is not specifically limited, 55 mass% or less is preferable and 40 mass% or less is more preferable. Heat resistance can be improved more as content is below the said upper limit.
  • the lower limit of the weight average molecular weight (Mw) of the epoxy resin is not particularly limited, but is preferably 500 or higher, more preferably 800 or higher. It can suppress that tackiness arises in a resin layer as Mw is more than the said lower limit.
  • the upper limit of Mw is not particularly limited, but is preferably Mw 20,000 or less, and more preferably Mw 15,000 or less. When Mw is not more than the above upper limit, the impregnation property to the fiber base material is improved at the time of producing the prepreg, and a more uniform product can be obtained.
  • the Mw of the epoxy resin can be measured by GPC, for example.
  • Cyanate resins (especially novolac-type cyanate resins, naphthol-type cyanate resins, dicyclopentadiene-type cyanate resins) and epoxy resins (arylalkylene-type epoxy resins, especially biphenyldimethylene-type epoxy resins, condensed ring aromatic hydrocarbons)
  • epoxy resins arylalkylene-type epoxy resins, especially biphenyldimethylene-type epoxy resins, condensed ring aromatic hydrocarbons
  • a phenol resin examples include novolac type phenol resins, resol type phenol resins, aryl alkylene type phenol resins, and the like.
  • phenol resin one of these may be used alone, two or more having different weight average molecular weights may be used in combination, and one or two or more thereof and a prepolymer thereof may be used in combination. May be.
  • aryl alkylene type phenol resins are particularly preferable. Thereby, moisture absorption solder heat resistance can be improved further.
  • aryl alkylene type phenol resin examples include xylylene type phenol resin and biphenyl dimethylene type phenol resin.
  • a biphenyl dimethylene type phenol resin can be shown by the following general formula (VIII), for example.
  • the repeating unit n of the biphenyldimethylene type phenol resin represented by the general formula (VIII) is an arbitrary integer. Although the minimum of n is not specifically limited, 1 or more are preferable and 2 or more are more preferable. Heat resistance can be improved more as n is more than the said lower limit.
  • the upper limit of the repeating unit n is not particularly limited, but is preferably 12 or less, and more preferably 8 or less. Moreover, compatibility with other resin improves that n is below the said upper limit, and workability
  • Cyanate resin especially novolac-type cyanate resin, naphthol-type cyanate resin, dicyclopentadiene-type cyanate resin
  • epoxy resin arylalkylene-type epoxy resin, especially biphenyldimethylene-type epoxy resin, condensed ring aromatic hydrocarbon structure
  • a combination of a novolac type epoxy resin or a naphthol type epoxy resin) and an arylalkylene type phenol resin can control the crosslinking density and easily control the reactivity.
  • the lower limit of the content of the phenol resin is not particularly limited, but is preferably 1% by mass or more, and particularly preferably 5% by mass or more in the entire resin composition. Heat resistance can be improved as content of a phenol resin is more than the said lower limit.
  • the upper limit of content of a phenol resin is not specifically limited, However, 55 mass% or less is preferable in the whole resin composition, and 40 mass% or less is especially preferable. When the content of the phenol resin is not more than the above upper limit value, the characteristics of low thermal expansion can be improved.
  • the lower limit of the weight average molecular weight (Mw) of the phenol resin is not particularly limited, but is preferably Mw 400 or more, particularly preferably Mw 500 or more. It can suppress that tackiness arises in a resin layer as Mw is more than the said lower limit.
  • the upper limit of Mw of a phenol resin is not specifically limited, Mw18,000 or less is preferable and Mw15,000 or less is more preferable. When Mw is not more than the above upper limit value, the impregnation property to the fiber base material is improved at the time of producing the prepreg, and a more uniform product can be obtained.
  • the Mw of the phenol resin can be measured by GPC, for example.
  • cyanate resins especially novolac-type cyanate resins, naphthol-type cyanate resins, dicyclopentadiene-type cyanate resins
  • phenol resins arylalkylene-type phenol resins, especially biphenyldimethylene-type phenol resins
  • epoxy resins arylalkylene-type epoxy resins
  • a board particularly a circuit board
  • it has excellent dimensional stability. Sex can be obtained.
  • the resin composition preferably contains an inorganic filler. Thereby, even if the laminated board is made thinner, it is possible to impart even better strength. Furthermore, the low thermal expansion of the laminate can be further improved.
  • inorganic filler examples include silicates such as talc, calcined clay, unfired clay, mica and glass, oxides such as titanium oxide, alumina, boehmite, silica and fused silica, calcium carbonate, magnesium carbonate and hydrotalcite.
  • silicates such as talc, calcined clay, unfired clay, mica and glass
  • oxides such as titanium oxide, alumina, boehmite, silica and fused silica, calcium carbonate, magnesium carbonate and hydrotalcite.
  • Carbonates such as, hydroxides such as aluminum hydroxide, magnesium hydroxide, calcium hydroxide, sulfates or sulfites such as barium sulfate, calcium sulfate, calcium sulfite, zinc borate, barium metaborate, aluminum borate, Examples thereof include borates such as calcium borate and sodium borate, nitrides such as aluminum nitride, boron nitride, silicon nitride and carbon nitride, titanates such as strontium titanate and barium titanate.
  • hydroxides such as aluminum hydroxide, magnesium hydroxide, calcium hydroxide, sulfates or sulfites
  • barium sulfate calcium sulfate, calcium sulfite, zinc borate, barium metaborate, aluminum borate
  • borates such as calcium borate and sodium borate
  • nitrides such as aluminum nitride, boron nitride, silicon nit
  • the inorganic filler one of these may be used alone, or two or more may be used in combination.
  • silica is particularly preferable, and fused silica is preferable in terms of excellent low thermal expansion.
  • the fused silica has a crushed shape and a spherical shape.
  • a usage method suitable for the purpose such as using spherical silica to lower the melt viscosity of the resin composition. .
  • the minimum of the average particle diameter of an inorganic filler is not specifically limited, 0.01 micrometer or more is preferable and 0.1 micrometer or more is more preferable. It can suppress that the viscosity of a varnish becomes high as the particle size of an inorganic filler is more than the said lower limit, and can improve workability
  • the upper limit of the average particle diameter is not particularly limited, but is preferably 5.0 ⁇ m or less, and more preferably 2.0 ⁇ m or less. When the particle size of the inorganic filler is not more than the above upper limit, phenomena such as sedimentation of the filler in the varnish can be suppressed, and a more uniform resin layer can be obtained.
  • the average particle size of the inorganic filler is measured, for example, by measuring the particle size distribution of the particles on a volume basis using a laser diffraction particle size distribution analyzer (manufactured by HORIBA, LA-500), and the median diameter (D50) is defined as the average particle size. To do.
  • the inorganic filler is not particularly limited, and an inorganic filler having a monodispersed average particle diameter may be used, or an inorganic filler having a polydispersed average particle diameter may be used. Furthermore, one type or two or more types of inorganic fillers having an average particle size of monodispersed and / or polydispersed may be used in combination.
  • the inorganic filler is preferably spherical silica having an average particle size of 5.0 ⁇ m or less, more preferably spherical silica having an average particle size of 0.01 ⁇ m or more and 2.0 ⁇ m or less. Thereby, the filling property of an inorganic filler can further be improved.
  • the content of the inorganic filler is not particularly limited, but is preferably 20% by weight to 80% by weight, and more preferably 30% by weight to 75% by weight based on the entire resin composition. When the content is within the above range, particularly low thermal expansion and low water absorption can be achieved.
  • the resin composition used in the present embodiment can also contain a rubber component, and for example, rubber particles can be used.
  • rubber particles include core-shell type rubber particles, crosslinked acrylonitrile butadiene rubber particles, crosslinked styrene butadiene rubber particles, acrylic rubber particles, and silicone particles.
  • the core-shell type rubber particle is a rubber particle having a core layer and a shell layer.
  • the outer shell layer is made of a glassy polymer
  • the inner core layer is made of a rubbery polymer
  • the outer shell layer is made of a glassy polymer
  • the intermediate layer is made of a rubbery polymer.
  • the glassy polymer layer is made of, for example, a polymer of methyl methacrylate
  • the rubbery polymer layer is made of, for example, a butyl acrylate polymer (butyl rubber).
  • core-shell type rubber particles include Staphyloid AC3832, AC3816N (trade names, manufactured by Ganz Kasei Co., Ltd.), and Metabrene KW-4426 (trade names, manufactured by Mitsubishi Rayon Co., Ltd.).
  • NBR crosslinked acrylonitrile butadiene rubber
  • XER-91 average particle size 0.5 ⁇ m, manufactured by JSR.
  • SBR crosslinked styrene butadiene rubber
  • acrylic rubber particles include methabrene W300A (average particle size 0.1 ⁇ m), W450A (average particle size 0.2 ⁇ m) (manufactured by Mitsubishi Rayon Co., Ltd.), and the like.
  • the silicone particles are not particularly limited as long as they are rubber elastic fine particles formed of organopolysiloxane.
  • silicone rubber fine particles commercially available products such as KMP-605, KMP-600, KMP-597, KMP-594 (manufactured by Shin-Etsu Chemical), Trefil E-500, Trefil E-600 (manufactured by Toray Dow Corning), etc. Can be used.
  • the content of the rubber particles is not particularly limited, but is preferably 20% by weight or more and 80% by weight or less, more preferably 30% by weight or more and 75% by weight or less based on the entire resin composition, including the above inorganic fillers. . When the content is within the range, particularly low water absorption can be achieved.
  • additives such as a coupling agent, a curing accelerator, a curing agent, a thermoplastic resin, and an organic filler can be appropriately blended in the resin composition as necessary.
  • the resin composition used in the present embodiment can be suitably used in a liquid form in which the above components are dissolved and / or dispersed with an organic solvent or the like.
  • the coupling agent By using the coupling agent, the wettability of the interface between the thermosetting resin and the inorganic filler is improved, and the resin composition can be uniformly fixed to the fiber substrate. Therefore, it is preferable to use a coupling agent, and heat resistance, particularly solder heat resistance after moisture absorption can be improved.
  • any of those usually used as a coupling agent can be used. Specifically, an epoxy silane coupling agent, a cationic silane coupling agent, an aminosilane coupling agent, a titanate coupling agent, and silicone. It is preferable to use one or more coupling agents selected from oil-type coupling agents. Thereby, the wettability with the interface of an inorganic filler can be made high, and thereby heat resistance can be improved more.
  • the lower limit of the addition amount of the coupling agent is not particularly limited because it depends on the specific surface area of the filler, but is preferably 0.05 parts by mass or more, more preferably 0.1 parts by mass or more with respect to 100 parts by mass of the filler. .
  • covered as content of a coupling agent is more than the said lower limit, and heat resistance can be improved.
  • especially the upper limit of addition amount is although it is not limited, 3 mass parts or less are preferable and 2 mass parts or less are more preferable. When the content is not more than the above upper limit value, it is possible to suppress the influence on the reaction, and it is possible to suppress a decrease in bending strength and the like.
  • Known curing accelerators can be used.
  • organic metal salts such as zinc naphthenate, cobalt naphthenate, tin octylate, cobalt octylate, bisacetylacetonate cobalt (II), trisacetylacetonate cobalt (III), triethylamine, tributylamine, diazabicyclo [2, Tertiary amines such as 2,2] octane, 2-phenyl-4-methylimidazole, 2-ethyl-4-ethylimidazole, 2-phenyl-4-ethylimidazole, 2-phenyl-4-methyl-5-hydroxy Onium salt compounds such as imidazoles such as imidazole and 2-phenyl-4,5-dihydroxyimidazole, phenolic compounds such as phenol, bisphenol A and nonylphenol, organic acids such as acetic acid, benzoic acid, salicylic acid and paratoluenesul
  • the onium salt compound is not particularly limited, and for example, an onium salt compound represented by the following general formula (IX) can be used.
  • R 1, R 2, R 3 and R 4 are each an organic group having a substituted or unsubstituted aromatic ring or heterocyclic ring, or a substituted or unsubstituted aliphatic group, and are identical to each other.
  • a - represents an anion of an n (n ⁇ 1) -valent proton donor having at least one proton that can be released outside the molecule, or a complex anion thereof.
  • the content of the curing accelerator is not particularly limited, but is preferably 0.01% by weight to 5% by weight, and more preferably 0.1% by weight to 2% by weight of the entire resin composition.
  • the content is not less than the above lower limit, the effect of promoting curing can be sufficiently exerted.
  • the preservability of a prepreg can be improved more as content is below the said upper limit.
  • the resin composition in the present embodiment includes a phenoxy resin, a polyimide resin, a polyamideimide resin, a polyphenylene oxide resin, a polyethersulfone resin, a polyester resin, a polyethylene resin, a thermoplastic resin such as a polystyrene resin, a styrene-butadiene copolymer, and styrene.
  • thermoplastic elastomers such as isoprene copolymers, thermoplastic elastomers such as polyolefin thermoplastic elastomers, polyamide elastomers and polyester elastomers, dienes such as polybutadiene, epoxy modified polybutadiene, acrylic modified polybutadiene and methacryl modified polybutadiene An elastomer may be further used in combination.
  • phenoxy resin examples include a phenoxy resin having a bisphenol skeleton, a phenoxy resin having a naphthalene skeleton, a phenoxy resin having an anthracene skeleton, and a phenoxy resin having a biphenyl skeleton.
  • a phenoxy resin having a structure having a plurality of these skeletons can also be used.
  • a phenoxy resin having a biphenyl skeleton and a bisphenol S skeleton as the phenoxy resin.
  • the rigidity of the biphenyl skeleton can increase the glass transition temperature of the phenoxy resin, and the presence of the bisphenol S skeleton can improve the adhesion between the phenoxy resin and the metal.
  • the heat resistance of the laminate can be improved, and the adhesion of the wiring layer to the laminate can be improved when the circuit board is manufactured.
  • a phenoxy resin having a bisphenol A skeleton and a bisphenol F skeleton as the phenoxy resin.
  • the adhesiveness to the laminated board of a wiring layer can further be improved at the time of manufacture of a circuit board.
  • a phenoxy resin having a bisphenolacetophenone structure represented by the following general formula (X).
  • R1 may be the same or different, and is a hydrogen atom, a hydrocarbon group having 1 to 10 carbon atoms or a group selected from halogen elements, and R2 is a hydrogen atom, 1 carbon atom) And a group selected from a hydrocarbon group having 10 or less or a halogen element, R3 is a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms, and m is an integer of 0 to 5.
  • the phenoxy resin containing a bisphenol acetophenone structure has a bulky structure, it has excellent solvent solubility and compatibility with the thermosetting resin component to be blended. Moreover, since a uniform rough surface can be formed with low roughness, the fine wiring formability is excellent.
  • the phenoxy resin having a bisphenolacetophenone structure can be synthesized by a known method such as a method in which an epoxy resin and a phenol resin are polymerized with a catalyst.
  • the phenoxy resin having a bisphenol acetophenone structure may contain a structure other than the bisphenol acetophenone structure of the general formula (X), and the structure is not particularly limited, but bisphenol A type, bisphenol F type, bisphenol S type, biphenyl Type, phenol novolac type, cresol novolac type structure and the like. Among them, those containing a biphenyl structure are preferable because of their high glass transition temperature.
  • the content of the bisphenol acetophenone structure of the general formula (X) in the phenoxy resin containing a bisphenol acetophenone structure is not particularly limited, but is preferably 5 mol% to 95 mol%, more preferably 10 mol% to 85 mol%. Or less, more preferably 15 mol% or more and 75 mol% or less.
  • the effect which improves heat resistance and moisture-proof reliability can fully be exhibited as content is more than the said lower limit.
  • solvent solubility can be improved as content is below the said upper limit.
  • the weight average molecular weight (Mw) of the phenoxy resin is not particularly limited, but is preferably from 5,000 to 100,000, more preferably from 10,000 to 70,000, and even more preferably from 20,000 to 50,000.
  • Mw is not more than the above upper limit, compatibility with other resins and solubility in a solvent can be improved.
  • it is at least the above lower limit the film-forming property is improved, and it is possible to suppress the occurrence of problems when used for manufacturing a circuit board.
  • the content of the phenoxy resin is not particularly limited, but is preferably 0.5% by mass or more and 40% by mass or less, and more preferably 1% by mass or more and 20% by mass or less of the resin composition excluding the filler.
  • the content is equal to or higher than the lower limit, it is possible to suppress a decrease in mechanical strength of the insulating resin layer and a decrease in plating adhesion with the conductor circuit.
  • it is not more than the above upper limit value, an increase in the thermal expansion coefficient of the insulating layer can be suppressed, and the heat resistance can be lowered.
  • additives other than the above components such as pigments, dyes, antifoaming agents, leveling agents, ultraviolet absorbers, foaming agents, antioxidants, flame retardants, and ion scavengers may be added to the resin composition. May be.
  • pigments examples include kaolin, synthetic iron oxide red, cadmium yellow, nickel titanium yellow, strontium yellow, hydrous chromium oxide, chromium oxide, cobalt aluminate, synthetic ultramarine blue and other inorganic pigments, phthalocyanine polycyclic pigments, azo pigments, etc. Etc.
  • the dye examples include isoindolinone, isoindoline, quinophthalone, xanthene, diketopyrrolopyrrole, perylene, perinone, anthraquinone, indigoid, oxazine, quinacridone, benzimidazolone, violanthrone, phthalocyanine, azomethine and the like.
  • the resin material and additive which comprise the 2nd prepreg 202 are not specifically limited,
  • the resin composition used for the 1st prepreg 201 and the 3rd prepreg 203 in this embodiment may be used suitably, or another material. May be used.
  • Organic fiber base layer Although it does not specifically limit as an organic fiber base material used for the organic fiber base material layer in this embodiment, for example, a polybenzoxazole resin fiber, a polyamide resin fiber, an aromatic polyamide resin fiber, a wholly aromatic polyamide (aramid) resin Synthetic fiber base material mainly composed of polyamide resin fibers such as fibers, polyester resin fibers, aromatic polyester resin fibers, polyester resin fibers such as wholly aromatic polyester resin fibers, polyimide resin fibers, fluororesin fibers, etc. Etc. As the organic fiber, one of these may be used alone, or two or more may be used in combination.
  • polybenzoxazole resin fibers are particularly preferable.
  • the thermal expansion coefficient and dielectric constant of the third prepreg can be further reduced, and the Young's modulus can be increased.
  • Xylon (trade name) is available from Toyobo.
  • As the type of Zylon there are AS type (regular type) with an elastic modulus of 180 GPa, HM (high elastic type) type with 270 GPa, and the laminated plate of this embodiment has a higher elastic HM type with low thermal expansion, This is preferable from the viewpoint of high Young's modulus. By doing so, the warpage of the semiconductor package can be further reduced by using the HM type.
  • organic fiber base material layer in this embodiment is not specifically limited, An organic fiber cloth, an organic fiber nonwoven fabric, etc. are mentioned. Among these, organic fiber cloth is particularly preferable in terms of strength and thermal expansion coefficient. Moreover, by using an organic fiber cloth, the thermal expansion coefficient of the third prepreg can be further reduced and the Young's modulus can be increased.
  • the thickness of the organic fiber base layer is not particularly limited, but is preferably 10 ⁇ m or more and 150 ⁇ m or less, more preferably 20 ⁇ m or more and 120 ⁇ m or less, and further preferably 30 ⁇ m or more and 100 ⁇ m or less.
  • organic fiber base materials organic fiber base materials having a linear expansion coefficient at 25 ° C. of 0 ppm / ° C. or lower are preferable, and organic fiber base materials of ⁇ 3 ppm / ° C. or lower are more preferable.
  • organic fiber base material having such a linear expansion coefficient it is possible to further suppress the warpage of the laminated board of the present embodiment.
  • the organic fiber base material used in the present embodiment preferably has a Young's modulus of 50 GPa or more and 400 GPa or less, more preferably 60 GPa or more and 350 GPa or less, and further preferably 70 GPa or more and 300 GPa or less.
  • a Young's modulus of 50 GPa or more and 400 GPa or less, more preferably 60 GPa or more and 350 GPa or less, and further preferably 70 GPa or more and 300 GPa or less.
  • the manufacturing method of the 2nd prepreg 202 is not specifically limited, For example, the method according to the manufacturing method of the above-mentioned 1st prepreg 201 and the 3rd prepreg 203 is employable.
  • Examples of combinations of prepregs constituting the laminate 100 include, for example, a first prepreg 201 obtained by impregnating a glass cloth with a resin composition containing a cyanate resin, a phenol resin and an epoxy resin, and a cyanate resin, a phenol resin and an epoxy resin.
  • a second prepreg 202 obtained by impregnating a polybenzoxazole resin fiber base material with a resin composition containing a glass cloth and a third prepreg obtained by impregnating a glass cloth with a resin composition containing a cyanate resin, a phenol resin and an epoxy resin 203.
  • the bending elastic modulus of the organic fiber base material layer is reinforced, the rigidity of the laminated board 100 is increased, and the laminated board 100 is warped alone. Can be particularly reduced.
  • laminated plate with metal foil It continues and demonstrates the laminated sheet 200 with a metal foil in this embodiment.
  • the laminated board 100 in this embodiment is good also as the laminated board 200 with a metal foil in which the metal foil 210 was formed in at least one surface as shown in FIG.
  • the thickness of the metal foil 210 is preferably 1 ⁇ m or more and 18 ⁇ m or less. More preferably, it is 2 ⁇ m or more and 12 ⁇ m or less. When the thickness of the metal foil 210 is within the above range, a fine pattern can be formed, and the laminate can be thinned.
  • Examples of the metal constituting the metal foil 210 include copper and copper alloys, aluminum and aluminum alloys, silver and silver alloys, gold and gold alloys, zinc and zinc alloys, nickel and nickel alloys, tin and tin. Alloy, iron and iron alloy, Kovar (trade name), 42 alloy, Fe-Ni alloy such as Invar or Super Invar, W or Mo, and the like. Also, an electrolytic copper foil with a carrier can be used.
  • a film may be laminated on at least one surface 110 of the laminated plate 100 in the present embodiment.
  • the film include polyethylene, polypropylene, polyethylene terephthalate, polyethylene naphthalate, polyimide, and fluorine resin.
  • the laminated sheet 200 with metal foil As a manufacturing method of the laminated sheet 200 with metal foil, for example, it is as follows. Metal foils are stacked on the upper and lower surfaces or one surface of the outer sides of the laminated first prepreg 201 and third prepreg 203, and these are joined under high vacuum conditions using a laminator device or a becquerel device. Alternatively, the metal foil is overlapped on the upper and lower surfaces or one surface outside the first prepreg 201 and the third prepreg 203 as they are. Next, a laminate with a metal foil can be obtained by heating and pressurizing a laminate and a metal foil or the like with a vacuum press or heating with a dryer.
  • the laminated plate 100 may further include a buildup layer 303 including a third fiber base layer 301 and a resin layer formed on an upper portion of at least one surface 110 of the laminated plate.
  • the 3rd fiber base material layer 301 does not need to be included, the prevention effect of the curvature of the laminated board 300 with a buildup layer will increase when the 3rd fiber base material layer 301 is included.
  • one surface 110 and the third fiber substrate layer 301 in the lamination direction are D3 and the distance between the surface 310 of the buildup layer and the centerline A3 of the third fiber base layer 301 is D4, the buildup layer satisfies the condition of D3> D4.
  • 303 is preferably laminated. Further, the method for laminating the buildup layer 303 is not particularly limited, but may be the same method as the laminating method for the laminated plate 100 or another method.
  • the material used for the buildup layer 303 is not particularly limited, but the material used for the laminated plate 100 may be used as appropriate, or another material may be used.
