WO2012132572A1 - 銅キャリア付銅箔、同銅箔の製造方法、電子回路用銅箔、同銅箔の製造方法及び電子回路の形成方法 - Google Patents

銅キャリア付銅箔、同銅箔の製造方法、電子回路用銅箔、同銅箔の製造方法及び電子回路の形成方法 Download PDF

Info

Publication number
WO2012132572A1
WO2012132572A1 PCT/JP2012/053102 JP2012053102W WO2012132572A1 WO 2012132572 A1 WO2012132572 A1 WO 2012132572A1 JP 2012053102 W JP2012053102 W JP 2012053102W WO 2012132572 A1 WO2012132572 A1 WO 2012132572A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
copper foil
nickel layer
carrier
layer
Prior art date
Application number
PCT/JP2012/053102
Other languages
English (en)
French (fr)
Inventor
敬亮 山西
賢吾 神永
亮 福地
Original Assignee
Jx日鉱日石金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石金属株式会社 filed Critical Jx日鉱日石金属株式会社
Publication of WO2012132572A1 publication Critical patent/WO2012132572A1/ja

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/022Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates
    • H05K3/025Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates by transfer of thin metal foil formed on a temporary carrier, e.g. peel-apart copper
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1603Process or apparatus coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • C23C18/1651Two or more layers only obtained by electroless plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • C23C18/1653Two or more layers with at least one layer obtained by electroless plating and one layer obtained by electroplating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1689After-treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/04Wires; Strips; Foils
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/02Electroplating of selected surface areas
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • C25D5/12Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
    • C25D5/14Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium two or more layers being of nickel or chromium, e.g. duplex or triplex layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/01Tools for processing; Objects used during processing
    • H05K2203/0147Carriers and holders
    • H05K2203/0152Temporary metallic carrier, e.g. for transferring material

