JPWO2017170643A1 - 熱硬化性樹脂組成物、キャリア付樹脂膜、プリプレグ、金属張積層板、樹脂基板、プリント配線基板および半導体装置 - Google Patents

熱硬化性樹脂組成物、キャリア付樹脂膜、プリプレグ、金属張積層板、樹脂基板、プリント配線基板および半導体装置 Download PDF

Info

Publication number
JPWO2017170643A1
JPWO2017170643A1 JP2018508125A JP2018508125A JPWO2017170643A1 JP WO2017170643 A1 JPWO2017170643 A1 JP WO2017170643A1 JP 2018508125 A JP2018508125 A JP 2018508125A JP 2018508125 A JP2018508125 A JP 2018508125A JP WO2017170643 A1 JPWO2017170643 A1 JP WO2017170643A1
Authority
JP
Japan
Prior art keywords
group
thermosetting resin
resin composition
resin
wiring board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018508125A
Other languages
English (en)
Inventor
大東 範行
範行 大東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Publication of JPWO2017170643A1 publication Critical patent/JPWO2017170643A1/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/35Heterocyclic compounds having nitrogen in the ring having also oxygen in the ring
    • C08K5/357Six-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04105Bonding areas formed on an encapsulation of the semiconductor or solid-state body, e.g. bonding areas on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16227Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73267Layer and HDI connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15313Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a land array, e.g. LGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • H01L2924/3511Warping

Abstract

本発明の熱硬化性樹脂組成物は、プリント配線基板における絶縁層を形成するために用いられる熱硬化性樹脂組成物であって、不飽和二重結合を有する基を含有する所定のベンゾオキサジン化合物と、マレイミド化合物、エポキシ樹脂およびシアネート樹脂のうちの少なくとも一種を含有する熱硬化性樹脂と、無機充填材と、を含む。また、ベンゾオキサジン化合物は、不飽和二重結合を有する基として、炭素数3〜14のアルケニル基を含む。また、かかる不飽和二重結合を有する基は、アリル基であることが好ましい。