  • the manufacturing method of the buildup layer 303 is not particularly limited, but may be the same manufacturing method as the first prepreg 201, the second prepreg 202, or the third prepreg 203 in the present embodiment, or another manufacturing method. It may be.
  • the laminated plate 100 can be used for a circuit board 400 as shown in FIG.
  • a manufacturing method of the circuit board 400 for example, there are the following methods.
  • a through hole 405 for interlayer connection is formed in the laminate 200 with metal foil formed by the above method, and a wiring layer 401 is manufactured by a subtractive method, a semi-additive method, or the like.
  • an optional buildup layer 303 is laminated, and the steps of interlayer connection and circuit formation by an additive method are repeated to manufacture the circuit board 400.
  • some or all of the buildup layers may or may not include a fiber base layer.
  • the circuit board 500 with a solder resist layer in the present embodiment will be described.
  • the circuit board 400 has a fourth fiber base layer 501 and a resin layer on at least one surface 110 of the circuit board (the surface 310 of the buildup layer when a buildup layer is formed).
  • a solder resist layer 503 may be further formed.
  • the 4th fiber base material layer 501 does not need to be included, when the 4th fiber base material layer 501 is included, the prevention effect of the curvature of the circuit board 500 with a soldering resist layer will increase.
  • one surface 110 (build-up layer is formed in the stacking direction).
  • the distance between the surface 310) of the buildup layer and the center line A4 of the fourth fiber base layer 501 is D5
  • the distance between the surface 510 of the solder resist layer and the center line A4 of the fourth fiber base layer 501 is D6
  • the solder resist layer 503 is preferably laminated so as to satisfy the condition of D5> D6.
  • the method of laminating the solder resist layer 503 is not particularly limited, but may be the same method as the laminating method of the laminated plate 100 or the buildup layer 303 in this embodiment, or may be another method.
  • the material used for the solder resist layer 503 is not particularly limited, but the material used for the laminated plate 100 or the buildup layer 303 in this embodiment may be used as appropriate, or another material may be used. .
  • the method for producing the solder resist layer 503 is not particularly limited, but may be the same production method as the first prepreg 201, the second prepreg 202, the third prepreg 203, or the buildup layer 303 in the present embodiment. However, another manufacturing method may be used.
  • a semiconductor package 600 as shown in FIG. 9 can be manufactured.
  • the semiconductor package 600 in this embodiment is not specifically limited, For example, it has the laminated board 100 with the metal foil processed circuit, the buildup layer 303, the soldering resist layer 503, and the semiconductor element 601.
  • the manufacturing method of the semiconductor package 600 is not particularly limited, but for example, there is the following method.
  • the semiconductor element 601 is mounted on the top of the laminated board 100 that has been subjected to circuit processing having the solder resist layer 503. At this time, the semiconductor element 601 and the wiring layer 401 are bonded to each other through the bump 603 in the via hole 403. Thereafter, underfilling is performed by the underfill 605. In this way, a semiconductor package can be obtained.
  • the laminated plate 100 with reduced warpage is provided.
  • the circuit board using the laminated board 100 is excellent in mechanical characteristics, such as curvature and dimensional stability, and a moldability. Therefore, the laminated board 100 can be suitably used for applications that require reliability, such as printed wiring boards that require higher density and higher multilayer.
  • the semiconductor package 600 according to this embodiment is less likely to warp and crack, and can be thinned.
  • FIG. 10A As shown in FIG. 10A, as shown in FIG. 10B obtained by further laminating a prepreg 204 containing a fiber base layer on the outside of the first prepreg 201 and the third prepreg 203, respectively.
  • a laminated plate 700 may be used.
  • the present invention is not limited to these.
  • parts are parts by weight unless otherwise specified.
  • the thickness of the layer is represented by an average film thickness.
  • Epoxy resin A Biphenyl aralkyl type novolak epoxy resin (Nippon Kayaku Co., Ltd., NC-3000)
  • Epoxy resin B naphthalene skeleton-modified cresol novolac type epoxy resin (manufactured by DIC, EXA-7320)
  • Epoxy resin C naphthalene ether type epoxy resin (manufactured by DIC, HP-6000)
  • Epoxy resin D polyfunctional naphthalene type epoxy resin (manufactured by DIC, HP-4750)
  • Cyanate resin A Novolac-type cyanate resin (Lonza Japan, Primaset PT-30) Cyanate resin B: Bisphenol A type cyanate resin (Lonza Japan, Primaset BA230)
  • Phenol resin A biphenyl dimethylene type phenol resin (manufactured by Nippon Kayaku Co., Ltd., GPH-103)
  • Phenol resin B naphthol aralkyl type phenol resin (manufactured by Toto Kasei Co., Ltd., SN-485)
  • Amine compound 4,4′-diaminodiphenylmethane bismaleimide compound (KMI Kasei Kogyo BMI-70)
  • Phenoxy resin A Phenoxy resin containing bisphenolacetophenone structure (Synthesis example)
  • a reaction vessel having a capacity of 1 L 100 g of tetramethylbiphenyl type epoxy resin (“YX-4000” manufactured by Japan Epoxy Resin Co., Ltd., epoxy equivalent of 185 g / eq)
  • 80 g of bisphenolacetophenone, and 70 g of cyclohexanone were stirred and dissolved.
  • 0.4 g of a 50 wt% tetramethylammonium chloride solution was added dropwise and reacted at 180 ° C. for 5 hours in a nitrogen atmosphere.
  • the precipitate was filtered, dried in a vacuum dryer at 95 ° C. for 8 hours, and bisphenolacetophenone having a weight average molecular weight of 38,000 represented by the above general formula (X) and a glass transition temperature of 130 ° C.
  • a phenoxy resin containing structure was obtained.
  • Filler A Spherical silica (manufactured by Admatechs, SO-32R, average particle size 1 ⁇ m)
  • Filler B Spherical silica (manufactured by Tokuyama, NSS-5N, average particle size 75 nm)
  • Filler C Boehmite (Navaltech, AOH-30, average particle size 2.0 ⁇ m)
  • Coupling agent A ⁇ -glycidoxypropyltrimethoxysilane (GE Toshiba Silicone, A187)
  • Curing catalyst A phosphorus-based catalyst of an onium salt compound corresponding to the above general formula (IX) (C05-MB, manufactured by Sumitomo Bakelite Co., Ltd.)
  • the laminated board in this embodiment was produced using the following procedures. First, production of a prepreg will be described.
  • the composition of the resin varnish used is shown in Table 1, and the thickness of each layer of the obtained prepregs 1 to 16 is shown in Table 2.
  • P1 to P16 mean prepreg 1 to prepreg 16.
  • Unitika listed in Table 2 is Unitika Glass Fiber
  • Nittobo is Nittobo
  • Asahi Kasei is Asahi Kasei E-material.
  • the prepregs 1 to 5 are asymmetric prepregs
  • the prepregs 6 to 16 are symmetric prepregs.
  • Prepreg 1 Preparation of Varnish A of Resin Composition 11.0 parts by weight of biphenylaralkyl type novolak epoxy resin (Nippon Kayaku Co., Ltd., NC-3000) as epoxy resin A, biphenyldimethylene type phenolic resin (Nippon Kayaku Co., Ltd.) as phenol resin A GPH-103) 8.8 parts by weight, cyanate resin A novolak cyanate resin (Lonza Japan Co., Ltd., Primaset PT-30) 16.0 parts by weight, cyanate resin B bisphenol A type cyanate resin (Lonza Japan) 4.0 parts by weight of Primaset BA230 (manufactured by KK) was dissolved and dispersed in methyl ethyl ketone.
  • biphenylaralkyl type novolak epoxy resin Nippon Kayaku Co., Ltd., NC-3000
  • cyanate resin A novolak cyanate resin Lionza Japan Co., Ltd., Primaset PT-30
  • the resin varnish A is dried on a PET film (polyethylene terephthalate, Teijin DuPont Films Purex film, thickness 36 ⁇ m) using a die coater device, and the thickness of the resin layer is 16.0 ⁇ m. This was coated and dried for 5 minutes with a drying apparatus at 160 ° C. to obtain a resin sheet A with PET film (carrier material A) for the first resin layer.
  • a PET film polyethylene terephthalate, Teijin DuPont Films Purex film, thickness 36 ⁇ m
  • the resin varnish A is coated on the PET film in the same manner, and dried for 5 minutes with a dryer at 160 ° C. so that the thickness of the dried resin layer becomes 10.0 ⁇ m.
  • Resin sheet B with PET film (carrier material B) was obtained.
  • Carrier material A for the first resin layer and carrier material B for the second resin layer are made of a glass fiber substrate (thickness 25 ⁇ m, T glass woven fabric manufactured by Nittobo, WTX1037-53-X133, IPC standard) 1037, linear expansion coefficient: 2.8 ppm / ° C.) on both sides of the resin layer so as to face the fiber substrate, and impregnated with the resin composition by the vacuum laminating apparatus and hot air drying apparatus shown in FIG. A laminated prepreg was obtained.
  • the carrier material A and the carrier material B are overlapped on both surfaces of the glass fiber base so that they are positioned at the center in the width direction of the glass fiber base, respectively, and 9.999 ⁇ 10 4 Pa (from normal pressure) Bonding was performed using a laminate roll at 80 ° C. under a reduced pressure of about 750 Torr).
  • the resin layers of the carrier material A and the carrier material B are respectively bonded to both sides of the glass fiber base material, and the width direction dimension of the glass fiber base material In the outer region, the resin layers of the carrier material A and the carrier material B were joined together.
  • the bonded product was heated for 2 minutes through a horizontal conveyance type hot air drying apparatus set at 120 ° C. without applying pressure to obtain prepreg 1 (P1).
  • the thickness (C1) of the first resin layer is 9 ⁇ m
  • the thickness of the glass fiber base layer is 25 ⁇ m
  • the thickness (C2) of the second resin layer is 3 ⁇ m
  • the total thickness is 37 ⁇ m
  • C2 / C1 is 0.00. 33.
  • the thickness of the resin layer was measured by cutting out a cross section of the prepreg and observing it with an optical microscope.
  • (Prepreg 2) Preparation of Varnish B of Resin Composition
  • epoxy resin B naphthalene skeleton-modified cresol novolac type epoxy resin (DIC, EXA-7320) 14.0 parts by weight, as cyanate resin A novolak type cyanate resin (Lonza Japan, Prima) Set PT-30) 12.0 parts by weight, as cyanate resin B, 3.6 parts by weight of bisphenol A type cyanate resin (manufactured by Lonza Japan Co., Ltd., Primaset BA230), as curing catalyst A, onium corresponding to the above general formula (IX) 0.2 parts by weight of a phosphorus catalyst of a salt compound (manufactured by Sumitomo Bakelite Co., Ltd., C05-MB) was dissolved and dispersed in methyl ethyl ketone.
  • prepreg 2 was produced in the same manner as the prepreg 1 except that the resin varnish B obtained above was used.
  • Prepreg 3 Preparation of resin composition varnish C 10.8 parts by weight of naphthalene ether type epoxy resin (manufactured by DIC, HP-6000) as epoxy resin C, and novolak type cyanate resin (manufactured by Lonza Japan, Primaset PT-) as cyanate resin A 30) 14.0 parts by weight, and 5.0 parts by weight of naphthol aralkyl type phenol resin (manufactured by Toto Kasei Co., Ltd., SN-485) as phenol resin B were dissolved and dispersed in methyl ethyl ketone.
  • Prepreg 4 Preparation of Varnish D of Resin Composition 15.6 parts by weight of polyfunctional naphthalene type epoxy resin (manufactured by DIC, HP-4750) as epoxy resin D, novolak type cyanate resin (manufactured by Lonza Japan, Primaset PT) as cyanate resin A -30) 14.0 parts by weight, 0.2 parts by weight of an onium salt compound phosphorus catalyst (Sumitomo Bakelite Co., C05-MB) corresponding to the above general formula (IX) as the curing catalyst A is dissolved and dispersed in methyl ethyl ketone. I let you.
  • prepreg 4 was produced in the same manner as the prepreg 1 except that the resin varnish D obtained above was used.
  • prepreg 5 was manufactured in the same manner as the prepreg 1 except that the resin varnish E obtained above was used.
  • Prepreg 6 The prepreg 6 was produced in the same manner as the prepreg 5 except that the thicknesses of the first resin layer and the second resin layer were changed to the values shown in Table 2.
  • Prepreg 7 The resin varnish A obtained above was used as an organic fiber substrate (thickness 65 ⁇ m, polybenzoxazole resin fiber woven fabric manufactured by Asahi Kasei E-Materials, Zyron 116Z / AS type, filament diameter: 12 ⁇ m, number of filaments: 66 / bundle , Length 49/25 mm, width 49/25 mm, basis weight: 43.3 g / m 2 , air permeability: 20.8 cm 3 / cm 2 / sec, surface treatment: silane coupling agent treatment, linear expansion coefficient (25 ° C.): ⁇ 6 ppm / ° C., Young's modulus 180 GPa), and dried in a heating furnace at 150 ° C.
  • the thickness of the organic fiber base layer was 65 ⁇ m
  • the resin layers having the same thickness (8 ⁇ m) were provided on both surfaces of the organic fiber base layer, and the total thickness was 81 ⁇ m.
  • prepreg 8 was produced in the same manner as the prepreg 7 except that the resin varnish B obtained above was used.
  • the prepreg 9 is made of an organic fiber substrate (thickness: 65 ⁇ m, polybenzoxazole resin fiber woven fabric manufactured by Asahi Kasei E-Materials Co., Ltd., Zyron 116Z / HM type, filament diameter: 12 ⁇ m, number of filaments: 66 / bundle, Length 49/25 mm, width 49/25 mm, basis weight: 43.3 g / m 2 , air permeability: 20.8 cm 3 / cm 2 / sec, surface treatment: silane coupling agent treatment, linear expansion coefficient (25 ° C. ): Manufactured in the same manner as the prepreg 8 except that it was changed to ⁇ 6 ppm / ° C. and Young's modulus 270 GPa).
  • Prepreg 10-12 Prepregs 10 to 12 were produced in the same manner as prepreg 9 except that the type of resin varnish was changed to that shown in Table 2.
  • Prepreg 13 In the prepreg 13, the thickness of the resin layer was changed as shown in Table 2, and the fiber base used was an organic fiber base (thickness: 43 ⁇ m, polybenzoxazole resin fiber woven fabric manufactured by Asahi Kasei E-Materials, Zylon 054Z / 501HM type. This was produced in the same manner as in the prepreg 11 except that the coefficient of linear expansion (25 ° C.) was ⁇ 6 ppm / ° C.
  • the prepreg 14 was prepared by using an organic fiber substrate (thickness: 126 ⁇ m, polybenzoxazole resin fiber woven fabric manufactured by Asahi Kasei E-Materials Co., Ltd., Zyron 273Z / HM type, linear expansion coefficient (25 ° C.): ⁇ 6 ppm / It was manufactured in the same manner as the prepreg 13 except that it was changed to that of [° C.].
  • Prepreg 15 In the prepreg 15, the thickness of the resin layer was changed as shown in Table 2, and the fiber substrate used was a glass fiber substrate (thickness 55 ⁇ m, E glass woven fabric manufactured by Unitika Glass Fiber, E06B 04 53SK, IPC standard 1080, wire It was produced in the same manner as the prepreg 7 except that the expansion coefficient was changed to 5.5 ppm / ° C.
  • prepreg 16 The prepreg 16 was produced in the same manner as the prepreg 15 except that the resin varnish B obtained above was used.
  • Examples 1 to 9 and Comparative Examples 1 and 2 a laminate was produced using the prepregs 1 to 16 (in the table, simply described as P1 to 16), and the laminate was used to produce a circuit board and A semiconductor package was manufactured.
  • Example 1 Manufacture of laminates
  • the PET film on each side of prepreg 1 is peeled off, and a total of three prepregs so that the first resin layer of prepreg 1 is in contact with the prepreg 7 side.
  • a 12 ⁇ m copper foil (3EC-VLP foil made by Mitsui Kinzoku Mining Co., Ltd.) was placed on both sides of the resulting laminate, and heat-pressed at 220 ° C. and 3 MPa for 2 hours to attach a metal foil.
  • a laminate was obtained.
  • the thickness of the core layer (part consisting of the laminate) of the obtained laminate with metal foil was 0.155 mm.
  • the thickness of the prepreg and the resin layer used in the examples and comparative examples hardly changed before and after curing. Therefore, the thickness of the core layer (portion made of the laminated plate) is the total thickness of the prepreg.
  • the resin varnish F is coated on the PET film in the same manner, and dried for 5 minutes with a drier at 160 ° C. so that the thickness of the resin layer after drying becomes 11.0 ⁇ m.
  • Resin sheet D with PET film (carrier material D) was obtained.
  • Carrier material C for the first resin layer and carrier material D for the second resin layer are made of glass fiber substrate (thickness 15 ⁇ m, E glass woven fabric manufactured by Unitika Glass Fiber, E02Z 04 53SK, IPC standard 1015, linear expansion (Coefficient: 5.5 ppm / ° C.) Build in which the resin layer is arranged so as to face the fiber base material, and the resin composition is impregnated with the vacuum laminating apparatus and hot air drying apparatus shown in FIG. An up layer A was obtained.
  • the carrier material C and the carrier material D are overlapped on both surfaces of the glass fiber base so that they are positioned at the center in the width direction of the glass fiber base, respectively, and from the normal pressure, 9.999 ⁇ 104 Pa (about 750 Torr) ) Bonding was performed using a laminate roll at 80 ° C. under the reduced pressure.
  • the resin layers of the carrier material C and the carrier material D are respectively bonded to both sides of the glass fiber base material, and the width direction dimension of the glass fiber base material In the outer region, the resin layers of the carrier material C and the carrier material D were joined together.
  • the above bonded material was heat-treated without applying pressure by passing it through a horizontal conveyance type hot air drying apparatus set at 120 ° C. for 2 minutes to obtain a buildup layer A.
  • the thickness (C1) of the first resin layer is 18 ⁇ m
  • the thickness of the glass fiber base layer is 15 ⁇ m
  • the thickness (C2) of the second resin layer is 7 ⁇ m
  • the total thickness is 40 ⁇ m
  • C2 / C1 is 0.00. 39.
  • spherical silica manufactured by Admatechs, SO-32R, average particle size 1 ⁇ m
  • ⁇ -glycidoxypropyltrimethoxysilane manufactured by GE Toshiba Silicone, A187
  • Resin varnish G is coated on a PET film (polyethylene terephthalate, Purex film manufactured by Teijin DuPont Films, thickness 36 ⁇ m) using a die coater so that the thickness of the resin layer after drying is 14.0 ⁇ m. And this was dried for 5 minutes with a 160 degreeC drying apparatus, and the resin sheet E with PET film (carrier material E) for 1st resin layers was obtained.
  • PET film polyethylene terephthalate, Purex film manufactured by Teijin DuPont Films, thickness 36 ⁇ m
  • the resin varnish G was coated on the PET film in the same manner, and dried for 5 minutes with a dryer at 160 ° C. so that the thickness of the resin layer after drying was 9.0 ⁇ m.
  • the resin sheet F with PET film (carrier material F) was obtained.
  • Carrier material E for the first resin layer and carrier material F for the second resin layer are made of glass fiber substrate (thickness 15 ⁇ m, E glass woven fabric manufactured by Unitika Glass Fiber, E02Z 04 53SK, IPC standard 1015, linear expansion Solder in which the resin layer is disposed on both sides of the coefficient (5.5 ppm / ° C.) so as to face the fiber base material, impregnated with the resin composition by the vacuum laminating apparatus and hot air drying apparatus shown in FIG. A resist layer A was obtained.
  • the carrier material E and the carrier material F are overlapped on both surfaces of the glass fiber base so as to be positioned at the center in the width direction of the glass fiber base, respectively, and are 9.999 ⁇ 104 Pa (about 750 Torr) from normal pressure. ) Bonding was performed using a laminate roll at 80 ° C. under the reduced pressure.
  • the resin layers of the carrier material E and the carrier material F are respectively bonded to both sides of the glass fiber base material, and the width direction dimension of the glass fiber base material In the outer region, the resin layers of the carrier material E and the carrier material F were joined together.
  • the joined material was heat-treated without applying pressure by passing it through a horizontal conveyance type hot air drying apparatus set at 120 ° C. for 2 minutes to obtain a solder resist layer A.
  • the thickness (C1) of the first resin layer is 10 ⁇ m
  • the thickness of the glass fiber base layer is 15 ⁇ m
  • the thickness (C2) of the second resin layer is 5 ⁇ m
  • the total thickness is 30 ⁇ m
  • C2 / C1 is 0.00. It was 5.
  • blind via holes were formed by a carbonic acid laser.
  • the inside of the via and the surface of the resin layer were immersed in a swelling liquid at 60 ° C. (Atotech Japan, Swelling Dip Securigant P) for 5 minutes, and further an aqueous potassium permanganate solution at 80 ° C. (Atotech Japan, After being immersed in Concentrate Compact CP) for 10 minutes, it was neutralized and roughened.
  • an electroless copper plating film is formed to about 0.5 ⁇ m, a plating resist is formed, and pattern electroplating copper is formed to 10 ⁇ m using the electroless copper plating film as a feeding layer.
  • L / S 50/50 ⁇ m fine circuit processing was performed.
  • the power feeding layer was removed by flash etching.
  • the PET film on the first resin layer side of the solder resist layer A obtained above is peeled off and the first resin layer is overlaid, and a vacuum pressurizing laminator device is used for this, and the temperature is 150 ° C. and the pressure is 1 MPa. Then, vacuum heating and pressure molding was performed for 120 seconds. Thereafter, heat curing was carried out at 220 ° C. for 60 minutes with a hot air dryer, and the PET film on the second resin layer side was peeled off. Next, blind via holes (non-through holes) were formed by a carbonic acid laser so that the semiconductor element mounting pads and the like were exposed.
  • a circuit board for a semiconductor package was obtained by cutting into a size of 50 mm ⁇ 50 mm.
  • a semiconductor element (TEG chip, size 20 mm ⁇ 20 mm, thickness 725 ⁇ m) having solder bumps was mounted on a circuit board for a semiconductor package by thermocompression bonding using a flip chip bonder device.
  • a liquid sealing resin (CRP-X4800B, manufactured by Sumitomo Bakelite Co., Ltd.) was filled, and the liquid sealing resin was cured to obtain a semiconductor package.
  • the liquid sealing resin was cured at a temperature of 150 ° C. for 120 minutes.
  • the solder bumps of the semiconductor element used were formed of lead-free solder having a Sn / Ag / Cu composition.
  • Example 2 Except for the prepreg 2, prepreg 8, and prepreg 2 in this order, the PET films on both sides of the prepreg 2 were peeled off, and a total of three prepregs were laminated so that the first resin layer of the prepreg 2 was in contact with the prepreg 8 side.
  • Example 3 Except for the prepreg 2, prepreg 9, and prepreg 2 in this order, the PET films on both sides of the prepreg 2 were peeled off, and a total of three prepregs were laminated so that the first resin layer of the prepreg 2 was in contact with the prepreg 9 side.
  • Example 4 Except that the prepreg 3, the prepreg 10, and the prepreg 3 were peeled in this order, the PET films on both sides of the prepreg 3 were peeled off, and a total of three prepregs were laminated so that the first resin layer of the prepreg 3 was in contact with the prepreg 10 side.
  • Example 5 Except for the prepreg 4, prepreg 11, and prepreg 4 in this order, the PET films on both sides of the prepreg 4 were peeled off, and a total of three prepregs were laminated so that the first resin layer of the prepreg 4 was in contact with the prepreg 11 side.
  • Example 6 Except for the prepreg 5, the prepreg 12, and the prepreg 5 in this order, the PET films on both sides of the prepreg 5 were peeled off, and a total of three prepregs were laminated so that the first resin layer of the prepreg 5 was in contact with the prepreg 12 side.
  • Example 7 Except for the prepreg 6, the prepreg 12, and the prepreg 6 in this order, the PET films on both sides of the prepreg 6 were peeled off, and a total of three prepregs were laminated so that the first resin layer of the prepreg 6 was in contact with the prepreg 12 side.
  • Example 8 In order of prepreg 4, prepreg 13, prepreg 13, and prepreg 4, the PET films on both sides of prepreg 4 are peeled off, and a total of four prepregs are attached so that the first resin layer of prepreg 4 is in contact with the prepreg 13 side.
  • a laminated board with metal foil, a circuit board, and a semiconductor package were produced in the same manner as in Example 1 except that the lamination was performed.
  • Example 9 Except for the prepreg 4, the prepreg 14, and the prepreg 4 in this order, the PET films on both sides of the prepreg 4 were peeled off, and a total of three prepregs were laminated so that the first resin layer of the prepreg 4 was in contact with the prepreg 14 side.
  • Comparative Example 1 Comparative Example 1, the prepreg 1, the prepreg 15, and the prepreg 1 were separated in order from the PET films on both sides of the prepreg 1, and a total of three sheets were formed so that the first resin layer of the prepreg 1 was in contact with the prepreg 15 side.
  • a laminated board with metal foil, a circuit board, and a semiconductor package were produced in the same manner as in Example 1 except that the prepreg was laminated.
  • Comparative Example 2 In Comparative Example 2, the prepreg 2, the prepreg 16, and the prepreg 2 were separated in order from the PET films on both sides of the prepreg 2 so that the first resin layer of the prepreg 2 was in contact with the prepreg 16 side in total. A laminated board with metal foil, a circuit board, and a semiconductor package were produced in the same manner as in Example 1 except that the prepreg was laminated.
  • the semiconductor device is placed in the sample chamber of the measuring machine, the displacement in the height direction in the 18 ⁇ 18 mm plane on the chip is measured, and the displacement difference at room temperature of 25 ° C. is measured.
  • the maximum value was the warp value at room temperature
  • the maximum displacement value at 260 ° C. was the 260 ° C. warp value
  • the amount of change in the warp value at the temperature between the two points was the warp amount.
  • the code is as follows. ⁇ : 125 ⁇ m or less ⁇ : 125 to less than 175 ⁇ m ⁇ : 175 ⁇ m or more