Definitions

  • the present invention relates to a copper foil with a copper carrier comprising a rolled copper foil or an electrolytic copper foil suitable for forming an electronic circuit for forming a circuit by etching, a method for producing the copper foil, a copper foil for electronic circuits, and a method for producing the copper foil. And an electronic circuit forming method.
  • copper foils for electronic circuits are widely used in electronic and electric devices, thinner copper foils are also required for copper foils for electronic circuits due to the recent trend of light and thin electronic and electric devices. Since a thin copper foil for electronic circuits is difficult to handle, a copper foil with a copper carrier to which a carrier copper foil supporting the copper foil is attached is used.
  • Copper foil with copper carrier is a thin copper foil for electronic circuits formed on a copper carrier made of electrolytic copper foil or rolled copper foil. Finally, the copper carrier is removed from the copper foil for electronic circuits. In order to use, it is necessary that the copper foil for electronic circuits and the copper carrier can be easily peeled off. Therefore, it has been proposed to provide a release layer between the copper foil for electronic circuits and the copper carrier.
  • Patent Document 1 It has been proposed to provide an organic film (for example, Patent Document 1) or a metal layer (for example, Patent Document 2) on the release layer.
  • Patent Document 2 Ni, Co, and the like are listed as candidates for the metal layer.
  • the carrier foil is removed, the surface of the copper foil for electronic circuit is exposed to a new surface, so that it is exposed to the risk of discoloration and corrosion.
  • Patent Document 3 and Patent Document 4 a copper foil with a carrier having a configuration in which a rust preventive layer is provided on the surface of a copper foil for electronic circuits, that is, a release layer, a rust preventive layer, and a copper foil for electronic circuits on a carrier foil.
  • Ni is cited as a representative.
  • Patent Document 3 an organic film or a metal layer is raised.
  • Patent Document 4 the Co layer is raised.
  • Patent Document 5 proposes a technique for preventing sagging by attaching thin nickel or a nickel alloy to the surface of a copper foil for electronic circuits.
  • the present invention provides a copper carrier with a copper carrier made of rolled copper foil or electrolytic copper foil, and a copper carrier having a copper layer having a release layer made of nickel or a nickel alloy and a thinner nickel layer formed on the copper carrier. It is an object to obtain an attached copper foil, a method for producing the copper foil, and a method for forming an electronic circuit.
  • the present inventors are a copper foil with a copper carrier made of a rolled copper foil or an electrolytic copper foil, and a copper for electronic circuits capable of forming a nickel layer on the etched surface to form a uniform circuit with no sagging circuit width.
  • a nickel layer is formed on a copper carrier, and after this is exposed to air, It was found that several problems can be solved simultaneously by forming a nickel layer on the surface.
  • the copper foil for electronic circuits obtained by peeling has a nickel layer on the etching surface, and adjusts the etching rate in the thickness direction of the copper foil to form a uniform circuit with no circuit width. Furthermore, it was found that the removal can be facilitated by soft etching by making the coating layer on the copper surface moderately thin. Furthermore, it was also found that the peeled carrier copper foil can be used as a copper foil that can form a uniform circuit with no circuit sagging.
  • a copper carrier with a copper carrier comprising a rolled copper foil or an electrolytic copper foil, a nickel layer, and a copper layer structure, and can be peeled off at less than 0.5 kg / cm.
  • a copper foil with a copper carrier characterized by having a nickel layer on the copper layer side at the same time.
  • the present invention also provides: 2) A copper carrier (A) made of rolled copper foil or electrolytic copper foil, a nickel layer (B) having a thickness of 0.03 to 2 ⁇ m on the copper carrier (A), and a nickel layer (B) formed on the nickel layer (B).
  • a copper carrier (A) made of rolled copper foil or electrolytic copper foil, a nickel layer (B) having a thickness of 0.03 to 2 ⁇ m on the copper carrier (A), and a nickel layer (B) formed on the nickel layer (B).
  • a copper foil with a copper carrier comprising a nickel layer (C) having a thickness of 001 to 0.03 ⁇ m and a copper layer (D) formed on the nickel layer (C).
  • the present invention also provides: 3)
  • the nickel layer (B) is a nickel layer on the copper carrier (A) when peeled, and the nickel layer (C) is a nickel layer on the copper layer (D) when the previous nickel layer (C) is peeled off.
  • a copper foil with a copper carrier as described in 2) above is provided.
  • the present invention also provides: 4) On a copper carrier (A) made of rolled copper foil or electrolytic copper foil, electroless nickel plating or electrolytic nickel plating is performed to form a nickel layer (B) having a thickness of 0.03 to 2 ⁇ m. Then, a nickel layer (C) having a thickness of 0.001 to 0.03 ⁇ m is formed on the nickel layer (B) by electroless nickel plating or electrolytic nickel plating.
  • a method for producing a copper foil with a copper carrier characterized in that a copper layer (D) is formed by electrolytic copper plating.
  • the present invention also provides: 5) From the nickel layer (C) and the copper layer (D) obtained by peeling the copper foil with a copper carrier as described in 1) to 3) above between the nickel layer (B) and the nickel layer (C). A copper foil for electronic circuits is provided.
  • the present invention also provides: 6) From the nickel layer (B) and the copper carrier (A) obtained by peeling the copper foil with a copper carrier as described in 1) to 3) above between the nickel layer (B) and the nickel layer (C). To provide a carrier copper foil.
  • the present invention also provides: 7) The carrier copper foil according to 6) above, wherein the nickel layer (B) has a thickness of 0.03 to 0.1 ⁇ m and is used for an electronic circuit, and the nickel layer (B) and the copper carrier (A A carrier copper foil.
  • the present invention also provides: 8)
  • the copper foil with a copper carrier produced by the production method described in 4) above is peeled between the nickel layer (B) and the nickel layer (C), and consists of the nickel layer (C) and the copper layer (D).
  • a method for producing a copper foil for electronic circuits characterized by obtaining a copper foil for electronic circuits.
  • the present invention also provides: 9)
  • the copper foil with a copper carrier produced by the production method described in 4) above is peeled between the nickel layer (B) and the nickel layer (C), and consists of the nickel layer (B) and the copper carrier (A).
  • a method for producing a carrier copper foil characterized by obtaining a carrier copper foil.
  • the present invention also provides: 10) A resin substrate is attached to the copper layer surface of the electronic circuit copper foil (D) described in 5) above, and a resist pattern for forming a circuit is formed on the nickel layer (C) on the opposite side.
  • a resist pattern for forming a circuit is formed on the nickel layer (C) on the opposite side.
  • an etching solution comprising a cupric chloride solution or a ferric chloride solution, unnecessary portions of the nickel layer (C) layer and the copper layer (D) other than the portion provided with the resist pattern are removed, and A method of forming an electronic circuit is provided, wherein the resist is removed and the remaining nickel layer (C) is removed by soft etching to form a circuit having a predetermined width.
  • the present invention also provides: 11) A resin substrate is attached to the surface of the copper carrier (A) of the carrier copper foil described in 5) above, a resist pattern for circuit formation is formed on the nickel layer (B) on the opposite side, and Using an etchant composed of a dicopper solution or a ferric chloride solution, the unnecessary portion of the nickel layer (B) and the copper carrier (A) other than the portion provided with the resist pattern is removed, and then the resist is removed. And a remaining nickel layer (B) is removed by soft etching to form a circuit having a predetermined width, and a method for forming an electronic circuit is provided.
  • the present invention uses a copper foil carrier in advance, further has a release layer thereon, and further forms a copper foil for electronic circuits of copper. Can be peeled off. Since it can be used as a copper foil with a simple structure of an ultrathin copper foil with a nickel layer obtained by peeling off the carrier copper foil, it can be used arbitrarily for various electronic circuit designs, making it versatile There is a big effect of being rich.
  • the carrier copper foil composed of the nickel layer (B) and the copper carrier (A) obtained by peeling is also used as a copper foil for electronic circuits, and the same effect is obtained.
  • the thickness of the nickel layer (B) suitable as a copper foil for electronic circuits is 0.03 to 0.1 ⁇ m. As described above, there is an effect that it is possible to provide an excellent method for forming an electronic circuit capable of improving the etching property by pattern etching and preventing the occurrence of short-circuit and circuit width failure. Furthermore, since the layer used between two types of copper foil is the same nickel, it is effective in terms of equipment and cost.
  • the present invention relates to an electronic circuit, a copper foil for the circuit using the copper carrier (A) made of a rolled copper foil or an electrolytic copper foil, a method for producing the same, a copper foil for an electronic circuit using the same, and the copper foil. And a method of forming an electronic circuit.
  • a nickel layer (B) having a thickness of 0.03 to 2 ⁇ m is formed on a copper carrier (A) made of rolled copper foil or electrolytic copper foil by electroless nickel plating or electrolytic nickel plating.
  • the thickness of the plating layer is not particularly limited, but it can be said that 0.03 to 2 ⁇ m is an appropriate thickness in view of the strength required for peeling. That is, this nickel plating layer (B) becomes a peeling surface.
  • the carrier comprising the nickel layer (B) after peeling and the copper carrier (A) It has a function of effectively suppressing “sagging” that easily occurs when a circuit is formed by etching a foil. Furthermore, the remaining B layer can be easily removed by soft etching after circuit formation.
