WO2013021587A1 - プリプレグ、積層板、プリント配線基板、半導体パッケージおよび半導体装置 - Google Patents

プリプレグ、積層板、プリント配線基板、半導体パッケージおよび半導体装置 Download PDF

Info

Publication number
WO2013021587A1
WO2013021587A1 PCT/JP2012/004896 JP2012004896W WO2013021587A1 WO 2013021587 A1 WO2013021587 A1 WO 2013021587A1 JP 2012004896 W JP2012004896 W JP 2012004896W WO 2013021587 A1 WO2013021587 A1 WO 2013021587A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
organic fiber
prepreg
less
base material
Prior art date
Application number
PCT/JP2012/004896
Other languages
English (en)
French (fr)
Inventor
康二 佐藤
裕樹 篠▲崎▼
政貴 新井
Original Assignee
住友ベークライト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ベークライト株式会社 filed Critical 住友ベークライト株式会社
Publication of WO2013021587A1 publication Critical patent/WO2013021587A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/024Woven fabric
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/14Layered products comprising a layer of metal next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/51Elastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • B32B2307/734Dimensional stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/14Semiconductor wafers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Definitions

  • the present invention relates to a prepreg, a laminate, a printed wiring board, a semiconductor package, and a semiconductor device.
  • the thickness of the semiconductor element and the sealing material that have conventionally been responsible for most of the rigidity of the semiconductor device becomes extremely thin, and the warp of the semiconductor device is likely to occur.
  • the ratio of the core substrate as a constituent member increases, the physical properties and behavior of the core substrate have a great influence on the warpage of the semiconductor device.
  • the maximum temperature in the reflow process that takes place when solder balls are mounted on printed circuit boards or when semiconductor packages are mounted on motherboards becomes very high. It is coming. Since the melting point of commonly used lead-free solder is about 210 degrees, the maximum temperature during the reflow process is a level exceeding 260 degrees. Therefore, the semiconductor packages above and below the POP may be greatly warped because the difference in thermal expansion between the semiconductor element and the printed wiring board on which the semiconductor element is mounted is very large.
  • Patent Document 1 Japanese Patent Laid-Open No. 2006-203142
  • a woven fabric made of organic fibers having a negative coefficient of thermal expansion is used as a prepreg base material, so that the heat of a multilayer printed wiring board for a semiconductor package can be obtained. It is described that the expansion coefficient can be made close to the thermal expansion coefficient of the silicon chip, and the connection reliability when the silicon chip is mounted can be improved.
  • the glass transition temperature of the laminated sheet obtained is more than the value expected from the used material.
  • the elastic modulus of the laminate may be lowered.
  • the resulting laminate has insufficient rigidity, and the printed wiring board may swell or the wiring layer may peel off from the board during heating in the reflow process. That is, the obtained laminated board was inferior in solder heat resistance.
  • the effect of suppressing warping during heating such as reflow was not fully satisfactory.
  • an object of the present invention is to provide a prepreg that can provide a laminated board for a thin printed wiring board that is excellent in solder heat resistance and that suppresses warping that occurs during heating such as reflow.
  • the present inventors diligently investigated the cause of the glass transition temperature of the laminate being lowered when a prepreg containing an organic fiber substrate was used. As a result, by using a prepreg containing an organic fiber substrate that satisfies the following conditions, it is possible to suppress a decrease in the glass transition temperature of the laminate, and as a result, it is found that a laminate having a high elastic modulus can be obtained, The present invention has been completed.
  • the organic fiber base material is measured by a thermogravimetry device.
  • a prepreg having a value calculated by BA of 0.30% or less is provided.
  • the linear expansion coefficient of the laminate can be lowered while maintaining a high elastic modulus. Therefore, it is possible to suppress single-layer warpage of the laminated plate that occurs during heating such as reflow while improving the solder heat resistance of the laminated plate.
  • a laminate including the cured product of the prepreg.
  • a printed wiring board obtained by processing a circuit on the laminated board.
  • a semiconductor package in which a semiconductor element is mounted on the printed wiring board.
  • a semiconductor device including the semiconductor package is provided.
  • a prepreg capable of obtaining a laminated board for a thin printed wiring board that has excellent solder heat resistance and suppresses warping that occurs during heating such as reflow.
  • FIG. 1 is a cross-sectional view showing an example of the configuration of the prepreg 100 in the present embodiment.
  • the prepreg 100 includes an organic fiber base material 101 and a resin layer 103, and is obtained by impregnating the organic fiber base material 101 with a resin composition containing a thermosetting resin.
  • the organic fiber base material 101 has a linear expansion coefficient in the range of 50 ° C. or higher and 150 ° C. or lower of 0 ppm / ° C. or lower.
  • the linear expansion coefficient of this embodiment represents the average value of the linear expansion coefficient in the region of 50 ° C. or higher and 150 ° C. or lower.
  • the organic fiber base material 101 includes (A) a pre-drying step of measuring the weight reduction rate A by holding the organic fiber base material 101 at 110 ° C. for 1 hour, and (B) an organic fiber base.
  • the value calculated by BA is 0.30% or less And preferably specified to be 0.25% or less, and more preferably 0.20% or less.
  • the glass transition temperature of the laminate obtained by using a prepreg containing a conventional organic fiber substrate is lower than the value expected from the used material is not necessarily clear, but the present inventors are as follows. I guessed. A small amount of low molecular weight components such as solvents, monomers, oligomers and additives used in the production process remain in the organic fiber substrate. These remaining components enter the gap of the thermosetting resin in the manufacturing process of the laminate, and change the structure of the thermosetting resin, thereby changing the glass transition temperature of the thermosetting resin that is a constituent material of the laminate. It will decrease. As a result, it was speculated that the glass transition temperature of the laminate would be lower than expected from the material used.
  • the value calculated by BA is not more than a specific amount when the measurement step of measuring the weight loss rate B by sequentially raising the temperature from 25 ° C. to 300 ° C. at 10 ° C./min with a measuring device. It has been found that by using the organic fiber base material 101, a laminate having a high glass transition temperature can be obtained.
  • the organic fiber base material 101 specified in the present embodiment has few low molecular weight components as described above, when the organic fiber base material 101 of the present embodiment is used, the structural change as described above in the manufacturing process of the laminate is performed. It is thought that it can be suppressed. Therefore, it is considered that the prepreg including the organic fiber base material 101 in this embodiment can maintain a high glass transition temperature.
  • the prepreg 100 in this embodiment is a sheet-like material including the organic fiber base material 101 and the resin layer 103 obtained by impregnating the organic fiber base material 101 with one or more resin compositions and then semi-curing the organic fiber base material 101. is there.
  • a sheet-like material having such a structure is preferable because it is excellent in various properties such as dielectric properties, mechanical and electrical connection reliability under high temperature and high humidity, and suitable for the production of a laminate for a printed wiring board.
  • the organic fiber base material 101 includes (A) a pre-drying step of measuring the weight reduction rate A by holding the organic fiber base material 101 at 110 ° C. for 1 hour, and (B) organic When the fiber substrate 101 is heated from 25 ° C. to 300 ° C. at a rate of 10 ° C./min and the weight reduction rate B is sequentially measured, the value calculated by BA is 0.30. % Or less, preferably 0.25% or less, and more preferably 0.20% or less.
  • performing said order sequentially means performing (B) a measurement process in the state as it is, without exposing the organic fiber base material 101 to air
  • the weight reduction rates A and B are the reduction rates from the organic fiber base material 101 and are calculated by the following formulas (1) and (2).
  • (A) the weight of the organic fiber substrate 101 before the preliminary drying step is W
  • (A) the weight reduction amount in the preliminary drying step is a
  • (B) the weight reduction amount in the measurement step is b.
  • a [%] 100 ⁇ a / W
  • B [%] 100 ⁇ b / (W ⁇ a) (2)
  • the water adhering to the organic fiber substrate 101 can be removed to about 3000 to 4000 ppm. Therefore, (A) by removing the water adhering to the organic fiber substrate 101 by the preliminary drying step and then performing the (B) measurement step, the above-mentioned adhering to the organic fiber substrate 101 while eliminating the influence of moisture The amount of such low molecular weight components can be accurately measured.
  • the lower limit value is not particularly limited, but can be, for example, 0.01% or more.
  • the organic fiber base material 101 satisfying such conditions it is possible to suppress a decrease in the glass transition temperature of the obtained laminated plate. Therefore, it is possible to reduce the linear expansion coefficient of the laminated plate while keeping the elastic modulus high, and as a result, it is possible to suppress the single warp of the laminated plate while improving the solder heat resistance of the laminated plate.
  • the organic fiber base material 101 in the present embodiment has a linear expansion coefficient in the range of 50 ° C. or more and 150 ° C. or less of 0 ppm / ° C. or less, preferably ⁇ 3 ppm / ° C. or less, more preferably ⁇ 5 ppm / ° C. It is as follows. By using the organic fiber base material 101 having such a linear expansion coefficient, it is possible to further suppress the warpage of the laminated board of the present embodiment.
  • the organic fiber constituting the organic fiber substrate 101 used in the present embodiment preferably has a Young's modulus of 70 GPa or more, more preferably 100 GPa or more, and further preferably 120 GPa or more.
  • a Young's modulus of 70 GPa or more, more preferably 100 GPa or more, and further preferably 120 GPa or more.
  • the organic fiber constituting the organic fiber substrate 101 used in the present embodiment has a dielectric constant at 1 GHz of preferably 2.5 or more and 4.5 or less, more preferably 2.5 or more and 3.5 or less. Especially preferably, it is 2.5 or more and 3.0 or less. Since the dielectric constant of the laminate can be further reduced by using the organic fiber substrate 101 made of organic fibers having such a dielectric constant, the laminate is preferably used for a semiconductor device using a high-speed signal. Can do.
  • Examples of the organic fibers constituting the organic fiber substrate in the present embodiment include polyamide resins such as polyparaphenylene benzbisoxazole resins, polyamide resins, aromatic polyamide resins, wholly aromatic polyamide (aramid) resins, and polyester resins. And fibers composed of polyester resins such as aromatic polyester resins and wholly aromatic polyester resins, polyimide resins such as polyimide benzoxazole resins and polyimide resins, and resins such as fluororesins. As the resin constituting the organic fiber, one of these may be used alone, or two or more may be used in combination.
  • organic fibers composed of at least one heat-resistant resin selected from polyparaphenylene benzbisoxazole resin, aromatic polyester resin, wholly aromatic polyamide resin, and polyimide benzoxazole resin are particularly preferable.
  • the linear expansion coefficient and dielectric constant of the prepreg 100 can be further reduced, and the Young's modulus can be further increased.
  • the form of the organic fiber substrate 101 in the present embodiment is, for example, a woven fabric substrate, and specifically includes an organic fiber cloth, an organic fiber nonwoven fabric, and the like configured using the organic fiber.
  • organic fiber cloth is particularly preferable in terms of strength and thermal expansion coefficient. Further, by using the organic fiber cloth, the linear expansion coefficient of the prepreg 100 can be further reduced and the Young's modulus can be further increased.
  • the thickness of the organic fiber substrate 101 is not particularly limited, but is preferably 10 ⁇ m or more and 150 ⁇ m or less, more preferably 20 ⁇ m or more and 120 ⁇ m or less, and particularly preferably 30 ⁇ m or more and 100 ⁇ m or less.
  • the organic fiber base material 101 having a value calculated by BA of 0.3% or less is obtained by, for example, annealing the organic fiber base material 101.
  • the annealing temperature is not particularly limited, but is preferably 120 ° C. or higher and 350 ° C. or lower, and more preferably 150 ° C. or higher and 300 ° C. or lower. When the annealing temperature is in the above range, it is possible to further suppress the decrease in the glass transition point of the obtained laminate.
  • the annealing time is not particularly limited, but is preferably 30 minutes to 6 hours, more preferably 45 minutes to 4 hours. When the annealing time is in the above range, it is possible to further suppress the decrease in the glass transition point of the obtained laminate.
  • the annealing treatment is preferably performed in an inert atmosphere such as nitrogen or argon. Oxidation of the organic fiber base material 101 can be suppressed by carrying out in an inert atmosphere.
  • the method for the annealing treatment is not particularly limited, and can be carried out using, for example, a hot air drying device, an infrared heating device, a heating roll device, a flat platen hot platen press device, or the like.
  • the resin composition impregnated in the organic fiber base material 101 is not particularly limited, but preferably has a low linear expansion coefficient and a high elastic modulus and is excellent in thermal shock reliability.
  • the resin composition includes a thermosetting resin.
  • thermosetting resin Although it does not specifically limit as a thermosetting resin, It is preferable that it has a low linear expansion coefficient and a high elasticity modulus, and is excellent in the reliability of thermal shock property.
  • the glass transition temperature at a frequency of 1 Hz as measured by dynamic viscoelasticity of the thermosetting resin is preferably 160 ° C. or higher, and more preferably 200 ° C. or higher. By using the resin composition having such a glass transition temperature, it is possible to obtain an effect that the lead-free solder reflow heat resistance is further improved.
  • the upper limit of the glass transition temperature in frequency 1Hz by the dynamic viscoelasticity measurement of a resin composition It can be 350 degrees C or less.
  • thermosetting resins for example, novolac type phenol resins such as phenol novolak resin, cresol novolak resin, bisphenol A novolak resin, unmodified resole phenol resin, oil-modified resole modified with tung oil, linseed oil, walnut oil, etc.
  • Phenol resin such as phenolic resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bisphenol E type epoxy resin, bisphenol M type epoxy resin, bisphenol P type epoxy resin, bisphenol Bisphenol type epoxy resin such as Z type epoxy resin, novolak type epoxy resin such as phenol novolac type epoxy resin, cresol novolac type epoxy resin, biffe Type epoxy resin, biphenyl aralkyl type epoxy resin, aryl alkylene type epoxy resin, naphthalene type epoxy resin, anthracene type epoxy resin, phenoxy type epoxy resin, dicyclopentadiene type epoxy resin, norbornene type epoxy resin, adamantane type epoxy resin, fluorene Type epoxy resin, epoxy resin, urea (urea) resin, resin having triazine ring such as melamine resin, unsaturated polyester resin, bismaleimide resin, polyurethane resin, diallyl phthalate resin, silicone resin, resin having benzoxazine ring, Examples
  • cyanate resins are particularly preferable.
  • cyanate resin including prepolymers of cyanate resins
  • the linear expansion coefficient of a laminated board can be made small.
  • electrical characteristics low dielectric constant, low dielectric loss tangent, mechanical strength, and the like of the laminate can be improved.
  • cyanate resin for example, those obtained by reacting a cyanogen halide compound with phenols, or those obtained by prepolymerization by a method such as heating as required can be used.
  • bisphenol cyanate resins such as novolac type cyanate resin, bisphenol A type cyanate resin, bisphenol E type cyanate resin, tetramethylbisphenol F type cyanate resin, naphthol aralkyl type polyvalent naphthols, and cyanogen halides Cyanate resin, dicyclopentadiene-type cyanate resin, biphenylalkyl-type cyanate resin, and the like obtained by the above reaction.
  • novolac type cyanate resin is preferable.
  • the novolak cyanate resin forms a triazine ring after the curing reaction. Furthermore, it is considered that novolak-type cyanate resin has a high benzene ring ratio due to its structure and is easily carbonized. Further, even when the thickness of the laminate is 0.6 mm or less, the laminate including the resin layer 103 produced by curing the novolac cyanate resin has excellent rigidity. In particular, since such a laminate is excellent in rigidity during heating, it is also excellent in reliability when mounting a semiconductor element.
  • a novolak-type cyanate resin what is shown by the following general formula (I) can be used, for example.
  • the average repeating unit n of the novolak cyanate resin represented by the general formula (I) is an arbitrary integer.
  • the lower limit of n is not particularly limited, but is preferably 1 or more, and particularly preferably 2 or more. When n is not less than the above lower limit, the heat resistance of the novolak-type cyanate resin is improved, and it is possible to suppress desorption and volatilization of the low monomer during heating.
  • the upper limit of n is not particularly limited, but is preferably 10 or less, and more preferably 7 or less. It can suppress that melt viscosity becomes it high that n is below the said upper limit, and can suppress that the moldability of the resin layer 103 falls.
  • a naphthol type cyanate resin represented by the following general formula (II) is also preferably used.
  • the naphthol type cyanate resin represented by the following general formula (II) includes, for example, naphthols such as ⁇ -naphthol or ⁇ -naphthol and p-xylylene glycol, ⁇ , ⁇ '-dimethoxy-p-xylene, 1,4- It is obtained by condensing naphthol aralkyl resin obtained by reaction with di (2-hydroxy-2-propyl) benzene and cyanic acid.
  • N in the general formula (II) is more preferably 10 or less.
  • n 10 or less
  • the resin viscosity does not increase, the impregnation property to the fiber base material is good, and there is a tendency not to deteriorate the performance as a laminate.
  • intramolecular polymerization hardly occurs at the time of synthesis, the liquid separation property at the time of washing with water tends to be improved, and the decrease in yield tends to be prevented.
  • R represents a hydrogen atom or a methyl group, and n represents an integer of 1 or more.
  • a dicyclopentadiene type cyanate resin represented by the following general formula (III) is also preferably used.
  • n in the following general formula (III) is preferably 0 or more and 8 or less.
  • n is 8 or less, the resin viscosity does not increase, the impregnation property of the resin composition into the fiber base material is good, and the deterioration of the performance as a laminate can be prevented.
  • the low hygroscopic property and chemical resistance of a laminated board can be improved by using dicyclopentadiene type cyanate resin.
  • N represents an integer of 0 or more and 8 or less.
  • Mw500 or more is preferable and Mw600 or more is more preferable.
  • Mw600 or more is more preferable.
  • the upper limit of Mw is not particularly limited, but is preferably Mw 4,500 or less, and more preferably Mw 3,000 or less.
  • Mw is not more than the above upper limit value, it is possible to suppress the reaction from being accelerated, and in the case of a printed wiring board, it is possible to suppress the occurrence of molding defects and the decrease in interlayer peel strength.
  • Mw such as cyanate resin can be measured by, for example, GPC (gel permeation chromatography, standard substance: converted to polystyrene).
  • one kind of cyanate resin may be used alone, or two or more kinds having different Mw may be used in combination, and one kind or two kinds or more and prepolymers thereof. And may be used in combination.
  • the content of the thermosetting resin contained in the resin composition may be appropriately adjusted according to the purpose, and is not particularly limited, but is preferably 5% by mass or more and 90% by mass or less based on the entire resin composition. 10 mass% or more and 80 mass% or less are more preferable, and 20 mass% or more and 50 mass% or less are especially preferable.
  • the content of the thermosetting resin is not less than the above lower limit, the handling property of the resin composition is improved, and the resin layer 103 can be easily formed.
  • the content of the thermosetting resin is not more than the above upper limit value, the strength and flame retardancy of the resin layer 103 are improved, the linear expansion coefficient of the resin layer 103 is lowered, and the effect of reducing the warpage of the laminate is improved. Sometimes.
  • an epoxy resin substantially free of halogen atoms
  • the epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol E type epoxy resin, bisphenol S type epoxy resin, bisphenol M type epoxy resin, bisphenol P type epoxy resin, bisphenol Z type epoxy resin and the like.
  • Type epoxy resin phenol novolac type epoxy resin, novolac type epoxy resin such as cresol novolac type epoxy resin, arylphenyl type epoxy resin such as biphenyl type epoxy resin, xylylene type epoxy resin, biphenyl aralkyl type epoxy resin, naphthol type epoxy resin, Naphthalenediol type epoxy resin, bifunctional or tetrafunctional epoxy type naphthalene resin, naphthylene ether type epoxy resin, binaphthyl type epoxy resin Naphthalene-type epoxy resins such as xylene resin, naphthalene-aralkyl-type epoxy resin, anthracene-type epoxy resin, phenoxy-type epoxy resin, dicyclopentadiene-type epoxy resin, norbornene-type epoxy resin, adamantane-type epoxy resin, fluorene-type epoxy resin, etc. .
  • epoxy resin one of these may be used alone, or two or more having different weight average molecular weights may be used in combination, and one or two or more of these prepolymers and May be used in combination.
  • aryl alkylene type epoxy resins are particularly preferable. Thereby, moisture-absorbing solder heat resistance and flame retardance can be further improved.
  • the arylalkylene type epoxy resin refers to an epoxy resin having one or more arylalkylene groups in a repeating unit.
  • a xylylene type epoxy resin, a biphenyl dimethylene type epoxy resin, etc. are mentioned.
  • a biphenyl dimethylene type epoxy resin is preferable.
  • the biphenyl dimethylene type epoxy resin can be represented by, for example, the following general formula (IV).
  • the average repeating unit n of the biphenyl dimethylene type epoxy resin represented by the general formula (IV) is an arbitrary integer.
  • the lower limit of n is not particularly limited, but is preferably 1 or more, and particularly preferably 2 or more. When n is not less than the above lower limit, crystallization of the biphenyldimethylene type epoxy resin can be suppressed and the solubility in a general-purpose solvent is improved, so that handling becomes easy.
