JP7102816B2 - 熱硬化性樹脂組成物、キャリア付樹脂膜、プリプレグ、金属張積層板、プリント配線基板および半導体装置 - Google Patents

熱硬化性樹脂組成物、キャリア付樹脂膜、プリプレグ、金属張積層板、プリント配線基板および半導体装置 Download PDF

Info

Publication number
JP7102816B2
JP7102816B2 JP2018051247A JP2018051247A JP7102816B2 JP 7102816 B2 JP7102816 B2 JP 7102816B2 JP 2018051247 A JP2018051247 A JP 2018051247A JP 2018051247 A JP2018051247 A JP 2018051247A JP 7102816 B2 JP7102816 B2 JP 7102816B2
Authority
JP
Japan
Prior art keywords
thermosetting resin
resin composition
group
resin
wiring board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018051247A
Other languages
English (en)
Other versions
JP2019163366A (ja
Inventor
一史 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2018051247A priority Critical patent/JP7102816B2/ja
Publication of JP2019163366A publication Critical patent/JP2019163366A/ja
Application granted granted Critical
Publication of JP7102816B2 publication Critical patent/JP7102816B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、熱硬化性樹脂組成物、キャリア付樹脂膜、プリプレグ、金属張積層板、プリント配線基板および半導体装置に関する。
これまで電気・電子分野の熱硬化性樹脂組成物において、様々な開発が行われてきた。この種の技術として、たとえば特許文献1に記載の熱硬化性樹脂組成物が挙げられる。同文献によれば、ビフェニルアラルキル型エポキシ樹脂とビフェニルアラルキル型フェノール樹脂とを含む熱硬化性樹脂組成物が記載されている(特許文献1の実施例1)。
特開2004-346101号公報
しかしながら、上記文献に記載の熱硬化性樹脂組成物の硬化物においては、耐熱性と低吸水性の点で改善の余地を有していることが判明した。
本発明者は、プリント配線基板における絶縁層の形成に用いる熱硬化性樹脂組成物に関してさらに検討したところ、熱硬化性樹脂組成物の硬化物の物性のうち、耐熱性と低吸水性に着眼するに至った。このような着眼点に基づいて検討した結果、次のような知見が得られた。すなわち、上記文献1に記載のように、ビフェニルアラルキル型エポキシ樹脂とビフェニルアラルキル型フェノール樹脂とを併用した場合、ガラス転移温度は比較的低温となるので、耐熱性が低下することがあった。一方で、ガラス転移温度(Tg)を高めるために、エポキシ樹脂とフェノール樹脂との架橋点を増加させる手段として、多官能エポキシ樹脂と多官能フェノール樹脂と併用する手段を採用した場合、Tgは高くなるものの、吸水率が高くなることが判明した。詳細なメカニズムは定かでないが、硬化物の架橋点を単に増加させる設計では、自由体積が大きくなるめ、吸水率が増加すると考えられる。
このような知見に基づいて、硬化物の構造について鋭意研究したところ、DSC曲線の発熱ピークを指標とし、第1発熱ピークと、第1発熱ピークにおける温度よりも高く、かつ250℃よりも高温領域に存在する第2発熱ピークと、を2つのピークを有する構成を採用することにより、硬化物のTgを高め、吸水率を低くすることができるため、耐熱性および低吸水性に優れた絶縁層が得られる熱硬化性樹脂組成物を実現できることを見出し、本発明を完成するに至った。
本発明によれば、
プリント配線基板における絶縁層を形成するために用いられる熱硬化性樹脂組成物であって、
1分子中に、アルデヒド基と、当該アルデヒド基とは異なる官能基としてイミノ基と、を備える多官能フェノール樹脂を含み、
無機充填材を含み、当該熱硬化性樹脂組成物の全固形分100重量%に対する前記無機充填材の含有量が50重量%以上80重量%以下であり、前記無機充填材の平均粒子径が0.01μm以上5.0μm以下であり、前記無機充填材が、平均粒子径が0.1μm以上5.0μmのシリカ粒子を含み、
示差走査熱量計を用いて昇温速度10℃/minの条件下で30℃から350℃まで昇温した際に得られる当該熱硬化性樹脂組成物のDSC曲線は、第1発熱ピークと、前記第1発熱ピークよりも高い温度に位置する高い第2発熱ピークと、を有しており、
前記第2発熱ピークは、250℃よりも高い温度領域に存在する、熱硬化性樹脂組成物が提供される。
また本発明によれば、
キャリア基材と、
前記キャリア基材上に設けられている、上記熱硬化性樹脂組成物からなる樹脂膜と、を備える、キャリア付樹脂膜が提供される。
また本発明によれば、上記熱硬化性樹脂組成物を繊維基材に含浸してなる、プリプレグが提供される。
また本発明によれば、上記プリプレグの硬化物の少なくとも一面に金属層が配置された、金属張積層板が提供される。
また本発明によれば、上記金属張積層板の表面に回路層が形成された、プリント配線基板が提供される。
また本発明によれば、
上記プリント配線基板と、
前記プリント配線基板の回路層上に搭載された、または前記プリント配線基板に内蔵された半導体素子と、を備える、半導体装置が提供される。
本発明によれば、耐熱性および低吸水性に優れた絶縁層が得られる熱硬化性樹脂組成物、それを用いたキャリア付樹脂膜、金属張積層板、プリント配線基板および半導体装置が提供される。
本実施形態におけるキャリア付樹脂膜の構成の一例を示す断面図である。 本実施形態におけるプリント配線基板の構成の一例を示す断面図である。 本実施形態における半導体装置の構成の一例を示す断面図である。 本実施形態におけるプリント配線基板の製造プロセスの一例を示す工程断面図である。 本実施形態におけるプリント配線基板の構成の一例を示す断面図である。 本実施形態におけるプリント配線基板の構成の一例を示す断面図である。 実施例1から3のDSC曲線を示す。 比較例1、2のDSC曲線を示す。
以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。
本実施形態の熱硬化性樹脂組成物は、示差走査熱量計を用いて昇温速度10℃/minの条件下で30℃から350℃まで昇温した際に得られる当該熱硬化性樹脂組成物のDSC曲線が、第1発熱ピークと、前記第1発熱ピークよりも高い温度に位置する高い第2発熱ピークと、を有するように構成されている。当該第2発熱ピークは、250℃よりも高い温度領域に存在するものである。このような熱硬化性樹脂組成物は、プリント配線基板における絶縁層を形成するために用いられるものである。
本発明者が熱硬化性樹脂組成物において検討した結果、ビフェニルアラルキル型エポキシ樹脂とビフェニルアラルキル型フェノール樹脂とを併用した場合、ガラス転移温度は比較的低温となる一方で、多官能エポキシ樹脂と多官能フェノール樹脂とを併用した場合に、これらの架橋点が増加するのでTgは高くなるものの、吸水率も高くなることが判明した。
詳細なメカニズムは定かでないが、硬化物の架橋点を単に増加させる設計では、硬化物の自由体積が大きくなるめ、吸水率も増加すると考えられる。
そこで、本発明者は架橋構造(硬化物の構造)について更に検討を深めた結果、次のような知見が得られた。すなわち、DSC曲線の発熱ピークを指標とし、250℃未満の温度領域に存在する第1発熱ピークと、250℃よりも高温領域に存在する第2発熱ピークと、を2つのピークを有する構成とすることにより、Tgを高くし、吸水率を下げることができることを見出した。第2発熱ピークを有する構成とすることにより、得られる硬化物のTgを高くすることができる。また、互いに異なる温度領域に存在する第1発熱ピークと第2発熱ピークを有する構成とすることにより、詳細なメカニズムは定かでないが、得られる硬化物の架橋構造が最適に緻密化すると考えられるため、硬化物の吸水率を低減させることができる。
本実施形態では、たとえば熱硬化性樹脂組成物中に含まれる各成分の種類や配合量等を適切に選択することにより、上記第1発熱ピークおよび第2発熱ピークを制御することが可能である。これらの中でも、たとえば、架橋成分として、分子内に互いに反応する異種の官能基を有する多官能フェノール樹脂、当該多官能フェノール樹脂の官能基と反応する基を有するエポキシ樹脂等の熱硬化性樹脂を使用すること等が、所望の第1発熱ピークおよび第2発熱ピークとするための要素として挙げられる。
本実施形態の熱硬化性樹脂組成物によれば、硬化物のTgを高くすることができるため、プリント配線基板における絶縁層の耐熱性を向上させることができる。これにより、例えば、高温時における絶縁層の膨れを抑制できるため、基板の反りを低減したり、基板信頼性を向上させることができる。また、本実施形態の熱硬化性樹脂組成物によれば、硬化物の吸水率を低くすることができるため、低吸水性に優れた絶縁層を実現することができる。これにより、例えば、膨れの因子の1つである水分の含有量が少ないため、膨れ等の発生を抑制することができ、基板信頼性を高めることができる。
このように本実施形態の熱硬化性樹脂組成物を使用することにより、基板信頼性に優れた構造のプリント配線基板や半導体装置を実現できる。
本実施形態において、プリント配線基板における絶縁層は、コア層、ビルドアップ層(層間絶縁層)、ソルダーレジスト層等のプリント配線基板を構成する絶縁性部材に用いることができる。上記プリント配線基板としては、コア層、ビルドアップ層(層間絶縁層)、ソルダーレジスト層を有するプリント配線基板、コア層を有しないプリント配線基板、パネルパッケージプロセス(PLP)に用いられるコアレス基板、MIS(Molded Interconnect Substrate)基板等が挙げられる。
本実施形態の熱硬化性樹脂組成物からなる樹脂膜の硬化物は、上記絶縁層に用いられるものであり、例えば、コア層を有しないプリント配線基板におけるビルドアップ層やソルダーレジスト層、PLPに用いられるコアレス基板の層間絶縁層やソルダーレジスト層、MIS基板の層間絶縁層やソルダーレジスト層、等に用いることもできる。このように、本実施形態の樹脂膜の硬化物は、複数の半導体パッケージを一括して作成するために利用させる大面積のプリント配線基板において、当該プリント配線基板を構成する層間絶縁層やソルダーレジスト層にも好適に用いることができる。
また、本実施形態によれば、熱硬化性樹脂組成物の硬化物の線膨張係数を低くすることができるので、得られる半導体パッケージの反りを十分に抑制することができる。
本実施形態の熱硬化性樹脂組成物の各成分について説明する。
(多官能フェノール樹脂)
本実施形態の熱硬化性樹脂組成物は、複数の官能基を有する多官能フェノール樹脂を含むことができる。
上記多官能フェノール樹脂としては、例えば、1分子中に、アルデヒド基と、当該アルデヒド基とは異なる官能基と、を備える多官能フェノール樹脂を用いることができる。上記アルデヒド基は、多官能フェノール樹脂の芳香族環に直接結合していてもよく、1つの芳香族環に単独または複数結合していてもよい。また、上記官能基は、多官能フェノール樹脂の芳香族環(ただし、当該アルデヒド基が結合されていないもの)に直接結合していてもよく、かかる芳香族環に単独または複数結合していてもよい。
上記多官能フェノール樹脂中における官能基としては、分子中のアルデヒド基と反応する官能基を用いることができ、例えば、イミノ基などを用いることができる。本実施形態において、イミノ基としては、炭素-窒素二重結合を有するものであれば特に限定されないが、例えば、-CH=N-Rの構造で表されてもよい。このようなRとしては、例えば、直鎖状もしくは分枝鎖状であれば炭素数1から9のアルキル基、アルケニル基、またはアルコキシ基などを用いることができ、直鎖もしくは分岐鎖内にフェニル基などの芳香族構造を含んでもよい。好ましくはアルケニル基を用いてもよく、より好ましくは炭素数3のアルケニル基を用いてもよい。
また、上記多官能フェノール樹脂としては、例えば、ビフェニル骨格を有する多官能フェノール樹脂を含むことができる。これにより、得られる硬化物の吸水性を低減することができる。
また、上記多官能フェノール樹脂としては、下記一般式で表される化合物を含むことができる。
Figure 0007102816000001
上記一般式中、Y、Zは上記アルデヒド基、上記イミノ基、水素原子のいずれかを表し、aおよびbは、それぞれ1~3の整数、Xは二価の芳香族基を表す。以下、「~」は、特に明示しない限り、上限値と下限値を含むことを表す。また、本実施形態において、aおよびbは、それぞれ1であってもよい。また、nは繰返し単位を表し、例えば、1~10の整数である。繰り返し単位毎に含まれるX、Zおよびbは、それぞれ同一でも、異なっていてもよい。但し、Yおよび繰返し単位中のZの中に、アルデヒド基およびイミノ基を少なくとも一つずつ含む。
上記一般式中、Xとしての二価の芳香族基は、ベンゼン環、ナフタレン環などの芳香環を有するものであれば良い。
なお、式中Xの二価の芳香族基とは、芳香環を有する置換基を意味するものであり、芳香環を1つ又は2つ以上を有し、該芳香環がC、H、O及びNなどで構成される基により結合されていても良い。具体的には、下記式で表されるような構造をとることが好ましい。
Figure 0007102816000002
これらの中でも、上記Xとして、ビフェニレン基及びキシリレン基が好ましく、4,4’-ビフェニレン基及びパラキシリレン基がより好ましい。
本実施形態によれば、多官能フェノール樹脂中のフェノール性水酸基は、エポキシ樹脂等の熱硬化性樹脂中のエポキシ基と反応することができる。また、多官能フェノール樹脂の分子内中のアルデヒド基と他の官能基とが互いに反応することができる。詳細なメカニズムは定かでないが、フェノール性水酸基と他の成分中のエポキシ基と反応して架橋構造を形成した後、さらにアルデヒド基とイミノ基とが反応し、当該架橋構造がさらに緻密化すると考えられる。このため、本実施形態に係る多官能フェノール樹脂を使用することにより、硬化物の、線膨張係数を低減でき、Tgを高くしつつ、吸水率を比較的小さくすことが可能になる。
(熱硬化性樹脂)
また、本実施形態の熱硬化性樹脂組成物は、熱硬化性樹脂を含むことができ、好ましくは、上記多官能フェノール樹脂の官能基と反応する基を有する熱硬化性樹脂を含むことができる。
熱硬化性樹脂としては、例えば、エポキシ樹脂、ビスマレイミド樹脂、ベンゾオキサジン化合物等が挙げられる。この中でも、熱硬化性樹脂は、エポキシ樹脂またはビスマレイミド樹脂を含有してもよい。これらを単独で用いても2種以上を組み合わせて用いてもよい。本実施形態において、上記多官能フェノール樹脂とエポキシ樹脂を含む熱硬化性樹脂とを併用することにより、さらにTgを高めることができる。
エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールE型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールM型エポキシ樹脂(4,4’-(1,3-フェニレンジイソプリジエン)ビスフェノール型エポキシ樹脂)、ビスフェノールP型エポキシ樹脂(4,4’-(1,4-フェニレンジイソプリジエン)ビスフェノール型エポキシ樹脂)、ビスフェノールZ型エポキシ樹脂(4,4’-シクロヘキシジエンビスフェノール型エポキシ樹脂)等のビスフェノール型エポキシ樹脂;フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、テトラフェノール基エタン型ノボラック型エポキシ樹脂、縮合環芳香族炭化水素構造を有するノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂;ビフェニル型エポキシ樹脂;キシリレン型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂(ビフェニレン骨格を有するフェノールアラルキル型エポキシ樹脂)等のアラルキル型エポキシ樹脂;ナフチレンエーテル型エポキシ樹脂、ナフトール型エポキシ樹脂、ナフタレンジオール型エポキシ樹脂、2官能ないし4官能ナフタレン型エポキシ樹脂、ビナフチル型エポキシ樹脂、ナフタレンアラルキル型エポキシ樹脂等のナフタレン型エポキシ樹脂;アントラセン型エポキシ樹脂;フェノキシ型エポキシ樹脂;ジシクロペンタジエン型エポキシ樹脂;ノルボルネン型エポキシ樹脂;アダマンタン型エポキシ樹脂;フルオレン型エポキシ樹脂等が挙げられる。
エポキシ樹脂として、これらの中の1種類を単独で用いてもよいし、2種類以上を併用してもよく、1種類または2種類以上とそれらのプレポリマーとを併用してもよい。
エポキシ樹脂の中でも、得られるプリント配線基板の耐熱性および絶縁信頼性をより一層向上できる観点から、ビスフェノール型エポキシ樹脂、ノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、アラルキル型エポキシ樹脂、ナフタレン型エポキシ樹脂、アントラセン型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂からなる群から選択される一種または二種以上が好ましく、アラルキル型エポキシ樹脂、縮合環芳香族炭化水素構造を有するノボラック型エポキシ樹脂およびナフタレン型エポキシ樹脂からなる群から選択される一種または二種以上がより好ましい。