Description

本発明は、熱硬化性樹脂組成物、キャリア付樹脂膜、プリプレグ、金属張積層板、樹脂基板、プリント配線基板および半導体装置に関する。
これまでの封止用樹脂組成物においては、耐熱性の観点から様々な開発が行われてきた。この種の技術として、たとえば特許文献1に記載の封止用樹脂組成物が挙げられる。同文献には、封止用樹脂組成物として、ビスマレイミド化合物とPd型ベンゾオキサジンとを用いることにより、耐熱性を向上させることができることが記載されている(特許文献1の段落0040、実施例)。
特開2012−97207号公報
しかしながら、近年の半導体パッケージの製造プロセスにおいて大面積化がますます進んできている。こうした開発環境を踏まえ、本発明者が検討したところ、上記文献に記載の封止用樹脂組成物の硬化物においては、製造プロセス中におけるプリント配線基板の反りの点で改善の余地を有していることが判明した。
本発明者は、プリント配線基板における絶縁層の形成に用いる熱硬化性樹脂組成物に関してさらに検討し、ベンゾオキサジン化合物の官能基に応じた反応の多様性に着眼した。このような着眼点に基づいて検討した結果、官能基として、不飽和二重結合を有する基を含有するベンゾオキサジン化合物を用いることにより、熱硬化性樹脂組成物の硬化特性を高められることが判明した。
このような知見に基づいて、鋭意検討したところ、不飽和二重結合を有する基を含有するベンゾオキサジン化合物とマレイミド化合物、エポキシ樹脂およびシアネート樹脂のうちの少なくとも一種を含有する熱硬化性樹脂とを併用することにより、得られる硬化物の線膨張係数を低くすることができることが判明した。そして、得られる硬化物の線膨張係数が低くなることにより、製造プロセス中におけるプリント配線基板の反りを抑制できることを見出し、本発明を完成するに至った。
本発明によれば、
プリント配線基板における絶縁層を形成するために用いられる熱硬化性樹脂組成物であって、
不飽和二重結合を有する基を含有する、後述する一般式(B−1)または(B−2)で表されるベンゾオキサジン化合物と、
マレイミド化合物、エポキシ樹脂およびシアネート樹脂のうちの少なくとも一種を含有する熱硬化性樹脂と、
無機充填材と、を含む熱硬化性樹脂組成物が提供される。
また本発明によれば、
キャリア基材と、
前記キャリア基材上に設けられている、上記熱硬化性樹脂組成物から形成される樹脂膜と、を備えるキャリア付樹脂膜が提供される。
また本発明によれば、
上記熱硬化性樹脂組成物を繊維基材に含浸してなるプリプレグが提供される。
また本発明によれば、
上記プリプレグの硬化物と、当該硬化物の少なくとも一面に配置された金属層とを備える金属張積層板が提供される。
また本発明によれば、
上記熱硬化性樹脂組成物の硬化物で構成された絶縁層を備える樹脂基板が提供される。
また本発明によれば、
上記金属張積層板または上記樹脂基板と、上記金属張積層板または上記樹脂基板の表面に形成された回路層とを備えるプリント配線基板が提供される。
また本発明によれば、
上記プリント配線基板と、
前記プリント配線基板の回路層上に搭載された、または前記プリント配線基板に内蔵された半導体素子と、を備える半導体装置が提供される。
本発明によれば、低反り性に優れた絶縁層が得られる熱硬化性樹脂組成物、それを用いたキャリア付樹脂膜、プリプレグ、金属張積層板、樹脂基板、プリント配線基板および半導体装置が提供される。
図1は、本実施形態におけるキャリア付樹脂膜の構成の一例を示す断面図である。 図2(a)および(b)は、本実施形態におけるプリント配線基板の構成の一例を示す断面図である。 図3(a)および(b)は、本実施形態における半導体装置の構成の一例を示す断面図である。 図4(a)〜(c)は、本実施形態におけるプリント配線基板の製造プロセスの一例を示す工程断面図である。 図5は、本実施形態におけるプリント配線基板の構成の一例を示す断面図である。 図6は、本実施形態におけるプリント配線基板の構成の一例を示す断面図である。
以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。
本実施形態の熱硬化性樹脂組成物は、不飽和二重結合を有する基を含有する、下記一般式(B−1)または(B−2)で表されるベンゾオキサジン化合物と、マレイミド化合物、エポキシ樹脂およびシアネート樹脂のうちの少なくとも一種を含有する熱硬化性樹脂と、無機充填材と、を含む。
Figure 2017170643
(上記一般式(B−1)中、aはそれぞれ独立に1以上3以下の整数を表し、pは1以上4以下の整数を表す。R、Rはそれぞれ独立して、水素原子、低級アルキル基、アルケニル基、シクロアルキル基、アリール基、アラルキル基、または1〜4価の有機基を表すが、RおよびRのうちの少なくとも一方が、炭素数3〜14のアルケニル基を有する基である(ただし、pが2以上4以下の整数の場合には、Rが、同一または異なっていてもよい)。Zは、1〜4価の有機基を表す。)
Figure 2017170643
(上記一般式(B−2)中、bはそれぞれ独立に1以上4以下の整数を表し、qは1以上4以下の整数を表す。Rは、それぞれ独立して、水素原子、低級アルキル基、アルケニル基、シクロアルキル基、アリール基、アラルキル基、または1〜4価の有機基を表し、Xは、1〜4価の有機基を表すが、RおよびXのうちの少なくとも一方が、炭素数3〜14のアルケニル基を有する基である。)
このような熱硬化性樹脂組成物は、プリント配線基板における絶縁層を形成するために用いられる。
本発明者は、プリント配線基板における絶縁層の形成に用いる熱硬化性樹脂組成物に関してさらに検討し、ベンゾオキサジン化合物の官能基に応じた反応の多様性に着眼した。
このような着眼点に基づいて検討した結果、官能基として、不飽和二重結合を有する基を含有するベンゾオキサジン化合物を用いることにより、熱硬化性樹脂組成物の硬化特性を高められることが判明した。本実施形態において、不飽和二重結合を有する基としては、例えば、炭素数3〜14のアルケニル基であり、アリル基が好ましい。
このような知見に基づいて、鋭意検討したところ、不飽和二重結合を有する基を含有する、上記一般式(B−1)または(B−2)で表されるベンゾオキサジン化合物とマレイミド化合物、エポキシ樹脂およびシアネート樹脂のうちの少なくとも一種を含有する熱硬化性樹脂とを併用することにより、得られる硬化物の線膨張係数を低くすることができる。このため、製造プロセス中におけるプリント配線基板の反りを抑制できることを見出し、本発明を完成するに至った。
詳細なメカニズムは定かでないが、不飽和二重結合を有する基を含有するベンゾオキサジン化合物の開環重合、マレイミド化合物などの熱硬化性樹脂への触媒作用や熱硬化性樹脂との架橋反応、等の多様な反応機構により、熱硬化性樹脂組成物の硬化特性を高めることができると考えられる。
また、本実施形態によれば、熱硬化性樹脂組成物の硬化特性を高められるため、得られる硬化物の線膨張係数を低くすることができる。また、このような熱硬化性樹脂組成物は、低温硬化に優れた硬化特性を有している。本実施形態の熱硬化性樹脂組成物から形成される樹脂膜の硬化物を用いることにより、製造プロセス中における硬化温度を低く設定できるため、プリント配線基板の反りを効果的に低減することができる。
また、本実施形態によれば、熱硬化性樹脂組成物中の多様な反応により、架橋密度を高めることができる。そのため、得られる硬化物の耐熱性を高めることができる。つまり、本実施形態の熱硬化性樹脂組成物の硬化物の構造は、耐熱分解性に優れる。
このように、本実施形態の樹脂膜の硬化物をプリント配線基板の絶縁層に利用することにより、絶縁層の線膨張係数を低くするとともに、硬化温度を低い値に設定できる。そのため、大面積のパネルサイズパッケージを製造するパネルレベルプロセス中において、パネルの反りを抑制することができる。
本実施形態において、プリント配線基板における絶縁層は、コア層、ビルドアップ層(層間絶縁層)、ソルダーレジスト層等のプリント配線基板を構成する絶縁性部材に用いることができる。上記プリント配線基板としては、コア層、ビルドアップ層(層間絶縁層)、ソルダーレジスト層を有するプリント配線基板、コア層を有しないプリント配線基板、パネルパッケージプロセス(PLP)に用いられるコアレス基板、MIS(Molded Interconnect Substrate)基板等が挙げられる。
本実施形態の熱硬化性樹脂組成物から形成される樹脂膜の硬化物は、上記絶縁層に用いられる。係る硬化物は、例えば、コア層を有しないプリント配線基板におけるビルドアップ層やソルダーレジスト層、PLPに用いられるコアレス基板の層間絶縁層やソルダーレジスト層、MIS基板の層間絶縁層やソルダーレジスト層、等に用いることもできる。このように、本実施形態の樹脂膜の硬化物は、複数の半導体パッケージを一括して作成するために利用させる大面積のプリント配線基板において、当該プリント配線基板を構成する層間絶縁層やソルダーレジスト層にも好適に用いることができる。
また、本実施形態の熱硬化性樹脂組成物の利用形態としては、特に限定されないが、例えば、上記熱硬化性樹脂組成物から形成される樹脂膜、上記樹脂膜をキャリア基材上に設けたキャリア付樹脂膜、上記熱硬化性樹脂組成物を繊維基材に含浸してなるプリプレグ、上記プリプレグの硬化物の少なくとも一面に金属層が配置された金属張積層板、上記熱硬化性樹脂組成物の硬化物で構成された絶縁層を備える樹脂基板、上記金属張積層板または上記樹脂基板の表面に回路層が形成されたプリント配線基板等が挙げられる。
次に、本実施形態の熱硬化性樹脂組成物の各成分について説明する。
本実施形態の熱硬化性樹脂組成物は、例えば、熱硬化性樹脂と、ベンゾオキサジン化合物と、無機充填材と、を含む。
(熱硬化性樹脂)
熱硬化性樹脂としては、例えば、マレイミド化合物、エポキシ樹脂、およびシアネート樹脂のうちの少なくとも一種を含むことができる。これらを単独で用いても2種以上を組み合わせて用いてもよい。
(マレイミド化合物)
本実施形態の熱硬化性樹脂組成物は、マレイミド化合物を含むことができる。
本実施形態において、マレイミド化合物のマレイミド基は、5員環の平面構造を有している。また、マレイミド基の二重結合は、分子間で相互作用しやすく極性が高い。そのため、マレイミド基、ベンゼン環、その他の平面構造を有する化合物等と強い分子間相互作用を示し、分子運動を抑制することができる。そのため、熱硬化性樹脂組成物は、マレイミド化合物を含むことにより、得られる絶縁層の線膨張係数を下げ、ガラス転移温度を向上させることができ、さらに、耐熱性を向上させることができる。
上記マレイミド化合物としては、分子内に少なくとも2つのマレイミド基を有するマレイミド化合物が好ましい。
分子内に少なくとも2つのマレイミド基を有するマレイミド化合物としては、例えば、4,4'−ジフェニルメタンビスマレイミド、m−フェニレンビスマレイミド、p−フェニレンビスマレイミド、2,2−ビス[4−(4−マレイミドフェノキシ)フェニル]プロパン、ビス−(3−エチル−5−メチル−4−マレイミドフェニル)メタン、4−メチル−1,3−フェニレンビスマレイミド、N,N'−エチレンジマレイミド、N,N'−ヘキサメチレンジマレイミド、ビス(4−マレイミドフェニル)エーテル、ビス(4−マレイミドフェニル)スルホン、3,3−ジメチル−5,5−ジエチル−4,4−ジフェニルメタンビスマレイミド、ビスフェノールAジフェニルエーテルビスマレイミド等の分子内に2つのマレイミド基を有する化合物、ポリフェニルメタンマレイミド等の分子内に3つ以上のマレイミド基を有する化合物等が挙げられる。
これらの中の1種類を単独で用いることもできるし、2種類以上を併用することもできる。これらのマレイミド化合物の中でも、低吸水率である点等から、4,4'−ジフェニルメタンビスマレイミド、2,2−ビス[4−(4−マレイミドフェノキシ)フェニル]プロパン、ビス−(3−エチル−5−メチル−4−マレイミドフェニル)メタン、ポリフェニルメタンマレイミド、ビスフェノールAジフェニルエーテルビスマレイミドが好ましい。
また、マレイミド化合物としては、下記式(1)により示されるマレイミド化合物を含むことが好ましい。
Figure 2017170643
(上記式(1)において、nは0以上10以下の整数であり、Xはそれぞれ独立に炭素数1以上10以下のアルキレン基、下記式(1a)で表される基、式「−SO−」で表される基、「−CO−」で表される基、酸素原子または単結合であり、Rはそれぞれ独立に炭素数1以上6以下の炭化水素基であり、aはそれぞれ独立に0以上4以下の整数であり、bはそれぞれ独立に0以上3以下の整数である)
Figure 2017170643
(上記式(1a)において、Yは芳香族環を有する炭素数6以上30以下の炭化水素基であり、nは0以上の整数である)
における1以上10以下のアルキレン基としては、特に限定されないが、直鎖状または分岐鎖状のアルキレン基が好ましい。
この直鎖状のアルキレン基としては、具体的には、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、ヘプチレン基、オクチレン基、ノニレン基、デカニレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基等が挙げられる。
また、分岐鎖状のアルキレン基としては、具体的には、−C(CH−(イソプロピレン基)、−CH(CH)−、−CH(CHCH)−、−C(CH)(CHCH)−、−C(CH)(CHCHCH)−、−C(CHCH−のようなアルキルメチレン基;−CH(CH)CH−、−CH(CH)CH(CH)−、−C(CHCH−、−CH(CHCH)CH−、−C(CHCH−CH−のようなアルキルエチレン基等が挙げられる。
なお、Xにおけるアルキレン基の炭素数は、1以上10以下であればよいが、1以上7以下であることが好ましく、1以上3以下であることがより好ましい。具体的には、このような炭素数を有するアルキレン基としては、例えば、メチレン基、エチレン基、プロピレン基、イソプロピレン基が挙げられる。
また、Rは、それぞれ独立して、炭素数1以上6以下の炭化水素基であるが、炭素数1または2の炭化水素基、具体的には、メチル基またはエチル基であるのが好ましい。
さらに、aは0以上4以下の整数であり、0以上2以下の整数であることが好ましく、0であることがより好ましい。また、bは0以上3以下の整数であり、0または1であることが好ましく、0であることがより好ましい。
また、nは0以上10以下の整数であり、0以上6以下の整数であることが好ましく、0以上4以下の整数であるのがより好ましく、0以上3以下の整数であるのが特に好ましい。また、マレイミド化合物は上記式(1)においてnが1以上の化合物を少なくとも含むことがより好ましい。これにより、熱硬化性樹脂組成物から得られる絶縁層はより優れた耐熱性を発揮する。
さらに、上記式(1a)において、Yは芳香族環を有する炭素数6以上30以下の炭化水素基であり、nは0以上の整数である。
この芳香族環を有する炭素数6以上30以下の炭化水素基は、芳香族環のみでもよいし、芳香族環以外の炭化水素基を有していてもよい。Yが有する芳香族環は、1つでもよいし、2つ以上でもよく、2つ以上の場合、これら芳香族環は、同一でも異なっていてもよい。また、上記芳香族環は、単環構造および多環構造のいずれでもよい。
具体的には、芳香族環を有する炭素数6以上30以下の炭化水素基としては、例えば、ベンゼン、ビフェニル、ナフタレン、アントラセン、フルオレン、フェナントレイン、インダセン、ターフェニル、アセナフチレン、フェナレン等の芳香族性を有する化合物の核から水素原子を2つ除いた2価の基が挙げられる。
また、これら芳香族炭化水素基は、置換基を有していてもよい。ここで芳香族炭化水素基が置換基を有するとは、芳香族炭化水素基を構成する水素原子の一部または全部が置換基により置換されたことをいう。置換基としては、例えば、アルキル基が挙げられる。
この置換基としてのアルキル基としては、鎖状のアルキル基であることが好ましい。また、その炭素数は1以上10以下であることが好ましく、1以上6以下であることがより好ましく、1以上4以下であることが特に好ましい。具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、tert−ブチル基、sec−ブチル基等が挙げられる。
このような基Yは、ベンゼンまたはナフタレンから水素原子を2つ除いた基を有することが好ましく、上記式(1a)で表される基としては、下記式(1a−1)、(1a−2)のいずれかで表される基であることが好ましい。これにより、熱硬化性樹脂組成物から得られる絶縁層はより優れた耐熱性を発揮する。
Figure 2017170643
上記式(1a−1)、(1a−2)中、Rは、それぞれ独立に炭素数1以上6以下の炭化水素基である。eは、それぞれ独立に0以上4以下の整数であり、0であることが好ましい。
さらに、上記式(1a)で表される基において、nは、0以上の整数であればよいが、0以上5以下の整数であることが好ましく、1以上3以下の整数であることがより好ましく、1または2であることが特に好ましい。
以上のことから、上記式(1)により示されるマレイミド化合物は、Xが、炭素数1以上3以下の直鎖状もしくは分岐鎖状のアルキレン基であり、Rが1または2の炭化水素基であり、aが0以上2以下の整数であり、bが0または1であり、nが1以上4以下の整数であることが好ましい。または、Xは上記式(1a−1)、(1a−2)のいずれかで表される基であり、eが0であることが好ましい。これにより、熱硬化性樹脂組成物から得られる絶縁層は、より優れた低熱収縮性および耐薬品性を発揮する。
上記式(1)により示されるマレイミド化合物の好ましい具体例としては、例えば、下記式(1−1)により示されるマレイミド化合物が特に好ましく使用される。
Figure 2017170643
また、マレイミド化合物は、上記(1)式により示されるマレイミド化合物とは異なる種類のマレイミド化合物を含んでもよい。
このようなマレイミド化合物としては、1,6'−ビスマレイミド−(2,2,4−トリメチル)ヘキサン、ヘキサメチレンジアミンビスマレイミド、N,N'−1,2−エチレンビスマレイミド、N,N'−1,3−プロピレンビスマレイミド、N,N'−1,4−テトラメチレンビスマレイミド等の脂肪族マレイミド化合物;イミド拡張型ビスマレイミド等を挙げることができる。これらの中でも1,6'−ビスマレイミド−(2,2,4−トリメチル)ヘキサン、イミド拡張型ビスマレイミドが特に好ましい。マレイミド化合物は、単独で使用しても良く、二種類以上を併用してもよい。
イミド拡張型ビスマレイミドとしては、例えば、以下の式(a1)により示されるマレイミド化合物、以下の式(a2)により示されるマレイミド化合物、以下の式(a3)により示されるマレイミド化合物等が挙げられる。式(a1)により示されるマレイミド化合物の具体例のとしてはBMI−1500(デジグナーモレキュールズ社製、分子量1500)等が挙げられる。式(a2)により示されるマレイミド化合物の具体例のとしてはBMI−1700(デジグナーモレキュールズ社製、分子量1700)、BMI−1400(デジグナーモレキュールズ社製、分子量1400)等が挙げられる。式(a3)により示されるマレイミド化合物の具体例のとしてはBMI−3000(デジグナーモレキュールズ社製、分子量3000)等が挙げられる。
Figure 2017170643
上記式(a1)において、nは1以上10以下の整数を示す。
Figure 2017170643
上記式(a2)において、nは1以上10以下の整数を示す。
Figure 2017170643
上記式(a3)において、nは1以上10以下の整数を示す。
上記マレイミド化合物の重量平均分子量(Mw)の下限値は、特に限定されないが、Mw400以上が好ましく、特にMw800以上が好ましい。Mwが上記下限値以上であると、絶縁層にタック性が生じるのを抑制することができる。Mwの上限値は、特に限定されないが、Mw4000以下が好ましく、Mw2500以下がより好ましい。Mwが上記上限値以下であると、絶縁層作製時、ハンドリング性が向上し、絶縁層を形成するのが容易となる。マレイミド化合物のMwは、例えばGPC(ゲルパーミエーションクロマトグラフィー、標準物質:ポリスチレン換算)で測定することができる。
また、マレイミド化合物としては、マレイミド化合物とアミン化合物との反応物を用いることもできる。アミン化合物としては、芳香族ジアミン化合物およびモノアミン化合物から選択される少なくとも1種を用いることができる。
芳香族ジアミン化合物としては、例えば、o−ジアニシジン、o−トリジン、3,3'−ジヒドロキシ−4,4'−ジアミノビフェニル、4,4'−ビス(4−アミノフェノキシ)ビフェニル、2,2'−ジメチル−4,4'−ジアミノビフェニル、m−フェニレンジアミン、p−フェニレンジアミン、o−キシレンジアミン、4,4'−ジアミノジフェニルメタン、4,4'−ジアミノジフェニルプロパン、4,4'−ジアミノジフェニルエーテル、4,4'−ジアミノジフェニルスルホン、3,3'−ジアミノジフェニルスルホン、1,5−ジアミノナフタレン、4,4'−(p−フェニレンジイソプロピリデン)ジアニリン、2,2−[4−(4−アミノフェノキシ)フェニル]プロパン、4,4'−ジアミノ−3,3'−ジメチル−ジフェニルメタン、ビス(4−(4−アミノフェノキシ)フェニル)スルホン等があげられる。
モノアミン化合物としては、例えば、o−アミノフェノール、m−アミノフェノール、p−アミノフェノール、o−アミノ安息香酸、m−アミノ安息香酸、p−アミノ安息香酸、o−アミノベンゼンスルホン酸、m−アミノベンゼンスルホン酸、p−アミノベンゼンスルホン酸、3,5−ジヒドロキシアニリン、3,5−ジカルボキシアニリン、o−アニリン、m−アニリン、p−アニリン、o−メチルアニリン、m−メチルアニリン、p−メチルアニリン、o−エチルアニリン、m−エチルアニリン、p−エチルアニリン、o−ビニルアニリン、m−ビニルアニリン、p−ビニルアニリン、o−アリルアニリン、m−アリルアニリン、p−アリルアニリン等が挙げられる。