  • the upper limit of n is not particularly limited, but is preferably 10 or less, and more preferably 5 or less. When n is less than or equal to the above upper limit, the fluidity of the resin is improved and the occurrence of molding defects and the like can be suppressed.
  • a novolac type epoxy resin having a condensed ring aromatic hydrocarbon structure is preferable. Thereby, the heat resistance of a laminated board and low thermal expansibility can further be improved.
  • the novolak type epoxy resin having a condensed ring aromatic hydrocarbon structure is a novolak type epoxy resin having a naphthalene, anthracene, phenanthrene, tetracene, chrysene, pyrene, triphenylene, and tetraphen or other condensed ring aromatic hydrocarbon structure.
  • the novolac type epoxy resin having a condensed ring aromatic hydrocarbon structure is excellent in low thermal expansion because a plurality of aromatic rings can be regularly arranged. Moreover, since the glass transition temperature is also high, it is excellent in heat resistance.
  • the molecular weight of the repeating structure is large, it is superior in flame retardancy compared to conventional novolak type epoxies, and the weakness of cyanate resin can be improved by combining with cyanate resin. Therefore, by using in combination with cyanate resin, the glass transition temperature of the laminate is further increased, so that lead-free mounting reliability can be improved.
  • the novolak-type epoxy resin having a condensed ring aromatic hydrocarbon structure is obtained by epoxidizing a novolac-type phenol resin synthesized from a phenol compound, a formaldehyde compound, and a condensed ring aromatic hydrocarbon compound.
  • the phenol compound is not particularly limited, but examples thereof include cresols such as phenol, o-cresol, m-cresol, p-cresol, 2,3-xylenol, 2,4-xylenol, 2,5-xylenol, 2, 6-xylenol, 3,4-xylenol, xylenols such as 3,5-xylenol, trimethylphenols such as 2,3,5 trimethylphenol, ethyl such as o-ethylphenol, m-ethylphenol, p-ethylphenol Phenols, alkylphenols such as isopropylphenol, butylphenol, t-butylphenol, o-phenylphenol, m-phenylphenol, p-phenylphenol, catechol, 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphtha And naphthalenediols such as 2,7-dihydroxy
  • the aldehyde compound is not particularly limited, and examples thereof include formaldehyde, paraformaldehyde, trioxane, acetaldehyde, propionaldehyde, polyoxymethylene, chloral, hexamethylenetetramine, furfural, glyoxal, n-butyraldehyde, caproaldehyde, allylaldehyde, Examples include benzaldehyde, crotonaldehyde, acrolein, tetraoxymethylene, phenylacetaldehyde, o-tolualdehyde, salicylaldehyde, dihydroxybenzaldehyde, trihydroxybenzaldehyde, 4-hydroxy-3-methoxyaldehyde paraformaldehyde and the like.
  • the fused ring aromatic hydrocarbon compound is not particularly limited, but for example, naphthalene derivatives such as methoxynaphthalene and butoxynaphthalene, anthracene derivatives such as methoxyanthracene, phenanthrene derivatives such as methoxyphenanthrene, other tetracene derivatives, chrysene derivatives, pyrene derivatives, Derivatives include triphenylene and tetraphen derivatives.
  • the novolak-type epoxy resin having a condensed ring aromatic hydrocarbon structure is not particularly limited.
  • methoxynaphthalene-modified orthocresol novolak epoxy resin, butoxynaphthalene-modified meta (para) cresol novolak epoxy resin, methoxynaphthalene-modified novolak epoxy resin, etc. Is mentioned.
  • a novolac type epoxy resin having a condensed ring aromatic hydrocarbon structure represented by the following formula (V) is preferable.
  • Ar is a condensed ring aromatic hydrocarbon group.
  • R may be the same or different from each other, and may be a hydrogen atom, a hydrocarbon group having 1 to 10 carbon atoms, a halogen element, a phenyl group, A group selected from an aryl group such as a benzyl group and an organic group containing a glycidyl ether, n, p, and q are integers of 1 or more, and the values of p and q may be the same or different for each repeating unit. May be.
  • R in formula (V) is a structure represented by (Ar1) to (Ar4) in formula (VI).
  • R in formula (VI) may be the same or different from each other. It is often a group selected from a hydrogen atom, a hydrocarbon group having 1 to 10 carbon atoms, an aryl group such as a halogen element, a phenyl group and a benzyl group, and an organic group including glycidyl ether.
  • naphthalene type epoxy resins such as naphthol type epoxy resin, naphthalene diol type epoxy resin, bifunctional or tetrafunctional epoxy type naphthalene resin, naphthylene ether type epoxy resin and the like are preferable.
  • the heat resistance of a laminated board and low thermal expansibility can further be improved.
  • the naphthalene ring has a higher ⁇ - ⁇ stacking effect than the benzene ring, it is particularly excellent in low thermal expansion and low thermal shrinkage.
  • the polycyclic structure has a high rigidity effect and the glass transition temperature is particularly high, the heat shrinkage change before and after reflow is small.
  • the naphthol type epoxy resin for example, the following general formula (VII-1), as the naphthalenediol type epoxy resin, the following formula (VII-2), as the bifunctional or tetrafunctional epoxy type naphthalene resin, the following formula (VII-3) ) (VII-4) (VII-5) and naphthylene ether type epoxy resin can be represented by, for example, the following general formula (VII-6).
  • N represents a number of 1 to 6 on average.
  • R represents a glycidyl group or a hydrocarbon group having 1 to 10 carbon atoms.
  • R 1 represents a hydrogen atom or a methyl group.
  • R 2 each independently represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an aralkyl group, a naphthalene group, or a glycidyl ether group-containing naphthalene group.
  • O and m are each an integer of 0 to 2, and either o or m is 1 or more.
  • the lower limit of the content of the epoxy resin is not particularly limited, but is preferably 1% by mass or more and more preferably 2% by mass or more in the entire resin composition. When the content is not less than the above lower limit, the reactivity of the cyanate resin is improved, and the moisture resistance of the resulting product can be improved.
  • the upper limit of content of an epoxy resin is not specifically limited, 55 mass% or less is preferable and 40 mass% or less is more preferable. The heat resistance of a laminated board can be improved more as content is below the said upper limit.
  • the lower limit of the weight average molecular weight (Mw) of the epoxy resin is not particularly limited, but is preferably 500 or higher, more preferably 800 or higher. It can suppress that tackiness arises in the resin layer 103 as Mw is more than the said lower limit.
  • the upper limit of Mw is not particularly limited, but is preferably Mw 20,000 or less, and more preferably Mw 15,000 or less. When the Mw is not more than the above upper limit, the impregnation property of the resin composition into the fiber base material is improved during prepreg production, and a more uniform product can be obtained.
  • the Mw of the epoxy resin can be measured by GPC, for example.
  • Cyanate resins (especially novolac-type cyanate resins, naphthol-type cyanate resins, dicyclopentadiene-type cyanate resins) and epoxy resins (arylalkylene-type epoxy resins, especially biphenyldimethylene-type epoxy resins, condensed ring aromatic hydrocarbons)
  • epoxy resins arylalkylene-type epoxy resins, especially biphenyldimethylene-type epoxy resins, condensed ring aromatic hydrocarbons
  • a phenol resin examples include novolac type phenol resins, resol type phenol resins, aryl alkylene type phenol resins, and the like.
  • phenol resin one of these may be used alone, or two or more having different weight average molecular weights may be used in combination, and one or two or more of those prepolymers may be used. You may use together.
  • aryl alkylene type phenol resins are particularly preferable. Thereby, the moisture absorption solder heat resistance of a laminated board can further be improved.
  • aryl alkylene type phenol resin examples include xylylene type phenol resin and biphenyl dimethylene type phenol resin.
  • a biphenyl dimethylene type phenol resin can be shown by the following general formula (VIII), for example.
  • the repeating unit n of the biphenyldimethylene type phenol resin represented by the general formula (VIII) is an arbitrary integer.
  • the lower limit of n is not particularly limited, but is preferably 1 or more, and particularly preferably 2 or more.
  • the heat resistance of a laminated board can be improved more as n is more than the said lower limit.
  • the upper limit of the repeating unit n is not particularly limited, but is preferably 12 or less, particularly preferably 8 or less.
  • compatibility with other resin improves that n is below the said upper limit, and the workability
  • Cyanate resin (especially novolac-type cyanate resin, naphthol-type cyanate resin, dicyclopentadiene-type cyanate resin) and epoxy resin (arylalkylene-type epoxy resin, especially biphenyldimethylene-type epoxy resin, condensed ring aromatic hydrocarbon structure)
  • the crosslink density of the resin layer 103 can be controlled and the reactivity of the resin composition can be easily controlled by a combination of a novolac type epoxy resin or a naphthalene type epoxy resin) and an aryl alkylene type phenol resin.
  • the minimum of content of a phenol resin is not specifically limited, 1 mass% or more is preferable in the whole resin composition, and 5 mass% or more is more preferable.
  • the heat resistance of a laminated board can be improved as content of a phenol resin is more than the said lower limit.
  • especially the upper limit of content of a phenol resin is although it is not limited, 55 mass% or less is preferable in the whole resin composition, and 40 mass% or less is more preferable.
  • the content of the phenol resin is not more than the above upper limit, the low thermal expansion property of the laminate can be improved.
  • Mw400 or more are preferable and Mw500 or more are more preferable. It can suppress that tackiness arises in the resin layer 103 as Mw is more than the said lower limit.
  • Mw18,000 or less is preferable and Mw15,000 or less is more preferable.
  • Mw is not more than the above upper limit, the impregnation property of the resin composition into the fiber base material is improved during the production of the prepreg, and a more uniform product can be obtained.
  • the Mw of the phenol resin can be measured by GPC, for example.
  • cyanate resins especially novolac-type cyanate resins, naphthol-type cyanate resins, dicyclopentadiene-type cyanate resins
  • phenol resins arylalkylene-type phenol resins, especially biphenyldimethylene-type phenol resins
  • epoxy resins arylalkylene-type epoxy resins
  • the resin composition preferably contains an inorganic filler. Thereby, even if a laminated board is made thin, still more excellent mechanical strength can be provided. Furthermore, the low thermal expansion of the laminate can be further improved.
  • inorganic fillers examples include silicates such as talc, calcined clay, unfired clay, mica, and glass, oxides such as titanium oxide, alumina, boehmite, silica, and fused silica, calcium carbonate, magnesium carbonate, and hydrotalc.
  • silicates such as talc, calcined clay, unfired clay, mica, and glass
  • oxides such as titanium oxide, alumina, boehmite, silica, and fused silica, calcium carbonate, magnesium carbonate, and hydrotalc.
  • Carbonate such as site hydroxide such as aluminum hydroxide, magnesium hydroxide, calcium hydroxide, sulfate or sulfite such as barium sulfate, calcium sulfate, calcium sulfite, zinc borate, barium metaborate, aluminum borate And borate salts such as calcium borate and sodium borate, nitrides such as aluminum nitride, boron nitride, silicon nitride and carbon nitride, titanates such as strontium titanate and barium titanate.
  • hydroxide such as aluminum hydroxide, magnesium hydroxide, calcium hydroxide, sulfate or sulfite
  • barium sulfate calcium sulfate
  • calcium sulfite calcium sulfite
  • zinc borate barium metaborate
  • aluminum borate And borate salts such as calcium borate and sodium borate
  • nitrides such as aluminum nitride, boron nitrid
  • the inorganic filler one of these may be used alone, or two or more may be used in combination.
  • silica is preferable, and fused silica (particularly spherical fused silica) is more preferable in terms of excellent low thermal expansion.
  • the fused silica has a crushed shape and a spherical shape.
  • a usage method suitable for the purpose such as using spherical silica to lower the melt viscosity of the resin composition.
  • the lower limit of the average particle diameter of the inorganic filler is not particularly limited, but is preferably 0.01 ⁇ m or more, and more preferably 0.1 ⁇ m or more. It can suppress that the viscosity of a varnish becomes high as the particle size of an inorganic filler is more than the said lower limit, and can improve workability
  • the upper limit of the average particle diameter is not particularly limited, but is preferably 5.0 ⁇ m or less, and more preferably 2.0 ⁇ m or less. When the particle size of the filler is not more than the above upper limit value, phenomena such as sedimentation of the filler in the varnish can be suppressed, and a more uniform resin layer 103 can be obtained.
  • the L / S of the conductor circuit of the inner layer substrate is less than 20/20 ⁇ m, it is possible to suppress the influence on the insulation between the wirings.
  • the average particle size of the inorganic filler is measured, for example, by measuring the particle size distribution of the particles on a volume basis using a laser diffraction particle size distribution analyzer (manufactured by HORIBA, LA-500), and the median diameter (D50) is defined as the average particle size. To do.
  • the inorganic filler is not particularly limited, but an inorganic filler having a monodispersed average particle diameter may be used, or an inorganic filler having a polydispersed average particle diameter may be used. Further, monodispersed and / or polydispersed inorganic fillers having an average particle size may be used alone or in combination of two or more.
  • the resin material of the present embodiment preferably includes a nanosilica median diameter d 50 of less 100 nm (particularly spherical nanosilica) a volume-based particle size distribution by a laser diffraction scattering particle size distribution measuring method. Since the said nano silica can exist in the gap
  • the content of the inorganic filler is not particularly limited, but is preferably 20% by mass or more and 80% by mass or less, and more preferably 30% by mass or more and 75% by mass or less in the entire resin composition. When the content is within the above range, the laminate can be further reduced in thermal expansion and water absorption.
  • the resin composition used in the present embodiment can also contain a rubber component, for example, rubber particles can be used.
  • rubber particles include core-shell type rubber particles, crosslinked acrylonitrile butadiene rubber particles, crosslinked styrene butadiene rubber particles, acrylic rubber particles, and silicone particles.
  • the core-shell type rubber particles are rubber particles having a core layer and a shell layer.
  • a two-layer structure in which an outer shell layer is formed of a glassy polymer and an inner core layer is formed of a rubbery polymer or Examples include a three-layer structure in which the outer shell layer is made of a glassy polymer, the intermediate layer is made of a rubbery polymer, and the core layer is made of a glassy polymer.
  • the glassy polymer layer is made of, for example, a polymer of methyl methacrylate, and the rubbery polymer layer is made of, for example, a butyl acrylate polymer (butyl rubber).
  • core-shell type rubber particles include Staphyloid AC3832, AC3816N (trade names, manufactured by Ganz Kasei Co., Ltd.), and Metabrene KW-4426 (trade names, manufactured by Mitsubishi Rayon Co., Ltd.).
  • NBR crosslinked acrylonitrile butadiene rubber
  • XER-91 average particle size 0.5 ⁇ m, manufactured by JSR.
  • SBR crosslinked styrene butadiene rubber
  • acrylic rubber particles include methabrene W300A (average particle size 0.1 ⁇ m), W450A (average particle size 0.2 ⁇ m) (manufactured by Mitsubishi Rayon Co., Ltd.), and the like.
  • the silicone particles are not particularly limited as long as they are rubber elastic fine particles formed of organopolysiloxane.
  • core-shell structure particles coated with silicone mainly composed of a three-dimensional crosslinking type examples of silicone rubber fine particles.
  • commercially available products such as KMP-605, KMP-600, KMP-597, KMP-594 (manufactured by Shin-Etsu Chemical), Trefil E-500, Trefil E-600 (manufactured by Toray Dow Corning) Can be used.
  • the content of the rubber particles is not particularly limited, but is preferably 20% by mass or more and 80% by mass or less, and more preferably 30% by mass or more and 75% by mass or less based on the entire resin composition including the above inorganic fillers. . When the content is within the above range, the laminated board can be made to have even lower water absorption.
  • additives such as a coupling agent, a curing accelerator, a curing agent, a thermoplastic resin, and an organic filler can be appropriately blended in the resin composition as necessary.
  • the resin composition used in the present embodiment can be suitably used in a liquid form in which the above components are dissolved and / or dispersed with an organic solvent or the like.
  • the coupling agent By using the coupling agent, the wettability of the interface between the thermosetting resin and the inorganic filler is improved, and the resin composition can be uniformly fixed to the fiber substrate. Therefore, the use of the coupling agent can improve the heat resistance of the laminate, particularly the solder heat resistance after moisture absorption.
  • any of those usually used as a coupling agent can be used. Specifically, an epoxy silane coupling agent, a cationic silane coupling agent, an aminosilane coupling agent, a titanate coupling agent, and silicone. It is preferable to use one or more coupling agents selected from oil-type coupling agents. Thereby, the wettability of the interface of a thermosetting resin and an inorganic filler can be improved, As a result, the heat resistance of a laminated board can be improved further.
  • the lower limit of the content of the coupling agent is not particularly limited because it depends on the specific surface area of the inorganic filler, but is preferably 0.05 parts by mass or more, and 0.1 parts by mass or more with respect to 100 parts by mass of the inorganic filler. More preferred. If the content of the coupling agent is not less than the above lower limit value, the inorganic filler can be sufficiently covered, so that the wettability of the interface between the thermosetting resin and the inorganic filler can be further improved. As a result, the heat resistance of the laminate can be further improved.
  • the upper limit of the content of the coupling agent is not particularly limited, but is preferably 3 parts by mass or less, and more preferably 2 parts by mass or less. When the content of the coupling agent is not more than the above upper limit value, the coupling agent can be inhibited from affecting the reaction of the thermosetting resin, and a decrease in bending strength or the like of the resulting laminate can be suppressed. .
  • organic metal salts such as zinc naphthenate, cobalt naphthenate, tin octylate, cobalt octylate, bisacetylacetonate cobalt (II), trisacetylacetonate cobalt (III), triethylamine, tributylamine, diazabicyclo [2, Tertiary amines such as 2,2] octane, 2-phenyl-4-methylimidazole, 2-ethyl-4-ethylimidazole, 2-phenyl-4-ethylimidazole, 2-phenyl-4-methyl-5-hydroxy Imidazoles such as imidazole and 2-phenyl-4,5-dihydroxyimidazole, phenolic compounds such as phenol, bisphenol A and nonylphenol, organic acids such as acetic acid, benzoic acid, salicylic acid and paratoluenesulfate, phenolic compounds, phenol, bisphenol A and nonyl
  • the curing accelerator one kind including these derivatives may be used alone, or two or more kinds including these derivatives may be used in combination.
  • the onium salt compound is not particularly limited, and for example, an onium salt compound represented by the following general formula (IX) can be used.
  • R 1 , R 2 , R 3 and R 4 are each an organic group having a substituted or unsubstituted aromatic ring or heterocyclic ring, or a substituted or unsubstituted aliphatic group.
  • a ⁇ represents an anion of an n (n ⁇ 1) -valent proton donor having at least one proton that can be released outside the molecule, or Indicates a complex anion.
  • the lower limit of the content of the curing accelerator is not particularly limited, but is preferably 0.005% by mass or more, particularly preferably 0.008% by mass or more of the entire resin material.
  • stimulates hardening can fully be demonstrated as content is more than the said lower limit.
  • the upper limit of content of a hardening accelerator is not specifically limited, 5 mass% or less of the whole resin material is preferable, and 2 mass% or less is more preferable.
  • the preservability of a prepreg can be improved more as content is below the said upper limit.
  • phenoxy resin polyimide resin, polyamideimide resin, polyphenylene oxide resin, polyethersulfone resin, polyester resin, polyethylene resin, polystyrene resin and other thermoplastic resins, styrene-butadiene copolymer, styrene-isoprene copolymer
  • Polystyrene thermoplastic elastomers such as coalescence, polyolefin thermoplastic elastomers, polyamide elastomers, thermoplastic elastomers such as polyester elastomers, and diene elastomers such as polybutadiene, epoxy modified polybutadiene, acrylic modified polybutadiene, and methacrylic modified polybutadiene are used in combination. Also good.
  • phenoxy resin examples include a phenoxy resin having a bisphenol skeleton, a phenoxy resin having a naphthalene skeleton, a phenoxy resin having an anthracene skeleton, and a phenoxy resin having a biphenyl skeleton.
  • a phenoxy resin having a structure having a plurality of these skeletons can also be used.
  • a phenoxy resin having a biphenyl skeleton and a bisphenol S skeleton as the phenoxy resin.
  • the glass transition temperature of the phenoxy resin can be increased due to the rigidity of the biphenyl skeleton, and the adhesion between the phenoxy resin and the metal can be improved due to the presence of the bisphenol S skeleton.
  • the heat resistance of the laminated board can be improved, and the adhesion of the wiring layer to the laminated board can be improved when a printed wiring board is manufactured.
  • a phenoxy resin having a bisphenol A skeleton and a bisphenol F skeleton as the phenoxy resin.
  • a phenoxy resin having a bisphenolacetophenone structure represented by the following general formula (X).
  • R 1 may be the same or different from each other, and is a hydrogen atom, a hydrocarbon group having 1 to 10 carbon atoms or a group selected from halogen elements.
  • R 2 is a hydrogen atom, carbon It is a group selected from a hydrocarbon group having 1 to 10 carbon atoms or a halogen element,
  • R 3 is a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms, and m is an integer of 0 to 5.
  • the phenoxy resin containing a bisphenol acetophenone structure has a bulky structure, it has excellent solvent solubility and compatibility with the thermosetting resin component to be blended.
  • the resin layer 103 having a low roughness and a uniform rough surface can be formed, so that the fine wiring formability of the laminate can be further improved.
  • the phenoxy resin having a bisphenol acetophenone structure can be synthesized by a known method such as a method in which an epoxy resin and a phenol resin are polymerized with a catalyst.
  • the phenoxy resin having a bisphenol acetophenone structure may contain a structure other than the bisphenol acetophenone structure of the general formula (X), and the structure is not particularly limited, but bisphenol A type, bisphenol F type, bisphenol S type, biphenyl Type, phenol novolac type, cresol novolac type structure and the like. Among these, those containing a biphenyl type structure are preferable because the glass transition temperature of the laminate can be further improved.
  • the content of the bisphenol acetophenone structure of the general formula (X) in the phenoxy resin containing a bisphenol acetophenone structure is not particularly limited, but is preferably 5 mol% to 95 mol%, more preferably 10 mol% to 85 mol%. Or less, more preferably 15 mol% or more and 75 mol% or less.
  • the content is at least the above lower limit, the effect of improving the heat resistance of the laminate and the moisture resistance reliability of the printed wiring board can be sufficiently exhibited.