ビスフェノールA型エポキシ樹脂としては、三菱化学社製の「エピコート828EL」および「YL980」等を用いることができる。ビスフェノールF型エポキシ樹脂としては、三菱化学社製の「jER806H」および「YL983U」、DIC社製の「EPICLON 830S」等を用いることができる。2官能ナフタレン型エポキシ樹脂としては、DIC社製の「HP4032」、「HP4032D」および「HP4032SS」等を用いることができる。4官能ナフタレン型エポキシ樹脂としては、DIC社製の「HP4700」および「HP4710」等を用いることができる。ナフトール型エポキシ樹脂としては、新日鐵化学社製の「ESN-475V」、日本化薬社製の「NC7000L」等を用いることができる。アラルキル型エポキシ樹脂としては、日本化薬社製の「NC3000」、「NC3000H」、「NC3000L」、「NC3000S」、「NC3000S-H」、「NC3100」、新日鐵化学社製の「ESN-170」、および「ESN-480」等を用いることができる。ビフェニル型エポキシ樹脂としては、三菱化学社製の「YX4000」、「YX4000H」、「YX4000HK」および「YL6121」等を用いることができる。アントラセン型エポキシ樹脂としては、三菱化学社製の「YX8800」等を用いることができる。ナフチレンエーテル型エポキシ樹脂としては、DIC社製の「HP6000」、「EXA-7310」、「EXA-7311」、「EXA-7311L」および「EXA7311-G3」等を用いることができる。
これらエポキシ樹脂の中でも特にアラルキル型エポキシ樹脂が好ましい。これにより、樹脂膜の硬化物の吸湿半田耐熱性および難燃性をさらに向上させることができる。
アラルキル型エポキシ樹脂は、例えば、下記一般式(1)で表される。
Figure 0007102816000003
(上記一般式(1)中、AおよびBは、ベンゼン環、ビフェニル構造等の芳香族環を表す。またAおよびBの芳香族環の水素が置換されていてもよい。置換基としては、例えば、メチル基、エチル基、プロピル基、フェニル基等が挙げられる。nは繰返し単位を表し、例えば、1~10の整数である。)
アラルキル型エポキシ樹脂の具体例としては、以下の式(1a)および式(1b)が挙げられる。
Figure 0007102816000004
(式(1a)中、nは、1~5の整数を示す。)
Figure 0007102816000005
(式(1b)中、nは、1~5の整数を示す。)
上記以外のエポキシ樹脂としては縮合環芳香族炭化水素構造を有するノボラック型エポキシ樹脂が好ましい。これにより、耐熱性、低熱膨張性をさらに向上させることができる。
縮合環芳香族炭化水素構造を有するノボラック型エポキシ樹脂は、ナフタレン、アントラセン、フェナントレン、テトラセン、クリセン、ピレン、トリフェニレン、テトラフェン、またはその他の縮合環芳香族炭化水素構造を有するノボラック型エポキシ樹脂である。縮合環芳香族炭化水素構造を有するノボラック型エポキシ樹脂は、複数の芳香環が規則的に配列することができるため低熱膨張性に優れる。また、ガラス転移温度も高いため耐熱性に優れる。さらに、繰返し構造の分子量が大きいため従来のノボラック型エポキシ樹脂に比べ難燃性に優れる。
縮合環芳香族炭化水素構造を有するノボラック型エポキシ樹脂は、フェノール類化合物、アルデヒド類化合物、および縮合環芳香族炭化水素化合物から合成された、ノボラック型フェノール樹脂をエポキシ化したものである。
フェノール類化合物は、特に限定されないが、例えば、フェノール;o-クレゾール、m-クレゾール、p-クレゾール等のクレゾール類;2,3-キシレノール、2,4-キシレノール、2,5-キシレノール、2,6-キシレノール、3,4-キシレノール、3,5-キシレノール等のキシレノール類;2,3,5トリメチルフェノール等のトリメチルフェノール類;o-エチルフェノール、m-エチルフェノール、p-エチルフェノール等のエチルフェノール類;イソプロピルフェノール、ブチルフェノール、t-ブチルフェノール等のアルキルフェノール類;o-フェニルフェノール、m-フェニルフェノール、p-フェニルフェノール等のフェニルフェノール類;1,5-ジヒドロキシナフタレン、1,6-ジヒドロキシナフタレン、2,7-ジヒドロキシナフタレン等のナフタレンジオール類;レゾルシン、カテコール、ハイドロキノン、ピロガロール、フルオログルシン等の多価フェノール類;アルキルレゾルシン、アルキルカテコール、アルキルハイドロキノン等のアルキル多価フェノール類が挙げられる。これらのうち、コスト面および分解反応に与える効果から、フェノールが好ましい。
アルデヒド類化合物は、特に限定されないが、例えば、ホルムアルデヒド、パラホルムアルデヒド、トリオキサン、アセトアルデヒド、プロピオンアルデヒド、ポリオキシメチレン、クロラール、ヘキサメチレンテトラミン、フルフラール、グリオキザール、n-ブチルアルデヒド、カプロアルデヒド、アリルアルデヒド、ベンズアルデヒド、クロトンアルデヒド、アクロレイン、テトラオキシメチレン、フェニルアセトアルデヒド、o-トルアルデヒド、サリチルアルデヒド、ジヒドロキシベンズアルデヒド、トリヒドロキシベンズアルデヒド、4-ヒドロキシ-3-メトキシアルデヒドパラホルムアルデヒド等が挙げられる。
縮合環芳香族炭化水素化合物は、特に限定されないが、例えば、メトキシナフタレン、ブトキシナフタレン等のナフタレン誘導体;メトキシアントラセン等のアントラセン誘導体;メトキシフェナントレン等のフェナントレン誘導体;その他テトラセン誘導体;クリセン誘導体;ピレン誘導体;トリフェニレン誘導体;テトラフェン誘導体等が挙げられる。
縮合環芳香族炭化水素構造を有するノボラック型エポキシ樹脂は、特に限定されないが、例えば、メトキシナフタレン変性オルトクレゾールノボラックエポキシ樹脂、ブトキシナフタレン変性メタ(パラ)クレゾールノボラックエポキシ樹脂、およびメトキシナフタレン変性ノボラックエポキシ樹脂等が挙げられる。これらの中でも、下記一般式(V)で表される縮合環芳香族炭化水素構造を有するノボラック型エポキシ樹脂が好ましい。
Figure 0007102816000006
(上記一般式(V)中、Arは縮合環芳香族炭化水素基であり、Rは互いに同一であっても異なっていてもよく、水素原子;炭素数1以上10以下の炭化水素基;ハロゲン元素;フェニル基、ベンジル基等のアリール基;およびグリシジルエーテルを含む有機基から選ばれる基で、n、p、およびqは1以上の整数であり、またp、qの値は、繰り返し単位毎に同一でも、異なっていてもよい。)
また、式(V)中のArは、下記式(VI)中の(Ar1)~(Ar4)で表される構造であってもよい。
Figure 0007102816000007
(上記式(VI)中のRは、互いに同一であっても異なっていてもよく、水素原子;炭素数1以上10以下の炭化水素基;ハロゲン元素;フェニル基、ベンジル基等のアリール基;およびグリシジルエーテルを含む有機基から選ばれる基である。)
さらに上記以外のエポキシ樹脂としてはナフトール型エポキシ樹脂、ナフタレンジオール型エポキシ樹脂、2官能ないし4官能ナフタレン型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂等のナフタレン型エポキシ樹脂が好ましい。これにより、得られるプリント配線基板の耐熱性、低熱膨張性をさらに向上させることができる。ここで、ナフタレン型エポキシ樹脂とは、ナフタレン環骨格を有し、かつ、グリシジル基を2つ以上有するものを呼ぶ。
また、ベンゼン環に比べナフタレン環のπ-πスタッキング効果が高いため、特に、ナフタレン型エポキシ樹脂は低熱膨張性、低熱収縮性に優れる。さらに、多環構造のため剛直効果が高く、ガラス転移温度が特に高いため、リフロー前後の熱収縮変化が小さい。ナフトール型エポキシ樹脂としては、例えば下記一般式(VII-1)、ナフタレンジオール型エポキシ樹脂としては下記式(VII-2)、2官能ないし4官能ナフタレン型エポキシ樹脂としては下記式(VII-3)(VII-4)(VII-5)、ナフチレンエーテル型エポキシ樹脂としては、例えば、下記一般式(VII-6)で示すことができる。
Figure 0007102816000008
(nは平均1以上6以下の数を示し、Rはグリシジル基または炭素数1以上10以下の炭化水素基を示す。)
Figure 0007102816000009
Figure 0007102816000010
Figure 0007102816000011
(式中、Rは水素原子またはメチル基を表し、Rはそれぞれ独立的に水素原子、炭素原子数1~4のアルキル基、アラルキル基、ナフタレン基、またはグリシジルエーテル基含有ナフタレン基を表し、oおよびmはそれぞれ0~2の整数であって、かつoまたはmの何れか一方は1以上である。)
エポキシ樹脂の重量平均分子量(Mw)の下限値は、特に限定されないが、Mw300以上としてもよく、好ましくはMw800以上としてもよい。Mwが上記下限値以上であると、樹脂膜の硬化物にタック性が生じるのを抑制することができる。Mwの上限値は、特に限定されないが、Mw20,000以下としてもよく、好ましくはMw15,000以下としてもよい。Mwが上記上限値以下であると、ハンドリング性が向上し、樹脂膜を形成するのが容易となる。エポキシ樹脂のMwは、例えばGPCで測定することができる。
エポキシ樹脂の含有量の下限値は、熱硬化性樹脂組成物全体(溶媒を除く全固形分)100重量%に対して、3重量%以上が好ましく、4重量%以上がより好ましく、5重量%以上がさらに好ましい。エポキシ樹脂の含有量が上記下限値以上であると、ハンドリング性が向上し、樹脂膜を形成するのが容易となる。一方、エポキシ樹脂の含有量の上限値は、熱硬化性樹脂組成物全体(溶媒を除く全固形分)に対して、特に限定されないが、例えば、60重量%以下が好ましく、45重量%以下がより好ましく、30重量%以下がさらに好ましい。エポキシ樹脂の含有量が上記上限値以下であると、得られるプリント配線基板の強度や難燃性が向上したり、プリント配線基板の線膨張係数が低下し、反りの低減効果が向上したりする場合がある。
(ビスマレイミド化合物)
本実施形態の熱硬化性樹脂組成物は、ビスマレイミド化合物を含むことができる。
本実施形態のビスマレイミド化合物は、マレイミド基を、分子内に少なくとも2つ以上有するマレイミド化合物である。
また、ビスマレイミド化合物としては、下記式(1)により示されるビスマレイミド化合物を含むことが好ましい。
Figure 0007102816000012
(上記式(1)において、nは0以上10以下の整数であり、Xはそれぞれ独立に炭素数1以上10以下のアルキレン基、下記式(1a)で表される基、式「-SO-」で表される基、「-CO-」で表される基、酸素原子または単結合であり、Rはそれぞれ独立に炭素数1以上6以下の炭化水素基であり、aはそれぞれ独立に0以上4以下の整数であり、bはそれぞれ独立に0以上3以下の整数である)
Figure 0007102816000013
(上記式(1a)において、Yは芳香族環を有する炭素数6以上30以下の炭化水素基であり、nは0以上の整数である)
における1以上10以下のアルキレン基としては、特に限定されないが、直鎖状または分岐鎖状のアルキレン基が好ましい。
この直鎖状のアルキレン基としては、具体的には、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、ヘプチレン基、オクチレン基、ノニレン基、デカニレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基等が挙げられる。
また、分岐鎖状のアルキレン基としては、具体的には、-C(CH-(イソプロピレン基)、-CH(CH)-、-CH(CHCH)-、-C(CH)(CHCH)-、-C(CH)(CHCHCH)-、-C(CHCH-のようなアルキルメチレン基;-CH(CH)CH-、-CH(CH)CH(CH)-、-C(CHCH-、-CH(CHCH)CH-、-C(CHCH-CH-のようなアルキルエチレン基等が挙げられる。
なお、Xにおけるアルキレン基の炭素数は、1以上10以下であればよいが、1以上7以下であることが好ましく、1以上3以下であることがより好ましい。具体的には、このような炭素数を有するアルキレン基としては、例えば、メチレン基、エチレン基、プロピレン基、イソプロピレン基が挙げられる。
また、Rは、それぞれ独立して、炭素数1以上6以下の炭化水素基であるが、炭素数1または2の炭化水素基、具体的には、メチル基またはエチル基であるのが好ましい。
さらに、aは0以上4以下の整数であり、0以上2以下の整数であることが好ましく、0であることがより好ましい。また、bは0以上3以下の整数であり、0または1であることが好ましく、0であることがより好ましい。
また、nは0以上10以下の整数であり、0以上6以下の整数であることが好ましく、0以上4以下の整数であるのがより好ましく、0以上3以下の整数であるのが特に好ましい。また、ビスマレイミド化合物は上記式(1)においてnが1以上の化合物を少なくとも含むことがより好ましい。これにより、熱硬化性樹脂組成物から得られる絶縁層はより優れた耐熱性を発揮するものとなる。
さらに、上記式(1a)において、Yは芳香族環を有する炭素数6以上30以下の炭化水素基であり、nは0以上の整数である。
この芳香族環を有する炭素数6以上30以下の炭化水素基は、芳香族環のみからなるものでもよいし、芳香族環以外の炭化水素基を有していてもよい。Yが有する芳香族環は、1つでもよいし、2つ以上でもよく、2つ以上の場合、これら芳香族環は、同一でも異なっていてもよい。また、上記芳香族環は、単環構造および多環構造のいずれでもよい。
具体的には、芳香族環を有する炭素数6以上30以下の炭化水素基としては、例えば、ベンゼン、ビフェニル、ナフタレン、アントラセン、フルオレン、フェナントレイン、インダセン、ターフェニル、アセナフチレン、フェナレン等の芳香族性を有する化合物の核から水素原子を2つ除いた2価の基が挙げられる。
また、これら芳香族炭化水素基は、置換基を有していてもよい。ここで芳香族炭化水素基が置換基を有するとは、芳香族炭化水素基を構成する水素原子の一部または全部が置換基により置換されたことをいう。置換基としては、例えば、アルキル基が挙げられる。
この置換基としてのアルキル基としては、鎖状のアルキル基であることが好ましい。また、その炭素数は1以上10以下であることが好ましく、1以上6以下であることがより好ましく、1以上4以下であることが特に好ましい。具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、tert-ブチル基、sec-ブチル基等が挙げられる。
このような基Yは、ベンゼンまたはナフタレンから水素原子を2つ除いた基を有することが好ましく、上記式(1a)で表される基としては、下記式(1a-1)、(1a-2)のいずれかで表される基であることが好ましい。これにより、熱硬化性樹脂組成物から得られる絶縁層はより優れた耐熱性を発揮するものとなる。
Figure 0007102816000014
上記式(1a-1)、(1a-2)中、Rは、それぞれ独立に炭素数1以上6以下の炭化水素基である。eはそれぞれ独立に0以上4以下の整数、より好ましくは0である。
さらに、上記式(1a)で表される基において、nは、0以上の整数であればよいが、0以上5以下の整数であることが好ましく、1以上3以下の整数であることがより好ましく、1または2であることが特に好ましい。
以上のことから、上記式(1)により示されるビスマレイミド化合物は、Xが、炭素数1以上3以下の直鎖状もしくは分岐鎖状のアルキレン基であり、Rが1または2の炭化水素基であり、aが0以上2以下の整数であり、bが0または1であり、nが1以上4以下の整数であることが好ましい。または、Xは上記式(1a-1)、(1a-2)のいずれかで表される基であり、eが0であることが好ましい。これにより、熱硬化性樹脂組成物から得られる絶縁層は、より優れた低熱収縮性および耐薬品性を発揮するものとなる。
上記式(1)により示されるビスマレイミド化合物の好ましい具体例としては、例えば、下記式(1-1)により示されるビスマレイミド化合物が特に好ましく使用される。
Figure 0007102816000015
また、ビスマレイミド化合物は、上記(1)式により示されるビスマレイミド化合物とは異なる種類のビスマレイミド化合物を含んでもよい。
このようなビスマレイミド化合物としては、1,6’-ビスマレイミド(2,2,4-トリメチル)ヘキサン、ヘキサメチレンジアミンビスマレイミド、N,N’-1,2-エチレンビスマレイミド、N,N’-1,3-プロピレンビスマレイミド、N,N’-1,4-テトラメチレンビスマレイミド等の脂肪族ビスマレイミド化合物;イミド拡張型ビスマレイミド等を挙げることができる。これらの中でも1,6’-ビスマレイミド(2,2,4-トリメチル)ヘキサン、イミド拡張型ビスマレイミドが特に好ましい。ビスマレイミド化合物は、単独で使用しても良く、二種類以上を併用してもよい。
イミド拡張型ビスマレイミドとしては、例えば、以下の式(a1)により示されるビスマレイミド化合物、以下の式(a2)により示されるビスマレイミド化合物、以下の式(a3)により示されるビスマレイミド化合物等が挙げられる。式(a1)により示されるビスマレイミド化合物の具体例のとしてはBMI-1500(デジグナーモレキュールズ社製、分子量1500)等が挙げられる。式(a2)により示されるビスマレイミド化合物の具体例のとしてはBMI-1700(デジグナーモレキュールズ社製、分子量1700)、BMI-1400(デジグナーモレキュールズ社製、分子量 1400)等が挙げられる。式(a3)により示されるビスマレイミド化合物の具体例のとしてはBMI-3000(デジグナーモレキュールズ社製、分子量3000)等が挙げられる。