  • the carrier copper foil subjected to the nickel plating (B) is once exposed to the air, and then further electroless nickel plated or electrolytic nickel plated on the nickel layer (B) to 0.001 to 0.03 ⁇ m.
  • a very thin nickel layer (C) is formed. In this case, when exposed to the air, since nickel is a metal that is easily oxidized, the possibility that an oxide film is formed on the nickel layer (B) is very high. However, since it is considered to be a very thin oxide film, measurement is difficult.
  • a copper layer (D) is formed on the nickel layer (C) by electrolytic copper plating to produce a copper foil with a copper carrier.
  • the nickel layer (B) and the nickel layer (C) thus, it is possible to peel both sides.
  • both copper foils can be used for electronic circuits. That is, the copper foil for electronic circuits which consists of a nickel layer (C) and a copper layer (D) obtained by peeling a copper foil with a carrier between the nickel layer (B) and the nickel layer (C), or the nickel layer It can be used as a carrier copper foil comprising a nickel layer (B) obtained by peeling between (B) and a nickel layer (C) and a copper carrier (A). Since the nickel layer (C) is formed on the surface of this copper foil for electronic circuits, the function of effectively suppressing “sag” that is likely to occur when a circuit is formed by etching the copper layer (D). Have However, in the case of carrier copper foil, the thickness of the nickel layer (B) suitable for electronic circuits is 0.03 to 0.1 ⁇ m.
  • the copper layer (D) is not only pure copper with high conductivity, but also a copper alloy foil (Cu—Cr alloy, Cu—Zn alloy, Cu—Sn alloy, Cu—Mn alloy, Cu—Si alloy depending on the purpose. Etc.) can also be applied. These have a function capable of arbitrarily adjusting characteristics required for electric circuit design such as electric conductivity, corrosion resistance, plating property, solderability, and strength.
  • the blending ratio and thickness of the additive component can be arbitrarily adjusted by merely changing the plating conditions. As a recent trend, since there is a tendency to form a microcircuit, the thickness tends to be reduced. Usually, the thickness is about 1 to 5 ⁇ m.
  • This electronic circuit copper foil can be used by being laminated on a resin substrate, for example.
  • an etching solution comprising a cupric chloride solution or a ferric chloride solution Remove unnecessary parts other than.
  • the resist is removed, and the remaining nickel layer (C) is removed by soft etching.
  • the removal of the unnecessary copper foil from the formation of the resist pattern is a commonly performed technique, and therefore it is not necessary to explain much.
  • an etching solution with an aqueous ferric chloride solution having a high etching rate. This is because there is a problem that the etching rate decreases due to circuit miniaturization.
  • An etching solution using a ferric chloride aqueous solution is an effective means for preventing this. However, this does not prevent the use of other etchants.
  • the etching solution can be changed as necessary.
  • a circuit formed between copper circuits for example, in which the space on the resin substrate has a width of twice or more the copper thickness can be formed with high accuracy. If necessary, a circuit having a width not more than twice the thickness of copper, and further not more than 1.5 times can be formed.
  • the etching is located near the resist portion on the copper foil, and the etching speed of the copper foil on the resist side is suppressed by this nickel layer. Conversely, as the distance from the nickel increases, the etching of the copper becomes normal. Progress at speed. As a result, etching proceeds substantially vertically from the resist side of the side surface of the copper circuit toward the resin substrate side, and a rectangular copper foil circuit is formed.
  • the carrier foil with nickel layer (B) can also be used as a copper foil for electronic circuits because the same effect that a circuit with little sagging can be formed is obtained.
  • the nickel layer mainly suppresses the occurrence of sagging and forms a circuit having a uniform circuit width.
  • Copper-clad laminates need to be treated at a high temperature in processes such as the application of resins that form electronic circuits.
  • the nickel layer is oxidized and resist coating properties (uniformity, adhesion)
  • the interface oxide formed during heating during etching is likely to cause variations in etching, causing a short circuit or non-uniform circuit width.
  • the copper-clad laminate is not affected by large heating, the nickel layer can be made thin.
  • the nickel layer thick, the influence of thermal oxidation can be prevented.
  • forming the nickel layer itself is not always good. This means that it is necessary to remove by soft etching after the circuit is formed, and this removal process takes time.
  • the nickel layer having an appropriate thickness has heat resistance (discoloration resistance) and has a function of suppressing discoloration during storage, thermal discoloration during solder mounting, and discoloration due to heat during CCL substrate fabrication.
  • the thickness of the nickel layer is preferably in the above range.
  • Ni 10-40g / L pH: 2.5-3.5
  • Temperature normal temperature to 60 ° C
  • Current density 2 to 50
  • Nickel plating B Nickel sulfate: 250-300g / L Nickel chloride: 35 to 45 g / L Nickel acetate: 10-20g / L Trisodium citrate: 15-30 g / L Brightener: Saccharin, butynediol, etc. Sodium dodecyl sulfate: 30 to 100 ppm pH: 4-6 Bath temperature: 50-70 ° C
  • Nickel adhesion analysis method In order to analyze the nickel-treated surface, the opposite surface is pressed with FR-4 resin and masked. The sample is dissolved in nitric acid with a concentration of 30% until the surface treatment film is dissolved, the solution in the beaker is diluted 10 times, and quantitative analysis of nickel is performed by atomic absorption analysis.
  • Example 1 An electrolytic copper foil having a foil thickness of 18 ⁇ m was used. Using this electrolytic copper foil as a copper carrier (A), a 0.03 ⁇ m nickel plating layer (B) was formed thereon by electro nickel plating under the above nickel plating conditions as shown in Table 1 below. Next, after this nickel plating, it was once exposed to the atmosphere, and a second plating layer (C) was formed again under the same plating conditions. The thickness of the second nickel plating layer is 0.01 ⁇ m. This combination is also shown in Table 1. On this nickel plating layer, a plated copper layer (D) having a thickness of 5 ⁇ m was further formed under the above copper plating conditions.
  • a plated copper layer (D) having a thickness of 5 ⁇ m was further formed under the above copper plating conditions.
  • a peeling test was performed to check the peeling state.
  • the peel test method was performed by laminating the substrate on the ultrathin copper foil side at 150 ° C. or higher, measuring the peel strength, and assuming that the peelability was less than 0.5 kg / cm, “ ⁇ ”, 0.5 kg / In the case of cm or more, the peelability was insufficient, and “x” was assigned.
  • the peelability was good at less than 0.5 kg / cm, and peeling occurred between the nickel layer (B) and the nickel layer (C).
  • Circuit angle observation Observation of circuit sagging
  • the circuit cross section was observed by FIB-SIM. Good results are obtained at an inclination angle of 63 ° or more, and a particularly desirable inclination angle is in the range of 80 to 95 degrees.
  • Example 2 In this example, a rolled copper foil having a thickness of 35 ⁇ m was used as a copper carrier (A), and a nickel plating layer (B) having a thickness of 0.5 ⁇ m was formed under the above nickel plating conditions. Next, after this nickel plating, it was once exposed to the atmosphere to form a nickel plating layer (C) under the above electrolytic plating conditions. The thickness of the nickel plating layer is 0.03 ⁇ m. This combination is also shown in Table 1.
  • a plated copper layer (D) having a thickness of 5 ⁇ m was further formed under the above copper plating conditions. Then, it adhered to the board
  • Etching was performed on the peeled copper foil for electronic circuits to form a circuit. Etching conditions and circuit formation conditions were the same as in Example 1, and the inclination angle of the circuit (observation of sagging of the circuit) was also performed in the same manner as in Example 1.
  • Etching was performed under the above conditions to form a circuit, and after further removing the resist, soft etching was performed.
  • the results are also shown in Table 1. This is an evaluation result of 10 circuits. As shown in Table 1, the inclination angle was 83 °, and there was little sagging, and the evaluation was ( ⁇ ). Since the carrier copper foil had a thick nickel layer, it was not possible to form a circuit by etching.
  • Example 3 In this example, a rolled copper foil having a foil thickness of 9 ⁇ m was used as a copper carrier (A), and a nickel plating layer (B) having a thickness of 1.8 ⁇ m was formed under the above nickel plating conditions. Next, after this nickel plating, it was once exposed to the atmosphere to form a nickel plating layer (C) under the above nickel plating conditions. The thickness of the nickel plating layer is 0.02 ⁇ m. This combination is also shown in Table 1.
  • a plated copper layer (D) having a thickness of 5 ⁇ m was further formed under the above copper plating conditions. Then, it adhered to the board
  • Etching was performed on the peeled copper foil for electronic circuits with a substrate to form a circuit. Etching conditions and circuit formation conditions were the same as in Example 1, and the inclination angle of the circuit (observation of sagging of the circuit) was also performed in the same manner as in Example 1.
  • Etching was performed under the above conditions to form a circuit, and after further removing the resist, soft etching was performed.
  • the results are also shown in Table 1. This is an evaluation result of 10 circuits. As shown in Table 1, the inclination angle was as small as 82 °, and the evaluation was ( ⁇ ). In addition, since the nickel layer was thick on the carrier foil side, circuit formation by etching could not be performed.
  • a bulk foil can be easily peeled from a structure in which a copper foil carrier is used in advance and a copper bulk foil is formed thereon, and the manufacturing process can be simplified. Furthermore, since it can be used as a copper foil having a simple structure called an ultrathin copper foil provided with a nickel layer, it can be arbitrarily used for designing various electronic circuits, and has a great effect of being versatile.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