  • the solvent solubility of a phenoxy resin can be improved as content is below the said upper limit.
  • the weight average molecular weight (Mw) of the phenoxy resin is not particularly limited, but is preferably from 5,000 to 100,000, more preferably from 10,000 to 70,000, particularly preferably from 20,000 to 50,000. .
  • Mw is not more than the above upper limit, compatibility with other resins and solubility in a solvent can be improved.
  • it is at least the above lower limit the film-forming property is improved, and it is possible to suppress the occurrence of problems when used for the production of a printed wiring board.
  • the content of the phenoxy resin is not particularly limited, but is preferably 0.5% by mass or more and 40% by mass or less, and particularly preferably 1% by mass or more and 20% by mass or less of the resin material excluding the filler.
  • the content is equal to or higher than the lower limit, it is possible to suppress a decrease in mechanical strength of the resin layer 103 and a decrease in plating adhesion with a conductor circuit.
  • it is not more than the above upper limit, an increase in the coefficient of thermal expansion of the resin substrate 100 can be suppressed, and the heat resistance can be lowered.
  • the resin composition may contain additives other than the above components such as pigments, dyes, antifoaming agents, leveling agents, ultraviolet absorbers, foaming agents, antioxidants, flame retardants, and ion scavengers as necessary. It may be added.
  • pigments examples include kaolin, synthetic iron oxide red, cadmium yellow, nickel titanium yellow, strontium yellow, hydrous chromium oxide, chromium oxide, cobalt aluminate, synthetic ultramarine blue and other inorganic pigments, phthalocyanine polycyclic pigments, azo pigments, etc. Etc.
  • the dye examples include isoindolinone, isoindoline, quinophthalone, xanthene, diketopyrrolopyrrole, perylene, perinone, anthraquinone, indigoid, oxazine, quinacridone, benzimidazolone, violanthrone, phthalocyanine, and azomethine.
  • the prepreg 100 in the present embodiment is obtained by impregnating the organic fiber substrate 101 in the present embodiment described above with one or more of the above resin compositions, and then semi-curing.
  • a sheet-like material having such a structure is preferable because it is excellent in various properties such as dielectric properties, mechanical and electrical connection reliability under high temperature and high humidity, and suitable for the production of a laminate for a printed wiring board.
  • the prepreg 100 in the present embodiment can be manufactured, for example, by the following steps.
  • Step of preparing an organic fiber substrate 101 having a linear expansion coefficient of 0 ppm / ° C. or less in the range of 50 ° C. or more and 150 ° C. or less (2)
  • BA is 0.30% or less
  • a and B are the above-described weight reduction rates A and It can be calculated in the same procedure as B.
  • the method for adjusting BA to 0.30% or less for the organic fiber base material 101 is not particularly limited, and examples thereof include a method of annealing the organic fiber base material 101 described above.
  • the method for impregnating the organic fiber base material 101 with the resin composition used in the present embodiment is not particularly limited.
  • the resin composition is dissolved in a solvent to prepare a resin varnish, and the organic fiber base material 101 is made of resin.
  • Method of dipping in varnish, method of applying resin varnish to organic fiber substrate 101 with various coaters, method of spraying resin varnish onto organic fiber substrate 101 by spraying, laminating resin layer with supporting substrate on organic fiber substrate 101 The method of doing is mentioned.
  • the thickness of the organic fiber substrate 101 is 0.15 mm or less
  • a method of laminating a resin layer with a supporting substrate on the organic fiber substrate 101 is preferable.
  • the impregnation amount of the resin composition with respect to the organic fiber base material 101 can be adjusted freely, and the moldability of the prepreg 100 can further be improved.
  • the laminate in the present embodiment includes a cured body of prepreg obtained by curing the prepreg 100 described above.
  • the glass transition temperature at a frequency of 1 Hz by dynamic viscoelasticity measurement of the laminate is preferably 180 ° C. or higher. Yes, more preferably 200 ° C. or higher, further preferably 230 ° C. or higher, particularly preferably 250 ° C. or higher. About an upper limit, since it is so preferable that it is high, it does not specifically limit, For example, it can be 350 degrees C or less.
  • the laminate in the present embodiment increases the rigidity of the laminate and can further reduce the warp of the laminate during mounting.
  • the storage elastic modulus E ′ by dynamic viscoelasticity measurement at 250 ° C. of the laminate is preferably 5 GPa or more. More preferably, it is 10 GPa or more, and particularly preferably 15 GPa or more. About an upper limit, since it is so preferable that it is high, it does not specifically limit, For example, it can be 50 GPa or less.
  • the laminate in the present embodiment increases the rigidity of the laminate and can further reduce the warp of the laminate during mounting.
  • the thickness of the laminated plate in the present embodiment is preferably 0.01 mm or more and 0.6 mm or less. More preferably, it is 0.02 mm or more and 0.4 mm or less, and particularly preferably 0.04 mm or more and 0.3 mm or less. When the thickness of the laminate is within the above range, the balance between mechanical strength and productivity is particularly excellent, and a laminate suitable for a thin printed wiring board can be obtained.
  • the linear expansion coefficient in the range of 50 ° C. or higher and 150 ° C. or lower in the plane direction of the laminate in the present embodiment is preferably ⁇ 10 ppm / ° C. or higher and 5 ppm / ° C. or lower, more preferably ⁇ 8 ppm / ° C. or higher and 4 ppm / ° C. or lower. Particularly preferred is -5 ppm / ° C. or more and 3 ppm / ° C. or less.
  • the linear expansion coefficient of the laminate is within the above range, it is possible to more effectively obtain warpage suppression and temperature cycle reliability improvement of the printed wiring board on which the wiring pattern is formed and the semiconductor package 200 on which the semiconductor element is mounted. Further, the temperature cycle reliability with the mother board when the semiconductor package 200 is secondarily mounted can be more effectively obtained.
  • the laminate in the present embodiment is not particularly limited, and this includes a prepreg containing an inorganic fiber substrate, a prepreg 100 including the organic fiber substrate 101 described above, and a prepreg containing an inorganic fiber substrate. It is good also as a laminated board obtained by laminating in order.
  • the inorganic fiber base By disposing the inorganic fiber base on the outside of the laminate, the bending elastic modulus of the organic fiber base 101 is reinforced, the rigidity of the laminate is further increased, and the single warp of the laminate can be further reduced.
  • the inorganic fiber base material examples include, but are not limited to, glass fiber base materials such as glass cloth and glass nonwoven fabric, carbon fiber base materials such as carbon cloth and carbon fiber fabric, and artificial mineral base materials such as rock wool.
  • glass fiber base materials such as glass cloth and glass nonwoven fabric
  • carbon fiber base materials such as carbon cloth and carbon fiber fabric
  • artificial mineral base materials such as rock wool.
  • a glass fiber substrate is preferable in terms of strength and water absorption.
  • the thermal expansion coefficient of a laminated board can be made still smaller by using a glass fiber base material.
  • the basis weight (weight of the fiber base material per 1 m 2 ) is preferably 4 g / m 2 or more and 150 g / m 2 or less, more preferably 8 g / m 2 or more and 110 g. / M 2 or less, more preferably 12 g / m 2 or more and 60 g / m 2 or less.
  • the basis weight is not more than the above upper limit value, the impregnation property of the resin composition in the glass fiber base material is improved, and the occurrence of strand voids and a decrease in insulation reliability can be suppressed.
  • strength of a glass fiber base material or a prepreg can be improved as basic weight is more than the said lower limit. As a result, handling properties can be improved, preparation of a prepreg can be facilitated, and reduction in the effect of reducing the warpage of the laminate can be suppressed.
  • a glass fiber base material having a linear expansion coefficient of 6 ppm / ° C. or lower is preferable, and a glass fiber base material of 3.5 ppm / ° C. or lower is more preferable.
  • the glass fiber base material having such a linear expansion coefficient it is possible to further suppress the warpage of the laminated board of the present embodiment.
  • the glass fiber substrate used in the present embodiment has a Young's modulus of preferably 60 GPa or more and 100 GPa or less, more preferably 65 GPa or more and 92 GPa or less, and particularly preferably 86 GPa or more and 92 GPa or less.
  • the glass fiber substrate used in the present embodiment preferably has a dielectric constant at 1 MHz of 3.8 or more and 7.0 or less, more preferably 3.8 or more and 6.8 or less, and particularly preferably 3 .8 or more and 5.5 or less.
  • the dielectric constant of the laminated plate can be further reduced. Therefore, the laminated plate can be suitably used for a semiconductor package using a high-speed signal.
  • a glass fiber substrate having the above linear expansion coefficient Young's modulus and dielectric constant
  • a glass fiber containing at least one selected from the group consisting of T glass, S glass, E glass, NE glass, and quartz glass A substrate is preferably used.
  • the thickness of the glass fiber substrate is not particularly limited, but is preferably 5 ⁇ m or more and 100 ⁇ m or less, more preferably 10 ⁇ m or more and 60 ⁇ m or less, and further preferably 12 ⁇ m or more and 35 ⁇ m or less.
  • the thickness of the glass fiber substrate is not more than the above upper limit, the impregnation property of the resin material in the fiber substrate is improved, and the occurrence of strand voids and a decrease in insulation reliability can be suppressed.
  • strength of a glass fiber base material or a prepreg can be improved as the thickness of a glass fiber base material is more than the said lower limit. As a result, handling properties can be improved, preparation of a prepreg can be facilitated, and reduction in the effect of reducing the warpage of the laminate can be suppressed.
  • the number of glass fiber base materials used is not limited to one, and a plurality of thin fiber base materials can be used.
  • the total thickness only needs to satisfy the above range.
  • the constituent material and the manufacturing method of the prepreg containing the inorganic fiber base material As the constituent material and the manufacturing method of the prepreg containing the inorganic fiber base material, the constituent material and the manufacturing method according to the prepreg 100 containing the organic fiber base material 101 described above can be adopted.
  • the manufacturing method of the laminated board using the prepreg 100 obtained above is demonstrated.
  • the manufacturing method of a laminated board using the prepreg 100 is not specifically limited, For example, it is as follows. After peeling the supporting base material from the obtained prepreg, metal foils are stacked on the upper and lower surfaces or one side of the outer side of the prepreg, and these are joined under a high vacuum condition using a laminator device or a becquerel device, or directly outside the prepreg. Stack metal foil on top and bottom or one side. Next, a laminate can be obtained by heating and pressurizing a prepreg with a metal foil on a vacuum press or heating with a dryer.
  • the thickness of the metal foil is, for example, not less than 0.5 ⁇ m and not more than 18 ⁇ m. Preferably they are 1 micrometer or more and 12 micrometers or less. When the thickness of the metal foil is within the above range, a fine pattern can be formed, and the laminate can be made thinner.
  • the metal constituting the metal foil examples include copper and copper alloys, aluminum and aluminum alloys, silver and silver alloys, gold and gold alloys, zinc and zinc alloys, nickel and nickel alloys, tin and tin. Alloy, iron and iron alloy, Kovar (trade name), 42 alloy, Fe-Ni alloy such as Invar or Super Invar, W or Mo, and the like. Also, an electrolytic copper foil with a carrier can be used.
  • the method for the heat treatment is not particularly limited, and can be carried out using, for example, a hot air drying device, an infrared heating device, a heating roll device, a flat platen hot platen pressing device, or the like.
  • a hot-air drying device or an infrared heating device is used, the bonding can be carried out without substantially applying pressure to the joined ones.
  • a heating roll apparatus or a flat hot platen press apparatus it can implement by making predetermined
  • the temperature at the time of heat treatment is not particularly limited, but it is preferably a temperature range in which the resin used is melted and the resin curing reaction does not proceed rapidly.
  • the temperature at which the resin melts is preferably 120 ° C. or higher, more preferably 150 ° C. or higher.
  • the temperature at which the resin curing reaction does not proceed rapidly is preferably 250 ° C. or lower, more preferably 230 ° C. or lower.
  • the time for the heat treatment varies depending on the type of resin used and the like, it is not particularly limited.
  • the heat treatment time may be 30 minutes or more and 180 minutes or less.
  • the pressure to pressurize is not particularly limited, but is preferably 0.2 MPa or more and 5 MPa or less, and more preferably 2 MPa or more and 4 MPa or less.
  • a film may be laminated on at least one surface of the laminate in the present embodiment.
  • the film include polyethylene, polypropylene, polyethylene terephthalate, polyethylene naphthalate, polyimide, and fluorine resin.
  • the laminated plate 213 can be used in a semiconductor package 200 as shown in FIG.
  • a manufacturing method of the printed wiring board and the semiconductor package 200 for example, there are the following methods.
  • a through hole 215 for interlayer connection is formed in the laminate 213, and a wiring layer is manufactured by a subtractive method, a semi-additive method, or the like.
  • build-up layers (not shown in FIG. 2) are stacked as necessary, and the steps of interlayer connection and circuit formation by the additive method are repeated.
  • a printed wiring board can be obtained by laminating
  • some or all of the buildup layers and the solder resist layer 201 may or may not include a fiber base material.
  • solder resist layer 201 After a photoresist is applied to the entire surface of the solder resist layer 201, a part of the photoresist is removed to expose a part of the solder resist layer 201. Note that a resist having a photoresist function may be used for the solder resist layer 201. In this case, the step of applying a photoresist can be omitted. Next, the exposed solder resist layer 201 is removed to form an opening 209.
  • the semiconductor element 203 is fixed to the connection terminal 205 which is a part of the wiring pattern via the solder bump 207. Thereafter, the semiconductor package 203 as shown in FIG. 2 can be obtained by sealing the semiconductor element 203, the solder bump 207, and the like with the sealing material 211.
  • the semiconductor package 200 can be used in a semiconductor device 300 as shown in FIG.
  • a method for manufacturing the semiconductor device 300 is not particularly limited, and examples thereof include the following methods.
  • the solder bump 301 is formed by supplying a solder paste to the opening 209 of the solder resist layer 201 of the obtained semiconductor package 200 and performing a reflow process.
  • the solder bump 301 can also be formed by attaching a solder ball prepared in advance to the opening 209.
  • the semiconductor package 200 is mounted on the mounting substrate 303 by joining the connection terminals 305 of the mounting substrate 303 and the solder bumps 301, and the semiconductor device 300 shown in FIG. 3 is obtained.
  • the prepreg 100 for the laminated board 213 that has excellent solder heat resistance and suppresses warpage that occurs during heating such as reflow.
  • the laminate 213 using the prepreg 100 is thin, the occurrence of warpage can be effectively suppressed.
  • the printed wiring board using the laminated board 213 is excellent in mechanical characteristics, such as solder heat resistance, curvature, and dimensional stability, and a moldability. Therefore, the laminated board 213 in the present embodiment can be suitably used for applications that require reliability, such as printed wiring boards that require higher density and higher multilayer.
  • the laminated plate 213 in this embodiment can reduce the occurrence of warpage in the above-described circuit processing and the subsequent processes. Therefore, the semiconductor package 200 is less likely to warp and crack and can be thinned. Therefore, the semiconductor device 300 including the semiconductor package 200 can improve connection reliability.
  • each thickness is represented by the average film thickness.
  • Epoxy resin A Cresol novolac type epoxy resin (manufactured by DIC, HP-5000)
  • Epoxy resin B naphthylene ether type epoxy resin (manufactured by DIC, HP-6000)
  • Cyanate resin Novolac-type cyanate resin (Lonza Japan, Primaset PT-30)
  • Phenolic resin Naphthol aralkyl type phenolic resin (manufactured by Toto Kasei Co., Ltd., SN-485)
  • Filler A Spherical fused silica (manufactured by Admatechs, SO-32R, average particle size 1 ⁇ m)
  • Filler B Spherical fused silica (manufactured by Tokuyama, NSS-5N, average particle size 75 nm)
  • Coupling agent A ⁇ -glycidoxypropyltrimethoxysilane (GE Toshiba Silicone, A187)
  • Curing catalyst Phosphorus catalyst of an onium salt compound corresponding to the above general formula (IX) (C05-MB, manufactured by Sumitomo Bakelite Co., Ltd.)
  • Organic fiber base AI Polyparaphenylene benzbisoxazole resin fiber woven fabric (manufactured by Asahi Kasei E-materials, 054Z-HM, style 054Z, filament diameter: 12 ⁇ m, number of filaments: 33 / bundle, 55/25 mm in length, Side 55/25 mm, basis weight: 23.8 g / m 2 , surface treatment: silane coupling agent treatment, linear expansion coefficient (25 to 150 ° C.): ⁇ 6 ppm / ° C., Young's modulus 270 GPa, fiber substrate thickness 43 ⁇ m , Dielectric constant: 3.0 (0.1 GHz))
  • Organic fiber substrate AII Polyparaphenylenebenzbisoxazole resin fiber woven fabric (manufactured by Asahi Kasei E-materials, 116Z-HM, style 116Z, filament diameter: 12 ⁇ m, number of filaments: 66 / bundle, length 49/25 mm, Width 49/25 mm, Basis weight: 43.3 g / m 2 , Air permeability: 20.8 cm 3 / cm 2 / sec, Surface treatment: Silane coupling agent treatment, linear expansion coefficient (25 to 150 ° C.): ⁇ 6 ppm / ° C., Young's modulus 270 GPa, fiber substrate thickness 65 ⁇ m, dielectric constant: 3.0 (0.1 GHz))
  • Organic fiber base material AIII Polyparaphenylenebenzbisoxazole resin fiber woven fabric (manufactured by Asahi Kasei E-materials, 273Z-HM, Style 273Z, Filament diameter: 12 ⁇ m, Number of filaments: 132 / bundle, 41/25 mm in length, 41 horizontal lines / 25 mm, basis weight: 90.3 g / m 2 , surface treatment: silane coupling agent treatment, linear expansion coefficient (25 to 150 ° C.): ⁇ 6 ppm / ° C., Young's modulus 270 GPa, fiber substrate thickness 126 ⁇ m, Dielectric constant: 3.0 (0.1 GHz)
  • Organic fiber base material B Polyparaphenylene benzbisoxazole resin fiber woven fabric (manufactured by Asahi Kasei E-materials, 116Z-AS, style 116Z, filament diameter: 12 ⁇ m, number of filaments: 66 / bundle, length 49/25 mm, Width 49/25 mm, Basis weight: 43.3 g / m 2 , Air permeability: 20.8 cm 3 / cm 2 / sec, Surface treatment: Silane coupling agent treatment, linear expansion coefficient (25 to 150 ° C.): ⁇ 6 ppm / ° C., Young's modulus 180 GPa, fiber substrate thickness 65 ⁇ m, dielectric constant: 3.0 (0.1 GHz))
  • Organic fiber base material C Aramid resin fiber woven fabric (manufactured by Asahi Kasei E-materials Co., Ltd., 086T, style 086T, filament diameter: 12 ⁇ m, number of filaments: 48 / bundle, 55/25 mm in length, 55/25 mm in width, tsubo Amount: 34.7 g / m 2 , air permeability: 25 cm 3 / cm 2 / sec, surface treatment: silane coupling agent treatment, linear expansion coefficient (25 to 150 ° C.): ⁇ 6 ppm / ° C., Young's modulus 73 GPa, fiber base (Material thickness 60 ⁇ m, dielectric constant: 3.6 (1 GHz))
  • Example 1 The laminated board in this embodiment was produced using the following procedures.
  • resin composition varnish A 13.7 parts by mass of cresol novolac type epoxy resin (manufactured by DIC, HP-5000) as epoxy resin A, novolak type cyanate resin (manufactured by Lonza Japan, Primaset PT-30) as cyanate resin 13.7 parts by mass was dissolved and dispersed in methyl ethyl ketone.
  • spherical fused silica manufactured by Admatechs, SO-32R, average particle size 1 ⁇ m
  • filler A 64.7 parts by mass
  • spherical fused silica manufactured by Tokuyama, NSS-5N, average particle size
  • filler B 75 nm
  • ⁇ -glycidoxypropyltrimethoxysilane GE Toshiba Silicone, A187
  • GE Toshiba Silicone, A187 0.4 parts by mass as a coupling agent, an onium salt compound phosphorus catalyst (Sumitomo Bakelite as a curing catalyst) C05-MB), 0.5 parts by mass, was added and stirred for 30 minutes using a high-speed stirrer to adjust the non-volatile content to 70% by mass, and the resin composition varnish (resin varnish) A) was prepared.
  • Example 2 to 5 Comparative Examples 1 to 4
  • the same method as in Example 1 was used, except that the type of organic fiber substrate, the presence or absence of annealing treatment, and the thickness of the insulating layer were changed as shown in Tables 1 and 2. Laminated plates, printed wiring boards and semiconductor packages were manufactured.
  • Example 6 In Example 6, the type of the resin varnish was changed to the following resin varnish B, and the type of the organic fiber substrate, the presence / absence of annealing treatment, and the thickness of the insulating layer were changed as shown in Table 2, and the same as in Example 1. A laminate, a printed wiring board, and a semiconductor package were manufactured by the method described above.
  • resin composition varnish B 10.8 parts by weight of naphthylene ether type epoxy resin (manufactured by DIC, HP-6000) as epoxy resin B, 14.0 parts by weight of novolac type cyanate resin (manufactured by Lonza Japan, Primaset PT-30) as cyanate resin, As phenol resin, 5.0 parts by weight of naphthol aralkyl type phenol resin (manufactured by Toto Kasei Co., Ltd., SN-485) was dissolved and dispersed in methyl ethyl ketone.
  • naphthylene ether type epoxy resin manufactured by DIC, HP-6000
  • novolac type cyanate resin manufactured by Lonza Japan, Primaset PT-30
  • phenol resin 5.0 parts by weight of naphthol aralkyl type phenol resin (manufactured by Toto Kasei Co., Ltd., SN-485) was dissolved and dispersed in methyl ethyl ketone.
  • the amount of warpage of the PKG is 13 mm ⁇ on the substrate (size: 14 mm ⁇ 14 mm) from the BGA surface in an atmosphere of 25 ° C. and 260 ° C. with the chip surface placed in a chamber that can be heated and cooled.
  • the amount of warpage at room temperature (25 ° C.) and the amount of warpage from 25 ° C. to 260 ° C. at a 13 mm portion were measured.
  • the semiconductor package produced by the said Example and the comparative example was used for the sample.
  • the laminates of Examples 1 to 6 have a higher coefficient of thermal expansion than the laminates of Comparative Examples 1 to 4 while maintaining a higher glass transition temperature and elastic modulus.
  • the laminated plates of Examples 1 to 6 were superior in solder heat resistance to the laminated plates of Comparative Examples 1 to 4. Further, the warpage of the semiconductor packages of Examples 1 to 6 was suppressed as compared with the semiconductor packages of Comparative Examples 1 to 4.
  • the present invention can take the following aspects.
  • the organic fiber base material is measured by a thermogravimetry device.
  • a laminate having a linear expansion coefficient in the plane direction of the laminate of from 50 ° C. to 150 ° C. is from ⁇ 10 ppm / ° C. to 5 ppm / ° C.
  • a semiconductor device comprising the semiconductor package according to [9] above.