Figure 0007102816000016
上記式(a1)において、nは1以上10以下の整数を示す。
Figure 0007102816000017
上記式(a2)において、nは1以上10以下の整数を示す。
Figure 0007102816000018
上記式(a3)において、nは1以上10以下の整数を示す。
上記ビスマレイミド化合物の重量平均分子量(Mw)の下限値は、特に限定されないが、Mw400以上が好ましく、特にMw800以上が好ましい。Mwが上記下限値以上であると、絶縁層にタック性が生じるのを抑制することができる。Mwの上限値は、特に限定されないが、Mw4000以下が好ましく、Mw2500以下がより好ましい。Mwが上記上限値以下であると、絶縁層作製時、ハンドリング性が向上し、絶縁層を形成するのが容易となる。ビスマレイミド化合物のMwは、例えばGPC(ゲルパーミエーションクロマトグラフィー、標準物質:ポリスチレン換算)で測定することができる。
また、ビスマレイミド化合物としては、ビスマレイミド化合物とアミン化合物との反応物を用いることもできる。アミン化合物としては、芳香族ジアミン化合物およびモノアミン化合物から選択される少なくとも1種を用いることができる。
芳香族ジアミン化合物としては、例えば、o-ジアニシジン、o-トリジン、3,3’-ジヒドロキシ-4,4’-ジアミノビフェニル、4,4’-ビス(4-アミノフェノキシ)ビフェニル、2,2’-ジメチル-4,4’-ジアミノビフェニル、m-フェニレンジアミン、p-フェニレンジアミン、o-キシレンジアミン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルプロパン、4,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、1,5-ジアミノナフタレン、4,4’-(p-フェニレンジイソプロピリデン)ジアニリン、2,2-[4-(4-アミノフェノキシ)フェニル]プロパン、4,4’-ジアミノ-3,3’-ジメチル-ジフェニルメタン、ビス(4-(4-アミノフェノキシ)フェニル)スルホン等があげられる。
モノアミン化合物としては、例えば、o-アミノフェノール、m-アミノフェノール、p-アミノフェノール、o-アミノ安息香酸、m-アミノ安息香酸、p-アミノ安息香酸、o-アミノベンゼンスルホン酸、m-アミノベンゼンスルホン酸、p-アミノベンゼンスルホン酸、3,5-ジヒドロキシアニリン、3,5-ジカルボキシアニリン、o-アニリン、m-アニリン、p-アニリン、o-メチルアニリン、m-メチルアニリン、p-メチルアニリン、o-エチルアニリン、m-エチルアニリン、p-エチルアニリン、o-ビニルアニリン、m-ビニルアニリン、p-ビニルアニリン、o-アリルアニリン、m-アリルアニリン、p-アリルアニリン等が挙げられる。
ビスマレイミド化合物とアミン化合物との反応は、有機溶媒中で反応させることができる。反応温度は、例えば70~200℃であり、反応時間は、例えば0.1~10時間である。
本実施形態において、熱硬化性樹脂組成物中に含まれるビスマレイミド化合物の含有量は、特に限定されないが、熱硬化性樹脂組成物の全固形分(すなわち、溶媒を除く成分)を100重量%としたとき、1.0重量%以上25.0重量%以下が好ましく、3.0重量%以上20.0重量%以下がより好ましい。ビスマレイミド化合物の含有量が上記範囲内であると、得られる絶縁層の低熱収縮性および耐薬品性のバランスをより一層向上させることができる。
本実施形態において、「熱硬化性樹脂組成物の固形分」とは、熱硬化性樹脂組成物中における不揮発分を指し、水や溶媒等の揮発成分を除いた残部を指す。また、本実施形態において、熱硬化性樹脂組成物全体に対する含有量とは、溶媒を含む場合には、熱硬化性樹脂組成物のうちの溶媒を除く固形分全体に対する含有量を指す。
(硬化剤)
本実施形態の熱硬化性樹脂組成物は、硬化剤を含むことができる。
また、本実施形態の硬化剤として、特に限定されないが、例えば、ベンジルジメチルアミン(BDMA)、2,4,6-トリスジメチルアミノメチルフェノール(DMP-30)などの3級アミン化合物;イミダゾール化合物;BF錯体などのルイス酸などの触媒型の硬化剤が挙げられる。
また、例えば、ジエチレントリアミン(DETA)、トリエチレンテトラミン(TETA)、メタキシレリレンジアミン(MXDA)などの脂肪族ポリアミン、m-フェニレンジアミン、p-フェニレンジアミン、o-キシレンジアミン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルプロパン、4,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、1,5-ジアミノナフタレン、4,4’-(p-フェニレンジイソプロピリデン)ジアニリン、2,2-[4-(4-アミノフェノキシ)フェニル]プロパン、4,4’-ジアミノ-3,3’-ジメチルジフェニルメタン、4,4’-ジアミノ-3,3’-ジエチル-5,5’-ジメチルジフェニルメタン、3,3’-ジエチル-4,4’-ジアミノジフェニルメタンなどの芳香族ポリアミンのほか、ジシアンジアミド(DICY)、有機酸ジヒドララジドなどを含むポリアミン化合物;ヘキサヒドロ無水フタル酸(HHPA)、メチルテトラヒドロ無水フタル酸(MTHPA)などの脂環族酸無水物、無水トリメリット酸(TMA)、無水ピロメリット酸(PMDA)、ベンゾフェノンテトラカルボン酸(BTDA)などの芳香族酸無水物などを含む酸無水物;ポリサルファイド、チオエステル、チオエーテルなどのポリメルカプタン化合物;イソシアネートプレポリマー、ブロック化イソシアネートなどのイソシアネート化合物;カルボン酸含有ポリエステル樹脂などの有機酸類などの重付加型の硬化剤;2,2’-メチレンビス(4-エチル-6-tert-ブチルフェノール)、2,2’-メチレンビス(4-メチル-6-tert-ブチルフェノール)、4,4’-ブチリデンビス(3-メチル-6-tert-ブチルフェノール)、4,4’-チオビス(3-メチル-6-tert-ブチルフェノール)、2,6-ジ-tert-ブチル-4-メチルフェノール、2,5-ジ-tert-ブチルハイドロキノン、1,3,5-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)トリオンなどのフェノール系化合物も用いることができる。
さらに、第2硬化剤としては、例えば、ノボラック型フェノール樹脂、レゾール型フェノール樹脂などのフェノール樹脂系硬化剤(ただし、上記多官能フェノール樹脂を除く);メチロール基含有尿素樹脂のような尿素樹脂;メチロール基含有メラミン樹脂のようなメラミン樹脂などの縮合型の硬化剤も用いてもよい。これらを単独で用いても2種以上を組み合わせて用いてもよい。
上記フェノール樹脂系硬化剤は、一分子内にフェノール性水酸基を2個以上有するモノマー、オリゴマー、ポリマー全般であり、その分子量、分子構造を特に限定するものではないが、例えば、フェノールノボラック樹脂、クレゾールノボラック樹脂、ナフトールノボラック樹脂などのノボラック型フェノール樹脂;トリフェノールメタン型フェノール樹脂などの多官能型フェノール樹脂;テルペン変性フェノール樹脂、ジシクロペンタジエン変性フェノール樹脂などの変性フェノール樹脂;フェニレン骨格および/またはビフェニレン骨格を有するフェノールアラルキル樹脂(ビフェニルアラルキル型フェノール樹脂)、フェニレンおよび/またはビフェニレン骨格を有するナフトールアラルキル樹脂などのアラルキル型樹脂;ビスフェノールA、ビスフェノールFなどのビスフェノール化合物等が挙げられる。これらは1種類を単独で用いても2種類以上を併用してもよい。これらのうち、硬化性の点から水酸基当量は90g/eq以上、250g/eq以下のものを使用してもよい。
フェノール樹脂の重量平均分子量は、特に限定されないが、重量平均分子量4×10~1.8×10としてもよく、好ましくは5×10~1.5×10としてもよい。重量平均分子量を上記下限値以上とすることでプリプレグにタック性が生じるなどの問題がおこりにくくなり、上記上限値以下とすることで、プリプレグ作製時、繊維基材への含浸性が向上し、より均一な製品が得ることができる。
硬化剤の含有量の下限値は、熱硬化性樹脂組成物の全固形分100重量%に対して、特に限定されないが、例えば、0.01重量%以上が好ましく、0.05重量%以上がより好ましく、0.2重量%以上がさらに好ましい。硬化剤の含有量を上記下限値以上とすることにより、硬化を促進する効果を十分に発揮することができる。一方、硬化剤の含有量の上限値は、熱硬化性樹脂組成物の全固形分100重量%に対して、特に限定されないが、例えば、25重量%以下が好ましく、20重量%以下がより好ましく、15重量%以下がさらに好ましい。硬化剤の含有量が上記上限値以下であるとプリプレグの保存性をより向上できる。
上記硬化剤の含有量の下限値は、熱硬化性樹脂組成物の全固形分100重量%に対して、特に限定されないが、例えば、0.01重量%以上が好ましく、0.05重量%以上がより好ましく、0.2重量%以上がさらに好ましい。これにより、(メタ)アクリル系ブロック共重合体の分散性を十分に向上させることができる。一方、硬化剤の含有量の上限値は、熱硬化性樹脂組成物の全固形分100重量%に対して、特に限定されないが、例えば、25重量%以下が好ましく、20重量%以下がより好ましく、15重量%以下がさらに好ましい。
(無機充填材)
本実施形態の熱硬化性樹脂組成物は、無機充填材を含むことができる。
上記無機充填材としては、例えば、タルク、焼成クレー、未焼成クレー、マイカ、ガラス等のケイ酸塩;酸化チタン、アルミナ、ベーマイト、シリカ、溶融シリカ等の酸化物;炭酸カルシウム、炭酸マグネシウム、ハイドロタルサイト等の炭酸塩;水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウム等の水酸化物;硫酸バリウム、硫酸カルシウム、亜硫酸カルシウム等の硫酸塩または亜硫酸塩;ホウ酸亜鉛、メタホウ酸バリウム、ホウ酸アルミニウム、ホウ酸カルシウム、ホウ酸ナトリウム等のホウ酸塩;窒化アルミニウム、窒化ホウ素、窒化ケイ素、窒化炭素等の窒化物;チタン酸ストロンチウム、チタン酸バリウム等のチタン酸塩等を挙げることができる。
これらの中でも、タルク、アルミナ、ガラス、シリカ、マイカ、水酸化アルミニウム、水酸化マグネシウムが好ましく、シリカが特に好ましい。無機充填材としては、これらの中の1種類を単独で用いてもよく、2種類以上を併用してもよい。
上記無機充填材の平均粒子径の下限値は、特に限定されないが、例えば、0.01μm以上としてもよく、0.05μm以上としてもよい。これにより、上記熱硬化性樹脂のワニスの粘度が高くなるのを抑制でき、絶縁層作製時の作業性を向上させることができる。また、無機充填材の平均粒子径の上限値は、特に限定されないが、例えば、5.0μm以下が好ましく、2.0μm以下がより好ましく、1.0μm以下がさらに好ましい。これにより、上記熱硬化性樹脂のワニス中における無機充填材の沈降等の現象を抑制でき、より均一な樹脂膜を得ることができる。また、プリント配線基板の回路寸法L/Sが20μm/20μmを下回る際には、配線間の絶縁性に影響を与えるのを抑制することができる。
本実施形態において、無機充填材の平均粒子径は、例えば、レーザー回折式粒度分布測定装置(HORIBA社製、LA-500)により、粒子の粒度分布を体積基準で測定し、そのメディアン径(D50)を平均粒子径とすることができる。
また、無機充填材は、特に限定されないが、平均粒子径が単分散の無機充填材を用いてもよいし、平均粒子径が多分散の無機充填材を用いてもよい。さらに平均粒子径が単分散および/または多分散の無機充填材を1種類または2種類以上で併用してもよい。
上記無機充填材はシリカ粒子を含むことが好ましい。上記シリカ粒子の平均粒子径は、特に限定されないが、例えば、5.0μm以下としてもよく、0.1μm以上4.0μm以下としてもよく、0.2μm以上2.0μm以下としてもよい。これにより、無機充填材の充填性をさらに向上させることができる。
無機充填材の含有量の下限値は、熱硬化性樹脂組成物の全固形分100重量%に対して、特に限定されないが、例えば、50重量%以上が好ましく、55重量%以上がより好ましく、60重量%以上がさらに好ましい。これにより、樹脂膜の硬化物を特に低熱膨張、低吸水とすることができる。また、半導体パッケージの反りを抑制することができる。一方で、無機充填材の含有量の上限値は、熱硬化性樹脂組成物の全固形分100重量%に対して、特に限定されないが、例えば、90重量%以下としてもよく、85重量%以下としてもよく、80重量%以下としてもよい。これにより、樹脂膜の硬化物の加工性を向上させることができる。
(シアネート樹脂)
本実施形態の熱硬化性樹脂組成物は、シアネート樹脂をさらに含むことができる。
シアネート樹脂は、分子内にシアネート基(-O-CN)を有する樹脂であり、シアネート基を分子内に2個以上を有する樹脂を用いることができる。このようなシアネート樹脂としては、特に限定されないが、例えば、ハロゲン化シアン化合物とフェノール類やナフトール類とを反応させ、必要に応じて加熱等の方法でプレポリマー化することにより得ることができる。また、このようにして調製された市販品を用いることもできる。
シアネート樹脂を用いることにより、樹脂膜の硬化物の線膨張係数を小さくすることができる。さらに、樹脂膜の硬化物の電気特性(低誘電率、低誘電正接)、機械強度等を高めることができる。
シアネート樹脂は、例えば、ノボラック型シアネート樹脂;ビスフェノールA型シアネート樹脂、ビスフェノールE型シアネート樹脂、テトラメチルビスフェノールF型シアネート樹脂等のビスフェノール型シアネート樹脂;ナフトールアラルキル型フェノール樹脂と、ハロゲン化シアンとの反応で得られるナフトールアラルキル型シアネート樹脂;ジシクロペンタジエン型シアネート樹脂;ビフェニルアルキル型シアネート樹脂等を挙げることができる。これらの中でもノボラック型シアネート樹脂、ナフトールアラルキル型シアネート樹脂が好ましく、ノボラック型シアネート樹脂がより好ましい。ノボラック型シアネート樹脂を用いることにより、樹脂膜の硬化物の架橋密度が増加し、耐熱性が向上する。
この理由としては、ノボラック型シアネート樹脂は、硬化反応後にトリアジン環を形成することが挙げられる。さらに、ノボラック型シアネート樹脂は、その構造上ベンゼン環の割合が高く、炭化しやすいためと考えられる。また、ノボラック型シアネート樹脂を含む樹脂膜の硬化物は優れた剛性を有する。よって、樹脂膜の硬化物の耐熱性をより一層向上できる。
ノボラック型シアネート樹脂としては、例えば、下記一般式(I)で示されるものを使用することができる。
Figure 0007102816000019
一般式(I)で示されるノボラック型シアネート樹脂の平均繰り返し単位nは任意の整数である。平均繰り返し単位nは、特に限定されないが、1以上が好ましく、2以上がより好ましい。平均繰り返し単位nが上記下限値以上であると、ノボラック型シアネート樹脂の耐熱性が向上し、加熱時に低量体が脱離、揮発することを抑制できる。また、平均繰り返し単位nは、特に限定されないが、10以下が好ましく、7以下がより好ましい。nが上記上限値以下であると、溶融粘度が高くなるのを抑制でき、樹脂膜の成形性を向上させることができる。
また、シアネート樹脂としては、下記一般式(II)で表わされるナフトールアラルキル型シアネート樹脂も好適に用いられる。下記一般式(II)で表わされるナフトールアラルキル型シアネート樹脂は、例えば、α-ナフトールあるいはβ-ナフトール等のナフトール類とp-キシリレングリコール、α,α’-ジメトキシ-p-キシレン、1,4-ジ(2-ヒドロキシ-2-プロピル)ベンゼン等との反応により得られるナフトールアラルキル型フェノール樹脂とハロゲン化シアンとを縮合させて得られるものである。一般式(II)の繰り返し単位nは10以下の整数であることが好ましい。繰り返し単位nが10以下であると、より均一な樹脂膜を得ることができる。また、合成時に分子内重合が起こりにくく、水洗時の分液性が向上し、収量の低下を防止できる傾向がある。
Figure 0007102816000020
(式中、Rはそれぞれ独立に水素原子またはメチル基を示し、nは1以上10以下の整数を示す。)
また、シアネート樹脂は1種類を単独で用いてもよいし、2種類以上を併用してもよく、1種類または2種類以上と、それらのプレポリマーとを併用してもよい。
シアネート樹脂の含有量の下限値は、熱硬化性樹脂組成物の全固形分100重量%に対して、たとえば、1重量%以上が好ましく、2重量%以上がより好ましく、3重量%以上がさらに好ましい。樹脂膜の硬化物の低線膨張化、高弾性率化を図ることができる。一方、シアネート樹脂の含有量の上限値は、熱硬化性樹脂組成物の全固形分100重量%に対して、特に限定されないが、例えば、30重量%以下が好ましく、25重量%以下がより好ましく、20重量%以下がさらに好ましい。耐熱性や耐湿性を向上させることができる。また、シアネート樹脂の含有量が上記範囲内であると、樹脂膜の硬化物の貯蔵弾性率E’をより一層向上させることができる。
(硬化促進剤)