圧延銅箔又は電解銅箔からなる銅キャリア、ニッケル層、銅層の構造からなる銅キャリア付銅箔であって、0.5kg/cm未満で剥離することができ、剥離により銅キャリア上にニッケル層を有すると同時に、銅層側にもニッケル層を有することを特徴とする銅キャリア付銅箔。回路幅の均一な回路を形成でき、パターンエッチングでのエッチング性の向上、ショートや回路幅の不良の発生を防止することができ、製造が容易である銅キャリア付銅箔等を得ることを課題とする。

Description

銅キャリア付銅箔、同銅箔の製造方法、電子回路用銅箔、同銅箔の製造方法及び電子回路の形成方法
 本発明は、エッチングにより回路形成を行う電子回路の形成に適する圧延銅箔又は電解銅箔からなる銅キャリア付銅箔、同銅箔の製造方法、電子回路用銅箔、同銅箔の製造方法及び電子回路の形成方法に関する。
 電子・電気機器に電子回路用銅箔が広く使用されているが、近年の電子・電気機器の軽薄短小の傾向から、電子回路用銅箔についてもより薄い銅箔が求められている。薄い電子回路用銅箔は、取り扱いが困難なため、銅箔を支持するキャリア銅箔をつけた銅キャリア付銅箔が用いられるようになっている。
 銅キャリア付銅箔は、電解銅箔或いは圧延銅箔からなる銅キャリアの上に薄い電子回路用銅箔を形成するものであるが、最終的には電子回路用銅箔から銅キャリアを取り外して用いるため、電子回路用銅箔と銅キャリアとは容易に剥離できる必要がある。そこで、電子回路用銅箔と銅キャリアの間に剥離層を設けることが提案されている。
 剥離層には、有機皮膜(例えば、特許文献1)や金属層(例えば、特許文献2)を設けることが提案されている。特許文献2では、金属層の候補として、Ni,Co等が挙げられている。さらには、キャリア箔を除去したときに、電子回路用銅箔の表面が新生面がむき出しとなるため、変色や腐食の危険性にさらされることなる。
 そこで、電子回路用銅箔の表面に防錆層を設けること、すなわち、キャリア箔の上に、剥離層、防錆層、電子回路用銅箔に設けた構成のキャリア付銅箔が提案されている(例えば、特許文献3、特許文献4)。特許文献3、特許文献4における防錆層のいずれも、Niが代表としてあげられている、一方、剥離層については、特許文献3では、有機皮膜或いは、金属層、が上げられているが、特許文献4ではCo層が上げられている。
 一方、電子回路用銅箔に目的とする回路を形成するためにレジスト塗布及び露光工程により回路を印刷し、さらに銅箔の不要部分を除去するエッチング処理を経るが、エッチングして回路を形成する際に、ダレが発生し、その回路が意図した通りの幅にならないという問題がある。
 そこで、特許文献5では、電子回路用銅箔の表面に薄いニッケル或いはニッケル合金をつけることでダレを防止する技術が提案されている。
特開平11-317574号 特開2005-254673 特許第3690962号 特許第4072431号 特開2002-176242号
 上述したように電子回路用銅箔に薄いニッケル或いはニッケル合金を設ける場合、剥離性を考え、ニッケルとは異なる層を用いられてきた。しかしながら、剥離層をニッケルで形成できるのであれば、設備的・コスト的に有効である。
 さらに、剥離したキャリア箔上にニッケルが存在すれば、ニッケルが回路結成のエッチングの際に発生するダレの発生を防止してくれるので、ニッケル付のキャリア箔を電子回路用銅箔としても利用できる。
 そこで、本発明は、圧延銅箔又は電解銅箔からなる銅キャリア付銅箔において、銅キャリア上に形成されたニッケル或いはニッケル合金からなる剥離層とさらに薄いニッケル層を有する銅層を有する銅キャリア付銅箔、同銅箔の製造方法及び電子回路の形成方法を得ることを課題とする。
 本発明者らは、圧延銅箔又は電解銅箔からなる銅キャリア付銅箔で、エッチング面にニッケル層を形成してダレのない回路幅の均一な回路を形成することができる電子回路用銅箔を有する銅キャリア銅箔において、剥離層にニッケル層を用いても、容易に剥離できるためには、銅キャリア上にニッケル層を形成し、これを一旦空気中に曝した後、ニッケル層上にニッケル層を形成することで、いくつかの問題を、同時に解決できるとの知見を得た。
 そして、剥離して得た電子回路用銅箔は、エッチング面にニッケル層を有しており、銅箔の厚み方向のエッチング速度を調節し、ダレのない回路幅の均一な回路を形成することができ、さらに銅表面上の被覆層を適度な薄さとすることにより、ソフトエッチングにより除去を容易とすることができることの知見を得た。 さらに、剥離したキャリア銅箔についても、ダレのない回路幅の均一な回路を形成することができる銅箔として用いることができることの知見も得た。
本発明は、上記の知見に基づいて、
1)圧延銅箔又は電解銅箔からなる銅キャリア、ニッケル層、銅層の構造からなる銅キャリア付銅箔であって、0.5kg/cm未満で剥離することができ、剥離により銅キャリア上にニッケル層を有すると同時に、銅層側にもニッケル層を有することを特徴とする銅キャリア付銅箔、を提供する。
 また、本発明は、
2)圧延銅箔又は電解銅箔からなる銅キャリア(A)、該銅キャリア(A)上に0.03~2μm厚のニッケル層(B)、該ニッケル層(B)上に形成した0.001~0.03μm厚のニッケル層(C)、さらに該ニッケル層(C)上に形成した銅層(D)からなることを特徴とする銅キャリア付銅箔、を提供する。
 また、本発明は、
3)前記ニッケル層(B)が、剥離した際の銅キャリア(A)上のニッケル層であり、前期ニッケル層(C)が剥離した際の銅層(D)上のニッケル層であることを特徴とする上記2)に記載の銅キャリア付銅箔、を提供する。
 また、本発明は、
4)圧延銅箔又は電解銅箔からなる銅キャリア(A)上に、無電解ニッケルめっき又は電解ニッケルめっきして、0.03~2μm厚のニッケル層(B)を形成し、これを一旦空気中に曝した後、該ニッケル層(B)上にさらに無電解ニッケルめっき又は電解ニッケルめっきにより、0.001~0.03μm厚のニッケル層(C)を形成し、該ニッケル層(C)上に電解銅めっきにより銅層(D)を形成することを特徴とする銅キャリア付銅箔の製造方法、を提供する。
 また、本発明は、
5)上記1)~3)に記載の銅キャリア付銅箔を、前記ニッケル層(B)とニッケル層(C)の間で剥離して得られるニッケル層(C)と銅層(D)からなる電子回路用銅箔、を提供する。
 また、本発明は、
6)上記1)~3)に記載の銅キャリア付銅箔を、前記ニッケル層(B)とニッケル層(C)の間で剥離して得られるニッケル層(B)と銅キャリア(A)からなるキャリア銅箔、を提供する。
 また、本発明は、
7)上記6)に記載のキャリア銅箔において、ニッケル層(B)が0.03~0.1μmであり、電子回路用に用いられることを特徴とするニッケル層(B)と銅キャリア(A)からなるキャリア銅箔、を提供する。
 また、本発明は、
8)上記4)に記載の製造方法で製造された銅キャリア付銅箔を、ニッケル層(B)とニッケル層(C)間で剥離させ、ニッケル層(C)と銅層(D)からなる電子回路用銅箔を得ることを特徴とする電子回路用銅箔の製造方法、を提供する。
 また、本発明は、
9)上記4)に記載の製造方法で製造された銅キャリア付銅箔を、ニッケル層(B)とニッケル層(C)間で剥離させ、ニッケル層(B)と銅キャリア(A)からなるキャリア銅箔を得ることを特徴とするキャリア銅箔の製造方法、を提供する。
 また、本発明は、
10)上記5)に記載の電子回路用銅箔(D)の銅層表面に樹脂基板を貼り付け、その反対面であるニッケル層(C)上に回路形成用のレジストパターンを形成し、さらに塩化第二銅溶液または塩化第二鉄溶液からなるエッチング液を用いて、前記レジストパターンが付された部分以外のニッケル層(C)層及び銅層(D)の不必要部分を除去し、次にレジスト除去を行い、さらにソフトエッチングにより残部のニッケル層(C)を除去して、所定の幅を有する回路を形成することを特徴とする電子回路の形成方法、を提供する。
 また、本発明は、
11)上記5)に記載のキャリア銅箔の銅キャリア(A)表面に樹脂基板を貼り付け、その反対面であるニッケル層(B)上に回路形成用のレジストパターンを形成し、さらに塩化第二銅溶液または塩化第二鉄溶液からなるエッチング液を用いて、前記レジストパターンが付された部分以外のニッケル層(B)及び銅キャリア(A)の不必要部分を除去し、次にレジスト除去を行い、さらにソフトエッチングにより残部のニッケル層(B)を除去して、所定の幅を有する回路を形成することを特徴とする電子回路の形成方法、を提供する。
 本発明は、予め銅箔のキャリアを使用し、さらにその上に剥離層を有し、さらに銅の電子回路用銅箔を形成する構造から、取り扱いが容易な上、必要時に容易にキャリア箔を剥離することができる。キャリア銅箔を剥離してえられたニッケル層を備えた極薄の銅箔という単純な構造の銅箔として使用できるので、様々な電子回路の設計に任意に使用することができ、汎用性に富むという大きな効果がある。