Abstract

 本発明は、50℃以上150℃以下の範囲における線膨張係数が0ppm/℃以下の有機繊維基材(101)に、熱硬化性樹脂を含む樹脂組成物を含浸してなるプリプレグ(100)である。有機繊維基材(101)は、熱重量測定装置により、(A)有機繊維基材(101)を110℃で1時間保持して重量減少率Aを測定する予備乾燥工程と、(B)有機繊維基材(101)を25℃から300℃に10℃/分で昇温して重量減少率Bを測定する測定工程と、を順次おこなった際の、B-Aにより算出される値が0.30%以下である。

Description

プリプレグ、積層板、プリント配線基板、半導体パッケージおよび半導体装置
 本発明は、プリプレグ、積層板、プリント配線基板、半導体パッケージおよび半導体装置に関する。
 近年の電子機器の高機能化および軽薄短小化の要求にともなって、電子部品の高密度集積化、さらには高密度実装化が進んできており、これらの電子機器に使用される半導体装置の小型化が急速に進行している。
 そのため、半導体素子を含めた電子部品を実装するプリント配線基板も薄型化される傾向にあり、プリント配線基板に使用される内層コア基板(以下、単に積層板ともいう)は、厚みが約0.8mmのものが主流となっている。
 さらに最近では、0.4mm以下のコア基板を用いた半導体パッケージ同士を積層するパッケージ・オン・パッケージ(以下、POPという。)がモバイル機器(例えば、携帯電話、スマートフォン、タブレット型PCなど)に搭載されている。
特開2006-203142号公報
 このように半導体装置の小型化が進むと、従来では半導体装置の剛性の大部分を担っていた半導体素子、封止材の厚みが極めて薄くなり、半導体装置の反りが発生しやすくなる。また、構成部材としてコア基板の占める割合が大きくなるため、コア基板の物性・挙動が半導体装置の反りに大きな影響を及ぼすようになってきている。
 一方、地球環境保護の観点から半田の鉛フリー化が進むにつれて、プリント配線基板へ半田ボールを搭載するときや、マザーボードへ半導体パッケージを実装するときにおこなうリフロー工程での最高温度が非常に高くなってきている。一般的に良く使われている鉛フリー半田の融点が約210度であることからリフロー工程中での最高温度は260度を超えるレベルとなっている。
 そのため、POPの上下の半導体パッケージは、半導体素子と半導体素子が搭載されるプリント配線基板との熱膨張の差が非常に大きいため、大きく反ってしまう場合があった。
 このような問題を解決する手段として、例えば、以下の文献に記載の手段がある。
 特許文献1(特開2006-203142号公報)には、プリプレグの基材として、熱膨張率が負の値を有する有機繊維からなる織布を用いることで、半導体パッケージ用多層プリント配線板の熱膨張率をシリコンチップの熱膨張率に近づけることができ、シリコンチップを実装した場合の接続信頼性を向上できると記載されている。
 しかしながら、特許文献1のように、プリプレグに使用する繊維基材として負の熱膨張を示す有機繊維基材を使用すると、得られる積層板のガラス転移温度が、使用した材料から予想される値よりも低くなり、その結果、積層板の弾性率が低下してしまう場合があった。弾性率が低下した結果、得られる積層板は剛性が不十分となり、リフロー工程での加熱時にプリント配線基板が膨れてしまったり、配線層が基板から剥がれてしまったりする場合があった。つまり、得られる積層板は半田耐熱性が劣っていた。また、積層板の剛性が低下した結果、リフローなどの加熱時の反りの抑制効果も十分に満足いくものではなかった。
 そこで、本発明では、半田耐熱性に優れ、かつ、リフローなどの加熱時に生じる反りが抑制された薄型プリント配線基板用の積層板を得ることができるプリプレグを提供することを課題とする。
 本発明者らは有機繊維基材を含むプリプレグを用いると積層板のガラス転移温度が低下してしまう要因を鋭意調べた。その結果、以下の条件を満たす有機繊維基材を含むプリプレグを用いることにより、積層板のガラス転移温度の低下を抑制でき、その結果、弾性率を高く保持した積層板が得られることを見出し、本発明を完成するに至った。
 すなわち、本発明によれば、
 50℃以上150℃以下の範囲における線膨張係数が0ppm/℃以下の有機繊維基材に熱硬化性樹脂を含む樹脂組成物を含浸してなるプリプレグであって、
 上記有機繊維基材は、熱重量測定装置により、
 (A)上記有機繊維基材を110℃で1時間保持して重量減少率Aを測定する予備乾燥工程と、
 (B)上記有機繊維基材を25℃から300℃に10℃/分で昇温して重量減少率Bを測定する測定工程と、
を順次おこなった際の、
 B-Aにより算出される値が0.30%以下である、プリプレグが提供される。
 この発明によれば、上記の条件を満たす有機繊維基材を含むプリプレグを用いることによって、弾性率を高く保持したまま、積層板の線膨張係数を低下させることができる。そのため、積層板の半田耐熱性を向上させつつ、リフローなどの加熱時に生じる積層板の単体反りを抑制することができる。
 さらに、本発明によれば、上記プリプレグの硬化体を含む、積層板が提供される。
 さらに、本発明によれば、上記積層板を回路加工してなる、プリント配線基板が提供される。
 さらに、本発明によれば、上記プリント配線基板に半導体素子が搭載された、半導体パッケージが提供される。
 さらに、本発明によれば、上記半導体パッケージを含む、半導体装置が提供される。
 さらに、本発明によれば、
 50℃以上150℃以下の範囲における線膨張係数が0ppm/℃以下の有機繊維基材を準備する工程と、
 上記有機繊維基材について、
  熱重量測定装置により、
   上記有機繊維基材を110℃で1時間保持して測定する重量減少率Aと、
   上記有機繊維基材を25℃から300℃に10℃/分で昇温して測定する重量減少率Bと、
  から算出される、B-Aを0.30%以下に調整する工程と、
 上記有機繊維基材に熱硬化性樹脂を含む樹脂組成物を含浸させ、上記樹脂組成物を半硬化する工程と、
を含む、プリプレグの製造方法が提供される。
 本発明によれば、半田耐熱性に優れ、かつ、リフローなどの加熱時に生じる反りが抑制された薄型プリント配線基板用の積層板を得ることができるプリプレグを提供することができる。
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。
本実施形態におけるプリプレグの構成の一例を示す断面図である。 本実施形態における半導体パッケージの構成の一例を示す断面図である。 本実施形態における半導体装置の構成の一例を示す断面図である。
 以下に、本発明の実施形態について、図面を用いて説明する。なお、すべての図面において、同様な構成要素には共通の符号を付し、適宜説明を省略する。なお、図は概略図であり、実際の寸法比率とは必ずしも一致していない。
(プリプレグ)
 はじめに、本実施形態におけるプリプレグ100の構成について説明する。図1は、本実施形態におけるプリプレグ100の構成の一例を示す断面図である。プリプレグ100は、有機繊維基材101と、樹脂層103とを備えており、有機繊維基材101に熱硬化性樹脂を含む樹脂組成物を含浸して得られる。
 有機繊維基材101は、50℃以上150℃以下の範囲における線膨張係数が0ppm/℃以下である。なお、本実施形態の線膨張係数は、とくに断りがなければ、50℃以上150℃以下の領域における線膨張係数の平均値を表す。
 また、有機繊維基材101は、熱重量測定装置により、(A)有機繊維基材101を110℃で1時間保持して重量減少率Aを測定する予備乾燥工程と、(B)有機繊維基材101を25℃から300℃に10℃/分で昇温して重量減少率Bを測定する測定工程と、を順次おこなった際の、B-Aにより算出される値が0.30%以下であり、好ましくは0.25%以下であり、さらに好ましくは0.20%以下であるように特定されている。
 上記の条件を満たす有機繊維基材101を含むプリプレグ100を用いると、得られる積層板のガラス転移温度の低下を抑制できる。そのため、弾性率を高く保持したまま、積層板の線膨張係数を低下させることができ、その結果、積層板の単体反りを抑制することができる。
 従来の有機繊維基材を含むプリプレグを用いると得られる積層板のガラス転移温度が、使用した材料から予想される値よりも低くなる理由は必ずしも明らかではないが、本発明者らは以下のように推察した。
 有機繊維基材中には、その製造過程において使用する溶媒やモノマー、オリゴマー、添加剤などの低分子量成分が微量ながら残存している。
 これらの残存成分は、積層板の製造過程において熱硬化性樹脂の間隙に入り込んで、熱硬化性樹脂の構造を変化させることにより、積層板の構成材料である熱硬化性樹脂のガラス転移温度を低下させてしまう。その結果、積層板のガラス転移温度が使用した材料から予想される値よりも低くなってしまうと推察した。
 本発明者らは上記推察をもとに鋭意調べたところ、熱重量測定装置により、(A)110℃で1時間保持して重量減少率Aを測定する予備乾燥工程と、(B)熱重量測定装置により25℃から300℃に10℃/分で昇温して重量減少率Bを測定する測定工程と、を順次おこなった際の、B-Aにより算出される値が特定量以下である有機繊維基材101を用いることにより、ガラス転移温度を高く保持した積層板が得られることを見出した。
 本実施形態で特定される有機繊維基材101は、上記のような低分子量成分が少ないため、本実施形態の有機繊維基材101を用いると、積層板の製造過程における上記のような構造変化を抑制することができると考えられる。
 したがって、本実施形態における有機繊維基材101を含むプリプレグは、ガラス転移温度を高く保持できると考えられる。
 つづいて、プリプレグ100を構成する材料について詳細に説明する。
 本実施形態におけるプリプレグ100は、有機繊維基材101に一または二以上の樹脂組成物を含浸させ、その後、半硬化させて得られる有機繊維基材101と樹脂層103を備えるシート状の材料である。このような構造のシート状材料は、誘電特性、高温多湿下での機械的、電気的接続信頼性などの各種特性に優れ、プリント配線基板用の積層板の製造に適しており、好ましい。
(有機繊維基材)
 本実施形態における有機繊維基材101は、熱重量測定装置により、(A)有機繊維基材101を110℃で1時間保持して重量減少率Aを測定する予備乾燥工程と、(B)有機繊維基材101を25℃から300℃に10℃/分で昇温して重量減少率Bを測定する測定工程と、を順次おこなった際の、B-Aにより算出される値が0.30%以下であり、好ましくは0.25%以下であり、さらに好ましくは0.20%以下である。
 なお、上記の順次おこなうとは、(A)予備乾燥工程をおこなった後、有機繊維基材101を大気に触れさせずに、そのままの状態で(B)測定工程をおこなうことをいう。
 また、重量減少率AおよびBは、有機繊維基材101からの減少率であり、下記式(1)および(2)により算出される。ここで、(A)予備乾燥工程前の有機繊維基材101の重量をWとし、(A)予備乾燥工程での重量減少量をaとし、(B)測定工程での重量減少量をbとする。
 A[%]=100×a/W    (1)
 B[%]=100×b/(W-a)  (2)
 上記(A)予備乾燥工程をおこなうと、有機繊維基材101に付着した水分を3000~4000ppm程度まで除去することができる。したがって、(A)予備乾燥工程により有機繊維基材101に付着した水分を除去してから(B)測定工程をおこなうことによって、水分の影響を排除しながら有機繊維基材101に付着した上記のような低分子量成分の量を正確に測定することができる。
 また、上記B-Aにより算出される値は低ければ低いほど好ましいので下限値はとくに限定するものではないが、例えば、0.01%以上とすることができる。
 このような条件を満たす有機繊維基材101を用いると、得られる積層板のガラス転移温度の低下を抑制することができる。そのため、弾性率を高く保持したまま、積層板の線膨張係数を低下させることができ、その結果、積層板の半田耐熱性を向上させつつ、積層板の単体反りを抑制することができる。
 また、本実施形態における有機繊維基材101は、50℃以上150℃以下の範囲における線膨張係数が0ppm/℃以下であり、好ましくは-3ppm/℃以下であり、より好ましくは-5ppm/℃以下である。このような線膨張係数を有する有機繊維基材101を用いることにより、本実施形態の積層板の反りをさらに抑制することができる。
 さらに、本実施形態で用いる有機繊維基材101を構成する有機繊維は、ヤング率が好ましくは70GPa以上であり、より好ましくは100GPa以上、さらに好ましくは120GPa以上である。このようなヤング率を有する有機繊維を用いることにより、例えば半導体実装時のリフロー熱による配線板の変形を効果的に抑制することができるので、電子部品の接続信頼性をさらに向上させることができる。また、本実施形態で用いる有機繊維基材101を構成する有機繊維のヤング率の上限については、とくに限定するものではないが、400GPa以下とすることができる。
 また、本実施形態で用いる有機繊維基材101を構成する有機繊維は、1GHzでの誘電率が、好ましくは2.5以上4.5以下であり、より好ましくは2.5以上3.5以下であり、とくに好ましくは2.5以上3.0以下である。このような誘電率を有する有機繊維からなる有機繊維基材101を用いることにより積層板の誘電率をさらに低減することができるため、高速信号を用いた半導体装置に当該積層板を好適に用いることができる。
 本実施形態における有機繊維基材を構成する有機繊維としては、例えば、ポリパラフェニレンベンズビスオキサゾール樹脂、ポリアミド樹脂、芳香族ポリアミド樹脂、全芳香族ポリアミド(アラミド)樹脂などのポリアミド系樹脂、ポリエステル樹脂、芳香族ポリエステル樹脂、全芳香族ポリエステル樹脂などのポリエステル系樹脂、ポリイミドベンズオキサゾール樹脂、ポリイミド樹脂などのポリイミド系樹脂、フッ素樹脂などの樹脂から構成される繊維が挙げられる。有機繊維を構成する樹脂として、これらの中の1種類を単独で用いてもよく、2種類以上を併用してもよい。
 これらの中でも、ポリパラフェニレンベンズビスオキサゾール樹脂、芳香族ポリエステル樹脂、全芳香族ポリアミド樹脂、およびポリイミドベンズオキサゾール樹脂、より選ばれる少なくとも1種以上の耐熱性樹脂から構成される有機繊維がとくに好ましい。これらの有機繊維を用いることにより、プリプレグ100の線膨張係数や誘電率をさらに小さくし、かつ、ヤング率をさらに大きくすることができる。
 本実施形態における有機繊維基材101の形態は、例えば織布基材であり、具体的には上記有機繊維を用いて構成された有機繊維クロス、有機繊維不織布などが挙げられる。これらの中でも、強度、熱膨張係数の点から有機繊維クロスがとくに好ましい。また、有機繊維クロスを用いることにより、プリプレグ100の線膨張係数をさらに小さくし、かつ、ヤング率をさらに大きくすることができる。
 有機繊維基材101の厚みは、とくに限定されないが、好ましくは10μm以上150μm以下であり、より好ましくは20μm以上120μm以下であり、とくに好ましくは30μm以上100μm以下である。このような厚みを有する有機繊維基材101を用いることにより、プリプレグ100製造時のハンドリング性をさらに向上させ、とくに積層板の反り低減効果を向上させることができる。
 上述したB-Aにより算出される値が0.3%以下の有機繊維基材101は、例えば、上記の有機繊維基材101をアニール処理することによって得られる。
 アニール温度は、とくに限定されないが、好ましくは120℃以上350℃以下であり、より好ましくは150℃以上300℃以下である。アニール温度が上記範囲であると、得られる積層板のガラス転移点の低下をより一層抑制することができる。
 また、アニール時間は、とくに限定されないが、好ましくは30分以上6時間以下であり、より好ましくは45分以上4時間以下である。アニール時間が上記範囲であると、得られる積層板のガラス転移点の低下をより一層抑制することができる。
 アニール処理は、例えば、窒素やアルゴンなどの不活性雰囲気でおこなうことが好ましい。不活性雰囲気でおこなうことによって有機繊維基材101の酸化を抑制することができる。
 上記アニール処理する方法としては、とくに限定されないが、例えば、熱風乾燥装置、赤外線加熱装置、加熱ロール装置、平板状の熱盤プレス装置などを用いて実施することができる。
(樹脂組成物)
 また、有機繊維基材101に含浸させる樹脂組成物としては、とくに限定されないが、低線膨張率および高弾性率を有し、熱衝撃性の信頼性に優れたものであることが好ましい。上記樹脂組成物は、熱硬化性樹脂を含んでいる。
(熱硬化性樹脂)
 熱硬化性樹脂としては、とくに限定されないが、低線膨張率および高弾性率を有し、熱衝撃性の信頼性に優れたものであることが好ましい。
 また、熱硬化性樹脂の動的粘弾性測定による周波数1Hzでのガラス転移温度は、好ましくは160℃以上であり、さらに好ましくは200℃以上である。このようなガラス転移温度を有する樹脂組成物を用いることにより、鉛フリー半田リフロー耐熱性がさらに向上するという効果を得ることができる。また、樹脂組成物の動的粘弾性測定による周波数1Hzでのガラス転移温度の上限については、とくに限定するものではないが、350℃以下とすることができる。
 具体的な熱硬化性樹脂として、例えばフェノールノボラック樹脂、クレゾールノボラック樹脂、ビスフェノールAノボラック樹脂などのノボラック型フェノール樹脂、未変性のレゾールフェノール樹脂、桐油、アマニ油、クルミ油などで変性した油変性レゾールフェノール樹脂などのレゾール型フェノール樹脂などのフェノール樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールE型エポキシ樹脂、ビスフェノールM型エポキシ樹脂、ビスフェノールP型エポキシ樹脂、ビスフェノールZ型エポキシ樹脂などのビスフェノール型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂などのノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、アリールアルキレン型エポキシ樹脂、ナフタレン型エポキシ樹脂、アントラセン型エポキシ樹脂、フェノキシ型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ノルボルネン型エポキシ樹脂、アダマンタン型エポキシ樹脂、フルオレン型エポキシ樹脂などのエポキシ樹脂、ユリア(尿素)樹脂、メラミン樹脂などのトリアジン環を有する樹脂、不飽和ポリエステル樹脂、ビスマレイミド樹脂、ポリウレタン樹脂、ジアリルフタレート樹脂、シリコーン樹脂、ベンゾオキサジン環を有する樹脂、シアネート樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ベンゾシクロブテン樹脂などが挙げられる。
 これらの中の1種類を単独で用いてもよいし、異なる重量平均分子量を有する2種類以上を併用して用いてもよく、1種類または2種類以上と、それらのプレポリマーを併用して用いてもよい。
 これらの中でも、とくにシアネート樹脂(シアネート樹脂のプレポリマーを含む)が好ましい。シアネート樹脂を用いることにより、積層板の線膨張係数を小さくすることができる。さらに、シアネート樹脂を用いることにより、積層板の電気特性(低誘電率、低誘電正接)、機械強度などを向上させることができる。
 シアネート樹脂は、例えば、ハロゲン化シアン化合物とフェノール類とを反応させたものや、必要に応じて加熱などの方法でプレポリマー化したものなどを用いることができる。具体的には、ノボラック型シアネート樹脂、ビスフェノールA型シアネート樹脂、ビスフェノールE型シアネート樹脂、テトラメチルビスフェノールF型シアネート樹脂などのビスフェノール型シアネート樹脂、ナフトールアラルキル型の多価ナフトール類と、ハロゲン化シアンとの反応で得られるシアネート樹脂、ジシクロペンタジエン型シアネート樹脂、ビフェニルアルキル型シアネート樹脂などを挙げることができる。これらの中でもノボラック型シアネート樹脂が好ましい。ノボラック型シアネート樹脂を用いることにより、樹脂層103の架橋密度が増加し、積層板の耐熱性が向上する。したがって、積層板の難燃性を向上させることができる。
 この理由としては、ノボラック型シアネート樹脂は、硬化反応後にトリアジン環を形成することが挙げられる。さらに、ノボラック型シアネート樹脂は、その構造上ベンゼン環の割合が高く、炭化しやすいためと考えられる。さらに、積層板の厚さを0.6mm以下にした場合であっても、ノボラック型シアネート樹脂を硬化させて作製した樹脂層103を含む積層板は優れた剛性を有する。とくに、このような積層板は加熱時における剛性に優れるので、半導体素子実装時の信頼性にも優れる。
 ノボラック型シアネート樹脂としては、例えば、下記一般式(I)で示されるものを使用することができる。