マレイミド化合物とアミン化合物との反応は、有機溶媒中で反応させることができる。反応温度は、例えば70〜200℃であり、反応時間は、例えば0.1〜10時間である。
本実施形態において、熱硬化性樹脂組成物中に含まれるマレイミド化合物の含有量は、特に限定されないが、熱硬化性樹脂組成物の全固形分(すなわち、溶媒を除く成分)を100重量%としたとき、1.0重量%以上25.0重量%以下が好ましく、3.0重量%以上20.0重量%以下がより好ましい。マレイミド化合物の含有量が上記範囲内であると、得られる絶縁層の低熱収縮性および耐薬品性のバランスをより一層向上させることができる。
(エポキシ樹脂)
本実施形態の熱硬化性樹脂組成物は、エポキシ樹脂を含むことができる。
本実施形態において、上記エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールE型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールM型エポキシ樹脂(4,4'−(1,3−フェニレンジイソプリジエン)ビスフェノール型エポキシ樹脂)、ビスフェノールP型エポキシ樹脂(4,4'−(1,4−フェニレンジイソプリジエン)ビスフェノール型エポキシ樹脂)、ビスフェノールZ型エポキシ樹脂(4,4'−シクロヘキシジエンビスフェノール型エポキシ樹脂)等のビスフェノール型エポキシ樹脂;フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、テトラフェノール基エタン型ノボラック型エポキシ樹脂、縮合環芳香族炭化水素構造を有するノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂;ビフェニル型エポキシ樹脂;キシリレン型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂等のアラルキル型エポキシ樹脂;ナフチレンエーテル型エポキシ樹脂、ナフトール型エポキシ樹脂、ナフタレンジオール型エポキシ樹脂、2官能ないし4官能ナフタレン型エポキシ樹脂、ビナフチル型エポキシ樹脂、ナフタレンアラルキル型エポキシ樹脂等のナフタレン型エポキシ樹脂;アントラセン型エポキシ樹脂;フェノキシ型エポキシ樹脂;ジシクロペンタジエン型エポキシ樹脂;ノルボルネン型エポキシ樹脂;アダマンタン型エポキシ樹脂;フルオレン型エポキシ樹脂等が挙げられる。
エポキシ樹脂として、これらの中の1種類を単独で用いてもよいし、2種類以上を併用してもよく、1種類または2種類以上とそれらのプレポリマーとを併用してもよい。
エポキシ樹脂の中でも、得られるプリント配線基板の耐熱性および絶縁信頼性をより一層向上できる観点から、ビスフェノール型エポキシ樹脂、ノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、アラルキル型エポキシ樹脂、ナフタレン型エポキシ樹脂、アントラセン型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂のうちの少なくとも一種または二種以上が好ましく、アラルキル型エポキシ樹脂、縮合環芳香族炭化水素構造を有するノボラック型エポキシ樹脂およびナフタレン型エポキシ樹脂のうちの少なくとも一種または二種以上がより好ましい。
ビスフェノールA型エポキシ樹脂としては、三菱化学社製の「エピコート828EL」および「YL980」等を用いることができる。ビスフェノールF型エポキシ樹脂としては、三菱化学社製の「jER806H」および「YL983U」、DIC社製の「EPICLON 830S」等を用いることができる。2官能ナフタレン型エポキシ樹脂としては、DIC社製の「HP4032」、「HP4032D」および「HP4032SS」等を用いることができる。4官能ナフタレン型エポキシ樹脂としては、DIC社製の「HP4700」および「HP4710」等を用いることができる。ナフトール型エポキシ樹脂としては、新日鐵化学社製の「ESN−475V」、日本化薬社製の「NC7000L」等を用いることができる。アラルキル型エポキシ樹脂としては、日本化薬社製の「NC3000」、「NC3000H」、「NC3000L」、「NC3000S」、「NC3000S−H」、「NC3100」、新日鐵化学社製の「ESN−170」、および「ESN−480」等を用いることができる。ビフェニル型エポキシ樹脂としては、三菱化学社製の「YX4000」、「YX4000H」、「YX4000HK」および「YL6121」等を用いることができる。アントラセン型エポキシ樹脂としては、三菱化学社製の「YX8800」等を用いることができる。ナフチレンエーテル型エポキシ樹脂としては、DIC社製の「HP6000」、「EXA−7310」、「EXA−7311」、「EXA−7311L」および「EXA7311−G3」等を用いることができる。
これらエポキシ樹脂の中でも特にアラルキル型エポキシ樹脂が好ましい。アラルキル型エポキシ樹脂を用いることにより、樹脂膜の硬化物の吸湿半田耐熱性および難燃性をさらに向上させることができる。
アラルキル型エポキシ樹脂は、例えば、下記一般式(1)で表される。
Figure 2017170643
(上記一般式(1)中、AおよびBは、ベンゼン環、ビフェニル構造、およびナフタレン構造等の芳香族環を表す。また、AおよびBの芳香族環の水素が置換されていてもよい。置換基としては、例えば、メチル基、エチル基、プロピル基、フェニル基等が挙げられる。nは繰返し単位を表し、例えば、1〜10の整数である。)
アラルキル型エポキシ樹脂の具体例としては、以下の式(1a)および式(1b)が挙げられる。
Figure 2017170643
(式(1a)中、nは、1〜5の整数を示す。)
Figure 2017170643
(式(1b)中、nは、1〜5の整数を示す。)
上記以外のエポキシ樹脂としては縮合環芳香族炭化水素構造を有するノボラック型エポキシ樹脂が好ましい。これにより、耐熱性、低熱膨張性をさらに向上させることができる。
縮合環芳香族炭化水素構造を有するノボラック型エポキシ樹脂は、ナフタレン、アントラセン、フェナントレン、テトラセン、クリセン、ピレン、トリフェニレン、テトラフェン、またはその他の縮合環芳香族炭化水素構造を有するノボラック型エポキシ樹脂である。縮合環芳香族炭化水素構造を有するノボラック型エポキシ樹脂は、複数の芳香環が規則的に配列することができるため低熱膨張性に優れる。また、ガラス転移温度も高いため耐熱性に優れる。さらに、繰返し構造の分子量が大きいため従来のノボラック型エポキシ樹脂に比べ難燃性に優れる。
縮合環芳香族炭化水素構造を有するノボラック型エポキシ樹脂は、フェノール類化合物、アルデヒド類化合物、および縮合環芳香族炭化水素化合物から合成された、ノボラック型フェノール樹脂をエポキシ化した樹脂である。
フェノール類化合物は、特に限定されないが、例えば、フェノール;o−クレゾール、m−クレゾール、p−クレゾール等のクレゾール類;2,3−キシレノール、2,4−キシレノール、2,5−キシレノール、2,6−キシレノール、3,4−キシレノール、3,5−キシレノール等のキシレノール類;2,3,5トリメチルフェノール等のトリメチルフェノール類;o−エチルフェノール、m−エチルフェノール、p−エチルフェノール等のエチルフェノール類;イソプロピルフェノール、ブチルフェノール、t−ブチルフェノール等のアルキルフェノール類;o−フェニルフェノール、m−フェニルフェノール、p−フェニルフェノール等のフェニルフェノール類;1,5−ジヒドロキシナフタレン、1,6−ジヒドロキシナフタレン、2,7−ジヒドロキシナフタレン等のナフタレンジオール類;レゾルシン、カテコール、ハイドロキノン、ピロガロール、フルオログルシン等の多価フェノール類;アルキルレゾルシン、アルキルカテコール、アルキルハイドロキノン等のアルキル多価フェノール類が挙げられる。これらのうち、コスト面および分解反応に与える効果から、フェノールが好ましい。
アルデヒド類化合物は、特に限定されないが、例えば、ホルムアルデヒド、パラホルムアルデヒド、トリオキサン、アセトアルデヒド、プロピオンアルデヒド、ポリオキシメチレン、クロラール、ヘキサメチレンテトラミン、フルフラール、グリオキザール、n−ブチルアルデヒド、カプロアルデヒド、アリルアルデヒド、ベンズアルデヒド、クロトンアルデヒド、アクロレイン、テトラオキシメチレン、フェニルアセトアルデヒド、o−トルアルデヒド、サリチルアルデヒド、ジヒドロキシベンズアルデヒド、トリヒドロキシベンズアルデヒド、4−ヒドロキシ−3−メトキシアルデヒドパラホルムアルデヒド等が挙げられる。
縮合環芳香族炭化水素化合物は、特に限定されないが、例えば、メトキシナフタレン、ブトキシナフタレン等のナフタレン誘導体;メトキシアントラセン等のアントラセン誘導体;メトキシフェナントレン等のフェナントレン誘導体;その他テトラセン誘導体;クリセン誘導体;ピレン誘導体;トリフェニレン誘導体;テトラフェン誘導体等が挙げられる。
縮合環芳香族炭化水素構造を有するノボラック型エポキシ樹脂は、特に限定されないが、例えば、メトキシナフタレン変性オルトクレゾールノボラックエポキシ樹脂、ブトキシナフタレン変性メタ(パラ)クレゾールノボラックエポキシ樹脂、およびメトキシナフタレン変性ノボラックエポキシ樹脂等が挙げられる。これらの中でも、下記一般式(V)で表される縮合環芳香族炭化水素構造を有するノボラック型エポキシ樹脂が好ましい。
Figure 2017170643
(上記一般式(V)中、Arは縮合環芳香族炭化水素基であり、Rは互いに同一であっても異なっていてもよく、水素原子;炭素数1以上10以下の炭化水素基;ハロゲン元素;フェニル基、ベンジル基等のアリール基;およびグリシジルエーテルを含む有機基から選ばれる基で、n、p、およびqは1以上の整数であり、またp、qの値は、繰り返し単位毎に同一でも、異なっていてもよい。)
また、式(V)中のArは、下記式(VI)中の(Ar1)〜(Ar4)で表される構造であってもよい。
Figure 2017170643
(上記式(VI)中のRは、互いに同一であっても異なっていてもよく、水素原子;炭素数1以上10以下の炭化水素基;ハロゲン元素;フェニル基、ベンジル基等のアリール基;およびグリシジルエーテルを含む有機基から選ばれる基である。)
さらに上記以外のエポキシ樹脂としてはナフトール型エポキシ樹脂、ナフタレンジオール型エポキシ樹脂、2官能ないし4官能ナフタレン型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂等のナフタレン型エポキシ樹脂が好ましい。これにより、得られるプリント配線基板の耐熱性、低熱膨張性をさらに向上させることができる。ここで、ナフタレン型エポキシ樹脂とは、ナフタレン環骨格を有し、かつ、グリシジル基を2つ以上有する樹脂を呼ぶ。
また、ベンゼン環に比べナフタレン環のπ−πスタッキング効果が高いため、特に、ナフタレン型エポキシ樹脂は低熱膨張性、低熱収縮性に優れる。さらに、多環構造のため剛直効果が高く、ガラス転移温度が特に高いため、リフロー前後の熱収縮変化が小さい。ナフトール型エポキシ樹脂としては、例えば下記一般式(VII−1)、ナフタレンジオール型エポキシ樹脂としては下記式(VII−2)、2官能ないし4官能ナフタレン型エポキシ樹脂としては下記式(VII−3)(VII−4)(VII−5)、ナフチレンエーテル型エポキシ樹脂としては、例えば、下記一般式(VII−6)で示すことができる。
Figure 2017170643
(nは平均1以上6以下の数を示し、Rはグリシジル基または炭素数1以上10以下の炭化水素基を示す。)
Figure 2017170643
Figure 2017170643
Figure 2017170643
(式中、Rは水素原子またはメチル基を表し、Rはそれぞれ独立的に水素原子、炭素原子数1〜4のアルキル基、アラルキル基、ナフタレン基、またはグリシジルエーテル基含有ナフタレン基を表し、oおよびmはそれぞれ0〜2の整数であって、かつoまたはmの何れか一方は1以上である。)
エポキシ樹脂の重量平均分子量(Mw)の下限値は、特に限定されないが、Mw300以上が好ましく、Mw800以上がより好ましい。Mwが上記下限値以上であると、樹脂膜の硬化物にタック性が生じるのを抑制することができる。Mwの上限値は、特に限定されないが、Mw20,000以下が好ましく、Mw15,000以下がより好ましい。Mwが上記上限値以下であると、ハンドリング性が向上し、樹脂膜を形成するのが容易となる。エポキシ樹脂のMwは、例えばGPCで測定することができる。
エポキシ樹脂の含有量の下限値は、熱硬化性樹脂組成物全体(溶媒を除く全固形分)100重量%に対して、3重量%以上が好ましく、4重量%以上がより好ましく、5重量%以上がさらに好ましい。エポキシ樹脂の含有量が上記下限値以上であると、ハンドリング性が向上し、樹脂膜を形成するのが容易となる。一方、エポキシ樹脂の含有量の上限値は、熱硬化性樹脂組成物全体(溶媒を除く全固形分)に対して、特に限定されないが、例えば、40重量%以下が好ましく、30重量%以下がより好ましく、20重量%以下がさらに好ましい。エポキシ樹脂の含有量が上記上限値以下であると、得られるプリント配線基板の強度や難燃性が向上したり、プリント配線基板の線膨張係数が低下し、反りの低減効果が向上したりする場合がある。
なお、熱硬化性樹脂組成物の全固形分とは、熱硬化性樹脂組成物中に含まれる溶剤を除く成分全体を指す。以下、本明細書において同様である。
(シアネート樹脂)
本実施形態の熱硬化性樹脂組成物は、シアネート樹脂を含むことができる。
本実施形態において、上記シアネート樹脂は、分子内にシアネート基(−O−CN)を有する樹脂であり、シアネート基を分子内に2個以上を有する樹脂を用いることができる。このようなシアネート樹脂としては、特に限定されないが、例えば、ハロゲン化シアン化合物とフェノール類やナフトール類とを反応させ、必要に応じて加熱等の方法でプレポリマー化することにより得ることができる。また、このようにして調製された市販品を用いることもできる。
シアネート樹脂を用いることにより、樹脂膜の硬化物の線膨張係数を小さくすることができる。さらに、樹脂膜の硬化物の電気特性(低誘電率、低誘電正接)、機械強度等を高めることができる。
シアネート樹脂は、例えば、ノボラック型シアネート樹脂;ビスフェノールA型シアネート樹脂、ビスフェノールE型シアネート樹脂、テトラメチルビスフェノールF型シアネート樹脂等のビスフェノール型シアネート樹脂;ナフトールアラルキル型フェノール樹脂と、ハロゲン化シアンとの反応で得られるナフトールアラルキル型シアネート樹脂;ジシクロペンタジエン型シアネート樹脂;ビフェニルアルキル型シアネート樹脂等を挙げることができる。これらの中でもノボラック型シアネート樹脂、ナフトールアラルキル型シアネート樹脂が好ましく、ノボラック型シアネート樹脂がより好ましい。ノボラック型シアネート樹脂を用いることにより、樹脂膜の硬化物の架橋密度が増加し、耐熱性が向上する。
この理由としては、ノボラック型シアネート樹脂は、硬化反応後にトリアジン環を形成することが挙げられる。さらに、ノボラック型シアネート樹脂は、その構造上ベンゼン環の割合が高く、炭化しやすいためと考えられる。また、ノボラック型シアネート樹脂を含む樹脂膜の硬化物は優れた剛性を有する。よって、樹脂膜の硬化物の耐熱性をより一層向上できる。
ノボラック型シアネート樹脂としては、例えば、下記一般式(I)で示される樹脂を使用することができる。
Figure 2017170643
一般式(I)で示されるノボラック型シアネート樹脂の平均繰り返し単位nは任意の整数である。平均繰り返し単位nは、特に限定されないが、1以上が好ましく、2以上がより好ましい。平均繰り返し単位nが上記下限値以上であると、ノボラック型シアネート樹脂の耐熱性が向上し、加熱時に低量体が脱離、揮発することを抑制できる。また、平均繰り返し単位nは、特に限定されないが、10以下が好ましく、7以下がより好ましい。nが上記上限値以下であると、溶融粘度が高くなるのを抑制でき、樹脂膜の成形性を向上させることができる。
また、シアネート樹脂としては、下記一般式(II)で表わされるナフトールアラルキル型シアネート樹脂も好適に用いられる。下記一般式(II)で表わされるナフトールアラルキル型シアネート樹脂は、例えば、α−ナフトールあるいはβ−ナフトール等のナフトール類とp−キシリレングリコール、α,α'−ジメトキシ−p−キシレン、1,4−ジ(2−ヒドロキシ−2−プロピル)ベンゼン等との反応により得られるナフトールアラルキル型フェノール樹脂とハロゲン化シアンとを縮合させて得られる樹脂である。一般式(II)の繰り返し単位nは10以下の整数であることが好ましい。繰り返し単位nが10以下であると、より均一な樹脂膜を得ることができる。また、合成時に分子内重合が起こりにくく、水洗時の分液性が向上し、収量の低下を防止できる傾向がある。
Figure 2017170643
(式中、Rはそれぞれ独立に水素原子またはメチル基を示し、nは1以上10以下の整数を示す。)
また、シアネート樹脂は1種類を単独で用いてもよいし、2種類以上を併用してもよく、1種類または2種類以上と、それらのプレポリマーとを併用してもよい。
シアネート樹脂の含有量の下限値は、熱硬化性樹脂組成物の全固形分100重量%に対して、たとえば、1重量%以上が好ましく、2重量%以上がより好ましく、3重量%以上がさらに好ましい。樹脂膜の硬化物の低線膨張化、高弾性率化を図ることができる。一方、シアネート樹脂の含有量の上限値は、熱硬化性樹脂組成物の全固形分100重量%に対して、特に限定されないが、例えば、30重量%以下が好ましく、25重量%以下がより好ましく、20重量%以下がさらに好ましい。耐熱性や耐湿性を向上させることができる。また、シアネート樹脂の含有量が上記範囲内であると、樹脂膜の硬化物の貯蔵弾性率E'をより一層向上させることができる。
(ベンゾオキサジン化合物)
本実施形態の熱硬化性樹脂組成物は、ベンゾオキサジン化合物を含む。
前述したように、本実施形態において、ベンゾオキサジン化合物は、不飽和二重結合を有する基を含有する。不飽和二重結合を有する基としては、炭素数3〜14のアルケニル基が好ましく、アリル基がより好ましい。
本実施形態で用いられるベンゾオキサジン化合物は、下記一般式(B−1)または一般式(B−2)で表される。これらを単独で用いても2種以上を組み合わせて用いてもよい。
Figure 2017170643
(上記一般式(B−1)中、aはそれぞれ独立に1以上3以下の整数を表し、pは1以上4以下の整数を表す。R、Rはそれぞれ独立して、水素原子、低級アルキル基、アルケニル基、シクロアルキル基、アリール基、アラルキル基、または1〜4価の有機基を表すが、RおよびRのうちの少なくとも一方が、炭素数3〜14のアルケニル基を有する基である(ただし、pが2以上4以下の整数の場合には、Rが、同一または異なっていてもよい)。Zは、1〜4価の有機基を表す。)
上記一般式(B−1)中において、p=1の場合には、Zがアルキル基またはチオールを表し、p=2の場合には、Zが直接結合、アルキレン基、酸素原子、硫黄原子、スルフィニル基またはスルホニル基を表し、p=3または4の場合には、Zがアルキレン基を表してもよい。また、上記一般式(B−1)中、pは2であってもよい。また、aは1であってもよい。
Figure 2017170643
(上記一般式(B−2)中、bはそれぞれ独立に1以上4以下の整数を表し、qは1以上4以下の整数を表す。Rは、それぞれ独立して、水素原子、低級アルキル基、アルケニル基、シクロアルキル基、アリール基、アラルキル基、または1〜4価の有機基を表し、Xは、1〜4価の有機基を表すが、RおよびXのうちの少なくとも一方が、炭素数3〜14のアルケニル基である。)
また、上記一般式(B−2)中、qは2であってもよい。また、bは1であってもよい。
本実施形態において、上記1〜4価の有機基は、特に限定されないが、直接結合、アルキル基、アルキレン基、酸素原子、チオール、硫黄原子、スルホキシド、およびスルホンの他に、例えば、以下の化学式のいずれかを用いてもよい。なお、上記一般式(B−2)中における1〜4価の有機基は、ビフェニル、ジフェニルメタン、ジフェニルイソプロパン、ジフェニルスルフィド、ジフェニルスルホキシド、ジフェニルスルホン、およびジフェニルケトンを用いてもよい。これらを単独で用いても2種以上を組み合わせて用いてもよい。
Figure 2017170643
上記化学式のRは、上記一般式(B−1)において定義したRと同じであり、具体的には、水素原子、低級アルキル基、アルケニル基、シクロアルキル基、アリール基、またはアラルキル基を表す。
また、本実施形態において、上記一般式(B−1)で表されるベンゾオキサジン化合物は、下記一般式(B−3)で表される構造を有する化合物であってもよい。
Figure 2017170643
(上記一般式(B−3)中、Zは、直接結合、炭素数1〜10のアルキレン基、C=O、O、S、S=OまたはO=S=Oを表す。Rおよび/またはRは、炭素数3〜14のアルケニル基を有する基である。なお、上記一般式(B−3)中、R、Rは、上記一般式(B−1)において定義したR、Rと同じである。)
また、上記一般式(B−3)で表されるベンゾオキサジン化合物の一例としては、下記の一般式で表される。下記一般式中、R、Rは、上記一般式(B−1)において定義したR、Rと同じである。
Figure 2017170643
上記一般式中、Rは、炭素数3〜14のアルケニル基でもよいが、アリル基であることが好ましい。このとき、Rは水素原子でもよい。
また、本実施形態において、上記一般式(B−2)で表されるベンゾオキサジン化合物は、下記一般式(B−4)で表される構造を有してもよい。
Figure 2017170643
(上記一般式(B−4)中、cはそれぞれ独立に1以上4以下の整数を表し、Xは、直接結合、炭素数1〜10のアルキレン基、C=O、O(酸素原子)、S(硫黄原子)、S=O(スルフィニル基)またはO=S=O(スルホニル基)を表す。Rは、炭素数3〜14のアルケニル基を有する基である。)