本実施形態の熱硬化性樹脂組成物は、例えば、硬化促進剤を含んでもよい。これにより、熱硬化性樹脂組成物の硬化性を向上させることができる。硬化促進剤としては、熱硬化性樹脂の硬化反応を促進させるものを用いることができ、その種類は特に限定されない。本実施形態においては、硬化促進剤として、例えば、ナフテン酸亜鉛、ナフテン酸コバルト、オクチル酸スズ、オクチル酸コバルト、オクチル酸亜鉛、ビスアセチルアセトナートコバルト(II)、トリスアセチルアセトナートコバルト(III)等の有機金属塩、トリエチルアミン、トリブチルアミン、ジアザビシクロ[2,2,2]オクタン等の3級アミン類、2-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、2-エチル-4-メチルイミダゾール、2-エチル-4-エチルイミダゾール、2-フェニル-4-エチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール、2-フェニル-4,5-ジヒドロキシイミダゾール、1-ベンジル-2-フェニルイミダゾール、2-フェニル-1H-イミダゾール4、5-ジメタノール、2,3-ジヒドロ-1H-ピロロ[1,2-a]ベンズイミダゾール等のイミダゾール類、フェノール、ビスフェノールA、ノニルフェノール等のフェノール化合物、酢酸、安息香酸、サリチル酸、パラトルエンスルホン酸等の有機酸、およびオニウム塩化合物から選択される一種または二種以上を含むことができる。これらの中でも、硬化性をより効果的に向上させる観点からは、オニウム塩化合物を含むことがより好ましい。
硬化促進剤として用いられるオニウム塩化合物は、特に限定されないが、例えば、下記一般式(2)で表される化合物を用いることができる。
Figure 0007102816000021
(上記一般式(2)中、Pはリン原子、R、R、RおよびRは、それぞれ、置換もしくは無置換の芳香環または複素環を有する有機基、あるいは置換もしくは無置換の脂肪族基を示し、互いに同一であっても異なっていてもよい。Aは分子外に放出しうるプロトンを少なくとも1個以上分子内に有するn(n≧1)価のプロトン供与体のアニオン、またはその錯アニオンを示す)
硬化促進剤の含有量の下限値は、例えば、熱硬化性樹脂組成物の全固形分100重量%に対して、たとえば、0.01重量%以上としてもよく、好ましくは0.05重量%以上としてもよい。硬化促進剤の含有量を上記下限値以上とすることにより、熱硬化性樹脂組成物の硬化性をより効果的に向上させることができる。一方、硬化促進剤の含有量の上限値は、例えば、熱硬化性樹脂組成物の全固形分100重量%に対して、2.5重量%以下としてもよく、好ましくは1重量%以下としてもよい。硬化促進剤の含有量を上記上限値以下とすることにより、熱硬化性樹脂組成物の保存性を向上させることができる。
(カップリング剤)
本実施形態の熱硬化性樹脂組成物は、カップリング剤を含んでもよい。カップリング剤は熱硬化性樹脂組成物の調製時に直接添加してもよいし、無機充填材にあらかじめ添加しておいてもよい。カップリング剤の使用により無機充填材と各樹脂との界面の濡れ性を向上させることができる。したがって、カップリング剤を使用することは好ましく、樹脂膜の硬化物の耐熱性を改良することができる。また、カップリング剤を用いることにより、銅箔との密着性を向上させることができる。さらに、吸湿耐性を向上できるので、湿度環境下後においても、銅箔との密着性を維持することができる。
カップリング剤としては、例えば、エポキシシランカップリング剤、カチオニックシランカップリング剤、アミノシランカップリング剤等のシランカップリング剤、チタネート系カップリング剤およびシリコーンオイル型カップリング剤等が挙げられる。カップリング剤は一種類を単独で用いてもよいし、二種類以上を併用してもよい。本実施形態において、カップリング剤はシランカップリング剤を含有してもよい。
これにより、無機充填材と各樹脂との界面の濡れ性を高くすることができ、樹脂膜の硬化物の耐熱性をより向上させることができる。
シランカップリング剤としては、各種のものを用いることができるが、例えば、エポキシシラン、アミノシラン、アルキルシラン、ウレイドシラン、メルカプトシラン、ビニルシラン等が挙げられる。
具体的な化合物としては、例えば、γ-アミノプロピルトリエトキシシラン、γ-アミノプロピルトリメトキシシラン、N-β(アミノエチル)γ-アミノプロピルトリメトキシシラン、N-β(アミノエチル)γ-アミノプロピルメチルジメトキシシラン、N-フェニルγ-アミノプロピルトリエトキシシラン、N-フェニルγ-アミノプロピルトリメトキシシラン、N-β(アミノエチル)γ-アミノプロピルトリエトキシシラン、N-6-(アミノヘキシル)3-アミノプロピルトリメトキシシラン、N-(3-(トリメトキシシリルプロピル)-1,3-ベンゼンジメタナン、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、メチルトリメトキシシラン、γ-ウレイドプロピルトリエトキシシラン、ビニルトリエトキシシラン等が挙げられ、これらのうちの一種または二種以上を組み合せて用いることができる。これらのうちエポキシシラン、メルカプトシラン、アミノシランが好ましく、アミノシランとしては、1級アミノシラン又はアニリノシランがより好ましい。
カップリング剤の含有量は、無機充填材の比表面積に対して適切に調整することができる。このようなカップリング剤の含有量の下限値は、例えば、熱硬化性樹脂組成物の全固形分100重量%に対して、0.01重量%以上としてもよく、好ましくは0.05重量%以上としてもよい。カップリング剤の含有量が上記下限値以上であると、無機充填材を十分に被覆することができ、樹脂膜の硬化物の耐熱性を向上させることができる。一方、カップリング剤の含有量の上限値は、例えば、熱硬化性樹脂組成物の全固形分100重量%に対して、3重量%以下としてもよく、好ましくは1.5重量%以下としてもよい。カップリング剤の含有量が上記上限値以下であると、反応に影響を与えるのを抑制でき、樹脂膜の硬化物の曲げ強度等の低下を抑制することができる。
(添加剤)
なお、本実施形態の熱硬化性樹脂組成物は、本発明の目的を損なわない範囲で、緑、赤、青、黄、および黒等の染料、黒色顔料な等の顔料、色素からなる群から選択される一種以上を含む着色剤、低応力剤、消泡剤、レベリング剤、紫外線吸収剤、発泡剤、酸化防止剤、難燃剤、イオン捕捉剤等の上記成分(熱硬化性樹脂、硬化剤、無機充填材、硬化促進剤、カップリング剤)以外の添加剤を含んでもよい。これらを単独で用いても2種以上を組み合わせて用いてもよい。
顔料としては、カオリン、合成酸化鉄赤、カドミウム黄、ニッケルチタン黄、ストロンチウム黄、含水酸化クロム、酸化クロム、アルミ酸コバルト、合成ウルトラマリン青等の無機顔料、フタロシアニン等の多環顔料、アゾ顔料等が挙げられる。
染料としては、イソインドリノン、イソインドリン、キノフタロン、キサンテン、ジケトピロロピロール、ペリレン、ペリノン、アントラキノン、インジゴイド、オキサジン、キナクリドン、ベンツイミダゾロン、ビオランスロン、フタロシアニン、アゾメチン等が挙げられる。
本実施形態において、ワニス状の熱硬化性樹脂組成物は、溶剤を含むことができる。
上記溶剤としては、たとえばアセトン、メチルエチルケトン、メチルイソブチルケトン、トルエン、酢酸エチル、シクロヘキサン、ヘプタン、シクロヘキサン、シクロヘキサノン、テトラヒドロフラン、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、エチレングリコール、セルソルブ系、カルビトール系、アニソール、およびN-メチルピロリドン等の有機溶剤が挙げられる。これらを単独で用いても2種以上を組み合わせて用いてもよい。
熱硬化性樹脂組成物がワニス状である場合において、熱硬化性樹脂組成物の固形分含有量は、たとえば30重量%以上80重量%以下としてもよく、より好ましくは40重量%以上70重量%以下としてもよい。これにより、作業性や成膜性に非常に優れた熱硬化性樹脂組成物が得られる。
ワニス状の熱硬化性樹脂組成物は、上述の各成分を、たとえば、超音波分散方式、高圧衝突式分散方式、高速回転分散方式、ビーズミル方式、高速せん断分散方式、および自転公転式分散方式などの各種混合機を用いて溶剤中に溶解、混合、撹拌することにより調製することができる。
次いで、本実施形態の樹脂膜について説明する。
本実施形態の樹脂膜は、ワニス状である上記熱硬化性樹脂組成物をフィルム化することにより得ることができる。例えば、本実施形態の樹脂膜は、ワニス状の熱硬化性樹脂組成物を塗布して得られた塗布膜に対して、溶剤を除去することにより得ることができる。このような樹脂膜においては、溶剤含有率が樹脂膜全体に対して5重量%以下とすることができる。本実施形態において、たとえば100℃~150℃、1分~5分の条件で溶剤を除去する工程を実施してもよい。これにより、熱硬化性樹脂を含む樹脂膜の硬化が進行することを抑制しつつ、十分に溶剤を除去することが可能となる。
また、本実施形態の熱硬化性樹脂組成物の利用形態としては、特に限定されないが、例えば、上記熱硬化性樹脂組成物からなる樹脂膜、上記樹脂膜をキャリア基材上に設けたキャリア付樹脂膜、上記熱硬化性樹脂組成物を繊維基材に含浸してなるプリプレグ、上記プリプレグの硬化物の少なくとも一面に金属層が配置された金属張積層板、上記熱硬化性樹脂組成物の硬化物で構成された絶縁層を備える樹脂基板、上記金属張積層板または上記樹脂基板の表面に回路層が形成されたプリント配線基板等が挙げられる。
(キャリア付き樹脂膜)
次いで、本実施形態のキャリア付樹脂膜について説明する。
図1は、本実施形態におけるキャリア付樹脂膜100の構成の一例を示す断面図である。
本実施形態のキャリア付樹脂膜100は、図1に示すように、キャリア基材12と、キャリア基材12上に設けられている、上記熱硬化性樹脂組成物からなる樹脂膜10と、を備えることができる。これにより、樹脂膜10のハンドリング性を向上させることができる。
キャリア付樹脂膜100は、巻き取り可能なロール形状でも、矩形形状などの枚葉形状であってもよい。
本実施形態において、キャリア基材12としては、例えば、高分子フィルムや金属箔などを用いることができる。当該高分子フィルムとしては、特に限定されないが、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン、ポリエチレンテレフタレート、ポリブチレンテレフタレートなどのポリエステル、ポリカーボネート、シリコーンシート等の離型紙、フッ素系樹脂、ポリイミド樹脂などの耐熱性を有した熱可塑性樹脂シート等が挙げられる。当該金属箔としては、特に限定されないが、例えば、銅および\または銅系合金、アルミおよび\またはアルミ系合金、鉄および\または鉄系合金、銀および\または銀系合金、金および金系合金、亜鉛および亜鉛系合金、ニッケルおよびニッケル系合金、錫および錫系合金などが挙げられる。これらの中でも、ポリエチレンテレフタレートで構成されるシートが安価および剥離強度の調節が簡便なため最も好ましい。これにより、上記キャリア付樹脂膜100から、適度な強度で剥離することが容易となる。
樹脂膜10の厚みの下限値は、特に限定されないが、例えば、1μm以上でもよく、3μm以上でもよく、5μm以上でもよい。これにより、樹脂膜10の機械強度を高めることができる。一方、樹脂膜10の厚みの上限値は、特に限定されないが、例えば、500μm以下としてもよく、300μm以下としてもよく、100μm以下としてもよい。これにより、半導体装置の薄層化を図ることができる。
キャリア基材12の厚みは、特に限定されないが、例えば、10~100μmとしてもよく、10~70μmとしてもよい。これにより、キャリア付樹脂膜100を製造する際の取り扱い性が良好であり好ましい。
本実施形態のキャリア付樹脂膜100は、単層でも多層でもよく、1種または2種以上の樹脂膜10を含むことができる。当該樹脂シートが多層の場合、同種で構成されてもよく、異種で構成されてもよい。また、キャリア付樹脂膜100は、樹脂膜10上の最外層側に、保護膜を有していてもよい。
本実施形態において、キャリア付樹脂膜100を形成する方法としては、特に限定されないが、例えば、ワニス状の熱硬化性樹脂組成物をキャリア基材12上に、各種コーター装置を用いて塗布することにより塗布膜を形成した後、当該塗布膜を適切に乾燥させることにより溶剤を除去する方法を用いることができる。
(樹脂基板)
本実施形態の樹脂基板は、熱硬化性樹脂組成物の硬化物で構成された絶縁層を備えることができる。このような樹脂基板は、ガラス繊維を含まない構成とすることができ、プリント配線基板に利用することができる。
(プリプレグ)
本実施形態のプリプレグは、上記熱硬化性樹脂組成物を繊維基材に含浸してなるものである。例えば、プリプレグは、熱硬化性樹脂組成物を繊維基材に含浸させ、その後、半硬化させて得られるシート状の材料として利用できる。このような構造のシート状材料は、誘電特性、高温多湿下での機械的、電気的接続信頼性等の各種特性に優れ、プリント配線基板の絶縁層の製造に適している。
熱硬化性樹脂組成物を繊維基材に含浸させる方法としては、特に限定されないが、例えば、熱硬化性樹脂組成物を溶剤に溶かして樹脂ワニスを調製し、繊維基材を上記樹脂ワニスに浸漬する方法、各種コーターにより上記樹脂ワニスを繊維基材に塗布する方法、スプレーにより上記樹脂ワニスを繊維基材に吹き付ける方法、熱硬化性樹脂組成物からなる上記樹脂膜で繊維基材の両面をラミネートする方法等が挙げられる。
本実施形態において、プリプレグは、例えば、プリント配線基板におけるビルドアップ層中の絶縁層やコア層中の絶縁層を形成するために用いることができる。プリプレグをプリント配線基板におけるコア層中の絶縁層を形成するために用いる場合は、例えば、2枚以上のプリプレグを重ね、得られた積層体を加熱硬化することによりコア層用の絶縁層とすることもできる。
(金属張積層板)
本実施形態において、金属張積層板は、上記プリプレグの硬化物の少なくとも一面に金属層が配置されたものである。
また、プリプレグを用いた金属張積層板製造方法は、例えば以下の通りである。
プリプレグまたはプリプレグを2枚以上重ね合わせた積層体の外側の上下両面または片面に金属箔を重ね、ラミネーター装置やベクレル装置を用いて高真空条件下でこれらを接合する、あるいはそのままプリプレグの外側の上下両面または片面に金属箔を重ねる。また、プリプレグを2枚以上積層するときは、積層したプリプレグの最も外側の上下両面もしくは片面に金属箔を重ねる。次いで、プリプレグと金属箔とを重ねた積層体を加熱加圧成形することで金属張積層板を得ることができる。ここで、加熱加圧成形時に、冷却終了時まで加圧を継続することが好ましい。
上記金属箔を構成する金属としては、例えば、銅、銅系合金、アルミ、アルミ系合金、銀、銀系合金、金、金系合金、亜鉛、亜鉛系合金、ニッケル、ニッケル系合金、錫、錫系合金、鉄、鉄系合金、コバール(商標名)、42アロイ、インバー、スーパーインバー等のFe-Ni系の合金、W、Mo等が挙げられる。これらの中でも、金属箔105を構成する金属としては、導電性に優れ、エッチングによる回路形成が容易であり、また安価であることから銅または銅合金が好ましい。すなわち、金属箔105としては、銅箔が好ましい。
また、金属箔としては、キャリア付金属箔等も使用することができる。
金属箔の厚みは、好ましくは0.5μm以上20μm以下であり、より好ましくは1.5μm以上18μm以下である。
次いで、本実施形態に用いられる繊維基材について説明する。
上記繊維基材としては、とくに限定されないが、ガラス織布、ガラス不織布等のガラス繊維基材;ポリアミド樹脂繊維、芳香族ポリアミド樹脂繊維、全芳香族ポリアミド樹脂繊維等のポリアミド系樹脂繊維;ポリエステル樹脂繊維、芳香族ポリエステル樹脂繊維、全芳香族ポリエステル樹脂繊維等のポリエステル系樹脂繊維;ポリイミド樹脂繊維、フッ素樹脂繊維のいずれかを主成分とする織布または不織布で構成される合成繊維基材;クラフト紙、コットンリンター紙、あるいはリンターとクラフトパルプの混抄紙等を主成分とする紙基材;等が挙げられる。これらのうち、いずれかを使用することができる。これらの中でもガラス繊維基材が好ましい。これにより、低吸水性で、高強度、低熱膨張性の樹脂基板を得ることができる。
繊維基材の厚みは、とくに限定されないが、好ましくは5μm以上150μm以下であり、より好ましくは10μm以上100μm以下であり、さらに好ましくは12μm以上90μm以下である。このような厚みを有する繊維基材を用いることにより、プリプレグ製造時のハンドリング性がさらに向上できる。
繊維基材の厚みが上記上限値以下であると、繊維基材中の熱硬化性樹脂組成物の含浸性が向上し、ストランドボイドや絶縁信頼性の低下の発生を抑制することができる。また炭酸ガス、UV、エキシマ等のレーザーによるスルーホールの形成を容易にすることができる。また、繊維基材の厚みが上記下限値以上であると、繊維基材やプリプレグの強度を向上させることができる。その結果、ハンドリング性が向上できたり、プリプレグの作製が容易となったり、樹脂基板の反りを抑制できたりする。
上記ガラス繊維基材として、例えば、Eガラス、Sガラス、Dガラス、Tガラス、NEガラス、UTガラス、Lガラス、HPガラスおよび石英ガラスから選ばれる一種または二種以上のガラスにより形成されたガラス繊維基材が好適に用いられる。
本実施形態によれば、このような樹脂膜やそれを用いたプリプレグを採用することにより、平面方向における線膨張係数が低減されたプリント配線基板における絶縁層を構成することが可能になる。
本実施形態の熱硬化性樹脂組成物の特性について説明する。
本実施形態の熱硬化性樹脂組成物において、当該熱硬化性樹脂組成物のDSC曲線における、250℃未満の温度領域における第1発熱ピークのピーク温度をTとし、250℃以上の温度領域における第2発熱ピークのピーク温度をTとする。このとき、|T-T|の下限値は、例えば、30℃以上であり、好ましくは40℃以上であり、より好ましくは50℃以上である。これにより、硬化物の線膨張係数を低減させることができる。また、耐熱性および低吸水性のバランスを図ることができる。一方で、上記|T-T|の上限値は、特に限定されないが、例えば、120℃以下でもよく、100℃以下でもよい。