Figure JPOXMLDOC01-appb-C000001
 一般式(I)で示されるノボラック型シアネート樹脂の平均繰り返し単位nは任意の整数である。nの下限は、とくに限定されないが、1以上が好ましく、とくに2以上が好ましい。nが上記下限値以上であると、ノボラック型シアネート樹脂の耐熱性が向上し、加熱時に低量体が脱離、揮発することを抑制できる。また、nの上限は、とくに限定されないが、10以下が好ましく、7以下がより好ましい。nが上記上限値以下であると、溶融粘度が高くなるのを抑制でき、樹脂層103の成形性が低下することを抑制することができる。
 また、シアネート樹脂としては、下記一般式(II)で表わされるナフトール型シアネート樹脂も好適に用いられる。下記一般式(II)で表わされるナフトール型シアネート樹脂は、例えば、α-ナフトールあるいはβ-ナフトールなどのナフトール類とp-キシリレングリコール、α,α'-ジメトキシ-p-キシレン、1,4-ジ(2-ヒドロキシ-2-プロピル)ベンゼンなどとの反応により得られるナフトールアラルキル樹脂とシアン酸とを縮合させて得られるものである。一般式(II)のnは10以下であることがより好ましい。nが10以下の場合、樹脂粘度が高くならず、繊維基材への含浸性が良好で、積層板としての性能を低下させない傾向がある。また、合成時に分子内重合が起こりにくく、水洗時の分液性が向上し、収量の低下を防止できる傾向がある。
Figure JPOXMLDOC01-appb-C000002
(式中、Rは水素原子またはメチル基を示し、nは1以上の整数を示す。)
 また、シアネート樹脂としては、下記一般式(III)で表わされるジシクロペンタジエン型シアネート樹脂も好適に用いられる。下記一般式(III)で表わされジシクロペンタジエン型シアネート樹脂は、下記一般式(III)のnが0以上8以下であることが好ましい。nが8以下の場合、樹脂粘度が高くならず、繊維基材への樹脂組成物の含浸性が良好で、積層板としての性能の低下を防止できる。また、ジシクロペンタジエン型シアネート樹脂を用いることで、積層板の低吸湿性および耐薬品性を向上させることができる。
Figure JPOXMLDOC01-appb-C000003
(nは0以上8以下の整数を示す。)
 シアネート樹脂の重量平均分子量(Mw)の下限は、とくに限定されないが、Mw500以上が好ましく、Mw600以上がより好ましい。Mwが上記下限値以上であると、樹脂層103を作製した場合にタック性の発生を抑制でき、樹脂層103同士が接触したとき互いに付着したり、樹脂の転写が生じたりするのを抑制することができる。また、Mwの上限は、とくに限定されないが、Mw4,500以下が好ましく、Mw3,000以下がより好ましい。また、Mwが上記上限値以下であると、反応が速くなるのを抑制でき、プリント配線基板とした場合に、成形不良が生じたり、層間ピール強度が低下したりするのを抑制することができる。
 シアネート樹脂などのMwは、例えば、GPC(ゲルパーミエーションクロマトグラフィー、標準物質:ポリスチレン換算)により測定することができる。
 また、とくに限定されないが、シアネート樹脂は1種類を単独で用いてもよいし、異なるMwを有するものを2種類以上併用して用いてもよく、1種類または2種類以上と、それらのプレポリマーとを併用して用いてもよい。
 樹脂組成物中に含まれる熱硬化性樹脂の含有量は、その目的に応じて適宜調整されればよく、とくに限定されないが、樹脂組成物全体に基づいて5質量%以上90質量%以下が好ましく、10質量%以上80質量%以下がより好ましく、20質量%以上50質量%以下がとくに好ましい。熱硬化性樹脂の含有量が上記下限値以上であると、樹脂組成物のハンドリング性が向上し、樹脂層103を形成するのが容易となる。熱硬化性樹脂の含有量が上記上限値以下であると、樹脂層103の強度や難燃性が向上したり、樹脂層103の線膨張係数が低下し積層板の反りの低減効果が向上したりする場合がある。
 熱硬化性樹脂としてシアネート樹脂(とくにノボラック型シアネート樹脂、ナフトール型シアネート樹脂、ジシクロペンタジエン型シアネート樹脂)を用いる以外に、エポキシ樹脂(実質的にハロゲン原子を含まない)を用いてもよいし、併用してもよい。エポキシ樹脂としては、例えばビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールE型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールM型エポキシ樹脂、ビスフェノールP型エポキシ樹脂、ビスフェノールZ型エポキシ樹脂などのビスフェノール型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂などのノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、キシリレン型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂などのアリールアルキレン型エポキシ樹脂、ナフトール型エポキシ樹脂、ナフタレンジオール型エポキシ樹脂、2官能ないし4官能エポキシ型ナフタレン樹脂、ナフチレンエーテル型エポキシ樹脂、ビナフチル型エポキシ樹脂、ナフタレンアラルキル型エポキシ樹脂などのナフタレン型エポキシ樹脂、アントラセン型エポキシ樹脂、フェノキシ型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ノルボルネン型エポキシ樹脂、アダマンタン型エポキシ樹脂、フルオレン型エポキシ樹脂などが挙げられる。
 エポキシ樹脂として、これらの中の1種類を単独で用いてもよいし、異なる重量平均分子量を有する2種類以上を併用して用いてもよく、1種類または2種類以上と、それらのプレポリマーとを併用して用いてもよい。
 これらエポキシ樹脂の中でもとくにアリールアルキレン型エポキシ樹脂が好ましい。これにより、吸湿半田耐熱性および難燃性をさらに向上させることができる。
 アリールアルキレン型エポキシ樹脂とは、繰り返し単位中に一つ以上のアリールアルキレン基を有するエポキシ樹脂をいう。例えば、キシリレン型エポキシ樹脂、ビフェニルジメチレン型エポキシ樹脂などが挙げられる。これらの中でもビフェニルジメチレン型エポキシ樹脂が好ましい。ビフェニルジメチレン型エポキシ樹脂は、例えば、下記一般式(IV)で示すことができる。
Figure JPOXMLDOC01-appb-C000004
 上記一般式(IV)で示されるビフェニルジメチレン型エポキシ樹脂の平均繰り返し単位nは任意の整数である。nの下限は、とくに限定されないが、1以上が好ましく、とくに2以上が好ましい。nが上記下限値以上であると、ビフェニルジメチレン型エポキシ樹脂の結晶化を抑制でき、汎用溶媒に対する溶解性が向上するため、取り扱いが容易となる。nの上限は、とくに限定されないが、10以下が好ましく、5以下がより好ましい。nが上記上限値以下であると、樹脂の流動性が向上し、成形不良などの発生を抑制することができる。
 上記以外のエポキシ樹脂としては縮合環芳香族炭化水素構造を有するノボラック型エポキシ樹脂が好ましい。これにより、積層板の耐熱性、低熱膨張性をさらに向上させることができる。
 縮合環芳香族炭化水素構造を有するノボラック型エポキシ樹脂は、ナフタレン、アントラセン、フェナントレン、テトラセン、クリセン、ピレン、トリフェニレン、およびテトラフェン、その他の縮合環芳香族炭化水素構造を有するノボラック型エポキシ樹脂である。縮合環芳香族炭化水素構造を有するノボラック型エポキシ樹脂は、複数の芳香環が規則的に配列することができるため低熱膨張性に優れる。また、ガラス転移温度も高いため耐熱性に優れる。さらに、繰返し構造の分子量が大きいため従来のノボラック型エポキシに比べ難燃性に優れ、シアネート樹脂と組合せることでシアネート樹脂の弱点の脆弱性を改善することができる。したがって、シアネート樹脂と併用して用いることで、積層板のガラス転移温度がさらに高くなるため鉛フリー対応の実装信頼性を向上させることができる。
 縮合環芳香族炭化水素構造を有するノボラック型エポキシ樹脂は、フェノール類化合物とホルムアルデヒド類化合物、および縮合環芳香族炭化水素化合物から合成された、ノボラック型フェノール樹脂をエポキシ化したものである。
 フェノール類化合物は、とくに限定されないが、例えば、フェノール、o-クレゾール、m-クレゾール、p-クレゾールなどのクレゾール類、2,3-キシレノール、2,4-キシレノール、2,5-キシレノール、2,6-キシレノール、3,4-キシレノール、3,5-キシレノールなどのキシレノール類、2,3,5トリメチルフェノールなどのトリメチルフェノール類、o-エチルフェノール、m-エチルフェノール、p-エチルフェノールなどのエチルフェノール類、イソプロピルフェノール、ブチルフェノール、t-ブチルフェノールなどのアルキルフェノール類、o-フェニルフェノール、m-フェニルフェノール、p-フェニルフェノール、カテコール、1,5-ジヒドロキシナフタレン、1,6-ジヒドロキシナフタレン、2,7-ジヒドロキシナフタレンなどのナフタレンジオール類、レゾルシン、カテコール、ハイドロキノン、ピロガロール、フルオログルシンなどの多価フェノール類、アルキルレゾルシン、アルキルカテコール、アルキルハイドロキノンなどのアルキル多価フェノール類が挙げられる。これらの中でも、コスト面および分解反応に与える効果から、フェノールが好ましい。
 アルデヒド類化合物は、とくに限定されないが、例えば、ホルムアルデヒド、パラホルムアルデヒド、トリオキサン、アセトアルデヒド、プロピオンアルデヒド、ポリオキシメチレン、クロラール、ヘキサメチレンテトラミン、フルフラール、グリオキザール、n-ブチルアルデヒド、カプロアルデヒド、アリルアルデヒド、ベンズアルデヒド、クロトンアルデヒド、アクロレイン、テトラオキシメチレン、フェニルアセトアルデヒド、o-トルアルデヒド、サリチルアルデヒド、ジヒドロキシベンズアルデヒド、トリヒドロキシベンズアルデヒド、4-ヒドロキシ-3-メトキシアルデヒドパラホルムアルデヒドなどが挙げられる。
 縮合環芳香族炭化水素化合物は、とくに限定されないが、例えば、メトキシナフタレン、ブトキシナフタレンなどのナフタレン誘導体、メトキシアントラセンなどのアントラセン誘導体、メトキシフェナントレンなどのフェナントレン誘導体、その他テトラセン誘導体、クリセン誘導体、ピレン誘導体、誘導体トリフェニレン、テトラフェン誘導体などが挙げられる。
 縮合環芳香族炭化水素構造を有するノボラック型エポキシ樹脂はとくに限定されないが、例えば、メトキシナフタレン変性オルトクレゾールノボラックエポキシ樹脂、ブトキシナフタレン変性メタ(パラ)クレゾールノボラックエポキシ樹脂、およびメトキシナフタレン変性ノボラックエポキシ樹脂などが挙げられる。これらの中でも、下記式(V)で表される縮合環芳香族炭化水素構造を有するノボラック型エポキシ樹脂が好ましい。
Figure JPOXMLDOC01-appb-C000005
(式中、Arは縮合環芳香族炭化水素基である。Rは互いに同一であっても異なっていてもよく、水素原子、炭素数1以上10以下の炭化水素基、ハロゲン元素、フェニル基、ベンジル基などのアリール基、およびグリシジルエーテルを含む有機基から選ばれる基である。n、p、およびqは1以上の整数である。p、qの値は、繰り返し単位毎に同一でも、異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000006
(式(V)中のArは、式(VI)中の(Ar1)~(Ar4)で表される構造である。式(VI)中のRは、互いに同一であっても異なっていてもよく、水素原子、炭素数1以上10以下の炭化水素基、ハロゲン元素、フェニル基、ベンジル基などのアリール基、およびグリシジルエーテルを含む有機基から選ばれる基である。)
 さらに上記以外のエポキシ樹脂としてはナフトール型エポキシ樹脂、ナフタレンジオール型エポキシ樹脂、2官能ないし4官能エポキシ型ナフタレン樹脂、ナフチレンエーテル型エポキシ樹脂などのナフタレン型エポキシ樹脂が好ましい。これにより、積層板の耐熱性、低熱膨張性をさらに向上させることができる。
 また、ベンゼン環に比べナフタレン環のπ-πスタッキング効果が高いため、低熱膨張性、低熱収縮性にとくに優れる。さらに、多環構造のため剛直効果が高く、ガラス転移温度がとくに高いため、リフロー前後の熱収縮変化が小さい。
 ナフトール型エポキシ樹脂としては、例えば、下記一般式(VII-1)、ナフタレンジオール型エポキシ樹脂としては下記式(VII-2)、2官能ないし4官能エポキシ型ナフタレン樹脂としては下記式(VII-3)(VII-4)(VII-5)、ナフチレンエーテル型エポキシ樹脂としては、例えば、下記一般式(VII-6)で示すことができる。
Figure JPOXMLDOC01-appb-C000007
(nは平均1以上6以下の数を示す。Rはグリシジル基または炭素数1以上10以下の炭化水素基を示す。)
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
(式中、Rは水素原子またはメチル基を表す。Rはそれぞれ独立的に水素原子、炭素原子数1~4のアルキル基、アラルキル基、ナフタレン基、またはグリシジルエーテル基含有ナフタレン基を表す。oおよびmはそれぞれ0~2の整数であって、かつ、oまたはmのいずれか一方は1以上である。)
 エポキシ樹脂の含有量の下限は、とくに限定されないが、樹脂組成物全体において1質量%以上が好ましく、2質量%以上がより好ましい。含有量が上記下限値以上であると、シアネート樹脂の反応性が向上し、得られる製品の耐湿性を向上させることができる。エポキシ樹脂の含有量の上限は、とくに限定されないが、55質量%以下が好ましく、40質量%以下がより好ましい。含有量が上記上限値以下であると、積層板の耐熱性をより向上させることができる。
 エポキシ樹脂の重量平均分子量(Mw)の下限は、とくに限定されないが、Mw500以上が好ましく、Mw800以上がより好ましい。Mwが上記下限値以上であると、樹脂層103にタック性が生じるのを抑制することができる。Mwの上限は、とくに限定されないが、Mw20,000以下が好ましく、Mw15,000以下がより好ましい。Mwが上記上限値以下であると、プリプレグ作製時、繊維基材への樹脂組成物の含浸性が向上し、より均一な製品を得ることができる。エポキシ樹脂のMwは、例えばGPCで測定することができる。
 熱硬化性樹脂としてシアネート樹脂(とくにノボラック型シアネート樹脂、ナフトール型シアネート樹脂、ジシクロペンタジエン型シアネート樹脂)やエポキシ樹脂(アリールアルキレン型エポキシ樹脂、とくにビフェニルジメチレン型エポキシ樹脂、縮合環芳香族炭化水素構造を有するノボラック型エポキシ樹脂、ナフタレン型エポキシ樹脂)を用いる場合、さらにフェノール樹脂を用いることが好ましい。
 フェノール樹脂としては、例えば、ノボラック型フェノール樹脂、レゾール型フェノール樹脂、アリールアルキレン型フェノール樹脂などが挙げられる。フェノール樹脂として、これらの中の1種類を単独で用いてよいし、異なる重量平均分子量を有する2種類以上を併用して用いてもよく、1種類または2種類以上と、それらのプレポリマーとを併用して用いてもよい。これらの中でも、とくにアリールアルキレン型フェノール樹脂が好ましい。これにより、積層板の吸湿半田耐熱性をさらに向上させることができる。
 アリールアルキレン型フェノール樹脂としては、例えばキシリレン型フェノール樹脂、ビフェニルジメチレン型フェノール樹脂などが挙げられる。ビフェニルジメチレン型フェノール樹脂は、例えば、下記一般式(VIII)で示すことができる。
Figure JPOXMLDOC01-appb-C000011
 上記一般式(VIII)で示されるビフェニルジメチレン型フェノール樹脂の繰り返し単位nは任意の整数である。nの下限は、とくに限定されないが、1以上が好ましく、とくに2以上が好ましい。nが上記下限値以上であると、積層板の耐熱性をより向上させることができる。また、繰り返し単位nの上限は、とくに限定されないが、12以下が好ましく、とくに8以下が好ましい。また、nが上記上限値以下であると、他の樹脂との相溶性が向上し、樹脂組成物の作業性を向上させることができる。
 前述のシアネート樹脂(とくにノボラック型シアネート樹脂、ナフトール型シアネート樹脂、ジシクロペンタジエン型シアネート樹脂)やエポキシ樹脂(アリールアルキレン型エポキシ樹脂、とくにビフェニルジメチレン型エポキシ樹脂、縮合環芳香族炭化水素構造を有するノボラック型エポキシ樹脂、ナフタレン型エポキシ樹脂)とアリールアルキレン型フェノール樹脂との組合せにより、樹脂層103の架橋密度をコントロールし、樹脂組成物の反応性を容易に制御することができる。
 フェノール樹脂の含有量の下限は、とくに限定されないが、樹脂組成物全体において1質量%以上が好ましく、5質量%以上がより好ましい。フェノール樹脂の含有量が上記下限値以上であると、積層板の耐熱性を向上させることができる。また、フェノール樹脂の含有量の上限は、とくに限定されないが、樹脂組成物全体において55質量%以下が好ましく、40質量%以下がより好ましい。フェノール樹脂の含有量が上記上限値以下であると、積層板の低熱膨張の特性を向上させることができる。
 フェノール樹脂の重量平均分子量(Mw)の下限は、とくに限定されないが、Mw400以上が好ましく、Mw500以上がより好ましい。Mwが上記下限値以上であると、樹脂層103にタック性が生じるのを抑制することができる。また、フェノール樹脂のMwの上限は、とくに限定されないが、Mw18,000以下が好ましく、Mw15,000以下がより好ましい。Mwが上記上限値以下であるとプリプレグの作製時、繊維基材への樹脂組成物の含浸性が向上し、より均一な製品を得ることができる。フェノール樹脂のMwは、例えばGPCで測定することができる。
 さらに、シアネート樹脂(とくにノボラック型シアネート樹脂、ナフトール型シアネート樹脂、ジシクロペンタジエン型シアネート樹脂)とフェノール樹脂(アリールアルキレン型フェノール樹脂、とくにビフェニルジメチレン型フェノール樹脂)とエポキシ樹脂(アリールアルキレン型エポキシ樹脂、とくにビフェニルジメチレン型エポキシ樹脂、縮合環芳香族炭化水素構造を有するノボラック型エポキシ樹脂、ナフタレン型エポキシ樹脂)との組合せを用いて基板(とくにプリント配線基板)を作製した場合、とくに優れた寸法安定性を得ることができる。
 また、樹脂組成物は無機充填材を含むことが好ましい。これにより、積層板を薄型化しても、より一層優れた機械的強度を付与することができる。さらに、積層板の低熱膨張化をより一層向上させることができる。
 無機充填材としては、例えば、タルク、焼成クレー、未焼成クレー、マイカ、ガラスなどのケイ酸塩、酸化チタン、アルミナ、ベーマイト、シリカ、溶融シリカなどの酸化物、炭酸カルシウム、炭酸マグネシウム、ハイドロタルサイトなどの炭酸塩、水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウムなどの水酸化物、硫酸バリウム、硫酸カルシウム、亜硫酸カルシウムなどの硫酸塩または亜硫酸塩、ホウ酸亜鉛、メタホウ酸バリウム、ホウ酸アルミニウム、ホウ酸カルシウム、ホウ酸ナトリウムなどのホウ酸塩、窒化アルミニウム、窒化ホウ素、窒化ケイ素、窒化炭素などの窒化物、チタン酸ストロンチウム、チタン酸バリウムなどのチタン酸塩などを挙げることができる。
 無機充填材として、これらの中の1種類を単独で用いてもよく、2種類以上を併用して用いてもよい。これらの中でも、シリカが好ましく、溶融シリカ(とくに球状溶融シリカ)が低熱膨張性に優れる点でより好ましい。溶融シリカの形状には破砕状および球状がある。繊維基材への含浸性を確保するためには、樹脂組成物の溶融粘度を下げるため球状シリカを使うなど、その目的にあわせた使用方法を採用することができる。
 無機充填材の平均粒子径の下限は、とくに限定されないが、0.01μm以上が好ましく、0.1μm以上がより好ましい。無機充填材の粒径が上記下限値以上であると、ワニスの粘度が高くなるのを抑制でき、プリプレグ作製時の作業性を向上させることができる。また、平均粒子径の上限は、とくに限定されないが、5.0μm以下が好ましく、2.0μm以下がより好ましい。充填材の粒径が上記上限値以下であると、ワニス中で充填剤の沈降などの現象を抑制でき、より均一な樹脂層103を得ることができる。また、内層基板の導体回路がL/Sが20/20μmを下回る際には、配線間の絶縁性に影響を与えるのを抑制することができる。
 無機充填材の平均粒子径は、例えば、レーザー回折式粒度分布測定装置(HORIBA製、LA-500)により、粒子の粒度分布を体積基準で測定し、そのメディアン径(D50)を平均粒子径とする。