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Reinforced Plastic Materials (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

 本発明は、第一ガラス繊維基材層(101)を含有する第一プリプレグ(201)と、有機繊維基材層を含みガラス繊維基材層を含まない1層以上の第二プリプレグ(202)と、第二ガラス繊維基材層(102)を含有する第三プリプレグ(203)と、をこの順に積層して得られる積層板(100)である。

Description

積層板、回路基板、および半導体パッケージ
 本発明は、積層板、回路基板、および半導体パッケージに関する。
 近年、電子機器の高機能化および軽薄短小化の要求にともなって、回路基板はますます薄型化される傾向にある。
 一般的な回路基板は、繊維基材層と樹脂層とを備える複数のプリプレグが積層されてなる積層板で主に構成される。現行の積層板は、例えばCPU(中央演算処理装置)で用いられるFCBGA(Flip Chip Ball Grid Array)用で厚みが0.8mm程度のものが主流である。
 近年、軽薄短小化の要求、部材コスト、加工コストなどの削減による基板コスト低減、電気的特性の向上などの理由から積層板の薄型化が進んでいる。最近では、積層板の厚みが0.4mm程度、さらには0.2mm以下のものも開発されている。
 しかしながら、積層板の厚みを薄くした場合に、積層板の強度の低下や熱膨張係数の増加により、積層板の反りが増大する。その結果、半導体パッケージの反りの変動量が大きくなり、実装歩留まりが低下する場合があった。
 このような問題を解決する手段として、例えば、以下の文献に記載の手段がある。
 特許文献1(特開昭62-292428号公報)には、ガラス不織布の引張り強度の縦および横の比を一定の範囲とすることにより、プリプレグの反りおよびねじれが低減することが記載されている。
 特許文献2(特開平4-259543号公報)は、反りやねじれが少なく、寸法安定性に優れた印刷回路用積層板の製造方法に関するものである。特許文献2には、表面層に使用するガラス織布の縦、横方向の打ち込み本数の差、および中間層に使用するガラス不織布の縦、横の引っ張り強度比を制御することにより、縦、横の両方向のバランスを図ることが記載されている。
 特許文献3(特開2008-258335号公報)には、厚さ方向に対して繊維基材が偏在しているビルドアップ層を使用することにより、半導体パッケージの反りを効果的に防止できることが記載されている。
特開昭62-292428号公報 特開平4-259543号公報 特開2008-258335号公報
 しかしながら、回路基板のさらなる薄型化が進むにつれて、積層板の反りがより顕著なものとなってきた。また、積層板の反りの増大に伴って、回路基板の反りの増大およびそれに起因する半導体パッケージの反りの増大もより顕著なものとなってきた。
 特許文献1、2および3の技術は、積層板の反りを解決する上で効果的であったが、回路基板のさらなる薄型化に伴い、さらに反りが低減された積層板の開発が望まれていた。
 本発明は上記の課題に鑑みてなされたものであり、反りが低減され、薄型回路基板として適した積層板を提供することを課題とする。
 本発明によれば、
  第一ガラス繊維基材層を含有する第一プリプレグと、
  有機繊維基材層を含有し、ガラス繊維基材層を含まない1層以上の第二プリプレグと、
  第二ガラス繊維基材層を含有する第三プリプレグと、
 をこの順に積層して得られる、積層板が提供される。
 さらに、本発明によれば、上記本発明における積層板を含む、回路基板が提供される。
 さらに、本発明によれば、上記本発明における回路基板に半導体素子が搭載された、半導体パッケージが提供される。
 本発明においては、第一ガラス繊維基材層を含有する第一プリプレグと、有機繊維基材層を含有しガラス繊維基材層を含まない1層以上の第二プリプレグと、第二ガラス繊維基材層を含有する第三プリプレグと、をこの順で積層して成形することにより、第一ガラス繊維基材層および第二ガラス繊維基材層が積層板の外側に配置された積層板を作製することができる。第一ガラス繊維基材層および第二ガラス繊維基材層が積層板の外側に配置されることによって、有機繊維基材層の曲げ弾性率を補強し、積層板の剛性を高めて、積層板の単体反りを低減できる。
 本発明によれば、反りが低減され、薄型回路基板に適した積層板を提供することができる。
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。
本実施形態における積層板の構成およびその製造方法を示す断面図である。 本実施形態におけるプリプレグの製造方法を示す断面図である。 本実施形態における金属箔付き積層板の構成を示す断面図である。 本実施形態におけるビルドアップ層付き積層板の構成を示す断面図である。 本実施形態におけるビルドアップ層の構成を示す断面図である。 本実施形態における回路基板の構成を示す断面図である。 本実施形態におけるソルダーレジスト層付き回路基板の構成を示す断面図である。 本実施形態におけるソルダーレジスト層の構成を示す断面図である。 本実施形態における半導体パッケージの構成を示す断面図である。 本実施形態における積層板の構成およびその製造方法を示す断面図である。 本実施形態におけるプリプレグの製造方法を示す断面図である。 本実施形態におけるプリプレグの製造方法を示す断面図である。 本実施形態におけるプリプレグの製造方法を示す断面図である。
 以下に、本発明の実施形態について、図面を用いて説明する。なお、すべての図面において、同様な構成要素には共通の符号を付し、適宜説明を省略する。
(積層板)
 はじめに、本実施形態における積層板の構成について説明する。図1は、本実施形態における積層板の構成およびその製造方法を示す断面図である。積層板100は、第一ガラス繊維基材層101を含有する第一プリプレグ201と、有機繊維基材層を含みガラス繊維基材層を含まない1層以上の第二プリプレグ202と、第二ガラス繊維基材層102を含有する第三プリプレグ203と、をこの順に積層して得られる積層板100である。
 以上のように、第一ガラス繊維基材層および第二ガラス繊維基材層を積層板の外側に配置することによって、有機繊維基材層の曲げ弾性率を補強し、積層板100の剛性を高めて、積層板の単体反りを低減できる。
 また、積層板100の反りの防止効果をより効果的に得るためには、第一ガラス繊維基材層101の中心線A1と第二ガラス繊維基材層102の中心線A2との距離をD1とし、積層板100の厚さをD2とし、当該積層板に含まれる第一ガラス繊維基材層、第二ガラス繊維基材層および有機繊維基材層の合計数をn(ただし、nは3以上の整数である。)としたとき、D2/n<D1の条件を満たすことが好ましい。 
 ここで、繊維基材層の数nは第一ガラス繊維基材層、第二ガラス繊維基材層および1層以上の有機繊維基材層の合計数を表す。こうすれば、膨張応力を積層板100の中心方向に移動でき、積層板の単体反りをより一層低減できる。
 また、積層板100の反りの防止効果をより効果的に得るためには、第一ガラス繊維基材層101および第二ガラス繊維基材層102が、積層板の中心線B1に対してそれぞれ対称に配置されることが好ましい。
 本実施形態における積層板の厚さは、好ましくは、0.025mm以上0.6mm以下である。より好ましくは0.04mm以上0.4mm以下、さらに好ましくは0.06mm以上0.3mm以下、とくに好ましくは0.08mm以上0.2mm以下である。積層板の厚さが上記範囲内であると、機械的強度および生産性のバランスがとくに優れ、薄型回路基板に適した積層板を得ることができる。
 本実施形態における積層板の面方向の線膨張係数は、-10ppm/℃以上10ppm/℃以下であり、好ましくは-8ppm/℃以上8ppm/℃以下、さらに好ましくは-5ppm/℃以上5ppm/℃以下である。積層板の線膨張係数が上記範囲内であると、配線パターンを形成した回路基板、半導体素子を搭載した半導体パッケージの反り抑制や温度サイクル信頼性の向上がより一層効果的に得られ、さらに半導体パッケージを二次実装した場合のマザーボードとの温度サイクル信頼性の向上がより一層効果的に得られる。なお、本実施形態の線膨張係数は、とくに断りがなければ、50℃以上150℃以下の領域における線膨張係数の平均値を表す。
(積層板の製造方法)
 つぎに、積層板100の製造方法について説明する。
 はじめに、第一ガラス繊維基材層101を含有する第一プリプレグ201、有機繊維基材層を含みガラス繊維基材層を含まない1層以上の第二プリプレグ202および第二ガラス繊維基材層102を含有する第三プリプレグ203をそれぞれ準備する。
 つぎに、図1(a)に示したように、プリプレグの積層方向において、第一プリプレグ201、第二プリプレグ202および第三プリプレグ203の順番で重ね合わせる。
 このとき、積層板100の反りの防止効果をより効果的に得るためには、得られる積層板100がD2/n<D1の条件を満たすように、各プリプレグを重ね合わせることが好ましい。第一プリプレグ201および第三プリプレグ203に含まれる第一ガラス繊維基材層101および第二ガラス繊維基材層102の積層方向におけるそれぞれの位置や、各樹脂層の厚さを調整することによって、上記条件を満たす積層板を作製することができる。
 なお、積層方法としては、とくに限定されないが、例えばバッチ式であってもよいし、各プリプレグを連続的に供給して、真空ラミネート装置、真空ベクレル装置などを用いて連続的に積層してもよい。
 最後に、上記のように重ね合わせた第一プリプレグ201、第二プリプレグ202および第三プリプレグ203を加熱、加圧して成形することにより、図1(b)に示すような本実施形態における積層板100が得られる。
 上記加熱処理する方法としては、とくに限定されないが、例えば、熱風乾燥装置、赤外線加熱装置、加熱ロール装置、平板状の熱盤プレス装置などを用いて実施することができる。熱風乾燥装置または赤外線加熱装置を用いた場合は、上記接合したものに実質的に圧力を作用させることなく実施することができる。また、加熱ロール装置または平板状の熱盤プレス装置を用いた場合は、上記接合したものに所定の圧力を作用させることで実施することができる。
 加熱処理する際の温度は、とくに限定されないが、用いる樹脂が溶融し、かつ樹脂の硬化反応が急速に進行しないような温度域とすることが好ましい。樹脂が溶融する温度としては好ましくは120℃以上であり、より好ましくは150℃以上である。また、樹脂の硬化反応が急速に進行しない温度としては好ましくは250℃以下、より好ましくは230℃以下である。
 また、加熱処理する時間は用いる樹脂の種類などにより異なるため、とくに限定されないが、例えば、30分間以上180分間以下処理することにより実施することができる。
 また、加圧する圧力は、とくに限定されないが、例えば、0.2MPa以上5MPa以下が好ましく、2MPa以上4MPa以下がより好ましい。
 つづいて、積層板100を構成する材料について詳細に説明する。
(第一プリプレグおよび第三プリプレグ)
 積層板100に含まれるプリプレグは、繊維基材に一または二以上の樹脂組成物を含浸させ、その後、半硬化させて得られる繊維基材層と樹脂層を備えるシート状の材料である。このような構造のシート状材料は、誘電特性、高温多湿下での機械的、電気的接続信頼性などの各種特性に優れ、回路基板用の積層板の製造に適しており、好ましい。
 本実施形態で用いられる樹脂組成物を繊維基材に含浸させる方法としては、とくに限定されないが、例えば、樹脂組成物を溶剤に溶かして樹脂ワニスを調製し、繊維基材を樹脂ワニスに浸漬する方法、各種コーターにより塗布する方法、スプレーにより吹き付ける方法、支持基材付き樹脂層をラミネートする方法などが挙げられる。これらの中でも、繊維基材を樹脂ワニスに浸漬する方法が好ましい。これにより、繊維基材に対する樹脂組成物の含浸性を向上させることができる。なお、繊維基材を樹脂ワニスに浸漬する場合、通常の含浸塗布設備を使用することができる。
 とくに、繊維基材の厚さが0.1mm以下の場合、繊維基材の両面からフィルム状の樹脂層でラミネートする方法が好ましい。これにより、繊維基材に対する樹脂組成物の含浸量を自在に調節でき、プリプレグの成形性をさらに向上できる。なお、フィルム状の樹脂層をラミネートする場合、真空のラミネート装置などを用いることがより好ましい。
 具体的に、プリプレグを製造する方法としては、例えば以下の方法が挙げられる。
 図2は、プリプレグの製造方法を示す断面図である。ここでは、あらかじめキャリア材料5a、5bを製造し、このキャリア材料5a、5bを繊維基材11にラミネートした後、キャリアフィルムを剥離する方法について、具体的に説明する。
 あらかじめ第一の樹脂組成物をキャリアフィルムに塗布したキャリア材料5aと、第二の樹脂組成物をキャリアフィルムに塗布したキャリア材料5bとを製造する。つぎに、真空ラミネート装置60を用いて、減圧下で繊維基材の両面からキャリア材料5aおよび5bを重ね合わせて、必要により樹脂組成物が溶融する温度以上に加熱したラミネートロール61で接合し、キャリアフィルム上に塗布した樹脂組成物を繊維基材11に含浸させる。減圧下で接合することにより、繊維基材11の内部またはキャリア材料5a、5bの樹脂層と繊維基材11との接合部位に非充填部分が存在しても、これを減圧ボイドあるいは実質的な真空ボイドとすることができる。
 このような減圧下で繊維基材11とキャリア材料5a、5bとを接合する他の装置としては、例えば真空ボックス装置、真空ベクレル装置などを用いることができる。
 つぎに、繊維基材11とキャリア材料5a、5bとを接合した後、熱風乾燥装置62でキャリア材料に塗布された樹脂の溶融温度以上の温度で加熱処理する。これにより、減圧下での接合工程で発生していた減圧ボイドなどをほぼ消し去ることができる。加熱処理する他の方法としては、例えば赤外線加熱装置、加熱ロール装置、平板状の熱盤プレス装置などを用いて実施することができる。
 キャリア材料5a、5bを繊維基材11にラミネートした後、キャリアフィルムを剥離する。この方法により、繊維基材11に樹脂組成物が担持され、繊維基材11を内蔵するプリプレグ21ができる。
 また、上記の方法を用いれば、キャリア材料5aおよび5bの樹脂層の厚みを調節することによって、厚さ方向において繊維基材層が偏在した非対称のプリプレグを作製することができる。
 上記の方法以外には、参考文献1(特開2010-275337号公報)の段落0022~0041に記載された方法などが挙げられる。以下に、図11を参照しながら、具体的に説明する。
 2つのダイコーターである第1塗工装置1aと第2塗工装置1bとを備えた塗布機に、繊維基材3がこの2つのダイコーターの間を通るように搬送されて、その両面に片面ずつそれぞれ樹脂ワニス4が塗工される。第1塗工装置1aと第2塗工装置1bは、同一のダイコーターを用いても、異なるものを用いてもよい。また、図12に示すように、第1塗工装置1aと第2塗工装置1bはロールコーターを用いてもよい。また、塗工間距離Lおよび先端重複距離Dは、図11および図12に示すように一定の距離を有するのが好ましいが、図13に示すように、一定の距離を有さなくてもよい。
 第1塗工装置1aおよび第2塗工装置1bはそれぞれ塗工先端部2を有しており、それぞれの塗工先端部2は、繊維基材3の幅方向に細長く形成されている。そして、第1塗工装置1aの塗工先端部である第1塗工先端部2aは繊維基材3の一方の面に向けて突出し、第2塗工装置1bの塗工先端部である第2塗工先端部2bは繊維基材3の他方の面に向けて突出している。それにより、樹脂ワニス4の塗工の際には、第1塗工先端部2aは繊維基材3の一方の面に樹脂ワニス4を介して接触し、第2塗工先端部2bは繊維基材3の他方の面と樹脂ワニス4を介して接触することとなる。
 第1塗工装置1aと第2塗工装置1bとから吐出される樹脂ワニス4の単位時間当たりの吐出量は、同じであってもよく、異なっていてもよい。樹脂ワニスの単位時間当たりの吐出量を異ならせることにより、塗工する樹脂ワニス4の厚みを繊維基材3の一方の面と他方の面とで個別に制御することができ、樹脂層の層厚の調整を容易に行うことができる。
 乾燥機で所定の温度で加熱して、塗布された樹脂ワニス4の溶剤を揮発させると共に樹脂組成物を半硬化させてプリプレグを製造する。
 また、繊維基材を樹脂ワニスに浸漬する場合、樹脂ワニスに用いられる溶剤は、樹脂組成物中の樹脂成分に対して良好な溶解性を示すことが好ましいが、悪影響を及ぼさない範囲で貧溶媒を使用しても構わない。良好な溶解性を示す溶剤としては、例えばアセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、テトラヒドロフラン、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、エチレングリコール、セルソルブ系、カルビトール系などが挙げられる。
 プリプレグを構成する第一樹脂層の厚みC1は、通常2.3μm以上100μm以下、第二樹脂層の厚みC2は通常1μm以上15μm以下が好ましい。
 ここで樹脂層の厚みとは、繊維基材層と樹脂層の界面から当該樹脂層の反対側界面までの距離であり、繊維基材層に含浸している樹脂を含まない。
 また、プリプレグの第二樹脂層の厚みC2と第一樹脂層の厚みC1との比(C2/C1)が0.1<C2/C1<0.9の範囲であることが、反りの制御を容易にする観点から好ましい。なお、本実施形態では、プリプレグを構成する樹脂層の中で、相対的に厚い樹脂層を第一樹脂層、相対的に薄い樹脂層を第二樹脂層と呼ぶ。なお、樹脂層の厚みは、例えばプリプレグの硬化後の断面を光学顕微鏡で観察することにより測定できる。
 樹脂ワニスの固形分は、とくに限定されないが、40重量%以上80重量%以下が好ましく、50重量%以上65重量%以下がより好ましい。これにより、樹脂ワニスの繊維基材への含浸性をさらに向上させることができる。繊維基材に樹脂組成物を含浸させ、所定温度、例えば80℃以上200℃以下などで乾燥させることによりプリプレグを得ることができる。
(ガラス繊維基材層) 
 第一ガラス繊維基材層101および第二ガラス繊維基材層102に使用される繊維基材としては、とくに限定されないが、ガラスクロス、ガラス不織布などのガラス繊維基材が挙げられる。これらの中でも、強度、吸水率の点からガラスクロスがとくに好ましい。また、ガラスクロスを用いることにより、積層板の熱膨張係数をさらに小さくすることができる。
 本実施形態で用いるガラス繊維基材としては、坪量(1mあたりの繊維基材の重量)が好ましくは4g/m以上150g/m以下であり、より好ましくは8g/m以上110g/m以下であり、さらに好ましくは12g/m以上60g/m以下であり、さらに好ましくは12g/m以上30g/m以下であり、とくに好ましくは12g/m以上24g/m以下である。
 坪量が上記上限値以下であると、繊維基材中の樹脂組成物の含浸性が向上し、ストランドボイドや絶縁信頼性の低下の発生を抑制することができる。また炭酸ガス、UV、エキシマなどのレーザーによるスルーホールの形成を容易にすることができる。また、坪量が上記下限値以上であると、ガラス繊維基材や積層板の強度を向上させることができる。その結果、ハンドリング性が向上したり、プリプレグの作製が容易となったり、基板の反りの低減効果の低下を抑制したりすることができる。
 上記ガラス繊維基材の中でも、線膨張係数が6ppm/℃以下のガラス繊維基材であることが好ましく、3.5ppm/℃以下のガラス繊維基材であることがより好ましい。このような線膨張係数を有するガラス繊維基材を用いることにより、本実施形態の積層板の反りをさらに抑制することができる。
 さらに、本実施形態で用いる繊維基材は、ヤング率が好ましくは60GPa以上100GPa以下であり、より好ましくは65GPa以上92GPa以下であり、さらに好ましくは86GPa以上92GPa以下である。このようなヤング率を有するガラス繊維基材を用いることにより、例えば半導体実装時のリフロー熱による配線板の変形を効果的に抑制することができるので、電子部品の接続信頼性がさらに向上する。
 また、本実施形態で用いるガラス繊維基材は、好ましくは1MHzでの誘電率が3.8以上7.0以下であり、より好ましくは3.8以上6.8以下であり、さらに好ましくは3.8以上5.5以下である。このような誘電率を有するガラス繊維基材を用いることにより、積層板の誘電率をさらに低減でき、高速信号を用いた半導体パッケージに好適である。
 上記のような線膨張係数、ヤング率および誘電率を有するガラス繊維基材として、例えば、Eガラス、Sガラス、NEガラス、Tガラス、UNガラス、および石英ガラスなどが好適に用いられる。これらの中でも、TガラスまたはSガラスが好ましい。
 積層板100における第一ガラス繊維基材層101および第二ガラス繊維基材層102は、上記のガラス繊維基材に樹脂組成物がそれぞれ含浸されてなる層であるが、通常、繊維基材層の厚みは、繊維基材の厚みと考えることができる。
 ガラス繊維基材層の厚みは、とくに限定されないが、好ましくは5μm以上100μm以下であり、より好ましくは10μm以上60μm以下であり、さらに好ましくは12μm以上35μm以下である。このような厚みを有するガラス繊維基材を用いることにより、プリプレグ製造時のハンドリング性がさらに向上し、とくに反り低減効果が顕著である。
 ガラス繊維基材層の厚みが上記上限値以下であると、繊維基材中の樹脂組成物の含浸性が向上し、ストランドボイドや絶縁信頼性の低下の発生を抑制することができる。また炭酸ガス、UV、エキシマなどのレーザーによるスルーホールの形成を容易にすることができる。また、ガラス繊維基材層の厚みが上記下限値以上であると、繊維基材やプリプレグの強度を向上させることができる。その結果、ハンドリング性が向上したり、プリプレグの作製が容易となったり、基板の反りの低減効果の低下を抑制したりすることができる。
 ガラス繊維基材の使用枚数は、一枚に限らず、薄い繊維基材を複数枚重ねて使用することも可能である。なお、繊維基材を複数枚重ねて使用する場合は、その合計の厚みが上記の範囲を満たせばよい。
 積層板100における第一ガラス繊維基材層101および第二ガラス繊維基材層102は同じでもよいし、異なっていてもよい。
 積層板100は、ガラス繊維基材などの繊維基材に樹脂組成物を含浸させてなる繊維基材層を有することにより、低線膨張率、高弾性率に優れ、薄型の多層配線板、該多層配線板に半導体チップを搭載した半導体パッケージにおいて、反りが少なく、耐熱性、熱衝撃性の信頼性に優れるものが得られる。中でも、ガラス繊維基材に樹脂組成物を含浸させてなる繊維基材層を有することにより、高強度、低吸水、低熱膨張を達成することができる。
(樹脂組成物)
 ガラス繊維基材に含浸させる樹脂組成物としては、とくに限定されないが、低線膨張率および高弾性率を有し、熱衝撃性の信頼性に優れたものであることが好ましい。樹脂組成物は、熱硬化性樹脂を含んでいるのが好ましい。
(熱硬化性樹脂)
 熱硬化性樹脂としては、とくに限定されないが、低線膨張率および高弾性率を有し、熱衝撃性の信頼性に優れたものであることが好ましい。
 また、熱硬化性樹脂のガラス転移温度は、好ましくは160℃以上350℃以下であり、より好ましくは180℃以上300℃以下である。このようなガラス転移温度を有する熱硬化性樹脂を用いることにより、鉛フリー半田リフロー耐熱性がさらに向上するという効果が得られる。
 具体的な熱硬化性樹脂として、例えばフェノールノボラック樹脂、クレゾールノボラック樹脂、ビスフェノールAノボラック樹脂などのノボラック型フェノール樹脂、未変性のレゾールフェノール樹脂、桐油、アマニ油、クルミ油などで変性した油変性レゾールフェノール樹脂などのレゾール型フェノール樹脂などのフェノール樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールE型エポキシ樹脂、ビスフェノールM型エポキシ樹脂、ビスフェノールP型エポキシ樹脂、ビスフェノールZ型エポキシ樹脂などのビスフェノール型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂などのノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、アリールアルキレン型エポキシ樹脂、ナフタレン型エポキシ樹脂、アントラセン型エポキシ樹脂、フェノキシ型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ノルボルネン型エポキシ樹脂、アダマンタン型エポキシ樹脂、フルオレン型エポキシ樹脂などのエポキシ樹脂、ユリア(尿素)樹脂、メラミン樹脂などのトリアジン環を有する樹脂、不飽和ポリエステル樹脂、ビスマレイミド樹脂、ポリウレタン樹脂、ジアリルフタレート樹脂、シリコーン樹脂、ベンゾオキサジン環を有する樹脂、シアネート樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ベンゾシクロブテン樹脂などが挙げられる。
 これらの中の1種類を単独で用いてもよいし、異なる重量平均分子量を有する2種類以上を併用してもよく、1種類または2種類以上と、それらのプレポリマーを併用してもよい。
 これらの中でも、とくにシアネート樹脂(シアネート樹脂のプレポリマーを含む)が好ましい。シアネート樹脂を用いることにより、積層板の熱膨張係数を小さくすることができる。さらに、シアネート樹脂は、電気特性(低誘電率、低誘電正接)、機械強度などにも優れる。
 シアネート樹脂は、例えば、ハロゲン化シアン化合物とフェノール類とを反応させたものや、必要に応じて加熱などの方法でプレポリマー化したものなどを用いることができる。具体的には、ノボラック型シアネート樹脂、ビスフェノールA型シアネート樹脂、ビスフェノールE型シアネート樹脂、テトラメチルビスフェノールF型シアネート樹脂などのビスフェノール型シアネート樹脂、ナフトールアラルキル型の多価ナフトール類と、ハロゲン化シアンとの反応で得られるシアネート樹脂、ジシクロペンタジエン型シアネート樹脂、ビフェニルアルキル型シアネート樹脂などを挙げることができる。これらの中でもノボラック型シアネート樹脂が好ましい。ノボラック型シアネート樹脂を用いることにより、架橋密度が増加し、耐熱性が向上する。したがって、積層板の難燃性を向上させることができる。
 この理由としては、ノボラック型シアネート樹脂は、硬化反応後にトリアジン環を形成することが挙げられる。さらに、ノボラック型シアネート樹脂は、その構造上ベンゼン環の割合が高く、炭化しやすいためと考えられる。さらに、積層板の厚さ0.6mm以下にした場合であっても、ノボラック型シアネート樹脂を硬化させて作製した樹脂層を含む積層板は優れた剛性を有する。とくに、このような積層板は加熱時における剛性に優れるので、半導体素子実装時の信頼性にも優れる。
 ノボラック型シアネート樹脂としては、例えば、下記一般式(I)で示されるものを使用することができる。
Figure JPOXMLDOC01-appb-C000001
 一般式(I)で示されるノボラック型シアネート樹脂の平均繰り返し単位nは任意の整数である。nの下限は、とくに限定されないが、1以上が好ましく、2以上がより好ましい。nが上記下限値以上であると、ノボラック型シアネート樹脂の耐熱性が向上し、加熱時に低量体が脱離、揮発することを抑制できる。また、nの上限は、とくに限定されないが、10以下が好ましく、7以下がより好ましい。nが上記上限値以下であると、溶融粘度が高くなるのを抑制でき、樹脂層の成形性が低下することを抑制できる。
 また、シアネート樹脂としては、下記一般式(II)で表わされるナフトール型シアネート樹脂も好適に用いられる。下記一般式(II)で表わされるナフトール型シアネート樹脂は、例えば、α-ナフトールあるいはβ-ナフトールなどのナフトール類とp-キシリレングリコール、α,α'-ジメトキシ-p-キシレン、1,4-ジ(2-ヒドロキシ-2-プロピル)ベンゼンなどとの反応により得られるナフトールアラルキル樹脂とシアン酸とを縮合させて得られるものである。一般式(II)のnは10以下であることが好ましい。nが10以下の場合、樹脂粘度が高くならず、繊維基材への含浸性が良好で、積層板としての性能を低下させない傾向がある。また、合成時に分子内重合が起こりにくく、水洗時の分液性が向上し、収量の低下を防止できる傾向がある。
Figure JPOXMLDOC01-appb-C000002

(式中、Rは水素原子またはメチル基を示し、nは1以上の整数を示す。)
 また、シアネート樹脂としては、下記一般式(III)で表わされるジシクロペンタジエン型シアネート樹脂も好適に用いられる。下記一般式(III)で表わされるジシクロペンタジエン型シアネート樹脂は、下記一般式(III)のnが0以上8以下であることが好ましい。nが8以下の場合、樹脂粘度が高くならず、繊維基材への含浸性が良好で、積層板としての性能の低下を防止できる。また、ジシクロペンタジエン型シアネート樹脂を用いることで、低吸湿性、および耐薬品に優れる。
Figure JPOXMLDOC01-appb-C000003