また、上記Tの上限値は、例えば、250℃未満であり、好ましくは240℃以下であり、より好ましくは230℃以下である。これにより、硬化物の線膨張係数を低減させることができる。一方で、上記Tの下限値は、例えば、150℃以上であり、好ましくは155℃以上であり、より好ましくは160℃以上である。これにより、硬化物の耐熱性を向上させることができる。
また、上記Tの下限値は、例えば、250℃よりも高く、好ましくは253℃以上であり、より好ましくは255℃以上である。これにより、硬化物の耐熱性を向上させることができる。一方で、上記Tの上限値は、特に限定されないが、例えば、300℃以下としてもよい。これにより、熱硬化工程において、硬化反応を促進させることができる。
本実施形態のDSC曲線は、示差走査熱量計を用いて昇温速度10℃/minの条件下で30℃から350℃まで昇温した条件で、該熱硬化性樹脂組成物を測定することにより得られる。
本実施形態において、上記DSC曲線における第1発熱ピークのピーク高さをHとし、第2発熱ピークのピーク高さをHとする。このとき、H/Hの下限値は、例えば、0.1以上であり、好ましくは0.15以上であり、より好ましくは0.2以上とすることができる。一方で、上記H/Hの上限値は、例えば、1未満としてもよく、0.8以下としてもよく、0.7以下としてもよい。このような数値範囲内とすることにより、耐熱性、低吸水性および低線膨張化のバランスを図ることができる。
本実施形態において、上記DSC曲線における第2発熱ピークのピーク高さHの下限値は、例えば、0.02mW/mg以上であり、好ましくは0.03mW/mg以上であり、より好ましくは0.05mW/mg以上である。これにより、硬化物の耐熱性を向上させることができる。一方で、上記第2発熱ピークのピーク高さHの上限値は、例えば、2mW/mg以下としてもよく、1mW/mg以下としてもよく、0.2mW/mg以下としてもよい。
本実施形態では、たとえば熱硬化性樹脂組成物中に含まれる各成分の種類や配合量等を適切に選択することにより、上述の250℃未満における第1発熱ピークのピーク温度T(℃)、250℃よりも高い第2発熱ピークのピーク温度T(℃)、|T-T|(℃)、第2発熱ピークのピーク高さH1(mW/mg)、第2発熱ピークのピーク高さH2(mW/mg)を制御することが可能である。これらの中でも、たとえば、架橋成分として、多官能フェノール樹脂、当該多官能フェノール樹脂の官能基、多官能フェノール樹脂の官能基と反応する基を有するエポキシ樹脂等の熱硬化性樹脂、硬化促進剤の種類や配合量等を制御すること等が、上述の250℃未満における第1発熱ピークのピーク温度T(℃)、250℃よりも高い第2発熱ピークのピーク温度T(℃)、|T-T|(℃)、第2発熱ピークのピーク高さH1(mW/mg)、第2発熱ピークのピーク高さH2(mW/mg)を所望の数値範囲とするための要素として挙げられる。
本実施形態の熱硬化性樹脂組成物の硬化物の、30℃における貯蔵弾性率の下限値は、例えば、5GPa以上であり、好ましくは8GPa以上であり、より好ましくは10GPa以上である。これにより、高弾性率の硬化物を実現することができる。一方で、30℃における貯蔵弾性率の上限値は、特に限定されないが、例えば、20GPa以下としてもよい。
また、本実施形態の熱硬化性樹脂組成物の硬化物の、260℃における貯蔵弾性率の下限値は、例えば、1GPa以上であり、好ましくは1.5GPa以上であり、より好ましくは2GPa以上である。これにより、高温環境下においても高弾性率の硬化物を実現することができる。一方で、260℃における貯蔵弾性率の上限値は、特に限定されないが、例えば、5GPa以下でもよく、4GPa以下としてもよい。
本実施形態において、220℃、2時間で熱処理して得られる熱硬化性樹脂組成物の硬化物に対して、たとえば動的粘弾性測定装置を用いて周波数1Hz、昇温速度5℃/分の条件で動的粘弾性試験を行うことにより得られる測定結果から、30℃および250℃での貯蔵弾性率(E’30、E’250、)を算出することができる。動的粘弾性測定装置としては、とくに限定されないが、たとえばDMA装置(TAインスツルメント社製、Q800)を用いることができる。
本実施形態の熱硬化性樹脂組成物の硬化物のガラス転移温度の下限値は、特に限定されないが、例えば、200℃以上であり、好ましくは220℃以上であり、より好ましくは240℃以上であり、さらに好ましくは250℃以上としてもよい。これにより、耐熱性に優れた硬化物が得られる。また240℃以上とすることによりプリント配線基板における絶縁層として好適な耐熱性を実現できる。また、上記硬化物のガラス転移温度の上限値は、特に限定されないが、例えば、400℃以下としてもよく、350℃以下としてもよい。
上記ガラス転移温度は、220℃、2時間で熱処理して得られる熱硬化性樹脂組成物の硬化物に対して、動的粘弾性分析装置(DMA)を用いて測定することができる。また、上記ガラス転移温度は、昇温速度5℃/min、周波数1Hzの条件での動的粘弾性測定により得られる曲線において、損失正接tanδが最大値を示す温度である。
本実施形態の熱硬化性樹脂組成物の硬化物の、30℃から250℃の範囲において算出した平面方向(XY方向)の平均線膨張係数の上限値は、例えば、60ppm/℃以下であり、好ましくは55ppm/℃以下であり、より好ましくは50ppm/℃以下である。これにより、半導体パッケージの反りを低減させることができる。一方、上記平均線膨張係数の下限値は、特に限定されないが、例えば、1ppm/℃以上であってもよい。
上記平均線膨張係数は、220℃、2時間で熱処理して得られる熱硬化性樹脂組成物の硬化物に対して、熱機械分析装置TMAを用いて、温度範囲30~300℃、昇温速度10℃/min、荷重10g、引張モードの条件で熱機械分析(TMA)を2サイクル測定した時の、2サイクル目の30℃から250℃の範囲における平面方向(XY方向)の線膨張係数の平均値とすることができる。
(プリント配線基板)
本実施形態のプリント配線基板は、上記の樹脂膜の硬化物(熱硬化性樹脂組成物の硬化物)で構成された絶縁層を備えるものである。
本実施形態において、樹脂膜の硬化物は、例えば、通常のプリント配線基板のコア層やビルドアップ層やソルダーレジスト層、コア層を有しないプリント配線基板におけるビルドアップ層やソルダーレジスト層、PLPに用いられるコアレス基板の層間絶縁層やソルダーレジスト層、MIS基板の層間絶縁層やソルダーレジスト層等に用いることができる。このような絶縁層は、複数の半導体パッケージを一括して作成するために利用させる大面積のプリント配線基板において、当該プリント配線基板を構成する層間絶縁層やソルダーレジスト層にも好適に用いることができる。
次に、本実施形態のプリント配線基板300の一例を、図2(a)(b)を用いて説明する。
本実施形態のプリント配線基板300は、上述の樹脂膜10の硬化物で構成された絶縁層を備えるものである。上記プリント配線基板300は、図2(a)に示すように、絶縁層301(コア層)と絶縁層401(ソルダーレジスト層)とを備える構造を有していてもよい。また、上記プリント配線基板300は、図2(b)に示すように、絶縁層301(コア層)、絶縁層305(ビルドアップ層)および絶縁層401(ソルダーレジスト層)を備える構造を有していてもよい。これらのコア層、ビルドアップ層、ソルダーレジスト層のそれぞれは、例えば、本実施形態の樹脂膜の硬化物で構成することができる。このコア層は、本実施形態の熱硬化性樹脂組成物を繊維基材に含浸させてなるプリプレグを硬化させた硬化体で構成されていてもよい。
本実施形態の樹脂膜からなる硬化物は、ガラスクロスや紙基材等の繊維基材を含まないものとすることができる。これにより、ビルドアップ層(層間絶縁層)やソルダーレジスト層を形成するためにとくに適した構成とすることができる。
また、本実施形態に係るプリント配線基板300は、片面プリント配線基板であってもよいし、両面プリント配線基板または多層プリント配線基板であってもよい。両面プリント配線基板とは、絶縁層301の両面に金属層303を積層したプリント配線基板である。また、多層プリント配線基板とは、メッキスルーホール法やビルドアップ法等により、コア層である絶縁層301に、ビルドアップ層(例えば、絶縁層305)を2層以上積層したプリント配線基板である。
なお、本実施形態において、ビアホール307は、層間を電気的に接続するための孔であればよく、貫通孔および非貫通孔いずれでもよい。ビアホール307は金属を埋設して形成されてもよい。この埋設した金属は、無電解金属めっき膜308で覆われた構造を有していてもよい。
また、本実施形態において、上記金属層303は、例えば、回路パターンであってもよいし、電極パットであってもよい。この金属層303は、例えば、金属箔105および電解金属めっき層309の金属積層構造を有していてもよい。
金属層303は、例えば、薬液処理またはプラズマ処理された金属箔105または、本実施形態の樹脂膜の硬化物からなる絶縁層(例えば、絶縁層301や絶縁層305)の面上に、SAP(セミアディティブプロセス)法により形成される。例えば、金属箔105または絶縁層301,305上に無電解金属めっき膜308を施した後、めっきレジストにより非回路形成部を保護し、電解めっきにより電解金属めっき層309付けを行い、めっきレジストの除去とフラッシュエッチングによる電解金属めっき層309をパターニングすることにより、金属層303を形成する。
また、本実施形態のプリント配線基板300は、ガラス繊維を含まない樹脂基板とすることができる。例えば、コア層である絶縁層301は、ガラス繊維を含有しない構成であってもよい。このような樹脂基板を用いた半導体パッケージにおいても、樹脂膜の硬化物の線膨張係数を低くすることができるので、パッケージ反りを十分に抑制することができる。
(半導体パッケージ)
次に、本実施形態の半導体装置400について説明する。図3(a)(b)は、半導体装置400の構成の一例を示す断面図である。
本実施形態の半導体装置400は、プリント配線基板300と、プリント配線基板300の回路層上に搭載された、またはプリント配線基板300に内蔵された半導体素子と、を備えることができる。
例えば、図3(a)に示される半導体装置400は、図3(a)に示されるプリント配線基板300の回路層(金属層303)の上に、半導体素子407が搭載された構造を有する。一方、図3(b)に示される半導体装置400は、図3(b)に示されるプリント配線基板300の回路層(金属層303)の上に、半導体素子407が搭載された構造を有する。半導体素子407は、封止材層413に覆われている。このような半導体パッケージは、半田バンプ410および金属層303を介して、半導体素子407が、プリント配線基板300と電気的に接続するフリップチップ構造であってもよい。
本実施形態において、半導体パッケージの構造としては、上記フリップチップ接続構造に限定されずに、各種の構造を有してもよいが、例えば、ファンアウト構造を用いることができる。本実施形態の樹脂膜の硬化物からなる絶縁層は、ファンアウト構造を有する半導体パッケージの製造プロセスにおいて、基板反りや基板クラックを抑制することができる。
次に、本実施形態のプリント配線基板の変形例を説明する。図4は、プリント配線基板500の製造プロセス一例の工程断面図である。図4(c)は、コア層を有しないプリント配線基板500を示す。
本実施形態のプリント配線基板500は、繊維基材を有するコア層を備えないものであり、例えば、ビルドアップ層やソルダーレジスト層で構成されているコアレス樹脂基板とすることができる。これらのビルドアップ層やソルダーレジスト層は、本実施形態の樹脂膜の硬化物からなる絶縁層で構成されていることが好ましい。例えば、図4(c)に示すプリント配線基板500は、2層のビルドアップ層(絶縁層540,550)とソルダーレジスト層(絶縁層560)を備えるものである。なお、プリント配線基板500のビルドアップ層は、単層でもよく、2以上の複数層を有していてもよい。
本実施形態の樹脂膜の硬化物からなる絶縁層は強靱性に優れるので、プリント配線基板500の反りや搬送時におけるクラックを抑制することができる。
図4(c)に示される金属層542,552,562は、回路パターンであってもよいし、電極パットであってもよく、前述のように、SAP法で形成されていてもよい。これらの金属層542,552,562は、単層でも複数の金属層であってもよい。
プリント配線基板500は、平面上に複数の半導体素子を搭載することができる大面積を有していてもよい。これにより、プリント配線基板500に搭載された複数の半導体素子を一括封止した後、これらを個片化することにより、複数の半導体パッケージを得ることができる。なお、プリント配線基板500は、略円形形状や矩形形状等のパネル基板とすることができる。
上記プリント配線基板500の製造方法は、特に限定されないが、例えば、支持基板510上に、ビルドアップ層、ソルダーレジスト層を形成した後、この支持基板510を剥離することにより得ることができる。具体的には、図4(a)に示すように、大面積の支持基板510(例えば、SUSで構成される板部材)上に、キャリア箔520、金属箔530(例えば、銅箔)を配置する。このとき、支持基板510とキャリア箔520の間に不図示の接着樹脂を配置することができる。続いて、金属箔530上に金属層542を形成する。この金属層542を、たとえば、SAP方法等の通常の手法によりパターニングする。続いて、加熱加圧成形法等により、上記キャリア膜付樹脂膜を積層した後、キャリア膜付樹脂膜からキャリア基材を剥離する。そして、樹脂膜を硬化する。これらを3回繰り返して、2層のビルドアップ層と1層のソルダーレジスト層を形成する。
その後、図4(b)に示すように支持基板510を剥離する。そして、金属箔530をエッチング等により除去する。
以上により、図4(c)に示すプリント配線基板500が得られる。
次に、本実施形態のプリント配線基板の変形例を説明する。図5は、プリント配線基板600の構成の一例を示す断面図である。
図5に示すプリント配線基板600は、PLP(パネルレベルパッケージ)プロセスに用いられるコアレス樹脂基板610で構成されていてもよい。PLPプロセスは、例えば、配線板プロセスを利用して、ウエハ以上の大面積を有するパネルサイズパッケージを得ることができる。PLPプロセスを使用することにより、ウエハレベルプロセスよりも半導体パッケージの生産性を効率的に向上させることができる。
本実施形態において、コアレス樹脂基板610の絶縁層612(層間絶縁層)や絶縁層630,632(ソルダーレジスト層)は、本実施形態の樹脂膜の硬化物からなる絶縁層で構成されていてもよい。本実施形態の樹脂膜の硬化物は強靱性に優れているため、PLPプロセス中において、プリント配線基板600の反りや、とくに搬送時や実装時におけるコアレス樹脂基板610のクラックを効果的に抑制することができる。
また、本実施形態のプリント配線基板600は、その平面内において複数の半導体素子(不図示)を搭載することができるような大面積を有している。そして、プリント配線基板600の面内方向に搭載された複数の半導体素子を一括して封止した後、これらを個片化することにより、複数の半導体パッケージを得ることができる。本実施形態の樹脂膜の硬化物の線膨張係数を低くすることができるので、PLPプロセスで得られた半導体パッケージにおいてパッケージ反りを抑制することができる。
プリント配線基板600は、コアレス樹脂基板610と、その表面に形成されたソルダーレジスト層(絶縁層630,632)を備えることができる。コアレス樹脂基板610は、内蔵された半導体素子620を有してもよい。半導体素子620は、ビア配線616を介して電気的に接続することができる。また、コアレス樹脂基板610は、絶縁層612(層間絶縁層)およびビア配線616を少なくとも有することができる。ビア配線616を介して、下面の金属層640(電極パッド)と上面の金属層618(ポスト)とを電気的に接続することができる。また、ビア配線616は、例えば、金属層614(ポスト)を介して金属層640に接続することができる。コアレス樹脂基板610において、ビア配線616および金属層614が埋設されている。ポストである金属層614は、表面がコアレス樹脂基板610の表面と同一平面を構成してもよい。本実施形態のプリント配線基板600において、コアレス樹脂基板610は、単層の層間絶縁層で構成されているが、この構成に限定されずに、複数の層間絶縁層が積層した構造を有していてもよい。このような層間絶縁層中には少なくとも層間接続配線としてビア配線616が形成されていてもよい。また、本実施形態において、ビア配線616、金属層614、または金属層618は、例えば、銅などの金属で構成されていてもよい。
また、コアレス樹脂基板610の上面と下面は、ソルダーレジスト層(絶縁層630,632)で覆われていてもよい。例えば、絶縁層630は、絶縁層612の表面上に形成された金属層650を覆うことができる。金属層650は、第1金属層652(めっき層)と第2金属層654(無電解めっき層)とで構成されており、例えば、SAP法で形成された金属層であってもよい。金属層650は、例えば、回路パターンまたは電極パッドでもよい。
また、本実施形態のプリント配線基板600の製造方法は、特に限定されないが、例えば、次のような方法を用いることができる。例えば、支持基板上に絶縁層612を形成する。続いて、絶縁層612にビアを形成し、ビア内をめっき方法により金属膜を埋設したビア配線616を形成する。続いて、絶縁層612の表面上に、SAP方法により再配線(金属層650)を形成する。その後、このような層間接続配線を有する層間絶縁層を複数層、積層してもよい。その後、ソルダーレジスト層(絶縁層630,632)を形成する。
以上により、プリント配線基板600を得ることができる。