 また、無機充填材は、とくに限定されないが、平均粒子径が単分散の無機充填材を用いてもよいし、平均粒子径が多分散の無機充填材を用いてもよい。さらに平均粒子径が単分散および/または多分散の無機充填材を1種類または2種類以上で併用して用いてもよい。
 また、本実施形態の樹脂材料は、レーザー回折散乱式粒度分布測定法による体積基準粒度分布におけるメディアン径d50が100nm以下のナノシリカ(とくに球状ナノシリカ)を含むのが好ましい。上記ナノシリカは、粒径の大きい無機充填材の隙間や繊維基材のストランド中に存在できるため、ナノシリカを含むことにより、無機充填材の充填性をさらに向上させることができる。
 無機充填材の含有量は、とくに限定されないが、樹脂組成物全体において20質量%以上80質量%以下が好ましく、30質量%以上75質量%以下がより好ましい。含有量が上記範囲内であると、積層板をより一層低熱膨張、低吸水とすることができる。
 また、本実施の形態に用いる樹脂組成物は、ゴム成分も配合することができ、例えば、ゴム粒子を用いることができる。ゴム粒子の好ましい例としては、コアシェル型ゴム粒子、架橋アクリロニトリルブタジエンゴム粒子、架橋スチレンブタジエンゴム粒子、アクリルゴム粒子、シリコーン粒子などが挙げられる。
 コアシェル型ゴム粒子は、コア層とシェル層とを有するゴム粒子であり、例えば、外層のシェル層がガラス状ポリマーで構成され、内層のコア層がゴム状ポリマーで構成される2層構造、または外層のシェル層がガラス状ポリマーで構成され、中間層がゴム状ポリマーで構成され、コア層がガラス状ポリマーで構成される3層構造のものなどが挙げられる。ガラス状ポリマー層は、例えば、メタクリル酸メチルの重合物などで構成され、ゴム状ポリマー層は、例えば、ブチルアクリレート重合物(ブチルゴム)などで構成される。コアシェル型ゴム粒子の具体例としては、スタフィロイドAC3832、AC3816N(商品名、ガンツ化成社製)、メタブレンKW-4426(商品名、三菱レイヨン社製)が挙げられる。架橋アクリロニトリルブタジエンゴム(NBR)粒子の具体例としては、XER-91(平均粒子径0.5μm、JSR社製)などが挙げられる。
 架橋スチレンブタジエンゴム(SBR)粒子の具体例としては、XSK-500(平均粒子径0.5μm、JSR社製)などが挙げられる。アクリルゴム粒子の具体例としては、メタブレンW300A(平均粒子径0.1μm)、W450A(平均粒子径0.2μm)(三菱レイヨン社製)などが挙げられる。
 シリコーン粒子は、オルガノポリシロキサンで形成されたゴム弾性微粒子であればとくに限定されず、例えば、シリコーンゴム(オルガノポリシロキサン架橋エラストマー)そのものからなる微粒子、および二次元架橋主体のシリコーンからなるコア部を三次元架橋型主体のシリコーンで被覆したコアシェル構造粒子などが挙げられる。シリコーンゴム微粒子としては、KMP-605、KMP-600、KMP-597、KMP-594(信越化学社製)、トレフィルE-500、トレフィルE-600(東レ・ダウコーニング社製)などの市販品を用いることができる。
 ゴム粒子の含有量は、とくに限定されないが、上記の無機充填材を合わせて、樹脂組成物全体に基づいて20質量%以上80質量%以下が好ましく、30質量%以上75質量%以下がより好ましい。含有量が上記範囲内であると、積層板をより一層低吸水とすることができる。
 このほか、必要に応じて、樹脂組成物にはカップリング剤、硬化促進剤、硬化剤、熱可塑性樹脂、有機充填材などの添加剤を適宜配合することができる。本実施形態で用いられる樹脂組成物は、上記成分を有機溶剤などにより溶解および/または分散させた液状形態で好適に用いることができる。
 カップリング剤の使用により、熱硬化性樹脂と無機充填材との界面の濡れ性が向上し、繊維基材に対して樹脂組成物を均一に定着させることができる。したがって、カップリング剤を使用することにより、積層板の耐熱性、とくに吸湿後の半田耐熱性を改良することができる。
 カップリング剤としては、カップリング剤として通常用いられるものであれば使用できるが、具体的にはエポキシシランカップリング剤、カチオニックシランカップリング剤、アミノシランカップリング剤、チタネート系カップリング剤およびシリコーンオイル型カップリング剤の中から選ばれる1種以上のカップリング剤を使用することが好ましい。これにより、熱硬化性樹脂と無機充填材との界面の濡れ性を向上させることができ、その結果、積層板の耐熱性をより一層向上させることができる。
 カップリング剤の含有量の下限は、無機充填材の比表面積に依存するのでとくに限定されないが、無機充填材100質量部に対して0.05質量部以上が好ましく、0.1質量部以上がより好ましい。カップリング剤の含有量が上記下限値以上であると、無機充填材を十分に被覆することができるため、熱硬化性樹脂と無機充填材との界面の濡れ性をより一層向上させることができ、その結果、積層板の耐熱性をより一層向上させることができる。また、カップリング剤の含有量の上限は、とくに限定されないが、3質量部以下が好ましく、2質量部以下がより好ましい。カップリング剤の含有量が上記上限値以下であると、カップリング剤が熱硬化性樹脂の反応に影響を与えるのを抑制でき、得られる積層板の曲げ強度などの低下を抑制することができる。
 硬化促進剤としては公知のものを用いることができる。例えば、ナフテン酸亜鉛、ナフテン酸コバルト、オクチル酸スズ、オクチル酸コバルト、ビスアセチルアセトナートコバルト(II)、トリスアセチルアセトナートコバルト(III)などの有機金属塩、トリエチルアミン、トリブチルアミン、ジアザビシクロ[2,2,2]オクタンなどの3級アミン類、2-フェニル-4-メチルイミダゾール、2-エチル-4-エチルイミダゾール、2-フェニル-4-エチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシイミダゾール、2-フェニル-4,5-ジヒドロキシイミダゾールなどのイミダゾール類、フェノール、ビスフェノールA、ノニルフェノールなどのフェノール化合物、酢酸、安息香酸、サリチル酸、パラトルエンスルホン酸などの有機酸、オニウム塩化合物、またはこれらの混合物などが挙げられる。硬化促進剤として、これらの中の誘導体も含めて1種類を単独で用いてもよいし、これらの誘導体も含めて2種類以上を併用して用いてもよい。
 オニウム塩化合物は、とくに限定されないが、例えば、下記一般式(IX)で表されるオニウム塩化合物を用いることができる。
Figure JPOXMLDOC01-appb-C000012
 (式中、Pはリン原子である。R、R、RおよびRは、それぞれ、置換もしくは無置換の芳香環または複素環を有する有機基、あるいは置換もしくは無置換の脂肪族基を示し、互いに同一であっても異なっていてもよい。Aは分子外に放出しうるプロトンを少なくとも1個以上分子内に有するn(n≧1)価のプロトン供与体のアニオン、またはその錯アニオンを示す。)
 硬化促進剤の含有量の下限は、とくに限定されないが、樹脂材料全体の0.005質量%以上が好ましく、とくに0.008質量%以上が好ましい。含有量が上記下限値以上であると、硬化を促進する効果を十分に発揮することができる。硬化促進剤の含有量の上限は、とくに限定されないが、樹脂材料全体の5質量%以下が好ましく、2質量%以下がより好ましい。含有量が上記上限値以下であるとプリプレグの保存性をより向上させることができる。
 樹脂組成物では、フェノキシ樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリフェニレンオキサイド樹脂、ポリエーテルスルホン樹脂、ポリエステル樹脂、ポリエチレン樹脂、ポリスチレン樹脂などの熱可塑性樹脂、スチレン-ブタジエン共重合体、スチレン-イソプレン共重合体などのポリスチレン系熱可塑性エラストマー、ポリオレフィン系熱可塑性エラストマー、ポリアミド系エラストマー、ポリエステル系エラストマーなどの熱可塑性エラストマー、ポリブタジエン、エポキシ変性ポリブタジエン、アクリル変性ポリブタジエン、メタクリル変性ポリブタジエンなどのジエン系エラストマーを併用してもよい。
 フェノキシ樹脂としては、例えば、ビスフェノール骨格を有するフェノキシ樹脂、ナフタレン骨格を有するフェノキシ樹脂、アントラセン骨格を有するフェノキシ樹脂、ビフェニル骨格を有するフェノキシ樹脂などが挙げられる。また、これらの骨格を複数種有した構造のフェノキシ樹脂を用いることもできる。
 これらの中でも、フェノキシ樹脂には、ビフェニル骨格およびビスフェノールS骨格を有するフェノキシ樹脂を用いることが好ましい。これにより、ビフェニル骨格が有する剛直性により、フェノキシ樹脂のガラス転移温度を高くすることができるとともに、ビスフェノールS骨格の存在により、フェノキシ樹脂と金属との密着性を向上させることができる。その結果、積層板の耐熱性の向上を図ることができるとともに、プリント配線基板を製造する際に、積層板に対する配線層の密着性を向上させることができる。また、フェノキシ樹脂には、ビスフェノールA骨格およびビスフェノールF骨格を有するフェノキシ樹脂を用いることも好ましい。これにより、プリント配線基板の製造時に、積層板に対する配線層の密着性をさらに向上させることができる。
 また、下記一般式(X)で表されるビスフェノールアセトフェノン構造を有するフェノキシ樹脂を用いるのも好ましい。
Figure JPOXMLDOC01-appb-C000013
(式中、Rは互いに同一であっても異なっていてもよく、水素原子、炭素数1以上10以下の炭化水素基またはハロゲン元素から選ばれる基である。Rは、水素原子、炭素数1以上10以下の炭化水素基またはハロゲン元素から選ばれる基である。R は、水素原子または炭素数1以上10以下の炭化水素基であり、mは0以上5以下の整数である。)
 ビスフェノールアセトフェノン構造を含むフェノキシ樹脂は、嵩高い構造を持っているため、溶剤溶解性や、配合する熱硬化性樹脂成分との相溶性に優れる。また、ビスフェノールアセトフェノン構造を含むフェノキシ樹脂を含むと、低粗度で均一な粗面を有する樹脂層103を形成することができるため、積層板の微細配線形成性をより向上させることができる。
 ビスフェノールアセトフェノン構造を有するフェノキシ樹脂は、エポキシ樹脂とフェノール樹脂を触媒で高分子量化させる方法など公知の方法で合成することができる。
 ビスフェノールアセトフェノン構造を有するフェノキシ樹脂は、一般式(X)のビスフェノールアセトフェノン構造以外の構造が含まれていても良く、その構造はとくに限定されないが、ビスフェノールA型、ビスフェノールF型、ビスフェノールS型、ビフェニル型、フェノールノボラック型、クレゾールノボラック型の構造などが挙げられる。これらの中でも、ビフェニル型の構造を含むものが、積層板のガラス転移温度をより向上させることができる点から好ましい。
 ビスフェノールアセトフェノン構造を含むフェノキシ樹脂中の一般式(X)のビスフェノールアセトフェノン構造の含有量はとくに限定されないが、好ましくは5モル%以上95モル%以下であり、より好ましくは10モル%以上85モル%以下であり、さらに好ましくは15モル%以上75モル%以下である。含有量が上記下限値以上であると、積層板の耐熱性およびプリント配線基板の耐湿信頼性を向上させる効果を十分に発揮させることができる。また、含有量が上記上限値以下であると、フェノキシ樹脂の溶剤溶解性を向上させることができる。
 フェノキシ樹脂の重量平均分子量(Mw)は、とくに限定されないが、Mw5,000以上100,000以下が好ましく、10,000以上70,000以下がより好ましく、20,000以上50,000以下がとくに好ましい。Mwが上記上限値以下であると、他の樹脂との相溶性や溶剤への溶解性を向上させることができる。上記下限値以上であると、製膜性が向上し、プリント配線基板の製造に用いる場合に不具合が発生するのを抑制することができる。
 フェノキシ樹脂の含有量は、とくに限定されないが、充填材を除く樹脂材料の0.5質量%以上40質量%以下が好ましく、とくに1質量%以上20質量%以下が好ましい。含有量が上記下限値以上であると樹脂層103の機械強度の低下や、導体回路とのメッキ密着性の低下を抑制することができる。上記上限値以下であると、樹脂基板100の熱膨張率の増加を抑制でき、耐熱性を低下させることができる。
 さらに、樹脂組成物には、必要に応じて、顔料、染料、消泡剤、レベリング剤、紫外線吸収剤、発泡剤、酸化防止剤、難燃剤、イオン捕捉剤などの上記成分以外の添加物を添加してもよい。
 顔料としては、カオリン、合成酸化鉄赤、カドミウム黄、ニッケルチタン黄、ストロンチウム黄、含水酸化クロム、酸化クロム、アルミ酸コバルト、合成ウルトラマリン青などの無機顔料、フタロシアニンなどの多環顔料、アゾ顔料などが挙げられる。
 染料としては、イソインドリノン、イソインドリン、キノフタロン、キサンテン 、ジケトピロロピロール、ペリレン、ペリノン 、アントラキノン、インジゴイド 、オキサジン、キナクリドン、ベンツイミダゾロン、ビオランスロン 、フタロシアニン、アゾメチンなどが挙げられる。
(プリプレグの製造方法)
 本実施形態におけるプリプレグ100は、上述した本実施形態における有機繊維基材101に一または二以上の上記の樹脂組成物を含浸させ、その後、半硬化させて得られる。このような構造のシート状材料は、誘電特性、高温多湿下での機械的、電気的接続信頼性などの各種特性に優れ、プリント配線基板用の積層板の製造に適しており、好ましい。
 本実施形態におけるプリプレグ100は、例えば、以下の工程により作製することができる。
 (1)50℃以上150℃以下の範囲における線膨張係数が0ppm/℃以下の有機繊維基材101を準備する工程
 (2)有機繊維基材101について、B-Aを0.30%以下に調整する工程
 (3)有機繊維基材101に熱硬化性樹脂を含む樹脂組成物を含浸させ、含浸させた樹脂組成物を半硬化する工程
 ここで、AおよびBは上述した重量減少率AおよびBと同様の手順で算出することができる。
 有機繊維基材101について、B-Aを0.30%以下に調整する方法は、とくに限定されないが、例えば、上述した有機繊維基材101をアニール処理する方法が挙げられる。
 本実施形態で用いられる樹脂組成物を有機繊維基材101に含浸させる方法としては、とくに限定されないが、例えば、樹脂組成物を溶剤に溶かして樹脂ワニスを調製し、有機繊維基材101を樹脂ワニスに浸漬する方法、各種コーターにより有機繊維基材101に樹脂ワニスを塗布する方法、スプレーにより樹脂ワニスを有機繊維基材101に吹き付ける方法、支持基材付き樹脂層を有機繊維基材101にラミネートする方法などが挙げられる。
 とくに、有機繊維基材101の厚さが0.15mm以下の場合、支持基材付き樹脂層を有機繊維基材101にラミネートする方法が好ましい。これにより、有機繊維基材101に対する樹脂組成物の含浸量を自在に調節でき、プリプレグ100の成形性をさらに向上できる。なお、フィルム状の樹脂層をラミネートする場合、真空のラミネート装置などを用いることがより好ましい。
(積層板)
 つぎに、本実施形態における積層板の構成について説明する。本実施形態における積層板は、上記のプリプレグ100を硬化して得られるプリプレグの硬化体を含んでいる。
 本実施形態における積層板の反りの防止効果をより効果的に得るためには、とくに限定されないが、積層板の動的粘弾性測定による周波数1Hzでのガラス転移温度が、好ましくは180℃以上であり、より好ましくは200℃以上であり、さらに好ましくは230℃以上であり、とくに好ましくは250℃以上である。上限値については、高ければ高いほど好ましいのでとくに限定するものではないが、例えば、350℃以下とすることができる。
 本実施形態における積層板は、動的粘弾性測定によるガラス転移温度が上記範囲を満たすと、積層板の剛性が高まり、実装時の積層板の反りをより一層低減することができる。
 また、積層板の反りの防止効果をより効果的に得るためには、とくに限定されないが、積層板の250℃での動的粘弾性測定による貯蔵弾性率E'が、好ましくは5GPa以上であり、より好ましくは10GPa以上であり、とくに好ましくは15GPa以上である。上限値については、高ければ高いほど好ましいのでとくに限定するものではないが、例えば、50GPa以下とすることができる。
 本実施形態における積層板は、250℃での貯蔵弾性率E'が上記範囲を満たすと、積層板の剛性が高まり、実装時の積層板の反りをより一層低減できる。
 本実施形態における積層板の厚さは、好ましくは、0.01mm以上0.6mm以下である。より好ましくは0.02mm以上0.4mm以下であり、とくに好ましくは0.04mm以上0.3mm以下である。積層板の厚さが上記範囲内であると、機械的強度および生産性のバランスがとくに優れ、薄型プリント配線基板に適した積層板を得ることができる。
 本実施形態における積層板の面方向の50℃以上150℃以下の範囲における線膨張係数は、好ましくは-10ppm/℃以上5ppm/℃以下であり、より好ましくは-8ppm/℃以上4ppm/℃以下、とくに好ましくは-5ppm/℃以上3ppm/℃以下である。積層板の線膨張係数が上記範囲内であると、配線パターンを形成したプリント配線基板、半導体素子を搭載した半導体パッケージ200の反り抑制や温度サイクル信頼性の向上がより一層効果的に得られる。さらに半導体パッケージ200を二次実装した場合のマザーボードとの温度サイクル信頼性の向上がより一層効果的に得られる。
 また、本実施形態における積層板は、とくに限定されないが、無機繊維基材を含有するプリプレグと、上述した有機繊維基材101を含むプリプレグ100と、無機繊維基材を含有するプリプレグと、をこの順に積層して得られる積層板としてもよい。
 無機繊維基材を積層板の外側に配置することによって、有機繊維基材101の曲げ弾性率を補強し、積層板の剛性をさらに高めて、積層板の単体反りをより一層低減できる。
(無機繊維基材) 
 無機繊維基材としては、とくに限定されないが、ガラスクロス、ガラス不織布などのガラス繊維基材、カーボンクロス、炭素繊維織物などの炭素繊維基材、ロックウールなどの人造鉱物基材などが挙げられる。これらの中でも、強度、吸水率の点からガラス繊維基材が好ましい。また、ガラス繊維基材を用いることにより、積層板の熱膨張係数をさらに小さくすることができる。
 本実施形態で用いるガラス繊維基材としては、坪量(1mあたりの繊維基材の重量)が好ましくは4g/m以上150g/m以下であり、より好ましくは8g/m以上110g/m以下であり、さらに好ましくは12g/m以上60g/m以下である。
 坪量が上記上限値以下であると、ガラス繊維基材中の樹脂組成物の含浸性が向上し、ストランドボイドや絶縁信頼性の低下の発生を抑制することができる。また炭酸ガス、UV、エキシマなどのレーザーによるスルーホールの形成を容易にすることができる。また、坪量が上記下限値以上であると、ガラス繊維基材やプリプレグの強度を向上させることができる。その結果、ハンドリング性が向上したり、プリプレグの作製が容易となったり、積層板の反りの低減効果の低下を抑制したりすることができる。
 上記ガラス繊維基材の中でも、線膨張係数が6ppm/℃以下のガラス繊維基材であることが好ましく、3.5ppm/℃以下のガラス繊維基材であることがより好ましい。このような線膨張係数を有するガラス繊維基材を用いることにより、本実施形態の積層板の反りをさらに抑制することができる。
 また、本実施形態で用いるガラス繊維基材は、ヤング率が好ましくは60GPa以上100GPa以下であり、より好ましくは65GPa以上92GPa以下であり、とくに好ましくは86GPa以上92GPa以下である。このようなヤング率を有するガラス繊維基材を用いることにより、例えば、半導体実装時のリフロー熱によるプリント配線基板の変形を効果的に抑制することができるので、電子部品の接続信頼性を向上させることができる。
 また、本実施形態で用いるガラス繊維基材は、1MHzでの誘電率が好ましくは3.8以上7.0以下であり、より好ましくは3.8以上6.8以下であり、とくに好ましくは3.8以上5.5以下である。このような誘電率を有するガラス繊維基材を用いることにより、積層板の誘電率をさらに低減することができるため、高速信号を用いた半導体パッケージに当該積層板を好適に用いることができる。
 上記のような線膨張係数、ヤング率および誘電率を有するガラス繊維基材として、例えば、Tガラス、Sガラス、Eガラス、NEガラス、および石英ガラスからなる群から選ばれる少なくとも一種を含むガラス繊維基材が好適に用いられる。
 ガラス繊維基材の厚みは、とくに限定されないが、好ましくは5μm以上100μm以下であり、より好ましくは10μm以上60μm以下、さらに好ましくは12μm以上35μm以下である。このような厚みを有するガラス繊維基材を用いることにより、プリプレグ製造時のハンドリング性をさらに向上させることができ、また、積層板の反り低減効果を向上させることができる。