また、上記一般式(B−4)において、cは、例えば、1であってもよい。また、Rは、アリル基であってもよい。また、Xは、炭素数1〜10のアルキレン基であってもよい。
上記一般式(B−4)で表されるベンゾオキサジン化合物の一例としては、下記の一般式で表される。
Figure 2017170643
上記ベンゾオキサジン化合物の含有量の下限値は、特に限定されないが、例えば、熱硬化性樹脂組成物の全固形分(すなわち、溶媒を除く成分)を100重量%としたとき、1重量%以上が好ましく、2重量%以上がより好ましく、3重量%以上がさらに好ましい。これにより、得られる硬化物や樹脂基板の低熱収縮性および耐薬品性をより一層向上させることができる。また、上記ベンゾオキサジン化合物の含有量の上限値は、特に限定されないが、例えば、熱硬化性樹脂組成物の全固形分を100重量%としたとき、25重量%以下が好ましく、23重量%以下がより好ましく、20重量%以下がさらに好ましい。これにより、他の化合物との反応効率を高めることができる。
本実施形態の熱硬化性樹脂組成物中に含まれるマレイミド化合物の含有量は、マレイミド化合物およびベンゾオキサジン化合物の合計100重量%に対して35重量%以上80重量%以下であることが好ましい。これにより、得られる硬化物や樹脂基板の耐熱性、低熱収縮性および耐薬品性をより一層向上させることができる。
また、本実施形態の熱硬化性樹脂組成物中において、エポキシ当量/開環時のフェノール当量は、特に限定されないが、例えば、0.05以上20以下が好ましく、0.1以上15以下がより好ましく、0.5以上10以下がさらに好ましく、1以上5以下が最も好ましい。
また、本実施形態の熱硬化性樹脂組成物中において、シアネート樹脂:ベンゾオキサジン化合物のモル比は、特に限定されないが、例えば、99.9:0.1〜0.1:99.9が好ましく、90:10〜0.5:99.5がより好ましく、65:35〜1:99がさらに好ましく、50:50〜5:95が最も好ましい。
(無機充填材)
本実施形態の熱硬化性樹脂組成物は、無機充填材を含むことができる。
上記無機充填材としては、例えば、タルク、焼成クレー、未焼成クレー、マイカ、ガラス等のケイ酸塩;酸化チタン、アルミナ、ベーマイト、シリカ、溶融シリカ等の酸化物;炭酸カルシウム、炭酸マグネシウム、ハイドロタルサイト等の炭酸塩;水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウム等の水酸化物;硫酸バリウム、硫酸カルシウム、亜硫酸カルシウム等の硫酸塩または亜硫酸塩;ホウ酸亜鉛、メタホウ酸バリウム、ホウ酸アルミニウム、ホウ酸カルシウム、ホウ酸ナトリウム等のホウ酸塩;窒化アルミニウム、窒化ホウ素、窒化ケイ素、窒化炭素等の窒化物;チタン酸ストロンチウム、チタン酸バリウム等のチタン酸塩等を挙げることができる。
これらの中でも、タルク、アルミナ、ガラス、シリカ、マイカ、水酸化アルミニウム、水酸化マグネシウムが好ましく、シリカが特に好ましい。無機充填材としては、これらの中の1種類を単独で用いてもよく、2種類以上を併用してもよい。
上記無機充填材の平均粒子径の下限値は、特に限定されないが、例えば、0.01μm以上が好ましく、0.05μm以上がより好ましい。これにより、上記熱硬化性樹脂のワニスの粘度が高くなるのを抑制でき、絶縁層作製時の作業性を向上させることができる。また、無機充填材の平均粒子径の上限値は、特に限定されないが、例えば、5.0μm以下が好ましく、2.0μm以下がより好ましく、1.0μm以下がさらに好ましい。これにより、上記熱硬化性樹脂のワニス中における無機充填材の沈降等の現象を抑制でき、より均一な樹脂膜を得ることができる。また、プリント配線基板の回路寸法L/Sが20μm/20μmを下回る際には、配線間の絶縁性に影響を与えるのを抑制することができる。
本実施形態において、無機充填材の平均粒子径は、例えば、レーザー回折式粒度分布測定装置(HORIBA社製、LA−500)により、粒子の粒度分布を体積基準で測定し、そのメディアン径(D50)を平均粒子径とすることができる。
また、無機充填材は、特に限定されないが、平均粒子径が単分散の無機充填材を用いてもよいし、平均粒子径が多分散の無機充填材を用いてもよい。さらに平均粒子径が単分散および/または多分散の無機充填材を1種類または2種類以上で併用してもよい。
上記無機充填材はシリカ粒子を含むことが好ましい。上記シリカ粒子の平均粒子径は、特に限定されないが、例えば、5.0μm以下が好ましく、0.1μm以上4.0μm以下がより好ましく、0.2μm以上2.0μm以下がさらに好ましい。これにより、無機充填材の充填性をさらに向上させることができる。
無機充填材の含有量の下限値は、熱硬化性樹脂組成物の全固形分100重量%に対して、特に限定されないが、例えば、50重量%以上が好ましく、55重量%以上がより好ましく、60重量%以上がさらに好ましい。これにより、樹脂膜の硬化物を特に低熱膨張、低吸水とすることができる。また、半導体パッケージの反りを抑制することができる。一方で、無機充填材の含有量の上限値は、熱硬化性樹脂組成物の全固形分100重量%に対して、特に限定されないが、例えば、90重量%以下が好ましく、85重量%以下がより好ましく、80重量%以下がさらに好ましい。これにより、樹脂膜の硬化物の加工性を向上させることができる。
(硬化剤)
本実施形態の熱硬化性樹脂組成物は、硬化剤を含むことができる。
上記硬化剤としては、特に限定されないが、例えば、ベンジルジメチルアミン(BDMA)、2,4,6−トリスジメチルアミノメチルフェノール(DMP−30)などの3級アミン化合物;2−メチルイミダゾール、2−エチル−4−メチルイミダゾール(EMI24)、2−フェニル−4−メチルイミダゾール(2P4MZ)、2−フェニルイミダゾール(2PZ)、2−フェニル−4−メチル−5−ヒドロキシイミダゾール(2P4MHZ)、1−ベンジル−2−フェニルイミダゾール(1B2PZ)などのイミダゾール化合物;BF錯体などのルイス酸などの触媒型の硬化剤が挙げられる。
また、例えば、ジエチレントリアミン(DETA)、トリエチレンテトラミン(TETA)、メタキシレリレンジアミン(MXDA)などの脂肪族ポリアミン、m−フェニレンジアミン、p−フェニレンジアミン、o−キシレンジアミン、4,4'−ジアミノジフェニルメタン、4,4'−ジアミノジフェニルプロパン、4,4'−ジアミノジフェニルエーテル、4,4'−ジアミノジフェニルスルホン、3,3'−ジアミノジフェニルスルホン、1,5−ジアミノナフタレン、4,4'−(p−フェニレンジイソプロピリデン)ジアニリン、2,2−[4−(4−アミノフェノキシ)フェニル]プロパン、4,4'−ジアミノ−3,3'−ジメチルジフェニルメタン、4,4'−ジアミノ−3,3'−ジエチル−5,5'−ジメチルジフェニルメタン、3,3'−ジエチル−4,4'−ジアミノジフェニルメタンなどの芳香族ポリアミンのほか、ジシアンジアミド(DICY)、有機酸ジヒドララジドなどを含むポリアミン化合物;ヘキサヒドロ無水フタル酸(HHPA)、メチルテトラヒドロ無水フタル酸(MTHPA)などの脂環族酸無水物、無水トリメリット酸(TMA)、無水ピロメリット酸(PMDA)、ベンゾフェノンテトラカルボン酸(BTDA)などの芳香族酸無水物などを含む酸無水物;ポリサルファイド、チオエステル、チオエーテルなどのポリメルカプタン化合物;イソシアネートプレポリマー、ブロック化イソシアネートなどのイソシアネート化合物;カルボン酸含有ポリエステル樹脂などの有機酸類などの重付加型の硬化剤;2,2'−メチレンビス(4−エチル−6−tert−ブチルフェノール)、2,2'−メチレンビス(4−メチル−6−tert−ブチルフェノール)、4,4'−ブチリデンビス(3−メチル−6−tert−ブチルフェノール)、4,4'−チオビス(3−メチル−6−tert−ブチルフェノール)、2,6−ジ−tert−ブチル−4−メチルフェノール、2,5−ジ−tert−ブチルハイドロキノン、1,3,5−トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)−1,3,5−トリアジン−2,4,6(1H,3H,5H)トリオンなどのフェノール系化合物も用いることができる。
さらに、第2硬化剤としては、例えば、ノボラック型フェノール樹脂、レゾール型フェノール樹脂などのフェノール樹脂系硬化剤;メチロール基含有尿素樹脂のような尿素樹脂;メチロール基含有メラミン樹脂のようなメラミン樹脂などの縮合型の硬化剤も用いてもよい。これらを単独で用いても2種以上を組み合わせて用いてもよい。
上記フェノール樹脂系硬化剤は、一分子内にフェノール性水酸基を2個以上有するモノマー、オリゴマー、ポリマー全般であり、その分子量、分子構造を特に限定されないが、例えば、フェノールノボラック樹脂、クレゾールノボラック樹脂、ナフトールノボラック樹脂などのノボラック型フェノール樹脂;トリフェノールメタン型フェノール樹脂などの多官能型フェノール樹脂;テルペン変性フェノール樹脂、ジシクロペンタジエン変性フェノール樹脂などの変性フェノール樹脂;フェニレン骨格および/またはビフェニレン骨格を有するフェノールアラルキル樹脂、フェニレンおよび/またはビフェニレン骨格を有するナフトールアラルキル樹脂などのアラルキル型樹脂;ビスフェノールA、ビスフェノールFなどのビスフェノール化合物等が挙げられる。これらは1種類を単独で用いても2種類以上を併用してもよい。これらのうち、硬化性の点から水酸基当量は90g/eq以上、250g/eq以下のフェノール樹脂系硬化剤を使用してもよい。
フェノール樹脂の重量平均分子量は、特に限定されないが、重量平均分子量4×10〜1.8×10が好ましく、5×10〜1.5×10がより好ましい。重量平均分子量を上記下限値以上とすることでプリプレグにタック性が生じるなどの問題がおこりにくくなり、上記上限値以下とすることで、プリプレグ作製時、繊維基材への含浸性が向上し、より均一な製品が得ることができる。
硬化剤の含有量の下限値は、熱硬化性樹脂組成物の全固形分100重量%に対して、特に限定されないが、例えば、0.01重量%以上が好ましく、0.05重量%以上がより好ましく、0.2重量%以上がさらに好ましい。硬化剤の含有量を上記下限値以上とすることにより、硬化を促進する効果を十分に発揮することができる。一方、硬化剤の含有量の上限値は、熱硬化性樹脂組成物の全固形分100重量%に対して、特に限定されないが、例えば、15重量%以下が好ましく、10重量%以下がより好ましく、8重量%以下がさらに好ましい。硬化剤の含有量が上記上限値以下であるとプリプレグの保存性をより向上させることができる。
(硬化促進剤)
本実施形態の熱硬化性樹脂組成物は、例えば、硬化促進剤を含んでもよい。これにより、熱硬化性樹脂組成物の硬化性を向上させることができる。硬化促進剤としては、熱硬化性樹脂の硬化反応を促進させる化合物を用いることができ、その種類は特に限定されない。本実施形態においては、硬化促進剤として、例えば、ナフテン酸亜鉛、ナフテン酸コバルト、オクチル酸スズ、オクチル酸コバルト、オクチル酸亜鉛、ビスアセチルアセトナートコバルト(II)、トリスアセチルアセトナートコバルト(III)等の有機金属塩、トリエチルアミン、トリブチルアミン、ジアザビシクロ[2,2,2]オクタン等の3級アミン類、2−フェニルイミダゾール、2−フェニル−4−メチルイミダゾール、2−エチル−4−エチルイミダゾール、2−フェニル−4−エチルイミダゾール、2−フェニル−4−メチル−5−ヒドロキシイミダゾール、2−フェニル−4−メチル−5−ヒドロキシメチルイミダゾール、2−フェニル−4,5−ジヒドロキシイミダゾール等のイミダゾール類、フェノール、ビスフェノールA、ノニルフェノール等のフェノール化合物、酢酸、安息香酸、サリチル酸、パラトルエンスルホン酸等の有機酸、およびオニウム塩化合物から選択される一種または二種以上を含むことができる。これらの中でも、硬化性をより効果的に向上させる観点からは、オニウム塩化合物を含むことがより好ましい。
硬化促進剤として用いられるオニウム塩化合物は、特に限定されないが、例えば、下記一般式(2)で表される化合物を用いることができる。
Figure 2017170643
(上記一般式(2)中、Pはリン原子、R、R、RおよびRは、それぞれ、置換もしくは無置換の芳香環または複素環を有する有機基、あるいは置換もしくは無置換の脂肪族基を示し、互いに同一であっても異なっていてもよい。Aは分子外に放出しうるプロトンを少なくとも1個以上分子内に有するn(n≧1)価のプロトン供与体のアニオン、またはその錯アニオンを示す)
硬化促進剤の含有量の下限値は、例えば、熱硬化性樹脂組成物の全固形分100重量%に対して、たとえば、0.01重量%以上が好ましく、0.1重量%以上がより好ましい。硬化促進剤の含有量を上記下限値以上とすることにより、熱硬化性樹脂組成物の硬化性をより効果的に向上させることができる。一方、硬化促進剤の含有量の上限値は、例えば、熱硬化性樹脂組成物の全固形分100重量%に対して、5重量%以下が好ましく、1重量%以下がより好ましい。硬化促進剤の含有量を上記上限値以下とすることにより、熱硬化性樹脂組成物の保存性を向上させることができる。
(カップリング剤)
本実施形態の熱硬化性樹脂組成物は、カップリング剤を含んでもよい。カップリング剤は熱硬化性樹脂組成物の調製時に直接添加してもよいし、無機充填材にあらかじめ添加しておいてもよい。カップリング剤の使用により無機充填材と各樹脂との界面の濡れ性を向上させることができる。したがって、カップリング剤を使用することは好ましく、樹脂膜の硬化物の耐熱性を改良することができる。また、カップリング剤を用いることにより、銅箔との密着性を向上させることができる。さらに、吸湿耐性を向上できるので、湿度環境下後においても、銅箔との密着性を維持することができる。
カップリング剤としては、例えば、エポキシシランカップリング剤、カチオニックシランカップリング剤、アミノシランカップリング剤等のシランカップリング剤、チタネート系カップリング剤およびシリコーンオイル型カップリング剤等が挙げられる。カップリング剤は一種類を単独で用いてもよいし、二種類以上を併用してもよい。本実施形態において、カップリング剤はシランカップリング剤を含有してもよい。
これにより、無機充填材と各樹脂との界面の濡れ性を高くすることができ、樹脂膜の硬化物の耐熱性をより向上させることができる。
シランカップリング剤としては、特に限定されないが、例えば、エポキシシラン、アミノシラン、アルキルシラン、ウレイドシラン、メルカプトシラン、ビニルシラン等が挙げられる。
具体的な化合物としては、例えば、γ−アミノプロピルトリエトキシシラン、γ−アミノプロピルトリメトキシシラン、N−β(アミノエチル)γ−アミノプロピルトリメトキシシラン、N−β(アミノエチル)γ−アミノプロピルメチルジメトキシシラン、N−フェニルγ−アミノプロピルトリエトキシシラン、N−フェニルγ−アミノプロピルトリメトキシシラン、N−β(アミノエチル)γ−アミノプロピルトリエトキシシラン、N−6−(アミノヘキシル)3−アミノプロピルトリメトキシシラン、N−(3−(トリメトキシシリルプロピル)−1,3−ベンゼンジメタナン、γ−グリシドキシプロピルトリエトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルメチルジメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、γ−メルカプトプロピルトリメトキシシラン、メチルトリメトキシシラン、γ−ウレイドプロピルトリエトキシシラン、ビニルトリエトキシシラン等が挙げられ、これらのうちの一種または二種以上を組み合せて用いることができる。これらのうちエポキシシラン、メルカプトシラン、アミノシランが好ましく、アミノシランとしては、1級アミノシラン又はアニリノシランがより好ましい。
カップリング剤の含有量は、無機充填材の比表面積に対して適切に調整することができる。このようなカップリング剤の含有量の下限値は、例えば、熱硬化性樹脂組成物の全固形分100重量%に対して、0.01重量%以上が好ましく、0.05重量%以上がより好ましい。カップリング剤の含有量が上記下限値以上であると、無機充填材を十分に被覆することができ、樹脂膜の硬化物の耐熱性を向上させることができる。一方、カップリング剤の含有量の上限値は、例えば、熱硬化性樹脂組成物の全固形分100重量%に対して、2重量%以下が好ましく、1重量%以下がより好ましい。カップリング剤の含有量が上記上限値以下であると、反応に影響を与えるのを抑制でき、樹脂膜の硬化物の曲げ強度等の低下を抑制することができる。
(添加剤)
なお、本実施形態の熱硬化性樹脂組成物は、本発明の目的を損なわない範囲で、緑、赤、青、黄、および黒等の染料、黒色顔料な等の顔料、色素のうちの少なくとも一種以上を含む着色剤、低応力剤、消泡剤、レベリング剤、紫外線吸収剤、発泡剤、酸化防止剤、難燃剤、イオン捕捉剤等の上記成分(熱硬化性樹脂、硬化剤、無機充填材、硬化促進剤、カップリング剤)以外の添加剤を含んでもよい。これらを単独で用いても2種以上を組み合わせて用いてもよい。
顔料としては、カオリン、合成酸化鉄赤、カドミウム黄、ニッケルチタン黄、ストロンチウム黄、含水酸化クロム、酸化クロム、アルミ酸コバルト、合成ウルトラマリン青等の無機顔料、フタロシアニン等の多環顔料、アゾ顔料等が挙げられる。
染料としては、イソインドリノン、イソインドリン、キノフタロン、キサンテン、ジケトピロロピロール、ペリレン、ペリノン、アントラキノン、インジゴイド、オキサジン、キナクリドン、ベンツイミダゾロン、ビオランスロン、フタロシアニン、アゾメチン等が挙げられる。
本実施形態において、ワニス状の熱硬化性樹脂組成物は、溶剤を含むことができる。
上記溶剤としては、たとえばアセトン、メチルエチルケトン、メチルイソブチルケトン、トルエン、酢酸エチル、シクロヘキサン、ヘプタン、シクロヘキサン、シクロヘキサノン、テトラヒドロフラン、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、エチレングリコール、セルソルブ系、カルビトール系、アニソール、およびN−メチルピロリドン等の有機溶剤が挙げられる。これらを単独で用いても2種以上を組み合わせて用いてもよい。
熱硬化性樹脂組成物がワニス状である場合において、熱硬化性樹脂組成物の固形分含有量は、たとえば30重量%以上80重量%以下が好ましく、40重量%以上70重量%以下がより好ましい。これにより、作業性や成膜性に非常に優れた熱硬化性樹脂組成物が得られる。
ワニス状の熱硬化性樹脂組成物は、上述の各成分を、たとえば、超音波分散方式、高圧衝突式分散方式、高速回転分散方式、ビーズミル方式、高速せん断分散方式、および自転公転式分散方式などの各種混合機を用いて溶剤中に溶解、混合、撹拌することにより調製することができる。
次いで、本実施形態の樹脂膜について説明する。
本実施形態の樹脂膜は、ワニス状である上記熱硬化性樹脂組成物をフィルム化することにより得ることができる。例えば、本実施形態の樹脂膜は、ワニス状の熱硬化性樹脂組成物を塗布して得られた塗布膜に対して、溶剤を除去することにより得ることができる。このような樹脂膜においては、溶剤含有率が樹脂膜全体に対して5重量%以下とすることができる。本実施形態において、たとえば100℃〜150℃、1分〜5分の条件で溶剤を除去する工程を実施してもよい。これにより、熱硬化性樹脂を含む樹脂膜の硬化が進行することを抑制しつつ、十分に溶剤を除去することが可能となる。
(キャリア付き樹脂膜)
次いで、本実施形態のキャリア付樹脂膜について説明する。
図1は、本実施形態におけるキャリア付樹脂膜100の構成の一例を示す断面図である。
本実施形態のキャリア付樹脂膜100は、図1に示すように、キャリア基材12と、キャリア基材12上に設けられた、上記熱硬化性樹脂組成物から形成される樹脂膜10と、を備えることができる。これにより、樹脂膜10のハンドリング性を向上させることができる。
キャリア付樹脂膜100は、巻き取り可能なロール形状でも、矩形形状などの枚葉形状であってもよい。
本実施形態において、キャリア基材12としては、例えば、高分子フィルムや金属箔などを用いることができる。当該高分子フィルムとしては、特に限定されないが、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン、ポリエチレンテレフタレート、ポリブチレンテレフタレートなどのポリエステル、ポリカーボネート、シリコーンシート等の離型紙、フッ素系樹脂、ポリイミド樹脂などの耐熱性を有した熱可塑性樹脂シート等が挙げられる。当該金属箔としては、特に限定されないが、例えば、銅または銅系合金、アルミまたはアルミ系合金、鉄または鉄系合金、銀または銀系合金、金または金系合金、亜鉛または亜鉛系合金、ニッケルまたはニッケル系合金、錫または錫系合金などが挙げられる。これらの中でも、ポリエチレンテレフタレートで構成されるシートが安価および剥離強度の調節が簡便なため最も好ましい。かかる材料で構成されるシートをキャリア基材12として用いることにより、樹脂膜10をキャリア基材12から、適度な強度で剥離することが容易となる。
樹脂膜10の厚みの下限値は、特に限定されないが、例えば、1μm以上が好ましく、3μm以上がより好ましく、5μm以上がさらに好ましい。これにより、樹脂膜10の機械強度を高めることができる。一方、樹脂膜10の厚みの上限値は、特に限定されないが、例えば、500μm以下が好ましく、300μm以下がより好ましく、100μm以下がさらに好ましい。これにより、半導体装置の薄層化を図ることができる。
キャリア基材12の厚みは、特に限定されないが、例えば、10〜100μmが好ましく、10〜70μmがより好ましい。これにより、キャリア付樹脂膜100を製造する際の取り扱い性がより良好となる。
本実施形態のキャリア付樹脂膜100は、単層でも多層でもよく、1種または2種以上の樹脂膜10を含むことができる。当該樹脂シートが多層の場合には、各樹脂シートが同種で構成されてもよく、異種で構成されてもよい。また、キャリア付樹脂膜100は、樹脂膜10上の最外層側に、保護膜を有していてもよい。