 そして、本発明のニッケル層(C)と銅層(D)からなる電子回路用銅箔をエッチングにより回路を形成するに際しては、目的とする回路幅のより均一な回路を形成できるという効果を有し、エッチングによるダレの発生を防止し、さらに銅表面上のニッケル層を適度な薄さとすることにより、ソフトエッチングにより除去を容易とすることができ、さらにエッチング後のニッケル層の溶け残りを防止することができるという効果を有する。
 また、剥離して得られたニッケル層(B)と銅キャリア(A)からなるキャリア銅箔についても電子回路用銅箔として用い、同様な効果が得られる。ただし、電子回路用銅箔として好適なニッケル層(B)の厚みは、0.03~0.1μmである。以上によってパターンエッチングでのエッチング性の向上、ショートや回路幅の不良の発生を防止できる優れた電子回路の形成方法を提供することができるという効果を有する。
 さらに2種類の銅箔の間に用いられる層は同じニッケルなので、設備的にもコスト的にも有効である。
 本発明は、圧延銅箔又は電解銅箔からなる銅キャリア(A)を用いて、電子回路及び同回路用銅箔、それを製造する方法並びにこれらを用いた電子回路用銅箔、同銅箔の製造方法及び電子回路の形成方法である。
 本願発明の目的を達成するために、圧延銅箔又は電解銅箔からなる銅キャリア(A)上に、無電解ニッケルめっき又は電解ニッケルめっきして0.03~2μm厚のニッケル層(B)を形成する。
 電解銅箔を使用する場合には、光沢面又は粗面のいずれも使用できる。後続する工程であるニッケルめっきが可能であれば良い。ニッケルめっきに際しては、無電解ニッケルめっき又は電解ニッケルめっきのいずれも使用できる。
 また、めっき層の厚さも、特に限定されるものではないが、剥離する場合に必要とされる強度からみて、0.03~2μmが適度な厚さと言える。すなわち、このニッケルめっき層(B)は剥離面となるものである。
 また、0.03~0.1μmの厚さの場合には、銅キャリア(A)の厚みが9~35μmであれば、剥離した後のニッケル層(B)と銅キャリア(A)からなるキャリア箔をエッチングして回路を形成する場合に発生し易い「ダレ」を効果的に抑制する機能を有する。さらに、回路形成後ソフトエッチングにより残部のB層を容易に除去できる。
 次に、このニッケルめっき(B)を施したキャリア銅箔を一旦空気中に曝した後、該ニッケル層(B)上にさらに無電解ニッケルめっき又は電解ニッケルめっきにより、0.001~0.03μm厚の極薄のニッケル層(C)を形成する。
 この場合、空気中に曝すと、ニッケルは酸化し易い金属なので、ニッケル層(B)に酸化膜が形成される可能性が非常に高い。しかし、非常に薄い酸化膜と考えられるので、測定が困難である。
 上記の通り、このニッケル層(C)上に電解銅めっきにより銅層(D)を形成して銅キャリア付銅箔を製造するのであるが、ニッケル層(B)とニッケル層(C)の間で、双方を剥離することが可能となる。
 同一のニッケルであるにもかかわらず、剥離が容易であり、0.5kg/cm未満で剥離することができる。この剥離の容易性は、ニッケル層(B)に酸化膜が形成された結果とみることができる。この現象を利用することが、本願発明の大きな特徴の一つである。
 前記ニッケル層(B)とニッケル層(C)間で剥離させた後、双方の銅箔について電子回路用として使用することができる。
 すなわち、キャリア付銅箔を、前記ニッケル層(B)とニッケル層(C)の間で剥離して得られるニッケル層(C)と銅層(D)からなる電子回路用銅箔又は前記ニッケル層(B)とニッケル層(C)の間で剥離して得られるニッケル層(B)と銅キャリア(A)からなるキャリア銅箔として使用できる。
 この電子回路用銅箔は、表面にニッケル層(C)が形成されているので、銅層(D)をエッチングして回路を形成する場合に発生し易い「ダレ」を効果的に抑制する機能を有する。
  ただし、キャリア銅箔の場合には、電子回路用として好適なニッケル層(B)の厚みが、0.03~0.1μmである。
 なお、銅層(D)は、導電性の高い純銅だけではなく、目的に応じて銅合金箔(Cu-Cr合金、Cu-Zn合金、Cu-Sn合金、Cu-Mn合金、Cu-Si合金等)を適用することも可能である。これらは、電気伝導性、耐食性、めっき性、半田付け性、強度等の電気回路設計に必要とされる特性を任意に調整できる機能を持つ。
 これは、さらに回路を形成する段階で、エッチング速度を調節できる機能を持たせることも可能である。その添加成分の配合割合及び厚さは、めっきの条件を変更するだけであり、任意に調節できることは容易に理解できるであろう。
 最近の傾向として、微小回路を形成する傾向にあるので、厚さも低減化する傾向にある。通常1~5μm程度の厚みとされる。
 次に、前記ニッケル層(B)とニッケル層(C)間で剥離し、その一方のニッケル層(C)付銅層(D)を電子回路用として使用する。この電子回路用銅箔は、例えば樹脂基板の上に積層して使用することができる。
 このニッケル層(C)付電子回路用銅箔を用いて微細回路を形成するに際しては、塩化第二銅溶液または塩化第二鉄溶液からなるエッチング液を用いて、前記レジストパターンが付された部分以外の不必要部分を除去する。
 次にレジスト除去を行い、さらにソフトエッチングにより残部のニッケル層(C)を除去する。このレジストパターンの形成から不要な銅箔の除去は、一般的に行われている手法なので、多くを説明する必要はないであろう。
 一般には、エッチング速度が速い、塩化第二鉄水溶液によるエッチング液を用いることが好ましい。これは、回路の微細化によりエッチング速度が下がるという問題があるからである。塩化第二鉄水溶液によるエッチング液は、これを防止する有効な手段である。しかし、他のエッチング液の使用を妨げるものではない。必要に応じて、エッチング液を替えることが可能である。
 これによって、銅の回路間に形成された、例えば樹脂基板上のスペースが、銅の厚みの、2倍以上の幅を有する回路を精度よく形成することができる。必要に応じて、銅の厚みの2倍以下、さらには1.5倍以下の幅を有する回路を形成することもできる。
 エッチングを具体的に説明すると、銅箔上のレジスト部分に近い位置にあり、レジスト側の銅箔のエッチング速度は、このニッケル層により抑制され、逆にニッケルから遠ざかるに従い、銅のエッチングは通常の速度で進行する。これによって、銅回路の側面のレジスト側から樹脂基板側に向かってほぼ垂直にエッチングが進行し、矩形の銅箔回路が形成される。
 ニッケル層(B)付キャリア箔についてもダレの少ない回路を形成できるという同様な効果が得られるので、電子回路用銅箔として用いることができる。
 ニッケル層は、主としてダレの発生を抑制し、目的とする回路幅の均一な回路を形成することである。銅張り積層板は、電子回路を形成する樹脂の貼り付けなどの工程で、高温処理することが必要となるが、この場合に、ニッケル層は酸化され、レジストの塗布性(均一性、密着性)の不良を発生し易く、また、エッチング時に、加熱時形成される界面酸化物は、エッチングのばらつきを生じ易く、ショート又は回路幅の不均一性をもたらす原因となる。
 この場合は、ニッケル層を厚く形成するのが望ましい。しかし、銅張り積層板として、大きな加熱の影響を受けない場合には、ニッケル層を薄くすることが可能である。
 このように、ニッケル層を厚く形成することにより、熱酸化による影響を防止できるが、厚く形成すること自体が、必ずしも良いとは限らない。これは回路形成後に、ソフトエッチングにより除去する必要があるので、この除去工程に時間がかかることを意味する。
 また、適度な厚さのニッケル層は、耐熱(耐変色)性とは、保管時の変色、半田実装時の熱時変色、CCL基板作製時の熱による変色を抑制できる機能を有する。しかし、多すぎる場合には、ソフトエッチングの際に、ニッケル層除去の工程の負荷が大きくなり、場合によっては処理残りが発生し、銅回路の設計上支障となる。したがって、ニッケル層の厚さは、上記の範囲とすることが好ましいと言える必要である。
 下記に代表的かつ好適なめっき条件の例を示す。
 (ニッケルめっきA)
  Ni:10~40g/L
  pH:2.5~3.5
  温度:常温~60°C
  電流密度Dk:2~50A/dm
  時間:1~4秒
 (ニッケルめっきB)
  硫酸ニッケル:250~300g/L
  塩化ニッケル:35~45g/L
  酢酸ニッケル:10~20g/L
  クエン酸三ナトリウム:15~30g/L
  光沢剤:サッカリン、ブチンジオールなど
  ドデシル硫酸ナトリウム:30~100ppm
  pH:4~6
  浴温:50~70°C
 (銅めっき)
  Cu:  90g/L
  HSO:80g/L
  Cl:  60ppm
  液温:  55~57℃
  添加剤:ビス(3-スルフォプロピル)ジスルファイド2ナトリウム(RASCHIG社製 CPS) 50ppm
  添加剤:ジベンジルアミン変性物 50ppm