(nは0以上8以下の整数を示す。)
 シアネート樹脂の重量平均分子量(Mw)の下限は、とくに限定されないが、Mw500以上が好ましく、Mw600以上がより好ましい。Mwが上記下限値以上であると、絶縁樹脂層を作製した場合にタック性の発生を抑制でき、樹脂層同士が接触したとき互いに付着したり、樹脂の転写が生じたりするのを抑制することができる。また、Mwの上限は、とくに限定されないが、Mw4,500以下が好ましく、とくにMw3,000以下が好ましい。また、Mwが上記上限値以下であると、反応が速くなるのを抑制でき、回路基板とした場合に、成形不良が生じたり、層間ピール強度が低下したりするのを抑制できる。
 シアネート樹脂などのMwは、例えば、GPC(ゲルパーミエーションクロマトグラフィー、標準物質:ポリスチレン換算)で測定することができる。
 また、シアネート樹脂は1種類を単独で用いてもよいし、異なるMwを有する2種類以上を併用してもよく、1種類または2種類以上と、それらのプレポリマーとを併用してもよい。
 樹脂組成物中に含まれる熱硬化性樹脂の含有量は、その目的に応じて適宜調整されれば良くとくに限定されないが、樹脂組成物全体に基づいて5質量%以上90質量%以下が好ましく、10質量%以上80質量%以下がより好ましく、20質量%以上50質量%以下がとくに好ましい。熱硬化性樹脂の含有量が上記下限値以上であると、ハンドリング性が向上し、樹脂層を形成するのが容易となる。熱硬化性樹脂の含有量が上記上限値以下であると、樹脂層の強度や難燃性が向上したり、樹脂層の線膨張係数が低下し積層板の反りの低減効果が向上したりする場合がある。
 熱硬化性樹脂としてシアネート樹脂(とくにノボラック型シアネート樹脂、ナフトール型シアネート樹脂、ジシクロペンタジエン型シアネート樹脂)を用いる以外に、エポキシ樹脂(実質的にハロゲン原子を含まない)を用いてもよいし、併用してもよい。エポキシ樹脂としては、例えばビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールE型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールM型エポキシ樹脂、ビスフェノールP型エポキシ樹脂、ビスフェノールZ型エポキシ樹脂などのビスフェノール型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂などのノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、キシリレン型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂などのアリールアルキレン型エポキシ樹脂、ナフトール型エポキシ樹脂、ナフタレンジオール型エポキシ樹脂、2官能ないし4官能エポキシ型ナフタレン樹脂、ナフチレンエーテル型エポキシ樹脂、ビナフチル型エポキシ樹脂、ナフタレンアラルキル型エポキシ樹脂などのナフタレン型エポキシ樹脂、アントラセン型エポキシ樹脂、フェノキシ型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ノルボルネン型エポキシ樹脂、アダマンタン型エポキシ樹脂、フルオレン型エポキシ樹脂などが挙げられる。
 エポキシ樹脂として、これらの中の1種類を単独で用いてもよいし、異なる重量平均分子量を有する2種類以上を併用してもよく、1種類または2種類以上と、それらのプレポリマーとを併用してもよい。
 これらエポキシ樹脂の中でもとくにアリールアルキレン型エポキシ樹脂が好ましい。これにより、吸湿半田耐熱性および難燃性をさらに向上させることができる。
 アリールアルキレン型エポキシ樹脂とは、繰り返し単位中に一つ以上のアリールアルキレン基を有するエポキシ樹脂をいう。例えばキシリレン型エポキシ樹脂、ビフェニルジメチレン型エポキシ樹脂などが挙げられる。これらの中でもビフェニルジメチレン型エポキシ樹脂が好ましい。ビフェニルジメチレン型エポキシ樹脂は、例えば下記一般式(IV)で示すことができる。
Figure JPOXMLDOC01-appb-C000004
 上記一般式(IV)で示されるビフェニルジメチレン型エポキシ樹脂の平均繰り返し単位nは任意の整数である。nの下限は、とくに限定されないが、1以上が好ましく、2以上がより好ましい。nが上記下限値以上であると、ビフェニルジメチレン型エポキシ樹脂の結晶化を抑制でき、汎用溶媒に対する溶解性が向上するため、取り扱いが容易となる。nの上限は、とくに限定されないが、10以下が好ましく、5以下がより好ましい。nが上記上限値以下であると、樹脂の流動性が向上し、成形不良などの発生を抑制することができる。
 上記以外のエポキシ樹脂としては縮合環芳香族炭化水素構造を有するノボラック型エポキシ樹脂が好ましい。これにより、耐熱性、低熱膨張性をさらに向上させることができる。
 縮合環芳香族炭化水素構造を有するノボラック型エポキシ樹脂は、ナフタレン、アントラセン、フェナントレン、テトラセン、クリセン、ピレン、トリフェニレン、およびテトラフェン、その他の縮合環芳香族炭化水素構造を有するノボラック型エポキシ樹脂である。縮合環芳香族炭化水素構造を有するノボラック型エポキシ樹脂は、複数の芳香環が規則的に配列することができるため低熱膨張性に優れる。また、ガラス転移温度も高いため耐熱性に優れる。さらに、繰返し構造の分子量が大きいため従来のノボラック型エポキシに比べ難燃性に優れ、シアネート樹脂と組合せることでシアネート樹脂の弱点の脆弱性を改善することができる。したがって、シアネート樹脂と併用して用いることで、さらにガラス転移温度が高くなるため鉛フリー対応の実装信頼性に優れる。
 縮合環芳香族炭化水素構造を有するノボラック型エポキシ樹脂は、フェノール類化合物とホルムアルデヒド類化合物、および縮合環芳香族炭化水素化合物から合成された、ノボラック型フェノール樹脂をエポキシ化したものである。
 フェノール類化合物は、とくに限定されないが、例えば、フェノール、o-クレゾール、m-クレゾール、p-クレゾールなどのクレゾール類、2,3-キシレノール、2,4-キシレノール、2,5-キシレノール、2,6-キシレノール、3,4-キシレノール、3,5-キシレノールなどのキシレノール類、2,3,5トリメチルフェノールなどのトリメチルフェノール類、o-エチルフェノール、m-エチルフェノール、p-エチルフェノールなどのエチルフェノール類、イソプロピルフェノール、ブチルフェノール、t-ブチルフェノールなどのアルキルフェノール類、o-フェニルフェノール、m-フェニルフェノール、p-フェニルフェノール、カテコール、1,5-ジヒドロキシナフタレン、1,6-ジヒドロキシナフタレン、2,7-ジヒドロキシナフタレンなどのナフタレンジオール類、レゾルシン、カテコール、ハイドロキノン、ピロガロール、フルオログルシンなどの多価フェノール類、アルキルレゾルシン、アルキルカテコール、アルキルハイドロキノンなどのアルキル多価フェノール類などが挙げられる。これらのうち、コスト面および分解反応に与える効果から、フェノールが好ましい。
 アルデヒド類化合物は、とくに限定されないが、例えば、ホルムアルデヒド、パラホルムアルデヒド、トリオキサン、アセトアルデヒド、プロピオンアルデヒド、ポリオキシメチレン、クロラール、ヘキサメチレンテトラミン、フルフラール、グリオキザール、n-ブチルアルデヒド、カプロアルデヒド、アリルアルデヒド、ベンズアルデヒド、クロトンアルデヒド、アクロレイン、テトラオキシメチレン、フェニルアセトアルデヒド、o-トルアルデヒド、サリチルアルデヒド、ジヒドロキシベンズアルデヒド、トリヒドロキシベンズアルデヒド、4-ヒドロキシ-3-メトキシアルデヒドパラホルムアルデヒドなどが挙げられる。
 縮合環芳香族炭化水素化合物は、とくに限定されないが、例えば、メトキシナフタレン、ブトキシナフタレンなどのナフタレン誘導体、メトキシアントラセンなどのアントラセン誘導体、メトキシフェナントレンなどのフェナントレン誘導体、その他テトラセン誘導体、クリセン誘導体、ピレン誘導体、誘導体トリフェニレン、およびテトラフェン誘導体などが挙げられる。
 縮合環芳香族炭化水素構造を有するノボラック型エポキシ樹脂は、とくに限定されないが、例えば、メトキシナフタレン変性オルトクレゾールノボラックエポキシ樹脂、ブトキシナフタレン変性メタ(パラ)クレゾールノボラックエポキシ樹脂、およびメトキシナフタレン変性ノボラックエポキシ樹脂などが挙げられる。これらの中でも、下記式(V)で表される縮合環芳香族炭化水素構造を有するノボラック型エポキシ樹脂が好ましい。
Figure JPOXMLDOC01-appb-C000005
(式中、Arは縮合環芳香族炭化水素基である。Rは互いに同一であっても異なっていてもよく、水素原子、炭素数1以上10以下の炭化水素基またはハロゲン元素、フェニル基、ベンジル基などのアリール基、およびグリシジルエーテルを含む有機基から選ばれる基である。n、p、およびqは1以上の整数であり、またp、qの値は、繰り返し単位毎に同一でも、異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000006
(式(V)中のArは、式(VI)中の(Ar1)~(Ar4)で表される構造である。式(VI)中のRは、互いに同一であっても異なっていてもよく、水素原子、炭素数1以上10以下の炭化水素基またはハロゲン元素、フェニル基、ベンジル基などのアリール基、およびグリシジルエーテルを含む有機基から選ばれる基である。)
 さらに上記以外のエポキシ樹脂としてはナフトール型エポキシ樹脂、ナフタレンジオール型エポキシ樹脂、2官能ないし4官能エポキシ型ナフタレン樹脂、ナフチレンエーテル型エポキシ樹脂などのナフタレン型エポキシ樹脂が好ましい。これにより、耐熱性、低熱膨張性をさらに向上させることができる。また、ベンゼン環に比べナフタレン環のπ-πスタッキング効果が高いため、特に、低熱膨張性、低熱収縮性に優れる。更に、多環構造のため剛直効果が高く、ガラス転移温度が特に高いため、リフロー前後の熱収縮変化が小さい。ナフトール型エポキシ樹脂としては、例えば下記一般式(VII-1)、ナフタレンジオール型エポキシ樹脂としては下記式(VII-2)、2官能ないし4官能エポキシ型ナフタレン樹脂としては下記式(VII-3)(VII-4)(VII-5)、ナフチレンエーテル型エポキシ樹脂としては、例えば、下記一般式(VII-6)で示すことができる。
Figure JPOXMLDOC01-appb-C000007

(nは平均1以上6以下の数を示し、Rはグリシジル基または炭素数1以上10以下の炭化水素基を示す。)
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010