次に、本実施形態のプリント配線基板の変形例を説明する。図6は、プリント配線基板700の構成の一例を示す断面図である。
図6に示すプリント配線基板700は、ポスト付き基板(MIS基板)で構成することができる。例えば、ポスト付き基板は、絶縁層712(層間絶縁層)内に、ビア配線716と金属層718(ポスト)が埋設された構造を有するコアレス樹脂基板710で構成することができる。ポスト付き基板は、個片化された後の基板であっても、個片化前の大面積を有する基板(例えば、ウエハの様な支持体)であってもよい。
本実施形態のプリント配線基板700を用いることにより、ウエハレベルプロセスと同程度以上に、半導体パッケージの生産性を効率的に向上させることができる。
本実施形態において、コアレス樹脂基板710の絶縁層712(層間絶縁層)や絶縁層730,732(ソルダーレジスト層)は、本実施形態の樹脂膜の硬化物からなる絶縁層で構成されていてもよい。本実施形態の樹脂膜の硬化物は強靱性に優れているため、プリント配線基板700の反りや、とくに搬送時や実装時におけるコアレス樹脂基板710のクラックを効果的に抑制することができる。
また、本実施形態のプリント配線基板700は、その平面内において複数の半導体素子(不図示)を搭載することができるような大面積を有している。そして、プリント配線基板700の面内方向に搭載された複数の半導体素子を一括して封止した後、これらを個片化することにより、複数の半導体パッケージを得ることができる。本実施形態の樹脂膜の硬化物の線膨張係数を低くすることができるので、得られた半導体パッケージにおいてパッケージ反りを抑制することができる。
プリント配線基板700は、コアレス樹脂基板710と、その表面に形成されたソルダーレジスト層(絶縁層730,732)を備えることができる。コアレス樹脂基板710は、内蔵された半導体素子720を有してもよい。半導体素子720は、ビア配線716を介して電気的に接続することができる。また、コアレス樹脂基板710は、絶縁層712(層間絶縁層)およびビア配線716および金属層718(ポスト)を少なくとも有することができる。ビア配線716を介して、下面の金属層714(ポスト)と上面の金属層718(ポスト)とを電気的に接続することができる。また、絶縁層712内に埋設された金属層714は、絶縁層712の表面に形成された金属層740(電極パッド)に接続することができる。また、絶縁層712の表面は、研磨面を有していてもよい。金属層718の一面は、絶縁層712の研磨面と同一平面を構成してもよい。
本実施形態のプリント配線基板700において、コアレス樹脂基板710は、単層の層間絶縁層で構成されているが、この構成に限定されずに、複数の層間絶縁層が積層した構造を有していてもよい。このような層間絶縁層中には、層間接続配線としてビア配線716および金属層718(ポスト)が形成されていてもよい。また、本実施形態において、ビア配線716、金属層714、または金属層718は、例えば、銅などの金属で構成されていてもよい。また、コアレス樹脂基板710の上面と下面は、ソルダーレジスト層(絶縁層730,732)で覆われていてもよい。
また、本実施形態のプリント配線基板700の製造方法は、特に限定されないが、例えば、次のような方法を用いることができる。例えば、支持基板上に、絶縁層上に銅ポスト(例えば、金属層718)を形成する。銅ポストをさらに絶縁層で埋め込む。続いて、グラインドやケミカルエッチングなどの方法により、当該銅ポストの表面を露出する(つまり、銅ポストの頭出しを行う)。続いて、SAP方法により再配線を形成する。このような工程により層間絶縁層を有するコアレス樹脂基板710を形成できる。この後、層間絶縁層を形成する工程を複数回繰り返すことにより、層間接続配線を有する層間絶縁層を複数層、積層してもよい。その後、ソルダーレジスト層(絶縁層730,732)を形成する。
以上により、プリント配線基板700を得ることができる。
以上、図面を参照して本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。
以下、参考形態の例を付記する。
1. プリント配線基板における絶縁層を形成するために用いられる熱硬化性樹脂組成物であって、
無機充填材を含み、当該熱硬化性樹脂組成物の全固形分100重量%に対する前記無機充填材の含有量が50重量%以上90重量%以下であり、前記無機充填材の平均粒子径が0.01μm以上5.0μm以下であり、
示差走査熱量計を用いて昇温速度10℃/minの条件下で30℃から350℃まで昇温した際に得られる当該熱硬化性樹脂組成物のDSC曲線は、第1発熱ピークと、前記第1発熱ピークよりも高い温度に位置する高い第2発熱ピークと、を有しており、
前記第2発熱ピークは、250℃よりも高い温度領域に存在する、熱硬化性樹脂組成物。
2. 1.に記載の熱硬化性樹脂組成物であって、
前記第1発熱ピークのピーク温度をT とし、前記第2発熱ピークのピーク温度をT としたとき、|T -T |が30℃以上である、熱硬化性樹脂組成物。
3. 1.または2.に記載の熱硬化性樹脂組成物であって、
前記第1発熱ピークのピーク温度は、150℃以上250℃未満である、熱硬化性樹脂組成物。
4. 1.から3.のいずれか1つに記載の熱硬化性樹脂組成物であって、
前記第2発熱ピークのピーク高さは、0.02mW/mg以上2mW/mg以下である、熱硬化性樹脂組成物。
5. 1.から4.のいずれか1つに記載の熱硬化性樹脂組成物であって、
前記第1発熱ピークのピーク高さをH とし、前記第2発熱ピークのピーク高さをH としたとき、H /H が0.1以上1未満である、熱硬化性樹脂組成物。
6. 1.から5.のいずれか1つに記載の熱硬化性樹脂組成物であって、
複数の官能基を有する多官能フェノール樹脂を含む、熱硬化性樹脂組成物。
7. 6.に記載の熱硬化性樹脂組成物であって、
前記多官能フェノール樹脂の官能基と反応する基を有する熱硬化性樹脂をさらに含む、熱硬化性樹脂組成物。
8. 1.から7.のいずれか1つに記載の熱硬化性樹脂組成物であって、
当該熱硬化性樹脂組成物の硬化物のガラス転移温度が、240℃以上400℃以下である、熱硬化性樹脂組成物。
9. キャリア基材と、
前記キャリア基材上に設けられている、1.から8.のいずれか1つに記載の熱硬化性樹脂組成物からなる樹脂膜と、を備える、キャリア付樹脂膜。
10. 1.から8.のいずれか1つに記載の熱硬化性樹脂組成物を繊維基材に含浸してなる、プリプレグ。
11. 10.に記載のプリプレグの硬化物の少なくとも一面に金属層が配置された、金属張積層板。
12. 11.に記載の金属張積層板の表面に回路層が形成された、プリント配線基板。
13. 12.に記載のプリント配線基板と、
前記プリント配線基板の前記回路層上に搭載された、または前記プリント配線基板に内蔵された半導体素子と、を備える、半導体装置。
以下、本発明について実施例を参照して詳細に説明するが、本発明は、これらの実施例の記載に何ら限定されるものではない。
(熱硬化性樹脂組成物の調製)
実施例および比較例について、ワニス状の熱硬化性樹脂組成物を調製した。
まず、表1に示す固形分割合で各成分を溶解または分散させ、メチルエチルケトンで不揮発分70重量%となるように調整し、高速撹拌装置を用い撹拌して樹脂ワニスを調製した。
なお、表1における各成分の配合割合を示す数値は、熱硬化性樹脂組成物の固形分全体に対する各成分の配合割合(重量%)を示している。
表1における各成分の原料の詳細は下記のとおりである。
実施例および比較例では、以下の原料を用いた。
(熱硬化性樹脂)
熱硬化性樹脂1:ビフェニレン骨格を有するフェノールアラルキル型エポキシ樹脂(日本化薬株式会社製、NC-3000、エポキシ当量275、重量平均分子量2000)
熱硬化性樹脂2:トリフェニルメタン型エポキシ樹脂(日本化薬社製 EPPN-502H、多官能・分岐型固形エポキシ樹脂、エポキシ当量:168g/eq)
(多官能フェノール樹脂)
多官能フェノール樹脂1:下記の合成方法で得られたアルデヒド基およびイミノ基含有ビフェニレン骨格を有する多官能フェノール樹脂
[多官能フェノール樹脂1を含む樹脂の合成方法]
温度計、攪拌機、冷却管を備えた内容量1Lの反応容器にオルソヒドロキシベンズアルデヒド850g(6.967mol)、ビスメトキシメチルビフェニル421.9g(1.741mol)、パラトルエンスルホン酸8.5g(オルソヒドロキシベンズアルデヒドに対して1重量%)を仕込み160℃まで昇温し、4時間反応を行った。反応で副生するメタノールは、系外へ除去した。反応終了後、中和、水洗を行い、未反応オルソヒドロキシベンズアルデヒドモノマーを除去し、アルデヒド含有ビフェニル樹脂を得た。
得られたアルデヒド含有ビフェニル樹脂100.0gを、トルエン100.0gに溶解し80℃まで昇温した。次に、発熱に注意しながらアリルアミン25.4gを2時間かけて添加した。その後、使用したトルエンを160℃で除去し、アルデヒド基およびイミノ基含有ビフェニレン骨格を有する多官能フェノール樹脂(多官能フェノール樹脂1)を含む樹脂を得た。
(硬化剤)
フェノール系硬化剤1:ビフェニレン骨格を有するフェノールアラルキル樹脂(日本化薬社製、KAYAHARD GPH-65、OH当量:200g/eq)
フェノール系硬化剤2:フェノール樹脂系硬化剤(多官能、日本化薬社製、KAYAHARD KTG-105、OH当量:105g/eq)
(無機充填材)
無機充填材1:シリカ粒子(アドマテック社製、SC2050、平均粒径0.5μm)
(硬化促進剤)
硬化促進剤1:2-フェニル-1H-イミダゾール4、5-ジメタノール(四国化成社製、キュアゾール2PHZ-PW)
硬化促進剤2:2-フェニルイミダゾール(四国化成社製、キュアゾール2PZ-PW)
硬化促進剤3:2,3-ジヒドロ-1H-ピロロ[1,2-a]ベンズイミダゾール(四国化成社製、キュアゾールTBZ)
Figure 0007102816000022
(キャリア付樹脂膜の作製)
次いで、熱硬化性樹脂組成物を用いて、キャリア付樹脂膜を作製した。具体的には、熱硬化性樹脂組成物(樹脂ワニス)をポリエチレンテレフタレート上に塗布し、次いで、温度140℃で2分間乾燥することによって溶媒を除去し、厚さ25μmのキャリア付樹脂膜を作製した。
(プリプレグ)
実施例および比較例において、得られた樹脂ワニス中をガラスクロス(クロスタイプ#1078、Eガラス、坪量48g/m)に塗布することにより、当該樹脂ワニスをガラスクロスに含浸させた。その後、180℃の加熱炉で2分間乾燥させて、厚み70μmのプリプレグを得た。各実施例および各比較例のプリプレグ中の熱硬化性樹脂組成物における樹脂の含有量(RC)は、プリプレグ全体(ガラスクロスおよび熱硬化性樹脂組成物)の固形分基準で、64重量%であった。
実施例および比較例において、次のような評価を行った。評価結果を表1に示す。
(樹脂膜の硬化物)
得られたキャリア付樹脂膜を厚さ約100umになるようにラミネートして重ねた。その後、両面に12μm厚の銅箔をラミネートし、220℃で2時間熱処理後、銅エッチング処理することで、熱硬化性樹脂組成物の樹脂硬化物を得た。ラミネートは、2ステージ真空加圧式ラミネーター装置(名機製作所社製、MVLP-500)を用いて、30秒間減圧して10hPa以下で、1ステージ条件として温度80℃、圧力0.8MPa、30秒にて真空加熱加圧成形した。2ステージは使用しなかった。
(プリプレグの硬化物)
得られたプリプレグを220℃で2時間熱処理し、熱硬化性樹脂組成物のプリプレグ硬化物を得た。
(ガラス転移温度、30℃での貯蔵弾性率E’30、260℃での貯蔵弾性率E’260
得られた樹脂硬化物から8mm×40mmのテストピースを切り出し、そのテストピースに対し、動的粘弾性測定(DMA装置、TAインスツルメント社製、Q800)を用いて、昇温速度5℃/min、周波数1Hzで動的粘弾性測定を行い、30℃での貯蔵弾性率E’30、260℃での貯蔵弾性率E’260を算出した。また、ガラス転移温度は、損失正接tanδが最大値を示す温度とした。
(吸水率Wa2(%))
得られたプリプレグ硬化物からを6mm角に5枚切り出してサンプルとし、85℃の乾燥機内に2時間放置した後のサンプルの初期重量Aを測定し、その後、85℃、湿度85%の槽内に2時間放置した後のサンプルの重量Bを計測することにより、下記式により硬化物中の吸水率Wa1(%)を算出した。
ここで、サンプル(硬化物)の吸水率Wa1(%)は以下の式で示される。
吸水率Wa1[%]:((B-A)/A)×100
A:85℃の乾燥機内に2時間放置した後の重量(mg)
B:85℃、湿度85%の槽内に、2時間放置した後の重量(mg)
硬化物の中の樹脂の吸水率Wa2(%)は、得られた吸水率Wa1(%)を、上記樹脂の含有量(RC:0.64)で除したものとした。
(線膨張係数(CTE))
得られた樹脂硬化物から4mm×20mmの試験片を作製した。この試験片について、熱機械分析装置TMA(TAインスツルメント社製、Q400)を用いて、温度範囲30~300℃、昇温速度10℃/min、荷重10g、引張モードの条件で熱機械分析(TMA)を2サイクル測定した。この結果から、2サイクル目の3030℃から250℃の範囲における平面方向(XY方向)の線膨張係数(CTE)の平均値を算出した。なお、線膨脹係数は、2サイクル目の値を採用した。
(DSC)
示差走査熱量計(SII社製、DSC7020)を用い、窒素気流下で、昇温速度を10℃/minで30℃から350℃の温度範囲条件にて、10mgの得られた熱硬化性樹脂組成物について測定した。得られた熱硬化性樹脂組成物のDSC曲線から、発熱ピーク、250℃未満における第1発熱ピークのピーク温度T(℃)、250℃よりも高い第2発熱ピークのピーク温度T(℃)、|T-T|(℃)、第2発熱ピークのピーク高さH1(mW/mg)、第2発熱ピークのピーク高さH2(mW/mg)を算出した。
このとき、70℃における発熱量高さHMINと最大発熱ピーク温度における発熱量高さHMAXとの差をΔHとし、発熱量高さHMINを基準にしたときに発熱量高さが、ΔHの10%に達した時の温度を、発熱開始温度とした。発熱ピークは、ΔHの10%を超えるものとした。
また、実施例1から3のDSC曲線を図7に示し、比較例1、2のDSC曲線を図8
に示す。図7中、実施例1から3の第1発熱ピークは、エポキシ樹脂と多官能フェノール樹脂中のフェノール性水酸基を示し、第2ピークは、多官能フェノール樹脂同士におけるアルデヒド基とイミノ基との反応を示す。
(基板信頼性:吸湿半田耐熱性試験)
12μm厚の銅箔を積層してなる両面銅張積層板(住友ベークライト(株)製、LαZ-4785GH-J)を準備した。次いで、上記銅張積層板の銅箔をエッチング処理して導体回路パターンを形成することにより、一面および他面に上記導体回路パターンが形成された回路基板を得た。次いで実施例、比較例で得られたプリプレグを、2ステージ真空加圧式ラミネーター装置(名機製作所社製、MVLP-500)を用いて、30秒間減圧して10hPa以下で、1ステージ条件として温度120℃、圧力0.8MPa、30秒、2ステージ条件としてSUS鏡板で温度120℃、圧力1.0MPa、60秒にて真空加熱加圧成形した。その後、12μm厚の銅箔を同様の条件で積層した後、220℃、2時間の条件で硬化した。得られた多層配線板の外層パターンを形成し、層間厚み20μmの評価サンプルを作製した。
得られた評価サンプルを用いて、PCT層を使い、121℃、2気圧、2時間処理後、288℃の半田層に浸透させて30秒熱処理した後、膨れ発生有無を評価した。これを膨れが発生するまで繰り返し、膨れが発生するまでの回数を計測した。
○:11回以上でも膨れ無し(良好)
×:1回で膨れ(使用不可)
実施例1~3の熱硬化性樹脂組成物は、エポキシ基を有するエポキシ樹脂とフェノール性水酸基を有するフェノール樹脂とそれぞれ含む比較例1と比べて、ガラス転移温度を高くできることが分かった。くわえて、実施例1~3の熱硬化性樹脂組成物は、多官能エポキシ樹脂と多官能フェノール樹脂とを含む比較例2と比べて、樹脂における吸湿率を低減できることが分かった。したがって、実施例1~3の熱硬化性樹脂組成物を使用することにより、基板信頼性に優れた構造のプリント配線基板や半導体装置を実現できることが分かった。
また、実施例1~3の熱硬化性樹脂組成物は、比較例1、2と比べて、線膨張係数を低減できるため、層間接続信頼性に優れており、パッケージの反りが低減されたプリント配線基板や半導体装置を実現できる。
また、実施例1~3の熱硬化性樹脂組成物は、無機充填材を含まない比較例3と比べて、吸水率が低く、貯蔵弾性率が高く、線膨張係数を低く抑えられるものであり、基板信頼性に優れることが分かった。
以上、実施例に基づいて本発明をさらに具体的に説明したが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。
10 樹脂膜
12 キャリア基材
100 キャリア付樹脂膜
105 金属箔
300 プリント配線基板
301 絶縁層
303 金属層
305 絶縁層
307 ビアホール
308 無電解金属めっき膜
309 電解金属めっき層
400 半導体装置
401 絶縁層
407 半導体素子
410 半田バンプ
413 封止材層
500 プリント配線基板
510 支持基板
520 キャリア箔
530 金属箔
540 絶縁層
542 金属層
550 絶縁層
552 金属層
560 絶縁層
562 金属層
600 プリント配線基板
610 コアレス樹脂基板
612 絶縁層
614 金属層
616 ビア配線
618 金属層
620 半導体素子
630 絶縁層
632 絶縁層
640 金属層
650 金属層
652 第1金属層
654 第2金属層
700 プリント配線基板
710 コアレス樹脂基板
712 絶縁層
714 金属層
716 ビア配線
718 金属層
720 半導体素子
730 絶縁層
732 絶縁層
740 金属層