本実施形態において、キャリア付樹脂膜100を形成する方法としては、特に限定されない。かかる方法としては、例えば、ワニス状の熱硬化性樹脂組成物をキャリア基材12上に、各種コーター装置を用いて塗布することにより塗布膜を形成し、その後、当該塗布膜を適切に乾燥させることにより溶剤を除去する方法を用いることができる。
(樹脂基板)
本実施形態の樹脂基板は、熱硬化性樹脂組成物の硬化物で構成された絶縁層を備えることができる。このような樹脂基板は、ガラス繊維を含まない構成とすることができ、プリント配線基板に利用することができる。
(プリプレグ)
本実施形態のプリプレグは、上記熱硬化性樹脂組成物を繊維基材に含浸して形成される。例えば、プリプレグは、熱硬化性樹脂組成物を繊維基材に含浸させ、その後、熱硬化性樹脂組成物を半硬化させて得られるシート状の材料として利用できる。このような構造のシート状材料は、誘電特性、高温多湿下での機械的、電気的接続信頼性等の各種特性に優れ、プリント配線基板の絶縁層の製造に適している。
熱硬化性樹脂組成物を繊維基材に含浸させる方法としては、特に限定されない。かかる方法としては、例えば、熱硬化性樹脂組成物を溶剤に溶かして樹脂ワニスを調製し、繊維基材を上記樹脂ワニスに浸漬する方法、各種コーターにより上記樹脂ワニスを繊維基材に塗布する方法、スプレーにより上記樹脂ワニスを繊維基材に吹き付ける方法、熱硬化性樹脂組成物から形成される上記樹脂膜で繊維基材の両面をラミネートする方法等が挙げられる。
本実施形態において、プリプレグは、例えば、プリント配線基板におけるビルドアップ層中の絶縁層やコア層中の絶縁層を形成するために用いることができる。プリプレグをプリント配線基板におけるコア層中の絶縁層を形成するために用いる場合は、例えば、2枚以上のプリプレグを重ね、得られた積層体を加熱硬化することによりコア層用の絶縁層とすることもできる。
(金属張積層板)
本実施形態において、金属張積層板は、上記プリプレグの硬化物の少なくとも一面に金属層が配置される。
また、プリプレグを用いた金属張積層板製造方法は、例えば以下の通りである。
プリプレグまたはプリプレグを2枚以上重ね合わせた積層体の外側の上下両面または片面に金属箔を重ね、ラミネーター装置やベクレル装置を用いて高真空条件下でこれらを接合する、あるいはそのままプリプレグの外側の上下両面または片面に金属箔を重ねる。また、プリプレグを2枚以上積層するときは、積層したプリプレグの最も外側の上下両面もしくは片面に金属箔を重ねる。次いで、プリプレグと金属箔とを重ねた積層体を加熱加圧成形することで金属張積層板を得ることができる。ここで、加熱加圧成形時に、冷却終了時まで加圧を継続することが好ましい。
上記金属箔を構成する金属としては、例えば、銅、銅系合金、アルミ、アルミ系合金、銀、銀系合金、金、金系合金、亜鉛、亜鉛系合金、ニッケル、ニッケル系合金、錫、錫系合金、鉄、鉄系合金、コバール(商標名)、42アロイ、インバー、スーパーインバー等のFe−Ni系の合金、W、Mo等が挙げられる。これらの中でも、金属箔105を構成する金属としては、導電性に優れ、エッチングによる回路形成が容易であり、また安価であることから銅または銅合金が好ましい。すなわち、金属箔105としては、銅箔が好ましい。
また、金属箔としては、キャリア付金属箔等も使用することができる。
金属箔の厚みは、0.5μm以上20μm以下が好ましく、1.5μm以上18μm以下がより好ましい。
次いで、本実施形態に用いられる繊維基材について説明する。
上記繊維基材としては、とくに限定されないが、ガラス織布、ガラス不織布等のガラス繊維基材;ポリアミド樹脂繊維、芳香族ポリアミド樹脂繊維、全芳香族ポリアミド樹脂繊維等のポリアミド系樹脂繊維;ポリエステル樹脂繊維、芳香族ポリエステル樹脂繊維、全芳香族ポリエステル樹脂繊維等のポリエステル系樹脂繊維;ポリイミド樹脂繊維、フッ素樹脂繊維のいずれかを主成分とする織布または不織布で構成される合成繊維基材;クラフト紙、コットンリンター紙、あるいはリンターとクラフトパルプの混抄紙等を主成分とする紙基材;等が挙げられる。これらのうち、いずれかを使用することができる。これらの中でもガラス繊維基材が好ましい。これにより、低吸水性で、高強度、低熱膨張性の樹脂基板を得ることができる。
繊維基材の厚みは、とくに限定されないが、5μm以上150μm以下が好ましく、10μm以上100μm以下がより好ましく、12μm以上90μm以下がさらに好ましい。このような厚みを有する繊維基材を用いることにより、プリプレグ製造時のハンドリング性がさらに向上できる。
繊維基材の厚みが上記上限値以下であると、繊維基材中の熱硬化性樹脂組成物の含浸性が向上し、ストランドボイドや絶縁信頼性の低下の発生を抑制することができる。また炭酸ガス、UV、エキシマ等のレーザーによるスルーホールの形成を容易にすることができる。また、繊維基材の厚みが上記下限値以上であると、繊維基材やプリプレグの強度を向上させることができる。その結果、ハンドリング性が向上することにより、プリプレグの作製が容易となったり、樹脂基板の反りを抑制することができる。
上記ガラス繊維基材として、例えば、Eガラス、Sガラス、Dガラス、Tガラス、NEガラス、UTガラス、Lガラス、HPガラスおよび石英ガラスから選ばれる一種または二種以上のガラスにより形成されたガラス繊維基材が好適に用いられる。
本実施形態によれば、このような樹脂膜やそれを用いたプリプレグを採用することにより、平面方向における線膨張係数が低減されたプリント配線基板における絶縁層を構成することが可能になる。
本実施形態の樹脂膜の特性について説明する。
本実施形態の樹脂膜は、前述の通り、上記熱硬化性樹脂組成物から形成される樹脂膜である。
本実施形態に係る樹脂膜の硬化物の、30℃から240℃の範囲において算出した平面方向(XY方向)の平均線膨張係数の上限値は、例えば、40ppm/℃以下が好ましく、30ppm/℃以下がより好ましく、20ppm/℃以下がさらに好ましい。これにより、製造プロセス中におけるプリント配線基板の反りを低減することができる。また、得られた半導体パッケージの反りを低減させることができる。また、得られた半導体パッケージに蓄積される応力を低減させることができるため接続信頼性に優れる。一方、上記平均線膨張係数の下限値は、特に限定されないが、例えば、1ppm/℃以上としてもよい。
また、本実施形態の樹脂膜の硬化物の、30℃から150℃の範囲において算出した平面方向(XY方向)の平均線膨張係数(α1)の上限値は、例えば、30ppm/℃以下が好ましく、25ppm/℃以下がより好ましく、15ppm/℃以下がさらに好ましい。これにより、製造プロセス中におけるプリント配線基板の反りを低減することができる。また、得られた半導体パッケージの反りを低減させることができる。一方、上記平均線膨張係数(α1)の下限値は、特に限定されないが、例えば、1ppm/℃以上としてもよい。
また、本実施形態の樹脂膜の硬化物の、150℃から240℃の範囲において算出した平面方向(XY方向)の平均線膨張係数(α2)の上限値は、例えば、40ppm/℃以下が好ましく、35ppm/℃以下がより好ましく、30ppm/℃以下がさらに好ましい。これにより、高温の熱履歴時におけるプリント配線基板の反りや半導体パッケージの反りを低減することができる。また、得られた半導体パッケージをリフローなどで加熱し上下のPKGまたは配線板を半田ボール等の導体ポストで接続させる実装時の反りを低減させることができる。一方、上記平均線膨張係数(α2)の下限値は、特に限定されないが、例えば、1ppm/℃以上としてもよい。
このように、本実施形態の樹脂膜の硬化物を用いることにより、室温(例えば、25℃)における反りを抑制できるとともに、高温の熱履歴時においても反りを抑制することができる。これにより、例えば、製造プロセス中において、大面積を有するプリント配線基板の反りを抑制できるとともに、熱履歴時における半導体パッケージの反りや接続信頼性を十分に高めることができる。
また、熱硬化性樹脂組成物の硬化物の、30℃から150℃の範囲において算出した平均線膨張係数をα1とし、当該熱硬化性樹脂組成物の硬化物の、150℃から240℃の範囲において算出した平均線膨張係数をα2とする。
このとき、平均線膨張係数比(α2/α1)の下限値は、例えば、0.7以上が好ましく、0.8以上がより好ましく、0.9以上がさらに好ましい。これにより、室温時と熱履歴時の線膨張係数のバランスを高めることができる、一方、上記平均線膨張係数比(α2/α1)の上限値は、特に限定されないが、例えば、3.0以下が好ましく、2.8以下がより好ましく、2.5以下がさらに好ましい。これにより、熱履歴時における半導体パッケージの反りや接続信頼性を十分に高めることができる。また、半導体パッケージのサーマル特性を向上させることができる。
本実施形態において、樹脂膜の硬化物(熱硬化性樹脂組成物の硬化物)のガラス転移温度の下限値は、特に限定されないが、例えば、140℃以上が好ましく、200℃以上がより好ましく、230℃以上が特に好ましい。これにより、耐熱性に優れた樹脂膜の硬化物が得られる。また、樹脂膜の硬化物のガラス転移温度の上限値は、特に限定されないが、例えば、400℃以下としてもよい。
上記ガラス転移温度は、動的粘弾性分析装置(DMA)を用いて測定することができる。また、上記ガラス転移温度は、昇温速度5℃/min、周波数1Hzの条件での動的粘弾性測定により得られる曲線おいて、150℃以上の領域に存在する損失正接tanδのピーク値に対応する温度である。
本実施形態において、ガラス転移温度は、180℃、2時間で熱処理して得られる樹脂膜の硬化物に対して、たとえば動的粘弾性測定装置を用いて周波数1Hz、昇温速度5℃/分の条件で動的粘弾性試験を行うことにより得られる測定結果から算出することができる。動的粘弾性測定装置としては、とくに限定されないが、たとえばDMA装置(TAインスツルメント社製、Q800)を用いることができる。
本実施形態においては、たとえば熱硬化性樹脂組成物を構成する成分の種類や配合割合をそれぞれ適切に選択すること等により、熱硬化性樹脂組成物の上記平均線膨張係数やガラス転移温度を所望の範囲内とすることができる。たとえば、官能基としてアリル基を有するベンゾオキサジン化合物を用いること、熱硬化性樹脂としてマレイミド化合物を用いること等が、上記平均線膨張係数やガラス転移温度を所望の数値範囲とするための要素として挙げられる
また、本実施形態において、樹脂膜の硬化物(熱硬化性樹脂組成物の硬化物)の、銅箔に対するピール強度の下限値は、特に限定されないが、例えば、0.5kN/m以上が好ましく、0.6kN/m以上がより好ましく、0.7kN/m以上がさらに好ましい。これにより、樹脂膜の硬化物の銅密着性を向上させ、得られる絶縁層のSAP特性を高めることができる。また、上記ピール強度の上限値は、特に限定されないが、例えば、3kN/m以下としてもよい。
本実施形態において、銅箔に対するピール強度の測定方法としては、例えば、金属張積層板を準備し、JIS C−6481:1996に準拠して測定されプリプレグの硬化物と金属箔との間のピール強度を、HAST条件(温度130℃、湿度85%)で100時間処理後に測定する手法を用いてもよい。
(プリント配線基板)
本実施形態のプリント配線基板は、上記の樹脂膜の硬化物(熱硬化性樹脂組成物の硬化物)で構成された絶縁層を備える。
本実施形態において、樹脂膜の硬化物は、例えば、通常のプリント配線基板のコア層やビルドアップ層やソルダーレジスト層、コア層を有しないプリント配線基板におけるビルドアップ層やソルダーレジスト層、PLPに用いられるコアレス基板の層間絶縁層やソルダーレジスト層、MIS基板の層間絶縁層やソルダーレジスト層等に用いることができる。このような絶縁層は、複数の半導体パッケージを一括して作成するために利用させる大面積のプリント配線基板において、当該プリント配線基板を構成する層間絶縁層やソルダーレジスト層にも好適に用いることができる。
次に、本実施形態のプリント配線基板300の一例を、図2(a)および(b)を用いて説明する。
本実施形態のプリント配線基板300は、上述の樹脂膜10の硬化物で構成された絶縁層を備える。上記プリント配線基板300は、図2(a)に示すように、絶縁層301(コア層)と絶縁層401(ソルダーレジスト層)とを備える構造を有していてもよい。また、上記プリント配線基板300は、図2(b)に示すように、絶縁層301(コア層)、絶縁層305(ビルドアップ層)および絶縁層401(ソルダーレジスト層)を備える構造を有していてもよい。これらのコア層、ビルドアップ層、ソルダーレジスト層のそれぞれは、例えば、本実施形態の樹脂膜の硬化物で構成することができる。このコア層は、本実施形態の熱硬化性樹脂組成物を繊維基材に含浸させてなるプリプレグを硬化させた硬化体で構成されていてもよい。
本実施形態の樹脂膜から形成される硬化物は、ガラスクロスや紙基材等の繊維基材を含まなくてもよい。これにより、ビルドアップ層(層間絶縁層)やソルダーレジスト層を形成するために特に適した構成とすることができる。
また、本実施形態に係るプリント配線基板300は、片面プリント配線基板であってもよいし、両面プリント配線基板または多層プリント配線基板であってもよい。両面プリント配線基板とは、絶縁層301の両面に金属層303を積層したプリント配線基板である。また、多層プリント配線基板とは、メッキスルーホール法やビルドアップ法等により、コア層である絶縁層301に、ビルドアップ層(例えば、絶縁層305)を2層以上積層したプリント配線基板である。
なお、本実施形態において、ビアホール307は、層間を電気的に接続するための孔であればよく、貫通孔および非貫通孔いずれでもよい。ビアホール307は金属を埋設して形成されてもよい。この埋設した金属は、無電解金属めっき膜308で覆われた構造を有していてもよい。
また、本実施形態において、上記金属層303は、例えば、回路パターンであってもよいし、電極パットであってもよい。この金属層303は、例えば、金属箔105および電解金属めっき層309の金属積層構造を有していてもよい。
金属層303は、例えば、薬液処理またはプラズマ処理された金属箔105または、本実施形態の樹脂膜の硬化物から形成される絶縁層(例えば、絶縁層301や絶縁層305)の面上に、SAP(セミアディティブプロセス)法により形成される。例えば、金属箔105または絶縁層301,305上に無電解金属めっき膜308を施した後、めっきレジストにより非回路形成部を保護し、電解めっきにより電解金属めっき層309付けを行い、めっきレジストの除去とフラッシュエッチングによる電解金属めっき膜309をパターニングすることにより、金属層303を形成する。
また、本実施形態のプリント配線基板300は、ガラス繊維を含まない樹脂基板とすることができる。例えば、コア層である絶縁層301は、ガラス繊維を含有しない構成であってもよい。このような樹脂基板を用いた半導体パッケージにおいても、樹脂膜の硬化物の線膨張係数を低くすることができるので、パッケージ反りを十分に抑制することができる。
(半導体パッケージ)
次に、本実施形態の半導体装置400について説明する。図3(a)および(b)は、半導体装置400の構成の一例を示す断面図である。
本実施形態の半導体装置400は、プリント配線基板300と、プリント配線基板300の回路層上に搭載された、またはプリント配線基板300に内蔵された半導体素子と、を備えることができる。
例えば、図3(a)に示される半導体装置400は、図3(a)に示されるプリント配線基板300の回路層(金属層303)の上に、半導体素子407が搭載された構造を有する。一方、図3(b)に示される半導体装置400は、図3(b)に示されるプリント配線基板300の回路層(金属層303)の上に、半導体素子407が搭載された構造を有する。半導体素子407は、封止材層413に覆われている。このような半導体パッケージは、半田バンプ410および金属層303を介して、半導体素子407が、プリント配線基板300と電気的に接続するフリップチップ構造であってもよい。
本実施形態において、半導体パッケージの構造としては、上記フリップチップ接続構造に限定されずに、各種の構造を有してもよいが、例えば、ファンアウト構造を用いることができる。本実施形態の樹脂膜の硬化物から形成される絶縁層は、ファンアウト構造を有する半導体パッケージの製造プロセスにおいて、基板反りや基板クラックを抑制することができる。
次に、本実施形態のプリント配線基板の変形例を説明する。図4(a)〜(c)は、プリント配線基板500の製造プロセス一例の工程断面図である。本変形例のプリント配線基板500は、図4(c)に示すように、コア層を有しないプリント配線基板である。
本実施形態のプリント配線基板500は、繊維基材を有するコア層を備えない、例えば、ビルドアップ層やソルダーレジスト層で構成されているコアレス樹脂基板とすることができる。これらのビルドアップ層やソルダーレジスト層は、本実施形態の樹脂膜の硬化物から形成される絶縁層で構成されていることが好ましい。例えば、図4(c)に示すプリント配線基板500は、2層のビルドアップ層(絶縁層540,550)とソルダーレジスト層(絶縁層560)とを備える。なお、プリント配線基板500のビルドアップ層は、単層でもよく、2以上の複数層を有していてもよい。
本実施形態の樹脂膜の硬化物から形成される絶縁層は強靱性に優れるので、プリント配線基板500の反りや搬送時におけるクラックを抑制することができる。
図4(c)に示される金属層542,552,562は、回路パターンであってもよいし、電極パットであってもよく、または、前述のように、SAP法で形成されていてもよい。これらの金属層542,552,562は、単層でも複数の金属層であってもよい。
プリント配線基板500は、平面上に複数の半導体素子を搭載することができる大面積を有していてもよい。これにより、プリント配線基板500に搭載された複数の半導体素子を一括封止した後、これらを個片化することにより、複数の半導体パッケージを得ることができる。なお、プリント配線基板500は、略円形形状や矩形形状等のパネル基板とすることができる。
上記プリント配線基板500の製造方法は、特に限定されないが、例えば、支持基板510上に、ビルドアップ層、ソルダーレジスト層を形成した後、この支持基板510を剥離することにより得ることができる。具体的には、図4(a)に示すように、大面積の支持基板510(例えば、SUSで構成される板部材)上に、キャリア箔520、金属箔530(例えば、銅箔)を配置する。このとき、支持基板510とキャリア箔520との間に不図示の接着樹脂を設けることができる。続いて、金属箔530上に金属層542を形成する。この金属層542を、たとえば、SAP方法等の通常の手法によりパターニングする。続いて、加熱加圧成形法等により、上記キャリア膜付樹脂膜を積層した後、キャリア膜付樹脂膜からキャリア基材を剥離する。そして、樹脂膜を硬化する。これらを3回繰り返して、2層のビルドアップ層と1層のソルダーレジスト層を形成する。
その後、図4(b)に示すように支持基板510を剥離する。そして、金属箔530をエッチング等により除去する。
以上により、図4(c)に示すプリント配線基板500が得られる。
次に、本実施形態のプリント配線基板の変形例を説明する。図5は、プリント配線基板600の構成の一例を示す断面図である。
図5に示すプリント配線基板600は、PLP(パネルレベルパッケージ)プロセスに用いられるコアレス樹脂基板610で構成されていてもよい。PLPプロセスは、例えば、配線板プロセスを利用して、ウエハ以上の大面積を有するパネルサイズパッケージを得ることができる。PLPプロセスを使用することにより、ウエハレベルプロセスよりも半導体パッケージの生産性を効率的に向上させることができる。
本実施形態において、コアレス樹脂基板610の絶縁層612(層間絶縁層)や絶縁層630,632(ソルダーレジスト層)は、本実施形態の樹脂膜の硬化物から形成される絶縁層で構成されていてもよい。本実施形態の樹脂膜の硬化物は強靱性に優れているため、PLPプロセス中において、プリント配線基板600の反りや、とくに搬送時や実装時におけるコアレス樹脂基板610のクラックを効果的に抑制することができる。
また、本実施形態のプリント配線基板600は、その平面内において複数の半導体素子(不図示)を搭載することができるような大面積を有している。そして、プリント配線基板600の面内方向に搭載された複数の半導体素子を一括して封止した後、これらを個片化することにより、複数の半導体パッケージを得ることができる。本実施形態では、樹脂膜の硬化物の線膨張係数を低くすることができるので、PLPプロセスで得られた半導体パッケージにおいてパッケージ反りを抑制することができる。
プリント配線基板600は、コアレス樹脂基板610と、その表面に形成されたソルダーレジスト層(絶縁層630,632)とを備えることができる。コアレス樹脂基板610は、内蔵された半導体素子620を有してもよい。半導体素子620は、ビア配線616を介して電気的に接続することができる。また、コアレス樹脂基板610は、絶縁層612(層間絶縁層)およびビア配線616を少なくとも有することができる。ビア配線616を介して、下面の金属層640(電極パッド)と上面の金属層618(ポスト)とを電気的に接続することができる。また、ビア配線616は、例えば、金属層614(ポスト)を介して金属層640に接続することができる。コアレス樹脂基板610において、ビア配線616および金属層614が埋設されている。ポストである金属層614は、表面がコアレス樹脂基板610の表面と同一平面を構成してもよい。本実施形態のプリント配線基板600において、コアレス樹脂基板610は、単層の層間絶縁層で構成されているが、この構成に限定されずに、複数の層間絶縁層が積層した構造を有していてもよい。このような層間絶縁層中には少なくとも層間接続配線としてビア配線616が形成されていてもよい。また、本実施形態において、ビア配線616、金属層614、または金属層618は、例えば、銅などの金属で構成されていてもよい。