(式中、Rは水素原子またはメチル基を表す。Rはそれぞれ独立的に水素原子、炭素原子数1~4のアルキル基、アラルキル基、ナフタレン基、またはグリシジルエーテル基含有ナフタレン基を表す。oおよびmはそれぞれ0~2の整数であって、かつoまたはmのいずれか一方は1以上である。)
 エポキシ樹脂の含有量の下限は、とくに限定されないが、樹脂組成物全体において1質量%以上が好ましく、2質量%以上がより好ましい。含有量が上記下限値以上であると、シアネート樹脂の反応性が向上し、得られる製品の耐湿性を向上させることができる。エポキシ樹脂の含有量の上限は、とくに限定されないが、55質量%以下が好ましく、40質量%以下がより好ましい。含有量が上記上限値以下であると、耐熱性をより向上させることができる。
 エポキシ樹脂の重量平均分子量(Mw)の下限は、とくに限定されないが、Mw500以上が好ましく、Mw800以上がより好ましい。Mwが上記下限値以上であると、樹脂層にタック性が生じるのを抑制することができる。Mwの上限は、とくに限定されないが、Mw20,000以下が好ましく、Mw15,000以下がより好ましい。Mwが上記上限値以下であると、プリプレグ作製時、繊維基材への含浸性が向上し、より均一な製品を得ることができる。エポキシ樹脂のMwは、例えばGPCで測定することができる。
 熱硬化性樹脂としてシアネート樹脂(とくにノボラック型シアネート樹脂、ナフトール型シアネート樹脂、ジシクロペンタジエン型シアネート樹脂)やエポキシ樹脂(アリールアルキレン型エポキシ樹脂、とくにビフェニルジメチレン型エポキシ樹脂、縮合環芳香族炭化水素構造を有するノボラック型エポキシ樹脂、ナフトール型エポキシ樹脂)を用いる場合、さらにフェノール樹脂を用いることが好ましい。フェノール樹脂としては、例えばノボラック型フェノール樹脂、レゾール型フェノール樹脂、アリールアルキレン型フェノール樹脂などが挙げられる。フェノール樹脂として、これらの中の1種類を単独で用いてよいし、異なる重量平均分子量を有する2種類以上を併用してもよく、1種類または2種類以上と、それらのプレポリマーとを併用してもよい。これらの中でも、とくにアリールアルキレン型フェノール樹脂が好ましい。これにより、さらに吸湿半田耐熱性を向上させることができる。
 アリールアルキレン型フェノール樹脂としては、例えばキシリレン型フェノール樹脂、ビフェニルジメチレン型フェノール樹脂などが挙げられる。ビフェニルジメチレン型フェノール樹脂は、例えば、下記一般式(VIII)で示すことができる。
Figure JPOXMLDOC01-appb-C000011
 上記一般式(VIII)で示されるビフェニルジメチレン型フェノール樹脂の繰り返し単位nは任意の整数である。nの下限は、とくに限定されないが、1以上が好ましく、2以上がより好ましい。nが上記下限値以上であると、耐熱性をより向上させることができる。また、繰り返し単位nの上限は、とくに限定されないが、12以下が好ましく、8以下がより好ましい。また、nが上記上限値以下であると、他の樹脂との相溶性が向上し、作業性を向上させることができる。
 前述のシアネート樹脂(とくにノボラック型シアネート樹脂、ナフトール型シアネート樹脂、ジシクロペンタジエン型シアネート樹脂)やエポキシ樹脂(アリールアルキレン型エポキシ樹脂、とくにビフェニルジメチレン型エポキシ樹脂、縮合環芳香族炭化水素構造を有するノボラック型エポキシ樹脂、ナフトール型エポキシ樹脂)とアリールアルキレン型フェノール樹脂との組合せにより、架橋密度をコントロールし、反応性を容易に制御できる。
 フェノール樹脂の含有量の下限は、とくに限定されないが、樹脂組成物全体において1質量%以上が好ましく、とくに5質量%以上が好ましい。フェノール樹脂の含有量が上記下限値以上であると、耐熱性を向上させることができる。また、フェノール樹脂の含有量の上限は、とくに限定されないが、樹脂組成物全体において55質量%以下が好ましく、とくに40質量%以下が好ましい。フェノール樹脂の含有量が上記上限値以下であると、低熱膨張の特性を向上させることができる。
 フェノール樹脂の重量平均分子量(Mw)の下限は、とくに限定されないが、Mw400以上が好ましく、とくにMw500以上が好ましい。Mwが上記下限値以上であると、樹脂層にタック性が生じるのを抑制することができる。また、フェノール樹脂のMwの上限は、とくに限定されないが、Mw18,000以下が好ましく、Mw15,000以下がより好ましい。Mwが上記上限値以下であるとプリプレグの作製時、繊維基材への含浸性が向上し、より均一な製品を得ることができる。フェノール樹脂のMwは、例えばGPCで測定することができる。
 さらに、シアネート樹脂(とくにノボラック型シアネート樹脂、ナフトール型シアネート樹脂、ジシクロペンタジエン型シアネート樹脂)とフェノール樹脂(アリールアルキレン型フェノール樹脂、とくにビフェニルジメチレン型フェノール樹脂)とエポキシ樹脂(アリールアルキレン型エポキシ樹脂、とくにビフェニルジメチレン型エポキシ樹脂、縮合環芳香族炭化水素構造を有するノボラック型エポキシ樹脂、ナフトール型エポキシ樹脂)との組合せを用いて基板(とくに回路基板)を作製した場合、とくに優れた寸法安定性を得ることができる。
 また、樹脂組成物は無機充填材を含むことが好ましい。これにより、積層板を薄型化してもより一層優れた強度を付与することができる。さらに、積層板の低熱膨張化をより一層向上させることができる。
(無機充填材)
 無機充填材としては、例えばタルク、焼成クレー、未焼成クレー、マイカ、ガラスなどのケイ酸塩、酸化チタン、アルミナ、ベーマイト、シリカ、溶融シリカなどの酸化物、炭酸カルシウム、炭酸マグネシウム、ハイドロタルサイトなどの炭酸塩、水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウムなどの水酸化物、硫酸バリウム、硫酸カルシウム、亜硫酸カルシウムなどの硫酸塩または亜硫酸塩、ホウ酸亜鉛、メタホウ酸バリウム、ホウ酸アルミニウム、ホウ酸カルシウム、ホウ酸ナトリウムなどのホウ酸塩、窒化アルミニウム、窒化ホウ素、窒化ケイ素、窒化炭素などの窒化物、チタン酸ストロンチウム、チタン酸バリウムなどのチタン酸塩などを挙げることができる。
 無機充填材として、これらの中の1種類を単独で用いてもよく、2種類以上を併用してもよい。これらの中でも、とくにシリカが好ましく、溶融シリカが低熱膨張性に優れる点で好ましい。溶融シリカの形状には破砕状および球状がある。無機充填材の高充填化と繊維基材への含浸性を確保するためには、樹脂組成物の溶融粘度を下げるため球状シリカを使うなど、その目的にあわせた使用方法を採用することができる。
 無機充填材の平均粒子径の下限は、とくに限定されないが、0.01μm以上が好ましく、0.1μm以上がより好ましい。無機充填材の粒径が上記下限値以上であると、ワニスの粘度が高くなるのを抑制でき、プリプレグ作製時の作業性を向上させることができる。また、平均粒子径の上限は、とくに限定されないが、5.0μm以下が好ましく、2.0μm以下がより好ましい。無機充填材の粒径が上記上限値以下であると、ワニス中で充填剤の沈降などの現象を抑制でき、より均一な樹脂層を得ることができる。また、内層基板の導体回路がL/Sが20/20μmを下回る際には、配線間の絶縁性に影響を与えるのを抑制することができる。
 無機充填材の平均粒子径は、例えば、レーザー回折式粒度分布測定装置(HORIBA製、LA-500)により、粒子の粒度分布を体積基準で測定し、そのメディアン径(D50)を平均粒子径とする。
 また無機充填材は、とくに限定されないが、平均粒子径が単分散の無機充填材を用いてもよいし、平均粒子径が多分散の無機充填材を用いてもよい。さらに平均粒子径が単分散および/または多分散の無機充填材を1種類または2種類以上で併用してもよい。
 無機充填材は、平均粒子径5.0μm以下の球状シリカが好ましく、平均粒子径0.01μm以上2.0μm以下の球状シリカがより好ましい。これにより、無機充填剤の充填性をさらに向上させることができる。
 無機充填材の含有量は、とくに限定されないが、樹脂組成物全体に基づいて20重量%以上80重量%以下が好ましく、30重量%以上75重量%以下がより好ましい。含有量が上記範囲内であると、とくに低熱膨張、低吸水とすることができる。
 また、本実施形態に用いる樹脂組成物は、ゴム成分も配合することができ、例えば、ゴム粒子を用いることができる。ゴム粒子の好ましい例としては、コアシェル型ゴム粒子、架橋アクリロニトリルブタジエンゴム粒子、架橋スチレンブタジエンゴム粒子、アクリルゴム粒子、シリコーン粒子などが挙げられる。
 コアシェル型ゴム粒子は、コア層とシェル層とを有するゴム粒子である。例えば、外層のシェル層がガラス状ポリマーで構成され、内層のコア層がゴム状ポリマーで構成される2層構造、または外層のシェル層がガラス状ポリマーで構成され、中間層がゴム状ポリマーで構成され、コア層がガラス状ポリマーで構成される3層構造のものなどが挙げられる。
 ガラス状ポリマー層は、例えば、メタクリル酸メチルの重合物などで構成され、ゴム状ポリマー層は、例えば、ブチルアクリレート重合物(ブチルゴム)などで構成される。コアシェル型ゴム粒子の具体例としては、スタフィロイドAC3832、AC3816N(商品名、ガンツ化成社製)、メタブレンKW-4426(商品名、三菱レイヨン社製)が挙げられる。架橋アクリロニトリルブタジエンゴム(NBR)粒子の具体例としては、XER-91(平均粒子径0.5μm、JSR社製)などが挙げられる。
 架橋スチレンブタジエンゴム(SBR)粒子の具体例としては、XSK-500(平均粒子径0.5μm、JSR社製)などが挙げられる。アクリルゴム粒子の具体例としては、メタブレンW300A(平均粒子径0.1μm)、W450A(平均粒子径0.2μm)(三菱レイヨン社製)などが挙げられる。
 シリコーン粒子は、オルガノポリシロキサンで形成されたゴム弾性微粒子であればとくに限定されず、例えば、シリコーンゴム(オルガノポリシロキサン架橋エラストマー)そのものからなる微粒子、および二次元架橋主体のシリコーンからなるコア部を三次元架橋型主体のシリコーンで被覆したコアシェル構造粒子などが挙げられる。シリコーンゴム微粒子としては、KMP-605、KMP-600、KMP-597、KMP-594(信越化学社製)、トレフィルE-500、トレフィルE-600(東レ・ダウコーニング社製)などの市販品を用いることができる。
 ゴム粒子の含有量は、とくに限定されないが、上記の無機充填材を合わせて、樹脂組成物全体に基づいて20重量%以上80重量%以下が好ましく、30重量%以上75重量%以下がより好ましい。含有量が範囲内であると、とくに低吸水とすることができる。
(その他の添加剤)
 このほか、必要に応じて、樹脂組成物にはカップリング剤、硬化促進剤、硬化剤、熱可塑性樹脂、有機充填材などの添加剤を適宜配合することができる。本実施形態で用いられる樹脂組成物は、上記成分を有機溶剤などにより溶解および/または分散させた液状形態で好適に用いることができる。
 カップリング剤の使用により、熱硬化性樹脂と無機充填材との界面の濡れ性が向上し、繊維基材に対して樹脂組成物を均一に定着させることができる。したがって、カップリング剤を使用することは好ましく、耐熱性、とくに吸湿後の半田耐熱性を改良することができる。
 カップリング剤としては、カップリング剤として通常用いられるものであれば使用できるが、具体的にはエポキシシランカップリング剤、カチオニックシランカップリング剤、アミノシランカップリング剤、チタネート系カップリング剤およびシリコーンオイル型カップリング剤の中から選ばれる1種以上のカップリング剤を使用することが好ましい。これにより、無機充填材の界面との濡れ性を高くすることができ、それによって耐熱性をより向上させることができる。
 カップリング剤の添加量の下限は、充填材の比表面積に依存するのでとくに限定されないが、充填材100質量部に対して0.05質量部以上が好ましく、0.1質量部以上がより好ましい。カップリング剤の含有量が上記下限値以上であると、充填材を十分に被覆することができ、耐熱性を向上させることができる。また、添加量の上限は、とくに限定されないが、3質量部以下が好ましく、2質量部以下がより好ましい。含有量が上記上限値以下であると、反応に影響を与えるのを抑制でき、曲げ強度などの低下を抑制することができる。
 硬化促進剤としては公知のものを用いることができる。例えば、ナフテン酸亜鉛、ナフテン酸コバルト、オクチル酸スズ、オクチル酸コバルト、ビスアセチルアセトナートコバルト(II)、トリスアセチルアセトナートコバルト(III)などの有機金属塩、トリエチルアミン、トリブチルアミン、ジアザビシクロ[2,2,2]オクタンなどの3級アミン類、2-フェニル-4-メチルイミダゾール、2-エチル-4-エチルイミダゾール、2-フェニル-4-エチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシイミダゾール、2-フェニル-4,5-ジヒドロキシイミダゾールなどのイミダゾール類、フェノール、ビスフェノールA、ノニルフェノールなどのフェノール化合物、酢酸、安息香酸、サリチル酸、パラトルエンスルホン酸などの有機酸など、オニウム塩化合物など、またはこの混合物が挙げられる。硬化促進剤として、これらの中の誘導体も含めて1種類を単独で用いてもよいし、これらの誘導体も含めて2種類以上を併用してもよい。
 オニウム塩化合物は、とくに限定されないが、例えば、下記一般式(IX)で表されるオニウム塩化合物を用いることができる。
Figure JPOXMLDOC01-appb-C000012
(式中、Pはリン原子、R1、R2、R3およびR4は、それぞれ、置換もしくは無置換の芳香環または複素環を有する有機基、あるいは置換もしくは無置換の脂肪族基を示し、互いに同一であっても異なっていてもよい。Aは分子外に放出しうるプロトンを少なくとも1個以上分子内に有するn(n≧1)価のプロトン供与体のアニオン、またはその錯アニオンを示す。)
 硬化促進剤の含有量は、とくに限定されないが、樹脂組成物全体の0.01重量%以上5重量%以下が好ましく、0.1重量%以上2重量%以下がより好ましい。含有量が上記下限値以上であると、硬化を促進する効果が十分に発揮することができる。含有量が上記上限値以下であるとプリプレグの保存性をより向上させることができる。
 本実施形態における樹脂組成物は、フェノキシ樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリフェニレンオキサイド樹脂、ポリエーテルスルホン樹脂、ポリエステル樹脂、ポリエチレン樹脂、ポリスチレン樹脂などの熱可塑性樹脂、スチレン-ブタジエン共重合体、スチレン-イソプレン共重合体などのポリスチレン系熱可塑性エラストマー、ポリオレフィン系熱可塑性エラストマー、ポリアミド系エラストマー、ポリエステル系エラストマーなどの熱可塑性エラストマ-、ポリブタジエン、エポキシ変性ポリブタジエン、アクリル変性ポリブタジエン、メタクリル変性ポリブタジエンなどのジエン系エラストマーをさらに併用してもよい。
 フェノキシ樹脂としては、例えば、ビスフェノール骨格を有するフェノキシ樹脂、ナフタレン骨格を有するフェノキシ樹脂、アントラセン骨格を有するフェノキシ樹脂、ビフェニル骨格を有するフェノキシ樹脂などが挙げられる。また、これらの骨格を複数種有した構造のフェノキシ樹脂を用いることもできる。
 これらの中でも、フェノキシ樹脂には、ビフェニル骨格およびビスフェノールS骨格を有するフェノキシ樹脂を用いるのが好ましい。ビフェニル骨格が有する剛直性により、フェノキシ樹脂のガラス転移温度を高くすることができるとともに、ビスフェノールS骨格の存在により、フェノキシ樹脂と金属との密着性を向上させることができる。その結果、積層板の耐熱性の向上を図ることができるとともに、回路基板を製造する際に、積層板に対する配線層の密着性を向上させることができる。また、フェノキシ樹脂には、ビスフェノールA骨格およびビスフェノールF骨格を有するフェノキシ樹脂を用いるのも好ましい。これにより、回路基板の製造時に、配線層の積層板への密着性をさらに向上させることができる。
 また、下記一般式(X)で表されるビスフェノールアセトフェノン構造を有するフェノキシ樹脂を用いるのも好ましい。
Figure JPOXMLDOC01-appb-C000013
(式中、R1は互いに同一であっても異なっていてもよく、水素原子、炭素数1以上10以下の炭化水素基またはハロゲン元素から選ばれる基であり、R2は、水素原子、炭素数1以上10以下の炭化水素基またはハロゲン元素から選ばれる基であり、R3 は、水素原子または炭素数1以上10以下の炭化水素基であり、mは0以上5以下の整数である。)
 ビスフェノールアセトフェノン構造を含むフェノキシ樹脂は、嵩高い構造を持っているため、溶剤溶解性や、配合する熱硬化性樹脂成分との相溶性に優れる。また、低粗度で均一な粗面を形成することができるため微細配線形成性に優れる。
 ビスフェノールアセトフェノン構造を有するフェノキシ樹脂は、エポキシ樹脂とフェノール樹脂を触媒で高分子量化させる方法などの公知の方法で合成することができる。
 ビスフェノールアセトフェノン構造を有するフェノキシ樹脂は、一般式(X)のビスフェノールアセトフェノン構造以外の構造が含まれていても良く、その構造は特に限定されないが、ビスフェノールA型、ビスフェノールF型、ビスフェノールS型、ビフェニル型、フェノールノボラック型、クレゾールノボラック型の構造などが挙げられる。中でも、ビフェニル型の構造を含むものが、ガラス転移温度が高く好ましい。
 ビスフェノールアセトフェノン構造を含むフェノキシ樹脂中の一般式(X)のビスフェノールアセトフェノン構造の含有量はとくに限定されないが、好ましくは5モル%以上95モル%以下であり、より好ましくは10モル%以上85モル%以下であり、さらに好ましくは15モル%以上75モル%以下である。含有量が上記下限値以上であると、耐熱性、耐湿信頼性を向上させる効果を十分に発揮させることができる。また、含有量が上記上限値以下であると、溶剤溶解性を向上させることができる。
 フェノキシ樹脂の重量平均分子量(Mw)は、とくに限定されないが、Mw5,000以上100,000以下が好ましく、10,000以上70,000以下がより好ましく20,000以上50,000以下がさらに好ましい。Mwが上記上限値以下であると、他の樹脂との相溶性や溶剤への溶解性を向上させることができる。上記下限値以上であると、製膜性が向上し、回路基板の製造に用いる場合に不具合が発生するのを抑制することができる。
 フェノキシ樹脂の含有量は、とくに限定されないが、充填材を除く樹脂組成物の0.5質量%以上40質量%以下が好ましく、1質量%以上20質量%以下がより好ましい。含有量が上記下限値以上であると絶縁樹脂層の機械強度の低下や、導体回路とのメッキ密着性の低下を抑制することができる。上記上限値以下であると、絶縁層の熱膨張率の増加を抑制でき、耐熱性を低下させることができる。
 樹脂組成物には、必要に応じて、顔料、染料、消泡剤、レベリング剤、紫外線吸収剤、発泡剤、酸化防止剤、難燃剤、イオン捕捉剤などの上記成分以外の添加物を添加してもよい。
 顔料としては、カオリン、合成酸化鉄赤、カドミウム黄、ニッケルチタン黄、ストロンチウム黄、含水酸化クロム、酸化クロム、アルミ酸コバルト、合成ウルトラマリン青などの無機顔料、フタロシアニンなどの多環顔料、アゾ顔料などが挙げられる。
 染料としては、イソインドリノン、イソインドリン、キノフタロン、キサンテン 、ジケトピロロピロール、ペリレン、ペリノン 、アントラキノン、インジゴイド 、オキサジン、キナクリドン、ベンツイミダゾロン、ビオランスロン 、フタロシアニン、アゾメチンなどが挙げられる。
(第二プリプレグ)
 つぎに、積層板100を構成する有機繊維基材層を含みガラス繊維基材層を含まない1層以上の第二プリプレグ202について、上述の第一プリプレグ201および第三プリプレグ203と異なる点を中心に説明する。