 (ニッケル付着量分析方法)
 ニッケル処理面を分析するため、反対面をFR-4樹脂でプレス作製し、マスキングする。そのサンプルを濃度30%の硝酸にて表面処理被膜が溶けるまで溶解させ、ビーカー中の溶解液を10倍に稀釈し、原子吸光分析によりニッケルの定量分析を行う。
 次に、本発明の実施例及び比較例について説明する。なお、本実施例はあくまで一例であり、この例に制限されるものではない。すなわち、本発明の技術思想の範囲内で、実施例以外の態様あるいは変形を全て包含するものである。
(実施例1)
 箔厚18μmの電解銅箔を用いた。この電解銅箔を銅キャリア(A)として、この上に、上記ニッケルめっき条件で、下記表1に示すように、電気ニッケルめっきにより、0.03μmのニッケルめっき層(B)を形成した。
 次に、このニッケルめっき後、一旦大気中に暴露し、再度同めっき条件で、二層目のめっき層(C)を形成した。二層目のニッケルめっき層の厚さは、0.01μm、である。この組合せを同様に表1に示す。
 このニッケルめっき層上に、上記銅めっき条件で、さらに5μm厚のめっき銅層(D)を形成した。
Figure JPOXMLDOC01-appb-T000001
 剥離試験を行い、剥離の状況を確認した。剥離試験の方法は、極薄銅箔側に150℃以上で基材に積層し、剥離強度を測定し、0.5kg/cm未満である場合を剥離性良好として「○」、0.5kg/cm以上の場合には剥離性が不十分として「×」とした。
 実施例1は、0.5kg/cm未満で剥離性は良好であり、剥離はニッケル層(B)とニッケル層(C)の間で起こった。
 次に、キャリア銅箔と電子回路用銅箔とを剥離した2つの銅箔について、剥離した面と反対側の面に樹脂を貼付けて銅張積層板とした後、レジスト塗布及び露光工程により10本の回路を印刷し、さらにニッケル層と銅箔の不要部分を除去するエッチング処理を実施した。
 エッチングにより回路を形成した後、レジストを除去し、FIB-SIMにより、回路の傾斜角観察を行った。エッチング条件、回路形成条件、回路の傾斜角観察は、次の通りである。
 (エッチング条件)
  塩化第二鉄水溶液:(37wt%、ボーメ度:40°) 
  液温:50°C
  スプレー圧:0.15MPa   
 (回路形成条件)
 次の条件で回路を形成した。
 (5μmおよび9μm銅箔:30μmピッチ回路形成)
 レジストL/S=25μm/5μm、仕上がり回路トップ(上部)幅:10μm、エッチング時間:48秒前後
 (18μm銅箔:50μmピッチ回路形成)
 レジストL/S=33μm/17μm、仕上がり回路トップ(上部)幅:15μm、エッチング時間:105秒前後
 (35μm銅箔:100μmピッチ回路形成)
 レジストL/S=73μm/27μm、仕上がり回路トップ(上部)幅:15μm、エッチング時間:210秒前後
 (回路の傾斜角観察:回路のダレの観察)
 FIB-SIMにより回路断面を観察した。傾斜角が63°以上で良好な結果であり、特に望ましい傾斜角は80~95度の範囲である。
 上記の条件でエッチングを行って回路を形成し、さらにレジストを除いた後、ソフトエッチングを行った。
 この結果を表1に示す。これは、10本の回路の評価結果である。この表1に示すように、電子回路用銅箔の傾斜角は81°とダレが発生せず、評価としては(○)であり、キャリア銅箔側の傾斜角についても72°と良好であった。回路幅と銅層の厚さは、本願発明の範囲にあった。
(実施例2)
 本実施例では箔厚35μmの圧延銅箔を銅キャリア(A)として用い、、上記ニッケルめっき条件で、0.5μmのニッケルめっき層(B)を形成した。次に、このニッケルめっき後、一旦大気中に暴露し、上記電解めっき条件で、ニッケルめっき層(C)を形成した。ニッケルめっき層の厚さは、0.03μm、である。この組合せを同様に表1に示す。
 このニッケルめっき層上に、上記銅めっき条件で、さらに5μm厚のめっき銅層(D)を形成した。
 この後、基板に接着し、剥離試験を行い、剥離の状況を確認した。基板をつけたキャリア銅箔は、ニッケル層(B)とニッケル層(C)の間で剥離し、その強度は、0.5kg/cm未満であった。
 剥離した電子回路用銅箔についてエッチング処理を実施し、回路形成を行なった。エッチング条件及び回路形成条件は、実施例1と同様であり、回路の傾斜角観察(回路のダレの観察)も実施例1と同様に実施した。
 上記の条件でエッチングを行って回路を形成し、さらにレジストを除いた後、ソフトエッチングを行った。
 この結果を、同様に表1に示す。これは、10本の回路の評価結果である。この表1に示すように、傾斜角は83°とダレは少なく、評価としては(○)であった。なお、キャリア銅箔はニッケル層が厚いためエッチングによる回路形成が行えなかった。
(実施例3)
 本実施例では箔厚9μmの圧延銅箔を銅キャリア(A)として用い、上記ニッケルめっき条件で、1.8μmのニッケルめっき層(B)を形成した。次に、このニッケルめっき後、一旦大気中に暴露し、上記ニッケルめっき条件で、ニッケルめっき層(C)を形成した。ニッケルめっき層の厚さは、0.02μmである。この組合せを同様に表1に示す。
 このニッケルめっき層(C)上に、上記銅めっき条件で、さらに5μm厚のめっき銅層(D)を形成した。
 この後、基板に接着し、剥離試験を行い、剥離の状況を確認した。基板をつけたキャリア銅箔は、ニッケル層(B)とニッケル層(C)との間で剥離し、その強度は、0.5kg/cm未満であった。
 剥離した基板付の電子回路用銅箔についてエッチング処理を実施し、回路形成を行なった。エッチング条件及び回路形成条件は、実施例1と同様であり、回路の傾斜角観察(回路のダレの観察)も実施例1と同様に実施した。
 上記の条件でエッチングを行って回路を形成し、さらにレジストを除いた後、ソフトエッチングを行った。
 この結果を、同様に表1に示す。これは、10本の回路の評価結果である。この表1に示すように、傾斜角は82°とダレは少なく、評価としては(○)であった。なお、キャリア箔側はニッケル層が厚いためエッチングによる回路形成が行えなかった。
(比較例1)
 18μm厚の電解銅箔を銅キャリア(A)として、上記ニッケルめっき条件で、ニッケル層を0.03μm形成し、連続的に上記ニッケルめっき条件で、ニッケルめっき層(C)を形成した。ニッケルめっき層の厚さは、0.01μmである。このニッケルめっき層上に、上記銅めっき条件で、さらに5μm厚のめっき銅層(D)を形成した。
 この後、基板に接着し、剥離試験を行い、剥離の状況を確認した。基板をつけたキャリア銅箔は、きれいに剥離することが出来なかった。結果、その後の銅箔を使っての回路形成を実施することができなかった。
(比較例2)
 18μm厚の圧延銅箔を銅キャリア(A)としてその表面に上記ニッケルめっき条件で、1.5μmのニッケル層(B)を形成後、一旦空気に暴露し、その後、銅層(D)を形成した。
 この後、基板に接着し、剥離試験を行い、剥離の状況を確認した。基板をつけたキャリア銅箔は、その強度は、0.5kg/cm未満で容易に剥離したが、ニッケル層(B)と銅層(D)に間でおこり、銅層(D)表面にはニッケル層を有していない。
 剥離した基板付の電子回路用銅箔についてエッチング処理を実施し、回路形成を行なった。回路形成においては、電子回路用銅箔の傾斜角は52°とダレが発生した。
(比較例3)
 18μm厚の圧延銅箔を銅キャリア(A)としてその表面に有機皮膜を0.003μm形成したのち、0.02μmのニッケル層(C)を形成した後、すぐさま、5μm厚の銅層(D)を形成した。
 この後、基板に接着し、剥離試験を行い、剥離の状況を確認した。基板をつけたキャリア銅箔は、銅キャリアとニッケルめっき層(C)との間でおこり、キャリア銅箔表面にはニッケル層を有さない。回路形成においては、電子回路用銅箔は傾斜角が83°とダレが発生せず、良好であった。
 キャリア銅箔は剥離した面と反対側の面に基板を接着し、エッチング処理を実施し、回路形成を行なった。その結果、45°とダレが発生した。
 本発明は、予め銅箔のキャリアを使用し、さらにその上に銅のバルク箔を形成する構造から、容易にバルク箔を剥離することができ、製造工程が簡略化することが可能である。さらに、ニッケル層を備えた極薄銅箔という単純な構造の銅箔として使用できるので、様々な電子回路の設計に任意に使用することができ、汎用性に富むという大きな効果がある。
また、銅箔のエッチングにより回路形成を行うに際し、目的とする回路幅のより均一な回路を形成できるという効果を有し、エッチングによる処理残りがなく、ダレの発生を防止し、エッチングによる回路形成の時間を短縮することが可能であり、またニッケル層の厚さを極力薄くすることができるという効果を有する。これによってパターンエッチングでのエッチング性の向上、ショートや回路幅の不良の発生を防止できるので、銅張り積層板(リジッド及びフレキ用)としての利用、プリント基板の電子回路の形成への利用が可能である。