 ガラス繊維基材の厚みが上記上限値以下であると、繊維基材中の樹脂材料の含浸性が向上し、ストランドボイドや絶縁信頼性の低下の発生を抑制することができる。また炭酸ガス、UV、エキシマなどのレーザーによるスルーホールの形成を容易にすることができる。また、ガラス繊維基材の厚みが上記下限値以上であると、ガラス繊維基材やプリプレグの強度が向上させることができる。その結果、ハンドリング性が向上したり、プリプレグの作製が容易となったり、積層板の反りの低減効果の低下を抑制したりすることができる。
 また、ガラス繊維基材の使用枚数は、一枚に限らず、薄い繊維基材を複数枚重ねて使用することも可能である。なお、繊維基材を複数枚重ねて使用する場合は、その合計の厚みが上記の範囲を満たせばよい。
 無機繊維基材を含有するプリプレグの構成材料や製造方法は、上述した有機繊維基材101を含有するプリプレグ100に準じた構成材料や製造方法を採用することができる。
(積層板の製造方法)
 つづいて、上記で得られたプリプレグ100を用いた積層板の製造方法について説明する。プリプレグ100を用いた積層板の製造方法は、とくに限定されないが、例えば以下の通りである。
 得られたプリプレグから支持基材を剥離後、プリプレグの外側の上下両面または片面に金属箔を重ね、ラミネーター装置やベクレル装置を用いて高真空条件下でこれらを接合する、あるいはそのままプリプレグの外側の上下両面または片面に金属箔を重ねる。 
 つぎに、プリプレグに金属箔を重ねたものを真空プレス機で加熱、加圧するかあるいは乾燥機で加熱することにより、積層板を得ることができる。
 金属箔の厚みは、例えば、0.5μm以上18μm以下であり。好ましくは1μm以上12μm以下である。金属箔の厚みが上記範囲内であると、微細パターンが形成可能であり、積層板をより薄型化することができる。
 金属箔を構成する金属としては、例えば、銅および銅系合金、アルミおよびアルミ系合金、銀および銀系合金、金および金系合金、亜鉛および亜鉛系合金、ニッケルおよびニッケル系合金、錫および錫系合金、鉄および鉄系合金、コバール(商標名)、42アロイ、インバーまたはスーパーインバーなどのFe-Ni系の合金、WまたはMoなどが挙げられる。また、キャリア付電解銅箔なども使用することができる。
 上記加熱処理する方法としては、とくに限定されないが、例えば、熱風乾燥装置、赤外線加熱装置、加熱ロール装置、平板状の熱盤プレス装置などを用いて実施することができる。熱風乾燥装置または赤外線加熱装置を用いた場合は、上記接合したものに実質的に圧力を作用させることなく実施することができる。また、加熱ロール装置または平板状の熱盤プレス装置を用いた場合は、上記接合したものに所定の圧力を作用させることで実施することができる。
 加熱処理する際の温度は、とくに限定されないが、用いる樹脂が溶融し、かつ樹脂の硬化反応が急速に進行しないような温度域とすることが好ましい。樹脂が溶融する温度としては好ましくは120℃以上であり、より好ましくは150℃以上である。また、樹脂の硬化反応が急速に進行しない温度としては好ましくは250℃以下、より好ましくは230℃以下である。
 また、加熱処理する時間は用いる樹脂の種類などにより異なるため、とくに限定されないが、例えば、30分間以上180分間以下とすることができる。
 また、加圧する圧力は、とくに限定されないが、例えば、0.2MPa以上5MPa以下が好ましく、2MPa以上4MPa以下がより好ましい。
 また、金属箔の代わりに、本実施形態における積層板の少なくとも一方の面にフィルムを積層してもよい。フィルムとしては、例えば、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリイミド、フッ素系樹脂などを挙げることができる。
(プリント配線基板および半導体パッケージ)
 つづいて、本実施形態におけるプリント配線基板および半導体パッケージ200について説明する。
 積層板213は、図2に示すような半導体パッケージ200に用いることができる。プリント配線基板および半導体パッケージ200の製造方法としては、例えば、以下のような方法がある。
 積層板213に層間接続用のスルーホール215を形成し、サブトラクティブ工法、セミアディティブ工法などにより配線層を作製する。その後、必要に応じてビルドアップ層(図2では図示しない)を積層して、アディティブ工法により層間接続および回路形成する工程を繰り返す。そして、必要に応じてソルダーレジスト層201を積層して、上記に準じた方法で回路形成することにより、プリント配線基板を得ることができる。ここで、一部あるいは全てのビルドアップ層およびソルダーレジスト層201は繊維基材を含んでも構わないし、含まなくても構わない。
 つぎに、ソルダーレジスト層201全面にフォトレジストを塗布した後に、フォトレジストの一部を除去してソルダーレジスト層201の一部を露出させる。なお、ソルダーレジスト層201には、フォトレジストの機能を持ったレジストを使用することもできる。この場合は、フォトレジストの塗布の工程を省略できる。つぎに、露出したソルダーレジスト層201の除去をおこなって、開口部209を形成する。
 つづいて、リフロー処理をおこなうことによって、半導体素子203を配線パターンの一部である接続端子205上に半田バンプ207を介して固着させる。その後、半導体素子203、半田バンプ207などを封止材211で封止することによって、図2に示すような半導体パッケージ200を得ることができる。
(半導体装置)
 つづいて、本実施形態における半導体装置300について説明する。
 半導体パッケージ200は、図3に示すような半導体装置300に用いることができる。半導体装置300の製造方法としてはとくに限定されないが、例えば、以下のような方法がある。
 はじめに、得られた半導体パッケージ200のソルダーレジスト層201の開口部209に半田ペーストを供給し、リフロー処理をおこなうことによって半田バンプ301を形成する。また、半田バンプ301は、あらかじめ作製した半田ボールを開口部209に取り付けることによっても形成できる。
 つぎに、実装基板303の接続端子305と半田バンプ301とを接合することによって半導体パッケージ200を実装基板303に実装し、図3に示した半導体装置300が得られる。
 以上説明したように、本実施形態によれば、半田耐熱性に優れ、かつ、リフローなどの加熱時に生じる反りが抑制された積層板213用プリプレグ100を提供することができる。とくに、プリプレグ100を使用した積層板213は厚みが薄い場合でも、反りの発生を効果的に抑制することができる。そして、積層板213を使用したプリント配線基板は、半田耐熱性、反り、寸法安定性などの機械的特性、成形性に優れたものである。したがって、本実施形態における積層板213は、高密度化、高多層化が要求されるプリント配線板など、信頼性が要求される用途に好適に用いることができる。
 また、本実施形態における積層板213は、上述の回路加工およびそれ以後の各プロセスにおいても反りの発生が低減される。そのため、半導体パッケージ200は、反りおよびクラックが発生しにくく、薄型化が可能である。したがって、半導体パッケージ200を含む半導体装置300は、接続信頼性を向上させることができる。
 以上、本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。例えば、本実施形態では、プリプレグが1層の場合を示したが、プリプレグを2層以上積層したものを用いて積層板を作製してもよい。
 また、本実施形態における積層板にビルドアップ層をさらに積層した構成を取ることもできる。
 以下、本発明を実施例および比較例により説明するが、本発明はこれらに限定されるものではない。なお、実施例では、部はとくに特定しない限り質量部を表す。また、それぞれの厚みは平均膜厚で表わされている。
 実施例および比較例では、以下の原料を用いた。
 エポキシ樹脂A:クレゾールノボラック型エポキシ樹脂(DIC社製、HP-5000)
 エポキシ樹脂B:ナフチレンエーテル型エポキシ樹脂(DIC社製、HP-6000)
シアネート樹脂:ノボラック型シアネート樹脂(ロンザジャパン社製、プリマセットPT-30)
フェノール樹脂:ナフトールアラルキル型フェノール樹脂(東都化成社製、SN-485)
 充填材A:球状溶融シリカ(アドマテックス社製、SO-32R、平均粒径1μm)
 充填材B:球状溶融シリカ(トクヤマ社製、NSS-5N、平均粒径75nm)
カップリング剤A:γ-グリシドキシプロピルトリメトキシシラン(GE東芝シリコーン社製、A187)
硬化触媒:上記一般式(IX)に該当するオニウム塩化合物のリン系触媒(住友ベークライト社製、C05-MB)
有機繊維基材AI:ポリパラフェニレンベンズビスオキサゾール樹脂繊維織布(旭化成イーマテリアルズ社製、054Z-HM、スタイル054Z、フィラメント径:12μm、フィラメント数:33本/束、縦55本/25mm、横55本/25mm、坪量:23.8g/m、表面処理:シランカップリング剤処理、線膨張係数(25~150℃):-6ppm/℃、ヤング率270GPa、繊維基材の厚み43μm、誘電率:3.0(0.1GHz))
有機繊維基材AII:ポリパラフェニレンベンズビスオキサゾール樹脂繊維織布(旭化成イーマテリアルズ社製、116Z-HM、スタイル116Z、フィラメント径:12μm、フィラメント数:66本/束、縦49本/25mm、横49本/25mm、坪量:43.3g/m、通気度:20.8cm/cm/sec、表面処理:シランカップリング剤処理、線膨張係数(25~150℃):-6ppm/℃、ヤング率270GPa、繊維基材厚み65μm、誘電率:3.0(0.1GHz))
有機繊維基材AIII:ポリパラフェニレンベンズビスオキサゾール樹脂繊維織布(旭化成イーマテリアルズ社製、273Z-HM、スタイル273Z、フィラメント径:12μm、フィラメント数:132本/束、縦41本/25mm、横41本/25mm、坪量:90.3g/m、表面処理:シランカップリング剤処理、線膨張係数(25~150℃):-6ppm/℃、ヤング率270GPa、繊維基材厚み126μm、誘電率:3.0(0.1GHz))
有機繊維基材B:ポリパラフェニレンベンズビスオキサゾール樹脂繊維織布(旭化成イーマテリアルズ社製、116Z-AS、スタイル116Z、フィラメント径:12μm、フィラメント数:66本/束、縦49本/25mm、横49本/25mm、坪量:43.3g/m、通気度:20.8cm/cm/sec、表面処理:シランカップリング剤処理、線膨張係数(25~150℃):-6ppm/℃、ヤング率180GPa、繊維基材厚み65μm、誘電率:3.0(0.1GHz))
有機繊維基材C:アラミド樹脂繊維織布(旭化成イーマテリアルズ社製、086T、スタイル086T、フィラメント径:12μm、フィラメント数:48本/束、縦55本/25mm、横55本/25mm、坪量:34.7g/m、通気度:25cm/cm/sec、表面処理:シランカップリング剤処理、線膨張係数(25~150℃):-6ppm/℃、ヤング率73GPa、繊維基材厚み60μm、誘電率:3.6(1GHz))
(実施例1)
 以下の手順を用いて、本実施形態における積層板を作製した。
1-1.樹脂組成物のワニスAの調製
 エポキシ樹脂Aとしてクレゾールノボラック型エポキシ樹脂(DIC社製、HP-5000)13.7質量部、シアネート樹脂としてノボラック型シアネート樹脂(ロンザジャパン社製、プリマセットPT-30)13.7質量部、をメチルエチルケトンに溶解、分散させた。さらに、充填材Aとして球状溶融シリカ(アドマテックス社製、SO-32R、平均粒径1μm)、64.7質量部、充填剤Bとして球状溶融シリカ(トクヤマ社製、NSS-5N、平均粒径75nm)7.0質量部、とカップリング剤としてγ-グリシドキシプロピルトリメトキシシラン(GE東芝シリコーン社製、A187)0.4質量部、硬化触媒としてオニウム塩化合物のリン系触媒(住友ベークライト社製、C05-MB)0.5質量部、を添加して、高速撹拌装置を用いて30分間撹拌して、不揮発分70質量%となるように調整し、樹脂組成物のワニス(樹脂ワニスA)を調製した。
2-1.有機繊維基材AIのアニール処理
 有機繊維基材を下記の装置内に配置し、下記の条件でアニール処理をおこなった。
 装置:クリーンオーブン(光洋サーモシステム社製、CLO-21-CDH-S)
 雰囲気:窒素雰囲気
 温度:250℃
 時間:1時間
2-2.有機繊維基材の熱重量分析
 ここで、示差熱熱重量同時測定装置(セイコ-インスツルメンツ社製、TG/DTA6200型)を用いて、上記アニール処理した有機繊維基材AIについて下記の2つの工程を順次おこない、下記式(1)~(2)から重量減少率A、Bをそれぞれ算出した。また得られた重量減少率の差(B-A)を算出した。
 予備乾燥工程:乾燥窒素気流下、110℃で1時間保持した際の重量減少量aを測定した。
 測定工程:乾燥窒素気流下、昇温速度10℃/分の条件により25℃から300℃まで昇温した際の重量減少量bを測定した。
  A[%]=100×a/W    (1)
  B[%]=100×b/(W-a)  (2)
 ここで、(A)予備乾燥工程前の有機繊維基材の重量をWとし、(A)予備乾燥工程での重量減少量をaとし、(B)測定工程での重量減少量をbとする。
3.プリプレグの製造
 アニール処理した有機繊維基材AIに得られた樹脂ワニスAを含浸し、150℃の加熱炉で2分間乾燥して、プリプレグを得た。このとき、有機繊維基材層の厚みが43μmであり、当該有機繊維基材層の両面には同じ厚さ(3.5μm)の樹脂層が設けられ、厚みは50μmであった。
4.積層板の製造
 得られたプリプレグの両面に厚さ12μmの銅箔(古河電工社製、GST-12)を配置し、220℃、3MPaで2時間加熱加圧成形することにより、積層板を得た。得られた積層板の絶縁層の厚みは、50μmであった。
5.プリント配線板の製造
 上記で得られた積層板の両面に回路パターン(残銅率70%、L/S=50/50μm)を形成した。次いで、回路表面にソルダーレジスト(太陽インキ社製、PSR800/AUS410)を形成し、半導体素子との接続端子部を露光・現像で開口露出させた。次いで、開口部の接続端子上へ、無電解ニッケルめっき、無電解金めっき、および半田めっきを形成した。得られた基板を14mm×14mmサイズに切断し、半導体パッケージ用のプリント配線板を得た。
6.半導体パッケージの製造
 半導体パッケージ用のプリント配線板上に、半田バンプを有する半導体素子(TEGチップ、サイズ8mm×8mm、厚み100μm)を、フリップチップボンダー装置により、加熱圧着により搭載した。つぎに、IRリフロー炉で半田バンプを溶融接合した後、液状封止樹脂(住友ベークライト社製、CRP-X4120B3)を充填し、当該液状封止樹脂を硬化させることで半導体パッケージ(以下、PKGとも呼ぶ。)を得た。なお、液状封止樹脂は、温度150℃、120分の条件で硬化させた。また、半導体素子の半田バンプは、Sn/Ag/Cu組成の鉛フリー半田で形成されたものを用いた。
(実施例2~5、比較例1~4)
 実施例2~5および比較例1~4では、有機繊維基材の種類、アニール処理の有無、絶縁層の厚みを表1および表2のように変えた以外は実施例1と同様の方法で積層板、プリント配線基板および半導体パッケージを製造した。
(実施例6)
 実施例6では、樹脂ワニスの種類を下記の樹脂ワニスBに変え、さらに有機繊維基材の種類、アニール処理の有無、絶縁層の厚みを表2のように変えた以外は実施例1と同様の方法で積層板、プリント配線基板および半導体パッケージを製造した。
(樹脂組成物のワニスBの調製)
 エポキシ樹脂Bとしてナフチレンエーテル型エポキシ樹脂(DIC社製、HP-6000)10.8重量部、シアネート樹脂としてノボラック型シアネート樹脂(ロンザジャパン社製、プリマセットPT-30)14.0重量部、フェノール樹脂としてナフトールアラルキル型フェノール樹脂(東都化成社製、SN-485)5.0重量部をメチルエチルケトンに溶解、分散させた。さらに、充填材Aとして球状シリカ(アドマテックス社製、SO-32R、平均粒径1μm)65.0重量部、充填材Bとして球状シリカ(トクヤマ社製、NSS-5N、平均粒径75nm)5.0重量部、カップリング剤Aとしてγ-グリシドキシプロピルトリメトキシシラン(GE東芝シリコーン社製、A187)0.2重量部を添加して、高速撹拌装置を用いて30分間撹拌して、不揮発分50重量%となるように調整し、樹脂組成物のワニス(樹脂ワニスB)を調製した。
(評価)
 実施例および比較例により得られた積層板および半導体パッケージについて、つぎの各評価をおこなった。各評価を以下に示す。また、得られた結果を表1および表2に示す。
(1)貯蔵弾性率およびガラス転移温度の測定
 貯蔵弾性率およびガラス転移温度の測定は、動的粘弾性測定(DMA)でおこなった。
 得られた積層板から8mm×40mmのテストピースを切り出し、TAインスツルメント製DMA2980を用いて昇温速度5℃/min、周波数1Hzでおこない、250℃での貯蔵弾性率を算出した。なお、ガラス転移温度は、1Hzにおいてtanδが最大値を示す温度とした。
(2)線膨張係数
 実施例および比較例で作製した積層板4mm×15mmのテストピースを切り出し、TMA(TAインスツルメント社製、Q400)を用いて10℃/分の引っ張り条件で0℃~300℃まで昇温させ、50~150℃における面方向の線膨張係数を測定した。
(3)半田耐熱性
 50mm×50mm角のサンプルの片面の半分以外の全銅箔をエッチング除去し、プレッシャークッカー試験機(エスペック社製)を用いて、121℃、2気圧で2時間処理した。次いで、260℃の半田槽に60秒間浸漬させて、外観変化の異常の有無を目視にて観察した。
(○:異常なし、×:膨れ、剥がれが発生)
(4)PKGの反り(室温、および室温から260℃までの変化量)
 PKGの反り量(半導体パッケージの反り)は、チップ面を加熱冷却可能なチャンバー上に置いて、25℃と260℃の雰囲気下で、BGA面から基板(サイズ:14mm×14mm)上の13mm×13mm部分での室温(25℃)における反り量、および25℃から260℃までの反り量を測定した。なお、サンプルは上記実施例および比較例で作製した半導体パッケージを用いた。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1および表2からわかるように、実施例1~6の積層板は、比較例1~4の積層板に比べて、ガラス転移温度および弾性率を高く保持したまま、積層板の熱膨張率を低下させることができた。その結果、実施例1~6の積層板は、比較例1~4の積層板に比べて、半田耐熱性が優れていた。また、実施例1~6の半導体パッケージは、比較例1~4の半導体パッケージに比べて、反りが抑制されていた。
 本発明は以下の態様も取り得る。
[1]
 50℃から150℃までの線膨張係数が0ppm/℃以下の有機繊維基材に熱硬化性樹脂を含浸してなるプリプレグであって、
 上記有機繊維基材は、熱重量測定装置により、
 (A)当該有機繊維基材を110℃で1時間保持して重量減少率Aを測定する予備乾燥工程と、
 (B)当該有機繊維基材を25℃から300℃に10℃/分で昇温して重量減少率Bを測定する測定工程と、
を順次おこなった際の、
 B-Aにより算出される値が0.3%未満である、プリプレグ。
[2]
 上記[1]に記載のプリプレグにおいて、
 上記有機繊維基材が、ポリパラフェニレンベンズビスオキサゾール、芳香族ポリエステル樹脂、全芳香族ポリアミド、およびポリイミドベンズオキサゾール、より選ばれる少なくとも1種以上の耐熱性樹脂から構成される、プリプレグ。
[3]
 上記[1]または[2]に記載のプリプレグにおいて、
 上記有機繊維基材を構成する有機繊維のヤング率が、70GPa以上400GPa以下である、プリプレグ。
[4]
 上記[1]乃至[3]いずれか一つに記載のプリプレグにおいて、
 上記有機繊維基材を構成する有機繊維の1GHzでの誘電率が、2.5以上4.5以下である、プリプレグ。
[5]
 上記[1]乃至[4]いずれか一つに記載のプリプレグの硬化体を含む、積層板。
[6]
 上記[5]に記載の積層板において、
 当該積層板の動的粘弾性測定による周波数1Hzでのガラス転移温度が、180℃以上350℃以下である、積層板。
[7]
 上記[5]または[6]に記載の積層板において、
 当該積層板の面方向の50℃から150℃までの線膨張係数が、-10ppm/℃以上5ppm/℃以下である、積層板。
[8]
 上記[5]乃至[7]いずれか一つに記載の積層板において、
 当該積層板の250℃での動的粘弾性測定による貯蔵弾性率が、5GPa以上50GPa以下である、積層板。
[9]
 上記[5]乃至[8]いずれか一つに記載の積層板を含む回路基板に半導体素子が搭載された、半導体パッケージ。
[10]
 上記[9]に記載の半導体パッケージを含む、半導体装置。
 この出願は、2011年8月9日に出願された日本出願特願2011-173872号を基礎とする優先権を主張し、その開示の全てをここに取り込む。