 第二プリプレグ202を構成する樹脂材料および添加剤は、とくに限定されないが、本実施形態における第一プリプレグ201および第三プリプレグ203に使われる樹脂組成物を適宜使用してもよいし、別の材料を使用してもよい。
(有機繊維基材層)
 本実施形態における有機繊維基材層に使用される有機繊維基材としては、とくに限定されないが、例えばポリベンゾオキサゾール樹脂繊維、ポリアミド樹脂繊維、芳香族ポリアミド樹脂繊維、全芳香族ポリアミド(アラミド)樹脂繊維などのポリアミド系樹脂繊維、ポリエステル樹脂繊維、芳香族ポリエステル樹脂繊維、全芳香族ポリエステル樹脂繊維などのポリエステル系樹脂繊維、ポリイミド樹脂繊維、フッ素樹脂繊維などを主成分として構成される合成繊維基材などが挙げられる。有機繊維として、これらの中の1種類を単独で用いてもよく、2種類以上を併用してもよい。
 これらの中でもポリベンゾオキサゾール樹脂繊維がとくに好ましい。ポリベンゾオキサゾール樹脂繊維を用いることにより、第三プリプレグの熱膨張係数や誘電率をさらに小さくし、ヤング率を大きくすることができる。例えば、東洋紡社からザイロン(商標名)が挙げられる。ザイロンの種類としては、弾性率が180GPaのASタイプ(レギュラータイプ)、270GPaのHM(高弾性タイプ)タイプがあり、本実施形態の積層板には、より高弾性のHMタイプが、低熱膨張、高ヤング率の観点より好ましい。そうすることで、HMタイプを用いることで、半導体パッケージの反りをより低減させることができる。
 本実施形態における有機繊維基材層は、とくに限定されないが、有機繊維クロス、有機繊維不織布などが挙げられる。これらの中でも、強度、熱膨張係数の点から有機繊維クロスがとくに好ましい。また、有機繊維クロスを用いることにより、第三プリプレグの熱膨張係数をさらに小さくし、ヤング率を大きくすることができる。
 有機繊維基材層の厚みは、とくに限定されないが、好ましくは10μm以上150μm以下であり、より好ましくは20μm以上120μm以下であり、さらに好ましくは30μm以上100μm以下である。このような厚みを有する有機繊維基材を用いることにより、第三プリプレグ製造時のハンドリング性がさらに向上し、とくに反り低減効果が顕著である。
 有機繊維基材の中でも、25℃での線膨張係数が0ppm/℃以下の有機繊維基材であることが好ましく、-3ppm/℃以下の有機繊維基材であることがより好ましい。このような線膨張係数を有する有機繊維基材を用いることにより、本実施形態の積層板の反りをさらに抑制することができる。
 さらに、本実施形態で用いる有機繊維基材は、ヤング率が好ましくは50GPa以上400GPa以下であり、より好ましくは60GPa以上350GPa以下であり、さらに好ましくは70GPa以上300GPa以下である。このようなヤング率を有する有機繊維基材を用いることにより、例えば半導体実装時のリフロー熱による配線板の変形を効果的に抑制することができるので、電子部品の接続信頼性がさらに向上する。
 第二プリプレグ202の製造方法は、とくに限定されないが、例えば、上述の第一プリプレグ201および第三プリプレグ203の製造方法に準じた方法を採用することができる。
 積層板100を構成するプリプレグの組み合わせとしては、例えば、シアネート樹脂、フェノール樹脂およびエポキシ樹脂を含む樹脂組成物をガラスクロスに含浸して得られる第一プリプレグ201と、シアネート樹脂、フェノール樹脂およびエポキシ樹脂を含む樹脂組成物をポリベンゾオキサゾール樹脂繊維基材に含浸して得られる第二プリプレグ202と、シアネート樹脂、フェノール樹脂およびエポキシ樹脂を含む樹脂組成物をガラスクロスに含浸して得られる第三プリプレグ203とすることができる。
 上記の第一プリプレグ、第二プリプレグ、第三プリプレグをこの順に積層して成形すると、有機繊維基材層の曲げ弾性率を補強し、積層板100の剛性を高めて、積層板100の単体反りをとくに低減することができる。
(金属箔付き積層板)
 つづいて、本実施形態における金属箔付き積層板200について説明する。
 本実施形態における積層板100は、図3に示すような、少なくとも片面に金属箔210が形成された、金属箔付き積層板200としてもよい。
 金属箔210の厚みは、好ましくは1μm以上18μm以下である。より好ましくは2μm以上12μm以下である。金属箔210の厚みが上記範囲内であると、微細パターンが形成可能であり、積層板を薄型化できる。
 金属箔210を構成する金属としては、例えば銅および銅系合金、アルミおよびアルミ系合金、銀および銀系合金、金および金系合金、亜鉛および亜鉛系合金、ニッケルおよびニッケル系合金、錫および錫系合金、鉄および鉄系合金、コバール(商標名)、42アロイ、インバーまたはスーパーインバーなどのFe-Ni系の合金、WまたはMoなどが挙げられる。また、キャリア付電解銅箔なども使用することができる。
 また、金属箔210の代わりに、本実施形態における積層板100の少なくとも一方の面110にフィルムを積層してもよい。フィルムとしては、例えばポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリイミド、フッ素系樹脂などを挙げることができる。
 金属箔付き積層板200の製造方法としては、例えば以下の通りである。積層した第一プリプレグ201および第三プリプレグ203の外側の上下両面または片面に金属箔を重ね、ラミネーター装置やベクレル装置を用いて高真空条件下でこれらを接合する。あるいはそのまま第一プリプレグ201および第三プリプレグ203の外側の上下両面または片面に金属箔を重ねる。つぎに、積層板と金属箔などとを重ねたものを真空プレス機で加熱、加圧するかあるいは乾燥機で加熱することで金属箔付き積層板を得ることができる。
(ビルドアップ層付き積層板)
 つづいて、本実施形態におけるビルドアップ層付き積層板300について説明する。
 積層板100は、図4に示すように、当該積層板の少なくとも一方の面110の上部に、第三繊維基材層301と樹脂層を備えるビルドアップ層303がさらに形成されていてもよい。ここで、第三繊維基材層301は含まなくても構わないが、第三繊維基材層301を含むとビルドアップ層付き積層板300の反りの防止効果が高まる。
 また、このとき、ビルドアップ層付き積層板300の反りの防止効果をより効果的に得るためには、図5に示すように、積層方向において、一方の面110と第三繊維基材層301の中心線A3との距離をD3とし、ビルドアップ層の表面310と第三繊維基材層301の中心線A3との距離をD4としたとき、D3>D4の条件を満たすようにビルドアップ層303が積層されるのが好ましい。
 また、ビルドアップ層303の積層方法としては、とくに限定されないが、積層板100の積層方法と同様の方法であってもよいし、別の方法であってもよい。
 また、ビルドアップ層303に使用される材料は、とくに限定されないが、積層板100に使われる材料を適宜使用してもよいし、別の材料を使用してもよい。
 また、ビルドアップ層303の製造方法は、とくに限定されないが、本実施形態における第一プリプレグ201、第二プリプレグ202または第三プリプレグ203と同様の製造方法であってもよいし、別の製造方法であってもよい。
(回路基板)
 つづいて、本実施形態における回路基板400について説明する。
 積層板100は、図6に示すような回路基板400に用いることができる。回路基板400の製造方法としては、例えば、以下のような方法がある。
 上記の方法で形成した金属箔付き積層板200に層間接続用のスルーホール405を形成し、サブトラクティブ工法、セミアディティブ工法などにより配線層401を作製する。その後、任意のビルドアップ層303を積層して、アディティブ工法により層間接続および回路形成する工程を繰り返し、回路基板400を製造する。ここで、一部あるいは全てのビルドアップ層は繊維基材層を含んでも構わないし、含まなくても構わない。
(ソルダーレジスト層付き回路基板)
 つづいて、本実施形態におけるソルダーレジスト層付き回路基板500について説明する。
 回路基板400は、図7に示すように、当該回路基板の少なくとも一方の面110(ビルドアップ層が形成される場合はビルドアップ層の表面310)に、第四繊維基材層501と樹脂層を備えるソルダーレジスト層503がさらに形成されていてもよい。ここで、第四繊維基材層501は含まなくても構わないが、第四繊維基材層501を含むとソルダーレジスト層付き回路基板500の反りの防止効果が高まる。
 また、このとき、ソルダーレジスト層付き回路基板500の反りの防止効果をより効果的に得るためには、図8に示すように、積層方向において、一方の面110(ビルドアップ層が形成される場合はビルドアップ層の表面310)と第四繊維基材層501の中心線A4との距離をD5とし、ソルダーレジスト層の表面510と第四繊維基材層501の中心線A4との距離をD6としたとき、D5>D6の条件を満たすようにソルダーレジスト層503が積層されるのが好ましい。
 ソルダーレジスト層503の積層方法としては、とくに限定されないが、本実施形態における積層板100またはビルドアップ層303の積層方法と同様の方法であってもよいし、別の方法であってもよい。
 ソルダーレジスト層503に使用される材料は、とくに限定されないが、本実施形態における積層板100またはビルドアップ層303に使われる材料を適宜使用してもよいし、別の材料を使用してもよい。
 また、ソルダーレジスト層503の作製方法は、とくに限定されないが、本実施形態における第一プリプレグ201、第二プリプレグ202、第三プリプレグ203、またはビルドアップ層303と同様の作製方法であってもよいし、別の作製方法であってもよい。
 さらに、本実施形態における回路基板500に、半導体素子601を搭載することにより、図9に示すような半導体パッケージ600を製造することができる。本実施形態における半導体パッケージ600は、とくに限定されないが、例えば、回路加工された金属箔付き積層板100、ビルドアップ層303、ソルダーレジスト層503、および半導体素子601を有するものである。
 半導体パッケージ600の製造方法としては、とくに限定されないが、例えば、以下のような方法がある。半導体素子601を、ソルダーレジスト層503を有する回路加工された積層板100の上部に搭載する。この際、半導体素子601と配線層401とをビア孔403においてバンプ603にて接合する。その後、アンダーフィル605によって、アンダーフィリングする。このようにして、半導体パッケージを得ることができる。
 以上に説明したように、本実施形態によれば、反りの低減された積層板100が提供される。とくに、厚みが薄い積層板とした場合でも、反りの発生を効果的に抑制することができる。そして、積層板100を用いた回路基板は、反り、寸法安定性などの機械的特性、成形性に優れたものである。したがって、積層板100は、高密度化、高多層化が要求されるプリント配線板など、信頼性が要求される用途に好適に用いることができる。
 積層板100は、上述の回路加工およびそれ以後の各プロセスにおいても反りの発生が低減される。したがって、本実施形態における半導体パッケージ600は、反りおよびクラックが発生しにくく、薄型化が可能である。
 以上、本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。例えば、図10(a)のように、第一プリプレグ201および第三プリプレグ203の外側に、それぞれ、繊維基材層を含有するプリプレグ204をさらに積層して得られる図10(b)のような積層板700でもよい。
 以下、本発明を実施例および比較例により説明するが、本発明はこれらに限定されるものではない。なお、実施例では、部はとくに特定しない限り重量部を表す。また、層の厚みは平均膜厚で表わされている。
 実施例および比較例では、以下の原料を用いた。
 エポキシ樹脂A:ビフェニルアラルキル型ノボラックエポキシ樹脂(日本化薬社製、NC-3000)
 エポキシ樹脂B:ナフタレン骨格変性クレゾールノボラック型エポキシ樹脂(DIC社製、EXA-7320)
 エポキシ樹脂C:ナフタレンエーテル型エポキシ樹脂(DIC社製、HP-6000)
 エポキシ樹脂D:多官能ナフタレン型エポキシ樹脂(DIC社製、HP-4750)
シアネート樹脂A:ノボラック型シアネート樹脂(ロンザジャパン社製、プリマセットPT-30)
シアネート樹脂B:ビスフェノールA型シアネート樹脂(ロンザジャパン社製、プリマセットBA230)
フェノール樹脂A:ビフェニルジメチレン型フェノール樹脂(日本化薬社製、GPH-103)
フェノール樹脂B:ナフトールアラルキル型フェノール樹脂(東都化成社製、SN-485)
アミン化合物:4,4'-ジアミノジフェニルメタン
ビスマレイミド化合物(ケイアイ化成工業社製、BMI-70)
フェノキシ樹脂A:ビスフェノールアセトフェノン構造を含むフェノキシ樹脂
(合成例)
 容量1Lの反応容器に、テトラメチルビフェニル型エポキシ樹脂(ジャパンエポキシレジン社製「YX-4000」、エポキシ当量185g/eq)100g、ビスフェノールアセトフェノン80g、およびシクロヘキサノン70gを入れ撹拌して溶解させた。つぎに、50wt%テトラメチルアンモニウムクロライド溶液0.4gを滴下し、窒素雰囲気下、180℃で5時間反応させた。反応終了後、析出物をろ過し、真空乾燥機にて、95℃で8時間真空乾燥し、上記一般式(X)で表される重量平均分子量38,000、ガラス転移温度130℃のビスフェノールアセトフェノン構造を含むフェノキシ樹脂を得た。
充填材A:球状シリカ(アドマテックス社製、SO-32R、平均粒径1μm)
充填材B:球状シリカ(トクヤマ社製、NSS-5N、平均粒径75nm)
充填材C:ベーマイト(ナバルテック社製、AOH-30、平均粒径2.0μm)
カップリング剤A:γ-グリシドキシプロピルトリメトキシシラン(GE東芝シリコーン社製、A187)
硬化触媒A:上記一般式(IX)に該当するオニウム塩化合物のリン系触媒(住友ベークライト社製、C05-MB)
着色剤A:フタロシアニンブルー/ベンゾイミダゾロン/メチルエチルケトン(=1/1/8)混合物:(山陽色素社製)
(実施例)
 以下の手順を用いて、本実施形態における積層板を作製した。
 まず、プリプレグの製造について説明する。使用した樹脂ワニスの組成を表1に示し、得られたプリプレグ1~16が有する各層の厚みを表2に示す。なお、表2~4に記載のP1~P16とはプリプレグ1~プリプレグ16を意味し、表2に記載のユニチカとはユニチカグラスファイバー社、日東紡とは日東紡社、旭化成とは旭化成イーマテリアルズ社を意味する。なお、プリプレグ1~5は非対称プリプレグ、プリプレグ6~16は対称プリプレグとなる。
(プリプレグ1)
1.樹脂組成物のワニスAの調製
 エポキシ樹脂Aとしてビフェニルアラルキル型ノボラックエポキシ樹脂(日本化薬社製、NC-3000)11.0重量部、フェノール樹脂Aとしてビフェニルジメチレン型フェノール樹脂(日本化薬社製、GPH-103)8.8重量部、シアネート樹脂Aとしてノボラック型シアネート樹脂(ロンザジャパン社製、プリマセットPT-30)16.0重量部、シアネート樹脂BとしてビスフェノールA型シアネート樹脂(ロンザジャパン社製、プリマセットBA230)4.0重量部、をメチルエチルケトンに溶解、分散させた。さらに、充填材Aとして球状シリカ(アドマテックス社製、SO-32R、平均粒径1μm)60.0重量部とカップリング剤Aとしてγ-グリシドキシプロピルトリメトキシシラン(GE東芝シリコーン社製、A187)0.2重量部を添加して、高速撹拌装置を用いて30分間撹拌して、不揮発分50重量%となるように調整し、樹脂組成物のワニスA(樹脂ワニスA)を調製した。
2.キャリア材料の製造
 樹脂ワニスAをPETフィルム(ポリエチレンテレフタレート、帝人デュポンフィルム社製ピューレックスフィルム、厚さ36μm)上に、ダイコーター装置を用いて乾燥後の樹脂層の厚さが16.0μmとなるように塗工し、これを160℃の乾燥装置で5分間乾燥して、第一樹脂層用のPETフィルム付き樹脂シートA(キャリア材料A)を得た。
 また、上記樹脂ワニスAをPETフィルム上に同様に塗工し、乾燥後の樹脂層の厚さが10.0μmになるように、160℃の乾燥機で5分間乾燥して、第二樹脂層用のPETフィルム付き樹脂シートB(キャリア材料B)を得た。
3.プリプレグの製造
 第一樹脂層用のキャリア材料A、および第二樹脂層用のキャリア材料Bをガラス繊維基材(厚さ25μm、日東紡社製Tガラス織布、WTX1037-53-X133、IPC規格1037、線膨張係数:2.8ppm/℃)の両面に樹脂層が繊維基材と向き合うように配し、図2に示す真空ラミネート装置および熱風乾燥装置により樹脂組成物を含浸させ、PETフィルムが積層されたプリプレグを得た。
 具体的には、ガラス繊維基材の両面にキャリア材料Aおよびキャリア材料Bがガラス繊維基材の幅方向の中心に位置するように、それぞれ重ね合わせ、常圧より9.999×10Pa(約750Torr)以上減圧した条件下で、80℃のラミネートロールを用いて接合した。
 ここで、ガラス繊維基材の幅方向寸法の内側領域においては、キャリア材料Aおよびキャリア材料Bの樹脂層をガラス繊維基材の両面側にそれぞれ接合するとともに、ガラス繊維基材の幅方向寸法の外側領域においては、キャリア材料Aおよびキャリア材料Bの樹脂層同士を接合した。
 つぎに、上記接合したものを、120℃に設定した横搬送型の熱風乾燥装置内を2分間通すことによって、圧力を作用させることなく加熱処理してプリプレグ1(P1)を得た。
 このとき、第一樹脂層の厚み(C1)が9μm、ガラス繊維基材層の厚みが25μm、第二樹脂層の厚み(C2)が3μmで、総厚37μmであり、C2/C1が0.33であった。なお、樹脂層の厚みは、プリプレグの断面を切り出し、光学顕微鏡で観察することにより測定した。
(プリプレグ2)
1.樹脂組成物のワニスBの調製
 エポキシ樹脂Bとしてナフタレン骨格変性クレゾールノボラック型エポキシ樹脂(DIC社製、EXA-7320)14.0重量部、シアネート樹脂Aとしてノボラック型シアネート樹脂(ロンザジャパン社製、プリマセットPT-30)12.0重量部、シアネート樹脂BとしてビスフェノールA型シアネート樹脂(ロンザジャパン社製、プリマセットBA230)3.6重量部、硬化触媒Aとして上記一般式(IX)に該当するオニウム塩化合物のリン系触媒(住友ベークライト社製、C05-MB)0.2重量部をメチルエチルケトンに溶解、分散させた。さらに、充填材Aとして球状シリカ(アドマテックス社製、SO-32R、平均粒径1μm)65.0重量部、充填材Bとして球状シリカ(トクヤマ社製、NSS-5N、平均粒径75nm)5.0重量部、カップリング剤Aとしてγ-グリシドキシプロピルトリメトキシシラン(GE東芝シリコーン社製、A187)0.2重量部を添加して、高速撹拌装置を用いて30分間撹拌して、不揮発分50重量%となるように調整し、樹脂組成物のワニスB(樹脂ワニスB)を調製した。
2.プリプレグの製造
 プリプレグ2は、上記で得られた樹脂ワニスBを用いた以外は、プリプレグ1と同様にして製造した。
(プリプレグ3)
1.樹脂組成物のワニスCの調製
 エポキシ樹脂Cとしてナフタレンエーテル型エポキシ樹脂(DIC社製、HP-6000)10.8重量部、シアネート樹脂Aとしてノボラック型シアネート樹脂(ロンザジャパン社製、プリマセットPT-30)14.0重量部、フェノール樹脂Bとしてナフトールアラルキル型フェノール樹脂(東都化成社製、SN-485)5.0重量部をメチルエチルケトンに溶解、分散させた。さらに、充填材Aとして球状シリカ(アドマテックス社製、SO-32R、平均粒径1μm)65.0重量部、充填材Bとして球状シリカ(トクヤマ社製、NSS-5N、平均粒径75nm)5.0重量部、カップリング剤Aとしてγ-グリシドキシプロピルトリメトキシシラン(GE東芝シリコーン社製、A187)0.2重量部を添加して、高速撹拌装置を用いて30分間撹拌して、不揮発分50重量%となるように調整し、樹脂組成物のワニスC(樹脂ワニスC)を調製した。
2.プリプレグの製造
 プリプレグ3は、上記で得られた樹脂ワニスCを用いた以外は、プリプレグ1と同様にして製造した。