Claims (11)

  1.  圧延銅箔又は電解銅箔からなる銅キャリア、ニッケル層、銅層の構造からなる銅キャリア付銅箔であって、0.5kg/cm未満で剥離することができ、剥離により銅キャリア上にニッケル層を有すると同時に、銅層側にもニッケル層を有することを特徴とする銅キャリア付銅箔。
  2.  圧延銅箔又は電解銅箔からなる銅キャリア(A)、該銅キャリア(A)上に0.03~2μm厚のニッケル層(B)、該ニッケル層(B)上に形成した0.001~0.03μm厚のニッケル層(C)、さらに該ニッケル層(C)上に形成した銅層(D)からなることを特徴とする銅キャリア付銅箔。
  3.  前記ニッケル層(B)が、剥離した際の銅キャリア(A)上のニッケル層であり、前記ニッケル層(C)が、剥離した際の銅層(D)上のニッケル層であることを特徴とする請求項2に記載のキャリア付銅箔。
  4.  圧延銅箔又は電解銅箔からなる銅キャリア(A)上に、無電解ニッケルめっき又は電解ニッケルめっきして、0.03~2μm厚のニッケル層(B)を形成し、これを一旦空気中に曝した後、該ニッケル層(B)上にさらに無電解ニッケルめっき又は電解ニッケルめっきにより、0.001~0.03μm厚のニッケル層(C)を形成し、該ニッケル層(C)上に電解銅めっきにより銅層(D)を形成することを特徴とするキャリア付銅箔の製造方法。
  5.  請求項1~3に記載のキャリア付銅箔を、前記ニッケル層(B)とニッケル層(C)の間で剥離して得られるニッケル層(C)と銅層(D)からなる電子回路用銅箔。
  6.  請求項1~3に記載のキャリア付銅箔を、前記ニッケル層(B)とニッケル層(C)の間で剥離して得られるニッケル層(B)銅キャリア(A)からなる電子回路用銅箔。
  7.  請求項6に記載のキャリア銅箔において、ニッケル層(B)が0.03~0.1μmであり、電子回路用に用いられることを特徴とするニッケル層(B)付キャリア銅箔。
  8.  請求項4に記載の製造方法で製造された銅キャリア付銅箔を、ニッケル層(B)とニッケル層(C)間で剥離させ、ニッケル層(C)と銅層(D)からなる電子回路用銅箔を得ることを特徴とする電子回路用銅箔の製造方法。
  9.  請求項4に記載の製造方法で製造された銅キャリア付銅箔を、ニッケル層(B)とニッケル層(C)間で剥離させ、ニッケル層(B)と銅キャリア(A)からなるキャリア銅箔を得ることを特徴とする電子回路用銅箔の製造方法。
  10.  請求項5に記載の電子回路用銅箔(D)の銅層表面に樹脂基板を貼り付け、その反対面であるニッケル層(C)上に回路形成用のレジストパターンを形成し、さらに塩化第二銅溶液または塩化第二鉄溶液からなるエッチング液を用いて、前記レジストパターンが付された部分以外のニッケル層(C)及び銅層(D)の不必要部分を除去し、次にレジスト除去を行い、さらにソフトエッチングにより残部のニッケル層(C)を除去して、所定の幅を有する回路を形成することを特徴とする電子回路の形成方法。
  11.  請求項5に記載のキャリア銅箔の銅キャリア(A)表面に樹脂基板を貼り付け、その反対面であるニッケル層(B)上に回路形成用のレジストパターンを形成し、さらに塩化第二銅溶液または塩化第二鉄溶液からなるエッチング液を用いて、前記レジストパターンが付された部分以外のニッケル層(B)及び銅キャリア(A)の不必要部分を除去し、次にレジスト除去を行い、さらにソフトエッチングにより残部のニッケル層(B)を除去して、所定の幅を有する回路を形成することを特徴とする電子回路の形成方法。
PCT/JP2012/053102 2011-03-30 2012-02-10 銅キャリア付銅箔、同銅箔の製造方法、電子回路用銅箔、同銅箔の製造方法及び電子回路の形成方法 WO2012132572A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011074058 2011-03-30
JP2011-074058 2011-03-30