また、コアレス樹脂基板610の上面と下面は、ソルダーレジスト層(絶縁層630,632)で覆われていてもよい。例えば、絶縁層630は、絶縁層612の表面上に形成された金属層650を覆うことができる。金属層650は、第1金属層652(めっき層)と第2金属層654(無電解めっき層)とで構成されており、例えば、SAP法で形成された金属層であってもよい。金属層650は、例えば、回路パターンまたは電極パッドでもよい。
また、本実施形態のプリント配線基板600の製造方法は、特に限定されないが、例えば、次のような方法を用いることができる。例えば、支持基板上に絶縁層612を形成する。続いて、絶縁層612にビアを形成し、ビア内をめっき方法により金属膜を埋設しビア配線616を形成する。続いて、絶縁層612の表面上に、SAP方法により再配線(金属層650)を形成する。その後、このような層間接続配線を有する複数の層間絶縁層を積層してもよい。その後、ソルダーレジスト層(絶縁層630,632)を形成する。
以上により、プリント配線基板600を得ることができる。
次に、本実施形態のプリント配線基板の変形例を説明する。図6は、プリント配線基板700の構成の一例を示す断面図である。
図6に示すプリント配線基板700は、ポスト付き基板(MIS基板)で構成することができる。例えば、ポスト付き基板は、絶縁層712(層間絶縁層)内に、ビア配線716と金属層718(ポスト)が埋設された構造を有するコアレス樹脂基板710で構成することができる。ポスト付き基板は、個片化された後の基板であっても、個片化前の大面積を有する基板(例えば、ウエハの様な支持体)であってもよい。
本実施形態のプリント配線基板700を用いることにより、ウエハレベルプロセスと同程度以上に、半導体パッケージの生産性を効率的に向上させることができる。
本実施形態において、コアレス樹脂基板710の絶縁層712(層間絶縁層)や絶縁層730,732(ソルダーレジスト層)は、本実施形態の樹脂膜の硬化物から形成される絶縁層で構成されていてもよい。本実施形態の樹脂膜の硬化物は強靱性に優れているため、プリント配線基板700の反りや、とくに搬送時や実装時におけるコアレス樹脂基板710のクラックを効果的に抑制することができる。
また、本実施形態のプリント配線基板700は、その平面内において複数の半導体素子(不図示)を搭載することができるような大面積を有している。そして、プリント配線基板700の面内方向に搭載された複数の半導体素子を一括して封止した後、これらを個片化することにより、複数の半導体パッケージを得ることができる。本実施形態の樹脂膜の硬化物の線膨張係数を低くすることができるので、得られた半導体パッケージにおいてパッケージ反りを抑制することができる。
プリント配線基板700は、コアレス樹脂基板710と、その表面に形成されたソルダーレジスト層(絶縁層730,732)を備えることができる。コアレス樹脂基板710は、内蔵された半導体素子720を有してもよい。半導体素子720は、ビア配線716を介して電気的に接続することができる。また、コアレス樹脂基板710は、絶縁層712(層間絶縁層)およびビア配線716および金属層718(ポスト)を少なくとも有することができる。ビア配線716を介して、下面の金属層714(ポスト)と上面の金属層718(ポスト)とを電気的に接続することができる。また、絶縁層712内に埋設された金属層714は、絶縁層712の表面に形成された金属層740(電極パッド)に接続することができる。また、絶縁層712の表面は、研磨面を有していてもよい。金属層718の一面は、絶縁層712の研磨面と同一平面を構成してもよい。
本実施形態のプリント配線基板700において、コアレス樹脂基板710は、単層の層間絶縁層で構成されているが、この構成に限定されずに、複数の層間絶縁層が積層した構造を有していてもよい。このような層間絶縁層中には、層間接続配線としてビア配線716および金属層718(ポスト)が形成されていてもよい。また、本実施形態において、ビア配線716、金属層714、または金属層718は、例えば、銅などの金属で構成されていてもよい。また、コアレス樹脂基板710の上面と下面は、ソルダーレジスト層(絶縁層730,732)で覆われていてもよい。
また、本実施形態のプリント配線基板700の製造方法は、特に限定されないが、例えば、次のような方法を用いることができる。例えば、支持基板上に、絶縁層上に銅ポスト(例えば、金属層718)を形成する。銅ポストをさらに絶縁層で埋め込む。続いて、グラインドやケミカルエッチングなどの方法により、当該銅ポストの表面を露出する(つまり、銅ポストの頭出しを行う)。続いて、SAP方法により再配線を形成する。このような工程により層間絶縁層を有するコアレス樹脂基板710を形成できる。この後、層間絶縁層を形成する工程を複数回繰り返すことにより、層間接続配線を有する層間絶縁層を複数層、積層してもよい。その後、ソルダーレジスト層(絶縁層730,732)を形成する。
以上により、プリント配線基板700を得ることができる。
以上、図面を参照して本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。
以下、本発明について実施例を参照して詳細に説明するが、本発明は、これらの実施例の記載に何ら限定されない。
(熱硬化性樹脂組成物の調製)
実施例および比較例について、ワニス状の熱硬化性樹脂組成物を調整した。
まず、表1に示す固形分割合で各成分を溶解または分散させ、メチルエチルケトンで不揮発分70重量%となるように調整し、高速撹拌装置を用いて撹拌して樹脂ワニスを調製した。
なお、表1における各成分の配合割合を示す数値は、熱硬化性樹脂組成物の固形分全体に対する各成分の配合割合(重量%)を示している。
表1における各成分の原料の詳細は下記のとおりである。
実施例および比較例では、以下の原料を用いた。
(熱硬化性樹脂)
熱硬化性樹脂1:ビスフェノールA型エポキシ樹脂(DIC社製、EPICLON、840S)
熱硬化性樹脂2:下記式(1)において、nが0以上3以下、Xが「−CH−」で表される基、aが0、bが0であるマレイミド化合物(BMI−2300、大和化成工業社製、Mw=750)
Figure 2017170643
熱硬化性樹脂3:アラルキル型エポキシ樹脂(NC3000、日本化薬社製)
熱硬化性樹脂4:下記一般式(II)で表わされるp−キシレン変性ナフトールアラルキル型シアネート樹脂(ナフトールアラルキル型フェノール樹脂(東都化成社製「SN−485誘導体」)と塩化シアンの反応物)
Figure 2017170643
(ベンゾオキサジン化合物)
ベンゾオキサジン化合物1:下記の製法で得られた下記式で表されるベンゾオキサジン化合物。
温度計、撹拌機、冷却管および滴下装置を備えたフラスコに、ビスフェノールA1140gとトルエン920gとを加え、撹拌しながら、50℃まで加熱してビスフェノールAを溶解した。その後、フラスコにホルムアルデヒド652gを添加した。これらの混合液を、さらに撹拌しながら、アリルアミン570gを1時間かけてフラスコに滴下し、1時間後に78〜80℃になるようにした。還流下7時間反応させた後、100℃、圧力360mmHg(約48kPa)の条件で、縮合水の除去、および減圧を行うことにより、アリル基を含有するベンゾオキサジン化合物1を得た。
Figure 2017170643
ベンゾオキサジン化合物2:下記の製法で得られた下記式で表される、ビスF型ベンゾオキサジン化合物。
温度計、撹拌機、冷却管および滴下装置を備えたフラスコに、4,4'−ジアミノ−3,3'−ジアリルジフェニルメタン139g(0.5モル)、フェノール94g(1.0モル)およびn−ブタノール150mLを加え、撹拌しながら60℃まで加熱して、固形成分を均一に溶解した。その後、フラスコに50%ホルマリン溶液128g(2.0モル)を10分間かけて滴下した。これらの混合液を、さらに撹拌しながら95℃で還流下3時間反応させた後、110℃、圧力360mmHg(約48kPa)の条件で、縮合水の除去、および減圧を行うことにより、アリル基を含有するベンゾオキサジン化合物2を得た。
Figure 2017170643
ベンゾオキサジン化合物3:下記の製法で得られた下記式で表される、ビスA型のベンゾオキサジン化合物。
温度計、撹拌機、冷却管および滴下装置を備えたフラスコに、ジアリルビスフェノールA1540gとトルエン920gとを加え、撹拌しながら、50℃まで加熱してジアリルビスフェノールAを溶解した。その後、フラスコにホルムアルデヒド652gを添加した。これらの混合液を、さらに撹拌しながら、アニリン930gを1時間かけてフラスコに滴下し、1時間後に78〜80℃になるようにした。還流下7時間反応させた後、100℃、圧力360mmHg(約48kPa)の条件で、縮合水の除去、および減圧を行うことにより、アリル基を含有するベンゾオキサジン化合物3を得た。
Figure 2017170643
ベンゾオキサジン化合物4:下記の製法で得られた下記式で表される、ベンゾオキサジン化合物。
温度計、撹拌機、冷却管および滴下装置を備えたフラスコに、ビスフェノールF1000gとトルエン920gとを加え、撹拌しながら、50℃まで加熱してビスフェノールFを溶解した。その後、フラスコにホルムアルデヒド652gを添加した。これらの混合液を、さらに撹拌しながら、2−アリルアニリン1330gを1時間かけて滴下し、1時間後に78〜80℃になるようにした。還流下7時間反応させた後、100℃、圧力360mmHg(約48kPa)の条件で、縮合水の除去、および減圧を行うことにより、アリル基を含有するベンゾオキサジン化合物4を得た。
Figure 2017170643
ベンゾオキサジン化合物5:下記式で表されるベンゾオキサジン化合物(四国化成社製、P−d型ベンゾオキサジン)。
Figure 2017170643
ベンゾオキサジン化合物6:下記の製法で得られた下記式で表される、ベンゾオキサジン化合物。
温度計、撹拌機、冷却管および滴下装置を備えたフラスコに、ビスフェノールA1140gとトルエン920gとを加え、撹拌しながら、50℃まで加熱してビスフェノールAを溶解した。その後、フラスコにホルムアルデヒド652gを添加した。これらの混合液を、さらに撹拌しながら、2−メチルアリルアミン711gを1時間かけて滴下し、1時間後に78〜80℃になるようにした。還流下7時間反応させた後、100℃、圧力360mmHg(約48kPa)の条件で、縮合水の除去、および減圧を行うことにより、炭素数4のアリル基を含有するベンゾオキサジン化合物6を得た。
Figure 2017170643
ベンゾオキサジン化合物7:下記の製法で得られた下記式で表される、ベンゾオキサジン化合物。
温度計、撹拌機、冷却管および滴下装置を備えたフラスコに、ビスフェノールA1140gとトルエン920gとを加え、撹拌しながら、50℃まで加熱してビスフェノールAを溶解した。その後、フラスコにホルムアルデヒド652gを添加した。これらの混合液を、さらに撹拌しながら、オレイルアミン2675gを1時間かけて滴下し、1時間後に78〜80℃になるようにした。還流下7時間反応させた後、100℃、圧力360mmHg(約48kPa)の条件で、縮合水の除去、および減圧を行うことにより、炭素数18のアリル基を含有するベンゾオキサジン化合物7を得た。
Figure 2017170643
(無機充填材)
無機充填材1:シリカ粒子(アドマテック社製、SC2050、平均粒径0.5μm)
(硬化促進剤)
硬化促進剤1:上記した式(2)に該当するオニウム塩化合物のリン系触媒(住友ベークライト社製、C05−MB)
硬化促進剤2:2−フェニルイミダゾール(四国化成社製、2PZ−PW)
(カップリング剤)
カップリング剤1:シランカップリング剤(N−フェニルγ−アミノプロピルトリメトキシシラン、信越化学(株)製、KBM−573)
Figure 2017170643
(キャリア付き樹脂膜)
実施例および比較例において、得られた樹脂ワニスをキャリア基材であるPETフィルム上に塗布した後、140℃、2分間の条件で溶剤を除去して、厚さ25μmの樹脂膜を形成した。これにより、キャリア付樹脂膜を得た。
(樹脂基板)
実施例および比較例において、得られたキャリア付き樹脂膜に対して、180℃、2時間の条件で硬化を行うことにより、熱硬化性樹脂組成物から形成される樹脂膜の硬化物を絶縁層として備える、樹脂基板を得た。
実施例および比較例において、樹脂基板について、次のような評価を行った。評価結果を表2に示す。
Figure 2017170643
(プリプレグ)
実施例および比較例において、得られた樹脂ワニスを、ガラス織布(クロスタイプ♯2118、Tガラス、坪量114g/m)に塗布装置で含浸させ、140℃の熱風乾燥装置で10分間乾燥して、厚さ107μmのプリプレグを得た。
(金属張積層板)
実施例および比較例において得られたプリプレグの両面に極薄銅箔(三井金属鉱業社製、マイクロシンEx、2.0μm)を重ね合わせ、圧力4MPa、温度180℃で2時間加熱加圧成形することにより、金属張積層板を得た。得られた金属張積層板(金属箔付き樹脂基板)のコア層(樹脂基板で形成される部分)の厚みは、0.107mmであった。
(プリント配線基板)
実施例および比較例において得られた金属張積層板の表面の極薄銅箔層に約1μmの粗化処理を施した後、炭酸ガスレーザーで、層間接続用のφ80μmのスルーホールを形成した。次いで、60℃の膨潤液(アトテックジャパン社製、スウェリングディップ セキュリガント P)に5分間浸漬し、さらに80℃の過マンガン酸カリウム水溶液(アトテックジャパン社製、コンセントレート コンパクト CP)に2分間浸漬後、中和してスルーホール内のデスミア処理を行った。次に、無電解銅メッキを厚さ0.5μmで行い、電解銅メッキ用レジスト層を厚さ18μm形成し、パターン銅メッキし、温度150℃時間30分加熱してポストキュアした。次いでメッキレジストを剥離し全面をフラッシュエッチングして、L/S=15/15μmのパターンを形成した。
実施例および比較例において、積層板、プリント配線基板について、次のような評価を行った。評価結果を表3に示す。
Figure 2017170643
以下に、表2および表3に示す各評価項目の具体的な内容について説明する。
(平均線膨張係数(30℃−240℃))
樹脂基板に用いられる硬化物:
実施例および比較例で得られたキャリア付樹脂膜からキャリア基材であるPETフィルムを剥離した樹脂膜を4枚積層して、厚さ100μmの樹脂シートを作製した。次いで、当該樹脂シートを、180℃で2時間熱処理し、硬化物を得た。
金属張積層板に用いられる硬化物:
実施例および比較例で得られた金属張積層板からエッチング液(第二塩化鉄溶液、35℃)で銅箔を除去し、プリプレグの硬化物を得た。
線膨張係数の測定:
上記樹脂基板または上記金属張積層板に用いられる硬化物から測定長6mm×6mmのテストピースを切り出し、そのテストピースに対し、熱機械分析装置TMA(TAインスツルメント社製、Q400)を用いて、温度範囲30〜300℃、昇温速度10℃/min、荷重10g、圧縮モードの条件で熱機械分析(TMA)を2サイクル測定した。30℃から240℃の範囲における平面方向(XY方向)の線膨張係数の平均値、30℃から150℃の範囲における平面方向(XY方向)の線膨張係数の平均値α1(CETα1)および150℃から240℃の範囲における平面方向(XY方向)の線膨張係数の平均値α2(CETα2)を算出した。なお、線膨脹係数は、2サイクル目の値を採用した。
(ピール強度)
実施例および比較例で得られた金属張積層板を用い、JIS C−6481:1996に準拠して測定される、プリプレグの硬化物と金属箔との間のピール強度を、HAST条件(温度130℃、湿度85%)で100時間処理後に測定した。
(ガラス転移温度)
ガラス転移温度の測定は、動的粘弾性測定(DMA装置、TAインスツルメント社製、Q800))を用いて以下に示す条件で行った。
実施例および比較例で得られたキャリア付樹脂膜からキャリア基材であるPETフィルムを剥離した樹脂膜を4枚積層して、厚さ100μmの樹脂シートを作製した。次いで、当該樹脂シートを、180℃で2時間熱処理し、硬化物を得た。
得られた硬化物から8mm×40mmのテストピースを切り出し、そのテストピースに対し、昇温速度5℃/min、周波数1Hzで動的粘弾性測定をおこなった。
ここで、ガラス転移温度は、損失正接tanδが最大値を示す温度とした。
(パネル反り)
縦250mm×横250mm角SUSの支持基板上に、12μm銅箔を配置し、実施例および比較例で得られたキャリア膜付樹脂膜を、2ステージ真空加圧式ラミネーター装置(名機製作所社製、MVLP−500)を用いて、30秒間減圧して10hPa以下で、1ステージ条件として温度120℃、圧力0.8MPa、30秒の条件で処理した後、2ステージ条件としてSUS鏡板で温度120℃、圧力1.0MPa、60秒の条件にて真空加熱加圧成形した。次いで、キャリア付樹脂膜からキャリア基材を剥離した後、180℃、2時間の条件で硬化した。上記工程を3回繰返し、三層ビルドアップ層を形成し、SUS剥離した時のパネルの反りを、板端の反りを測定することにより評価した。
A:15mm未満
B:15mm以上50mm未満(実質上問題なし)
C:50mm以上
(ハンドリング性)
実施例および比較例で得られた三層ビルドアップ層について、SUS剥離後、さらに12μm銅箔をエッチングした。その後、パネルのクラックの有無を評価した。
A:クラックなし
B:クラックあり
(層間絶縁信頼性)
12μm厚の銅箔を積層してなる両面銅張積層板(住友ベークライト(株)製、LαZ−4785GH−J)を準備した。次いで、上記銅張積層板の銅箔をエッチング処理して導体回路パターンを形成することにより、一面および他面に上記導体回路パターンが形成された回路基板を得た。次いで実施例および比較例で得られたキャリア膜付樹脂膜を、2ステージ真空加圧式ラミネーター装置(名機製作所社製、MVLP−500)を用いて、30秒間減圧して10hPa以下で、1ステージ条件として温度120℃、圧力0.8MPa、30秒の条件で処理した後、2ステージ条件としてSUS鏡板で温度120℃、圧力1.0MPa、60秒の条件にて真空加熱加圧成形した。次いで、キャリア付樹脂膜からキャリア基材を剥離した後、12μm厚の銅箔を同様の条件で積層した後、180℃、2時間の条件で硬化した。得られた多層配線板の外層パターンを形成し、層間厚み20μmの絶縁信頼性評価サンプルを作製した。この試験サンプルを用いて、温度130℃、湿度85%、印加電圧3.3Vの条件で連続湿中絶縁抵抗を評価した。なお、抵抗値10Ω以下を故障とした。評価基準は以下の通りである。
A:500時間以上故障なし(良好)
B:200時間以上500時間未満で故障あり(実質上問題なし)
C:100時間以上200時間未満で故障あり(実質上使用不可)
D:100時間未満で故障あり(使用不可)
(吸湿半田耐熱性試験)
上記層間絶縁信頼性の評価で作製した絶縁信頼性評価サンプルと同様のサンプルを用いて、PCT24h後、260℃半田浸漬30秒を繰返して膨れの有無を確認した。また、上記両面銅張積層板に代えて、得られた金属張積層板を使用した点を除いて、上記層間絶縁信頼性の評価で作製した絶縁信頼性評価サンプルと同様のサンプルについても評価を行った。
A:11回以上でも膨れ無し(良好)
B:5〜10回で膨れ(実質上問題なし)
C:2〜5回で膨れ(実質上使用不可)
D:1回で膨れ(使用不可)
(スルーホール絶縁信頼性評価)
上記したプリント配線板の製造において、層間接続のΦ80μmのスルーホールを壁間80μmで20対形成した。次に、回路パターン上に、ビルドアップ材(住友ベークライト社製、BLA−3700GS)を積層、硬化した試験サンプルを作製した。この試験サンプルを用いて、温度130℃、湿度85%、印加電圧5.5Vの条件で連続湿中絶縁抵抗を評価した。なお、抵抗値10Ω以下を故障とした。評価基準は以下の通りである。
A:500時間以上故障なし(良好)
B:200時間以上500時間未満で故障あり(実質上問題なし)
C:100時間以上200時間未満で故障あり(実質上使用不可)
D:100時間未満で故障あり(使用不可)
(半導体パッケージの反り評価)
得られたプリント配線基板(回路パターンを形成した後のプリント配線基板)にビルドアップ材(住友ベークライト社製、BLA−3700GS)を積層硬化し、セミアディティブ法で回路加工した。その上に、10mm×10mm×100μm厚みの半田バンプ付半導体素子を実装し、アンダーフィル(住友ベークライト社製、CRP−4160G)で封止し、150℃で2時間硬化させた。最後に、15mm×15mmにダイシングし半導体装置を作製した。
得られた半導体装置の260℃での反りを温度可変レーザー三次元測定機(日立テクノロジーアンドサービス社製、形式LS220−MT100MT50)を用いて評価した。上記測定機のサンプルチャンバーに半導体素子面を下にして設置し、高さ方向の変位を測定し、変位差の最も大きい値を反り量とした。評価基準は以下の通りである。
A:反り量が30μm未満
B:反り量が30μm以上50μm未満
C:反り量が50μm以上
以上、実施例に基づいて本発明をさらに具体的に説明したが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。
本発明の熱硬化性樹脂組成物は、前述した一般式(B−1)または(B−2)で表されるベンゾオキサジン化合物と、マレイミド化合部、エポキシ樹脂およびシアネート樹脂のうちの少なくとも一種と、無機充填剤とを含有する。このような熱硬化性樹脂組成物は、得られる硬化物の線膨張係数を低くすることができる。そのため、かかる熱硬化性樹脂組成物を用いることにより、低反り性に優れた絶縁層を得ることができる。また、かかる絶縁層を用いたキャリア付樹脂膜、プリプレグ、金属張積層板、樹脂基板、プリント配線基板および半導体装置を得ることができる。したがって、本発明は、産業上の利用可能性を有する。