Claims (13)

  1. プリント配線基板における絶縁層を形成するために用いられる熱硬化性樹脂組成物であって、
    1分子中に、アルデヒド基と、当該アルデヒド基とは異なる官能基としてイミノ基と、を備える多官能フェノール樹脂を含み、
    無機充填材を含み、当該熱硬化性樹脂組成物の全固形分100重量%に対する前記無機充填材の含有量が50重量%以上80重量%以下であり、前記無機充填材の平均粒子径が0.01μm以上5.0μm以下であり、前記無機充填材が、平均粒子径が0.1μm以上5.0μmのシリカ粒子を含み、
    示差走査熱量計を用いて昇温速度10℃/minの条件下で30℃から350℃まで昇温した際に得られる当該熱硬化性樹脂組成物のDSC曲線は、第1発熱ピークと、前記第1発熱ピークよりも高い温度に位置する高い第2発熱ピークと、を有しており、
    前記第2発熱ピークは、250℃よりも高い温度領域に存在する、熱硬化性樹脂組成物。
  2. 請求項1に記載の熱硬化性樹脂組成物であって、
    前記第1発熱ピークのピーク温度をTとし、前記第2発熱ピークのピーク温度をTとしたとき、|T-T|が30℃以上である、熱硬化性樹脂組成物。
  3. 請求項1または2に記載の熱硬化性樹脂組成物であって、
    前記第1発熱ピークのピーク温度は、150℃以上250℃未満である、熱硬化性樹脂組成物。
  4. 請求項1から3のいずれか1項に記載の熱硬化性樹脂組成物であって、
    前記第2発熱ピークのピーク高さは、0.02mW/mg以上2mW/mg以下である、熱硬化性樹脂組成物。
  5. 請求項1から4のいずれか1項に記載の熱硬化性樹脂組成物であって、
    前記第1発熱ピークのピーク高さをHとし、前記第2発熱ピークのピーク高さをHとしたとき、H/Hが0.1以上1未満である、熱硬化性樹脂組成物。
  6. 請求項1から5のいずれか1項に記載の熱硬化性樹脂組成物であって、
    前記多官能フェノール樹脂の官能基と反応する基を有する熱硬化性樹脂をさらに含む、熱硬化性樹脂組成物。
  7. 請求項1から6のいずれか1項に記載の熱硬化性樹脂組成物であって、
    当該熱硬化性樹脂組成物の硬化物のガラス転移温度が、240℃以上400℃以下である、熱硬化性樹脂組成物。
  8. 請求項1から7のいずれか1項に記載の熱硬化性樹脂組成物であって、
    前記イミノ基が、-CH=N-Rの構造で表される(ただし、Rは、直鎖状もしくは分枝鎖状の炭素数1から9のアルキル基、アルケニル基、またはアルコキシ基であり、直鎖もしくは分岐鎖内に芳香族構造を含んでもよい。)、熱硬化性樹脂組成物。
  9. キャリア基材と、
    前記キャリア基材上に設けられている、請求項1からのいずれか1項に記載の熱硬化性樹脂組成物からなる樹脂膜と、を備える、キャリア付樹脂膜。
  10. 請求項1からのいずれか1項に記載の熱硬化性樹脂組成物を繊維基材に含浸してなる、プリプレグ。
  11. 請求項10に記載のプリプレグの硬化物の少なくとも一面に金属層が配置された、金属張積層板。
  12. 請求項11に記載の金属張積層板の表面に回路層が形成された、プリント配線基板。
  13. 請求項12に記載のプリント配線基板と、
    前記プリント配線基板の前記回路層上に搭載された、または前記プリント配線基板に内蔵された半導体素子と、を備える、半導体装置。
JP2018051247A 2018-03-19 2018-03-19 熱硬化性樹脂組成物、キャリア付樹脂膜、プリプレグ、金属張積層板、プリント配線基板および半導体装置 Active JP7102816B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018051247A JP7102816B2 (ja) 2018-03-19 2018-03-19 熱硬化性樹脂組成物、キャリア付樹脂膜、プリプレグ、金属張積層板、プリント配線基板および半導体装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018051247A JP7102816B2 (ja) 2018-03-19 2018-03-19 熱硬化性樹脂組成物、キャリア付樹脂膜、プリプレグ、金属張積層板、プリント配線基板および半導体装置