Claims (15)

  1.  50℃以上150℃以下の範囲における線膨張係数が0ppm/℃以下の有機繊維基材に、熱硬化性樹脂を含む樹脂組成物を含浸してなるプリプレグであって、
     前記有機繊維基材は、熱重量測定装置により、
     (A)前記有機繊維基材を110℃で1時間保持して重量減少率Aを測定する予備乾燥工程と、
     (B)前記有機繊維基材を25℃から300℃に10℃/分で昇温して重量減少率Bを測定する測定工程と、
    を順次おこなった際の、
     B-Aにより算出される値が0.30%以下である、プリプレグ。
  2.  請求項1に記載のプリプレグにおいて、
     前記有機繊維基材を構成する有機繊維が、ポリパラフェニレンベンズビスオキサゾール樹脂、芳香族ポリエステル樹脂、全芳香族ポリアミド樹脂、およびポリイミドベンズオキサゾール樹脂、からなる群より選ばれる少なくとも1種以上の耐熱性樹脂から構成される、プリプレグ。
  3.  請求項1または2に記載のプリプレグにおいて、
     前記有機繊維基材は織布基材である、プリプレグ。
  4.  請求項1乃至3いずれか一項に記載のプリプレグにおいて、
     前記有機繊維基材を構成する有機繊維のヤング率が、70GPa以上400GPa以下である、プリプレグ。
  5.  請求項1乃至4いずれか一項に記載のプリプレグにおいて、
     前記有機繊維基材を構成する有機繊維の1GHzでの誘電率が、2.5以上4.5以下である、プリプレグ。
  6.  請求項1乃至5いずれか一項に記載のプリプレグの硬化体を含む、積層板。
  7.  請求項1乃至5いずれか一項に記載のプリプレグの硬化体の少なくとも一方の面に金属箔が積層された、積層板。
  8.  請求項6または7に記載の積層板において、
     当該積層板の動的粘弾性測定による周波数1Hzでのガラス転移温度が、180℃以上350℃以下である、積層板。
  9.  請求項6乃至8いずれか一項に記載の積層板において、
     当該積層板の面方向の50℃以上150℃以下の範囲における線膨張係数が、-10ppm/℃以上5ppm/℃以下である、積層板。
  10.  請求項6乃至9いずれか一項に記載の積層板において、
     当該積層板の250℃での動的粘弾性測定による貯蔵弾性率が、5GPa以上50GPa以下である、積層板。
  11.  請求項6乃至10いずれか一項に記載の積層板を回路加工してなる、プリント配線基板。
  12.  請求項11に記載のプリント配線基板に半導体素子が搭載された、半導体パッケージ。
  13.  請求項12に記載の半導体パッケージを含む、半導体装置。
  14.  50℃以上150℃以下の範囲における線膨張係数が0ppm/℃以下の有機繊維基材を準備する工程と、
     前記有機繊維基材について、
      熱重量測定装置により、
       前記有機繊維基材を110℃で1時間保持して測定する重量減少率Aと、
       前記有機繊維基材を25℃から300℃に10℃/分で昇温して測定する重量減少率Bと、
      から算出される、B-Aを0.30%以下に調整する工程と、
     前記有機繊維基材に熱硬化性樹脂を含む樹脂組成物を含浸させ、前記樹脂組成物を半硬化する工程と、
    を含む、プリプレグの製造方法。
  15.  請求項14に記載のプリプレグの製造方法において、
     前記有機繊維基材をアニール処理することにより、前記有機繊維基材のB-Aを0.30%以下に調整する、プリプレグの製造方法。
PCT/JP2012/004896 2011-08-09 2012-08-01 プリプレグ、積層板、プリント配線基板、半導体パッケージおよび半導体装置 WO2013021587A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-173872 2011-08-09
JP2011173872 2011-08-09

Publications (1)

Publication Number Publication Date
WO2013021587A1 true WO2013021587A1 (ja) 2013-02-14

Family

ID=47668125

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/004896 WO2013021587A1 (ja) 2011-08-09 2012-08-01 プリプレグ、積層板、プリント配線基板、半導体パッケージおよび半導体装置

Country Status (3)

Country Link
JP (1) JP2013053303A (ja)
TW (1) TW201313794A (ja)
WO (1) WO2013021587A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014240456A (ja) * 2013-06-11 2014-12-25 住友ベークライト株式会社 プライマー層付きプリプレグ、金属張積層板、プリント配線基板および半導体パッケージ

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102280892B1 (ko) * 2013-12-31 2021-07-23 에스케이이노베이션 주식회사 폴리이미드 적층체와 그 제조방법 및 태양전지
KR102419891B1 (ko) 2017-08-14 2022-07-13 삼성전자주식회사 회로 기판 및 이를 이용한 반도체 패키지

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0393837A (ja) * 1989-09-05 1991-04-18 Kanebo Ltd 繊維強化樹脂複合材料の製造方法
JP2003192809A (ja) * 2001-12-28 2003-07-09 Mitsubishi Paper Mills Ltd 耐熱絶縁性シート
JP2007169422A (ja) * 2005-12-21 2007-07-05 Matsushita Electric Works Ltd プリプレグ、プリント配線板用積層板及び多層積層板
JP2009079311A (ja) * 2007-09-25 2009-04-16 Panasonic Electric Works Co Ltd 電子材料積層板用の織物とプリプレグ、並びに積層板
WO2009093412A1 (ja) * 2008-01-25 2009-07-30 Kuraray Co., Ltd. 高強力・高弾性率シート状物

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0393837A (ja) * 1989-09-05 1991-04-18 Kanebo Ltd 繊維強化樹脂複合材料の製造方法
JP2003192809A (ja) * 2001-12-28 2003-07-09 Mitsubishi Paper Mills Ltd 耐熱絶縁性シート
JP2007169422A (ja) * 2005-12-21 2007-07-05 Matsushita Electric Works Ltd プリプレグ、プリント配線板用積層板及び多層積層板
JP2009079311A (ja) * 2007-09-25 2009-04-16 Panasonic Electric Works Co Ltd 電子材料積層板用の織物とプリプレグ、並びに積層板
WO2009093412A1 (ja) * 2008-01-25 2009-07-30 Kuraray Co., Ltd. 高強力・高弾性率シート状物

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014240456A (ja) * 2013-06-11 2014-12-25 住友ベークライト株式会社 プライマー層付きプリプレグ、金属張積層板、プリント配線基板および半導体パッケージ

Also Published As

Publication number Publication date
JP2013053303A (ja) 2013-03-21
TW201313794A (zh) 2013-04-01

Similar Documents

Publication Publication Date Title
JP6410405B2 (ja) 樹脂基板、プリプレグ、プリント配線基板、半導体装置
WO2012140908A1 (ja) 積層板、回路基板、および半導体パッケージ
KR101524898B1 (ko) 에폭시 수지 조성물, 수지 시트, 프리프레그, 다층 프린트 배선판 및 반도체 장치
JP6083127B2 (ja) 積層板、ビルドアップ層付き積層板、回路基板、半導体パッケージおよび積層板の製造方法
JP6480650B2 (ja) 金属張積層板、プリント配線基板、半導体パッケージ、半導体装置および金属張積層板の製造方法
JPWO2017170643A1 (ja) 熱硬化性樹脂組成物、キャリア付樹脂膜、プリプレグ、金属張積層板、樹脂基板、プリント配線基板および半導体装置
JP2013180406A (ja) プリプレグ、基板、半導体装置、プリプレグの製造方法、基板の製造方法、および半導体装置の製造方法
JP6281184B2 (ja) 金属張積層板、プリント配線基板、半導体パッケージ、および半導体装置
JP6008104B2 (ja) プリプレグおよび金属張積層板
WO2013021587A1 (ja) プリプレグ、積層板、プリント配線基板、半導体パッケージおよび半導体装置
JP6808985B2 (ja) 樹脂膜、キャリア付樹脂膜、プリント配線基板および半導体装置
JP6217069B2 (ja) 樹脂基板、金属張積層板、プリント配線基板、および半導体装置
JP6540452B2 (ja) 回路基板用樹脂組成物、プリプレグ、金属張積層板、回路基板、および半導体パッケージ
WO2014192421A1 (ja) プリント配線板および半導体装置
JP2013006328A (ja) 積層板、回路基板、および半導体パッケージ
JP7342358B2 (ja) 樹脂組成物、それを用いたキャリア付樹脂膜、プリプレグ、積層板、プリント配線基板および半導体装置
JP5935314B2 (ja) 半導体装置の製造方法
WO2013172008A1 (ja) 半導体装置および半導体装置の製造方法
JP2018035301A (ja) プリプレグ、金属張積層板、プリント配線基板および半導体パッケージ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12822189

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12822189

Country of ref document: EP

Kind code of ref document: A1