Claims (15)

  1. プリント配線基板における絶縁層を形成するために用いられる熱硬化性樹脂組成物であって、
    下記一般式(B−1)または(B−2)で表されるベンゾオキサジン化合物と、
    マレイミド化合物、エポキシ樹脂およびシアネート樹脂のうちの少なくとも一種を含有する熱硬化性樹脂と、
    無機充填材と、を含むことを特徴とする熱硬化性樹脂組成物。
    Figure 2017170643
    (上記一般式(B−1)中、aはそれぞれ独立に1以上3以下の整数を表し、pは1以上4以下の整数を表す。R、Rはそれぞれ独立して、水素原子、低級アルキル基、アルケニル基、シクロアルキル基、アリール基、アラルキル基、または1〜4価の有機基を表すが、RおよびRのうちの少なくとも一方が、炭素数3〜14のアルケニル基を有する基である(ただし、pが2以上4以下の整数の場合には、Rが、同一または異なっていてもよい)。Zは、1〜4価の有機基を表す。)
    Figure 2017170643
    (上記一般式(B−2)中、bはそれぞれ独立に1以上4以下の整数を表し、qは1以上4以下の整数を表す。Rは、それぞれ独立して、水素原子、低級アルキル基、アルケニル基、シクロアルキル基、アリール基、アラルキル基、または1〜4価の有機基を表し、Xは、1〜4価の有機基を表すが、RおよびXのうちの少なくとも一方が、炭素数3〜14のアルケニル基を有する基である。)
  2. 前記一般式(B−1)で表されるベンゾオキサジン化合物は、下記一般式(B−3)で表される構造を有しており、
    前記一般式(B−2)で表されるベンゾオキサジン化合物は、下記一般式(B−4)で表される構造を有する請求項1に記載の熱硬化性樹脂組成物。
    Figure 2017170643
    (上記一般式(B−3)中、Zは、直接結合、炭素数1〜10のアルキレン基、C=O、O、S、S=OまたはO=S=Oを表す。RおよびRのうちの少なくとも一方が、炭素数3〜14のアルケニル基を有する基である。)
    Figure 2017170643
    (上記一般式(B−4)中、cはそれぞれ独立に1以上4以下の整数を表し、Xは、直接結合、炭素数1〜10のアルキレン基、C=O、O、S、S=OまたはO=S=Oを表す。Rは、炭素数3〜14のアルケニル基を有する基である。)
  3. 前記不飽和二重結合を有する基が、アリル基である請求項1または2に記載の熱硬化性樹脂組成物。
  4. 前記無機充填材の含有量が、当該熱硬化性樹脂組成物全体に対して50重量%以上90重量%以下である請求項1ないし3のいずれか1項に記載の熱硬化性樹脂組成物。
  5. 当該熱硬化性樹脂組成物の硬化物に対して熱機械分析を行ったときに、前記硬化物の30℃から240℃の範囲において算出した平均線膨張係数が、1ppm/℃以上40ppm/℃以下である請求項1ないし4のいずれか1項に記載の熱硬化性樹脂組成物。
  6. 当該熱硬化性樹脂組成物の硬化物に対して熱機械分析を行ったときに、前記硬化物の30℃から150℃の範囲において算出した平均線膨張係数をα1とし、前記硬化物の、150℃から240℃の範囲において算出した平均線膨張係数をα2としたとき、
    平均線膨張係数比(α2/α1)が、0.7以上3.0以下である請求項1ないし5のいずれか1項に記載の熱硬化性樹脂組成物。
  7. 当該熱硬化性樹脂組成物の硬化物の、銅箔に対するピール強度が、0.5kN/m以上である請求項1ないし6のいずれか1項に記載の熱硬化性樹脂組成物。
  8. 当該熱硬化性樹脂組成物の硬化物のガラス転移温度が、140℃以上である請求項1ないし7のいずれか1項に記載の熱硬化性樹脂組成物。
  9. 前記無機充填材がシリカを含む請求項1ないし8のいずれか1項に記載の熱硬化性樹脂組成物。
  10. キャリア基材と、
    前記キャリア基材上に設けられている、請求項1ないし9のいずれか1項に記載の熱硬化性樹脂組成物から形成される樹脂膜と、を備えることを特徴とするキャリア付樹脂膜。
  11. 請求項1ないし9のいずれか1項に記載の熱硬化性樹脂組成物を繊維基材に含浸して形成されることを特徴とするプリプレグ。
  12. 請求項11に記載のプリプレグの硬化物と、当該硬化物の少なくとも一面に配置された金属層と、を備えることを特徴とする金属張積層板。
  13. 請求項1ないし9のいずれか1項に記載の熱硬化性樹脂組成物の硬化物で構成された絶縁層を備えることを特徴とする樹脂基板。
  14. 請求項12に記載の金属張積層板または請求項13に記載の樹脂基板と、前記金属張積層板または前記樹脂基板の表面に形成された回路層と、を備えることを特徴とするプリント配線基板。
  15. 請求項14に記載のプリント配線基板と、
    前記プリント配線基板の回路層上に搭載された、または前記プリント配線基板に内蔵された半導体素子と、を備えることを特徴とする半導体装置。
JP2018508125A 2016-03-31 2017-03-29 熱硬化性樹脂組成物、キャリア付樹脂膜、プリプレグ、金属張積層板、樹脂基板、プリント配線基板および半導体装置 Pending JPWO2017170643A1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016072761 2016-03-31
JP2016072761 2016-03-31
PCT/JP2017/012819 WO2017170643A1 (ja) 2016-03-31 2017-03-29 熱硬化性樹脂組成物、キャリア付樹脂膜、プリプレグ、金属張積層板、樹脂基板、プリント配線基板および半導体装置