(プリプレグ4)
1.樹脂組成物のワニスDの調製
 エポキシ樹脂Dとして多官能ナフタレン型エポキシ樹脂(DIC社製、HP-4750)15.6重量部、シアネート樹脂Aとしてノボラック型シアネート樹脂(ロンザジャパン社製、プリマセットPT-30)14.0重量部、硬化触媒Aとして上記一般式(IX)に該当するオニウム塩化合物のリン系触媒(住友ベークライト社製、C05-MB)0.2重量部をメチルエチルケトンに溶解、分散させた。さらに、充填材Aとして球状シリカ(アドマテックス社製、SO-32R、平均粒径1μm)65.0重量部、充填材Bとして球状シリカ(トクヤマ社製、NSS-5N、平均粒径75nm)5.0重量部、カップリング剤Aとしてγ-グリシドキシプロピルトリメトキシシラン(GE東芝シリコーン社製、A187)0.2重量部を添加して、高速撹拌装置を用いて30分間撹拌して、不揮発分50重量%となるように調整し、樹脂組成物のワニスD(樹脂ワニスD)を調製した。
2.プリプレグの製造
 プリプレグ4は、上記で得られた樹脂ワニスDを用いた以外は、プリプレグ1と同様にして製造した。
(プリプレグ5)
1.樹脂組成物のワニスEの調製
 エポキシ樹脂Cとしてナフタレンエーテル型エポキシ樹脂(DIC社製、HP-6000)11.0重量部、ビスマレイミド化合物(ケイアイ化成工業社製、BMI-70)20.0重量部、アミン化合物として4,4'-ジアミノジフェニルメタン3.5重量部をメチルエチルケトンに溶解、分散させた。さらに、充填材Aとして球状シリカ(アドマテックス社製、SO-32R、平均粒径1μm)20.0重量部、充填材Cとしてベーマイト(ナバルテック社製、AOH-30、平均粒径2.0μm)45.0重量部、カップリング剤Aとしてγ-グリシドキシプロピルトリメトキシシラン(GE東芝シリコーン社製、A187)0.5重量部を添加して、高速撹拌装置を用いて30分間撹拌して、不揮発分50重量%となるように調整し、樹脂組成物のワニスE(樹脂ワニスE)を調製した。
2.プリプレグの製造
 プリプレグ5は、上記で得られた樹脂ワニスEを用いた以外は、プリプレグ1と同様にして製造した。
(プリプレグ6)
 プリプレグ6は、第一樹脂層および第二樹脂層の厚みを表2に示した値に変えた以外は、プリプレグ5と同様にして製造した。
(プリプレグ7)
 上記で得られた樹脂ワニスAを有機繊維基材(厚さ65μm、旭化成イーマテリアルズ社製ポリベンゾオキサゾール樹脂繊維織布、ザイロン116Z/ASタイプ、フィラメント径:12μm、フィラメント数:66本/束、縦49本/25mm、横49本/25mm、坪量:43.3g/m、通気度:20.8cm/cm/sec、表面処理:シランカップリング剤処理、線膨張係数(25℃):-6ppm/℃、ヤング率180GPa)に含浸し、150℃の加熱炉で2分間乾燥して、プリプレグを得た。このとき、有機繊維基材層の厚みが65μmであり、当該有機繊維基材層の両面には同じ厚さ(8μm)の樹脂層が設けられ、総厚は81μmであった。
(プリプレグ8)
 プリプレグ8は、上記で得られた樹脂ワニスBを用いた以外は、プリプレグ7と同様にして製造した。
(プリプレグ9)
 プリプレグ9は、繊維基材を有機繊維基材(厚さ65μm、旭化成イーマテリアルズ社製ポリベンゾオキサゾール樹脂繊維織布、ザイロン116Z/HMタイプ、フィラメント径:12μm、フィラメント数:66本/束、縦49本/25mm、横49本/25mm、坪量:43.3g/m、通気度:20.8cm/cm/sec、表面処理:シランカップリング剤処理、線膨張係数(25℃):-6ppm/℃、ヤング率270GPa)に変えたこと以外は、プリプレグ8と同様にして製造した。
(プリプレグ10~12)
 プリプレグ10~12は、樹脂ワニスの種類を表2に示したものに変えた以外は、プリプレグ9と同様にして製造した。
(プリプレグ13)
 プリプレグ13は、樹脂層の厚みを表2のように変え、用いた繊維基材を有機繊維基材(厚さ43μm、旭化成イーマテリアルズ社製ポリベンゾオキサゾール樹脂繊維織布、ザイロン054Z/501HMタイプ、線膨張係数(25℃):-6ppm/℃)のものに変えたこと以外は、プリプレグ11と同様にして製造した。
(プリプレグ14)
 プリプレグ14は、用いた繊維基材を有機繊維基材(厚さ126μm、旭化成イーマテリアルズ社製ポリベンゾオキサゾール樹脂繊維織布、ザイロン273Z/HMタイプ、線膨張係数(25℃):-6ppm/℃)のものに変えたこと以外は、プリプレグ13と同様にして製造した。
(プリプレグ15)
 プリプレグ15は、樹脂層の厚みを表2のように変え、用いた繊維基材をガラス繊維基材(厚さ55μm、ユニチカグラスファイバー社製Eガラス織布、E06B 04 53SK、IPC規格1080、線膨張係数:5.5ppm/℃)のものに変えたこと以外は、プリプレグ7と同様にして製造した。
(プリプレグ16)
 プリプレグ16は、上記で得られた樹脂ワニスBを用いたこと以外は、プリプレグ15と同様にして製造した。
 実施例1~9および比較例1、2では、上記プリプレグ1~16(表中では、単にP1~16と記載)を用いて、積層板を製造し、当該積層板を用いて、回路基板および半導体パッケージを製造した。
(実施例1)
1.積層板の製造
 プリプレグ1、プリプレグ7、プリプレグ1の順で、プリプレグ1のそれぞれ両面のPETフィルムを剥離し、プリプレグ1の第一樹脂層がそれぞれプリプレグ7側に接するように、合計3枚のプリプレグを積層し、得られた積層体の両面に、12μmの銅箔(三井金属鉱業社製3EC-VLP箔)を重ね合わせ、220℃、3MPaで2時間加熱加圧成形することにより、金属箔付き積層板を得た。得られた金属箔付き積層板のコア層(積層板からなる部分)の厚みは、0.155mmであった。なお、本実施例・比較例で使用したプリプレグや樹脂層は硬化前後で厚みがほとんど変化しなかった。そのため、コア層(積層板からなる部分)の厚みはプリプレグの厚みの合計となっている。
2.ビルドアップ層の製造
 シアネート樹脂Aとしてノボラック型シアネート樹脂(ロンザジャパン社製、プリマセットPT-30)25重量部、エポキシ樹脂Aとしてビフェニルアラルキル型ノボラックエポキシ樹脂(日本化薬社製、NC-3000)25重量部、フェノキシ樹脂Aとして上記で作製したビスフェノールアセトフェノン構造を含むフェノキシ樹脂10重量部、硬化促進剤としてイミダゾール化合物(四国化成工業社製、1-ベンジル-2-フェニルイミダゾール)0.4重量部をメチルエチルケトンに溶解、分散させた。さらに充填材Aとして球状シリカ(アドマテックス社製、SO-32R、平均粒径1μm)を39.4重量部とカップリング剤Aとしてγ-グリシドキシプロピルトリメトキシシラン(GE東芝シリコーン社製、A187)0.2重量部を添加して、高速撹拌装置を用いて30分間撹拌して、不揮発分50重量%となるように調整し、樹脂組成物のワニスF(樹脂ワニスF)を調整した。
 樹脂ワニスFをPETフィルム(ポリエチレンテレフタレート、帝人デュポンフィルム社製ピューレックスフィルム、厚さ36μm)上に、ダイコーター装置を用いて乾燥後の樹脂層の厚さが22.0μmとなるように塗工し、これを160℃の乾燥装置で5分間乾燥して、第一樹脂層用のPETフィルム付き樹脂シートC(キャリア材料C)を得た。
 また、樹脂ワニスFをPETフィルム上に同様に塗工し、乾燥後の樹脂層の厚さが11.0μmになるように、160℃の乾燥機で5分間乾燥して、第二樹脂層用のPETフィルム付き樹脂シートD(キャリア材料D)を得た。
 第一樹脂層用のキャリア材料C、および第二樹脂層用のキャリア材料Dをガラス繊維基材(厚さ15μm、ユニチカグラスファイバー社製Eガラス織布、E02Z 04 53SK、IPC規格1015、線膨張係数:5.5ppm/℃)の両面に樹脂層が繊維基材と向き合うように配し、図2に示す真空ラミネート装置および熱風乾燥装置により樹脂組成物を含浸させ、PETフィルムが積層されたビルドアップ層Aを得た。
 具体的には、ガラス繊維基材の両面にキャリア材料Cおよびキャリア材料Dがガラス繊維基材の幅方向の中心に位置するように、それぞれ重ね合わせ、常圧より9.999×104Pa(約750Torr)以上減圧した条件下で、80℃のラミネートロールを用いて接合した。
 ここで、ガラス繊維基材の幅方向寸法の内側領域においては、キャリア材料Cおよびキャリア材料Dの樹脂層をガラス繊維基材の両面側にそれぞれ接合するとともに、ガラス繊維基材の幅方向寸法の外側領域においては、キャリア材料Cおよびキャリア材料Dの樹脂層同士を接合した。
 つぎに、上記接合したものを、120℃に設定した横搬送型の熱風乾燥装置内を2分間通すことによって、圧力を作用させることなく加熱処理してビルドアップ層Aを得た。
 このとき、第一樹脂層の厚み(C1)が18μm、ガラス繊維基材層の厚みが15μm、第二樹脂層の厚み(C2)が7μmで、総厚40μmであり、C2/C1が0.39であった。
3.ソルダーレジスト層の製造
 シアネート樹脂Aとしてノボラック型シアネート樹脂(ロンザジャパン社製、プリマセットPT-30)25重量部、エポキシ樹脂Aとしてビフェニルアラルキル型ノボラックエポキシ樹脂(日本化薬社製、NC-3000)25重量部、フェノキシ樹脂Aとして上記で作製したビスフェノールアセトフェノン構造を含むフェノキシ樹脂10重量部、硬化促進剤としてイミダゾール化合物(四国化成工業社製、1-ベンジル-2-フェニルイミダゾール)0.4重量部をメチルエチルケトンに溶解、分散させた。さらに充填材Aとして球状シリカ(アドマテックス社製、SO-32R、平均粒径1μm)を39重量部、カップリング剤Aとしてγ-グリシドキシプロピルトリメトキシシラン(GE東芝シリコーン社製、A187)0.2重量部、着色剤Aとしてフタロシアニンブルー/ベンゾイミダゾロン/メチルエチルケトン(=1/1/8)混合物:(山陽色素社製)固形分で0.4重量部を添加して、高速撹拌装置を用いて30分間撹拌して、不揮発分50重量%となるように調整し、樹脂組成物のワニスG(樹脂ワニスG)を調整した。
 樹脂ワニスGをPETフィルム(ポリエチレンテレフタレート、帝人デュポンフィルム社製ピューレックスフィルム、厚さ36μm)上に、ダイコーター装置を用いて乾燥後の樹脂層の厚さが14.0μmとなるように塗工し、これを160℃の乾燥装置で5分間乾燥して、第一樹脂層用のPETフィルム付き樹脂シートE(キャリア材料E)を得た。
 また、樹脂ワニスGをPETフィルム上に同様に塗工し、乾燥後の樹脂層の厚さが9.0μmになるように、160℃の乾燥機で5分間乾燥して、第二樹脂層用のPETフィルム付き樹脂シートF(キャリア材料F)を得た。
 第一樹脂層用のキャリア材料E、および第二樹脂層用のキャリア材料Fをガラス繊維基材(厚さ15μm、ユニチカグラスファイバー社製Eガラス織布、E02Z 04 53SK、IPC規格1015、線膨張係数:5.5ppm/℃)の両面に樹脂層が繊維基材と向き合うように配し、図2に示す真空ラミネート装置および熱風乾燥装置により樹脂組成物を含浸させ、PETフィルムが積層されたソルダーレジスト層Aを得た。
 具体的には、ガラス繊維基材の両面にキャリア材料Eおよびキャリア材料Fがガラス繊維基材の幅方向の中心に位置するように、それぞれ重ね合わせ、常圧より9.999×104Pa(約750Torr)以上減圧した条件下で、80℃のラミネートロールを用いて接合した。
 ここで、ガラス繊維基材の幅方向寸法の内側領域においては、キャリア材料Eおよびキャリア材料Fの樹脂層をガラス繊維基材の両面側にそれぞれ接合するとともに、ガラス繊維基材の幅方向寸法の外側領域においては、キャリア材料Eおよびキャリア材料Fの樹脂層同士を接合した。
 つぎに、上記接合したものを、120℃に設定した横搬送型の熱風乾燥装置内を2分間通すことによって、圧力を作用させることなく加熱処理してソルダーレジスト層Aを得た。
 このとき、第一樹脂層の厚み(C1)が10μm、ガラス繊維基材層の厚みが15μm、第二樹脂層の厚み(C2)が5μmで、総厚30μmであり、C2/C1が0.5であった。
4.回路基板の製造
 上記で得られた金属箔付き積層板をコア基板として用い、その両面に回路パターン形成(残銅率70%、L/S=50/50μm)した内層回路基板の表裏に、上記で得られたビルドアップ層Aの第一樹脂層側のPETフィルムを剥離して第一樹脂層を重ね合わせた。これに真空加圧式ラミネーター装置を用いて、温度150℃、圧力1MPa、時間120秒で真空加熱加圧成形した。その後、熱風乾燥装置にて220℃で60分間加熱硬化をおこない、第二樹脂層側のPETフィルムを剥離した。次いで炭酸レーザーによりブラインドビアホール(非貫通孔)を形成した。つぎにビア内および、樹脂層表面を、60℃の膨潤液(アトテックジャパン社製、スウェリングディップ セキュリガント P)に5分間浸漬し、さらに80℃の過マンガン酸カリウム水溶液(アトテックジャパン社製、コンセントレート コンパクト CP)に10分浸漬後、中和して粗化処理をおこなった。
 これを脱脂、触媒付与、活性化の工程を経た後、無電解銅めっき皮膜を約0.5μm形成し、めっきレジストを形成し、無電解銅めっき皮膜を給電層としてパターン電気めっき銅10μm形成させ、L/S=50/50μmの微細回路加工を施した。つぎに、熱風乾燥装置にて200℃で60分間アニール処理を行った後、フラッシュエッチングで給電層を除去した。
 つぎに、上記で得られたソルダーレジスト層Aの第一樹脂層側のPETフィルムを剥離して第一樹脂層を重ね合わせ、これに真空加圧式ラミネーター装置を用いて、温度150℃、圧力1MPa、時間120秒で真空加熱加圧成形した。その後、熱風乾燥装置にて220℃で60分間加熱硬化をおこない、第二樹脂層側のPETフィルムを剥離した。次いで半導体素子搭載パッドなどが露出するように炭酸レーザーによりブラインドビアホール(非貫通孔)を形成した。
 最後に、ソルダーレジスト層Aから露出した回路層上へ、無電解ニッケルめっき層3μmと、さらにその上へ、無電解金めっき層0.1μmとからなるめっき層を形成し、得られた基板を50mm×50mmサイズに切断し、半導体パッケージ用の回路基板を得た。
5.半導体パッケージの製造
 半導体パッケージ用の回路基板上に、半田バンプを有する半導体素子(TEGチップ、サイズ20mm×20mm、厚み725μm)を、フリップチップボンダー装置により、加熱圧着により搭載した。つぎに、IRリフロー炉で半田バンプを溶融接合した後、液状封止樹脂(住友ベークライト社製、CRP-X4800B)を充填し、当該液状封止樹脂を硬化させることで半導体パッケージを得た。なお、液状封止樹脂は、温度150℃、120分の条件で硬化させた。また、上記半導体素子の半田バンプは、Sn/Ag/Cu組成の鉛フリー半田で形成されたものを用いた。
(実施例2)
 プリプレグ2、プリプレグ8、プリプレグ2の順で、プリプレグ2のそれぞれ両面のPETフィルムを剥離し、プリプレグ2の第一樹脂層がそれぞれプリプレグ8側に接するように、合計3枚のプリプレグを積層した以外は、実施例1と同様にして、金属箔付き積層板、回路基板、半導体パッケージを製造した。
(実施例3)
 プリプレグ2、プリプレグ9、プリプレグ2の順で、プリプレグ2のそれぞれ両面のPETフィルムを剥離し、プリプレグ2の第一樹脂層がそれぞれプリプレグ9側に接するように、合計3枚のプリプレグを積層した以外は、実施例1と同様にして、金属箔付き積層板、回路基板、半導体パッケージを製造した。
(実施例4)
 プリプレグ3、プリプレグ10、プリプレグ3の順で、プリプレグ3のそれぞれ両面のPETフィルムを剥離し、プリプレグ3の第一樹脂層がそれぞれプリプレグ10側に接するように、合計3枚のプリプレグを積層した以外は、実施例1と同様にして、金属箔付き積層板、回路基板、半導体パッケージを製造した。
(実施例5)
 プリプレグ4、プリプレグ11、プリプレグ4の順で、プリプレグ4のそれぞれ両面のPETフィルムを剥離し、プリプレグ4の第一樹脂層がそれぞれプリプレグ11側に接するように、合計3枚のプリプレグを積層した以外は、実施例1と同様にして、金属箔付き積層板、回路基板、半導体パッケージを製造した。
(実施例6)
 プリプレグ5、プリプレグ12、プリプレグ5の順で、プリプレグ5のそれぞれ両面のPETフィルムを剥離し、プリプレグ5の第一樹脂層がそれぞれプリプレグ12側に接するように、合計3枚のプリプレグを積層した以外は、実施例1と同様にして、金属箔付き積層板、回路基板、半導体パッケージを製造した。
(実施例7)
 プリプレグ6、プリプレグ12、プリプレグ6の順で、プリプレグ6のそれぞれ両面のPETフィルムを剥離し、プリプレグ6の第一樹脂層がそれぞれプリプレグ12側に接するように、合計3枚のプリプレグを積層した以外は、実施例1と同様にして、金属箔付き積層板、回路基板、半導体パッケージを製造した。
(実施例8)
 プリプレグ4、プリプレグ13、プリプレグ13、プリプレグ4の順で、プリプレグ4のそれぞれ両面のPETフィルムを剥離し、プリプレグ4の第一樹脂層がそれぞれプリプレグ13側に接するように、合計4枚のプリプレグを積層した以外は、実施例1と同様にして、金属箔付き積層板、回路基板、半導体パッケージを製造した。
(実施例9)
 プリプレグ4、プリプレグ14、プリプレグ4の順で、プリプレグ4のそれぞれ両面のPETフィルムを剥離し、プリプレグ4の第一樹脂層がそれぞれプリプレグ14側に接するように、合計3枚のプリプレグを積層した以外は、実施例1と同様にして、金属箔付き積層板、回路基板、半導体パッケージを製造した。
(比較例1)
 比較例1では、プリプレグ1、プリプレグ15、プリプレグ1の順で、プリプレグ1のそれぞれ両面のPETフィルムを剥離し、プリプレグ1の第一樹脂層がそれぞれプリプレグ15側に接するように、合計3枚のプリプレグを積層した以外は、実施例1と同様にして、金属箔付き積層板、回路基板、半導体パッケージを製造した。
(比較例2)
 比較例2では、プリプレグ2、プリプレグ16、プリプレグ2の順で、プリプレグ2のそれぞれ両面のPETフィルムを剥離し、プリプレグ2の第一樹脂層がそれぞれプリプレグ16側に接するように、合計3枚のプリプレグを積層した以外は、実施例1と同様にして、金属箔付き積層板、回路基板、半導体パッケージを製造した。
 各実施例および比較例により得られた金属箔付き積層板、回路基板、半導体パッケージについて、つぎの各評価を行った。各評価を、評価方法と共に以下に示す。得られた結果を表3、4に示す。
(1)線膨張係数
 実施例および比較例で作製した金属箔付き積層板の銅箔を全面エッチングし、4mm×40mmのテストピースを切り出し、TMA(TAインスツルメント社製、Q400)を用いて5℃/分の引っ張り条件で0℃~280℃まで昇温させ、50℃における厚み方向(XY方向)の線膨張係数を測定した。
(2)ヤング率
 実施例および比較例で作製した金属箔付き積層板の銅箔をエッチングし、10mm×60mmのテストピースを切り出し、動的粘弾性測定装置(TAインスツルメント社製、DMA983)を用いて、昇温速度5℃/分の条件で測定した。
(3)半導体パッケージの反り量
 半導体パッケージの室温25℃から260℃までの反り量を温度可変レーザー三次元測定機(日立テクノロジーアンドサービス社製 形式LS220-MT100MT50)を用いて測定した。なお、測定方法は、上記測定機のサンプルチャンバーに半導体素子面を下にして設置し、チップ上の18×18mmの面内の高さ方向の変位を測定し、室温25℃での変位差の最大値を室温時の反り値、260℃での変位値の最大値を260℃反り値として、2点間温度での反り値の変化量を反り量とした。
 符号は以下の通り。
 ◎:125μm以下
 ○:125~175μm未満
 ×:175μm以上
 表3、4からわかるように、実施例1~9の積層板は、比較例1~2の積層板に比べて、線膨張係数が軽減されることが明らかとなった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 この出願は、2011年4月14日に出願された日本出願特願2011-90470号を基礎とする優先権を主張し、その開示の全てをここに取り込む。