Publications (2)

Publication Number Publication Date
JP2019163366A JP2019163366A (ja) 2019-09-26
JP7102816B2 true JP7102816B2 (ja) 2022-07-20

Family

ID=68065517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018051247A Active JP7102816B2 (ja) 2018-03-19 2018-03-19 熱硬化性樹脂組成物、キャリア付樹脂膜、プリプレグ、金属張積層板、プリント配線基板および半導体装置

Country Status (1)

Country Link
JP (1) JP7102816B2 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014521824A (ja) 2011-08-18 2014-08-28 ダウ グローバル テクノロジーズ エルエルシー 硬化型樹脂組成物
JP2017115035A (ja) 2015-12-24 2017-06-29 群栄化学工業株式会社 熱硬化性成形材料、その製造方法および半導体封止材
JP2017206578A (ja) 2016-05-16 2017-11-24 住友ベークライト株式会社 熱硬化性樹脂組成物、キャリア付樹脂膜、プリプレグ、金属張積層板、樹脂基板、プリント配線基板、及び半導体装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014521824A (ja) 2011-08-18 2014-08-28 ダウ グローバル テクノロジーズ エルエルシー 硬化型樹脂組成物
JP2017115035A (ja) 2015-12-24 2017-06-29 群栄化学工業株式会社 熱硬化性成形材料、その製造方法および半導体封止材
JP2017206578A (ja) 2016-05-16 2017-11-24 住友ベークライト株式会社 熱硬化性樹脂組成物、キャリア付樹脂膜、プリプレグ、金属張積層板、樹脂基板、プリント配線基板、及び半導体装置

Also Published As

Publication number Publication date
JP2019163366A (ja) 2019-09-26

Similar Documents

Publication Publication Date Title
WO2017170643A1 (ja) 熱硬化性樹脂組成物、キャリア付樹脂膜、プリプレグ、金属張積層板、樹脂基板、プリント配線基板および半導体装置
JP7028165B2 (ja) 熱硬化性樹脂組成物、キャリア付樹脂膜、プリント配線基板および半導体装置
TWI466241B (zh) 半導體裝置及半導體裝置之製造方法
JP6206035B2 (ja) 金属張積層板、プリント配線基板、および半導体装置
JP6724296B2 (ja) プリプレグ、樹脂基板、金属張積層板、プリント配線基板、および半導体装置
JP6229439B2 (ja) 金属張積層板、プリント配線基板、および半導体装置
JP6221620B2 (ja) 金属張積層板、プリント配線基板、および半導体装置
JP6592962B2 (ja) 熱硬化性樹脂組成物、キャリア付樹脂膜、プリント配線基板、および半導体装置
JP7040174B2 (ja) 熱硬化性樹脂組成物、キャリア付樹脂膜、プリプレグ、金属張積層板、プリント配線基板および半導体装置
JP6808985B2 (ja) 樹脂膜、キャリア付樹脂膜、プリント配線基板および半導体装置
WO2013136722A1 (ja) 金属張積層板、プリント配線基板、半導体パッケージ、および半導体装置
JP6720652B2 (ja) 熱硬化性樹脂組成物、キャリア付樹脂膜、プリント配線基板および半導体装置
JP6349686B2 (ja) 金属張積層板、プリント配線基板、および半導体装置
JP6819067B2 (ja) 熱硬化性樹脂組成物、キャリア付樹脂膜、プリント配線基板および半導体装置
JP2015159177A (ja) 樹脂基板、金属張積層板、プリント配線基板、および半導体装置
JP7102816B2 (ja) 熱硬化性樹脂組成物、キャリア付樹脂膜、プリプレグ、金属張積層板、プリント配線基板および半導体装置
JP6217069B2 (ja) 樹脂基板、金属張積層板、プリント配線基板、および半導体装置
WO2013021587A1 (ja) プリプレグ、積層板、プリント配線基板、半導体パッケージおよび半導体装置
JP7342358B2 (ja) 樹脂組成物、それを用いたキャリア付樹脂膜、プリプレグ、積層板、プリント配線基板および半導体装置
JP6972522B2 (ja) プリプレグ、金属張積層板、プリント配線基板および半導体パッケージ
JP2016069401A (ja) プリプレグ、樹脂基板、金属張積層板、プリント配線基板、および半導体装置
JP2020077811A (ja) 犠牲基板およびコアレス基板の製造方法
WO2013172008A1 (ja) 半導体装置および半導体装置の製造方法
JP7363041B2 (ja) プリプレグ、プリント配線基板、及び、半導体装置
JP2019179792A (ja) プリプレグ、コア材およびインターポーザ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220208

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220411

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220620

R151 Written notification of patent or utility model registration

Ref document number: 7102816

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151