Publications (1)

Publication Number Publication Date
JPWO2017170643A1 true JPWO2017170643A1 (ja) 2019-02-07

Family

ID=59964940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018508125A Pending JPWO2017170643A1 (ja) 2016-03-31 2017-03-29 熱硬化性樹脂組成物、キャリア付樹脂膜、プリプレグ、金属張積層板、樹脂基板、プリント配線基板および半導体装置

Country Status (3)

Country Link
JP (1) JPWO2017170643A1 (ja)
TW (1) TW201808622A (ja)
WO (1) WO2017170643A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201918378A (zh) * 2017-11-10 2019-05-16 日商普林科技有限公司 樹脂組成物、清漆、接著劑、密封劑、塗料及成形品
JP2019099755A (ja) * 2017-12-07 2019-06-24 信越化学工業株式会社 熱硬化性樹脂組成物
JP6660513B1 (ja) * 2018-03-28 2020-03-11 積水化学工業株式会社 樹脂材料及び多層プリント配線板
JP2019178198A (ja) * 2018-03-30 2019-10-17 住友ベークライト株式会社 熱硬化性樹脂組成物、コアレス基板、プリント配線基板、および半導体装置
JP7238301B2 (ja) * 2018-09-05 2023-03-14 株式会社レゾナック 材料の選定方法及びパネルの製造方法
JP7124657B2 (ja) * 2018-11-14 2022-08-24 味の素株式会社 樹脂組成物、樹脂シート、プリント配線板及び半導体装置
JP7088105B2 (ja) * 2019-03-27 2022-06-21 味の素株式会社 樹脂組成物、樹脂組成物の硬化物、樹脂シート、プリント配線板及び半導体装置
JP2021084968A (ja) * 2019-11-28 2021-06-03 住友ベークライト株式会社 基材付き樹脂膜、プリント配線基板および電子装置
CN114672168B (zh) * 2020-12-24 2023-06-06 广东生益科技股份有限公司 一种无卤阻燃型树脂组合物及其应用
WO2023042669A1 (ja) * 2021-09-15 2023-03-23 味の素株式会社 樹脂シート、プリント配線板、半導体チップパッケージ及び半導体装置
WO2023145471A1 (ja) * 2022-01-28 2023-08-03 パナソニックIpマネジメント株式会社 樹脂組成物、プリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板、及びプリント配線板
CN115612246A (zh) * 2022-12-15 2023-01-17 成都科宜高分子科技有限公司 一种用于形成pcb塞孔树脂的组合物以及制备方法、应用、填充工艺

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003147165A (ja) * 2001-08-29 2003-05-21 Osaka City 熱硬化性樹脂組成物
JP2011231196A (ja) * 2010-04-27 2011-11-17 Denki Kagaku Kogyo Kk 樹脂複合組成物及びその用途
JP2013508517A (ja) * 2009-10-27 2013-03-07 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェン ベンゾオキサジン含有組成物
JP2013087236A (ja) * 2011-10-20 2013-05-13 Panasonic Corp 樹脂組成物、樹脂ワニス、プリプレグ、金属張積層板、及びプリント配線板
WO2013108890A1 (ja) * 2012-01-20 2013-07-25 旭化成イーマテリアルズ株式会社 樹脂組成物、積層体、多層プリント配線板及び多層フレキシブル配線板並びにその製造方法
JP2013185056A (ja) * 2012-03-07 2013-09-19 Nippon Shokubai Co Ltd 硬化性樹脂組成物、その製造方法及びエレクトロニクス実装材料
JP2015000952A (ja) * 2013-06-17 2015-01-05 三菱化学株式会社 エポキシ樹脂組成物およびその硬化物
JP2016509120A (ja) * 2013-03-04 2016-03-24 ハンツマン・アドバンスド・マテリアルズ・アメリカズ・エルエルシー ポリスルホン系強靭剤を含有するベンゾオキサジン硬化性組成物

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003147165A (ja) * 2001-08-29 2003-05-21 Osaka City 熱硬化性樹脂組成物
JP2013508517A (ja) * 2009-10-27 2013-03-07 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェン ベンゾオキサジン含有組成物
JP2011231196A (ja) * 2010-04-27 2011-11-17 Denki Kagaku Kogyo Kk 樹脂複合組成物及びその用途
JP2013087236A (ja) * 2011-10-20 2013-05-13 Panasonic Corp 樹脂組成物、樹脂ワニス、プリプレグ、金属張積層板、及びプリント配線板
WO2013108890A1 (ja) * 2012-01-20 2013-07-25 旭化成イーマテリアルズ株式会社 樹脂組成物、積層体、多層プリント配線板及び多層フレキシブル配線板並びにその製造方法
JP2013185056A (ja) * 2012-03-07 2013-09-19 Nippon Shokubai Co Ltd 硬化性樹脂組成物、その製造方法及びエレクトロニクス実装材料
JP2016509120A (ja) * 2013-03-04 2016-03-24 ハンツマン・アドバンスド・マテリアルズ・アメリカズ・エルエルシー ポリスルホン系強靭剤を含有するベンゾオキサジン硬化性組成物
JP2015000952A (ja) * 2013-06-17 2015-01-05 三菱化学株式会社 エポキシ樹脂組成物およびその硬化物

Also Published As

Publication number Publication date
TW201808622A (zh) 2018-03-16
WO2017170643A1 (ja) 2017-10-05

Similar Documents

Publication Publication Date Title
WO2017170643A1 (ja) 熱硬化性樹脂組成物、キャリア付樹脂膜、プリプレグ、金属張積層板、樹脂基板、プリント配線基板および半導体装置
JP7028165B2 (ja) 熱硬化性樹脂組成物、キャリア付樹脂膜、プリント配線基板および半導体装置
TWI466241B (zh) 半導體裝置及半導體裝置之製造方法
JP6206035B2 (ja) 金属張積層板、プリント配線基板、および半導体装置
JP6724296B2 (ja) プリプレグ、樹脂基板、金属張積層板、プリント配線基板、および半導体装置
JP6083127B2 (ja) 積層板、ビルドアップ層付き積層板、回路基板、半導体パッケージおよび積層板の製造方法
JP2012231140A (ja) 積層板、回路基板、および半導体パッケージ
JP6229439B2 (ja) 金属張積層板、プリント配線基板、および半導体装置
JP6221620B2 (ja) 金属張積層板、プリント配線基板、および半導体装置
JP6592962B2 (ja) 熱硬化性樹脂組成物、キャリア付樹脂膜、プリント配線基板、および半導体装置
JP6281184B2 (ja) 金属張積層板、プリント配線基板、半導体パッケージ、および半導体装置
JP6808985B2 (ja) 樹脂膜、キャリア付樹脂膜、プリント配線基板および半導体装置
JP7040174B2 (ja) 熱硬化性樹脂組成物、キャリア付樹脂膜、プリプレグ、金属張積層板、プリント配線基板および半導体装置
JP6720652B2 (ja) 熱硬化性樹脂組成物、キャリア付樹脂膜、プリント配線基板および半導体装置
JP6349686B2 (ja) 金属張積層板、プリント配線基板、および半導体装置
JP2015159177A (ja) 樹脂基板、金属張積層板、プリント配線基板、および半導体装置
JP6819067B2 (ja) 熱硬化性樹脂組成物、キャリア付樹脂膜、プリント配線基板および半導体装置
JP7342358B2 (ja) 樹脂組成物、それを用いたキャリア付樹脂膜、プリプレグ、積層板、プリント配線基板および半導体装置
JP2014236090A (ja) プリント配線板および半導体装置
JP2014084441A (ja) 樹脂基板、金属張積層板、プリント配線基板、および半導体装置
JP2013053303A (ja) プリプレグ、積層板、プリント配線基板、半導体パッケージおよび半導体装置
JP7102816B2 (ja) 熱硬化性樹脂組成物、キャリア付樹脂膜、プリプレグ、金属張積層板、プリント配線基板および半導体装置
JP2016069401A (ja) プリプレグ、樹脂基板、金属張積層板、プリント配線基板、および半導体装置
JP2020077811A (ja) 犠牲基板およびコアレス基板の製造方法
JP2018035301A (ja) プリプレグ、金属張積層板、プリント配線基板および半導体パッケージ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210202

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210831