Claims (17)

  1.  第一ガラス繊維基材層を含有する第一プリプレグと、
     有機繊維基材層を含有し、ガラス繊維基材層を含まない1層以上の第二プリプレグと、
     第二ガラス繊維基材層を含有する第三プリプレグと、
    をこの順に積層して得られる、積層板。
  2.  請求項1に記載の積層板において、
      前記第一ガラス繊維基材層の中心線と前記第二ガラス繊維基材層の中心線との距離をD1とし、
      当該積層板の厚さをD2とし、
      当該積層板に含まれる前記第一ガラス繊維基材層、前記第二ガラス繊維基材層および前記有機繊維基材層の合計数をn(ただし、nは3以上の整数である。)としたとき、
     D2/n<D1の条件を満たす、積層板。
  3.  請求項1または2に記載の積層板において、
     前記有機繊維基材層の厚さが、10μm以上150μm以下である、積層板。
  4.  請求項1乃至3いずれか一項に記載の積層板において、
     前記有機繊維基材層の25℃での線膨張係数が、0ppm/℃以下である、積層板。
  5.  請求項1乃至4いずれか一項に記載の積層板において、
     前記有機繊維基材層のヤング率が、50GPa以上400GPa以下である、積層板。
  6.  請求項1乃至5いずれか一項に記載の積層板において、
     前記有機繊維基材層を構成する繊維基材がポリベンゾオキサゾール樹脂繊維である、積層板。
  7.  請求項1乃至6いずれか一項に記載の積層板において、当該積層板の厚さが、0.6mm以下である、積層板。
  8.  請求項1乃至7いずれか一項に記載の積層板において、当該積層板の面方向の線膨張係数が、-10ppm/℃以上10ppm/℃以下である、積層板。
  9.  請求項1乃至8いずれか一項に記載の積層板において、当該積層板の少なくとも片面に金属箔が形成された、積層板。
  10.  請求項9に記載の積層板において、前記金属箔が銅箔である、積層板。
  11.  請求項1乃至10いずれか一項に記載の積層板において、
     前記第一ガラス繊維基材層および前記第二ガラス繊維基材層の厚さが、5μm以上100μm以下である、積層板。
  12.  請求項1乃至11いずれか一項に記載の積層板において、
     前記第一ガラス繊維基材層および前記第二ガラス繊維基材層の線膨張係数が、3.5ppm/℃以下である、積層板。
  13.  請求項1乃至12いずれか一項に記載の積層板において、
     前記第一ガラス繊維基材層および前記第二ガラス繊維基材層がTガラスまたはSガラスからなる、積層板。
  14.  請求項1乃至13いずれか一項に記載の積層板において、
     当該積層板の上部に、第三繊維基材層を含むビルドアップ層がさらに形成されており、
     積層方向においては、
      当該積層板の前記一方の面と、前記ビルドアップ層に含まれる前記第三繊維基材層の中心線との距離をD3とし、
      前記ビルドアップ層の表面と前記第三繊維基材層の中心線との距離をD4としたとき、D3>D4を満たす、積層板。
  15.  請求項1乃至14いずれか一項に記載の積層板を含む、回路基板。
  16.  請求項15に記載の回路基板において、
     当該回路基板の上部に、第四繊維基材層を含むソルダーレジスト層がさらに形成されており、
     積層方向においては、
      前記一方の面または前記ビルドアップ層の表面と、前記第四繊維基材層の中心線との距離をD5とし、
      前記ソルダーレジスト層の表面と、前記第四繊維基材層の中心線との距離をD6としたとき、
     D5>D6を満たす、回路基板。
  17.  請求項15または16に記載の回路基板に半導体素子が搭載された、半導体パッケージ。
PCT/JP2012/002582 2011-04-14 2012-04-13 積層板、回路基板、および半導体パッケージ WO2012140908A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020137030029A KR20140023980A (ko) 2011-04-14 2012-04-13 적층판, 회로 기판 및 반도체 패키지

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011090470 2011-04-14
JP2011-090470 2011-04-14

Publications (1)

Publication Number Publication Date
WO2012140908A1 true WO2012140908A1 (ja) 2012-10-18

Family

ID=47009097

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/002582 WO2012140908A1 (ja) 2011-04-14 2012-04-13 積層板、回路基板、および半導体パッケージ

Country Status (4)

Country Link
JP (1) JP2012231140A (ja)
KR (1) KR20140023980A (ja)
TW (1) TWI583560B (ja)
WO (1) WO2012140908A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014111361A (ja) * 2012-11-12 2014-06-19 Panasonic Corp 金属張積層板、プリント配線板、多層プリント配線板
JP5831667B2 (ja) * 2013-11-29 2015-12-09 日東紡績株式会社 ガラス繊維織物−樹脂組成物積層体
EP3051583A4 (en) * 2013-09-27 2017-05-17 Renesas Electronics Corporation Semiconductor device and manufacturing method for same

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014240456A (ja) * 2013-06-11 2014-12-25 住友ベークライト株式会社 プライマー層付きプリプレグ、金属張積層板、プリント配線基板および半導体パッケージ
JP2015018958A (ja) 2013-07-11 2015-01-29 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation 実装構造体および実装構造体製造方法
US10093085B2 (en) 2015-06-12 2018-10-09 Carbitex, Inc. Composite materials with binder-enhanced properties and method of production thereof
EP3383638A1 (en) 2015-12-02 2018-10-10 Carbitex, Inc. Joined fiber-reinforced composite material assembly with tunable anisotropic properties
EP3403800B1 (en) * 2016-01-15 2020-09-16 Hitachi Chemical Company, Ltd. Prepreg, printed circuit board, semiconductor package, and method for producing printed circuit board
JP7014160B2 (ja) * 2016-05-25 2022-02-01 昭和電工マテリアルズ株式会社 金属張積層板、プリント配線板及び半導体パッケージ
JP6735505B2 (ja) * 2016-09-06 2020-08-05 パナソニックIpマネジメント株式会社 プリント配線板、プリント回路板、プリプレグ
JP6776874B2 (ja) * 2016-12-20 2020-10-28 味の素株式会社 プリント配線板の製造方法
CN110177683B (zh) * 2017-01-12 2021-11-05 应用材料公司 阻挡层系统、具有阻挡层系统的光电装置以及用于以连续卷绕式工艺制造阻挡层系统的方法
US11109639B2 (en) 2018-05-23 2021-09-07 Carbitex, Inc. Footwear insert formed from a composite assembly having anti-puncture and anisotropic properties
CN113195219B (zh) 2018-12-18 2023-09-15 株式会社力森诺科 层叠板、印刷线路板、半导体封装体及层叠板的制造方法
KR102400111B1 (ko) 2019-02-08 2022-05-19 주식회사 엘지화학 반도체 패키지용 열경화성 수지 조성물, 프리프레그 및 금속박 적층판

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001036214A (ja) * 1999-07-23 2001-02-09 Matsushita Electric Ind Co Ltd 回路基板用部材及びこれを用いた回路基板の製造方法
WO2007126130A1 (ja) * 2006-04-28 2007-11-08 Sumitomo Bakelite Co., Ltd. ソルダーレジスト材料及びそれを用いた配線板並びに半導体パッケージ
JP2008174845A (ja) * 2007-01-16 2008-07-31 Asahi Kasei Electronics Co Ltd 積層板補強用有機繊維織布
WO2008096540A1 (ja) * 2007-02-08 2008-08-14 Sumitomo Bakelite Co., Ltd. 積層体、積層体を含む回路基板、半導体パッケージおよび積層体の製造方法
JP2008258335A (ja) * 2007-04-03 2008-10-23 Sumitomo Bakelite Co Ltd 多層配線板及び半導体パッケージ
JP2008277721A (ja) * 2006-07-20 2008-11-13 Sumitomo Bakelite Co Ltd 多層回路基板及び半導体装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3895158A (en) * 1973-08-15 1975-07-15 Westinghouse Electric Corp Composite glass cloth-cellulose fiber epoxy resin laminate
JPH0824011B2 (ja) * 1986-09-11 1996-03-06 松下電工株式会社 電気用積層板及びそれを用いたプリント配線基板
JPH115276A (ja) * 1997-04-24 1999-01-12 Sumitomo Bakelite Co Ltd 積層板
JP3782910B2 (ja) * 1999-12-10 2006-06-07 帝人テクノプロダクツ株式会社 プリント基板用積層体及びその製造方法
JP4580705B2 (ja) * 2004-07-08 2010-11-17 株式会社巴川製紙所 電気絶縁用基材とその製造方法、および同基材を用いたプリプレグとプリント配線用基板
JP5736109B2 (ja) * 2009-08-31 2015-06-17 日本シイエムケイ株式会社 多層プリント配線板及び両面プリント配線板

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001036214A (ja) * 1999-07-23 2001-02-09 Matsushita Electric Ind Co Ltd 回路基板用部材及びこれを用いた回路基板の製造方法
WO2007126130A1 (ja) * 2006-04-28 2007-11-08 Sumitomo Bakelite Co., Ltd. ソルダーレジスト材料及びそれを用いた配線板並びに半導体パッケージ
JP2008277721A (ja) * 2006-07-20 2008-11-13 Sumitomo Bakelite Co Ltd 多層回路基板及び半導体装置
JP2008174845A (ja) * 2007-01-16 2008-07-31 Asahi Kasei Electronics Co Ltd 積層板補強用有機繊維織布
WO2008096540A1 (ja) * 2007-02-08 2008-08-14 Sumitomo Bakelite Co., Ltd. 積層体、積層体を含む回路基板、半導体パッケージおよび積層体の製造方法
JP2008258335A (ja) * 2007-04-03 2008-10-23 Sumitomo Bakelite Co Ltd 多層配線板及び半導体パッケージ

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014111361A (ja) * 2012-11-12 2014-06-19 Panasonic Corp 金属張積層板、プリント配線板、多層プリント配線板
EP3051583A4 (en) * 2013-09-27 2017-05-17 Renesas Electronics Corporation Semiconductor device and manufacturing method for same
US9837369B2 (en) 2013-09-27 2017-12-05 Renesas Electronics Corporation Semiconductor device and manufacturing method thereof
JP5831667B2 (ja) * 2013-11-29 2015-12-09 日東紡績株式会社 ガラス繊維織物−樹脂組成物積層体
US10029443B2 (en) 2013-11-29 2018-07-24 Nitto Boseki Co., Ltd. Glass fiber fabric-resin composition laminate

Also Published As

Publication number Publication date
KR20140023980A (ko) 2014-02-27
TWI583560B (zh) 2017-05-21
JP2012231140A (ja) 2012-11-22
TW201247415A (en) 2012-12-01

Similar Documents

Publication Publication Date Title
WO2012140908A1 (ja) 積層板、回路基板、および半導体パッケージ
JP6083127B2 (ja) 積層板、ビルドアップ層付き積層板、回路基板、半導体パッケージおよび積層板の製造方法
JP6410405B2 (ja) 樹脂基板、プリプレグ、プリント配線基板、半導体装置
KR101524898B1 (ko) 에폭시 수지 조성물, 수지 시트, 프리프레그, 다층 프린트 배선판 및 반도체 장치
JP6480650B2 (ja) 金属張積層板、プリント配線基板、半導体パッケージ、半導体装置および金属張積層板の製造方法
JP5533657B2 (ja) 積層板、回路板および半導体装置
JP6281184B2 (ja) 金属張積層板、プリント配線基板、半導体パッケージ、および半導体装置
JP2013180406A (ja) プリプレグ、基板、半導体装置、プリプレグの製造方法、基板の製造方法、および半導体装置の製造方法
JP6008104B2 (ja) プリプレグおよび金属張積層板
JP6540452B2 (ja) 回路基板用樹脂組成物、プリプレグ、金属張積層板、回路基板、および半導体パッケージ
WO2014192421A1 (ja) プリント配線板および半導体装置
JP6217069B2 (ja) 樹脂基板、金属張積層板、プリント配線基板、および半導体装置
WO2013021587A1 (ja) プリプレグ、積層板、プリント配線基板、半導体パッケージおよび半導体装置
JP2013006328A (ja) 積層板、回路基板、および半導体パッケージ
JP2017218531A (ja) 樹脂膜、キャリア付樹脂膜、プリント配線基板および半導体装置
JP5935314B2 (ja) 半導体装置の製造方法
JP6972522B2 (ja) プリプレグ、金属張積層板、プリント配線基板および半導体パッケージ
WO2013172008A1 (ja) 半導体装置および半導体装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12770744

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137030029

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12770744

Country of ref document: EP

Kind code of ref document: A1