Publications (1)

Publication Number Publication Date
WO2012132572A1 true WO2012132572A1 (ja) 2012-10-04

Family

ID=46930336

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/053102 WO2012132572A1 (ja) 2011-03-30 2012-02-10 銅キャリア付銅箔、同銅箔の製造方法、電子回路用銅箔、同銅箔の製造方法及び電子回路の形成方法

Country Status (2)

Country Link
TW (1) TW201238752A (ja)
WO (1) WO2012132572A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5481553B1 (ja) * 2012-11-30 2014-04-23 Jx日鉱日石金属株式会社 キャリア付銅箔
KR20180035566A (ko) 2016-09-29 2018-04-06 제이엑스금속주식회사 캐리어 부착 금속박, 적층체, 프린트 배선판의 제조 방법, 전자기기의 제조 방법 및 캐리어 부착 금속박의 제조 방법

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000021611A (ja) * 1998-07-06 2000-01-21 Hitachi Chem Co Ltd チップ型電流保護素子およびその製造法
JP2001301087A (ja) * 2000-03-10 2001-10-30 Olin Corp 低プロファイルの結合強化を施した銅箔
JP2001308477A (ja) * 2000-04-26 2001-11-02 Mitsui Mining & Smelting Co Ltd 表面処理銅箔、キャリア箔付電解銅箔及びそのキャリア箔付電解銅箔の製造方法並びに銅張積層板
JP2002368365A (ja) * 2001-06-04 2002-12-20 Nikko Materials Co Ltd 銅又は銅合金の支持体を備えた複合銅箔及び該複合銅箔を使用したプリント基板
JP2003218524A (ja) * 2002-01-25 2003-07-31 Sumitomo Bakelite Co Ltd 多層配線板および半導体パッケージ
JP2004330701A (ja) * 2003-05-09 2004-11-25 Asahi Kasei Corp プリント回路形成等に使用される銅箔を備えた複合体とその製造方法
JP2009114508A (ja) * 2007-11-07 2009-05-28 Hitachi Chem Co Ltd 接続端子の製造方法とその接続端子を用いた半導体チップ搭載用基板の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000021611A (ja) * 1998-07-06 2000-01-21 Hitachi Chem Co Ltd チップ型電流保護素子およびその製造法
JP2001301087A (ja) * 2000-03-10 2001-10-30 Olin Corp 低プロファイルの結合強化を施した銅箔
JP2001308477A (ja) * 2000-04-26 2001-11-02 Mitsui Mining & Smelting Co Ltd 表面処理銅箔、キャリア箔付電解銅箔及びそのキャリア箔付電解銅箔の製造方法並びに銅張積層板
JP2002368365A (ja) * 2001-06-04 2002-12-20 Nikko Materials Co Ltd 銅又は銅合金の支持体を備えた複合銅箔及び該複合銅箔を使用したプリント基板
JP2003218524A (ja) * 2002-01-25 2003-07-31 Sumitomo Bakelite Co Ltd 多層配線板および半導体パッケージ
JP2004330701A (ja) * 2003-05-09 2004-11-25 Asahi Kasei Corp プリント回路形成等に使用される銅箔を備えた複合体とその製造方法
JP2009114508A (ja) * 2007-11-07 2009-05-28 Hitachi Chem Co Ltd 接続端子の製造方法とその接続端子を用いた半導体チップ搭載用基板の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5481553B1 (ja) * 2012-11-30 2014-04-23 Jx日鉱日石金属株式会社 キャリア付銅箔
KR20180035566A (ko) 2016-09-29 2018-04-06 제이엑스금속주식회사 캐리어 부착 금속박, 적층체, 프린트 배선판의 제조 방법, 전자기기의 제조 방법 및 캐리어 부착 금속박의 제조 방법

Also Published As

Publication number Publication date
TW201238752A (en) 2012-10-01

Similar Documents

Publication Publication Date Title
KR101188147B1 (ko) 인쇄 회로 기판용 구리박 및 인쇄 회로 기판용 동장 적층판
TWI539875B (zh) An electronic circuit and an electrolytic copper foil or rolled copper foil using a method of forming such electronic circuits
TWI610605B (zh) 電子電路用之壓延銅箔或電解銅箔及使用此等之電子電路之形成方法
JP5358586B2 (ja) 電子回路用の圧延銅箔又は電解銅箔及びこれらを用いた電子回路の形成方法
WO2013115382A1 (ja) プリント配線板用銅箔及びそれを用いた積層体、プリント配線板及び電子部品
JP5248684B2 (ja) 電子回路及びその形成方法並びに電子回路形成用銅張積層板
JP4955104B2 (ja) 電子回路の形成方法
JP5738964B2 (ja) 電子回路及びその形成方法並びに電子回路形成用銅張積層板
JP5254491B2 (ja) 印刷回路基板用銅箔及び印刷回路基板用銅張積層板
WO2012132578A1 (ja) 銅キャリア付銅箔、その製造方法、電子回路用銅箔、その製造方法及び電子回路の形成方法
WO2012132572A1 (ja) 銅キャリア付銅箔、同銅箔の製造方法、電子回路用銅箔、同銅箔の製造方法及び電子回路の形成方法
JP5542715B2 (ja) プリント配線板用銅箔、積層体及びプリント配線板
JP2012146933A (ja) プリント配線板用回路基板の形成方法
JP5808114B2 (ja) プリント配線板用銅箔、積層体及びプリント配線板
JP5043154B2 (ja) 電子回路用銅箔及び電子回路の形成方法
JP2011210996A (ja) プリント配線板用銅箔及びそれを用いた積層体
JP2011253855A (ja) プリント配線板用銅箔又は銅層と絶縁基板との積層体、プリント配線板、及び、回路基板の形成方法
JP2011253854A (ja) プリント配線板用回路基板の形成方法
JP2011253851A (ja) プリント配線板用回路基板の形成方法
JP2012033628A (ja) プリント配線板用回路基板の形成方法
JP2012235062A (ja) 積層体及びこれを用いたプリント配線板
JP2011210984A (ja) 耐加熱変色性及びエッチング性に優れたプリント配線板用銅箔及び積層体
JP2011210998A (ja) 耐加熱変色性及びエッチング性に優れたプリント配線板用銅箔及び積層体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12763965

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12763965

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP